1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
2 /*
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
14
15 See the file COPYING in this distribution for more information.
16
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
26 Tx descriptor bit
27
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #define DRV_NAME "de2104x"
33 #define DRV_VERSION "0.7"
34 #define DRV_RELDATE "Mar 17, 2004"
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/netdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/ethtool.h>
45 #include <linux/compiler.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/crc32.h>
48 #include <linux/slab.h>
49
50 #include <asm/io.h>
51 #include <asm/irq.h>
52 #include <asm/uaccess.h>
53 #include <asm/unaligned.h>
54
55 /* These identify the driver base version and may not be removed. */
56 static char version[] =
57 "PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")";
58
59 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
60 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
63
64 static int debug = -1;
65 module_param (debug, int, 0);
66 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
67
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
70 defined(CONFIG_SPARC) || defined(__ia64__) || \
71 defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
73 #else
74 static int rx_copybreak = 100;
75 #endif
76 module_param (rx_copybreak, int, 0);
77 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
78
79 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
80 NETIF_MSG_PROBE | \
81 NETIF_MSG_LINK | \
82 NETIF_MSG_IFDOWN | \
83 NETIF_MSG_IFUP | \
84 NETIF_MSG_RX_ERR | \
85 NETIF_MSG_TX_ERR)
86
87 /* Descriptor skip length in 32 bit longwords. */
88 #ifndef CONFIG_DE2104X_DSL
89 #define DSL 0
90 #else
91 #define DSL CONFIG_DE2104X_DSL
92 #endif
93
94 #define DE_RX_RING_SIZE 128
95 #define DE_TX_RING_SIZE 64
96 #define DE_RING_BYTES \
97 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
98 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
99 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
100 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
101 #define TX_BUFFS_AVAIL(CP) \
102 (((CP)->tx_tail <= (CP)->tx_head) ? \
103 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
104 (CP)->tx_tail - (CP)->tx_head - 1)
105
106 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
107 #define RX_OFFSET 2
108
109 #define DE_SETUP_SKB ((struct sk_buff *) 1)
110 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
111 #define DE_SETUP_FRAME_WORDS 96
112 #define DE_EEPROM_WORDS 256
113 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
114 #define DE_MAX_MEDIA 5
115
116 #define DE_MEDIA_TP_AUTO 0
117 #define DE_MEDIA_BNC 1
118 #define DE_MEDIA_AUI 2
119 #define DE_MEDIA_TP 3
120 #define DE_MEDIA_TP_FD 4
121 #define DE_MEDIA_INVALID DE_MAX_MEDIA
122 #define DE_MEDIA_FIRST 0
123 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
124 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
125
126 #define DE_TIMER_LINK (60 * HZ)
127 #define DE_TIMER_NO_LINK (5 * HZ)
128
129 #define DE_NUM_REGS 16
130 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
131 #define DE_REGS_VER 1
132
133 /* Time in jiffies before concluding the transmitter is hung. */
134 #define TX_TIMEOUT (6*HZ)
135
136 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
137 to support a pre-NWay full-duplex signaling mechanism using short frames.
138 No one knows what it should be, but if left at its default value some
139 10base2(!) packets trigger a full-duplex-request interrupt. */
140 #define FULL_DUPLEX_MAGIC 0x6969
141
142 enum {
143 /* NIC registers */
144 BusMode = 0x00,
145 TxPoll = 0x08,
146 RxPoll = 0x10,
147 RxRingAddr = 0x18,
148 TxRingAddr = 0x20,
149 MacStatus = 0x28,
150 MacMode = 0x30,
151 IntrMask = 0x38,
152 RxMissed = 0x40,
153 ROMCmd = 0x48,
154 CSR11 = 0x58,
155 SIAStatus = 0x60,
156 CSR13 = 0x68,
157 CSR14 = 0x70,
158 CSR15 = 0x78,
159 PCIPM = 0x40,
160
161 /* BusMode bits */
162 CmdReset = (1 << 0),
163 CacheAlign16 = 0x00008000,
164 BurstLen4 = 0x00000400,
165 DescSkipLen = (DSL << 2),
166
167 /* Rx/TxPoll bits */
168 NormalTxPoll = (1 << 0),
169 NormalRxPoll = (1 << 0),
170
171 /* Tx/Rx descriptor status bits */
172 DescOwn = (1 << 31),
173 RxError = (1 << 15),
174 RxErrLong = (1 << 7),
175 RxErrCRC = (1 << 1),
176 RxErrFIFO = (1 << 0),
177 RxErrRunt = (1 << 11),
178 RxErrFrame = (1 << 14),
179 RingEnd = (1 << 25),
180 FirstFrag = (1 << 29),
181 LastFrag = (1 << 30),
182 TxError = (1 << 15),
183 TxFIFOUnder = (1 << 1),
184 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
185 TxMaxCol = (1 << 8),
186 TxOWC = (1 << 9),
187 TxJabber = (1 << 14),
188 SetupFrame = (1 << 27),
189 TxSwInt = (1 << 31),
190
191 /* MacStatus bits */
192 IntrOK = (1 << 16),
193 IntrErr = (1 << 15),
194 RxIntr = (1 << 6),
195 RxEmpty = (1 << 7),
196 TxIntr = (1 << 0),
197 TxEmpty = (1 << 2),
198 PciErr = (1 << 13),
199 TxState = (1 << 22) | (1 << 21) | (1 << 20),
200 RxState = (1 << 19) | (1 << 18) | (1 << 17),
201 LinkFail = (1 << 12),
202 LinkPass = (1 << 4),
203 RxStopped = (1 << 8),
204 TxStopped = (1 << 1),
205
206 /* MacMode bits */
207 TxEnable = (1 << 13),
208 RxEnable = (1 << 1),
209 RxTx = TxEnable | RxEnable,
210 FullDuplex = (1 << 9),
211 AcceptAllMulticast = (1 << 7),
212 AcceptAllPhys = (1 << 6),
213 BOCnt = (1 << 5),
214 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
215 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
216
217 /* ROMCmd bits */
218 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
219 EE_CS = 0x01, /* EEPROM chip select. */
220 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
221 EE_WRITE_0 = 0x01,
222 EE_WRITE_1 = 0x05,
223 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
224 EE_ENB = (0x4800 | EE_CS),
225
226 /* The EEPROM commands include the alway-set leading bit. */
227 EE_READ_CMD = 6,
228
229 /* RxMissed bits */
230 RxMissedOver = (1 << 16),
231 RxMissedMask = 0xffff,
232
233 /* SROM-related bits */
234 SROMC0InfoLeaf = 27,
235 MediaBlockMask = 0x3f,
236 MediaCustomCSRs = (1 << 6),
237
238 /* PCIPM bits */
239 PM_Sleep = (1 << 31),
240 PM_Snooze = (1 << 30),
241 PM_Mask = PM_Sleep | PM_Snooze,
242
243 /* SIAStatus bits */
244 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
245 NWayRestart = (1 << 12),
246 NonselPortActive = (1 << 9),
247 SelPortActive = (1 << 8),
248 LinkFailStatus = (1 << 2),
249 NetCxnErr = (1 << 1),
250 };
251
252 static const u32 de_intr_mask =
253 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
254 LinkPass | LinkFail | PciErr;
255
256 /*
257 * Set the programmable burst length to 4 longwords for all:
258 * DMA errors result without these values. Cache align 16 long.
