• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/rwsem.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 
142 #include "net-sysfs.h"
143 
144 /* Instead of increasing this, you should create a hash table. */
145 #define MAX_GRO_SKBS 8
146 
147 /* This should be increased if a protocol with a bigger head is added. */
148 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149 
150 static DEFINE_SPINLOCK(ptype_lock);
151 static DEFINE_SPINLOCK(offload_lock);
152 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
153 struct list_head ptype_all __read_mostly;	/* Taps */
154 static struct list_head offload_base __read_mostly;
155 
156 static int netif_rx_internal(struct sk_buff *skb);
157 static int call_netdevice_notifiers_info(unsigned long val,
158 					 struct net_device *dev,
159 					 struct netdev_notifier_info *info);
160 
161 /*
162  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
163  * semaphore.
164  *
165  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
166  *
167  * Writers must hold the rtnl semaphore while they loop through the
168  * dev_base_head list, and hold dev_base_lock for writing when they do the
169  * actual updates.  This allows pure readers to access the list even
170  * while a writer is preparing to update it.
171  *
172  * To put it another way, dev_base_lock is held for writing only to
173  * protect against pure readers; the rtnl semaphore provides the
174  * protection against other writers.
175  *
176  * See, for example usages, register_netdevice() and
177  * unregister_netdevice(), which must be called with the rtnl
178  * semaphore held.
179  */
180 DEFINE_RWLOCK(dev_base_lock);
181 EXPORT_SYMBOL(dev_base_lock);
182 
183 /* protects napi_hash addition/deletion and napi_gen_id */
184 static DEFINE_SPINLOCK(napi_hash_lock);
185 
186 static unsigned int napi_gen_id = NR_CPUS;
187 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
188 
189 static DECLARE_RWSEM(devnet_rename_sem);
190 
dev_base_seq_inc(struct net * net)191 static inline void dev_base_seq_inc(struct net *net)
192 {
193 	while (++net->dev_base_seq == 0);
194 }
195 
dev_name_hash(struct net * net,const char * name)196 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
197 {
198 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
199 
200 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
201 }
202 
dev_index_hash(struct net * net,int ifindex)203 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
204 {
205 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
206 }
207 
rps_lock(struct softnet_data * sd)208 static inline void rps_lock(struct softnet_data *sd)
209 {
210 #ifdef CONFIG_RPS
211 	spin_lock(&sd->input_pkt_queue.lock);
212 #endif
213 }
214 
rps_unlock(struct softnet_data * sd)215 static inline void rps_unlock(struct softnet_data *sd)
216 {
217 #ifdef CONFIG_RPS
218 	spin_unlock(&sd->input_pkt_queue.lock);
219 #endif
220 }
221 
222 /* Device list insertion */
list_netdevice(struct net_device * dev)223 static void list_netdevice(struct net_device *dev)
224 {
225 	struct net *net = dev_net(dev);
226 
227 	ASSERT_RTNL();
228 
229 	write_lock_bh(&dev_base_lock);
230 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
231 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
232 	hlist_add_head_rcu(&dev->index_hlist,
233 			   dev_index_hash(net, dev->ifindex));
234 	write_unlock_bh(&dev_base_lock);
235 
236 	dev_base_seq_inc(net);
237 }
238 
239 /* Device list removal
240  * caller must respect a RCU grace period before freeing/reusing dev
241  */
unlist_netdevice(struct net_device * dev)242 static void unlist_netdevice(struct net_device *dev)
243 {
244 	ASSERT_RTNL();
245 
246 	/* Unlink dev from the device chain */
247 	write_lock_bh(&dev_base_lock);
248 	list_del_rcu(&dev->dev_list);
249 	hlist_del_rcu(&dev->name_hlist);
250 	hlist_del_rcu(&dev->index_hlist);
251 	write_unlock_bh(&dev_base_lock);
252 
253 	dev_base_seq_inc(dev_net(dev));
254 }
255 
256 /*
257  *	Our notifier list
258  */
259 
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261 
262 /*
263  *	Device drivers call our routines to queue packets here. We empty the
264  *	queue in the local softnet handler.
265  */
266 
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269 
270 #ifdef CONFIG_LOCKDEP
271 /*
272  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273  * according to dev->type
274  */
275 static const unsigned short netdev_lock_type[] =
276 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
289 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
290 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
291 
292 static const char *const netdev_lock_name[] =
293 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
306 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
307 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
308 
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 
netdev_lock_pos(unsigned short dev_type)312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 	int i;
315 
316 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 		if (netdev_lock_type[i] == dev_type)
318 			return i;
319 	/* the last key is used by default */
320 	return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 						 unsigned short dev_type)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev_type);
329 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 				   netdev_lock_name[i]);
331 }
332 
netdev_set_addr_lockdep_class(struct net_device * dev)333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev->type);
338 	lockdep_set_class_and_name(&dev->addr_list_lock,
339 				   &netdev_addr_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 						 unsigned short dev_type)
345 {
346 }
netdev_set_addr_lockdep_class(struct net_device * dev)347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351 
352 /*******************************************************************************
353 
354 		Protocol management and registration routines
355 
356 *******************************************************************************/
357 
358 /*
359  *	Add a protocol ID to the list. Now that the input handler is
360  *	smarter we can dispense with all the messy stuff that used to be
361  *	here.
362  *
363  *	BEWARE!!! Protocol handlers, mangling input packets,
364  *	MUST BE last in hash buckets and checking protocol handlers
365  *	MUST start from promiscuous ptype_all chain in net_bh.
366  *	It is true now, do not change it.
367  *	Explanation follows: if protocol handler, mangling packet, will
368  *	be the first on list, it is not able to sense, that packet
369  *	is cloned and should be copied-on-write, so that it will
370  *	change it and subsequent readers will get broken packet.
371  *							--ANK (980803)
372  */
373 
ptype_head(const struct packet_type * pt)374 static inline struct list_head *ptype_head(const struct packet_type *pt)
375 {
376 	if (pt->type == htons(ETH_P_ALL))
377 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
378 	else
379 		return pt->dev ? &pt->dev->ptype_specific :
380 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382 
383 /**
384  *	dev_add_pack - add packet handler
385  *	@pt: packet type declaration
386  *
387  *	Add a protocol handler to the networking stack. The passed &packet_type
388  *	is linked into kernel lists and may not be freed until it has been
389  *	removed from the kernel lists.
390  *
391  *	This call does not sleep therefore it can not
392  *	guarantee all CPU's that are in middle of receiving packets
393  *	will see the new packet type (until the next received packet).
394  */
395 
dev_add_pack(struct packet_type * pt)396 void dev_add_pack(struct packet_type *pt)
397 {
398 	struct list_head *head = ptype_head(pt);
399 
400 	spin_lock(&ptype_lock);
401 	list_add_rcu(&pt->list, head);
402 	spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405 
406 /**
407  *	__dev_remove_pack	 - remove packet handler
408  *	@pt: packet type declaration
409  *
410  *	Remove a protocol handler that was previously added to the kernel
411  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
412  *	from the kernel lists and can be freed or reused once this function
413  *	returns.
414  *
415  *      The packet type might still be in use by receivers
416  *	and must not be freed until after all the CPU's have gone
417  *	through a quiescent state.
418  */
__dev_remove_pack(struct packet_type * pt)419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 	struct list_head *head = ptype_head(pt);
422 	struct packet_type *pt1;
423 
424 	spin_lock(&ptype_lock);
425 
426 	list_for_each_entry(pt1, head, list) {
427 		if (pt == pt1) {
428 			list_del_rcu(&pt->list);
429 			goto out;
430 		}
431 	}
432 
433 	pr_warn("dev_remove_pack: %p not found\n", pt);
434 out:
435 	spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438 
439 /**
440  *	dev_remove_pack	 - remove packet handler
441  *	@pt: packet type declaration
442  *
443  *	Remove a protocol handler that was previously added to the kernel
444  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
445  *	from the kernel lists and can be freed or reused once this function
446  *	returns.
447  *
448  *	This call sleeps to guarantee that no CPU is looking at the packet
449  *	type after return.
450  */
dev_remove_pack(struct packet_type * pt)451 void dev_remove_pack(struct packet_type *pt)
452 {
453 	__dev_remove_pack(pt);
454 
455 	synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458 
459 
460 /**
461  *	dev_add_offload - register offload handlers
462  *	@po: protocol offload declaration
463  *
464  *	Add protocol offload handlers to the networking stack. The passed
465  *	&proto_offload is linked into kernel lists and may not be freed until
466  *	it has been removed from the kernel lists.
467  *
468  *	This call does not sleep therefore it can not
469  *	guarantee all CPU's that are in middle of receiving packets
470  *	will see the new offload handlers (until the next received packet).
471  */
dev_add_offload(struct packet_offload * po)472 void dev_add_offload(struct packet_offload *po)
473 {
474 	struct packet_offload *elem;
475 
476 	spin_lock(&offload_lock);
477 	list_for_each_entry(elem, &offload_base, list) {
478 		if (po->priority < elem->priority)
479 			break;
480 	}
481 	list_add_rcu(&po->list, elem->list.prev);
482 	spin_unlock(&offload_lock);
483 }
484 EXPORT_SYMBOL(dev_add_offload);
485 
486 /**
487  *	__dev_remove_offload	 - remove offload handler
488  *	@po: packet offload declaration
489  *
490  *	Remove a protocol offload handler that was previously added to the
491  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
492  *	is removed from the kernel lists and can be freed or reused once this
493  *	function returns.
494  *
495  *      The packet type might still be in use by receivers
496  *	and must not be freed until after all the CPU's have gone
497  *	through a quiescent state.
498  */
__dev_remove_offload(struct packet_offload * po)499 static void __dev_remove_offload(struct packet_offload *po)
500 {
501 	struct list_head *head = &offload_base;
502 	struct packet_offload *po1;
503 
504 	spin_lock(&offload_lock);
505 
506 	list_for_each_entry(po1, head, list) {
507 		if (po == po1) {
508 			list_del_rcu(&po->list);
509 			goto out;
510 		}
511 	}
512 
513 	pr_warn("dev_remove_offload: %p not found\n", po);
514 out:
515 	spin_unlock(&offload_lock);
516 }
517 
518 /**
519  *	dev_remove_offload	 - remove packet offload handler
520  *	@po: packet offload declaration
521  *
522  *	Remove a packet offload handler that was previously added to the kernel
523  *	offload handlers by dev_add_offload(). The passed &offload_type is
524  *	removed from the kernel lists and can be freed or reused once this
525  *	function returns.
526  *
527  *	This call sleeps to guarantee that no CPU is looking at the packet
528  *	type after return.
529  */
dev_remove_offload(struct packet_offload * po)530 void dev_remove_offload(struct packet_offload *po)
531 {
532 	__dev_remove_offload(po);
533 
534 	synchronize_net();
535 }
536 EXPORT_SYMBOL(dev_remove_offload);
537 
538 /******************************************************************************
539 
540 		      Device Boot-time Settings Routines
541 
542 *******************************************************************************/
543 
544 /* Boot time configuration table */
545 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
546 
547 /**
548  *	netdev_boot_setup_add	- add new setup entry
549  *	@name: name of the device
550  *	@map: configured settings for the device
551  *
552  *	Adds new setup entry to the dev_boot_setup list.  The function
553  *	returns 0 on error and 1 on success.  This is a generic routine to
554  *	all netdevices.
555  */
netdev_boot_setup_add(char * name,struct ifmap * map)556 static int netdev_boot_setup_add(char *name, struct ifmap *map)
557 {
558 	struct netdev_boot_setup *s;
559 	int i;
560 
561 	s = dev_boot_setup;
562 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
563 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
564 			memset(s[i].name, 0, sizeof(s[i].name));
565 			strlcpy(s[i].name, name, IFNAMSIZ);
566 			memcpy(&s[i].map, map, sizeof(s[i].map));
567 			break;
568 		}
569 	}
570 
571 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
572 }
573 
574 /**
575  *	netdev_boot_setup_check	- check boot time settings
576  *	@dev: the netdevice
577  *
578  * 	Check boot time settings for the device.
579  *	The found settings are set for the device to be used
580  *	later in the device probing.
581  *	Returns 0 if no settings found, 1 if they are.
582  */
netdev_boot_setup_check(struct net_device * dev)583 int netdev_boot_setup_check(struct net_device *dev)
584 {
585 	struct netdev_boot_setup *s = dev_boot_setup;
586 	int i;
587 
588 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
589 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
590 		    !strcmp(dev->name, s[i].name)) {
591 			dev->irq 	= s[i].map.irq;
592 			dev->base_addr 	= s[i].map.base_addr;
593 			dev->mem_start 	= s[i].map.mem_start;
594 			dev->mem_end 	= s[i].map.mem_end;
595 			return 1;
596 		}
597 	}
598 	return 0;
599 }
600 EXPORT_SYMBOL(netdev_boot_setup_check);
601 
602 
603 /**
604  *	netdev_boot_base	- get address from boot time settings
605  *	@prefix: prefix for network device
606  *	@unit: id for network device
607  *
608  * 	Check boot time settings for the base address of device.
609  *	The found settings are set for the device to be used
610  *	later in the device probing.
611  *	Returns 0 if no settings found.
612  */
netdev_boot_base(const char * prefix,int unit)613 unsigned long netdev_boot_base(const char *prefix, int unit)
614 {
615 	const struct netdev_boot_setup *s = dev_boot_setup;
616 	char name[IFNAMSIZ];
617 	int i;
618 
619 	sprintf(name, "%s%d", prefix, unit);
620 
621 	/*
622 	 * If device already registered then return base of 1
623 	 * to indicate not to probe for this interface
624 	 */
625 	if (__dev_get_by_name(&init_net, name))
626 		return 1;
627 
628 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
629 		if (!strcmp(name, s[i].name))
630 			return s[i].map.base_addr;
631 	return 0;
632 }
633 
634 /*
635  * Saves at boot time configured settings for any netdevice.
636  */
netdev_boot_setup(char * str)637 int __init netdev_boot_setup(char *str)
638 {
639 	int ints[5];
640 	struct ifmap map;
641 
642 	str = get_options(str, ARRAY_SIZE(ints), ints);
643 	if (!str || !*str)
644 		return 0;
645 
646 	/* Save settings */
647 	memset(&map, 0, sizeof(map));
648 	if (ints[0] > 0)
649 		map.irq = ints[1];
650 	if (ints[0] > 1)
651 		map.base_addr = ints[2];
652 	if (ints[0] > 2)
653 		map.mem_start = ints[3];
654 	if (ints[0] > 3)
655 		map.mem_end = ints[4];
656 
657 	/* Add new entry to the list */
658 	return netdev_boot_setup_add(str, &map);
659 }
660 
661 __setup("netdev=", netdev_boot_setup);
662 
663 /*******************************************************************************
664 
665 			    Device Interface Subroutines
666 
667 *******************************************************************************/
668 
669 /**
670  *	dev_get_iflink	- get 'iflink' value of a interface
671  *	@dev: targeted interface
672  *
673  *	Indicates the ifindex the interface is linked to.
674  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
675  */
676 
dev_get_iflink(const struct net_device * dev)677 int dev_get_iflink(const struct net_device *dev)
678 {
679 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
680 		return dev->netdev_ops->ndo_get_iflink(dev);
681 
682 	return dev->ifindex;
683 }
684 EXPORT_SYMBOL(dev_get_iflink);
685 
686 /**
687  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
688  *	@dev: targeted interface
689  *	@skb: The packet.
690  *
691  *	For better visibility of tunnel traffic OVS needs to retrieve
692  *	egress tunnel information for a packet. Following API allows
693  *	user to get this info.
694  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)695 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
696 {
697 	struct ip_tunnel_info *info;
698 
699 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
700 		return -EINVAL;
701 
702 	info = skb_tunnel_info_unclone(skb);
703 	if (!info)
704 		return -ENOMEM;
705 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
706 		return -EINVAL;
707 
708 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
709 }
710 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
711 
712 /**
713  *	__dev_get_by_name	- find a device by its name
714  *	@net: the applicable net namespace
715  *	@name: name to find
716  *
717  *	Find an interface by name. Must be called under RTNL semaphore
718  *	or @dev_base_lock. If the name is found a pointer to the device
719  *	is returned. If the name is not found then %NULL is returned. The
720  *	reference counters are not incremented so the caller must be
721  *	careful with locks.
722  */
723 
__dev_get_by_name(struct net * net,const char * name)724 struct net_device *__dev_get_by_name(struct net *net, const char *name)
725 {
726 	struct net_device *dev;
727 	struct hlist_head *head = dev_name_hash(net, name);
728 
729 	hlist_for_each_entry(dev, head, name_hlist)
730 		if (!strncmp(dev->name, name, IFNAMSIZ))
731 			return dev;
732 
733 	return NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736 
737 /**
738  *	dev_get_by_name_rcu	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name.
743  *	If the name is found a pointer to the device is returned.
744  * 	If the name is not found then %NULL is returned.
745  *	The reference counters are not incremented so the caller must be
746  *	careful with locks. The caller must hold RCU lock.
747  */
748 
dev_get_by_name_rcu(struct net * net,const char * name)749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751 	struct net_device *dev;
752 	struct hlist_head *head = dev_name_hash(net, name);
753 
754 	hlist_for_each_entry_rcu(dev, head, name_hlist)
755 		if (!strncmp(dev->name, name, IFNAMSIZ))
756 			return dev;
757 
758 	return NULL;
759 }
760 EXPORT_SYMBOL(dev_get_by_name_rcu);
761 
762 /**
763  *	dev_get_by_name		- find a device by its name
764  *	@net: the applicable net namespace
765  *	@name: name to find
766  *
767  *	Find an interface by name. This can be called from any
768  *	context and does its own locking. The returned handle has
769  *	the usage count incremented and the caller must use dev_put() to
770  *	release it when it is no longer needed. %NULL is returned if no
771  *	matching device is found.
772  */
773 
dev_get_by_name(struct net * net,const char * name)774 struct net_device *dev_get_by_name(struct net *net, const char *name)
775 {
776 	struct net_device *dev;
777 
778 	rcu_read_lock();
779 	dev = dev_get_by_name_rcu(net, name);
780 	if (dev)
781 		dev_hold(dev);
782 	rcu_read_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *	__dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold either the RTNL semaphore
796  *	or @dev_base_lock.
797  */
798 
__dev_get_by_index(struct net * net,int ifindex)799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *	dev_get_by_index_rcu - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns %NULL if the device
818  *	is not found or a pointer to the device. The device has not
819  *	had its reference counter increased so the caller must be careful
820  *	about locking. The caller must hold RCU lock.
821  */
822 
dev_get_by_index_rcu(struct net * net,int ifindex)823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 	struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828 	hlist_for_each_entry_rcu(dev, head, index_hlist)
829 		if (dev->ifindex == ifindex)
830 			return dev;
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *	dev_get_by_index - find a device by its ifindex
839  *	@net: the applicable net namespace
840  *	@ifindex: index of device
841  *
842  *	Search for an interface by index. Returns NULL if the device
843  *	is not found or a pointer to the device. The device returned has
844  *	had a reference added and the pointer is safe until the user calls
845  *	dev_put to indicate they have finished with it.
846  */
847 
dev_get_by_index(struct net * net,int ifindex)848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 	struct net_device *dev;
851 
852 	rcu_read_lock();
853 	dev = dev_get_by_index_rcu(net, ifindex);
854 	if (dev)
855 		dev_hold(dev);
856 	rcu_read_unlock();
857 	return dev;
858 }
859 EXPORT_SYMBOL(dev_get_by_index);
860 
861 /**
862  *	netdev_get_name - get a netdevice name, knowing its ifindex.
863  *	@net: network namespace
864  *	@name: a pointer to the buffer where the name will be stored.
865  *	@ifindex: the ifindex of the interface to get the name from.
866  */
netdev_get_name(struct net * net,char * name,int ifindex)867 int netdev_get_name(struct net *net, char *name, int ifindex)
868 {
869 	struct net_device *dev;
870 	int ret;
871 
872 	down_read(&devnet_rename_sem);
873 	rcu_read_lock();
874 
875 	dev = dev_get_by_index_rcu(net, ifindex);
876 	if (!dev) {
877 		ret = -ENODEV;
878 		goto out;
879 	}
880 
881 	strcpy(name, dev->name);
882 
883 	ret = 0;
884 out:
885 	rcu_read_unlock();
886 	up_read(&devnet_rename_sem);
887 	return ret;
888 }
889 
890 /**
891  *	dev_getbyhwaddr_rcu - find a device by its hardware address
892  *	@net: the applicable net namespace
893  *	@type: media type of device
894  *	@ha: hardware address
895  *
896  *	Search for an interface by MAC address. Returns NULL if the device
897  *	is not found or a pointer to the device.
898  *	The caller must hold RCU or RTNL.
899  *	The returned device has not had its ref count increased
900  *	and the caller must therefore be careful about locking
901  *
902  */
903 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)904 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
905 				       const char *ha)
906 {
907 	struct net_device *dev;
908 
909 	for_each_netdev_rcu(net, dev)
910 		if (dev->type == type &&
911 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
912 			return dev;
913 
914 	return NULL;
915 }
916 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
917 
__dev_getfirstbyhwtype(struct net * net,unsigned short type)918 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
919 {
920 	struct net_device *dev;
921 
922 	ASSERT_RTNL();
923 	for_each_netdev(net, dev)
924 		if (dev->type == type)
925 			return dev;
926 
927 	return NULL;
928 }
929 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
930 
dev_getfirstbyhwtype(struct net * net,unsigned short type)931 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
932 {
933 	struct net_device *dev, *ret = NULL;
934 
935 	rcu_read_lock();
936 	for_each_netdev_rcu(net, dev)
937 		if (dev->type == type) {
938 			dev_hold(dev);
939 			ret = dev;
940 			break;
941 		}
942 	rcu_read_unlock();
943 	return ret;
944 }
945 EXPORT_SYMBOL(dev_getfirstbyhwtype);
946 
947 /**
948  *	__dev_get_by_flags - find any device with given flags
949  *	@net: the applicable net namespace
950  *	@if_flags: IFF_* values
951  *	@mask: bitmask of bits in if_flags to check
952  *
953  *	Search for any interface with the given flags. Returns NULL if a device
954  *	is not found or a pointer to the device. Must be called inside
955  *	rtnl_lock(), and result refcount is unchanged.
956  */
957 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)958 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
959 				      unsigned short mask)
960 {
961 	struct net_device *dev, *ret;
962 
963 	ASSERT_RTNL();
964 
965 	ret = NULL;
966 	for_each_netdev(net, dev) {
967 		if (((dev->flags ^ if_flags) & mask) == 0) {
968 			ret = dev;
969 			break;
970 		}
971 	}
972 	return ret;
973 }
974 EXPORT_SYMBOL(__dev_get_by_flags);
975 
976 /**
977  *	dev_valid_name - check if name is okay for network device
978  *	@name: name string
979  *
980  *	Network device names need to be valid file names to
981  *	to allow sysfs to work.  We also disallow any kind of
982  *	whitespace.
983  */
dev_valid_name(const char * name)984 bool dev_valid_name(const char *name)
985 {
986 	if (*name == '\0')
987 		return false;
988 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
989 		return false;
990 	if (!strcmp(name, ".") || !strcmp(name, ".."))
991 		return false;
992 
993 	while (*name) {
994 		if (*name == '/' || *name == ':' || isspace(*name))
995 			return false;
996 		name++;
997 	}
998 	return true;
999 }
1000 EXPORT_SYMBOL(dev_valid_name);
1001 
1002 /**
1003  *	__dev_alloc_name - allocate a name for a device
1004  *	@net: network namespace to allocate the device name in
1005  *	@name: name format string
1006  *	@buf:  scratch buffer and result name string
1007  *
1008  *	Passed a format string - eg "lt%d" it will try and find a suitable
1009  *	id. It scans list of devices to build up a free map, then chooses
1010  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1011  *	while allocating the name and adding the device in order to avoid
1012  *	duplicates.
1013  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1014  *	Returns the number of the unit assigned or a negative errno code.
1015  */
1016 
__dev_alloc_name(struct net * net,const char * name,char * buf)1017 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1018 {
1019 	int i = 0;
1020 	const char *p;
1021 	const int max_netdevices = 8*PAGE_SIZE;
1022 	unsigned long *inuse;
1023 	struct net_device *d;
1024 
1025 	p = strnchr(name, IFNAMSIZ-1, '%');
1026 	if (p) {
1027 		/*
1028 		 * Verify the string as this thing may have come from
1029 		 * the user.  There must be either one "%d" and no other "%"
1030 		 * characters.
1031 		 */
1032 		if (p[1] != 'd' || strchr(p + 2, '%'))
1033 			return -EINVAL;
1034 
1035 		/* Use one page as a bit array of possible slots */
1036 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1037 		if (!inuse)
1038 			return -ENOMEM;
1039 
1040 		for_each_netdev(net, d) {
1041 			if (!sscanf(d->name, name, &i))
1042 				continue;
1043 			if (i < 0 || i >= max_netdevices)
1044 				continue;
1045 
1046 			/*  avoid cases where sscanf is not exact inverse of printf */
1047 			snprintf(buf, IFNAMSIZ, name, i);
1048 			if (!strncmp(buf, d->name, IFNAMSIZ))
1049 				set_bit(i, inuse);
1050 		}
1051 
1052 		i = find_first_zero_bit(inuse, max_netdevices);
1053 		free_page((unsigned long) inuse);
1054 	}
1055 
1056 	if (buf != name)
1057 		snprintf(buf, IFNAMSIZ, name, i);
1058 	if (!__dev_get_by_name(net, buf))
1059 		return i;
1060 
1061 	/* It is possible to run out of possible slots
1062 	 * when the name is long and there isn't enough space left
1063 	 * for the digits, or if all bits are used.
1064 	 */
1065 	return -ENFILE;
1066 }
1067 
1068 /**
1069  *	dev_alloc_name - allocate a name for a device
1070  *	@dev: device
1071  *	@name: name format string
1072  *
1073  *	Passed a format string - eg "lt%d" it will try and find a suitable
1074  *	id. It scans list of devices to build up a free map, then chooses
1075  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1076  *	while allocating the name and adding the device in order to avoid
1077  *	duplicates.
1078  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1079  *	Returns the number of the unit assigned or a negative errno code.
1080  */
1081 
dev_alloc_name(struct net_device * dev,const char * name)1082 int dev_alloc_name(struct net_device *dev, const char *name)
1083 {
1084 	char buf[IFNAMSIZ];
1085 	struct net *net;
1086 	int ret;
1087 
1088 	BUG_ON(!dev_net(dev));
1089 	net = dev_net(dev);
1090 	ret = __dev_alloc_name(net, name, buf);
1091 	if (ret >= 0)
1092 		strlcpy(dev->name, buf, IFNAMSIZ);
1093 	return ret;
1094 }
1095 EXPORT_SYMBOL(dev_alloc_name);
1096 
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1097 static int dev_alloc_name_ns(struct net *net,
1098 			     struct net_device *dev,
1099 			     const char *name)
1100 {
1101 	char buf[IFNAMSIZ];
1102 	int ret;
1103 
1104 	ret = __dev_alloc_name(net, name, buf);
1105 	if (ret >= 0)
1106 		strlcpy(dev->name, buf, IFNAMSIZ);
1107 	return ret;
1108 }
1109 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1110 int dev_get_valid_name(struct net *net, struct net_device *dev,
1111 		       const char *name)
1112 {
1113 	BUG_ON(!net);
1114 
1115 	if (!dev_valid_name(name))
1116 		return -EINVAL;
1117 
1118 	if (strchr(name, '%'))
1119 		return dev_alloc_name_ns(net, dev, name);
1120 	else if (__dev_get_by_name(net, name))
1121 		return -EEXIST;
1122 	else if (dev->name != name)
1123 		strlcpy(dev->name, name, IFNAMSIZ);
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL(dev_get_valid_name);
1128 
1129 /**
1130  *	dev_change_name - change name of a device
1131  *	@dev: device
1132  *	@newname: name (or format string) must be at least IFNAMSIZ
1133  *
1134  *	Change name of a device, can pass format strings "eth%d".
1135  *	for wildcarding.