259 */
260 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen;
261
262 struct de_srom_media_block {
263 u8 opts;
264 u16 csr13;
265 u16 csr14;
266 u16 csr15;
267 } __packed;
268
269 struct de_srom_info_leaf {
270 u16 default_media;
271 u8 n_blocks;
272 u8 unused;
273 } __packed;
274
275 struct de_desc {
276 __le32 opts1;
277 __le32 opts2;
278 __le32 addr1;
279 __le32 addr2;
280 #if DSL
281 __le32 skip[DSL];
282 #endif
283 };
284
285 struct media_info {
286 u16 type; /* DE_MEDIA_xxx */
287 u16 csr13;
288 u16 csr14;
289 u16 csr15;
290 };
291
292 struct ring_info {
293 struct sk_buff *skb;
294 dma_addr_t mapping;
295 };
296
297 struct de_private {
298 unsigned tx_head;
299 unsigned tx_tail;
300 unsigned rx_tail;
301
302 void __iomem *regs;
303 struct net_device *dev;
304 spinlock_t lock;
305
306 struct de_desc *rx_ring;
307 struct de_desc *tx_ring;
308 struct ring_info tx_skb[DE_TX_RING_SIZE];
309 struct ring_info rx_skb[DE_RX_RING_SIZE];
310 unsigned rx_buf_sz;
311 dma_addr_t ring_dma;
312
313 u32 msg_enable;
314
315 struct net_device_stats net_stats;
316
317 struct pci_dev *pdev;
318
319 u16 setup_frame[DE_SETUP_FRAME_WORDS];
320
321 u32 media_type;
322 u32 media_supported;
323 u32 media_advertise;
324 struct media_info media[DE_MAX_MEDIA];
325 struct timer_list media_timer;
326
327 u8 *ee_data;
328 unsigned board_idx;
329 unsigned de21040 : 1;
330 unsigned media_lock : 1;
331 };
332
333
334 static void de_set_rx_mode (struct net_device *dev);
335 static void de_tx (struct de_private *de);
336 static void de_clean_rings (struct de_private *de);
337 static void de_media_interrupt (struct de_private *de, u32 status);
338 static void de21040_media_timer (unsigned long data);
339 static void de21041_media_timer (unsigned long data);
340 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
341
342
343 static const struct pci_device_id de_pci_tbl[] = {
344 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
345 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
346 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
347 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
348 { },
349 };
350 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
351
352 static const char * const media_name[DE_MAX_MEDIA] = {
353 "10baseT auto",
354 "BNC",
355 "AUI",
356 "10baseT-HD",
357 "10baseT-FD"
358 };
359
360 /* 21040 transceiver register settings:
361 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
362 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
363 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
364 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
365
366 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
367 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
368 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
369 /* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */
370 static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
371 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
372
373
374 #define dr32(reg) ioread32(de->regs + (reg))
375 #define dw32(reg, val) iowrite32((val), de->regs + (reg))
376
377
de_rx_err_acct(struct de_private * de,unsigned rx_tail,u32 status,u32 len)378 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
379 u32 status, u32 len)
380 {
381 netif_dbg(de, rx_err, de->dev,
382 "rx err, slot %d status 0x%x len %d\n",
383 rx_tail, status, len);
384
385 if ((status & 0x38000300) != 0x0300) {
386 /* Ingore earlier buffers. */
387 if ((status & 0xffff) != 0x7fff) {
388 netif_warn(de, rx_err, de->dev,
389 "Oversized Ethernet frame spanned multiple buffers, status %08x!\n",
390 status);
391 de->net_stats.rx_length_errors++;
392 }
393 } else if (status & RxError) {
394 /* There was a fatal error. */
395 de->net_stats.rx_errors++; /* end of a packet.*/
396 if (status & 0x0890) de->net_stats.rx_length_errors++;
397 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
398 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
399 }
400 }
401
de_rx(struct de_private * de)402 static void de_rx (struct de_private *de)
403 {
404 unsigned rx_tail = de->rx_tail;
405 unsigned rx_work = DE_RX_RING_SIZE;
406 unsigned drop = 0;
407 int rc;
408
409 while (--rx_work) {
410 u32 status, len;
411 dma_addr_t mapping;
412 struct sk_buff *skb, *copy_skb;
413 unsigned copying_skb, buflen;
414
415 skb = de->rx_skb[rx_tail].skb;
416 BUG_ON(!skb);
417 rmb();
418 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
419 if (status & DescOwn)
420 break;
421
422 len = ((status >> 16) & 0x7ff) - 4;
423 mapping = de->rx_skb[rx_tail].mapping;
424
425 if (unlikely(drop)) {
426 de->net_stats.rx_dropped++;
427 goto rx_next;
428 }
429
430 if (unlikely((status & 0x38008300) != 0x0300)) {
431 de_rx_err_acct(de, rx_tail, status, len);
432 goto rx_next;
433 }
434
435 copying_skb = (len <= rx_copybreak);
436
437 netif_dbg(de, rx_status, de->dev,
438 "rx slot %d status 0x%x len %d copying? %d\n",
439 rx_tail, status, len, copying_skb);
440
441 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
442 copy_skb = netdev_alloc_skb(de->dev, buflen);
443 if (unlikely(!copy_skb)) {
444 de->net_stats.rx_dropped++;
445 drop = 1;
446 rx_work = 100;
447 goto rx_next;
448 }
449
450 if (!copying_skb) {
451 pci_unmap_single(de->pdev, mapping,
452 buflen, PCI_DMA_FROMDEVICE);
453 skb_put(skb, len);
454
455 mapping =