1136  */
dev_change_name(struct net_device * dev,const char * newname)1137 int dev_change_name(struct net_device *dev, const char *newname)
1138 {
1139 	unsigned char old_assign_type;
1140 	char oldname[IFNAMSIZ];
1141 	int err = 0;
1142 	int ret;
1143 	struct net *net;
1144 
1145 	ASSERT_RTNL();
1146 	BUG_ON(!dev_net(dev));
1147 
1148 	net = dev_net(dev);
1149 	if (dev->flags & IFF_UP)
1150 		return -EBUSY;
1151 
1152 	down_write(&devnet_rename_sem);
1153 
1154 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1155 		up_write(&devnet_rename_sem);
1156 		return 0;
1157 	}
1158 
1159 	memcpy(oldname, dev->name, IFNAMSIZ);
1160 
1161 	err = dev_get_valid_name(net, dev, newname);
1162 	if (err < 0) {
1163 		up_write(&devnet_rename_sem);
1164 		return err;
1165 	}
1166 
1167 	if (oldname[0] && !strchr(oldname, '%'))
1168 		netdev_info(dev, "renamed from %s\n", oldname);
1169 
1170 	old_assign_type = dev->name_assign_type;
1171 	dev->name_assign_type = NET_NAME_RENAMED;
1172 
1173 rollback:
1174 	ret = device_rename(&dev->dev, dev->name);
1175 	if (ret) {
1176 		memcpy(dev->name, oldname, IFNAMSIZ);
1177 		dev->name_assign_type = old_assign_type;
1178 		up_write(&devnet_rename_sem);
1179 		return ret;
1180 	}
1181 
1182 	up_write(&devnet_rename_sem);
1183 
1184 	netdev_adjacent_rename_links(dev, oldname);
1185 
1186 	write_lock_bh(&dev_base_lock);
1187 	hlist_del_rcu(&dev->name_hlist);
1188 	write_unlock_bh(&dev_base_lock);
1189 
1190 	synchronize_rcu();
1191 
1192 	write_lock_bh(&dev_base_lock);
1193 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1194 	write_unlock_bh(&dev_base_lock);
1195 
1196 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1197 	ret = notifier_to_errno(ret);
1198 
1199 	if (ret) {
1200 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1201 		if (err >= 0) {
1202 			err = ret;
1203 			down_write(&devnet_rename_sem);
1204 			memcpy(dev->name, oldname, IFNAMSIZ);
1205 			memcpy(oldname, newname, IFNAMSIZ);
1206 			dev->name_assign_type = old_assign_type;
1207 			old_assign_type = NET_NAME_RENAMED;
1208 			goto rollback;
1209 		} else {
1210 			pr_err("%s: name change rollback failed: %d\n",
1211 			       dev->name, ret);
1212 		}
1213 	}
1214 
1215 	return err;
1216 }
1217 
1218 /**
1219  *	dev_set_alias - change ifalias of a device
1220  *	@dev: device
1221  *	@alias: name up to IFALIASZ
1222  *	@len: limit of bytes to copy from info
1223  *
1224  *	Set ifalias for a device,
1225  */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1226 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1227 {
1228 	char *new_ifalias;
1229 
1230 	ASSERT_RTNL();
1231 
1232 	if (len >= IFALIASZ)
1233 		return -EINVAL;
1234 
1235 	if (!len) {
1236 		kfree(dev->ifalias);
1237 		dev->ifalias = NULL;
1238 		return 0;
1239 	}
1240 
1241 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1242 	if (!new_ifalias)
1243 		return -ENOMEM;
1244 	dev->ifalias = new_ifalias;
1245 	memcpy(dev->ifalias, alias, len);
1246 	dev->ifalias[len] = 0;
1247 
1248 	return len;
1249 }
1250 
1251 
1252 /**
1253  *	netdev_features_change - device changes features
1254  *	@dev: device to cause notification
1255  *
1256  *	Called to indicate a device has changed features.
1257  */
netdev_features_change(struct net_device * dev)1258 void netdev_features_change(struct net_device *dev)
1259 {
1260 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1261 }
1262 EXPORT_SYMBOL(netdev_features_change);
1263 
1264 /**
1265  *	netdev_state_change - device changes state
1266  *	@dev: device to cause notification
1267  *
1268  *	Called to indicate a device has changed state. This function calls
1269  *	the notifier chains for netdev_chain and sends a NEWLINK message
1270  *	to the routing socket.
1271  */
netdev_state_change(struct net_device * dev)1272 void netdev_state_change(struct net_device *dev)
1273 {
1274 	if (dev->flags & IFF_UP) {
1275 		struct netdev_notifier_change_info change_info;
1276 
1277 		change_info.flags_changed = 0;
1278 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1279 					      &change_info.info);
1280 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1281 	}
1282 }
1283 EXPORT_SYMBOL(netdev_state_change);
1284 
1285 /**
1286  * 	netdev_notify_peers - notify network peers about existence of @dev
1287  * 	@dev: network device
1288  *
1289  * Generate traffic such that interested network peers are aware of
1290  * @dev, such as by generating a gratuitous ARP. This may be used when
1291  * a device wants to inform the rest of the network about some sort of
1292  * reconfiguration such as a failover event or virtual machine
1293  * migration.
1294  */
netdev_notify_peers(struct net_device * dev)1295 void netdev_notify_peers(struct net_device *dev)
1296 {
1297 	rtnl_lock();
1298 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1299 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1300 	rtnl_unlock();
1301 }
1302 EXPORT_SYMBOL(netdev_notify_peers);
1303 
__dev_open(struct net_device * dev)1304 static int __dev_open(struct net_device *dev)
1305 {
1306 	const struct net_device_ops *ops = dev->netdev_ops;
1307 	int ret;
1308 
1309 	ASSERT_RTNL();
1310 
1311 	if (!netif_device_present(dev))
1312 		return -ENODEV;
1313 
1314 	/* Block netpoll from trying to do any rx path servicing.
1315 	 * If we don't do this there is a chance ndo_poll_controller
1316 	 * or ndo_poll may be running while we open the device
1317 	 */
1318 	netpoll_poll_disable(dev);
1319 
1320 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1321 	ret = notifier_to_errno(ret);
1322 	if (ret)
1323 		return ret;
1324 
1325 	set_bit(__LINK_STATE_START, &dev->state);
1326 
1327 	if (ops->ndo_validate_addr)
1328 		ret = ops->ndo_validate_addr(dev);
1329 
1330 	if (!ret && ops->ndo_open)
1331 		ret = ops->ndo_open(dev);
1332 
1333 	netpoll_poll_enable(dev);
1334 
1335 	if (ret)
1336 		clear_bit(__LINK_STATE_START, &dev->state);
1337 	else {
1338 		dev->flags |= IFF_UP;
1339 		dev_set_rx_mode(dev);
1340 		dev_activate(dev);
1341 		add_device_randomness(dev->dev_addr, dev->addr_len);
1342 	}
1343 
1344 	return ret;
1345 }
1346 
1347 /**
1348  *	dev_open	- prepare an interface for use.
1349  *	@dev:	device to open
1350  *
1351  *	Takes a device from down to up state. The device's private open
1352  *	function is invoked and then the multicast lists are loaded. Finally
1353  *	the device is moved into the up state and a %NETDEV_UP message is
1354  *	sent to the netdev notifier chain.
1355  *
1356  *	Calling this function on an active interface is a nop. On a failure
1357  *	a negative errno code is returned.
1358  */
dev_open(struct net_device * dev)1359 int dev_open(struct net_device *dev)
1360 {
1361 	int ret;
1362 
1363 	if (dev->flags & IFF_UP)
1364 		return 0;
1365 
1366 	ret = __dev_open(dev);
1367 	if (ret < 0)
1368 		return ret;
1369 
1370 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1371 	call_netdevice_notifiers(NETDEV_UP, dev);
1372 
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL(dev_open);
1376 
__dev_close_many(struct list_head * head)1377 static int __dev_close_many(struct list_head *head)
1378 {
1379 	struct net_device *dev;
1380 
1381 	ASSERT_RTNL();
1382 	might_sleep();
1383 
1384 	list_for_each_entry(dev, head, close_list) {
1385 		/* Temporarily disable netpoll until the interface is down */
1386 		netpoll_poll_disable(dev);
1387 
1388 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1389 
1390 		clear_bit(__LINK_STATE_START, &dev->state);
1391 
1392 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1393 		 * can be even on different cpu. So just clear netif_running().
1394 		 *
1395 		 * dev->stop() will invoke napi_disable() on all of it's
1396 		 * napi_struct instances on this device.
1397 		 */
1398 		smp_mb__after_atomic(); /* Commit netif_running(). */
1399 	}
1400 
1401 	dev_deactivate_many(head);
1402 
1403 	list_for_each_entry(dev, head, close_list) {
1404 		const struct net_device_ops *ops = dev->netdev_ops;
1405 
1406 		/*
1407 		 *	Call the device specific close. This cannot fail.
1408 		 *	Only if device is UP
1409 		 *
1410 		 *	We allow it to be called even after a DETACH hot-plug
1411 		 *	event.
1412 		 */
1413 		if (ops->ndo_stop)
1414 			ops->ndo_stop(dev);
1415 
1416 		dev->flags &= ~IFF_UP;
1417 		netpoll_poll_enable(dev);
1418 	}
1419 
1420 	return 0;
1421 }
1422 
__dev_close(struct net_device * dev)1423 static int __dev_close(struct net_device *dev)
1424 {
1425 	int retval;
1426 	LIST_HEAD(single);
1427 
1428 	list_add(&dev->close_list, &single);
1429 	retval = __dev_close_many(&single);
1430 	list_del(&single);
1431 
1432 	return retval;
1433 }
1434 
dev_close_many(struct list_head * head,bool unlink)1435 int dev_close_many(struct list_head *head, bool unlink)
1436 {
1437 	struct net_device *dev, *tmp;
1438 
1439 	/* Remove the devices that don't need to be closed */
1440 	list_for_each_entry_safe(dev, tmp, head, close_list)
1441 		if (!(dev->flags & IFF_UP))
1442 			list_del_init(&dev->close_list);
1443 
1444 	__dev_close_many(head);
1445 
1446 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1447 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1448 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1449 		if (unlink)
1450 			list_del_init(&dev->close_list);
1451 	}
1452 
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL(dev_close_many);
1456 
1457 /**
1458  *	dev_close - shutdown an interface.
1459  *	@dev: device to shutdown
1460  *
1461  *	This function moves an active device into down state. A
1462  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1463  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1464  *	chain.
1465  */
dev_close(struct net_device * dev)1466 int dev_close(struct net_device *dev)
1467 {
1468 	if (dev->flags & IFF_UP) {
1469 		LIST_HEAD(single);
1470 
1471 		list_add(&dev->close_list, &single);
1472 		dev_close_many(&single, true);
1473 		list_del(&single);
1474 	}
1475 	return 0;
1476 }
1477 EXPORT_SYMBOL(dev_close);
1478 
1479 
1480 /**
1481  *	dev_disable_lro - disable Large Receive Offload on a device
1482  *	@dev: device
1483  *
1484  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1485  *	called under RTNL.  This is needed if received packets may be
1486  *	forwarded to another interface.
1487  */
dev_disable_lro(struct net_device * dev)1488 void dev_disable_lro(struct net_device *dev)
1489 {
1490 	struct net_device *lower_dev;
1491 	struct list_head *iter;
1492 
1493 	dev->wanted_features &= ~NETIF_F_LRO;
1494 	netdev_update_features(dev);
1495 
1496 	if (unlikely(dev->features & NETIF_F_LRO))
1497 		netdev_WARN(dev, "failed to disable LRO!\n");
1498 
1499 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1500 		dev_disable_lro(lower_dev);
1501 }
1502 EXPORT_SYMBOL(dev_disable_lro);
1503 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1504 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1505 				   struct net_device *dev)
1506 {
1507 	struct netdev_notifier_info info;
1508 
1509 	netdev_notifier_info_init(&info, dev);
1510 	return nb->notifier_call(nb, val, &info);
1511 }
1512 
1513 static int dev_boot_phase = 1;
1514 
1515 /**
1516  *	register_netdevice_notifier - register a network notifier block
1517  *	@nb: notifier
1518  *
1519  *	Register a notifier to be called when network device events occur.
1520  *	The notifier passed is linked into the kernel structures and must
1521  *	not be reused until it has been unregistered. A negative errno code
1522  *	is returned on a failure.
1523  *
1524  * 	When registered all registration and up events are replayed
1525  *	to the new notifier to allow device to have a race free
1526  *	view of the network device list.
1527  */
1528 
register_netdevice_notifier(struct notifier_block * nb)1529 int register_netdevice_notifier(struct notifier_block *nb)
1530 {
1531 	struct net_device *dev;
1532 	struct net_device *last;
1533 	struct net *net;
1534 	int err;
1535 
1536 	rtnl_lock();
1537 	err = raw_notifier_chain_register(&netdev_chain, nb);
1538 	if (err)
1539 		goto unlock;
1540 	if (dev_boot_phase)
1541 		goto unlock;
1542 	for_each_net(net) {
1543 		for_each_netdev(net, dev) {
1544 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1545 			err = notifier_to_errno(err);
1546 			if (err)
1547 				goto rollback;
1548 
1549 			if (!(dev->flags & IFF_UP))
1550 				continue;
1551 
1552 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1553 		}
1554 	}
1555 
1556 unlock:
1557 	rtnl_unlock();
1558 	return err;
1559 
1560 rollback:
1561 	last = dev;
1562 	for_each_net(net) {
1563 		for_each_netdev(net, dev) {
1564 			if (dev == last)
1565 				goto outroll;
1566 
1567 			if (dev->flags & IFF_UP) {
1568 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1569 							dev);
1570 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1571 			}
1572 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1573 		}
1574 	}
1575 
1576 outroll:
1577 	raw_notifier_chain_unregister(&netdev_chain, nb);
1578 	goto unlock;
1579 }
1580 EXPORT_SYMBOL(register_netdevice_notifier);
1581 
1582 /**
1583  *	unregister_netdevice_notifier - unregister a network notifier block
1584  *	@nb: notifier
1585  *
1586  *	Unregister a notifier previously registered by
1587  *	register_netdevice_notifier(). The notifier is unlinked into the
1588  *	kernel structures and may then be reused. A negative errno code
1589  *	is returned on a failure.
1590  *
1591  * 	After unregistering unregister and down device events are synthesized
1592  *	for all devices on the device list to the removed notifier to remove
1593  *	the need for special case cleanup code.
1594  */
1595 
unregister_netdevice_notifier(struct notifier_block * nb)1596 int unregister_netdevice_notifier(struct notifier_block *nb)
1597 {
1598 	struct net_device *dev;
1599 	struct net *net;
1600 	int err;
1601 
1602 	rtnl_lock();
1603 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1604 	if (err)
1605 		goto unlock;
1606 
1607 	for_each_net(net) {
1608 		for_each_netdev(net, dev) {
1609 			if (dev->flags & IFF_UP) {
1610 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1611 							dev);
1612 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1613 			}
1614 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1615 		}
1616 	}
1617 unlock:
1618 	rtnl_unlock();
1619 	return err;
1620 }
1621 EXPORT_SYMBOL(unregister_netdevice_notifier);
1622 
1623 /**
1624  *	call_netdevice_notifiers_info - call all network notifier blocks
1625  *	@val: value passed unmodified to notifier function
1626  *	@dev: net_device pointer passed unmodified to notifier function
1627  *	@info: notifier information data
1628  *
1629  *	Call all network notifier blocks.  Parameters and return value
1630  *	are as for raw_notifier_call_chain().
1631  */
1632 
call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1633 static int call_netdevice_notifiers_info(unsigned long val,
1634 					 struct net_device *dev,
1635 					 struct netdev_notifier_info *info)
1636 {
1637 	ASSERT_RTNL();
1638 	netdev_notifier_info_init(info, dev);
1639 	return raw_notifier_call_chain(&netdev_chain, val, info);
1640 }
1641 
1642 /**
1643  *	call_netdevice_notifiers - call all network notifier blocks
1644  *      @val: value passed unmodified to notifier function
1645  *      @dev: net_device pointer passed unmodified to notifier function
1646  *
1647  *	Call all network notifier blocks.  Parameters and return value
1648  *	are as for raw_notifier_call_chain().
1649  */
1650 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1651 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1652 {
1653 	struct netdev_notifier_info info;
1654 
1655 	return call_netdevice_notifiers_info(val, dev, &info);
1656 }
1657 EXPORT_SYMBOL(call_netdevice_notifiers);
1658 
1659 /**
1660  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1661  *	@val: value passed unmodified to notifier function
1662  *	@dev: net_device pointer passed unmodified to notifier function
1663  *	@arg: additional u32 argument passed to the notifier function
1664  *
1665  *	Call all network notifier blocks.  Parameters and return value
1666  *	are as for raw_notifier_call_chain().
1667  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1668 static int call_netdevice_notifiers_mtu(unsigned long val,
1669 					struct net_device *dev, u32 arg)
1670 {
1671 	struct netdev_notifier_info_ext info = {
1672 		.info.dev = dev,
1673 		.ext.mtu = arg,
1674 	};
1675 
1676 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1677 
1678 	return call_netdevice_notifiers_info(val, dev, &info.info);
1679 }
1680 
1681 #ifdef CONFIG_NET_INGRESS
1682 static struct static_key ingress_needed __read_mostly;
1683 
net_inc_ingress_queue(void)1684 void net_inc_ingress_queue(void)
1685 {
1686 	static_key_slow_inc(&ingress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1689 
net_dec_ingress_queue(void)1690 void net_dec_ingress_queue(void)
1691 {
1692 	static_key_slow_dec(&ingress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1695 #endif
1696 
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 static atomic_t netstamp_needed_deferred;
1700 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)1701 static void netstamp_clear(struct work_struct *work)
1702 {
1703 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1704 	int wanted;
1705 
1706 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1707 	if (wanted > 0)
1708 		static_key_enable(&netstamp_needed);
1709 	else
1710 		static_key_disable(&netstamp_needed);
1711 }
1712 static DECLARE_WORK(netstamp_work, netstamp_clear);
1713 #endif
1714 
net_enable_timestamp(void)1715 void net_enable_timestamp(void)
1716 {
1717 #ifdef HAVE_JUMP_LABEL
1718 	int wanted;
1719 
1720 	while (1) {
1721 		wanted = atomic_read(&netstamp_wanted);
1722 		if (wanted <= 0)
1723 			break;
1724 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1725 			return;
1726 	}
1727 	atomic_inc(&netstamp_needed_deferred);
1728 	schedule_work(&netstamp_work);
1729 #else
1730 	static_key_slow_inc(&netstamp_needed);
1731 #endif
1732 }
1733 EXPORT_SYMBOL(net_enable_timestamp);
1734 
net_disable_timestamp(void)1735 void net_disable_timestamp(void)
1736 {
1737 #ifdef HAVE_JUMP_LABEL
1738 	int wanted;
1739 
1740 	while (1) {
1741 		wanted = atomic_read(&netstamp_wanted);
1742 		if (wanted <= 1)
1743 			break;
1744 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1745 			return;
1746 	}
1747 	atomic_dec(&netstamp_needed_deferred);
1748 	schedule_work(&netstamp_work);
1749 #else
1750 	static_key_slow_dec(&netstamp_needed);
1751 #endif
1752 }
1753 EXPORT_SYMBOL(net_disable_timestamp);
1754 
net_timestamp_set(struct sk_buff * skb)1755 static inline void net_timestamp_set(struct sk_buff *skb)
1756 {
1757 	skb->tstamp.tv64 = 0;
1758 	if (static_key_false(&netstamp_needed))
1759 		__net_timestamp(skb);
1760 }
1761 
1762 #define net_timestamp_check(COND, SKB)			\
1763 	if (static_key_false(&netstamp_needed)) {		\
1764 		if ((COND) && !(SKB)->tstamp.tv64)	\
1765 			__net_timestamp(SKB);		\
1766 	}						\
1767 
is_skb_forwardable(struct net_device * dev,struct sk_buff * skb)1768 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1769 {
1770 	unsigned int len;
1771 
1772 	if (!(dev->flags & IFF_UP))
1773 		return false;
1774 
1775 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1776 	if (skb->len <= len)
1777 		return true;
1778 
1779 	/* if TSO is enabled, we don't care about the length as the packet
1780 	 * could be forwarded without being segmented before
1781 	 */
1782 	if (skb_is_gso(skb))
1783 		return true;
1784 
1785 	return false;
1786 }
1787 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1788 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1789 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1790 {
1791 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1792 	    unlikely(!is_skb_forwardable(dev, skb))) {
1793 		atomic_long_inc(&dev->rx_dropped);
1794 		kfree_skb(skb);
1795 		return NET_RX_DROP;
1796 	}
1797 
1798 	skb_scrub_packet(skb, true);
1799 	skb->priority = 0;
1800 	skb->protocol = eth_type_trans(skb, dev);
1801 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1802 
1803 	return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1806 
1807 /**
1808  * dev_forward_skb - loopback an skb to another netif
1809  *
1810  * @dev: destination network device
1811  * @skb: buffer to forward
1812  *
1813  * return values:
1814  *	NET_RX_SUCCESS	(no congestion)
1815  *	NET_RX_DROP     (packet was dropped, but freed)
1816  *
1817  * dev_forward_skb can be used for injecting an skb from the
1818  * start_xmit function of one device into the receive queue
1819  * of another device.
1820  *
1821  * The receiving device may be in another namespace, so
1822  * we have to clear all information in the skb that could
1823  * impact namespace isolation.
1824  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1825 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826 {
1827 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1828 }
1829 EXPORT_SYMBOL_GPL(dev_forward_skb);
1830 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1831 static inline int deliver_skb(struct sk_buff *skb,
1832 			      struct packet_type *pt_prev,
1833 			      struct net_device *orig_dev)
1834 {
1835 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836 		return -ENOMEM;
1837 	atomic_inc(&skb->users);
1838 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1839 }
1840 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1841 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842 					  struct packet_type **pt,
1843 					  struct net_device *orig_dev,
1844 					  __be16 type,
1845 					  struct list_head *ptype_list)
1846 {
1847 	struct packet_type *ptype, *pt_prev = *pt;
1848 
1849 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1850 		if (ptype->type != type)
1851 			continue;
1852 		if (pt_prev)
1853 			deliver_skb(skb, pt_prev, orig_dev);
1854 		pt_prev = ptype;
1855 	}
1856 	*pt = pt_prev;
1857 }
1858 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1859 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860 {
1861 	if (!ptype->af_packet_priv || !skb->sk)
1862 		return false;
1863 
1864 	if (ptype->id_match)
1865 		return ptype->id_match(ptype, skb->sk);
1866 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1867 		return true;
1868 
1869 	return false;
1870 }
1871 
1872 /*
1873  *	Support routine. Sends outgoing frames to any network
1874  *	taps currently in use.
1875  */
1876 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1877 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1878 {
1879 	struct packet_type *ptype;
1880 	struct sk_buff *skb2 = NULL;
1881 	struct packet_type *pt_prev = NULL;
1882 	struct list_head *ptype_list = &ptype_all;
1883 
1884 	rcu_read_lock();
1885 again:
1886 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1887 		/* Never send packets back to the socket
1888 		 * they originated from - MvS (miquels@drinkel.ow.org)
1889 		 */
1890 		if (skb_loop_sk(ptype, skb))
1891 			continue;
1892 
1893 		if (pt_prev) {
1894 			deliver_skb(skb2, pt_prev, skb->dev);
1895 			pt_prev = ptype;
1896 			continue;
1897 		}
1898 
1899 		/* need to clone skb, done only once */
1900 		skb2 = skb_clone(skb, GFP_ATOMIC);
1901 		if (!skb2)
1902 			goto out_unlock;
1903 
1904 		net_timestamp_set(skb2);
1905 
1906 		/* skb->nh should be correctly
1907 		 * set by sender, so that the second statement is
1908 		 * just protection against buggy protocols.
1909 		 */
1910 		skb_reset_mac_header(skb2);
1911 
1912 		if (skb_network_header(skb2) < skb2->data ||
1913 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915 					     ntohs(skb2->protocol),
1916 					     dev->name);
1917 			skb_reset_network_header(skb2);
1918 		}
1919 
1920 		skb2->transport_header = skb2->network_header;
1921 		skb2->pkt_type = PACKET_OUTGOING;
1922 		pt_prev = ptype;
1923 	}
1924 
1925 	if (ptype_list == &ptype_all) {
1926 		ptype_list = &dev->ptype_all;
1927 		goto again;
1928 	}
1929 out_unlock:
1930 	if (pt_prev)
1931 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1932 	rcu_read_unlock();
1933 }
1934 
1935 /**
1936  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1937  * @dev: Network device
1938  * @txq: number of queues available
1939  *
1940  * If real_num_tx_queues is changed the tc mappings may no longer be
1941  * valid. To resolve this verify the tc mapping remains valid and if
1942  * not NULL the mapping. With no priorities mapping to this
1943  * offset/count pair it will no longer be used. In the worst case TC0
1944  * is invalid nothing can be done so disable priority mappings. If is
1945  * expected that drivers will fix this mapping if they can before
1946  * calling netif_set_real_num_tx_queues.
1947  */
netif_setup_tc(struct net_device * dev,unsigned int txq)1948 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1949 {
1950 	int i;
1951 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1952 
1953 	/* If TC0 is invalidated disable TC mapping */
1954 	if (tc->offset + tc->count > txq) {
1955 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1956 		dev->num_tc = 0;
1957 		return;
1958 	}
1959 
1960 	/* Invalidated prio to tc mappings set to TC0 */
1961 	for (i = 1; i < TC_BITMASK + 1; i++) {
1962 		int q = netdev_get_prio_tc_map(dev, i);
1963 
1964 		tc = &dev->tc_to_txq[q];
1965 		if (tc->offset + tc->count > txq) {
1966 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1967 				i, q);
1968 			netdev_set_prio_tc_map(dev, i, 0);
1969 		}
1970 	}
1971 }
1972 
1973 #ifdef CONFIG_XPS
1974 static DEFINE_MUTEX(xps_map_mutex);
1975 #define xmap_dereference(P)		\
1976 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1977 
remove_xps_queue(struct xps_dev_maps * dev_maps,int cpu,u16 index)1978 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1979 					int cpu, u16 index)
1980 {
1981 	struct xps_map *map = NULL;
1982 	int pos;
1983 
1984 	if (dev_maps)
1985 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1986 
1987 	for (pos = 0; map && pos < map->len; pos++) {
1988 		if (map->queues[pos] == index) {
1989 			if (map->len > 1) {
1990 				map->queues[pos] = map->queues[--map->len];
1991 			} else {
1992 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1993 				kfree_rcu(map, rcu);
1994 				map = NULL;
1995 			}
1996 			break;
1997 		}
1998 	}
1999 
2000 	return map;
2001 }
2002 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2003 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2004 {
2005 	struct xps_dev_maps *dev_maps;
2006 	int cpu, i;
2007 	bool active = false;
2008 
2009 	mutex_lock(&xps_map_mutex);
2010 	dev_maps = xmap_dereference(dev->xps_maps);
2011 
2012 	if (!dev_maps)
2013 		goto out_no_maps;
2014 
2015 	for_each_possible_cpu(cpu) {
2016 		for (i = index; i < dev->num_tx_queues; i++) {
2017 			if (!remove_xps_queue(dev_maps, cpu, i))
2018 				break;
2019 		}
2020 		if (i == dev->num_tx_queues)
2021 			active = true;
2022 	}
2023 
2024 	if (!active) {
2025 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2026 		kfree_rcu(dev_maps, rcu);
2027 	}
2028 
2029 	for (i = index; i < dev->num_tx_queues; i++)
2030 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2031 					     NUMA_NO_NODE);
2032 
2033 out_no_maps:
2034 	mutex_unlock(&xps_map_mutex);
2035 }
2036 
expand_xps_map(struct xps_map * map,int cpu,u16 index)2037 static struct xps_map *expand_xps_map(struct xps_map *map,
2038 				      int cpu, u16 index)
2039 {
2040 	struct xps_map *new_map;
2041 	int alloc_len = XPS_MIN_MAP_ALLOC;
2042 	int i, pos;
2043 
2044 	for (pos = 0; map && pos < map->len; pos++) {
2045 		if (map->queues[pos] != index)
2046 			continue;
2047 		return map;
2048 	}
2049 
2050 	/* Need to add queue to this CPU's existing map */
2051 	if (map) {
2052 		if (pos < map->alloc_len)
2053 			return map;
2054 
2055 		alloc_len = map->alloc_len * 2;
2056 	}
2057 
2058 	/* Need to allocate new map to store queue on this CPU's map */
2059 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2060 			       cpu_to_node(cpu));
2061 	if (!new_map)
2062 		return NULL;
2063 
2064 	for (i = 0; i < pos; i++)
2065 		new_map->queues[i] = map->queues[i];
2066 	new_map->alloc_len = alloc_len;
2067 	new_map->len = pos;
2068 
2069 	return new_map;
2070 }
2071 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2072 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2073 			u16 index)
2074 {
2075 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2076 	struct xps_map *map, *new_map;
2077 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2078 	int cpu, numa_node_id = -2;
2079 	bool active = false;
2080 
2081 	mutex_lock(&xps_map_mutex);
2082 
2083 	dev_maps = xmap_dereference(dev->xps_maps);
2084 
2085 	/* allocate memory for queue storage */
2086 	for_each_online_cpu(cpu) {
2087 		if (!cpumask_test_cpu(cpu, mask))
2088 			continue;
2089 
2090 		if (!new_dev_maps)
2091 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2092 		if (!new_dev_maps) {
2093 			mutex_unlock(&xps_map_mutex);
2094 			return -ENOMEM;
2095 		}
2096 
2097 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2098 				 NULL;
2099 
2100 		map = expand_xps_map(map, cpu, index);
2101 		if (!map)
2102 			goto error;
2103 
2104 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2105 	}
2106 
2107 	if (!new_dev_maps)
2108 		goto out_no_new_maps;
2109 
2110 	for_each_possible_cpu(cpu) {
2111 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2112 			/* add queue to CPU maps */
2113 			int pos = 0;
2114 
2115 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2116 			while ((pos < map->len) && (map->queues[pos] != index))
2117 				pos++;
2118 
2119 			if (pos == map->len)
2120 				map->queues[map->len++] = index;
2121 #ifdef CONFIG_NUMA
2122 			if (numa_node_id == -2)
2123 				numa_node_id = cpu_to_node(cpu);
2124 			else if (numa_node_id != cpu_to_node(cpu))
2125 				numa_node_id = -1;
2126 #endif
2127 		} else if (dev_maps) {
2128 			/* fill in the new device map from the old device map */
2129 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2130 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2131 		}
2132 
2133 	}
2134 
2135 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2136 
2137 	/* Cleanup old maps */
2138 	if (dev_maps) {
2139 		for_each_possible_cpu(cpu) {
2140 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2141 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2142 			if (map && map != new_map)
2143 				kfree_rcu(map, rcu);
2144 		}
2145 
2146 		kfree_rcu(dev_maps, rcu);
2147 	}
2148 
2149 	dev_maps = new_dev_maps;
2150 	active = true;
2151 
2152 out_no_new_maps:
2153 	/* update Tx queue numa node */
2154 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2155 				     (numa_node_id >= 0) ? numa_node_id :
2156 				     NUMA_NO_NODE);
2157 
2158 	if (!dev_maps)
2159 		goto out_no_maps;
2160 
2161 	/* removes queue from unused CPUs */
2162 	for_each_possible_cpu(cpu) {
2163 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2164 			continue;
2165 
2166 		if (remove_xps_queue(dev_maps, cpu, index))
2167 			active = true;
2168 	}
2169 
2170 	/* free map if not active */
2171 	if (!active) {
2172 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2173 		kfree_rcu(dev_maps, rcu);
2174 	}
2175 
2176 out_no_maps:
2177 	mutex_unlock(&xps_map_mutex);
2178 
2179 	return 0;
2180 error:
2181 	/* remove any maps that we added */
2182 	for_each_possible_cpu(cpu) {
2183 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2184 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2185 				 NULL;
2186 		if (new_map && new_map != map)
2187 			kfree(new_map);
2188 	}
2189 
2190 	mutex_unlock(&xps_map_mutex);
2191 
2192 	kfree(new_dev_maps);
2193 	return -ENOMEM;
2194 }
2195 EXPORT_SYMBOL(netif_set_xps_queue);
2196 
2197 #endif
2198 /*
2199  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2200  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2201  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2202 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2203 {
2204 	bool disabling;
2205 	int rc;
2206 
2207 	disabling = txq < dev->real_num_tx_queues;
2208 
2209 	if (txq < 1 || txq > dev->num_tx_queues)
2210 		return -EINVAL;
2211 
2212 	if (dev->reg_state == NETREG_REGISTERED ||
2213 	    dev->reg_state == NETREG_UNREGISTERING) {
2214 		ASSERT_RTNL();
2215 
2216 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2217 						  txq);
2218 		if (rc)
2219 			return rc;
2220 
2221 		if (dev->num_tc)
2222 			netif_setup_tc(dev, txq);
2223 
2224 		dev->real_num_tx_queues = txq;
2225 
2226 		if (disabling) {
2227 			synchronize_net();
2228 			qdisc_reset_all_tx_gt(dev, txq);
2229 #ifdef CONFIG_XPS
2230 			netif_reset_xps_queues_gt(dev, txq);
2231 #endif
2232 		}
2233 	} else {
2234 		dev->real_num_tx_queues = txq;
2235 	}
2236 
2237 	return 0;
2238 }
2239 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2240 
2241 #ifdef CONFIG_SYSFS
2242 /**
2243  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2244  *	@dev: Network device
2245  *	@rxq: Actual number of RX queues
2246  *
2247  *	This must be called either with the rtnl_lock held or before
2248  *	registration of the net device.  Returns 0 on success, or a
2249  *	negative error code.  If called before registration, it always
2250  *	succeeds.