456 de->rx_skb[rx_tail].mapping =
457 pci_map_single(de->pdev, copy_skb->data,
458 buflen, PCI_DMA_FROMDEVICE);
459 de->rx_skb[rx_tail].skb = copy_skb;
460 } else {
461 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
462 skb_reserve(copy_skb, RX_OFFSET);
463 skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
464 len);
465 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
466
467 /* We'll reuse the original ring buffer. */
468 skb = copy_skb;
469 }
470
471 skb->protocol = eth_type_trans (skb, de->dev);
472
473 de->net_stats.rx_packets++;
474 de->net_stats.rx_bytes += skb->len;
475 rc = netif_rx (skb);
476 if (rc == NET_RX_DROP)
477 drop = 1;
478
479 rx_next:
480 if (rx_tail == (DE_RX_RING_SIZE - 1))
481 de->rx_ring[rx_tail].opts2 =
482 cpu_to_le32(RingEnd | de->rx_buf_sz);
483 else
484 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
485 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
486 wmb();
487 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
488 rx_tail = NEXT_RX(rx_tail);
489 }
490
491 if (!rx_work)
492 netdev_warn(de->dev, "rx work limit reached\n");
493
494 de->rx_tail = rx_tail;
495 }
496
de_interrupt(int irq,void * dev_instance)497 static irqreturn_t de_interrupt (int irq, void *dev_instance)
498 {
499 struct net_device *dev = dev_instance;
500 struct de_private *de = netdev_priv(dev);
501 u32 status;
502
503 status = dr32(MacStatus);
504 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
505 return IRQ_NONE;
506
507 netif_dbg(de, intr, dev, "intr, status %08x mode %08x desc %u/%u/%u\n",
508 status, dr32(MacMode),
509 de->rx_tail, de->tx_head, de->tx_tail);
510
511 dw32(MacStatus, status);
512
513 if (status & (RxIntr | RxEmpty)) {
514 de_rx(de);
515 if (status & RxEmpty)
516 dw32(RxPoll, NormalRxPoll);
517 }
518
519 spin_lock(&de->lock);
520
521 if (status & (TxIntr | TxEmpty))
522 de_tx(de);
523
524 if (status & (LinkPass | LinkFail))
525 de_media_interrupt(de, status);
526
527 spin_unlock(&de->lock);
528
529 if (status & PciErr) {
530 u16 pci_status;
531
532 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
533 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
534 netdev_err(de->dev,
535 "PCI bus error, status=%08x, PCI status=%04x\n",
536 status, pci_status);
537 }
538
539 return IRQ_HANDLED;
540 }
541
de_tx(struct de_private * de)542 static void de_tx (struct de_private *de)
543 {
544 unsigned tx_head = de->tx_head;
545 unsigned tx_tail = de->tx_tail;
546
547 while (tx_tail != tx_head) {
548 struct sk_buff *skb;
549 u32 status;
550
551 rmb();
552 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
553 if (status & DescOwn)
554 break;
555
556 skb = de->tx_skb[tx_tail].skb;
557 BUG_ON(!skb);
558 if (unlikely(skb == DE_DUMMY_SKB))
559 goto next;
560
561 if (unlikely(skb == DE_SETUP_SKB)) {
562 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
563 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
564 goto next;
565 }
566
567 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
568 skb->len, PCI_DMA_TODEVICE);
569
570 if (status & LastFrag) {
571 if (status & TxError) {
572 netif_dbg(de, tx_err, de->dev,
573 "tx err, status 0x%x\n",
574 status);
575 de->net_stats.tx_errors++;
576 if (status & TxOWC)
577 de->net_stats.tx_window_errors++;
578 if (status & TxMaxCol)
579 de->net_stats.tx_aborted_errors++;
580 if (status & TxLinkFail)
581 de->net_stats.tx_carrier_errors++;
582 if (status & TxFIFOUnder)
583 de->net_stats.tx_fifo_errors++;
584 } else {
585 de->net_stats.tx_packets++;
586 de->net_stats.tx_bytes += skb->len;
587 netif_dbg(de, tx_done, de->dev,
588 "tx done, slot %d\n", tx_tail);
589 }
590 dev_kfree_skb_irq(skb);
591 }
592
593 next:
594 de->tx_skb[tx_tail].skb = NULL;
595
596 tx_tail = NEXT_TX(tx_tail);
597 }
598
599 de->tx_tail = tx_tail;
600
601 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
602 netif_wake_queue(de->dev);
603 }
604
de_start_xmit(struct sk_buff * skb,struct net_device * dev)605 static netdev_tx_t de_start_xmit (struct sk_buff *skb,
606 struct net_device *dev)
607 {
608 struct de_private *de = netdev_priv(dev);
609 unsigned int entry, tx_free;
610 u32 mapping, len, flags = FirstFrag | LastFrag;
611 struct de_desc *txd;
612
613 spin_lock_irq(&de->lock);
614
615 tx_free = TX_BUFFS_AVAIL(de);
616 if (tx_free == 0) {
617 netif_stop_queue(dev);
618 spin_unlock_irq(&de->lock);
619 return NETDEV_TX_BUSY;
620 }
621 tx_free--;
622
623 entry = de->tx_head;
624
625 txd = &de->tx_ring[entry];
626
627 len = skb->len;
628 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
629 if (entry == (DE_TX_RING_SIZE - 1))
630 flags |= RingEnd;
631 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
632 flags |= TxSwInt;
633 flags |= len;
634 txd->opts2 = cpu_to_le32(flags);
635 txd->addr1 = cpu_to_le32(mapping);
636
637 de->tx_skb[entry].skb = skb;
638 de->tx_skb[entry].mapping = mapping;
639 wmb();
640
641 txd->opts1 = cpu_to_le32(DescOwn);
642 wmb();
643
644 de->tx_head = NEXT_TX(entry);
645 netif_dbg(de, tx_queued, dev, "tx queued, slot %d, skblen %d\n",
646 entry, skb->len);
647
648 if (tx_free == 0)
649 netif_stop_queue(dev);
650
651 spin_unlock_irq(&de->lock);
652
653 /* Trigger an immediate transmit demand. */
654 dw32(TxPoll, NormalTxPoll);
655
656 return NETDEV_TX_OK;
657 }
658
659 /* Set or clear the multicast filter for this adaptor.