2251  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2252 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2253 {
2254 	int rc;
2255 
2256 	if (rxq < 1 || rxq > dev->num_rx_queues)
2257 		return -EINVAL;
2258 
2259 	if (dev->reg_state == NETREG_REGISTERED) {
2260 		ASSERT_RTNL();
2261 
2262 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2263 						  rxq);
2264 		if (rc)
2265 			return rc;
2266 	}
2267 
2268 	dev->real_num_rx_queues = rxq;
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2272 #endif
2273 
2274 /**
2275  * netif_get_num_default_rss_queues - default number of RSS queues
2276  *
2277  * This routine should set an upper limit on the number of RSS queues
2278  * used by default by multiqueue devices.
2279  */
netif_get_num_default_rss_queues(void)2280 int netif_get_num_default_rss_queues(void)
2281 {
2282 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2283 }
2284 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2285 
__netif_reschedule(struct Qdisc * q)2286 static inline void __netif_reschedule(struct Qdisc *q)
2287 {
2288 	struct softnet_data *sd;
2289 	unsigned long flags;
2290 
2291 	local_irq_save(flags);
2292 	sd = this_cpu_ptr(&softnet_data);
2293 	q->next_sched = NULL;
2294 	*sd->output_queue_tailp = q;
2295 	sd->output_queue_tailp = &q->next_sched;
2296 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2297 	local_irq_restore(flags);
2298 }
2299 
__netif_schedule(struct Qdisc * q)2300 void __netif_schedule(struct Qdisc *q)
2301 {
2302 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2303 		__netif_reschedule(q);
2304 }
2305 EXPORT_SYMBOL(__netif_schedule);
2306 
2307 struct dev_kfree_skb_cb {
2308 	enum skb_free_reason reason;
2309 };
2310 
get_kfree_skb_cb(const struct sk_buff * skb)2311 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2312 {
2313 	return (struct dev_kfree_skb_cb *)skb->cb;
2314 }
2315 
netif_schedule_queue(struct netdev_queue * txq)2316 void netif_schedule_queue(struct netdev_queue *txq)
2317 {
2318 	rcu_read_lock();
2319 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2320 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2321 
2322 		__netif_schedule(q);
2323 	}
2324 	rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL(netif_schedule_queue);
2327 
2328 /**
2329  *	netif_wake_subqueue - allow sending packets on subqueue
2330  *	@dev: network device
2331  *	@queue_index: sub queue index
2332  *
2333  * Resume individual transmit queue of a device with multiple transmit queues.
2334  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2335 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2336 {
2337 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2338 
2339 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2340 		struct Qdisc *q;
2341 
2342 		rcu_read_lock();
2343 		q = rcu_dereference(txq->qdisc);
2344 		__netif_schedule(q);
2345 		rcu_read_unlock();
2346 	}
2347 }
2348 EXPORT_SYMBOL(netif_wake_subqueue);
2349 
netif_tx_wake_queue(struct netdev_queue * dev_queue)2350 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2351 {
2352 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2353 		struct Qdisc *q;
2354 
2355 		rcu_read_lock();
2356 		q = rcu_dereference(dev_queue->qdisc);
2357 		__netif_schedule(q);
2358 		rcu_read_unlock();
2359 	}
2360 }
2361 EXPORT_SYMBOL(netif_tx_wake_queue);
2362 
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2363 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2364 {
2365 	unsigned long flags;
2366 
2367 	if (unlikely(!skb))
2368 		return;
2369 
2370 	if (likely(atomic_read(&skb->users) == 1)) {
2371 		smp_rmb();
2372 		atomic_set(&skb->users, 0);
2373 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2374 		return;
2375 	}
2376 	get_kfree_skb_cb(skb)->reason = reason;
2377 	local_irq_save(flags);
2378 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2379 	__this_cpu_write(softnet_data.completion_queue, skb);
2380 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2381 	local_irq_restore(flags);
2382 }
2383 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2384 
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2385 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2386 {
2387 	if (in_irq() || irqs_disabled())
2388 		__dev_kfree_skb_irq(skb, reason);
2389 	else
2390 		dev_kfree_skb(skb);
2391 }
2392 EXPORT_SYMBOL(__dev_kfree_skb_any);
2393 
2394 
2395 /**
2396  * netif_device_detach - mark device as removed
2397  * @dev: network device
2398  *
2399  * Mark device as removed from system and therefore no longer available.
2400  */
netif_device_detach(struct net_device * dev)2401 void netif_device_detach(struct net_device *dev)
2402 {
2403 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2404 	    netif_running(dev)) {
2405 		netif_tx_stop_all_queues(dev);
2406 	}
2407 }
2408 EXPORT_SYMBOL(netif_device_detach);
2409 
2410 /**
2411  * netif_device_attach - mark device as attached
2412  * @dev: network device
2413  *
2414  * Mark device as attached from system and restart if needed.
2415  */
netif_device_attach(struct net_device * dev)2416 void netif_device_attach(struct net_device *dev)
2417 {
2418 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2419 	    netif_running(dev)) {
2420 		netif_tx_wake_all_queues(dev);
2421 		__netdev_watchdog_up(dev);
2422 	}
2423 }
2424 EXPORT_SYMBOL(netif_device_attach);
2425 
2426 /*
2427  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2428  * to be used as a distribution range.
2429  */
__skb_tx_hash(const struct net_device * dev,struct sk_buff * skb,unsigned int num_tx_queues)2430 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2431 		  unsigned int num_tx_queues)
2432 {
2433 	u32 hash;
2434 	u16 qoffset = 0;
2435 	u16 qcount = num_tx_queues;
2436 
2437 	if (skb_rx_queue_recorded(skb)) {
2438 		hash = skb_get_rx_queue(skb);
2439 		while (unlikely(hash >= num_tx_queues))
2440 			hash -= num_tx_queues;
2441 		return hash;
2442 	}
2443 
2444 	if (dev->num_tc) {
2445 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2446 		qoffset = dev->tc_to_txq[tc].offset;
2447 		qcount = dev->tc_to_txq[tc].count;
2448 	}
2449 
2450 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2451 }
2452 EXPORT_SYMBOL(__skb_tx_hash);
2453 
skb_warn_bad_offload(const struct sk_buff * skb)2454 static void skb_warn_bad_offload(const struct sk_buff *skb)
2455 {
2456 	static const netdev_features_t null_features = 0;
2457 	struct net_device *dev = skb->dev;
2458 	const char *name = "";
2459 
2460 	if (!net_ratelimit())
2461 		return;
2462 
2463 	if (dev) {
2464 		if (dev->dev.parent)
2465 			name = dev_driver_string(dev->dev.parent);
2466 		else
2467 			name = netdev_name(dev);
2468 	}
2469 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2470 	     "gso_type=%d ip_summed=%d\n",
2471 	     name, dev ? &dev->features : &null_features,
2472 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2473 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2474 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2475 }
2476 
2477 /*
2478  * Invalidate hardware checksum when packet is to be mangled, and
2479  * complete checksum manually on outgoing path.
2480  */
skb_checksum_help(struct sk_buff * skb)2481 int skb_checksum_help(struct sk_buff *skb)
2482 {
2483 	__wsum csum;
2484 	int ret = 0, offset;
2485 
2486 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2487 		goto out_set_summed;
2488 
2489 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2490 		skb_warn_bad_offload(skb);
2491 		return -EINVAL;
2492 	}
2493 
2494 	/* Before computing a checksum, we should make sure no frag could
2495 	 * be modified by an external entity : checksum could be wrong.
2496 	 */
2497 	if (skb_has_shared_frag(skb)) {
2498 		ret = __skb_linearize(skb);
2499 		if (ret)
2500 			goto out;
2501 	}
2502 
2503 	offset = skb_checksum_start_offset(skb);
2504 	BUG_ON(offset >= skb_headlen(skb));
2505 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2506 
2507 	offset += skb->csum_offset;
2508 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2509 
2510 	if (skb_cloned(skb) &&
2511 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2512 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2513 		if (ret)
2514 			goto out;
2515 	}
2516 
2517 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2518 out_set_summed:
2519 	skb->ip_summed = CHECKSUM_NONE;
2520 out:
2521 	return ret;
2522 }
2523 EXPORT_SYMBOL(skb_checksum_help);
2524 
skb_network_protocol(struct sk_buff * skb,int * depth)2525 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2526 {
2527 	__be16 type = skb->protocol;
2528 
2529 	/* Tunnel gso handlers can set protocol to ethernet. */
2530 	if (type == htons(ETH_P_TEB)) {
2531 		struct ethhdr *eth;
2532 
2533 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2534 			return 0;
2535 
2536 		eth = (struct ethhdr *)skb->data;
2537 		type = eth->h_proto;
2538 	}
2539 
2540 	return __vlan_get_protocol(skb, type, depth);
2541 }
2542 
2543 /**
2544  *	skb_mac_gso_segment - mac layer segmentation handler.
2545  *	@skb: buffer to segment
2546  *	@features: features for the output path (see dev->features)
2547  */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2548 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2549 				    netdev_features_t features)
2550 {
2551 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2552 	struct packet_offload *ptype;
2553 	int vlan_depth = skb->mac_len;
2554 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2555 
2556 	if (unlikely(!type))
2557 		return ERR_PTR(-EINVAL);
2558 
2559 	__skb_pull(skb, vlan_depth);
2560 
2561 	rcu_read_lock();
2562 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2563 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2564 			segs = ptype->callbacks.gso_segment(skb, features);
2565 			break;
2566 		}
2567 	}
2568 	rcu_read_unlock();
2569 
2570 	__skb_push(skb, skb->data - skb_mac_header(skb));
2571 
2572 	return segs;
2573 }
2574 EXPORT_SYMBOL(skb_mac_gso_segment);
2575 
2576 
2577 /* openvswitch calls this on rx path, so we need a different check.
2578  */
skb_needs_check(struct sk_buff * skb,bool tx_path)2579 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2580 {
2581 	if (tx_path)
2582 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2583 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2584 
2585 	return skb->ip_summed == CHECKSUM_NONE;
2586 }
2587 
2588 /**
2589  *	__skb_gso_segment - Perform segmentation on skb.
2590  *	@skb: buffer to segment
2591  *	@features: features for the output path (see dev->features)
2592  *	@tx_path: whether it is called in TX path
2593  *
2594  *	This function segments the given skb and returns a list of segments.
2595  *
2596  *	It may return NULL if the skb requires no segmentation.  This is
2597  *	only possible when GSO is used for verifying header integrity.
2598  *
2599  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2600  */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2601 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2602 				  netdev_features_t features, bool tx_path)
2603 {
2604 	struct sk_buff *segs;
2605 
2606 	if (unlikely(skb_needs_check(skb, tx_path))) {
2607 		int err;
2608 
2609 		/* We're going to init ->check field in TCP or UDP header */
2610 		err = skb_cow_head(skb, 0);
2611 		if (err < 0)
2612 			return ERR_PTR(err);
2613 	}
2614 
2615 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2616 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2617 
2618 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2619 	SKB_GSO_CB(skb)->encap_level = 0;
2620 
2621 	skb_reset_mac_header(skb);
2622 	skb_reset_mac_len(skb);
2623 
2624 	segs = skb_mac_gso_segment(skb, features);
2625 
2626 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2627 		skb_warn_bad_offload(skb);
2628 
2629 	return segs;
2630 }
2631 EXPORT_SYMBOL(__skb_gso_segment);
2632 
2633 /* Take action when hardware reception checksum errors are detected. */
2634 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2635 void netdev_rx_csum_fault(struct net_device *dev)
2636 {
2637 	if (net_ratelimit()) {
2638 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2639 		dump_stack();
2640 	}
2641 }
2642 EXPORT_SYMBOL(netdev_rx_csum_fault);
2643 #endif
2644 
2645 /* Actually, we should eliminate this check as soon as we know, that:
2646  * 1. IOMMU is present and allows to map all the memory.
2647  * 2. No high memory really exists on this machine.
2648  */
2649 
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2650 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2651 {
2652 #ifdef CONFIG_HIGHMEM
2653 	int i;
2654 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2655 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2656 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2657 			if (PageHighMem(skb_frag_page(frag)))
2658 				return 1;
2659 		}
2660 	}
2661 
2662 	if (PCI_DMA_BUS_IS_PHYS) {
2663 		struct device *pdev = dev->dev.parent;
2664 
2665 		if (!pdev)
2666 			return 0;
2667 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2668 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2669 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2670 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2671 				return 1;
2672 		}
2673 	}
2674 #endif
2675 	return 0;
2676 }
2677 
2678 /* If MPLS offload request, verify we are testing hardware MPLS features
2679  * instead of standard features for the netdev.
2680  */
2681 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2682 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2683 					   netdev_features_t features,
2684 					   __be16 type)
2685 {
2686 	if (eth_p_mpls(type))
2687 		features &= skb->dev->mpls_features;
2688 
2689 	return features;
2690 }
2691 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2692 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2693 					   netdev_features_t features,
2694 					   __be16 type)
2695 {
2696 	return features;
2697 }
2698 #endif
2699 
harmonize_features(struct sk_buff * skb,netdev_features_t features)2700 static netdev_features_t harmonize_features(struct sk_buff *skb,
2701 	netdev_features_t features)
2702 {
2703 	int tmp;
2704 	__be16 type;
2705 
2706 	type = skb_network_protocol(skb, &tmp);
2707 	features = net_mpls_features(skb, features, type);
2708 
2709 	if (skb->ip_summed != CHECKSUM_NONE &&
2710 	    !can_checksum_protocol(features, type)) {
2711 		features &= ~NETIF_F_ALL_CSUM;
2712 	}
2713 	if (illegal_highdma(skb->dev, skb))
2714 		features &= ~NETIF_F_SG;
2715 
2716 	return features;
2717 }
2718 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2719 netdev_features_t passthru_features_check(struct sk_buff *skb,
2720 					  struct net_device *dev,
2721 					  netdev_features_t features)
2722 {
2723 	return features;
2724 }
2725 EXPORT_SYMBOL(passthru_features_check);
2726 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2727 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2728 					     struct net_device *dev,
2729 					     netdev_features_t features)
2730 {
2731 	return vlan_features_check(skb, features);
2732 }
2733 
netif_skb_features(struct sk_buff * skb)2734 netdev_features_t netif_skb_features(struct sk_buff *skb)
2735 {
2736 	struct net_device *dev = skb->dev;
2737 	netdev_features_t features = dev->features;
2738 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2739 
2740 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2741 		features &= ~NETIF_F_GSO_MASK;
2742 
2743 	/* If encapsulation offload request, verify we are testing
2744 	 * hardware encapsulation features instead of standard
2745 	 * features for the netdev
2746 	 */
2747 	if (skb->encapsulation)
2748 		features &= dev->hw_enc_features;
2749 
2750 	if (skb_vlan_tagged(skb))
2751 		features = netdev_intersect_features(features,
2752 						     dev->vlan_features |
2753 						     NETIF_F_HW_VLAN_CTAG_TX |
2754 						     NETIF_F_HW_VLAN_STAG_TX);
2755 
2756 	if (dev->netdev_ops->ndo_features_check)
2757 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2758 								features);
2759 	else
2760 		features &= dflt_features_check(skb, dev, features);
2761 
2762 	return harmonize_features(skb, features);
2763 }
2764 EXPORT_SYMBOL(netif_skb_features);
2765 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2766 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2767 		    struct netdev_queue *txq, bool more)
2768 {
2769 	unsigned int len;
2770 	int rc;
2771 
2772 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2773 		dev_queue_xmit_nit(skb, dev);
2774 
2775 	len = skb->len;
2776 	trace_net_dev_start_xmit(skb, dev);
2777 	rc = netdev_start_xmit(skb, dev, txq, more);
2778 	trace_net_dev_xmit(skb, rc, dev, len);
2779 
2780 	return rc;
2781 }
2782 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)2783 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2784 				    struct netdev_queue *txq, int *ret)
2785 {
2786 	struct sk_buff *skb = first;
2787 	int rc = NETDEV_TX_OK;
2788 
2789 	while (skb) {
2790 		struct sk_buff *next = skb->next;
2791 
2792 		skb->next = NULL;
2793 		rc = xmit_one(skb, dev, txq, next != NULL);
2794 		if (unlikely(!dev_xmit_complete(rc))) {
2795 			skb->next = next;
2796 			goto out;
2797 		}
2798 
2799 		skb = next;
2800 		if (netif_tx_queue_stopped(txq) && skb) {
2801 			rc = NETDEV_TX_BUSY;
2802 			break;
2803 		}
2804 	}
2805 
2806 out:
2807 	*ret = rc;
2808 	return skb;
2809 }
2810 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)2811 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2812 					  netdev_features_t features)
2813 {
2814 	if (skb_vlan_tag_present(skb) &&
2815 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2816 		skb = __vlan_hwaccel_push_inside(skb);
2817 	return skb;
2818 }
2819 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2820 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2821 {
2822 	netdev_features_t features;
2823 
2824 	if (skb->next)
2825 		return skb;
2826 
2827 	features = netif_skb_features(skb);
2828 	skb = validate_xmit_vlan(skb, features);
2829 	if (unlikely(!skb))
2830 		goto out_null;
2831 
2832 	if (netif_needs_gso(skb, features)) {
2833 		struct sk_buff *segs;
2834 
2835 		segs = skb_gso_segment(skb, features);
2836 		if (IS_ERR(segs)) {
2837 			goto out_kfree_skb;
2838 		} else if (segs) {
2839 			consume_skb(skb);
2840 			skb = segs;
2841 		}
2842 	} else {
2843 		if (skb_needs_linearize(skb, features) &&
2844 		    __skb_linearize(skb))
2845 			goto out_kfree_skb;
2846 
2847 		/* If packet is not checksummed and device does not
2848 		 * support checksumming for this protocol, complete
2849 		 * checksumming here.
2850 		 */
2851 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2852 			if (skb->encapsulation)
2853 				skb_set_inner_transport_header(skb,
2854 							       skb_checksum_start_offset(skb));
2855 			else
2856 				skb_set_transport_header(skb,
2857 							 skb_checksum_start_offset(skb));
2858 			if (!(features & NETIF_F_ALL_CSUM) &&
2859 			    skb_checksum_help(skb))
2860 				goto out_kfree_skb;
2861 		}
2862 	}
2863 
2864 	return skb;
2865 
2866 out_kfree_skb:
2867 	kfree_skb(skb);
2868 out_null:
2869 	return NULL;
2870 }
2871 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)2872 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2873 {
2874 	struct sk_buff *next, *head = NULL, *tail;
2875 
2876 	for (; skb != NULL; skb = next) {
2877 		next = skb->next;
2878 		skb->next = NULL;
2879 
2880 		/* in case skb wont be segmented, point to itself */
2881 		skb->prev = skb;
2882 
2883 		skb = validate_xmit_skb(skb, dev);
2884 		if (!skb)
2885 			continue;
2886 
2887 		if (!head)
2888 			head = skb;
2889 		else
2890 			tail->next = skb;
2891 		/* If skb was segmented, skb->prev points to
2892 		 * the last segment. If not, it still contains skb.
2893 		 */
2894 		tail = skb->prev;
2895 	}
2896 	return head;
2897 }
2898 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2899 
qdisc_pkt_len_init(struct sk_buff * skb)2900 static void qdisc_pkt_len_init(struct sk_buff *skb)
2901 {
2902 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2903 
2904 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2905 
2906 	/* To get more precise estimation of bytes sent on wire,
2907 	 * we add to pkt_len the headers size of all segments
2908 	 */
2909 	if (shinfo->gso_size)  {
2910 		unsigned int hdr_len;
2911 		u16 gso_segs = shinfo->gso_segs;
2912 
2913 		/* mac layer + network layer */
2914 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2915 
2916 		/* + transport layer */
2917 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
2918 			const struct tcphdr *th;
2919 			struct tcphdr _tcphdr;
2920 
2921 			th = skb_header_pointer(skb, skb_transport_offset(skb),
2922 						sizeof(_tcphdr), &_tcphdr);
2923 			if (likely(th))
2924 				hdr_len += __tcp_hdrlen(th);
2925 		} else {
2926 			struct udphdr _udphdr;
2927 
2928 			if (skb_header_pointer(skb, skb_transport_offset(skb),
2929 					       sizeof(_udphdr), &_udphdr))
2930 				hdr_len += sizeof(struct udphdr);
2931 		}
2932 
2933 		if (shinfo->gso_type & SKB_GSO_DODGY)
2934 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2935 						shinfo->gso_size);
2936 
2937 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2938 	}
2939 }
2940 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)2941 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2942 				 struct net_device *dev,
2943 				 struct netdev_queue *txq)
2944 {
2945 	spinlock_t *root_lock = qdisc_lock(q);
2946 	bool contended;
2947 	int rc;
2948 
2949 	qdisc_pkt_len_init(skb);
2950 	qdisc_calculate_pkt_len(skb, q);
2951 	/*
2952 	 * Heuristic to force contended enqueues to serialize on a
2953 	 * separate lock before trying to get qdisc main lock.
2954 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2955 	 * often and dequeue packets faster.
2956 	 */
2957 	contended = qdisc_is_running(q);
2958 	if (unlikely(contended))
2959 		spin_lock(&q->busylock);
2960 
2961 	spin_lock(root_lock);
2962 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2963 		kfree_skb(skb);
2964 		rc = NET_XMIT_DROP;
2965 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2966 		   qdisc_run_begin(q)) {
2967 		/*
2968 		 * This is a work-conserving queue; there are no old skbs
2969 		 * waiting to be sent out; and the qdisc is not running -
2970 		 * xmit the skb directly.
2971 		 */
2972 
2973 		qdisc_bstats_update(q, skb);
2974 
2975 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2976 			if (unlikely(contended)) {
2977 				spin_unlock(&q->busylock);
2978 				contended = false;
2979 			}
2980 			__qdisc_run(q);
2981 		} else
2982 			qdisc_run_end(q);
2983 
2984 		rc = NET_XMIT_SUCCESS;
2985 	} else {
2986 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2987 		if (qdisc_run_begin(q)) {
2988 			if (unlikely(contended)) {
2989 				spin_unlock(&q->busylock);
2990 				contended = false;
2991 			}
2992 			__qdisc_run(q);
2993 		}
2994 	}
2995 	spin_unlock(root_lock);
2996 	if (unlikely(contended))
2997 		spin_unlock(&q->busylock);
2998 	return rc;
2999 }
3000 
3001 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3002 static void skb_update_prio(struct sk_buff *skb)
3003 {
3004 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3005 
3006 	if (!skb->priority && skb->sk && map) {
3007 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
3008 
3009 		if (prioidx < map->priomap_len)
3010 			skb->priority = map->priomap[prioidx];
3011 	}
3012 }
3013 #else
3014 #define skb_update_prio(skb)
3015 #endif
3016 
3017 DEFINE_PER_CPU(int, xmit_recursion);
3018 EXPORT_SYMBOL(xmit_recursion);
3019 
3020 #define RECURSION_LIMIT 8
3021 
3022 /**
3023  *	dev_loopback_xmit - loop back @skb
3024  *	@net: network namespace this loopback is happening in
3025  *	@sk:  sk needed to be a netfilter okfn
3026  *	@skb: buffer to transmit
3027  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3028 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3029 {
3030 	skb_reset_mac_header(skb);
3031 	__skb_pull(skb, skb_network_offset(skb));
3032 	skb->pkt_type = PACKET_LOOPBACK;
3033 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3034 	WARN_ON(!skb_dst(skb));
3035 	skb_dst_force(skb);
3036 	netif_rx_ni(skb);
3037 	return 0;
3038 }
3039 EXPORT_SYMBOL(dev_loopback_xmit);
3040 
get_xps_queue(struct net_device * dev,struct sk_buff * skb)3041 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3042 {
3043 #ifdef CONFIG_XPS
3044 	struct xps_dev_maps *dev_maps;
3045 	struct xps_map *map;
3046 	int queue_index = -1;
3047 
3048 	rcu_read_lock();
3049 	dev_maps = rcu_dereference(dev->xps_maps);
3050 	if (dev_maps) {
3051 		map = rcu_dereference(
3052 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3053 		if (map) {
3054 			if (map->len == 1)
3055 				queue_index = map->queues[0];
3056 			else
3057 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3058 									   map->len)];
3059 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3060 				queue_index = -1;
3061 		}
3062 	}
3063 	rcu_read_unlock();
3064 
3065 	return queue_index;
3066 #else
3067 	return -1;
3068 #endif
3069 }
3070 
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb)3071 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3072 {
3073 	struct sock *sk = skb->sk;
3074 	int queue_index = sk_tx_queue_get(sk);
3075 
3076 	if (queue_index < 0 || skb->ooo_okay ||
3077 	    queue_index >= dev->real_num_tx_queues) {
3078 		int new_index = get_xps_queue(dev, skb);
3079 		if (new_index < 0)
3080 			new_index = skb_tx_hash(dev, skb);
3081 
3082 		if (queue_index != new_index && sk &&
3083 		    sk_fullsock(sk) &&
3084 		    rcu_access_pointer(sk->sk_dst_cache))
3085 			sk_tx_queue_set(sk, new_index);
3086 
3087 		queue_index = new_index;
3088 	}
3089 
3090 	return queue_index;
3091 }
3092 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,void * accel_priv)3093 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3094 				    struct sk_buff *skb,
3095 				    void *accel_priv)
3096 {
3097 	int queue_index = 0;
3098 
3099 #ifdef CONFIG_XPS
3100 	u32 sender_cpu = skb->sender_cpu - 1;
3101 
3102 	if (sender_cpu >= (u32)NR_CPUS)
3103 		skb->sender_cpu = raw_smp_processor_id() + 1;
3104 #endif
3105 
3106 	if (dev->real_num_tx_queues != 1) {
3107 		const struct net_device_ops *ops = dev->netdev_ops;
3108 		if (ops->ndo_select_queue)
3109 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3110 							    __netdev_pick_tx);
3111 		else
3112 			queue_index = __netdev_pick_tx(dev, skb);
3113 
3114 		if (!accel_priv)
3115 			queue_index = netdev_cap_txqueue(dev, queue_index);
3116 	}
3117 
3118 	skb_set_queue_mapping(skb, queue_index);
3119 	return netdev_get_tx_queue(dev, queue_index);
3120 }
3121 
3122 /**
3123  *	__dev_queue_xmit - transmit a buffer
3124  *	@skb: buffer to transmit
3125  *	@accel_priv: private data used for L2 forwarding offload
3126  *
3127  *	Queue a buffer for transmission to a network device. The caller must
3128  *	have set the device and priority and built the buffer before calling
3129  *	this function. The function can be called from an interrupt.
3130  *
3131  *	A negative errno code is returned on a failure. A success does not
3132  *	guarantee the frame will be transmitted as it may be dropped due
3133  *	to congestion or traffic shaping.
3134  *
3135  * -----------------------------------------------------------------------------------
3136  *      I notice this method can also return errors from the queue disciplines,
3137  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3138  *      be positive.
3139  *
3140  *      Regardless of the return value, the skb is consumed, so it is currently
3141  *      difficult to retry a send to this method.  (You can bump the ref count
3142  *      before sending to hold a reference for retry if you are careful.)
3143  *
3144  *      When calling this method, interrupts MUST be enabled.  This is because
3145  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3146  *          --BLG
3147  */
__dev_queue_xmit(struct sk_buff * skb,void * accel_priv)3148 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3149 {
3150 	struct net_device *dev = skb->dev;
3151 	struct netdev_queue *txq;
3152 	struct Qdisc *q;
3153 	int rc = -ENOMEM;
3154 
3155 	skb_reset_mac_header(skb);
3156 
3157 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3158 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3159 
3160 	/* Disable soft irqs for various locks below. Also
3161 	 * stops preemption for RCU.
3162 	 */
3163 	rcu_read_lock_bh();
3164 
3165 	skb_update_prio(skb);
3166 
3167 	/* If device/qdisc don't need skb->dst, release it right now while
3168 	 * its hot in this cpu cache.