660 Note that we only use exclusion around actually queueing the
661 new frame, not around filling de->setup_frame. This is non-deterministic
662 when re-entered but still correct. */
663
build_setup_frame_hash(u16 * setup_frm,struct net_device * dev)664 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
665 {
666 struct de_private *de = netdev_priv(dev);
667 u16 hash_table[32];
668 struct netdev_hw_addr *ha;
669 int i;
670 u16 *eaddrs;
671
672 memset(hash_table, 0, sizeof(hash_table));
673 __set_bit_le(255, hash_table); /* Broadcast entry */
674 /* This should work on big-endian machines as well. */
675 netdev_for_each_mc_addr(ha, dev) {
676 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
677
678 __set_bit_le(index, hash_table);
679 }
680
681 for (i = 0; i < 32; i++) {
682 *setup_frm++ = hash_table[i];
683 *setup_frm++ = hash_table[i];
684 }
685 setup_frm = &de->setup_frame[13*6];
686
687 /* Fill the final entry with our physical address. */
688 eaddrs = (u16 *)dev->dev_addr;
689 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
690 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
691 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
692 }
693
build_setup_frame_perfect(u16 * setup_frm,struct net_device * dev)694 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
695 {
696 struct de_private *de = netdev_priv(dev);
697 struct netdev_hw_addr *ha;
698 u16 *eaddrs;
699
700 /* We have <= 14 addresses so we can use the wonderful
701 16 address perfect filtering of the Tulip. */
702 netdev_for_each_mc_addr(ha, dev) {
703 eaddrs = (u16 *) ha->addr;
704 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
705 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
706 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
707 }
708 /* Fill the unused entries with the broadcast address. */
709 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
710 setup_frm = &de->setup_frame[15*6];
711
712 /* Fill the final entry with our physical address. */
713 eaddrs = (u16 *)dev->dev_addr;
714 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
715 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
716 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
717 }
718
719
__de_set_rx_mode(struct net_device * dev)720 static void __de_set_rx_mode (struct net_device *dev)
721 {
722 struct de_private *de = netdev_priv(dev);
723 u32 macmode;
724 unsigned int entry;
725 u32 mapping;
726 struct de_desc *txd;
727 struct de_desc *dummy_txd = NULL;
728
729 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
730
731 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
732 macmode |= AcceptAllMulticast | AcceptAllPhys;
733 goto out;
734 }
735
736 if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) {
737 /* Too many to filter well -- accept all multicasts. */
738 macmode |= AcceptAllMulticast;
739 goto out;
740 }
741
742 /* Note that only the low-address shortword of setup_frame is valid!
743 The values are doubled for big-endian architectures. */
744 if (netdev_mc_count(dev) > 14) /* Must use a multicast hash table. */
745 build_setup_frame_hash (de->setup_frame, dev);
746 else
747 build_setup_frame_perfect (de->setup_frame, dev);
748
749 /*
750 * Now add this frame to the Tx list.
751 */
752
753 entry = de->tx_head;
754
755 /* Avoid a chip errata by prefixing a dummy entry. */
756 if (entry != 0) {
757 de->tx_skb[entry].skb = DE_DUMMY_SKB;
758
759 dummy_txd = &de->tx_ring[entry];
760 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
761 cpu_to_le32(RingEnd) : 0;
762 dummy_txd->addr1 = 0;
763
764 /* Must set DescOwned later to avoid race with chip */
765
766 entry = NEXT_TX(entry);
767 }
768
769 de->tx_skb[entry].skb = DE_SETUP_SKB;
770 de->tx_skb[entry].mapping = mapping =
771 pci_map_single (de->pdev, de->setup_frame,
772 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
773
774 /* Put the setup frame on the Tx list. */
775 txd = &de->tx_ring[entry];
776 if (entry == (DE_TX_RING_SIZE - 1))
777 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
778 else
779 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
780 txd->addr1 = cpu_to_le32(mapping);
781 wmb();
782
783 txd->opts1 = cpu_to_le32(DescOwn);
784 wmb();
785
786 if (dummy_txd) {
787 dummy_txd->opts1 = cpu_to_le32(DescOwn);
788 wmb();
789 }
790
791 de->tx_head = NEXT_TX(entry);
792
793 if (TX_BUFFS_AVAIL(de) == 0)
794 netif_stop_queue(dev);
795
796 /* Trigger an immediate transmit demand. */
797 dw32(TxPoll, NormalTxPoll);
798
799 out:
800 if (macmode != dr32(MacMode))
801 dw32(MacMode, macmode);
802 }
803
de_set_rx_mode(struct net_device * dev)804 static void de_set_rx_mode (struct net_device *dev)
805 {
806 unsigned long flags;
807 struct de_private *de = netdev_priv(dev);
808
809 spin_lock_irqsave (&de->lock, flags);
810 __de_set_rx_mode(dev);
811 spin_unlock_irqrestore (&de->lock, flags);
812 }
813
de_rx_missed(struct de_private * de,u32 rx_missed)814 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
815 {
816 if (unlikely(rx_missed & RxMissedOver))
817 de->net_stats.rx_missed_errors += RxMissedMask;
818 else
819 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
820 }
821
__de_get_stats(struct de_private * de)822 static void __de_get_stats(struct de_private *de)
823 {
824 u32 tmp = dr32(RxMissed); /* self-clearing */
825
826 de_rx_missed(de, tmp);
827 }
828
de_get_stats(struct net_device * dev)829 static struct net_device_stats *de_get_stats(struct net_device *dev)
830 {
831 struct de_private *de = netdev_priv(dev);
832
833 /* The chip only need report frame silently dropped. */
834 spin_lock_irq(&de->lock);
835 if (netif_running(dev) && netif_device_present(dev))
836 __de_get_stats(de);
837 spin_unlock_irq(&de->lock);
838
839 return &de->net_stats;
840 }
841
de_is_running(struct de_private * de)842 static inline int de_is_running (struct de_private *de)
843 {
844 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
845 }
846
de_stop_rxtx(struct de_private * de)847 static void de_stop_rxtx (struct de_private *de)
848 {
849 u32 macmode;
850 unsigned int i = 1300/100;
851
852 macmode = dr32(MacMode);
853 if (macmode & RxTx) {
854 dw32(MacMode, macmode & ~RxTx);
855 dr32(MacMode);
856 }
857
858 /* wait until in-flight frame completes.
859 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin)
860 * Typically expect this loop to end in < 50 us on 100BT.
861 */
862 while (--i) {
863 if (!de_is_running(de))
864 return;
865 udelay(100);
866 }
867
868 netdev_warn(de->dev, "timeout expired, stopping DMA\n");
869 }
870
de_start_rxtx(struct de_private * de)871 static inline void de_start_rxtx (struct de_private *de)
872 {
873 u32 macmode;
874
875 macmode = dr32(MacMode);
876 if ((macmode & RxTx) != RxTx) {
877 dw32(MacMode, macmode | RxTx);
878 dr32(MacMode);
879 }
880 }
881
de_stop_hw(struct de_private * de)882 static void de_stop_hw (struct de_private *de)
883 {
884
885 udelay(5);
886 dw32(IntrMask, 0);
887
888 de_stop_rxtx(de);
889
890 dw32(MacStatus, dr32(MacStatus));
891
892 udelay(10);
893
894 de->rx_tail = 0;
895 de->tx_head = de->tx_tail = 0;
896 }
897
de_link_up(struct de_private * de)898 static void de_link_up(struct de_private *de)
899 {
900 if (!netif_carrier_ok(de->dev)) {
901 netif_carrier_on(de->dev);
902 netif_info(de, link, de->dev, "link up, media %s\n",
903 media_name[de->media_type]);
904 }
905 }
906
de_link_down(struct de_private * de)907 static void de_link_down(struct de_private *de)
908 {
909 if (netif_carrier_ok(de->dev)) {
910 netif_carrier_off(de->dev);
911 netif_info(de, link, de->dev, "link down\n");
912 }
913 }
914
de_set_media(struct de_private * de)915 static void de_set_media (struct de_private *de)
916 {
917 unsigned media = de->media_type;
918 u32 macmode = dr32(MacMode);
919
920 if (de_is_running(de))
921 netdev_warn(de->dev, "chip is running while changing media!\n");
922
923 if (de->de21040)
924 dw32(CSR11, FULL_DUPLEX_MAGIC);
925 dw32(CSR13, 0); /* Reset phy */
926 dw32(CSR14, de->media[media].csr14);
927 dw32(CSR15, de->media[media].csr15);
928 dw32(CSR13, de->media[media].csr13);
929
930 /* must delay 10ms before writing to other registers,
931 * especially CSR6
932 */
933 mdelay(10);
934
935 if (media == DE_MEDIA_TP_FD)
936 macmode |= FullDuplex;
937 else
938 macmode &= ~FullDuplex;
939
940 netif_info(de, link, de->dev, "set link %s\n", media_name[media]);
941 netif_info(de, hw, de->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n",
942 dr32(MacMode), dr32(SIAStatus),
943 dr32(CSR13), dr32(CSR14), dr32(CSR15));
944 netif_info(de, hw, de->dev, "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
945 macmode, de->media[media].csr13,
946 de->media[media].csr14, de->media[media].csr15);
947 if (macmode != dr32(MacMode))
948 dw32(MacMode, macmode);
949 }
950
de_next_media(struct de_private * de,const u32 * media,unsigned int n_media)951 static void de_next_media (struct de_private *de, const u32 *media,
952 unsigned int n_media)
953 {
954 unsigned int i;
955
956 for (i = 0; i < n_media; i++) {
957 if (de_ok_to_advertise(de, media[i])) {
958 de->media_type = media[i];
959 return;
960 }
961 }
962 }
963
de21040_media_timer(unsigned long data)964 static void de21040_media_timer (unsigned long data)
965 {
966 struct de_private *de = (struct de_private *) data;
967 struct net_device *dev = de->dev;
968 u32 status = dr32(SIAStatus);
969 unsigned int carrier;
970 unsigned long flags;
971
972 carrier = (status & NetCxnErr) ? 0 : 1;
973
974 if (carrier) {
975 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
976 goto no_link_yet;
977
978 de->media_timer.expires = jiffies + DE_TIMER_LINK;
979 add_timer(&de->media_timer);
980 if (!netif_carrier_ok(dev))
981 de_link_up(de);
982 else
983 netif_info(de, timer, dev, "%s link ok, status %x\n",
984 media_name[de->media_type], status);
985 return;
986 }
987
988 de_link_down(de);
989
990 if (de->media_lock)
991 return;
992
993 if (de->media_type == DE_MEDIA_AUI) {
994 static const u32 next_state = DE_MEDIA_TP;
995 de_next_media(de, &next_state, 1);
996 } else {
997 static const u32 next_state = DE_MEDIA_AUI;
998 de_next_media(de, &next_state, 1);
999 }
1000
1001 spin_lock_irqsave(&de->lock, flags);
1002 de_stop_rxtx(de);
1003 spin_unlock_irqrestore(&de->lock, flags);
1004 de_set_media(de);
1005 de_start_rxtx(de);
1006
1007 no_link_yet:
1008 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1009 add_timer(&de->media_timer);
1010
1011 netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
1012 media_name[de->media_type], status);
1013 }
1014
de_ok_to_advertise(struct de_private * de,u32 new_media)1015 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1016 {
1017 switch (new_media) {
1018 case DE_MEDIA_TP_AUTO:
1019 if (!(de->media_advertise & ADVERTISED_Autoneg))
1020 return 0;
1021 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1022 return 0;
1023 break;
1024 case DE_MEDIA_BNC:
1025 if (!(de->media_advertise & ADVERTISED_BNC))
1026 return 0;
1027 break;
1028 case DE_MEDIA_AUI:
1029 if (!(de->media_advertise & ADVERTISED_AUI))
1030 return 0;
1031 break;
1032 case DE_MEDIA_TP:
1033 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1034 return 0;
1035 break;
1036 case DE_MEDIA_TP_FD:
1037 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1038 return 0;
1039 break;
1040 }
1041
1042 return 1;
1043 }
1044
de21041_media_timer(unsigned long data)1045 static void de21041_media_timer (unsigned long data)
1046 {
1047 struct de_private *de = (struct de_private *) data;
1048 struct net_device *dev = de->dev;
1049 u32 status = dr32(SIAStatus);
1050 unsigned int carrier;
1051 unsigned long flags;
1052
1053 /* clear port active bits */
1054 dw32(SIAStatus, NonselPortActive | SelPortActive);
1055
1056 carrier = (status & NetCxnErr) ? 0 : 1;
1057
1058 if (carrier) {
1059 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1060 de->media_type == DE_MEDIA_TP ||
1061 de->media_type == DE_MEDIA_TP_FD) &&
1062 (status & LinkFailStatus))
1063 goto no_link_yet;
1064
1065 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1066 add_timer(&de->media_timer);
1067 if (!netif_carrier_ok(dev))
1068 de_link_up(de);
1069 else
1070 netif_info(de, timer, dev,
1071 "%s link ok, mode %x status %x\n",
1072 media_name[de->media_type],
1073 dr32(MacMode), status);
1074 return;
1075 }
1076
1077 de_link_down(de);
1078
1079 /* if media type locked, don't switch media */
1080 if (de->media_lock)
1081 goto set_media;
1082
1083 /* if activity detected, use that as hint for new media type */
1084 if (status & NonselPortActive) {
1085 unsigned int have_media = 1;
1086
1087 /* if AUI/BNC selected, then activity is on TP port */
1088 if (de->media_type == DE_MEDIA_AUI ||
1089 de->media_type == DE_MEDIA_BNC) {
1090 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1091 de->media_type = DE_MEDIA_TP_AUTO;
1092 else
1093 have_media = 0;
1094 }
1095
1096 /* TP selected. If there is only TP and BNC, then it's BNC */
1097 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1098 de_ok_to_advertise(de, DE_MEDIA_BNC))
1099 de->media_type = DE_MEDIA_BNC;
1100
1101 /* TP selected. If there is only TP and AUI, then it's AUI */
1102 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1103 de_ok_to_advertise(de, DE_MEDIA_AUI))
1104 de->media_type = DE_MEDIA_AUI;
1105
1106 /* otherwise, ignore the hint */
1107 else
1108 have_media = 0;
1109
1110 if (have_media)
1111 goto set_media;
1112 }
1113
1114 /*
1115 * Absent or ambiguous activity hint, move to next advertised
1116 * media state. If de->media_type is left unchanged, this
1117 * simply resets the PHY and reloads the current media settings.
1118 */
1119 if (de->media_type == DE_MEDIA_AUI) {
1120 static const u32 next_states[] = {
1121 DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1122 };
1123 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1124 } else if (de->media_type == DE_MEDIA_BNC) {
1125 static const u32 next_states[] = {
1126 DE_MEDIA_TP_AUTO, DE_MEDIA_AUI
1127 };
1128 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1129 } else {
1130 static const u32 next_states[] = {
1131 DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1132 };
1133 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1134 }
1135
1136 set_media:
1137 spin_lock_irqsave(&de->lock, flags);
1138 de_stop_rxtx(de);
1139 spin_unlock_irqrestore(&de->lock, flags);
1140 de_set_media(de);
1141 de_start_rxtx(de);
1142
1143 no_link_yet:
1144 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1145 add_timer(&de->media_timer);
1146
1147 netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
1148 media_name[de->media_type], status);
1149 }
1150
de_media_interrupt(struct de_private * de,u32 status)1151 static void de_media_interrupt (struct de_private *de, u32 status)
1152 {
1153 if (status & LinkPass) {
1154 /* Ignore if current media is AUI or BNC and we can't use TP */
1155 if ((de->media_type == DE_MEDIA_AUI ||
1156 de->media_type == DE_MEDIA_BNC) &&
1157 (de->media_lock ||
1158 !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)))
1159 return;
1160 /* If current media is not TP, change it to TP */
1161 if ((de->media_type == DE_MEDIA_AUI ||
1162 de->media_type == DE_MEDIA_BNC)) {
1163 de->media_type = DE_MEDIA_TP_AUTO;
1164 de_stop_rxtx(de);
1165 de_set_media(de);
1166 de_start_rxtx(de);
1167 }
1168 de_link_up(de);
1169 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1170 return;
1171 }
1172
1173 BUG_ON(!(status & LinkFail));
1174 /* Mark the link as down only if current media is TP */
1175 if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI &&
1176 de->media_type != DE_MEDIA_BNC) {
1177 de_link_down(de);
1178 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1179 }
1180 }
1181
de_reset_mac(struct de_private * de)1182 static int de_reset_mac (struct de_private *de)
1183 {
1184 u32 status, tmp;
1185
1186 /*
1187 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1188 * in this area.