3169 	 */
3170 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3171 		skb_dst_drop(skb);
3172 	else
3173 		skb_dst_force(skb);
3174 
3175 #ifdef CONFIG_NET_SWITCHDEV
3176 	/* Don't forward if offload device already forwarded */
3177 	if (skb->offload_fwd_mark &&
3178 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3179 		consume_skb(skb);
3180 		rc = NET_XMIT_SUCCESS;
3181 		goto out;
3182 	}
3183 #endif
3184 
3185 	txq = netdev_pick_tx(dev, skb, accel_priv);
3186 	q = rcu_dereference_bh(txq->qdisc);
3187 
3188 #ifdef CONFIG_NET_CLS_ACT
3189 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3190 #endif
3191 	trace_net_dev_queue(skb);
3192 	if (q->enqueue) {
3193 		rc = __dev_xmit_skb(skb, q, dev, txq);
3194 		goto out;
3195 	}
3196 
3197 	/* The device has no queue. Common case for software devices:
3198 	   loopback, all the sorts of tunnels...
3199 
3200 	   Really, it is unlikely that netif_tx_lock protection is necessary
3201 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3202 	   counters.)
3203 	   However, it is possible, that they rely on protection
3204 	   made by us here.
3205 
3206 	   Check this and shot the lock. It is not prone from deadlocks.
3207 	   Either shot noqueue qdisc, it is even simpler 8)
3208 	 */
3209 	if (dev->flags & IFF_UP) {
3210 		int cpu = smp_processor_id(); /* ok because BHs are off */
3211 
3212 		if (txq->xmit_lock_owner != cpu) {
3213 
3214 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3215 				goto recursion_alert;
3216 
3217 			skb = validate_xmit_skb(skb, dev);
3218 			if (!skb)
3219 				goto drop;
3220 
3221 			HARD_TX_LOCK(dev, txq, cpu);
3222 
3223 			if (!netif_xmit_stopped(txq)) {
3224 				__this_cpu_inc(xmit_recursion);
3225 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3226 				__this_cpu_dec(xmit_recursion);
3227 				if (dev_xmit_complete(rc)) {
3228 					HARD_TX_UNLOCK(dev, txq);
3229 					goto out;
3230 				}
3231 			}
3232 			HARD_TX_UNLOCK(dev, txq);
3233 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3234 					     dev->name);
3235 		} else {
3236 			/* Recursion is detected! It is possible,
3237 			 * unfortunately
3238 			 */
3239 recursion_alert:
3240 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3241 					     dev->name);
3242 		}
3243 	}
3244 
3245 	rc = -ENETDOWN;
3246 drop:
3247 	rcu_read_unlock_bh();
3248 
3249 	atomic_long_inc(&dev->tx_dropped);
3250 	kfree_skb_list(skb);
3251 	return rc;
3252 out:
3253 	rcu_read_unlock_bh();
3254 	return rc;
3255 }
3256 
dev_queue_xmit(struct sk_buff * skb)3257 int dev_queue_xmit(struct sk_buff *skb)
3258 {
3259 	return __dev_queue_xmit(skb, NULL);
3260 }
3261 EXPORT_SYMBOL(dev_queue_xmit);
3262 
dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3263 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3264 {
3265 	return __dev_queue_xmit(skb, accel_priv);
3266 }
3267 EXPORT_SYMBOL(dev_queue_xmit_accel);
3268 
3269 
3270 /*=======================================================================
3271 			Receiver routines
3272   =======================================================================*/
3273 
3274 int netdev_max_backlog __read_mostly = 1000;
3275 EXPORT_SYMBOL(netdev_max_backlog);
3276 
3277 int netdev_tstamp_prequeue __read_mostly = 1;
3278 int netdev_budget __read_mostly = 300;
3279 int weight_p __read_mostly = 64;            /* old backlog weight */
3280 
3281 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3282 static inline void ____napi_schedule(struct softnet_data *sd,
3283 				     struct napi_struct *napi)
3284 {
3285 	list_add_tail(&napi->poll_list, &sd->poll_list);
3286 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3287 }
3288 
3289 #ifdef CONFIG_RPS
3290 
3291 /* One global table that all flow-based protocols share. */
3292 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3293 EXPORT_SYMBOL(rps_sock_flow_table);
3294 u32 rps_cpu_mask __read_mostly;
3295 EXPORT_SYMBOL(rps_cpu_mask);
3296 
3297 struct static_key rps_needed __read_mostly;
3298 
3299 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3300 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3301 	    struct rps_dev_flow *rflow, u16 next_cpu)
3302 {
3303 	if (next_cpu < nr_cpu_ids) {
3304 #ifdef CONFIG_RFS_ACCEL
3305 		struct netdev_rx_queue *rxqueue;
3306 		struct rps_dev_flow_table *flow_table;
3307 		struct rps_dev_flow *old_rflow;
3308 		u32 flow_id;
3309 		u16 rxq_index;
3310 		int rc;
3311 
3312 		/* Should we steer this flow to a different hardware queue? */
3313 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3314 		    !(dev->features & NETIF_F_NTUPLE))
3315 			goto out;
3316 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3317 		if (rxq_index == skb_get_rx_queue(skb))
3318 			goto out;
3319 
3320 		rxqueue = dev->_rx + rxq_index;
3321 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3322 		if (!flow_table)
3323 			goto out;
3324 		flow_id = skb_get_hash(skb) & flow_table->mask;
3325 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3326 							rxq_index, flow_id);
3327 		if (rc < 0)
3328 			goto out;
3329 		old_rflow = rflow;
3330 		rflow = &flow_table->flows[flow_id];
3331 		rflow->filter = rc;
3332 		if (old_rflow->filter == rflow->filter)
3333 			old_rflow->filter = RPS_NO_FILTER;
3334 	out:
3335 #endif
3336 		rflow->last_qtail =
3337 			per_cpu(softnet_data, next_cpu).input_queue_head;
3338 	}
3339 
3340 	rflow->cpu = next_cpu;
3341 	return rflow;
3342 }
3343 
3344 /*
3345  * get_rps_cpu is called from netif_receive_skb and returns the target
3346  * CPU from the RPS map of the receiving queue for a given skb.
3347  * rcu_read_lock must be held on entry.
3348  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3349 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3350 		       struct rps_dev_flow **rflowp)
3351 {
3352 	const struct rps_sock_flow_table *sock_flow_table;
3353 	struct netdev_rx_queue *rxqueue = dev->_rx;
3354 	struct rps_dev_flow_table *flow_table;
3355 	struct rps_map *map;
3356 	int cpu = -1;
3357 	u32 tcpu;
3358 	u32 hash;
3359 
3360 	if (skb_rx_queue_recorded(skb)) {
3361 		u16 index = skb_get_rx_queue(skb);
3362 
3363 		if (unlikely(index >= dev->real_num_rx_queues)) {
3364 			WARN_ONCE(dev->real_num_rx_queues > 1,
3365 				  "%s received packet on queue %u, but number "
3366 				  "of RX queues is %u\n",
3367 				  dev->name, index, dev->real_num_rx_queues);
3368 			goto done;
3369 		}
3370 		rxqueue += index;
3371 	}
3372 
3373 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3374 
3375 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3376 	map = rcu_dereference(rxqueue->rps_map);
3377 	if (!flow_table && !map)
3378 		goto done;
3379 
3380 	skb_reset_network_header(skb);
3381 	hash = skb_get_hash(skb);
3382 	if (!hash)
3383 		goto done;
3384 
3385 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3386 	if (flow_table && sock_flow_table) {
3387 		struct rps_dev_flow *rflow;
3388 		u32 next_cpu;
3389 		u32 ident;
3390 
3391 		/* First check into global flow table if there is a match */
3392 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3393 		if ((ident ^ hash) & ~rps_cpu_mask)
3394 			goto try_rps;
3395 
3396 		next_cpu = ident & rps_cpu_mask;
3397 
3398 		/* OK, now we know there is a match,
3399 		 * we can look at the local (per receive queue) flow table
3400 		 */
3401 		rflow = &flow_table->flows[hash & flow_table->mask];
3402 		tcpu = rflow->cpu;
3403 
3404 		/*
3405 		 * If the desired CPU (where last recvmsg was done) is
3406 		 * different from current CPU (one in the rx-queue flow
3407 		 * table entry), switch if one of the following holds:
3408 		 *   - Current CPU is unset (>= nr_cpu_ids).
3409 		 *   - Current CPU is offline.
3410 		 *   - The current CPU's queue tail has advanced beyond the
3411 		 *     last packet that was enqueued using this table entry.
3412 		 *     This guarantees that all previous packets for the flow
3413 		 *     have been dequeued, thus preserving in order delivery.
3414 		 */
3415 		if (unlikely(tcpu != next_cpu) &&
3416 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3417 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3418 		      rflow->last_qtail)) >= 0)) {
3419 			tcpu = next_cpu;
3420 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3421 		}
3422 
3423 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3424 			*rflowp = rflow;
3425 			cpu = tcpu;
3426 			goto done;
3427 		}
3428 	}
3429 
3430 try_rps:
3431 
3432 	if (map) {
3433 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3434 		if (cpu_online(tcpu)) {
3435 			cpu = tcpu;
3436 			goto done;
3437 		}
3438 	}
3439 
3440 done:
3441 	return cpu;
3442 }
3443 
3444 #ifdef CONFIG_RFS_ACCEL
3445 
3446 /**
3447  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3448  * @dev: Device on which the filter was set
3449  * @rxq_index: RX queue index
3450  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3451  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3452  *
3453  * Drivers that implement ndo_rx_flow_steer() should periodically call
3454  * this function for each installed filter and remove the filters for
3455  * which it returns %true.
3456  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3457 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3458 			 u32 flow_id, u16 filter_id)
3459 {
3460 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3461 	struct rps_dev_flow_table *flow_table;
3462 	struct rps_dev_flow *rflow;
3463 	bool expire = true;
3464 	unsigned int cpu;
3465 
3466 	rcu_read_lock();
3467 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3468 	if (flow_table && flow_id <= flow_table->mask) {
3469 		rflow = &flow_table->flows[flow_id];
3470 		cpu = ACCESS_ONCE(rflow->cpu);
3471 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3472 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3473 			   rflow->last_qtail) <
3474 		     (int)(10 * flow_table->mask)))
3475 			expire = false;
3476 	}
3477 	rcu_read_unlock();
3478 	return expire;
3479 }
3480 EXPORT_SYMBOL(rps_may_expire_flow);
3481 
3482 #endif /* CONFIG_RFS_ACCEL */
3483 
3484 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)3485 static void rps_trigger_softirq(void *data)
3486 {
3487 	struct softnet_data *sd = data;
3488 
3489 	____napi_schedule(sd, &sd->backlog);
3490 	sd->received_rps++;
3491 }
3492 
3493 #endif /* CONFIG_RPS */
3494 
3495 /*
3496  * Check if this softnet_data structure is another cpu one
3497  * If yes, queue it to our IPI list and return 1
3498  * If no, return 0
3499  */
rps_ipi_queued(struct softnet_data * sd)3500 static int rps_ipi_queued(struct softnet_data *sd)
3501 {
3502 #ifdef CONFIG_RPS
3503 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3504 
3505 	if (sd != mysd) {
3506 		sd->rps_ipi_next = mysd->rps_ipi_list;
3507 		mysd->rps_ipi_list = sd;
3508 
3509 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3510 		return 1;
3511 	}
3512 #endif /* CONFIG_RPS */
3513 	return 0;
3514 }
3515 
3516 #ifdef CONFIG_NET_FLOW_LIMIT
3517 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3518 #endif
3519 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3520 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3521 {
3522 #ifdef CONFIG_NET_FLOW_LIMIT
3523 	struct sd_flow_limit *fl;
3524 	struct softnet_data *sd;
3525 	unsigned int old_flow, new_flow;
3526 
3527 	if (qlen < (netdev_max_backlog >> 1))
3528 		return false;
3529 
3530 	sd = this_cpu_ptr(&softnet_data);
3531 
3532 	rcu_read_lock();
3533 	fl = rcu_dereference(sd->flow_limit);
3534 	if (fl) {
3535 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3536 		old_flow = fl->history[fl->history_head];
3537 		fl->history[fl->history_head] = new_flow;
3538 
3539 		fl->history_head++;
3540 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3541 
3542 		if (likely(fl->buckets[old_flow]))
3543 			fl->buckets[old_flow]--;
3544 
3545 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3546 			fl->count++;
3547 			rcu_read_unlock();
3548 			return true;
3549 		}
3550 	}
3551 	rcu_read_unlock();
3552 #endif
3553 	return false;
3554 }
3555 
3556 /*
3557  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3558  * queue (may be a remote CPU queue).
3559  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3560 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3561 			      unsigned int *qtail)
3562 {
3563 	struct softnet_data *sd;
3564 	unsigned long flags;
3565 	unsigned int qlen;
3566 
3567 	sd = &per_cpu(softnet_data, cpu);
3568 
3569 	local_irq_save(flags);
3570 
3571 	rps_lock(sd);
3572 	if (!netif_running(skb->dev))
3573 		goto drop;
3574 	qlen = skb_queue_len(&sd->input_pkt_queue);
3575 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3576 		if (qlen) {
3577 enqueue:
3578 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3579 			input_queue_tail_incr_save(sd, qtail);
3580 			rps_unlock(sd);
3581 			local_irq_restore(flags);
3582 			return NET_RX_SUCCESS;
3583 		}
3584 
3585 		/* Schedule NAPI for backlog device
3586 		 * We can use non atomic operation since we own the queue lock
3587 		 */
3588 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3589 			if (!rps_ipi_queued(sd))
3590 				____napi_schedule(sd, &sd->backlog);
3591 		}
3592 		goto enqueue;
3593 	}
3594 
3595 drop:
3596 	sd->dropped++;
3597 	rps_unlock(sd);
3598 
3599 	local_irq_restore(flags);
3600 
3601 	atomic_long_inc(&skb->dev->rx_dropped);
3602 	kfree_skb(skb);
3603 	return NET_RX_DROP;
3604 }
3605 
netif_rx_internal(struct sk_buff * skb)3606 static int netif_rx_internal(struct sk_buff *skb)
3607 {
3608 	int ret;
3609 
3610 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3611 
3612 	trace_netif_rx(skb);
3613 #ifdef CONFIG_RPS
3614 	if (static_key_false(&rps_needed)) {
3615 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3616 		int cpu;
3617 
3618 		preempt_disable();
3619 		rcu_read_lock();
3620 
3621 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3622 		if (cpu < 0)
3623 			cpu = smp_processor_id();
3624 
3625 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3626 
3627 		rcu_read_unlock();
3628 		preempt_enable();
3629 	} else
3630 #endif
3631 	{
3632 		unsigned int qtail;
3633 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3634 		put_cpu();
3635 	}
3636 	return ret;
3637 }
3638 
3639 /**
3640  *	netif_rx	-	post buffer to the network code
3641  *	@skb: buffer to post
3642  *
3643  *	This function receives a packet from a device driver and queues it for
3644  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3645  *	may be dropped during processing for congestion control or by the
3646  *	protocol layers.
3647  *
3648  *	return values:
3649  *	NET_RX_SUCCESS	(no congestion)
3650  *	NET_RX_DROP     (packet was dropped)
3651  *
3652  */
3653 
netif_rx(struct sk_buff * skb)3654 int netif_rx(struct sk_buff *skb)
3655 {
3656 	trace_netif_rx_entry(skb);
3657 
3658 	return netif_rx_internal(skb);
3659 }
3660 EXPORT_SYMBOL(netif_rx);
3661 
netif_rx_ni(struct sk_buff * skb)3662 int netif_rx_ni(struct sk_buff *skb)
3663 {
3664 	int err;
3665 
3666 	trace_netif_rx_ni_entry(skb);
3667 
3668 	preempt_disable();
3669 	err = netif_rx_internal(skb);
3670 	if (local_softirq_pending())
3671 		do_softirq();
3672 	preempt_enable();
3673 
3674 	return err;
3675 }
3676 EXPORT_SYMBOL(netif_rx_ni);
3677 
net_tx_action(struct softirq_action * h)3678 static void net_tx_action(struct softirq_action *h)
3679 {
3680 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3681 
3682 	if (sd->completion_queue) {
3683 		struct sk_buff *clist;
3684 
3685 		local_irq_disable();
3686 		clist = sd->completion_queue;
3687 		sd->completion_queue = NULL;
3688 		local_irq_enable();
3689 
3690 		while (clist) {
3691 			struct sk_buff *skb = clist;
3692 			clist = clist->next;
3693 
3694 			WARN_ON(atomic_read(&skb->users));
3695 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3696 				trace_consume_skb(skb);
3697 			else
3698 				trace_kfree_skb(skb, net_tx_action);
3699 			__kfree_skb(skb);
3700 		}
3701 	}
3702 
3703 	if (sd->output_queue) {
3704 		struct Qdisc *head;
3705 
3706 		local_irq_disable();
3707 		head = sd->output_queue;
3708 		sd->output_queue = NULL;
3709 		sd->output_queue_tailp = &sd->output_queue;
3710 		local_irq_enable();
3711 
3712 		while (head) {
3713 			struct Qdisc *q = head;
3714 			spinlock_t *root_lock;
3715 
3716 			head = head->next_sched;
3717 
3718 			root_lock = qdisc_lock(q);
3719 			if (spin_trylock(root_lock)) {
3720 				smp_mb__before_atomic();
3721 				clear_bit(__QDISC_STATE_SCHED,
3722 					  &q->state);
3723 				qdisc_run(q);
3724 				spin_unlock(root_lock);
3725 			} else {
3726 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3727 					      &q->state)) {
3728 					__netif_reschedule(q);
3729 				} else {
3730 					smp_mb__before_atomic();
3731 					clear_bit(__QDISC_STATE_SCHED,
3732 						  &q->state);
3733 				}
3734 			}
3735 		}
3736 	}
3737 }
3738 
3739 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3740     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3741 /* This hook is defined here for ATM LANE */
3742 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3743 			     unsigned char *addr) __read_mostly;
3744 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3745 #endif
3746 
handle_ing(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3747 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3748 					 struct packet_type **pt_prev,
3749 					 int *ret, struct net_device *orig_dev)
3750 {
3751 #ifdef CONFIG_NET_CLS_ACT
3752 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3753 	struct tcf_result cl_res;
3754 
3755 	/* If there's at least one ingress present somewhere (so
3756 	 * we get here via enabled static key), remaining devices
3757 	 * that are not configured with an ingress qdisc will bail
3758 	 * out here.
3759 	 */
3760 	if (!cl)
3761 		return skb;
3762 	if (*pt_prev) {
3763 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3764 		*pt_prev = NULL;
3765 	}
3766 
3767 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3768 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3769 	qdisc_bstats_cpu_update(cl->q, skb);
3770 
3771 	switch (tc_classify(skb, cl, &cl_res, false)) {
3772 	case TC_ACT_OK:
3773 	case TC_ACT_RECLASSIFY:
3774 		skb->tc_index = TC_H_MIN(cl_res.classid);
3775 		break;
3776 	case TC_ACT_SHOT:
3777 		qdisc_qstats_cpu_drop(cl->q);
3778 	case TC_ACT_STOLEN:
3779 	case TC_ACT_QUEUED:
3780 		kfree_skb(skb);
3781 		return NULL;
3782 	case TC_ACT_REDIRECT:
3783 		/* skb_mac_header check was done by cls/act_bpf, so
3784 		 * we can safely push the L2 header back before
3785 		 * redirecting to another netdev
3786 		 */
3787 		__skb_push(skb, skb->mac_len);
3788 		skb_do_redirect(skb);
3789 		return NULL;
3790 	default:
3791 		break;
3792 	}
3793 #endif /* CONFIG_NET_CLS_ACT */
3794 	return skb;
3795 }
3796 
3797 /**
3798  *	netdev_is_rx_handler_busy - check if receive handler is registered
3799  *	@dev: device to check
3800  *
3801  *	Check if a receive handler is already registered for a given device.
3802  *	Return true if there one.
3803  *
3804  *	The caller must hold the rtnl_mutex.
3805  */
netdev_is_rx_handler_busy(struct net_device * dev)3806 bool netdev_is_rx_handler_busy(struct net_device *dev)
3807 {
3808 	ASSERT_RTNL();
3809 	return dev && rtnl_dereference(dev->rx_handler);
3810 }
3811 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3812 
3813 /**
3814  *	netdev_rx_handler_register - register receive handler
3815  *	@dev: device to register a handler for
3816  *	@rx_handler: receive handler to register
3817  *	@rx_handler_data: data pointer that is used by rx handler
3818  *
3819  *	Register a receive handler for a device. This handler will then be
3820  *	called from __netif_receive_skb. A negative errno code is returned
3821  *	on a failure.
3822  *
3823  *	The caller must hold the rtnl_mutex.
3824  *
3825  *	For a general description of rx_handler, see enum rx_handler_result.
3826  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)3827 int netdev_rx_handler_register(struct net_device *dev,
3828 			       rx_handler_func_t *rx_handler,
3829 			       void *rx_handler_data)
3830 {
3831 	ASSERT_RTNL();
3832 
3833 	if (dev->rx_handler)
3834 		return -EBUSY;
3835 
3836 	/* Note: rx_handler_data must be set before rx_handler */
3837 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3838 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3839 
3840 	return 0;
3841 }
3842 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3843 
3844 /**
3845  *	netdev_rx_handler_unregister - unregister receive handler
3846  *	@dev: device to unregister a handler from
3847  *
3848  *	Unregister a receive handler from a device.
3849  *
3850  *	The caller must hold the rtnl_mutex.
3851  */
netdev_rx_handler_unregister(struct net_device * dev)3852 void netdev_rx_handler_unregister(struct net_device *dev)
3853 {
3854 
3855 	ASSERT_RTNL();
3856 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3857 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3858 	 * section has a guarantee to see a non NULL rx_handler_data
3859 	 * as well.
3860 	 */
3861 	synchronize_net();
3862 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3863 }
3864 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3865 
3866 /*
3867  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3868  * the special handling of PFMEMALLOC skbs.
3869  */
skb_pfmemalloc_protocol(struct sk_buff * skb)3870 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3871 {
3872 	switch (skb->protocol) {
3873 	case htons(ETH_P_ARP):
3874 	case htons(ETH_P_IP):
3875 	case htons(ETH_P_IPV6):
3876 	case htons(ETH_P_8021Q):
3877 	case htons(ETH_P_8021AD):
3878 		return true;
3879 	default:
3880 		return false;
3881 	}
3882 }
3883 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)3884 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3885 			     int *ret, struct net_device *orig_dev)
3886 {
3887 #ifdef CONFIG_NETFILTER_INGRESS
3888 	if (nf_hook_ingress_active(skb)) {
3889 		if (*pt_prev) {
3890 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3891 			*pt_prev = NULL;
3892 		}
3893 
3894 		return nf_hook_ingress(skb);
3895 	}
3896 #endif /* CONFIG_NETFILTER_INGRESS */
3897 	return 0;
3898 }
3899 
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)3900 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3901 {
3902 	struct packet_type *ptype, *pt_prev;
3903 	rx_handler_func_t *rx_handler;
3904 	struct net_device *orig_dev;
3905 	bool deliver_exact = false;
3906 	int ret = NET_RX_DROP;
3907 	__be16 type;
3908 
3909 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3910 
3911 	trace_netif_receive_skb(skb);
3912 
3913 	orig_dev = skb->dev;
3914 
3915 	skb_reset_network_header(skb);
3916 	if (!skb_transport_header_was_set(skb))
3917 		skb_reset_transport_header(skb);
3918 	skb_reset_mac_len(skb);
3919 
3920 	pt_prev = NULL;
3921 
3922 another_round:
3923 	skb->skb_iif = skb->dev->ifindex;
3924 
3925 	__this_cpu_inc(softnet_data.processed);
3926 
3927 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3928 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3929 		skb = skb_vlan_untag(skb);
3930 		if (unlikely(!skb))
3931 			goto out;
3932 	}
3933 
3934 #ifdef CONFIG_NET_CLS_ACT
3935 	if (skb->tc_verd & TC_NCLS) {
3936 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3937 		goto ncls;
3938 	}
3939 #endif
3940 
3941 	if (pfmemalloc)
3942 		goto skip_taps;
3943 
3944 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3945 		if (pt_prev)
3946 			ret = deliver_skb(skb, pt_prev, orig_dev);
3947 		pt_prev = ptype;
3948 	}
3949 
3950 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3951 		if (pt_prev)
3952 			ret = deliver_skb(skb, pt_prev, orig_dev);
3953 		pt_prev = ptype;
3954 	}
3955 
3956 skip_taps:
3957 #ifdef CONFIG_NET_INGRESS
3958 	if (static_key_false(&ingress_needed)) {
3959 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3960 		if (!skb)
3961 			goto out;
3962 
3963 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3964 			goto out;
3965 	}
3966 #endif
3967 #ifdef CONFIG_NET_CLS_ACT
3968 	skb->tc_verd = 0;
3969 ncls:
3970 #endif
3971 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3972 		goto drop;
3973 
3974 	if (skb_vlan_tag_present(skb)) {
3975 		if (pt_prev) {
3976 			ret = deliver_skb(skb, pt_prev, orig_dev);
3977 			pt_prev = NULL;
3978 		}
3979 		if (vlan_do_receive(&skb))
3980 			goto another_round;
3981 		else if (unlikely(!skb))
3982 			goto out;
3983 	}
3984 
3985 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3986 	if (rx_handler) {
3987 		if (pt_prev) {
3988 			ret = deliver_skb(skb, pt_prev, orig_dev);
3989 			pt_prev = NULL;
3990 		}
3991 		switch (rx_handler(&skb)) {
3992 		case RX_HANDLER_CONSUMED:
3993 			ret = NET_RX_SUCCESS;
3994 			goto out;
3995 		case RX_HANDLER_ANOTHER:
3996 			goto another_round;
3997 		case RX_HANDLER_EXACT:
3998 			deliver_exact = true;
3999 		case RX_HANDLER_PASS:
4000 			break;
4001 		default:
4002 			BUG();
4003 		}
4004 	}
4005 
4006 	if (unlikely(skb_vlan_tag_present(skb))) {
4007 		if (skb_vlan_tag_get_id(skb))
4008 			skb->pkt_type = PACKET_OTHERHOST;
4009 		/* Note: we might in the future use prio bits
4010 		 * and set skb->priority like in vlan_do_receive()
4011 		 * For the time being, just ignore Priority Code Point
4012 		 */
4013 		skb->vlan_tci = 0;
4014 	}
4015 
4016 	type = skb->protocol;
4017 
4018 	/* deliver only exact match when indicated */
4019 	if (likely(!deliver_exact)) {
4020 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4021 				       &ptype_base[ntohs(type) &
4022 						   PTYPE_HASH_MASK]);
4023 	}
4024 
4025 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4026 			       &orig_dev->ptype_specific);
4027 
4028 	if (unlikely(skb->dev != orig_dev)) {
4029 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4030 				       &skb->dev->ptype_specific);
4031 	}
4032 
4033 	if (pt_prev) {
4034 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4035 			goto drop;
4036 		else
4037 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4038 	} else {
4039 drop:
4040 		atomic_long_inc(&skb->dev->rx_dropped);
4041 		kfree_skb(skb);
4042 		/* Jamal, now you will not able to escape explaining
4043 		 * me how you were going to use this. :-)
4044 		 */
4045 		ret = NET_RX_DROP;
4046 	}
4047 
4048 out:
4049 	return ret;
4050 }
4051 
__netif_receive_skb(struct sk_buff * skb)4052 static int __netif_receive_skb(struct sk_buff *skb)
4053 {
4054 	int ret;
4055 
4056 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4057 		unsigned long pflags = current->flags;
4058 
4059 		/*
4060 		 * PFMEMALLOC skbs are special, they should
4061 		 * - be delivered to SOCK_MEMALLOC sockets only
4062 		 * - stay away from userspace
4063 		 * - have bounded memory usage
4064 		 *
4065 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4066 		 * context down to all allocation sites.
4067 		 */
4068 		current->flags |= PF_MEMALLOC;
4069 		ret = __netif_receive_skb_core(skb, true);
4070 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4071 	} else
4072 		ret = __netif_receive_skb_core(skb, false);
4073 
4074 	return ret;
4075 }
4076 
netif_receive_skb_internal(struct sk_buff * skb)4077 static int netif_receive_skb_internal(struct sk_buff *skb)
4078 {
4079 	int ret;
4080 
4081 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4082 
4083 	if (skb_defer_rx_timestamp(skb))
4084 		return NET_RX_SUCCESS;
4085 
4086 	rcu_read_lock();
4087 
4088 #ifdef CONFIG_RPS
4089 	if (static_key_false(&rps_needed)) {
4090 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4091 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4092 
4093 		if (cpu >= 0) {
4094 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4095 			rcu_read_unlock();
4096 			return ret;
4097 		}
4098 	}
4099 #endif
4100 	ret = __netif_receive_skb(skb);
4101 	rcu_read_unlock();
4102 	return ret;
4103 }
4104 
4105 /**
4106  *	netif_receive_skb - process receive buffer from network
4107  *	@skb: buffer to process
4108  *
4109  *	netif_receive_skb() is the main receive data processing function.
4110  *	It always succeeds. The buffer may be dropped during processing
4111  *	for congestion control or by the protocol layers.
4112  *
4113  *	This function may only be called from softirq context and interrupts
4114  *	should be enabled.
4115  *
4116  *	Return values (usually ignored):
4117  *	NET_RX_SUCCESS: no congestion
4118  *	NET_RX_DROP: packet was dropped
4119  */
netif_receive_skb(struct sk_buff * skb)4120 int netif_receive_skb(struct sk_buff *skb)
4121 {
4122 	trace_netif_receive_skb_entry(skb);
4123 
4124 	return netif_receive_skb_internal(skb);
4125 }
4126 EXPORT_SYMBOL(netif_receive_skb);
4127 
4128 /* Network device is going away, flush any packets still pending
4129  * Called with irqs disabled.