1189 */
1190
1191 if (dr32(BusMode) == 0xffffffff)
1192 return -EBUSY;
1193
1194 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1195 dw32 (BusMode, CmdReset);
1196 mdelay (1);
1197
1198 dw32 (BusMode, de_bus_mode);
1199 mdelay (1);
1200
1201 for (tmp = 0; tmp < 5; tmp++) {
1202 dr32 (BusMode);
1203 mdelay (1);
1204 }
1205
1206 mdelay (1);
1207
1208 status = dr32(MacStatus);
1209 if (status & (RxState | TxState))
1210 return -EBUSY;
1211 if (status == 0xffffffff)
1212 return -ENODEV;
1213 return 0;
1214 }
1215
de_adapter_wake(struct de_private * de)1216 static void de_adapter_wake (struct de_private *de)
1217 {
1218 u32 pmctl;
1219
1220 if (de->de21040)
1221 return;
1222
1223 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1224 if (pmctl & PM_Mask) {
1225 pmctl &= ~PM_Mask;
1226 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1227
1228 /* de4x5.c delays, so we do too */
1229 msleep(10);
1230 }
1231 }
1232
de_adapter_sleep(struct de_private * de)1233 static void de_adapter_sleep (struct de_private *de)
1234 {
1235 u32 pmctl;
1236
1237 if (de->de21040)
1238 return;
1239
1240 dw32(CSR13, 0); /* Reset phy */
1241 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1242 pmctl |= PM_Sleep;
1243 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1244 }
1245
de_init_hw(struct de_private * de)1246 static int de_init_hw (struct de_private *de)
1247 {
1248 struct net_device *dev = de->dev;
1249 u32 macmode;
1250 int rc;
1251
1252 de_adapter_wake(de);
1253
1254 macmode = dr32(MacMode) & ~MacModeClear;
1255
1256 rc = de_reset_mac(de);
1257 if (rc)
1258 return rc;
1259
1260 de_set_media(de); /* reset phy */
1261
1262 dw32(RxRingAddr, de->ring_dma);
1263 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1264
1265 dw32(MacMode, RxTx | macmode);
1266
1267 dr32(RxMissed); /* self-clearing */
1268
1269 dw32(IntrMask, de_intr_mask);
1270
1271 de_set_rx_mode(dev);
1272
1273 return 0;
1274 }
1275
de_refill_rx(struct de_private * de)1276 static int de_refill_rx (struct de_private *de)
1277 {
1278 unsigned i;
1279
1280 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1281 struct sk_buff *skb;
1282
1283 skb = netdev_alloc_skb(de->dev, de->rx_buf_sz);
1284 if (!skb)
1285 goto err_out;
1286
1287 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1288 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1289 de->rx_skb[i].skb = skb;
1290
1291 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1292 if (i == (DE_RX_RING_SIZE - 1))
1293 de->rx_ring[i].opts2 =
1294 cpu_to_le32(RingEnd | de->rx_buf_sz);
1295 else
1296 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1297 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1298 de->rx_ring[i].addr2 = 0;
1299 }
1300
1301 return 0;
1302
1303 err_out:
1304 de_clean_rings(de);
1305 return -ENOMEM;
1306 }
1307
de_init_rings(struct de_private * de)1308 static int de_init_rings (struct de_private *de)
1309 {
1310 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1311 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1312
1313 de->rx_tail = 0;
1314 de->tx_head = de->tx_tail = 0;
1315
1316 return de_refill_rx (de);
1317 }
1318
de_alloc_rings(struct de_private * de)1319 static int de_alloc_rings (struct de_private *de)
1320 {
1321 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1322 if (!de->rx_ring)
1323 return -ENOMEM;
1324 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1325 return de_init_rings(de);
1326 }
1327
de_clean_rings(struct de_private * de)1328 static void de_clean_rings (struct de_private *de)
1329 {
1330 unsigned i;
1331
1332 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1333 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1334 wmb();
1335 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1336 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1337 wmb();
1338
1339 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1340 if (de->rx_skb[i].skb) {
1341 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1342 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1343 dev_kfree_skb(de->rx_skb[i].skb);
1344 }
1345 }
1346
1347 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1348 struct sk_buff *skb = de->tx_skb[i].skb;
1349 if ((skb) && (skb != DE_DUMMY_SKB)) {
1350 if (skb != DE_SETUP_SKB) {
1351 de->net_stats.tx_dropped++;
1352 pci_unmap_single(de->pdev,
1353 de->tx_skb[i].mapping,
1354 skb->len, PCI_DMA_TODEVICE);
1355 dev_kfree_skb(skb);
1356 } else {
1357 pci_unmap_single(de->pdev,
1358 de->tx_skb[i].mapping,
1359 sizeof(de->setup_frame),
1360 PCI_DMA_TODEVICE);
1361 }
1362 }
1363 }
1364
1365 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1366 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1367 }
1368
de_free_rings(struct de_private * de)1369 static void de_free_rings (struct de_private *de)
1370 {
1371 de_clean_rings(de);
1372 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1373 de->rx_ring = NULL;
1374 de->tx_ring = NULL;
1375 }
1376
de_open(struct net_device * dev)1377 static int de_open (struct net_device *dev)
1378 {
1379 struct de_private *de = netdev_priv(dev);
1380 const int irq = de->pdev->irq;
1381 int rc;
1382
1383 netif_dbg(de, ifup, dev, "enabling interface\n");
1384
1385 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1386
1387 rc = de_alloc_rings(de);
1388 if (rc) {
1389 netdev_err(dev, "ring allocation failure, err=%d\n", rc);
1390 return rc;
1391 }
1392
1393 dw32(IntrMask, 0);
1394
1395 rc = request_irq(irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1396 if (rc) {
1397 netdev_err(dev, "IRQ %d request failure, err=%d\n", irq, rc);
1398 goto err_out_free;
1399 }
1400
1401 rc = de_init_hw(de);
1402 if (rc) {
1403 netdev_err(dev, "h/w init failure, err=%d\n", rc);
1404 goto err_out_free_irq;
1405 }
1406
1407 netif_start_queue(dev);
1408 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1409
1410 return 0;
1411
1412 err_out_free_irq:
1413 free_irq(irq, dev);
1414 err_out_free:
1415 de_free_rings(de);
1416 return rc;
1417 }
1418
de_close(struct net_device * dev)1419 static int de_close (struct net_device *dev)
1420 {
1421 struct de_private *de = netdev_priv(dev);
1422 unsigned long flags;
1423
1424 netif_dbg(de, ifdown, dev, "disabling interface\n");
1425
1426 del_timer_sync(&de->media_timer);
1427
1428 spin_lock_irqsave(&de->lock, flags);
1429 de_stop_hw(de);
1430 netif_stop_queue(dev);
1431 netif_carrier_off(dev);
1432 spin_unlock_irqrestore(&de->lock, flags);
1433