4130  */
flush_backlog(void * arg)4131 static void flush_backlog(void *arg)
4132 {
4133 	struct net_device *dev = arg;
4134 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4135 	struct sk_buff *skb, *tmp;
4136 
4137 	rps_lock(sd);
4138 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4139 		if (skb->dev == dev) {
4140 			__skb_unlink(skb, &sd->input_pkt_queue);
4141 			kfree_skb(skb);
4142 			input_queue_head_incr(sd);
4143 		}
4144 	}
4145 	rps_unlock(sd);
4146 
4147 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4148 		if (skb->dev == dev) {
4149 			__skb_unlink(skb, &sd->process_queue);
4150 			kfree_skb(skb);
4151 			input_queue_head_incr(sd);
4152 		}
4153 	}
4154 }
4155 
napi_gro_complete(struct sk_buff * skb)4156 static int napi_gro_complete(struct sk_buff *skb)
4157 {
4158 	struct packet_offload *ptype;
4159 	__be16 type = skb->protocol;
4160 	struct list_head *head = &offload_base;
4161 	int err = -ENOENT;
4162 
4163 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4164 
4165 	if (NAPI_GRO_CB(skb)->count == 1) {
4166 		skb_shinfo(skb)->gso_size = 0;
4167 		goto out;
4168 	}
4169 
4170 	rcu_read_lock();
4171 	list_for_each_entry_rcu(ptype, head, list) {
4172 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4173 			continue;
4174 
4175 		err = ptype->callbacks.gro_complete(skb, 0);
4176 		break;
4177 	}
4178 	rcu_read_unlock();
4179 
4180 	if (err) {
4181 		WARN_ON(&ptype->list == head);
4182 		kfree_skb(skb);
4183 		return NET_RX_SUCCESS;
4184 	}
4185 
4186 out:
4187 	return netif_receive_skb_internal(skb);
4188 }
4189 
4190 /* napi->gro_list contains packets ordered by age.
4191  * youngest packets at the head of it.
4192  * Complete skbs in reverse order to reduce latencies.
4193  */
napi_gro_flush(struct napi_struct * napi,bool flush_old)4194 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4195 {
4196 	struct sk_buff *skb, *prev = NULL;
4197 
4198 	/* scan list and build reverse chain */
4199 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4200 		skb->prev = prev;
4201 		prev = skb;
4202 	}
4203 
4204 	for (skb = prev; skb; skb = prev) {
4205 		skb->next = NULL;
4206 
4207 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4208 			return;
4209 
4210 		prev = skb->prev;
4211 		napi_gro_complete(skb);
4212 		napi->gro_count--;
4213 	}
4214 
4215 	napi->gro_list = NULL;
4216 }
4217 EXPORT_SYMBOL(napi_gro_flush);
4218 
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)4219 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4220 {
4221 	struct sk_buff *p;
4222 	unsigned int maclen = skb->dev->hard_header_len;
4223 	u32 hash = skb_get_hash_raw(skb);
4224 
4225 	for (p = napi->gro_list; p; p = p->next) {
4226 		unsigned long diffs;
4227 
4228 		NAPI_GRO_CB(p)->flush = 0;
4229 
4230 		if (hash != skb_get_hash_raw(p)) {
4231 			NAPI_GRO_CB(p)->same_flow = 0;
4232 			continue;
4233 		}
4234 
4235 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4236 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4237 		diffs |= skb_metadata_dst_cmp(p, skb);
4238 		if (maclen == ETH_HLEN)
4239 			diffs |= compare_ether_header(skb_mac_header(p),
4240 						      skb_mac_header(skb));
4241 		else if (!diffs)
4242 			diffs = memcmp(skb_mac_header(p),
4243 				       skb_mac_header(skb),
4244 				       maclen);
4245 		NAPI_GRO_CB(p)->same_flow = !diffs;
4246 	}
4247 }
4248 
skb_gro_reset_offset(struct sk_buff * skb)4249 static void skb_gro_reset_offset(struct sk_buff *skb)
4250 {
4251 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4252 	const skb_frag_t *frag0 = &pinfo->frags[0];
4253 
4254 	NAPI_GRO_CB(skb)->data_offset = 0;
4255 	NAPI_GRO_CB(skb)->frag0 = NULL;
4256 	NAPI_GRO_CB(skb)->frag0_len = 0;
4257 
4258 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4259 	    pinfo->nr_frags &&
4260 	    !PageHighMem(skb_frag_page(frag0))) {
4261 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4262 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4263 						    skb_frag_size(frag0),
4264 						    skb->end - skb->tail);
4265 	}
4266 }
4267 
gro_pull_from_frag0(struct sk_buff * skb,int grow)4268 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4269 {
4270 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4271 
4272 	BUG_ON(skb->end - skb->tail < grow);
4273 
4274 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4275 
4276 	skb->data_len -= grow;
4277 	skb->tail += grow;
4278 
4279 	pinfo->frags[0].page_offset += grow;
4280 	skb_frag_size_sub(&pinfo->frags[0], grow);
4281 
4282 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4283 		skb_frag_unref(skb, 0);
4284 		memmove(pinfo->frags, pinfo->frags + 1,
4285 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4286 	}
4287 }
4288 
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4289 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4290 {
4291 	struct sk_buff **pp = NULL;
4292 	struct packet_offload *ptype;
4293 	__be16 type = skb->protocol;
4294 	struct list_head *head = &offload_base;
4295 	int same_flow;
4296 	enum gro_result ret;
4297 	int grow;
4298 
4299 	if (!(skb->dev->features & NETIF_F_GRO))
4300 		goto normal;
4301 
4302 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4303 		goto normal;
4304 
4305 	gro_list_prepare(napi, skb);
4306 
4307 	rcu_read_lock();
4308 	list_for_each_entry_rcu(ptype, head, list) {
4309 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4310 			continue;
4311 
4312 		skb_set_network_header(skb, skb_gro_offset(skb));
4313 		skb_reset_mac_len(skb);
4314 		NAPI_GRO_CB(skb)->same_flow = 0;
4315 		NAPI_GRO_CB(skb)->flush = 0;
4316 		NAPI_GRO_CB(skb)->free = 0;
4317 		NAPI_GRO_CB(skb)->encap_mark = 0;
4318 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4319 		NAPI_GRO_CB(skb)->is_fou = 0;
4320 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4321 
4322 		/* Setup for GRO checksum validation */
4323 		switch (skb->ip_summed) {
4324 		case CHECKSUM_COMPLETE:
4325 			NAPI_GRO_CB(skb)->csum = skb->csum;
4326 			NAPI_GRO_CB(skb)->csum_valid = 1;
4327 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4328 			break;
4329 		case CHECKSUM_UNNECESSARY:
4330 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4331 			NAPI_GRO_CB(skb)->csum_valid = 0;
4332 			break;
4333 		default:
4334 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4335 			NAPI_GRO_CB(skb)->csum_valid = 0;
4336 		}
4337 
4338 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4339 		break;
4340 	}
4341 	rcu_read_unlock();
4342 
4343 	if (&ptype->list == head)
4344 		goto normal;
4345 
4346 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4347 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4348 
4349 	if (pp) {
4350 		struct sk_buff *nskb = *pp;
4351 
4352 		*pp = nskb->next;
4353 		nskb->next = NULL;
4354 		napi_gro_complete(nskb);
4355 		napi->gro_count--;
4356 	}
4357 
4358 	if (same_flow)
4359 		goto ok;
4360 
4361 	if (NAPI_GRO_CB(skb)->flush)
4362 		goto normal;
4363 
4364 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4365 		struct sk_buff *nskb = napi->gro_list;
4366 
4367 		/* locate the end of the list to select the 'oldest' flow */
4368 		while (nskb->next) {
4369 			pp = &nskb->next;
4370 			nskb = *pp;
4371 		}
4372 		*pp = NULL;
4373 		nskb->next = NULL;
4374 		napi_gro_complete(nskb);
4375 	} else {
4376 		napi->gro_count++;
4377 	}
4378 	NAPI_GRO_CB(skb)->count = 1;
4379 	NAPI_GRO_CB(skb)->age = jiffies;
4380 	NAPI_GRO_CB(skb)->last = skb;
4381 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4382 	skb->next = napi->gro_list;
4383 	napi->gro_list = skb;
4384 	ret = GRO_HELD;
4385 
4386 pull:
4387 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4388 	if (grow > 0)
4389 		gro_pull_from_frag0(skb, grow);
4390 ok:
4391 	return ret;
4392 
4393 normal:
4394 	ret = GRO_NORMAL;
4395 	goto pull;
4396 }
4397 
gro_find_receive_by_type(__be16 type)4398 struct packet_offload *gro_find_receive_by_type(__be16 type)
4399 {
4400 	struct list_head *offload_head = &offload_base;
4401 	struct packet_offload *ptype;
4402 
4403 	list_for_each_entry_rcu(ptype, offload_head, list) {
4404 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4405 			continue;
4406 		return ptype;
4407 	}
4408 	return NULL;
4409 }
4410 EXPORT_SYMBOL(gro_find_receive_by_type);
4411 
gro_find_complete_by_type(__be16 type)4412 struct packet_offload *gro_find_complete_by_type(__be16 type)
4413 {
4414 	struct list_head *offload_head = &offload_base;
4415 	struct packet_offload *ptype;
4416 
4417 	list_for_each_entry_rcu(ptype, offload_head, list) {
4418 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4419 			continue;
4420 		return ptype;
4421 	}
4422 	return NULL;
4423 }
4424 EXPORT_SYMBOL(gro_find_complete_by_type);
4425 
napi_skb_free_stolen_head(struct sk_buff * skb)4426 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4427 {
4428 	skb_dst_drop(skb);
4429 	kmem_cache_free(skbuff_head_cache, skb);
4430 }
4431 
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4432 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4433 {
4434 	switch (ret) {
4435 	case GRO_NORMAL:
4436 		if (netif_receive_skb_internal(skb))
4437 			ret = GRO_DROP;
4438 		break;
4439 
4440 	case GRO_DROP:
4441 		kfree_skb(skb);
4442 		break;
4443 
4444 	case GRO_MERGED_FREE:
4445 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4446 			napi_skb_free_stolen_head(skb);
4447 		else
4448 			__kfree_skb(skb);
4449 		break;
4450 
4451 	case GRO_HELD:
4452 	case GRO_MERGED:
4453 		break;
4454 	}
4455 
4456 	return ret;
4457 }
4458 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4459 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4460 {
4461 	trace_napi_gro_receive_entry(skb);
4462 
4463 	skb_gro_reset_offset(skb);
4464 
4465 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4466 }
4467 EXPORT_SYMBOL(napi_gro_receive);
4468 
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4469 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4470 {
4471 	if (unlikely(skb->pfmemalloc)) {
4472 		consume_skb(skb);
4473 		return;
4474 	}
4475 	__skb_pull(skb, skb_headlen(skb));
4476 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4477 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4478 	skb->vlan_tci = 0;
4479 	skb->dev = napi->dev;
4480 	skb->skb_iif = 0;
4481 
4482 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
4483 	skb->pkt_type = PACKET_HOST;
4484 
4485 	skb->encapsulation = 0;
4486 	skb_shinfo(skb)->gso_type = 0;
4487 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4488 
4489 	napi->skb = skb;
4490 }
4491 
napi_get_frags(struct napi_struct * napi)4492 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4493 {
4494 	struct sk_buff *skb = napi->skb;
4495 
4496 	if (!skb) {
4497 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4498 		napi->skb = skb;
4499 	}
4500 	return skb;
4501 }
4502 EXPORT_SYMBOL(napi_get_frags);
4503 
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)4504 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4505 				      struct sk_buff *skb,
4506 				      gro_result_t ret)
4507 {
4508 	switch (ret) {
4509 	case GRO_NORMAL:
4510 	case GRO_HELD:
4511 		__skb_push(skb, ETH_HLEN);
4512 		skb->protocol = eth_type_trans(skb, skb->dev);
4513 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4514 			ret = GRO_DROP;
4515 		break;
4516 
4517 	case GRO_DROP:
4518 		napi_reuse_skb(napi, skb);
4519 		break;
4520 
4521 	case GRO_MERGED_FREE:
4522 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4523 			napi_skb_free_stolen_head(skb);
4524 		else
4525 			napi_reuse_skb(napi, skb);
4526 		break;
4527 
4528 	case GRO_MERGED:
4529 		break;
4530 	}
4531 
4532 	return ret;
4533 }
4534 
4535 /* Upper GRO stack assumes network header starts at gro_offset=0
4536  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4537  * We copy ethernet header into skb->data to have a common layout.
4538  */
napi_frags_skb(struct napi_struct * napi)4539 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4540 {
4541 	struct sk_buff *skb = napi->skb;
4542 	const struct ethhdr *eth;
4543 	unsigned int hlen = sizeof(*eth);
4544 
4545 	napi->skb = NULL;
4546 
4547 	skb_reset_mac_header(skb);
4548 	skb_gro_reset_offset(skb);
4549 
4550 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4551 		eth = skb_gro_header_slow(skb, hlen, 0);
4552 		if (unlikely(!eth)) {
4553 			napi_reuse_skb(napi, skb);
4554 			return NULL;
4555 		}
4556 	} else {
4557 		eth = (const struct ethhdr *)skb->data;
4558 		gro_pull_from_frag0(skb, hlen);
4559 		NAPI_GRO_CB(skb)->frag0 += hlen;
4560 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4561 	}
4562 	__skb_pull(skb, hlen);
4563 
4564 	/*
4565 	 * This works because the only protocols we care about don't require
4566 	 * special handling.
4567 	 * We'll fix it up properly in napi_frags_finish()
4568 	 */
4569 	skb->protocol = eth->h_proto;
4570 
4571 	return skb;
4572 }
4573 
napi_gro_frags(struct napi_struct * napi)4574 gro_result_t napi_gro_frags(struct napi_struct *napi)
4575 {
4576 	struct sk_buff *skb = napi_frags_skb(napi);
4577 
4578 	if (!skb)
4579 		return GRO_DROP;
4580 
4581 	trace_napi_gro_frags_entry(skb);
4582 
4583 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4584 }
4585 EXPORT_SYMBOL(napi_gro_frags);
4586 
4587 /* Compute the checksum from gro_offset and return the folded value
4588  * after adding in any pseudo checksum.
4589  */
__skb_gro_checksum_complete(struct sk_buff * skb)4590 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4591 {
4592 	__wsum wsum;
4593 	__sum16 sum;
4594 
4595 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4596 
4597 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4598 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4599 	if (likely(!sum)) {
4600 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4601 		    !skb->csum_complete_sw)
4602 			netdev_rx_csum_fault(skb->dev);
4603 	}
4604 
4605 	NAPI_GRO_CB(skb)->csum = wsum;
4606 	NAPI_GRO_CB(skb)->csum_valid = 1;
4607 
4608 	return sum;
4609 }
4610 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4611 
4612 /*
4613  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4614  * Note: called with local irq disabled, but exits with local irq enabled.
4615  */
net_rps_action_and_irq_enable(struct softnet_data * sd)4616 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4617 {
4618 #ifdef CONFIG_RPS
4619 	struct softnet_data *remsd = sd->rps_ipi_list;
4620 
4621 	if (remsd) {
4622 		sd->rps_ipi_list = NULL;
4623 
4624 		local_irq_enable();
4625 
4626 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4627 		while (remsd) {
4628 			struct softnet_data *next = remsd->rps_ipi_next;
4629 
4630 			if (cpu_online(remsd->cpu))
4631 				smp_call_function_single_async(remsd->cpu,
4632 							   &remsd->csd);
4633 			remsd = next;
4634 		}
4635 	} else
4636 #endif
4637 		local_irq_enable();
4638 }
4639 
sd_has_rps_ipi_waiting(struct softnet_data * sd)4640 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4641 {
4642 #ifdef CONFIG_RPS
4643 	return sd->rps_ipi_list != NULL;
4644 #else
4645 	return false;
4646 #endif
4647 }
4648 
process_backlog(struct napi_struct * napi,int quota)4649 static int process_backlog(struct napi_struct *napi, int quota)
4650 {
4651 	int work = 0;
4652 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4653 
4654 	/* Check if we have pending ipi, its better to send them now,
4655 	 * not waiting net_rx_action() end.
4656 	 */
4657 	if (sd_has_rps_ipi_waiting(sd)) {
4658 		local_irq_disable();
4659 		net_rps_action_and_irq_enable(sd);
4660 	}
4661 
4662 	napi->weight = weight_p;
4663 	local_irq_disable();
4664 	while (1) {
4665 		struct sk_buff *skb;
4666 
4667 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4668 			rcu_read_lock();
4669 			local_irq_enable();
4670 			__netif_receive_skb(skb);
4671 			rcu_read_unlock();
4672 			local_irq_disable();
4673 			input_queue_head_incr(sd);
4674 			if (++work >= quota) {
4675 				local_irq_enable();
4676 				return work;
4677 			}
4678 		}
4679 
4680 		rps_lock(sd);
4681 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4682 			/*
4683 			 * Inline a custom version of __napi_complete().
4684 			 * only current cpu owns and manipulates this napi,
4685 			 * and NAPI_STATE_SCHED is the only possible flag set
4686 			 * on backlog.
4687 			 * We can use a plain write instead of clear_bit(),
4688 			 * and we dont need an smp_mb() memory barrier.
4689 			 */
4690 			napi->state = 0;
4691 			rps_unlock(sd);
4692 
4693 			break;
4694 		}
4695 
4696 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4697 					   &sd->process_queue);
4698 		rps_unlock(sd);
4699 	}
4700 	local_irq_enable();
4701 
4702 	return work;
4703 }
4704 
4705 /**
4706  * __napi_schedule - schedule for receive
4707  * @n: entry to schedule
4708  *
4709  * The entry's receive function will be scheduled to run.
4710  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4711  */
__napi_schedule(struct napi_struct * n)4712 void __napi_schedule(struct napi_struct *n)
4713 {
4714 	unsigned long flags;
4715 
4716 	local_irq_save(flags);
4717 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4718 	local_irq_restore(flags);
4719 }
4720 EXPORT_SYMBOL(__napi_schedule);
4721 
4722 /**
4723  * __napi_schedule_irqoff - schedule for receive
4724  * @n: entry to schedule
4725  *
4726  * Variant of __napi_schedule() assuming hard irqs are masked.
4727  *
4728  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
4729  * because the interrupt disabled assumption might not be true
4730  * due to force-threaded interrupts and spinlock substitution.
4731  */
__napi_schedule_irqoff(struct napi_struct * n)4732 void __napi_schedule_irqoff(struct napi_struct *n)
4733 {
4734 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
4735 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
4736 	else
4737 		__napi_schedule(n);
4738 }
4739 EXPORT_SYMBOL(__napi_schedule_irqoff);
4740 
__napi_complete(struct napi_struct * n)4741 void __napi_complete(struct napi_struct *n)
4742 {
4743 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4744 
4745 	list_del_init(&n->poll_list);
4746 	smp_mb__before_atomic();
4747 	clear_bit(NAPI_STATE_SCHED, &n->state);
4748 }
4749 EXPORT_SYMBOL(__napi_complete);
4750 
napi_complete_done(struct napi_struct * n,int work_done)4751 void napi_complete_done(struct napi_struct *n, int work_done)
4752 {
4753 	unsigned long flags;
4754 
4755 	/*
4756 	 * don't let napi dequeue from the cpu poll list
4757 	 * just in case its running on a different cpu
4758 	 */
4759 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4760 		return;
4761 
4762 	if (n->gro_list) {
4763 		unsigned long timeout = 0;
4764 
4765 		if (work_done)
4766 			timeout = n->dev->gro_flush_timeout;
4767 
4768 		if (timeout)
4769 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4770 				      HRTIMER_MODE_REL_PINNED);
4771 		else
4772 			napi_gro_flush(n, false);
4773 	}
4774 	if (likely(list_empty(&n->poll_list))) {
4775 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4776 	} else {
4777 		/* If n->poll_list is not empty, we need to mask irqs */
4778 		local_irq_save(flags);
4779 		__napi_complete(n);
4780 		local_irq_restore(flags);
4781 	}
4782 }
4783 EXPORT_SYMBOL(napi_complete_done);
4784 
4785 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)4786 struct napi_struct *napi_by_id(unsigned int napi_id)
4787 {
4788 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4789 	struct napi_struct *napi;
4790 
4791 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4792 		if (napi->napi_id == napi_id)
4793 			return napi;
4794 
4795 	return NULL;
4796 }
4797 EXPORT_SYMBOL_GPL(napi_by_id);
4798 
napi_hash_add(struct napi_struct * napi)4799 void napi_hash_add(struct napi_struct *napi)
4800 {
4801 	if (test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4802 		return;
4803 
4804 	spin_lock(&napi_hash_lock);
4805 
4806 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4807 	do {
4808 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
4809 			napi_gen_id = NR_CPUS + 1;
4810 	} while (napi_by_id(napi_gen_id));
4811 	napi->napi_id = napi_gen_id;
4812 
4813 	hlist_add_head_rcu(&napi->napi_hash_node,
4814 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4815 
4816 	spin_unlock(&napi_hash_lock);
4817 }
4818 EXPORT_SYMBOL_GPL(napi_hash_add);
4819 
4820 /* Warning : caller is responsible to make sure rcu grace period
4821  * is respected before freeing memory containing @napi
4822  */
napi_hash_del(struct napi_struct * napi)4823 void napi_hash_del(struct napi_struct *napi)
4824 {
4825 	spin_lock(&napi_hash_lock);
4826 
4827 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4828 		hlist_del_rcu(&napi->napi_hash_node);
4829 
4830 	spin_unlock(&napi_hash_lock);
4831 }
4832 EXPORT_SYMBOL_GPL(napi_hash_del);
4833 
napi_watchdog(struct hrtimer * timer)4834 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4835 {
4836 	struct napi_struct *napi;
4837 
4838 	napi = container_of(timer, struct napi_struct, timer);
4839 	if (napi->gro_list)
4840 		napi_schedule(napi);
4841 
4842 	return HRTIMER_NORESTART;
4843 }
4844 
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)4845 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4846 		    int (*poll)(struct napi_struct *, int), int weight)
4847 {
4848 	INIT_LIST_HEAD(&napi->poll_list);
4849 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4850 	napi->timer.function = napi_watchdog;
4851 	napi->gro_count = 0;
4852 	napi->gro_list = NULL;
4853 	napi->skb = NULL;
4854 	napi->poll = poll;
4855 	if (weight > NAPI_POLL_WEIGHT)
4856 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4857 			    weight, dev->name);
4858 	napi->weight = weight;
4859 	napi->dev = dev;
4860 #ifdef CONFIG_NETPOLL
4861 	spin_lock_init(&napi->poll_lock);
4862 	napi->poll_owner = -1;
4863 #endif
4864 	set_bit(NAPI_STATE_SCHED, &napi->state);
4865 	set_bit(NAPI_STATE_NPSVC, &napi->state);
4866 	list_add_rcu(&napi->dev_list, &dev->napi_list);
4867 }
4868 EXPORT_SYMBOL(netif_napi_add);
4869 
napi_disable(struct napi_struct * n)4870 void napi_disable(struct napi_struct *n)
4871 {
4872 	might_sleep();
4873 	set_bit(NAPI_STATE_DISABLE, &n->state);
4874 
4875 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4876 		msleep(1);
4877 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4878 		msleep(1);
4879 
4880 	hrtimer_cancel(&n->timer);
4881 
4882 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4883 }
4884 EXPORT_SYMBOL(napi_disable);
4885 
netif_napi_del(struct napi_struct * napi)4886 void netif_napi_del(struct napi_struct *napi)
4887 {
4888 	list_del_init(&napi->dev_list);
4889 	napi_free_frags(napi);
4890 
4891 	kfree_skb_list(napi->gro_list);
4892 	napi->gro_list = NULL;
4893 	napi->gro_count = 0;
4894 }
4895 EXPORT_SYMBOL(netif_napi_del);
4896 
napi_poll(struct napi_struct * n,struct list_head * repoll)4897 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4898 {
4899 	void *have;
4900 	int work, weight;
4901 
4902 	list_del_init(&n->poll_list);
4903 
4904 	have = netpoll_poll_lock(n);
4905 
4906 	weight = n->weight;
4907 
4908 	/* This NAPI_STATE_SCHED test is for avoiding a race
4909 	 * with netpoll's poll_napi().  Only the entity which
4910 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4911 	 * actually make the ->poll() call.  Therefore we avoid
4912 	 * accidentally calling ->poll() when NAPI is not scheduled.
4913 	 */
4914 	work = 0;
4915 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4916 		work = n->poll(n, weight);
4917 		trace_napi_poll(n);
4918 	}
4919 
4920 	WARN_ON_ONCE(work > weight);
4921 
4922 	if (likely(work < weight))
4923 		goto out_unlock;
4924 
4925 	/* Drivers must not modify the NAPI state if they
4926 	 * consume the entire weight.  In such cases this code
4927 	 * still "owns" the NAPI instance and therefore can
4928 	 * move the instance around on the list at-will.
4929 	 */
4930 	if (unlikely(napi_disable_pending(n))) {
4931 		napi_complete(n);
4932 		goto out_unlock;
4933 	}
4934 
4935 	if (n->gro_list) {
4936 		/* flush too old packets
4937 		 * If HZ < 1000, flush all packets.
4938 		 */
4939 		napi_gro_flush(n, HZ >= 1000);
4940 	}
4941 
4942 	/* Some drivers may have called napi_schedule
4943 	 * prior to exhausting their budget.
4944 	 */
4945 	if (unlikely(!list_empty(&n->poll_list))) {
4946 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4947 			     n->dev ? n->dev->name : "backlog");
4948 		goto out_unlock;
4949 	}
4950 
4951 	list_add_tail(&n->poll_list, repoll);
4952 
4953 out_unlock:
4954 	netpoll_poll_unlock(have);
4955 
4956 	return work;
4957 }
4958 
net_rx_action(struct softirq_action * h)4959 static void net_rx_action(struct softirq_action *h)
4960 {
4961 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4962 	unsigned long time_limit = jiffies + 2;
4963 	int budget = netdev_budget;
4964 	LIST_HEAD(list);
4965 	LIST_HEAD(repoll);
4966 
4967 	local_irq_disable();
4968 	list_splice_init(&sd->poll_list, &list);
4969 	local_irq_enable();
4970 
4971 	for (;;) {
4972 		struct napi_struct *n;
4973 
4974 		if (list_empty(&list)) {
4975 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4976 				return;
4977 			break;
4978 		}
4979 
4980 		n = list_first_entry(&list, struct napi_struct, poll_list);
4981 		budget -= napi_poll(n, &repoll);
4982 
4983 		/* If softirq window is exhausted then punt.
4984 		 * Allow this to run for 2 jiffies since which will allow
4985 		 * an average latency of 1.5/HZ.
4986 		 */
4987 		if (unlikely(budget <= 0 ||
4988 			     time_after_eq(jiffies, time_limit))) {
4989 			sd->time_squeeze++;
4990 			break;
4991 		}
4992 	}
4993 
4994 	local_irq_disable();
4995 
4996 	list_splice_tail_init(&sd->poll_list, &list);
4997 	list_splice_tail(&repoll, &list);
4998 	list_splice(&list, &sd->poll_list);
4999 	if (!list_empty(&sd->poll_list))
5000 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5001 
5002 	net_rps_action_and_irq_enable(sd);
5003 }
5004 
5005 struct netdev_adjacent {
5006 	struct net_device *dev;
5007 
5008 	/* upper master flag, there can only be one master device per list */
5009 	bool master;
5010 
5011 	/* counter for the number of times this device was added to us */
5012 	u16 ref_nr;
5013 
5014 	/* private field for the users */
5015 	void *private;
5016 
5017 	struct list_head list;
5018 	struct rcu_head rcu;
5019 };
5020 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)5021 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5022 						 struct list_head *adj_list)
5023 {
5024 	struct netdev_adjacent *adj;
5025 
5026 	list_for_each_entry(adj, adj_list, list) {
5027 		if (adj->dev == adj_dev)
5028 			return adj;
5029 	}
5030 	return NULL;
5031 }
5032 
5033 /**
5034  * netdev_has_upper_dev - Check if device is linked to an upper device
5035  * @dev: device
5036  * @upper_dev: upper device to check
5037  *
5038  * Find out if a device is linked to specified upper device and return true
5039  * in case it is. Note that this checks only immediate upper device,
5040  * not through a complete stack of devices. The caller must hold the RTNL lock.
5041  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)5042 bool netdev_has_upper_dev(struct net_device *dev,
5043 			  struct net_device *upper_dev)
5044 {
5045 	ASSERT_RTNL();
5046 
5047 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5048 }
5049 EXPORT_SYMBOL(netdev_has_upper_dev);
5050 
5051 /**
5052  * netdev_has_any_upper_dev - Check if device is linked to some device
5053  * @dev: device
5054  *
5055  * Find out if a device is linked to an upper device and return true in case
5056  * it is. The caller must hold the RTNL lock.
5057  */
netdev_has_any_upper_dev(struct net_device * dev)5058 static bool netdev_has_any_upper_dev(struct net_device *dev)
5059 {
5060 	ASSERT_RTNL();
5061 
5062 	return !list_empty(&dev->all_adj_list.upper);
5063 }
5064 
5065 /**
5066  * netdev_master_upper_dev_get - Get master upper device
5067  * @dev: device
5068  *
5069  * Find a master upper device and return pointer to it or NULL in case
5070  * it's not there. The caller must hold the RTNL lock.
5071  */
netdev_master_upper_dev_get(struct net_device * dev)5072 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5073 {
5074 	struct netdev_adjacent *upper;
5075 
5076 	ASSERT_RTNL();
5077 
5078 	if (list_empty(&dev->adj_list.upper))
5079 		return NULL;
5080 
5081 	upper = list_first_entry(&dev->adj_list.upper,
5082 				 struct netdev_adjacent, list);
5083 	if (likely(upper->master))
5084 		return upper->dev;
5085 	return NULL;
5086 }
5087 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5088 
netdev_adjacent_get_private(struct list_head * adj_list)5089 void *netdev_adjacent_get_private(struct list_head *adj_list)
5090 {
5091 	struct netdev_adjacent *adj;
5092 
5093 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5094 
5095 	return adj->private;
5096 }
5097 EXPORT_SYMBOL(netdev_adjacent_get_private);
5098 
5099 /**
5100  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5101  * @dev: device
5102  * @iter: list_head ** of the current position
5103  *
5104  * Gets the next device from the dev's upper list, starting from iter
5105  * position. The caller must hold RCU read lock.
5106  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)5107 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5108 						 struct list_head **iter)
5109 {
5110 	struct netdev_adjacent *upper;
5111 
5112 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5113 
5114 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5115 
5116 	if (&upper->list == &dev->adj_list.upper)
5117 		return NULL;
5118 
5119 	*iter = &upper->list;
5120 
5121 	return upper->dev;
5122 }
5123 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5124 
5125 /**
5126  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5127  * @dev: device
5128  * @iter: list_head ** of the current position
5129  *
5130  * Gets the next device from the dev's upper list, starting from iter
5131  * position. The caller must hold RCU read lock.
5132  */
netdev_all_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)5133 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5134 						     struct list_head **iter)
5135 {
5136 	struct netdev_adjacent *upper;
5137 
5138 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5139 
5140 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5141 
5142 	if (&upper->list == &dev->all_adj_list.upper)
5143 		return NULL;
5144 
5145 	*iter = &upper->list;
5146 
5147 	return upper->dev;
5148 }
5149 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5150 
5151 /**
5152  * netdev_lower_get_next_private - Get the next ->private from the
5153  *				   lower neighbour list
5154  * @dev: device
5155  * @iter: list_head ** of the current position
5156  *
5157  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5158  * list, starting from iter position. The caller must hold either hold the
5159  * RTNL lock or its own locking that guarantees that the neighbour lower
5160  * list will remain unchanged.
5161  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)5162 void *netdev_lower_get_next_private(struct net_device *dev,
5163 				    struct list_head **iter)
5164 {
5165 	struct netdev_adjacent *lower;
5166 
5167 	lower = list_entry(*iter, struct netdev_adjacent, list);
5168 
5169 	if (&lower->list == &dev->adj_list.lower)
5170 		return NULL;
5171 
5172 	*iter = lower->list.next;
5173 
5174 	return lower->private;
5175 }
5176 EXPORT_SYMBOL(netdev_lower_get_next_private);
5177 
5178 /**
5179  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5180  *				       lower neighbour list, RCU
5181  *				       variant
5182  * @dev: device
5183  * @iter: list_head ** of the current position
5184  *
5185  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5186  * list, starting from iter position. The caller must hold RCU read lock.
5187  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)5188 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5189 					struct list_head **iter)
5190 {
5191 	struct netdev_adjacent *lower;
5192 
5193 	WARN_ON_ONCE(!rcu_read_lock_held());
5194 
5195 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5196 
5197 	if (&lower->list == &dev->adj_list.lower)
5198 		return NULL;
5199 
5200 	*iter = &lower->list;
5201 
5202 	return lower->private;
5203 }
5204 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5205 
5206 /**
5207  * netdev_lower_get_next - Get the next device from the lower neighbour
5208  *                         list
5209  * @dev: device
5210  * @iter: list_head ** of the current position
5211  *
5212  * Gets the next netdev_adjacent from the dev's lower neighbour
5213  * list, starting from iter position. The caller must hold RTNL lock or
5214  * its own locking that guarantees that the neighbour lower
5215  * list will remain unchanged.
5216  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)5217 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5218 {
5219 	struct netdev_adjacent *lower;
5220 
5221 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5222 
5223 	if (&lower->list == &dev->adj_list.lower)
5224 		return NULL;
5225 
5226 	*iter = &lower->list;
5227 
5228 	return lower->dev;
5229 }
5230 EXPORT_SYMBOL(netdev_lower_get_next);
5231 
5232 /**
5233  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5234  *				       lower neighbour list, RCU
5235  *				       variant
5236  * @dev: device
5237  *
5238  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5239  * list. The caller must hold RCU read lock.
5240  */
netdev_lower_get_first_private_rcu(struct net_device * dev)5241 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5242 {
5243 	struct netdev_adjacent *lower;
5244 
5245 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5246 			struct netdev_adjacent, list);
5247 	if (lower)
5248 		return lower->private;
5249 	return NULL;
5250 }
5251 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5252 
5253 /**
5254  * netdev_master_upper_dev_get_rcu - Get master upper device
5255  * @dev: device
5256  *
5257  * Find a master upper device and return pointer to it or NULL in case
5258  * it's not there. The caller must hold the RCU read lock.
5259  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)5260 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5261 {
5262 	struct netdev_adjacent *upper;
5263 
5264 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5265 				       struct netdev_adjacent, list);
5266 	if (upper && likely(upper->master))
5267 		return upper->dev;
5268 	return NULL;
5269 }
5270 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5271 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5272 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5273 			      struct net_device *adj_dev,
5274 			      struct list_head *dev_list)
5275 {
5276 	char linkname[IFNAMSIZ+7];
5277 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5278 		"upper_%s" : "lower_%s", adj_dev->name);
5279 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5280 				 linkname);
5281 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)5282 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5283 			       char *name,
5284 			       struct list_head *dev_list)
5285 {
5286 	char linkname[IFNAMSIZ+7];
5287 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5288 		"upper_%s" : "lower_%s", name);
5289 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5290 }
5291 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)5292 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5293 						 struct net_device *adj_dev,
5294 						 struct list_head *dev_list)
5295 {
5296 	return (dev_list == &dev->adj_list.upper ||
5297 		dev_list == &dev->adj_list.lower) &&
5298 		net_eq(dev_net(dev), dev_net(adj_dev));
5299 }
5300 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list,void * private,bool master)5301 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5302 					struct net_device *adj_dev,
5303 					u16 ref_nr,
5304 					struct list_head *dev_list,
5305 					void *private, bool master)
5306 {
5307 	struct netdev_adjacent *adj;
5308 	int ret;
5309 
5310 	adj = __netdev_find_adj(adj_dev, dev_list);
5311 
5312 	if (adj) {
5313 		adj->ref_nr += ref_nr;
5314 		return 0;
5315 	}
5316 
5317 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5318 	if (!adj)
5319 		return -ENOMEM;
5320 
5321 	adj->dev = adj_dev;
5322 	adj->master = master;
5323 	adj->ref_nr = ref_nr;
5324 	adj->private = private;
5325 	dev_hold(adj_dev);
5326 
5327 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5328 		 adj_dev->name, dev->name, adj_dev->name);
5329 
5330 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5331 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5332 		if (ret)
5333 			goto free_adj;
5334 	}
5335 
5336 	/* Ensure that master link is always the first item in list. */
5337 	if (master) {
5338 		ret = sysfs_create_link(&(dev->dev.kobj),
5339 					&(adj_dev->dev.kobj), "master");
5340 		if (ret)
5341 			goto remove_symlinks;
5342 
5343 		list_add_rcu(&adj->list, dev_list);
5344 	} else {
5345 		list_add_tail_rcu(&adj->list, dev_list);
5346 	}
5347 
5348 	return 0;
5349 
5350 remove_symlinks:
5351 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5352 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5353 free_adj:
5354 	kfree(adj);
5355 	dev_put(adj_dev);
5356 
5357 	return ret;
5358 }
5359 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)5360 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5361 					 struct net_device *adj_dev,
5362 					 u16 ref_nr,
5363 					 struct list_head *dev_list)
5364 {
5365 	struct netdev_adjacent *adj;
5366 
5367 	adj = __netdev_find_adj(adj_dev, dev_list);
5368 
5369 	if (!adj) {
5370 		pr_err("tried to remove device %s from %s\n",
5371 		       dev->name, adj_dev->name);
5372 		BUG();
5373 	}
5374 
5375 	if (adj->ref_nr > ref_nr) {
5376 		pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5377 			 ref_nr, adj->ref_nr-ref_nr);
5378 		adj->ref_nr -= ref_nr;
5379 		return;
5380 	}
5381 
5382 	if (adj->master)
5383 		sysfs_remove_link(&(dev->dev.kobj), "master");
5384 
5385 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5386 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5387 
5388 	list_del_rcu(&adj->list);
5389 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5390 		 adj_dev->name, dev->name, adj_dev->name);
5391 	dev_put(adj_dev);
5392 	kfree_rcu(adj, rcu);
5393 }
5394 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list,void * private,bool master)5395 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5396 					    struct net_device *upper_dev,
5397 					    u16 ref_nr,
5398 					    struct list_head *up_list,
5399 					    struct list_head *down_list,
5400 					    void *private, bool master)
5401 {
5402 	int ret;
5403 
5404 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5405 					   private, master);
5406 	if (ret)
5407 		return ret;
5408 
5409 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5410 					   private, false);
5411 	if (ret) {
5412 		__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5413 		return ret;
5414 	}
5415 
5416 	return 0;
5417 }
5418 
__netdev_adjacent_dev_link(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr)5419 static int __netdev_adjacent_dev_link(struct net_device *dev,
5420 				      struct net_device *upper_dev,
5421 				      u16 ref_nr)
5422 {
5423 	return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5424 						&dev->all_adj_list.upper,
5425 						&upper_dev->all_adj_list.lower,
5426 						NULL, false);
5427 }
5428 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)5429 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5430 					       struct net_device *upper_dev,
5431 					       u16 ref_nr,
5432 					       struct list_head *up_list,
5433 					       struct list_head *down_list)
5434 {
5435 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5436 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5437 }
5438 
__netdev_adjacent_dev_unlink(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr)5439 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5440 					 struct net_device *upper_dev,
5441 					 u16 ref_nr)
5442 {
5443 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5444 					   &dev->all_adj_list.upper,
5445 					   &upper_dev->all_adj_list.lower);
5446 }
5447 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)5448 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5449 						struct net_device *upper_dev,
5450 						void *private, bool master)
5451 {
5452 	int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5453 
5454 	if (ret)
5455 		return ret;
5456 
5457 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5458 					       &dev->adj_list.upper,
5459 					       &upper_dev->adj_list.lower,
5460 					       private, master);
5461 	if (ret) {
5462 		__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5463 		return ret;
5464 	}
5465 
5466 	return 0;
5467 }
5468 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)5469 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5470 						   struct net_device *upper_dev)
5471 {
5472 	__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5473 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5474 					   &dev->adj_list.upper,
5475 					   &upper_dev->adj_list.lower);
5476 }
5477 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * private)5478 static int __netdev_upper_dev_link(struct net_device *dev,
5479 				   struct net_device *upper_dev, bool master,
5480 				   void *private)
5481 {
5482 	struct netdev_notifier_changeupper_info changeupper_info;
5483 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5484 	int ret = 0;
5485 
5486 	ASSERT_RTNL();
5487 
5488 	if (dev == upper_dev)
5489 		return -EBUSY;
5490 
5491 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5492 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5493 		return -EBUSY;
5494 
5495 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5496 		return -EEXIST;
5497 
5498 	if (master && netdev_master_upper_dev_get(dev))
5499 		return -EBUSY;
5500 
5501 	changeupper_info.upper_dev = upper_dev;
5502 	changeupper_info.master = master;
5503 	changeupper_info.linking = true;
5504 
5505 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5506 					    &changeupper_info.info);
5507 	ret = notifier_to_errno(ret);
5508 	if (ret)
5509 		return ret;
5510 
5511 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5512 						   master);
5513 	if (ret)
5514 		return ret;
5515 
5516 	/* Now that we linked these devs, make all the upper_dev's
5517 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5518 	 * versa, and don't forget the devices itself. All of these
5519 	 * links are non-neighbours.
5520 	 */
5521 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5522 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5523 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5524 				 i->dev->name, j->dev->name);
5525 			ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5526 			if (ret)
5527 				goto rollback_mesh;
5528 		}
5529 	}
5530 
5531 	/* add dev to every upper_dev's upper device */
5532 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5533 		pr_debug("linking %s's upper device %s with %s\n",
5534 			 upper_dev->name, i->dev->name, dev->name);
5535 		ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5536 		if (ret)
5537 			goto rollback_upper_mesh;
5538 	}
5539 
5540 	/* add upper_dev to every dev's lower device */
5541 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5542 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5543 			 i->dev->name, upper_dev->name);
5544 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5545 		if (ret)
5546 			goto rollback_lower_mesh;
5547 	}
5548 
5549 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5550 				      &changeupper_info.info);
5551 	return 0;
5552 
5553 rollback_lower_mesh:
5554 	to_i = i;
5555 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5556 		if (i == to_i)
5557 			break;
5558 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5559 	}
5560 
5561 	i = NULL;
5562 
5563 rollback_upper_mesh:
5564 	to_i = i;
5565 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5566 		if (i == to_i)
5567 			break;
5568 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5569 	}
5570 
5571 	i = j = NULL;
5572 
5573 rollback_mesh:
5574 	to_i = i;
5575 	to_j = j;
5576 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5577 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5578 			if (i == to_i && j == to_j)
5579 				break;
5580 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5581 		}
5582 		if (i == to_i)
5583 			break;
5584 	}
5585 
5586 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5587 
5588 	return ret;
5589 }
5590 
5591 /**
5592  * netdev_upper_dev_link - Add a link to the upper device
5593  * @dev: device
5594  * @upper_dev: new upper device
5595  *
5596  * Adds a link to device which is upper to this one. The caller must hold
5597  * the RTNL lock. On a failure a negative errno code is returned.
5598  * On success the reference counts are adjusted and the function
5599  * returns zero.
5600  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5601 int netdev_upper_dev_link(struct net_device *dev,
5602 			  struct net_device *upper_dev)
5603 {
5604 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5605 }
5606 EXPORT_SYMBOL(netdev_upper_dev_link);
5607 
5608 /**
5609  * netdev_master_upper_dev_link - Add a master link to the upper device
5610  * @dev: device
5611  * @upper_dev: new upper device
5612  *
5613  * Adds a link to device which is upper to this one. In this case, only
5614  * one master upper device can be linked, although other non-master devices
5615  * might be linked as well. The caller must hold the RTNL lock.
5616  * On a failure a negative errno code is returned. On success the reference
5617  * counts are adjusted and the function returns zero.
5618  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)5619 int netdev_master_upper_dev_link(struct net_device *dev,
5620 				 struct net_device *upper_dev)
5621 {
5622 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5623 }
5624 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5625 
netdev_master_upper_dev_link_private(struct net_device * dev,struct net_device * upper_dev,void * private)5626 int netdev_master_upper_dev_link_private(struct net_device *dev,
5627 					 struct net_device *upper_dev,
5628 					 void *private)
5629 {
5630 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5631 }
5632 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5633 
5634 /**
5635  * netdev_upper_dev_unlink - Removes a link to upper device
5636  * @dev: device
5637  * @upper_dev: new upper device
5638  *
5639  * Removes a link to device which is upper to this one. The caller must hold
5640  * the RTNL lock.
5641  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)5642 void netdev_upper_dev_unlink(struct net_device *dev,
5643 			     struct net_device *upper_dev)
5644 {
5645 	struct netdev_notifier_changeupper_info changeupper_info;
5646 	struct netdev_adjacent *i, *j;
5647 	ASSERT_RTNL();
5648 
5649 	changeupper_info.upper_dev = upper_dev;
5650 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5651 	changeupper_info.linking = false;
5652 
5653 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5654 				      &changeupper_info.info);
5655 
5656 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5657 
5658 	/* Here is the tricky part. We must remove all dev's lower
5659 	 * devices from all upper_dev's upper devices and vice
5660 	 * versa, to maintain the graph relationship.
5661 	 */
5662 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5663 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5664 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5665 
5666 	/* remove also the devices itself from lower/upper device
5667 	 * list
5668 	 */
5669 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5670 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5671 
5672 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5673 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5674 
5675 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5676 				      &changeupper_info.info);
5677 }
5678 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5679 
5680 /**
5681  * netdev_bonding_info_change - Dispatch event about slave change
5682  * @dev: device
5683  * @bonding_info: info to dispatch
5684  *
5685  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5686  * The caller must hold the RTNL lock.
5687  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)5688 void netdev_bonding_info_change(struct net_device *dev,
5689 				struct netdev_bonding_info *bonding_info)
5690 {
5691 	struct netdev_notifier_bonding_info	info;
5692 
5693 	memcpy(&info.bonding_info, bonding_info,
5694 	       sizeof(struct netdev_bonding_info));
5695 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5696 				      &info.info);
5697 }
5698 EXPORT_SYMBOL(netdev_bonding_info_change);
5699 
netdev_adjacent_add_links(struct net_device * dev)5700 static void netdev_adjacent_add_links(struct net_device *dev)
5701 {
5702 	struct netdev_adjacent *iter;
5703 
5704 	struct net *net = dev_net(dev);
5705 
5706 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5707 		if (!net_eq(net,dev_net(iter->dev)))
5708 			continue;
5709 		netdev_adjacent_sysfs_add(iter->dev, dev,
5710 					  &iter->dev->adj_list.lower);
5711 		netdev_adjacent_sysfs_add(dev, iter->dev,
5712 					  &dev->adj_list.upper);
5713 	}
5714 
5715 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5716 		if (!net_eq(net,dev_net(iter->dev)))
5717 			continue;
5718 		netdev_adjacent_sysfs_add(iter->dev, dev,
5719 					  &iter->dev->adj_list.upper);
5720 		netdev_adjacent_sysfs_add(dev, iter->dev,
5721 					  &dev->adj_list.lower);
5722 	}
5723 }
5724 
netdev_adjacent_del_links(struct net_device * dev)5725 static void netdev_adjacent_del_links(struct net_device *dev)
5726 {
5727 	struct netdev_adjacent *iter;
5728 
5729 	struct net *net = dev_net(dev);
5730 
5731 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5732 		if (!net_eq(net,dev_net(iter->dev)))
5733 			continue;
5734 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5735 					  &iter->dev->adj_list.lower);
5736 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5737 					  &dev->adj_list.upper);
5738 	}
5739 
5740 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5741 		if (!net_eq(net,dev_net(iter->dev)))
5742 			continue;
5743 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5744 					  &iter->dev->adj_list.upper);
5745 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5746 					  &dev->adj_list.lower);
5747 	}
5748 }
5749 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)5750 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5751 {
5752 	struct netdev_adjacent *iter;
5753 
5754 	struct net *net = dev_net(dev);
5755 
5756 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5757 		if (!net_eq(net,dev_net(iter->dev)))
5758 			continue;
5759 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5760 					  &iter->dev->adj_list.lower);
5761 		netdev_adjacent_sysfs_add(iter->dev, dev,
5762 					  &iter->dev->adj_list.lower);
5763 	}
5764 
5765 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5766 		if (!net_eq(net,dev_net(iter->dev)))
5767 			continue;
5768 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5769 					  &iter->dev->adj_list.upper);
5770 		netdev_adjacent_sysfs_add(iter->dev, dev,
5771 					  &iter->dev->adj_list.upper);
5772 	}
5773 }
5774 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)5775 void *netdev_lower_dev_get_private(struct net_device *dev,
5776 				   struct net_device *lower_dev)
5777 {
5778 	struct netdev_adjacent *lower;
5779 
5780 	if (!lower_dev)
5781 		return NULL;
5782 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5783 	if (!lower)
5784 		return NULL;
5785 
5786 	return lower->private;
5787 }
5788 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5789 
5790 
dev_get_nest_level(struct net_device * dev,bool (* type_check)(struct net_device * dev))5791 int dev_get_nest_level(struct net_device *dev,
5792 		       bool (*type_check)(struct net_device *dev))
5793 {
5794 	struct net_device *lower = NULL;
5795 	struct list_head *iter;
5796 	int max_nest = -1;
5797 	int nest;
5798 
5799 	ASSERT_RTNL();
5800 
5801 	netdev_for_each_lower_dev(dev, lower, iter) {
5802 		nest = dev_get_nest_level(lower, type_check);
5803 		if (max_nest < nest)
5804 			max_nest = nest;
5805 	}
5806 
5807 	if (type_check(dev))
5808 		max_nest++;
5809 
5810 	return max_nest;
5811 }
5812 EXPORT_SYMBOL(dev_get_nest_level);
5813 
dev_change_rx_flags(struct net_device * dev,int flags)5814 static void dev_change_rx_flags(struct net_device *dev, int flags)
5815 {
5816 	const struct net_device_ops *ops = dev->netdev_ops;
5817 
5818 	if (ops->ndo_change_rx_flags)
5819 		ops->ndo_change_rx_flags(dev, flags);
5820 }
5821 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)5822 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5823 {
5824 	unsigned int old_flags = dev->flags;
5825 	kuid_t uid;
5826 	kgid_t gid;
5827 
5828 	ASSERT_RTNL();
5829 
5830 	dev->flags |= IFF_PROMISC;
5831 	dev->promiscuity += inc;
5832 	if (dev->promiscuity == 0) {
5833 		/*
5834 		 * Avoid overflow.
5835 		 * If inc causes overflow, untouch promisc and return error.
5836 		 */
5837 		if (inc < 0)
5838 			dev->flags &= ~IFF_PROMISC;
5839 		else {
5840 			dev->promiscuity -= inc;
5841 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5842 				dev->name);
5843 			return -EOVERFLOW;
5844 		}
5845 	}
5846 	if (dev->flags != old_flags) {
5847 		pr_info("device %s %s promiscuous mode\n",
5848 			dev->name,
5849 			dev->flags & IFF_PROMISC ? "entered" : "left");
5850 		if (audit_enabled) {
5851 			current_uid_gid(&uid, &gid);
5852 			audit_log(current->audit_context, GFP_ATOMIC,
5853 				AUDIT_ANOM_PROMISCUOUS,
5854 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5855 				dev->name, (dev->flags & IFF_PROMISC),
5856 				(old_flags & IFF_PROMISC),
5857 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5858 				from_kuid(&init_user_ns, uid),
5859 				from_kgid(&init_user_ns, gid),
5860 				audit_get_sessionid(current));
5861 		}
5862 
5863 		dev_change_rx_flags(dev, IFF_PROMISC);
5864 	}
5865 	if (notify)
5866 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5867 	return 0;
5868 }
5869 
5870 /**
5871  *	dev_set_promiscuity	- update promiscuity count on a device
5872  *	@dev: device
5873  *	@inc: modifier
5874  *
5875  *	Add or remove promiscuity from a device. While the count in the device
5876  *	remains above zero the interface remains promiscuous. Once it hits zero
5877  *	the device reverts back to normal filtering operation. A negative inc
5878  *	value is used to drop promiscuity on the device.
5879  *	Return 0 if successful or a negative errno code on error.
5880  */
dev_set_promiscuity(struct net_device * dev,int inc)5881 int dev_set_promiscuity(struct net_device *dev, int inc)
5882 {
5883 	unsigned int old_flags = dev->flags;
5884 	int err;
5885 
5886 	err = __dev_set_promiscuity(dev, inc, true);
5887 	if (err < 0)
5888 		return err;
5889 	if (dev->flags != old_flags)
5890 		dev_set_rx_mode(dev);
5891 	return err;
5892 }
5893 EXPORT_SYMBOL(dev_set_promiscuity);
5894 
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)5895 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5896 {
5897 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5898 
5899 	ASSERT_RTNL();
5900 
5901 	dev->flags |= IFF_ALLMULTI;
5902 	dev->allmulti += inc;
5903 	if (dev->allmulti == 0) {
5904 		/*
5905 		 * Avoid overflow.
5906 		 * If inc causes overflow, untouch allmulti and return error.
5907 		 */
5908 		if (inc < 0)
5909 			dev->flags &= ~IFF_ALLMULTI;
5910 		else {
5911 			dev->allmulti -= inc;
5912 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5913 				dev->name);
5914 			return -EOVERFLOW;
5915 		}
5916 	}
5917 	if (dev->flags ^ old_flags) {
5918 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5919 		dev_set_rx_mode(dev);
5920 		if (notify)
5921 			__dev_notify_flags(dev, old_flags,
5922 					   dev->gflags ^ old_gflags);
5923 	}
5924 	return 0;
5925 }
5926 
5927 /**
5928  *	dev_set_allmulti	- update allmulti count on a device
5929  *	@dev: device
5930  *	@inc: modifier
5931  *
5932  *	Add or remove reception of all multicast frames to a device. While the
5933  *	count in the device remains above zero the interface remains listening
5934  *	to all interfaces. Once it hits zero the device reverts back to normal
5935  *	filtering operation. A negative @inc value is used to drop the counter
5936  *	when releasing a resource needing all multicasts.
5937  *	Return 0 if successful or a negative errno code on error.
5938  */
5939 
dev_set_allmulti(struct net_device * dev,int inc)5940 int dev_set_allmulti(struct net_device *dev, int inc)
5941 {
5942 	return __dev_set_allmulti(dev, inc, true);
5943 }
5944 EXPORT_SYMBOL(dev_set_allmulti);
5945 
5946 /*
5947  *	Upload unicast and multicast address lists to device and
5948  *	configure RX filtering. When the device doesn't support unicast
5949  *	filtering it is put in promiscuous mode while unicast addresses
5950  *	are present.
5951  */
__dev_set_rx_mode(struct net_device * dev)5952 void __dev_set_rx_mode(struct net_device *dev)
5953 {
5954 	const struct net_device_ops *ops = dev->netdev_ops;
5955 
5956 	/* dev_open will call this function so the list will stay sane. */
5957 	if (!(dev->flags&IFF_UP))
5958 		return;
5959 
5960 	if (!netif_device_present(dev))
5961 		return;
5962 
5963 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5964 		/* Unicast addresses changes may only happen under the rtnl,
5965 		 * therefore calling __dev_set_promiscuity here is safe.
5966 		 */
5967 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5968 			__dev_set_promiscuity(dev, 1, false);
5969 			dev->uc_promisc = true;
5970 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5971 			__dev_set_promiscuity(dev, -1, false);
5972 			dev->uc_promisc = false;
5973 		}
5974 	}
5975 
5976 	if (ops->ndo_set_rx_mode)
5977 		ops->ndo_set_rx_mode(dev);
5978 }
5979 
dev_set_rx_mode(struct net_device * dev)5980 void dev_set_rx_mode(struct net_device *dev)
5981 {
5982 	netif_addr_lock_bh(dev);
5983 	__dev_set_rx_mode(dev);
5984 	netif_addr_unlock_bh(dev);
5985 }
5986 
5987 /**
5988  *	dev_get_flags - get flags reported to userspace
5989  *	@dev: device
5990  *
5991  *	Get the combination of flag bits exported through APIs to userspace.
5992  */
dev_get_flags(const struct net_device * dev)5993 unsigned int dev_get_flags(const struct net_device *dev)
5994 {
5995 	unsigned int flags;
5996 
5997 	flags = (dev->flags & ~(IFF_PROMISC |
5998 				IFF_ALLMULTI |
5999 				IFF_RUNNING |
6000 				IFF_LOWER_UP |
6001 				IFF_DORMANT)) |
6002 		(dev->gflags & (IFF_PROMISC |
6003 				IFF_ALLMULTI));
6004 
6005 	if (netif_running(dev)) {
6006 		if (netif_oper_up(dev))
6007 			flags |= IFF_RUNNING;
6008 		if (netif_carrier_ok(dev))
6009 			flags |= IFF_LOWER_UP;
6010 		if (netif_dormant(dev))
6011 			flags |= IFF_DORMANT;
6012 	}
6013 
6014 	return flags;
6015 }
6016 EXPORT_SYMBOL(dev_get_flags);
6017 
__dev_change_flags(struct net_device * dev,unsigned int flags)6018 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6019 {
6020 	unsigned int old_flags = dev->flags;
6021 	int ret;
6022 
6023 	ASSERT_RTNL();
6024 
6025 	/*
6026 	 *	Set the flags on our device.
6027 	 */
6028 
6029 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6030 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6031 			       IFF_AUTOMEDIA)) |
6032 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6033 				    IFF_ALLMULTI));
6034 
6035 	/*
6036 	 *	Load in the correct multicast list now the flags have changed.
6037 	 */
6038 
6039 	if ((old_flags ^ flags) & IFF_MULTICAST)
6040 		dev_change_rx_flags(dev, IFF_MULTICAST);
6041 
6042 	dev_set_rx_mode(dev);
6043 
6044 	/*
6045 	 *	Have we downed the interface. We handle IFF_UP ourselves
6046 	 *	according to user attempts to set it, rather than blindly
6047 	 *	setting it.
6048 	 */
6049 
6050 	ret = 0;
6051 	if ((old_flags ^ flags) & IFF_UP)
6052 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6053 
6054 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6055 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6056 		unsigned int old_flags = dev->flags;
6057 
6058 		dev->gflags ^= IFF_PROMISC;
6059 
6060 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6061 			if (dev->flags != old_flags)
6062 				dev_set_rx_mode(dev);
6063 	}
6064 
6065 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6066 	   is important. Some (broken) drivers set IFF_PROMISC, when
6067 	   IFF_ALLMULTI is requested not asking us and not reporting.
6068 	 */
6069 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6070 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6071 
6072 		dev->gflags ^= IFF_ALLMULTI;
6073 		__dev_set_allmulti(dev, inc, false);
6074 	}
6075 
6076 	return ret;
6077 }
6078 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)6079 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6080 			unsigned int gchanges)
6081 {
6082 	unsigned int changes = dev->flags ^ old_flags;
6083 
6084 	if (gchanges)
6085 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6086 
6087 	if (changes & IFF_UP) {
6088 		if (dev->flags & IFF_UP)
6089 			call_netdevice_notifiers(NETDEV_UP, dev);
6090 		else
6091 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6092 	}
6093 
6094 	if (dev->flags & IFF_UP &&
6095 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6096 		struct netdev_notifier_change_info change_info;
6097 
6098 		change_info.flags_changed = changes;
6099 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6100 					      &change_info.info);
6101 	}
6102 }
6103 
6104 /**
6105  *	dev_change_flags - change device settings
6106  *	@dev: device
6107  *	@flags: device state flags
6108  *
6109  *	Change settings on device based state flags. The flags are
6110  *	in the userspace exported format.
6111  */
dev_change_flags(struct net_device * dev,unsigned int flags)6112 int dev_change_flags(struct net_device *dev, unsigned int flags)
6113 {
6114 	int ret;
6115 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6116 
6117 	ret = __dev_change_flags(dev, flags);
6118 	if (ret < 0)
6119 		return ret;
6120 
6121 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6122 	__dev_notify_flags(dev, old_flags, changes);
6123 	return ret;
6124 }
6125 EXPORT_SYMBOL(dev_change_flags);
6126 
__dev_set_mtu(struct net_device * dev,int new_mtu)6127 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6128 {
6129 	const struct net_device_ops *ops = dev->netdev_ops;
6130 
6131 	if (ops->ndo_change_mtu)
6132 		return ops->ndo_change_mtu(dev, new_mtu);
6133 
6134 	/* Pairs with all the lockless reads of dev->mtu in the stack */
6135 	WRITE_ONCE(dev->mtu, new_mtu);
6136 	return 0;
6137 }
6138 
6139 /**
6140  *	dev_set_mtu - Change maximum transfer unit
6141  *	@dev: device
6142  *	@new_mtu: new transfer unit
6143  *
6144  *	Change the maximum transfer size of the network device.
6145  */
dev_set_mtu(struct net_device * dev,int new_mtu)6146 int dev_set_mtu(struct net_device *dev, int new_mtu)
6147 {
6148 	int err, orig_mtu;
6149 
6150 	if (new_mtu == dev->mtu)
6151 		return 0;
6152 
6153 	/*	MTU must be positive.	 */
6154 	if (new_mtu < 0)
6155 		return -EINVAL;
6156 
6157 	if (!netif_device_present(dev))
6158 		return -ENODEV;
6159 
6160 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6161 	err = notifier_to_errno(err);
6162 	if (err)
6163 		return err;
6164 
6165 	orig_mtu = dev->mtu;
6166 	err = __dev_set_mtu(dev, new_mtu);
6167 
6168 	if (!err) {
6169 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6170 						   orig_mtu);
6171 		err = notifier_to_errno(err);
6172 		if (err) {
6173 			/* setting mtu back and notifying everyone again,
6174 			 * so that they have a chance to revert changes.
6175 			 */
6176 			__dev_set_mtu(dev, orig_mtu);
6177 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6178 						     new_mtu);
6179 		}
6180 	}
6181 	return err;
6182 }
6183 EXPORT_SYMBOL(dev_set_mtu);
6184 
6185 /**
6186  *	dev_set_group - Change group this device belongs to
6187  *	@dev: device
6188  *	@new_group: group this device should belong to
6189  */
dev_set_group(struct net_device * dev,int new_group)6190 void dev_set_group(struct net_device *dev, int new_group)
6191 {
6192 	dev->group = new_group;
6193 }
6194 EXPORT_SYMBOL(dev_set_group);
6195 
6196 /**
6197  *	dev_set_mac_address - Change Media Access Control Address
6198  *	@dev: device
6199  *	@sa: new address
6200  *
6201  *	Change the hardware (MAC) address of the device
6202  */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)6203 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6204 {
6205 	const struct net_device_ops *ops = dev->netdev_ops;
6206 	int err;
6207 
6208 	if (!ops->ndo_set_mac_address)
6209 		return -EOPNOTSUPP;
6210 	if (sa->sa_family != dev->type)
6211 		return -EINVAL;
6212 	if (!netif_device_present(dev))
6213 		return -ENODEV;
6214 	err = ops->ndo_set_mac_address(dev, sa);
6215 	if (err)
6216 		return err;
6217 	dev->addr_assign_type = NET_ADDR_SET;
6218 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6219 	add_device_randomness(dev->dev_addr, dev->addr_len);
6220 	return 0;
6221 }
6222 EXPORT_SYMBOL(dev_set_mac_address);
6223 
6224 /**
6225  *	dev_change_carrier - Change device carrier
6226  *	@dev: device
6227  *	@new_carrier: new value
6228  *
6229  *	Change device carrier
6230  */
dev_change_carrier(struct net_device * dev,bool new_carrier)6231 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6232 {
6233 	const struct net_device_ops *ops = dev->netdev_ops;
6234 
6235 	if (!ops->ndo_change_carrier)
6236 		return -EOPNOTSUPP;
6237 	if (!netif_device_present(dev))
6238 		return -ENODEV;
6239 	return ops->ndo_change_carrier(dev, new_carrier);
6240 }
6241 EXPORT_SYMBOL(dev_change_carrier);
6242 
6243 /**
6244  *	dev_get_phys_port_id - Get device physical port ID
6245  *	@dev: device
6246  *	@ppid: port ID
6247  *
6248  *	Get device physical port ID
6249  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)6250 int dev_get_phys_port_id(struct net_device *dev,
6251 			 struct netdev_phys_item_id *ppid)
6252 {
6253 	const struct net_device_ops *ops = dev->netdev_ops;
6254 
6255 	if (!ops->ndo_get_phys_port_id)
6256 		return -EOPNOTSUPP;
6257 	return ops->ndo_get_phys_port_id(dev, ppid);
6258 }
6259 EXPORT_SYMBOL(dev_get_phys_port_id);
6260 
6261 /**
6262  *	dev_get_phys_port_name - Get device physical port name
6263  *	@dev: device
6264  *	@name: port name
6265  *
6266  *	Get device physical port name
6267  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)6268 int dev_get_phys_port_name(struct net_device *dev,
6269 			   char *name, size_t len)
6270 {
6271 	const struct net_device_ops *ops = dev->netdev_ops;
6272 
6273 	if (!ops->ndo_get_phys_port_name)
6274 		return -EOPNOTSUPP;
6275 	return ops->ndo_get_phys_port_name(dev, name, len);
6276 }
6277 EXPORT_SYMBOL(dev_get_phys_port_name);
6278 
6279 /**
6280  *	dev_change_proto_down - update protocol port state information
6281  *	@dev: device
6282  *	@proto_down: new value
6283  *
6284  *	This info can be used by switch drivers to set the phys state of the
6285  *	port.
6286  */
dev_change_proto_down(struct net_device * dev,bool proto_down)6287 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6288 {
6289 	const struct net_device_ops *ops = dev->netdev_ops;
6290 
6291 	if (!ops->ndo_change_proto_down)
6292 		return -EOPNOTSUPP;
6293 	if (!netif_device_present(dev))
6294 		return -ENODEV;
6295 	return ops->ndo_change_proto_down(dev, proto_down);
6296 }
6297 EXPORT_SYMBOL(dev_change_proto_down);
6298 
6299 /**
6300  *	dev_new_index	-	allocate an ifindex
6301  *	@net: the applicable net namespace
6302  *
6303  *	Returns a suitable unique value for a new device interface
6304  *	number.  The caller must hold the rtnl semaphore or the
6305  *	dev_base_lock to be sure it remains unique.
6306  */
dev_new_index(struct net * net)6307 static int dev_new_index(struct net *net)
6308 {
6309 	int ifindex = net->ifindex;
6310 	for (;;) {
6311 		if (++ifindex <= 0)
6312 			ifindex = 1;
6313 		if (!__dev_get_by_index(net, ifindex))
6314 			return net->ifindex = ifindex;
6315 	}
6316 }
6317 
6318 /* Delayed registration/unregisteration */
6319 static LIST_HEAD(net_todo_list);
6320 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6321 
net_set_todo(struct net_device * dev)6322 static void net_set_todo(struct net_device *dev)
6323 {
6324 	list_add_tail(&dev->todo_list, &net_todo_list);
6325 	dev_net(dev)->dev_unreg_count++;
6326 }
6327 
rollback_registered_many(struct list_head * head)6328 static void rollback_registered_many(struct list_head *head)
6329 {
6330 	struct net_device *dev, *tmp;
6331 	LIST_HEAD(close_head);
6332 
6333 	BUG_ON(dev_boot_phase);
6334 	ASSERT_RTNL();
6335 
6336 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6337 		/* Some devices call without registering
6338 		 * for initialization unwind. Remove those
6339 		 * devices and proceed with the remaining.
6340 		 */
6341 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6342 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6343 				 dev->name, dev);
6344 
6345 			WARN_ON(1);
6346 			list_del(&dev->unreg_list);
6347 			continue;
6348 		}
6349 		dev->dismantle = true;
6350 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6351 	}
6352 
6353 	/* If device is running, close it first. */
6354 	list_for_each_entry(dev, head, unreg_list)
6355 		list_add_tail(&dev->close_list, &close_head);
6356 	dev_close_many(&close_head, true);
6357 
6358 	list_for_each_entry(dev, head, unreg_list) {
6359 		/* And unlink it from device chain. */
6360 		unlist_netdevice(dev);
6361 
6362 		dev->reg_state = NETREG_UNREGISTERING;
6363 		on_each_cpu(flush_backlog, dev, 1);
6364 	}
6365 
6366 	synchronize_net();
6367 
6368 	list_for_each_entry(dev, head, unreg_list) {
6369 		struct sk_buff *skb = NULL;
6370 
6371 		/* Shutdown queueing discipline. */
6372 		dev_shutdown(dev);
6373 
6374 
6375 		/* Notify protocols, that we are about to destroy
6376 		   this device. They should clean all the things.
6377 		*/
6378 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6379 
6380 		if (!dev->rtnl_link_ops ||
6381 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6382 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6383 						     GFP_KERNEL);
6384 
6385 		/*
6386 		 *	Flush the unicast and multicast chains
6387 		 */
6388 		dev_uc_flush(dev);
6389 		dev_mc_flush(dev);
6390 
6391 		if (dev->netdev_ops->ndo_uninit)
6392 			dev->netdev_ops->ndo_uninit(dev);
6393 
6394 		if (skb)
6395 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6396 
6397 		/* Notifier chain MUST detach us all upper devices. */
6398 		WARN_ON(netdev_has_any_upper_dev(dev));
6399 
6400 		/* Remove entries from kobject tree */
6401 		netdev_unregister_kobject(dev);
6402 #ifdef CONFIG_XPS
6403 		/* Remove XPS queueing entries */
6404 		netif_reset_xps_queues_gt(dev, 0);
6405 #endif
6406 	}
6407 
6408 	synchronize_net();
6409 
6410 	list_for_each_entry(dev, head, unreg_list)
6411 		dev_put(dev);
6412 }
6413 
rollback_registered(struct net_device * dev)6414 static void rollback_registered(struct net_device *dev)
6415 {
6416 	LIST_HEAD(single);
6417 
6418 	list_add(&dev->unreg_list, &single);
6419 	rollback_registered_many(&single);
6420 	list_del(&single);
6421 }
6422 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)6423 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6424 	struct net_device *upper, netdev_features_t features)
6425 {
6426 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6427 	netdev_features_t feature;
6428 	int feature_bit;
6429 
6430 	for_each_netdev_feature(upper_disables, feature_bit) {
6431 		feature = __NETIF_F_BIT(feature_bit);
6432 		if (!(upper->wanted_features & feature)
6433 		    && (features & feature)) {
6434 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6435 				   &feature, upper->name);
6436 			features &= ~feature;
6437 		}
6438 	}
6439 
6440 	return features;
6441 }
6442 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)6443 static void netdev_sync_lower_features(struct net_device *upper,
6444 	struct net_device *lower, netdev_features_t features)
6445 {
6446 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6447 	netdev_features_t feature;
6448 	int feature_bit;
6449 
6450 	for_each_netdev_feature(upper_disables, feature_bit) {
6451 		feature = __NETIF_F_BIT(feature_bit);
6452 		if (!(features & feature) && (lower->features & feature)) {
6453 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6454 				   &feature, lower->name);
6455 			lower->wanted_features &= ~feature;
6456 			__netdev_update_features(lower);
6457 
6458 			if (unlikely(lower->features & feature))
6459 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6460 					    &feature, lower->name);
6461 			else
6462 				netdev_features_change(lower);
6463 		}
6464 	}
6465 }
6466 
netdev_fix_features(struct net_device * dev,netdev_features_t features)6467 static netdev_features_t netdev_fix_features(struct net_device *dev,
6468 	netdev_features_t features)
6469 {
6470 	/* Fix illegal checksum combinations */
6471 	if ((features & NETIF_F_HW_CSUM) &&
6472 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6473 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6474 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6475 	}
6476 
6477 	/* TSO requires that SG is present as well. */
6478 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6479 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6480 		features &= ~NETIF_F_ALL_TSO;
6481 	}
6482 
6483 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6484 					!(features & NETIF_F_IP_CSUM)) {
6485 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6486 		features &= ~NETIF_F_TSO;
6487 		features &= ~NETIF_F_TSO_ECN;
6488 	}
6489 
6490 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6491 					 !(features & NETIF_F_IPV6_CSUM)) {
6492 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6493 		features &= ~NETIF_F_TSO6;
6494 	}
6495 
6496 	/* TSO ECN requires that TSO is present as well. */
6497 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6498 		features &= ~NETIF_F_TSO_ECN;
6499 
6500 	/* Software GSO depends on SG. */
6501 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6502 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6503 		features &= ~NETIF_F_GSO;
6504 	}
6505 
6506 	/* UFO needs SG and checksumming */
6507 	if (features & NETIF_F_UFO) {
6508 		/* maybe split UFO into V4 and V6? */
6509 		if (!((features & NETIF_F_GEN_CSUM) ||
6510 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6511 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6512 			netdev_dbg(dev,
6513 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6514 			features &= ~NETIF_F_UFO;
6515 		}
6516 
6517 		if (!(features & NETIF_F_SG)) {
6518 			netdev_dbg(dev,
6519 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6520 			features &= ~NETIF_F_UFO;
6521 		}
6522 	}
6523 
6524 #ifdef CONFIG_NET_RX_BUSY_POLL
6525 	if (dev->netdev_ops->ndo_busy_poll)
6526 		features |= NETIF_F_BUSY_POLL;
6527 	else
6528 #endif
6529 		features &= ~NETIF_F_BUSY_POLL;
6530 
6531 	return features;
6532 }
6533 
__netdev_update_features(struct net_device * dev)6534 int __netdev_update_features(struct net_device *dev)
6535 {
6536 	struct net_device *upper, *lower;
6537 	netdev_features_t features;
6538 	struct list_head *iter;
6539 	int err = -1;
6540 
6541 	ASSERT_RTNL();
6542 
6543 	features = netdev_get_wanted_features(dev);
6544 
6545 	if (dev->netdev_ops->ndo_fix_features)
6546 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6547 
6548 	/* driver might be less strict about feature dependencies */
6549 	features = netdev_fix_features(dev, features);
6550 
6551 	/* some features can't be enabled if they're off an an upper device */
6552 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6553 		features = netdev_sync_upper_features(dev, upper, features);
6554 
6555 	if (dev->features == features)
6556 		goto sync_lower;
6557 
6558 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6559 		&dev->features, &features);
6560 
6561 	if (dev->netdev_ops->ndo_set_features)
6562 		err = dev->netdev_ops->ndo_set_features(dev, features);
6563 	else
6564 		err = 0;
6565 
6566 	if (unlikely(err < 0)) {
6567 		netdev_err(dev,
6568 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6569 			err, &features, &dev->features);
6570 		/* return non-0 since some features might have changed and
6571 		 * it's better to fire a spurious notification than miss it
6572 		 */
6573 		return -1;
6574 	}
6575 
6576 sync_lower:
6577 	/* some features must be disabled on lower devices when disabled
6578 	 * on an upper device (think: bonding master or bridge)
6579 	 */
6580 	netdev_for_each_lower_dev(dev, lower, iter)
6581 		netdev_sync_lower_features(dev, lower, features);
6582 
6583 	if (!err)
6584 		dev->features = features;
6585 
6586 	return err < 0 ? 0 : 1;
6587 }
6588 
6589 /**
6590  *	netdev_update_features - recalculate device features
6591  *	@dev: the device to check
6592  *
6593  *	Recalculate dev->features set and send notifications if it
6594  *	has changed. Should be called after driver or hardware dependent
6595  *	conditions might have changed that influence the features.
6596  */
netdev_update_features(struct net_device * dev)6597 void netdev_update_features(struct net_device *dev)
6598 {
6599 	if (__netdev_update_features(dev))
6600 		netdev_features_change(dev);
6601 }
6602 EXPORT_SYMBOL(netdev_update_features);
6603 
6604 /**
6605  *	netdev_change_features - recalculate device features
6606  *	@dev: the device to check
6607  *
6608  *	Recalculate dev->features set and send notifications even
6609  *	if they have not changed. Should be called instead of
6610  *	netdev_update_features() if also dev->vlan_features might
6611  *	have changed to allow the changes to be propagated to stacked
6612  *	VLAN devices.
6613  */
netdev_change_features(struct net_device * dev)6614 void netdev_change_features(struct net_device *dev)
6615 {
6616 	__netdev_update_features(dev);
6617 	netdev_features_change(dev);
6618 }
6619 EXPORT_SYMBOL(netdev_change_features);
6620 
6621 /**
6622  *	netif_stacked_transfer_operstate -	transfer operstate
6623  *	@rootdev: the root or lower level device to transfer state from
6624  *	@dev: the device to transfer operstate to
6625  *
6626  *	Transfer operational state from root to device. This is normally
6627  *	called when a stacking relationship exists between the root
6628  *	device and the device(a leaf device).
6629  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)6630 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6631 					struct net_device *dev)
6632 {
6633 	if (rootdev->operstate == IF_OPER_DORMANT)
6634 		netif_dormant_on(dev);
6635 	else
6636 		netif_dormant_off(dev);
6637 
6638 	if (netif_carrier_ok(rootdev)) {
6639 		if (!netif_carrier_ok(dev))
6640 			netif_carrier_on(dev);
6641 	} else {
6642 		if (netif_carrier_ok(dev))
6643 			netif_carrier_off(dev);
6644 	}
6645 }
6646 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6647 
6648 #ifdef CONFIG_SYSFS
netif_alloc_rx_queues(struct net_device * dev)6649 static int netif_alloc_rx_queues(struct net_device *dev)
6650 {
6651 	unsigned int i, count = dev->num_rx_queues;
6652 	struct netdev_rx_queue *rx;
6653 	size_t sz = count * sizeof(*rx);
6654 
6655 	BUG_ON(count < 1);
6656 
6657 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6658 	if (!rx) {
6659 		rx = vzalloc(sz);
6660 		if (!rx)
6661 			return -ENOMEM;
6662 	}
6663 	dev->_rx = rx;
6664 
6665 	for (i = 0; i < count; i++)
6666 		rx[i].dev = dev;
6667 	return 0;
6668 }
6669 #endif
6670 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)6671 static void netdev_init_one_queue(struct net_device *dev,
6672 				  struct netdev_queue *queue, void *_unused)
6673 {
6674 	/* Initialize queue lock */
6675 	spin_lock_init(&queue->_xmit_lock);
6676 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6677 	queue->xmit_lock_owner = -1;
6678 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6679 	queue->dev = dev;
6680 #ifdef CONFIG_BQL
6681 	dql_init(&queue->dql, HZ);
6682 #endif
6683 }
6684 
netif_free_tx_queues(struct net_device * dev)6685 static void netif_free_tx_queues(struct net_device *dev)
6686 {
6687 	kvfree(dev->_tx);
6688 }
6689 
netif_alloc_netdev_queues(struct net_device * dev)6690 static int netif_alloc_netdev_queues(struct net_device *dev)
6691 {
6692 	unsigned int count = dev->num_tx_queues;
6693 	struct netdev_queue *tx;
6694 	size_t sz = count * sizeof(*tx);
6695 
6696 	if (count < 1 || count > 0xffff)
6697 		return -EINVAL;
6698 
6699 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6700 	if (!tx) {
6701 		tx = vzalloc(sz);
6702 		if (!tx)
6703 			return -ENOMEM;
6704 	}
6705 	dev->_tx = tx;
6706 
6707 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6708 	spin_lock_init(&dev->tx_global_lock);
6709 
6710 	return 0;
6711 }
6712 
netif_tx_stop_all_queues(struct net_device * dev)6713 void netif_tx_stop_all_queues(struct net_device *dev)
6714 {
6715 	unsigned int i;
6716 
6717 	for (i = 0; i < dev->num_tx_queues; i++) {
6718 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6719 		netif_tx_stop_queue(txq);
6720 	}
6721 }
6722 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6723 
6724 /**
6725  *	register_netdevice	- register a network device
6726  *	@dev: device to register
6727  *
6728  *	Take a completed network device structure and add it to the kernel
6729  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6730  *	chain. 0 is returned on success. A negative errno code is returned
6731  *	on a failure to set up the device, or if the name is a duplicate.
6732  *
6733  *	Callers must hold the rtnl semaphore. You may want
6734  *	register_netdev() instead of this.
6735  *
6736  *	BUGS:
6737  *	The locking appears insufficient to guarantee two parallel registers
6738  *	will not get the same name.
6739  */
6740 
register_netdevice(struct net_device * dev)6741 int register_netdevice(struct net_device *dev)
6742 {
6743 	int ret;
6744 	struct net *net = dev_net(dev);
6745 
6746 	BUG_ON(dev_boot_phase);
6747 	ASSERT_RTNL();
6748 
6749 	might_sleep();
6750 
6751 	/* When net_device's are persistent, this will be fatal. */
6752 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6753 	BUG_ON(!net);
6754 
6755 	spin_lock_init(&dev->addr_list_lock);
6756 	netdev_set_addr_lockdep_class(dev);
6757 
6758 	ret = dev_get_valid_name(net, dev, dev->name);
6759 	if (ret < 0)
6760 		goto out;
6761 
6762 	/* Init, if this function is available */
6763 	if (dev->netdev_ops->ndo_init) {
6764 		ret = dev->netdev_ops->ndo_init(dev);
6765 		if (ret) {
6766 			if (ret > 0)
6767 				ret = -EIO;
6768 			goto out;
6769 		}
6770 	}
6771 
6772 	if (((dev->hw_features | dev->features) &
6773 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6774 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6775 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6776 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6777 		ret = -EINVAL;
6778 		goto err_uninit;
6779 	}
6780 
6781 	ret = -EBUSY;
6782 	if (!dev->ifindex)
6783 		dev->ifindex = dev_new_index(net);
6784 	else if (__dev_get_by_index(net, dev->ifindex))
6785 		goto err_uninit;
6786 
6787 	/* Transfer changeable features to wanted_features and enable
6788 	 * software offloads (GSO and GRO).
6789 	 */
6790 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6791 	dev->features |= NETIF_F_SOFT_FEATURES;
6792 	dev->wanted_features = dev->features & dev->hw_features;
6793 
6794 	if (!(dev->flags & IFF_LOOPBACK)) {
6795 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6796 	}
6797 
6798 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6799 	 */
6800 	dev->vlan_features |= NETIF_F_HIGHDMA;
6801 
6802 	/* Make NETIF_F_SG inheritable to tunnel devices.
6803 	 */
6804 	dev->hw_enc_features |= NETIF_F_SG;
6805 
6806 	/* Make NETIF_F_SG inheritable to MPLS.
6807 	 */
6808 	dev->mpls_features |= NETIF_F_SG;
6809 
6810 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6811 	ret = notifier_to_errno(ret);
6812 	if (ret)
6813 		goto err_uninit;
6814 
6815 	ret = netdev_register_kobject(dev);
6816 	if (ret)
6817 		goto err_uninit;
6818 	dev->reg_state = NETREG_REGISTERED;
6819 
6820 	__netdev_update_features(dev);
6821 
6822 	/*
6823 	 *	Default initial state at registry is that the
6824 	 *	device is present.
6825 	 */
6826 
6827 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6828 
6829 	linkwatch_init_dev(dev);
6830 
6831 	dev_init_scheduler(dev);
6832 	dev_hold(dev);
6833 	list_netdevice(dev);
6834 	add_device_randomness(dev->dev_addr, dev->addr_len);
6835 
6836 	/* If the device has permanent device address, driver should
6837 	 * set dev_addr and also addr_assign_type should be set to
6838 	 * NET_ADDR_PERM (default value).
6839 	 */
6840 	if (dev->addr_assign_type == NET_ADDR_PERM)
6841 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6842 
6843 	/* Notify protocols, that a new device appeared. */
6844 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6845 	ret = notifier_to_errno(ret);
6846 	if (ret) {
6847 		rollback_registered(dev);
6848 		rcu_barrier();
6849 
6850 		dev->reg_state = NETREG_UNREGISTERED;
6851 		/* We should put the kobject that hold in
6852 		 * netdev_unregister_kobject(), otherwise
6853 		 * the net device cannot be freed when
6854 		 * driver calls free_netdev(), because the
6855 		 * kobject is being hold.
6856 		 */
6857 		kobject_put(&dev->dev.kobj);
6858 	}
6859 	/*
6860 	 *	Prevent userspace races by waiting until the network
6861 	 *	device is fully setup before sending notifications.
6862 	 */
6863 	if (!dev->rtnl_link_ops ||
6864 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6865 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6866 
6867 out:
6868 	return ret;
6869 
6870 err_uninit:
6871 	if (dev->netdev_ops->ndo_uninit)
6872 		dev->netdev_ops->ndo_uninit(dev);
6873 	goto out;
6874 }
6875 EXPORT_SYMBOL(register_netdevice);
6876 
6877 /**
6878  *	init_dummy_netdev	- init a dummy network device for NAPI
6879  *	@dev: device to init
6880  *
6881  *	This takes a network device structure and initialize the minimum
6882  *	amount of fields so it can be used to schedule NAPI polls without
6883  *	registering a full blown interface. This is to be used by drivers
6884  *	that need to tie several hardware interfaces to a single NAPI
6885  *	poll scheduler due to HW limitations.
6886  */
init_dummy_netdev(struct net_device * dev)6887 int init_dummy_netdev(struct net_device *dev)
6888 {
6889 	/* Clear everything. Note we don't initialize spinlocks
6890 	 * are they aren't supposed to be taken by any of the
6891 	 * NAPI code and this dummy netdev is supposed to be
6892 	 * only ever used for NAPI polls
6893 	 */
6894 	memset(dev, 0, sizeof(struct net_device));
6895 
6896 	/* make sure we BUG if trying to hit standard
6897 	 * register/unregister code path
6898 	 */
6899 	dev->reg_state = NETREG_DUMMY;
6900 
6901 	/* NAPI wants this */
6902 	INIT_LIST_HEAD(&dev->napi_list);
6903 
6904 	/* a dummy interface is started by default */
6905 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6906 	set_bit(__LINK_STATE_START, &dev->state);
6907 
6908 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6909 	 * because users of this 'device' dont need to change
6910 	 * its refcount.
6911 	 */
6912 
6913 	return 0;
6914 }
6915 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6916 
6917 
6918 /**
6919  *	register_netdev	- register a network device
6920  *	@dev: device to register
6921  *
6922  *	Take a completed network device structure and add it to the kernel
6923  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6924  *	chain. 0 is returned on success. A negative errno code is returned
6925  *	on a failure to set up the device, or if the name is a duplicate.
6926  *
6927  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6928  *	and expands the device name if you passed a format string to
6929  *	alloc_netdev.
6930  */
register_netdev(struct net_device * dev)6931 int register_netdev(struct net_device *dev)
6932 {
6933 	int err;
6934 
6935 	rtnl_lock();
6936 	err = register_netdevice(dev);
6937 	rtnl_unlock();
6938 	return err;
6939 }
6940 EXPORT_SYMBOL(register_netdev);
6941 
netdev_refcnt_read(const struct net_device * dev)6942 int netdev_refcnt_read(const struct net_device *dev)
6943 {
6944 	int i, refcnt = 0;
6945 
6946 	for_each_possible_cpu(i)
6947 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6948 	return refcnt;
6949 }
6950 EXPORT_SYMBOL(netdev_refcnt_read);
6951 
6952 /**
6953  * netdev_wait_allrefs - wait until all references are gone.
6954  * @dev: target net_device
6955  *
6956  * This is called when unregistering network devices.
6957  *
6958  * Any protocol or device that holds a reference should register
6959  * for netdevice notification, and cleanup and put back the
6960  * reference if they receive an UNREGISTER event.
6961  * We can get stuck here if buggy protocols don't correctly
6962  * call dev_put.
6963  */
netdev_wait_allrefs(struct net_device * dev)6964 static void netdev_wait_allrefs(struct net_device *dev)
6965 {
6966 	unsigned long rebroadcast_time, warning_time;
6967 	int refcnt;
6968 
6969 	linkwatch_forget_dev(dev);
6970 
6971 	rebroadcast_time = warning_time = jiffies;
6972 	refcnt = netdev_refcnt_read(dev);
6973 
6974 	while (refcnt != 0) {
6975 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6976 			rtnl_lock();
6977 
6978 			/* Rebroadcast unregister notification */
6979 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6980 
6981 			__rtnl_unlock();
6982 			rcu_barrier();
6983 			rtnl_lock();
6984 
6985 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6986 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6987 				     &dev->state)) {
6988 				/* We must not have linkwatch events
6989 				 * pending on unregister. If this
6990 				 * happens, we simply run the queue
6991 				 * unscheduled, resulting in a noop
6992 				 * for this device.
6993 				 */
6994 				linkwatch_run_queue();
6995 			}
6996 
6997 			__rtnl_unlock();
6998 
6999 			rebroadcast_time = jiffies;
7000 		}
7001 
7002 		msleep(250);
7003 
7004 		refcnt = netdev_refcnt_read(dev);
7005 
7006 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7007 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7008 				 dev->name, refcnt);
7009 			warning_time = jiffies;
7010 		}
7011 	}
7012 }
7013 
7014 /* The sequence is:
7015  *
7016  *	rtnl_lock();
7017  *	...
7018  *	register_netdevice(x1);
7019  *	register_netdevice(x2);
7020  *	...
7021  *	unregister_netdevice(y1);
7022  *	unregister_netdevice(y2);
7023  *      ...
7024  *	rtnl_unlock();
7025  *	free_netdev(y1);
7026  *	free_netdev(y2);
7027  *
7028  * We are invoked by rtnl_unlock().
7029  * This allows us to deal with problems:
7030  * 1) We can delete sysfs objects which invoke hotplug
7031  *    without deadlocking with linkwatch via keventd.
7032  * 2) Since we run with the RTNL semaphore not held, we can sleep
7033  *    safely in order to wait for the netdev refcnt to drop to zero.
7034  *
7035  * We must not return until all unregister events added during
7036  * the interval the lock was held have been completed.
7037  */
netdev_run_todo(void)7038 void netdev_run_todo(void)
7039 {
7040 	struct list_head list;
7041 
7042 	/* Snapshot list, allow later requests */
7043 	list_replace_init(&net_todo_list, &list);
7044 
7045 	__rtnl_unlock();
7046 
7047 
7048 	/* Wait for rcu callbacks to finish before next phase */
7049 	if (!list_empty(&list))
7050 		rcu_barrier();
7051 
7052 	while (!list_empty(&list)) {
7053 		struct net_device *dev
7054 			= list_first_entry(&list, struct net_device, todo_list);
7055 		list_del(&dev->todo_list);
7056 
7057 		rtnl_lock();
7058 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7059 		__rtnl_unlock();
7060 
7061 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7062 			pr_err("network todo '%s' but state %d\n",
7063 			       dev->name, dev->reg_state);
7064 			dump_stack();
7065 			continue;
7066 		}
7067 
7068 		dev->reg_state = NETREG_UNREGISTERED;
7069 
7070 		netdev_wait_allrefs(dev);
7071 
7072 		/* paranoia */
7073 		BUG_ON(netdev_refcnt_read(dev));
7074 		BUG_ON(!list_empty(&dev->ptype_all));
7075 		BUG_ON(!list_empty(&dev->ptype_specific));
7076 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7077 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7078 		WARN_ON(dev->dn_ptr);
7079 
7080 		if (dev->destructor)
7081 			dev->destructor(dev);
7082 
7083 		/* Report a network device has been unregistered */
7084 		rtnl_lock();
7085 		dev_net(dev)->dev_unreg_count--;
7086 		__rtnl_unlock();
7087 		wake_up(&netdev_unregistering_wq);
7088 
7089 		/* Free network device */
7090 		kobject_put(&dev->dev.kobj);
7091 	}
7092 }
7093 
7094 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
7095  * fields in the same order, with only the type differing.
7096  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)7097 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7098 			     const struct net_device_stats *netdev_stats)
7099 {
7100 #if BITS_PER_LONG == 64
7101 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7102 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7103 #else
7104 	size_t i, n = sizeof(*stats64) / sizeof(u64);
7105 	const unsigned long *src = (const unsigned long *)netdev_stats;
7106 	u64 *dst = (u64 *)stats64;
7107 
7108 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7109 		     sizeof(*stats64) / sizeof(u64));
7110 	for (i = 0; i < n; i++)
7111 		dst[i] = src[i];
7112 #endif
7113 }
7114 EXPORT_SYMBOL(netdev_stats_to_stats64);
7115 
7116 /**
7117  *	dev_get_stats	- get network device statistics
7118  *	@dev: device to get statistics from
7119  *	@storage: place to store stats
7120  *
7121  *	Get network statistics from device. Return @storage.
7122  *	The device driver may provide its own method by setting
7123  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7124  *	otherwise the internal statistics structure is used.
7125  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)7126 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7127 					struct rtnl_link_stats64 *storage)
7128 {
7129 	const struct net_device_ops *ops = dev->netdev_ops;
7130 
7131 	if (ops->ndo_get_stats64) {
7132 		memset(storage, 0, sizeof(*storage));
7133 		ops->ndo_get_stats64(dev, storage);
7134 	} else if (ops->ndo_get_stats) {
7135 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7136 	} else {
7137 		netdev_stats_to_stats64(storage, &dev->stats);
7138 	}
7139 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7140 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7141 	return storage;
7142 }
7143 EXPORT_SYMBOL(dev_get_stats);
7144 
dev_ingress_queue_create(struct net_device * dev)7145 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7146 {
7147 	struct netdev_queue *queue = dev_ingress_queue(dev);
7148 
7149 #ifdef CONFIG_NET_CLS_ACT
7150 	if (queue)
7151 		return queue;
7152 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7153 	if (!queue)
7154 		return NULL;
7155 	netdev_init_one_queue(dev, queue, NULL);
7156 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7157 	queue->qdisc_sleeping = &noop_qdisc;
7158 	rcu_assign_pointer(dev->ingress_queue, queue);
7159 #endif
7160 	return queue;
7161 }
7162 
7163 static const struct ethtool_ops default_ethtool_ops;
7164 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)7165 void netdev_set_default_ethtool_ops(struct net_device *dev,
7166 				    const struct ethtool_ops *ops)
7167 {
7168 	if (dev->ethtool_ops == &default_ethtool_ops)
7169 		dev->ethtool_ops = ops;
7170 }
7171 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7172 
netdev_freemem(struct net_device * dev)7173 void netdev_freemem(struct net_device *dev)
7174 {
7175 	char *addr = (char *)dev - dev->padded;
7176 
7177 	kvfree(addr);
7178 }
7179 
7180 /**
7181  *	alloc_netdev_mqs - allocate network device
7182  *	@sizeof_priv:		size of private data to allocate space for
7183  *	@name:			device name format string
7184  *	@name_assign_type: 	origin of device name
7185  *	@setup:			callback to initialize device
7186  *	@txqs:			the number of TX subqueues to allocate
7187  *	@rxqs:			the number of RX subqueues to allocate
7188  *
7189  *	Allocates a struct net_device with private data area for driver use
7190  *	and performs basic initialization.  Also allocates subqueue structs
7191  *	for each queue on the device.
7192  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)7193 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7194 		unsigned char name_assign_type,
7195 		void (*setup)(struct net_device *),
7196 		unsigned int txqs, unsigned int rxqs)
7197 {
7198 	struct net_device *dev;
7199 	size_t alloc_size;
7200 	struct net_device *p;
7201 
7202 	BUG_ON(strlen(name) >= sizeof(dev->name));
7203 
7204 	if (txqs < 1) {
7205 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7206 		return NULL;
7207 	}
7208 
7209 #ifdef CONFIG_SYSFS
7210 	if (rxqs < 1) {
7211 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7212 		return NULL;
7213 	}
7214 #endif
7215 
7216 	alloc_size = sizeof(struct net_device);
7217 	if (sizeof_priv) {
7218 		/* ensure 32-byte alignment of private area */
7219 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7220 		alloc_size += sizeof_priv;
7221 	}
7222 	/* ensure 32-byte alignment of whole construct */
7223 	alloc_size += NETDEV_ALIGN - 1;
7224 
7225 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7226 	if (!p)
7227 		p = vzalloc(alloc_size);
7228 	if (!p)
7229 		return NULL;
7230 
7231 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7232 	dev->padded = (char *)dev - (char *)p;
7233 
7234 	dev->pcpu_refcnt = alloc_percpu(int);
7235 	if (!dev->pcpu_refcnt)
7236 		goto free_dev;
7237 
7238 	if (dev_addr_init(dev))
7239 		goto free_pcpu;
7240 
7241 	dev_mc_init(dev);
7242 	dev_uc_init(dev);
7243 
7244 	dev_net_set(dev, &init_net);
7245 
7246 	dev->gso_max_size = GSO_MAX_SIZE;
7247 	dev->gso_max_segs = GSO_MAX_SEGS;
7248 	dev->gso_min_segs = 0;
7249 
7250 	INIT_LIST_HEAD(&dev->napi_list);
7251 	INIT_LIST_HEAD(&dev->unreg_list);
7252 	INIT_LIST_HEAD(&dev->close_list);
7253 	INIT_LIST_HEAD(&dev->link_watch_list);
7254 	INIT_LIST_HEAD(&dev->adj_list.upper);
7255 	INIT_LIST_HEAD(&dev->adj_list.lower);
7256 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7257 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7258 	INIT_LIST_HEAD(&dev->ptype_all);
7259 	INIT_LIST_HEAD(&dev->ptype_specific);
7260 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7261 	setup(dev);
7262 
7263 	if (!dev->tx_queue_len) {
7264 		dev->priv_flags |= IFF_NO_QUEUE;
7265 		dev->tx_queue_len = 1;
7266 	}
7267 
7268 	dev->num_tx_queues = txqs;
7269 	dev->real_num_tx_queues = txqs;
7270 	if (netif_alloc_netdev_queues(dev))
7271 		goto free_all;
7272 
7273 #ifdef CONFIG_SYSFS
7274 	dev->num_rx_queues = rxqs;
7275 	dev->real_num_rx_queues = rxqs;
7276 	if (netif_alloc_rx_queues(dev))
7277 		goto free_all;
7278 #endif
7279 
7280 	strcpy(dev->name, name);
7281 	dev->name_assign_type = name_assign_type;
7282 	dev->group = INIT_NETDEV_GROUP;
7283 	if (!dev->ethtool_ops)
7284 		dev->ethtool_ops = &default_ethtool_ops;
7285 
7286 	nf_hook_ingress_init(dev);
7287 
7288 	return dev;
7289 
7290 free_all:
7291 	free_netdev(dev);
7292 	return NULL;
7293 
7294 free_pcpu:
7295 	free_percpu(dev->pcpu_refcnt);
7296 free_dev:
7297 	netdev_freemem(dev);
7298 	return NULL;
7299 }
7300 EXPORT_SYMBOL(alloc_netdev_mqs);
7301 
7302 /**
7303  *	free_netdev - free network device
7304  *	@dev: device
7305  *
7306  *	This function does the last stage of destroying an allocated device
7307  * 	interface. The reference to the device object is released.
7308  *	If this is the last reference then it will be freed.
7309  */
free_netdev(struct net_device * dev)7310 void free_netdev(struct net_device *dev)
7311 {
7312 	struct napi_struct *p, *n;
7313 
7314 	netif_free_tx_queues(dev);
7315 #ifdef CONFIG_SYSFS
7316 	kvfree(dev->_rx);
7317 #endif
7318 
7319 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7320 
7321 	/* Flush device addresses */
7322 	dev_addr_flush(dev);
7323 
7324 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7325 		netif_napi_del(p);
7326 
7327 	free_percpu(dev->pcpu_refcnt);
7328 	dev->pcpu_refcnt = NULL;
7329 
7330 	/*  Compatibility with error handling in drivers */
7331 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7332 		netdev_freemem(dev);
7333 		return;
7334 	}
7335 
7336 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7337 	dev->reg_state = NETREG_RELEASED;
7338 
7339 	/* will free via device release */
7340 	put_device(&dev->dev);
7341 }
7342 EXPORT_SYMBOL(free_netdev);
7343 
7344 /**
7345  *	synchronize_net -  Synchronize with packet receive processing
7346  *
7347  *	Wait for packets currently being received to be done.
7348  *	Does not block later packets from starting.
7349  */
synchronize_net(void)7350 void synchronize_net(void)
7351 {
7352 	might_sleep();
7353 	if (rtnl_is_locked())
7354 		synchronize_rcu_expedited();
7355 	else
7356 		synchronize_rcu();
7357 }
7358 EXPORT_SYMBOL(synchronize_net);
7359 
7360 /**
7361  *	unregister_netdevice_queue - remove device from the kernel
7362  *	@dev: device
7363  *	@head: list
7364  *
7365  *	This function shuts down a device interface and removes it
7366  *	from the kernel tables.
7367  *	If head not NULL, device is queued to be unregistered later.
7368  *
7369  *	Callers must hold the rtnl semaphore.  You may want
7370  *	unregister_netdev() instead of this.
7371  */
7372 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)7373 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7374 {
7375 	ASSERT_RTNL();
7376 
7377 	if (head) {
7378 		list_move_tail(&dev->unreg_list, head);
7379 	} else {
7380 		rollback_registered(dev);
7381 		/* Finish processing unregister after unlock */
7382 		net_set_todo(dev);
7383 	}
7384 }
7385 EXPORT_SYMBOL(unregister_netdevice_queue);
7386 
7387 /**
7388  *	unregister_netdevice_many - unregister many devices
7389  *	@head: list of devices
7390  *
7391  *  Note: As most callers use a stack allocated list_head,
7392  *  we force a list_del() to make sure stack wont be corrupted later.
7393  */
unregister_netdevice_many(struct list_head * head)7394 void unregister_netdevice_many(struct list_head *head)
7395 {
7396 	struct net_device *dev;
7397 
7398 	if (!list_empty(head)) {
7399 		rollback_registered_many(head);
7400 		list_for_each_entry(dev, head, unreg_list)
7401 			net_set_todo(dev);
7402 		list_del(head);
7403 	}
7404 }
7405 EXPORT_SYMBOL(unregister_netdevice_many);
7406 
7407 /**
7408  *	unregister_netdev - remove device from the kernel
7409  *	@dev: device
7410  *
7411  *	This function shuts down a device interface and removes it
7412  *	from the kernel tables.
7413  *
7414  *	This is just a wrapper for unregister_netdevice that takes
7415  *	the rtnl semaphore.  In general you want to use this and not
7416  *	unregister_netdevice.
7417  */
unregister_netdev(struct net_device * dev)7418 void unregister_netdev(struct net_device *dev)
7419 {
7420 	rtnl_lock();
7421 	unregister_netdevice(dev);
7422 	rtnl_unlock();
7423 }
7424 EXPORT_SYMBOL(unregister_netdev);
7425 
7426 /**
7427  *	dev_change_net_namespace - move device to different nethost namespace
7428  *	@dev: device
7429  *	@net: network namespace
7430  *	@pat: If not NULL name pattern to try if the current device name
7431  *	      is already taken in the destination network namespace.
7432  *
7433  *	This function shuts down a device interface and moves it
7434  *	to a new network namespace. On success 0 is returned, on
7435  *	a failure a netagive errno code is returned.
7436  *
7437  *	Callers must hold the rtnl semaphore.
7438  */
7439 
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)7440 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7441 {
7442 	int err;
7443 
7444 	ASSERT_RTNL();
7445 
7446 	/* Don't allow namespace local devices to be moved. */
7447 	err = -EINVAL;
7448 	if (dev->features & NETIF_F_NETNS_LOCAL)
7449 		goto out;
7450 
7451 	/* Ensure the device has been registrered */
7452 	if (dev->reg_state != NETREG_REGISTERED)
7453 		goto out;
7454 
7455 	/* Get out if there is nothing todo */
7456 	err = 0;
7457 	if (net_eq(dev_net(dev), net))
7458 		goto out;
7459 
7460 	/* Pick the destination device name, and ensure
7461 	 * we can use it in the destination network namespace.
7462 	 */
7463 	err = -EEXIST;
7464 	if (__dev_get_by_name(net, dev->name)) {
7465 		/* We get here if we can't use the current device name */
7466 		if (!pat)
7467 			goto out;
7468 		err = dev_get_valid_name(net, dev, pat);
7469 		if (err < 0)
7470 			goto out;
7471 	}
7472 
7473 	/*
7474 	 * And now a mini version of register_netdevice unregister_netdevice.
7475 	 */
7476 
7477 	/* If device is running close it first. */
7478 	dev_close(dev);
7479 
7480 	/* And unlink it from device chain */
7481 	unlist_netdevice(dev);
7482 
7483 	synchronize_net();
7484 
7485 	/* Shutdown queueing discipline. */
7486 	dev_shutdown(dev);
7487 
7488 	/* Notify protocols, that we are about to destroy
7489 	   this device. They should clean all the things.
7490 
7491 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7492 	   This is wanted because this way 8021q and macvlan know
7493 	   the device is just moving and can keep their slaves up.
7494 	*/
7495 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7496 	rcu_barrier();
7497 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7498 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7499 
7500 	/*
7501 	 *	Flush the unicast and multicast chains
7502 	 */
7503 	dev_uc_flush(dev);
7504 	dev_mc_flush(dev);
7505 
7506 	/* Send a netdev-removed uevent to the old namespace */
7507 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7508 	netdev_adjacent_del_links(dev);
7509 
7510 	/* Actually switch the network namespace */
7511 	dev_net_set(dev, net);
7512 
7513 	/* If there is an ifindex conflict assign a new one */
7514 	if (__dev_get_by_index(net, dev->ifindex))
7515 		dev->ifindex = dev_new_index(net);
7516 
7517 	/* Send a netdev-add uevent to the new namespace */
7518 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7519 	netdev_adjacent_add_links(dev);
7520 
7521 	/* Fixup kobjects */
7522 	err = device_rename(&dev->dev, dev->name);
7523 	WARN_ON(err);
7524 
7525 	/* Add the device back in the hashes */
7526 	list_netdevice(dev);
7527 
7528 	/* Notify protocols, that a new device appeared. */
7529 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7530 
7531 	/*
7532 	 *	Prevent userspace races by waiting until the network
7533 	 *	device is fully setup before sending notifications.
7534 	 */
7535 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7536 
7537 	synchronize_net();
7538 	err = 0;
7539 out:
7540 	return err;
7541 }
7542 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7543 
dev_cpu_callback(struct notifier_block * nfb,unsigned long action,void * ocpu)7544 static int dev_cpu_callback(struct notifier_block *nfb,
7545 			    unsigned long action,
7546 			    void *ocpu)
7547 {
7548 	struct sk_buff **list_skb;
7549 	struct sk_buff *skb;
7550 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7551 	struct softnet_data *sd, *oldsd;
7552 
7553 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7554 		return NOTIFY_OK;
7555 
7556 	local_irq_disable();
7557 	cpu = smp_processor_id();
7558 	sd = &per_cpu(softnet_data, cpu);
7559 	oldsd = &per_cpu(softnet_data, oldcpu);
7560 
7561 	/* Find end of our completion_queue. */
7562 	list_skb = &sd->completion_queue;
7563 	while (*list_skb)
7564 		list_skb = &(*list_skb)->next;
7565 	/* Append completion queue from offline CPU. */
7566 	*list_skb = oldsd->completion_queue;
7567 	oldsd->completion_queue = NULL;
7568 
7569 	/* Append output queue from offline CPU. */
7570 	if (oldsd->output_queue) {
7571 		*sd->output_queue_tailp = oldsd->output_queue;
7572 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7573 		oldsd->output_queue = NULL;
7574 		oldsd->output_queue_tailp = &oldsd->output_queue;
7575 	}
7576 	/* Append NAPI poll list from offline CPU, with one exception :
7577 	 * process_backlog() must be called by cpu owning percpu backlog.
7578 	 * We properly handle process_queue & input_pkt_queue later.
7579 	 */
7580 	while (!list_empty(&oldsd->poll_list)) {
7581 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7582 							    struct napi_struct,
7583 							    poll_list);
7584 
7585 		list_del_init(&napi->poll_list);
7586 		if (napi->poll == process_backlog)
7587 			napi->state = 0;
7588 		else
7589 			____napi_schedule(sd, napi);
7590 	}
7591 
7592 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7593 	local_irq_enable();
7594 
7595 	/* Process offline CPU's input_pkt_queue */
7596 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7597 		netif_rx_ni(skb);
7598 		input_queue_head_incr(oldsd);
7599 	}
7600 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7601 		netif_rx_ni(skb);
7602 		input_queue_head_incr(oldsd);
7603 	}
7604 
7605 	return NOTIFY_OK;
7606 }
7607 
7608 
7609 /**
7610  *	netdev_increment_features - increment feature set by one
7611  *	@all: current feature set
7612  *	@one: new feature set
7613  *	@mask: mask feature set
7614  *
7615  *	Computes a new feature set after adding a device with feature set
7616  *	@one to the master device with current feature set @all.  Will not
7617  *	enable anything that is off in @mask. Returns the new feature set.
7618  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)7619 netdev_features_t netdev_increment_features(netdev_features_t all,
7620 	netdev_features_t one, netdev_features_t mask)
7621 {
7622 	if (mask & NETIF_F_GEN_CSUM)
7623 		mask |= NETIF_F_ALL_CSUM;
7624 	mask |= NETIF_F_VLAN_CHALLENGED;
7625 
7626 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7627 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7628 
7629 	/* If one device supports hw checksumming, set for all. */
7630 	if (all & NETIF_F_GEN_CSUM)
7631 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7632 
7633 	return all;
7634 }
7635 EXPORT_SYMBOL(netdev_increment_features);
7636 
netdev_create_hash(void)7637 static struct hlist_head * __net_init netdev_create_hash(void)
7638 {
7639 	int i;
7640 	struct hlist_head *hash;
7641 
7642 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7643 	if (hash != NULL)
7644 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7645 			INIT_HLIST_HEAD(&hash[i]);
7646 
7647 	return hash;
7648 }
7649 
7650 /* Initialize per network namespace state */
netdev_init(struct net * net)7651 static int __net_init netdev_init(struct net *net)
7652 {
7653 	if (net != &init_net)
7654 		INIT_LIST_HEAD(&net->dev_base_head);
7655 
7656 	net->dev_name_head = netdev_create_hash();
7657 	if (net->dev_name_head == NULL)
7658 		goto err_name;
7659 
7660 	net->dev_index_head = netdev_create_hash();
7661 	if (net->dev_index_head == NULL)
7662 		goto err_idx;
7663 
7664 	return 0;
7665 
7666 err_idx:
7667 	kfree(net->dev_name_head);
7668 err_name:
7669 	return -ENOMEM;
7670 }
7671 
7672 /**
7673  *	netdev_drivername - network driver for the device
7674  *	@dev: network device
7675  *
7676  *	Determine network driver for device.
7677  */
netdev_drivername(const struct net_device * dev)7678 const char *netdev_drivername(const struct net_device *dev)
7679 {
7680 	const struct device_driver *driver;
7681 	const struct device *parent;
7682 	const char *empty = "";
7683 
7684 	parent = dev->dev.parent;
7685 	if (!parent)
7686 		return empty;
7687 
7688 	driver = parent->driver;
7689 	if (driver && driver->name)
7690 		return driver->name;
7691 	return empty;
7692 }
7693 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)7694 static void __netdev_printk(const char *level, const struct net_device *dev,
7695 			    struct va_format *vaf)
7696 {
7697 	if (dev && dev->dev.parent) {
7698 		dev_printk_emit(level[1] - '0',
7699 				dev->dev.parent,
7700 				"%s %s %s%s: %pV",
7701 				dev_driver_string(dev->dev.parent),
7702 				dev_name(dev->dev.parent),
7703 				netdev_name(dev), netdev_reg_state(dev),
7704 				vaf);
7705 	} else if (dev) {
7706 		printk("%s%s%s: %pV",
7707 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7708 	} else {
7709 		printk("%s(NULL net_device): %pV", level, vaf);
7710 	}
7711 }
7712 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)7713 void netdev_printk(const char *level, const struct net_device *dev,
7714 		   const char *format, ...)
7715 {
7716 	struct va_format vaf;
7717 	va_list args;
7718 
7719 	va_start(args, format);
7720 
7721 	vaf.fmt = format;
7722 	vaf.va = &args;
7723 
7724 	__netdev_printk(level, dev, &vaf);
7725 
7726 	va_end(args);
7727 }
7728 EXPORT_SYMBOL(netdev_printk);
7729 
7730 #define define_netdev_printk_level(func, level)			\
7731 void func(const struct net_device *dev, const char *fmt, ...)	\
7732 {								\
7733 	struct va_format vaf;					\
7734 	va_list args;						\
7735 								\
7736 	va_start(args, fmt);					\
7737 								\
7738 	vaf.fmt = fmt;						\
7739 	vaf.va = &args;						\
7740 								\
7741 	__netdev_printk(level, dev, &vaf);			\
7742 								\
7743 	va_end(args);						\
7744 }								\
7745 EXPORT_SYMBOL(func);
7746 
7747 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7748 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7749 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7750 define_netdev_printk_level(netdev_err, KERN_ERR);
7751 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7752 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7753 define_netdev_printk_level(netdev_info, KERN_INFO);
7754 
netdev_exit(struct net * net)7755 static void __net_exit netdev_exit(struct net *net)
7756 {
7757 	kfree(net->dev_name_head);
7758 	kfree(net->dev_index_head);
7759 }
7760 
7761 static struct pernet_operations __net_initdata netdev_net_ops = {
7762 	.init = netdev_init,
7763 	.exit = netdev_exit,
7764 };
7765 
default_device_exit(struct net * net)7766 static void __net_exit default_device_exit(struct net *net)
7767 {
7768 	struct net_device *dev, *aux;
7769 	/*
7770 	 * Push all migratable network devices back to the
7771 	 * initial network namespace
7772 	 */
7773 	rtnl_lock();
7774 	for_each_netdev_safe(net, dev, aux) {
7775 		int err;
7776 		char fb_name[IFNAMSIZ];
7777 
7778 		/* Ignore unmoveable devices (i.e. loopback) */
7779 		if (dev->features & NETIF_F_NETNS_LOCAL)
7780 			continue;
7781 
7782 		/* Leave virtual devices for the generic cleanup */
7783 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
7784 			continue;
7785 
7786 		/* Push remaining network devices to init_net */
7787 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7788 		if (__dev_get_by_name(&init_net, fb_name))
7789 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
7790 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7791 		if (err) {
7792 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7793 				 __func__, dev->name, err);
7794 			BUG();
7795 		}
7796 	}
7797 	rtnl_unlock();
7798 }
7799 
rtnl_lock_unregistering(struct list_head * net_list)7800 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7801 {
7802 	/* Return with the rtnl_lock held when there are no network
7803 	 * devices unregistering in any network namespace in net_list.
7804 	 */
7805 	struct net *net;
7806 	bool unregistering;
7807 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7808 
7809 	add_wait_queue(&netdev_unregistering_wq, &wait);
7810 	for (;;) {
7811 		unregistering = false;
7812 		rtnl_lock();
7813 		list_for_each_entry(net, net_list, exit_list) {
7814 			if (net->dev_unreg_count > 0) {
7815 				unregistering = true;
7816 				break;
7817 			}
7818 		}
7819 		if (!unregistering)
7820 			break;
7821 		__rtnl_unlock();
7822 
7823 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7824 	}
7825 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7826 }
7827 
default_device_exit_batch(struct list_head * net_list)7828 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7829 {
7830 	/* At exit all network devices most be removed from a network
7831 	 * namespace.  Do this in the reverse order of registration.
7832 	 * Do this across as many network namespaces as possible to
7833 	 * improve batching efficiency.
7834 	 */
7835 	struct net_device *dev;
7836 	struct net *net;
7837 	LIST_HEAD(dev_kill_list);
7838 
7839 	/* To prevent network device cleanup code from dereferencing
7840 	 * loopback devices or network devices that have been freed
7841 	 * wait here for all pending unregistrations to complete,
7842 	 * before unregistring the loopback device and allowing the
7843 	 * network namespace be freed.
7844 	 *
7845 	 * The netdev todo list containing all network devices
7846 	 * unregistrations that happen in default_device_exit_batch
7847 	 * will run in the rtnl_unlock() at the end of
7848 	 * default_device_exit_batch.
7849 	 */
7850 	rtnl_lock_unregistering(net_list);
7851 	list_for_each_entry(net, net_list, exit_list) {
7852 		for_each_netdev_reverse(net, dev) {
7853 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7854 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7855 			else
7856 				unregister_netdevice_queue(dev, &dev_kill_list);
7857 		}
7858 	}
7859 	unregister_netdevice_many(&dev_kill_list);
7860 	rtnl_unlock();
7861 }
7862 
7863 static struct pernet_operations __net_initdata default_device_ops = {
7864 	.exit = default_device_exit,
7865 	.exit_batch = default_device_exit_batch,
7866 };
7867 
7868 /*
7869  *	Initialize the DEV module. At boot time this walks the device list and
7870  *	unhooks any devices that fail to initialise (normally hardware not
7871  *	present) and leaves us with a valid list of present and active devices.
7872  *
7873  */
7874 
7875 /*
7876  *       This is called single threaded during boot, so no need
7877  *       to take the rtnl semaphore.
7878  */
net_dev_init(void)7879 static int __init net_dev_init(void)
7880 {
7881 	int i, rc = -ENOMEM;
7882 
7883 	BUG_ON(!dev_boot_phase);
7884 
7885 	if (dev_proc_init())
7886 		goto out;
7887 
7888 	if (netdev_kobject_init())
7889 		goto out;
7890 
7891 	INIT_LIST_HEAD(&ptype_all);
7892 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7893 		INIT_LIST_HEAD(&ptype_base[i]);
7894 
7895 	INIT_LIST_HEAD(&offload_base);
7896 
7897 	if (register_pernet_subsys(&netdev_net_ops))
7898 		goto out;
7899 
7900 	/*
7901 	 *	Initialise the packet receive queues.
7902 	 */
7903 
7904 	for_each_possible_cpu(i) {
7905 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7906 
7907 		skb_queue_head_init(&sd->input_pkt_queue);
7908 		skb_queue_head_init(&sd->process_queue);
7909 		INIT_LIST_HEAD(&sd->poll_list);
7910 		sd->output_queue_tailp = &sd->output_queue;
7911 #ifdef CONFIG_RPS
7912 		sd->csd.func = rps_trigger_softirq;
7913 		sd->csd.info = sd;
7914 		sd->cpu = i;
7915 #endif
7916 
7917 		sd->backlog.poll = process_backlog;
7918 		sd->backlog.weight = weight_p;
7919 	}
7920 
7921 	dev_boot_phase = 0;
7922 
7923 	/* The loopback device is special if any other network devices
7924 	 * is present in a network namespace the loopback device must
7925 	 * be present. Since we now dynamically allocate and free the
7926 	 * loopback device ensure this invariant is maintained by
7927 	 * keeping the loopback device as the first device on the
7928 	 * list of network devices.  Ensuring the loopback devices
7929 	 * is the first device that appears and the last network device
7930 	 * that disappears.
7931 	 */
7932 	if (register_pernet_device(&loopback_net_ops))
7933 		goto out;
7934 
7935 	if (register_pernet_device(&default_device_ops))
7936 		goto out;
7937 
7938 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7939 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7940 
7941 	hotcpu_notifier(dev_cpu_callback, 0);
7942 	dst_subsys_init();
7943 	rc = 0;
7944 out:
7945 	return rc;
7946 }
7947 
7948 subsys_initcall(net_dev_init);
7949