1434 free_irq(de->pdev->irq, dev);
1435
1436 de_free_rings(de);
1437 de_adapter_sleep(de);
1438 return 0;
1439 }
1440
de_tx_timeout(struct net_device * dev)1441 static void de_tx_timeout (struct net_device *dev)
1442 {
1443 struct de_private *de = netdev_priv(dev);
1444 const int irq = de->pdev->irq;
1445
1446 netdev_dbg(dev, "NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1447 dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1448 de->rx_tail, de->tx_head, de->tx_tail);
1449
1450 del_timer_sync(&de->media_timer);
1451
1452 disable_irq(irq);
1453 spin_lock_irq(&de->lock);
1454
1455 de_stop_hw(de);
1456 netif_stop_queue(dev);
1457 netif_carrier_off(dev);
1458
1459 spin_unlock_irq(&de->lock);
1460 enable_irq(irq);
1461
1462 /* Update the error counts. */
1463 __de_get_stats(de);
1464
1465 synchronize_irq(irq);
1466 de_clean_rings(de);
1467
1468 de_init_rings(de);
1469
1470 de_init_hw(de);
1471
1472 netif_wake_queue(dev);
1473 }
1474
__de_get_regs(struct de_private * de,u8 * buf)1475 static void __de_get_regs(struct de_private *de, u8 *buf)
1476 {
1477 int i;
1478 u32 *rbuf = (u32 *)buf;
1479
1480 /* read all CSRs */
1481 for (i = 0; i < DE_NUM_REGS; i++)
1482 rbuf[i] = dr32(i * 8);
1483
1484 /* handle self-clearing RxMissed counter, CSR8 */
1485 de_rx_missed(de, rbuf[8]);
1486 }
1487
__de_get_settings(struct de_private * de,struct ethtool_cmd * ecmd)1488 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1489 {
1490 ecmd->supported = de->media_supported;
1491 ecmd->transceiver = XCVR_INTERNAL;
1492 ecmd->phy_address = 0;
1493 ecmd->advertising = de->media_advertise;
1494
1495 switch (de->media_type) {
1496 case DE_MEDIA_AUI:
1497 ecmd->port = PORT_AUI;
1498 break;
1499 case DE_MEDIA_BNC:
1500 ecmd->port = PORT_BNC;
1501 break;
1502 default:
1503 ecmd->port = PORT_TP;
1504 break;
1505 }
1506
1507 ethtool_cmd_speed_set(ecmd, 10);
1508
1509 if (dr32(MacMode) & FullDuplex)
1510 ecmd->duplex = DUPLEX_FULL;
1511 else
1512 ecmd->duplex = DUPLEX_HALF;
1513
1514 if (de->media_lock)
1515 ecmd->autoneg = AUTONEG_DISABLE;
1516 else
1517 ecmd->autoneg = AUTONEG_ENABLE;
1518
1519 /* ignore maxtxpkt, maxrxpkt for now */
1520
1521 return 0;
1522 }
1523
__de_set_settings(struct de_private * de,struct ethtool_cmd * ecmd)1524 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1525 {
1526 u32 new_media;
1527 unsigned int media_lock;
1528
1529 if (ethtool_cmd_speed(ecmd) != 10)
1530 return -EINVAL;
1531 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1532 return -EINVAL;
1533 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1534 return -EINVAL;
1535 if (de->de21040 && ecmd->port == PORT_BNC)
1536 return -EINVAL;
1537 if (ecmd->transceiver != XCVR_INTERNAL)
1538 return -EINVAL;
1539 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1540 return -EINVAL;
1541 if (ecmd->advertising & ~de->media_supported)
1542 return -EINVAL;
1543 if (ecmd->autoneg == AUTONEG_ENABLE &&
1544 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1545 return -EINVAL;
1546
1547 switch (ecmd->port) {
1548 case PORT_AUI:
1549 new_media = DE_MEDIA_AUI;
1550 if (!(ecmd->advertising & ADVERTISED_AUI))
1551 return -EINVAL;
1552 break;
1553 case PORT_BNC:
1554 new_media = DE_MEDIA_BNC;
1555 if (!(ecmd->advertising & ADVERTISED_BNC))
1556 return -EINVAL;
1557 break;
1558 default:
1559 if (ecmd->autoneg == AUTONEG_ENABLE)
1560 new_media = DE_MEDIA_TP_AUTO;
1561 else if (ecmd->duplex == DUPLEX_FULL)
1562 new_media = DE_MEDIA_TP_FD;
1563 else
1564 new_media = DE_MEDIA_TP;
1565 if (!(ecmd->advertising & ADVERTISED_TP))
1566 return -EINVAL;
1567 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1568 return -EINVAL;
1569 break;
1570 }
1571
1572 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1573
1574 if ((new_media == de->media_type) &&
1575 (media_lock == de->media_lock) &&
1576 (ecmd->advertising == de->media_advertise))
1577 return 0; /* nothing to change */
1578
1579 de_link_down(de);
1580 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1581 de_stop_rxtx(de);
1582
1583 de->media_type = new_media;
1584 de->media_lock = media_lock;
1585 de->media_advertise = ecmd->advertising;
1586 de_set_media(de);
1587 if (netif_running(de->dev))
1588 de_start_rxtx(de);
1589
1590 return 0;
1591 }
1592
de_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1593 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1594 {
1595 struct de_private *de = netdev_priv(dev);
1596
1597 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1598 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1599 strlcpy(info->bus_info, pci_name(de->pdev), sizeof(info->bus_info));
1600 }
1601
de_get_regs_len(struct net_device * dev)1602 static int de_get_regs_len(struct net_device *dev)
1603 {
1604 return DE_REGS_SIZE;
1605 }
1606
de_get_settings(struct net_device * dev,struct ethtool_cmd * ecmd)1607 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1608 {
1609 struct de_private *de = netdev_priv(dev);
1610 int rc;
1611
1612 spin_lock_irq(&de->lock);
1613 rc = __de_get_settings(de, ecmd);
1614 spin_unlock_irq(&de->lock);
1615
1616 return rc;
1617 }
1618
de_set_settings(struct net_device * dev,struct ethtool_cmd * ecmd)1619 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1620 {
1621 struct de_private *de = netdev_priv(dev);
1622 int rc;
1623
1624 spin_lock_irq(&de->lock);
1625 rc = __de_set_settings(de, ecmd);
1626 spin_unlock_irq(&de->lock);
1627
1628 return rc;
1629 }
1630
de_get_msglevel(struct net_device * dev)1631 static u32 de_get_msglevel(struct net_device *dev)
1632 {
1633 struct de_private *de = netdev_priv(dev);
1634
1635 return de->msg_enable;
1636 }
1637
de_set_msglevel(struct net_device * dev,u32 msglvl)1638 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1639 {
1640 struct de_private *de = netdev_priv(dev);
1641
1642 de->msg_enable = msglvl;
1643 }
1644
de_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1645 static int de_get_eeprom(struct net_device *dev,
1646 struct ethtool_eeprom *eeprom, u8 *data)
1647 {
1648 struct de_private *de = netdev_priv(dev);
1649
1650 if (!de->ee_data)
1651 return -EOPNOTSUPP;
1652 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1653 (eeprom->len != DE_EEPROM_SIZE))
1654 return -EINVAL;
1655 memcpy(data, de->ee_data, eeprom->len);
1656
1657 return 0;
1658 }
1659
de_nway_reset(struct net_device * dev)1660 static int de_nway_reset(struct net_device *dev)
1661 {
1662 struct de_private *de = netdev_priv(dev);
1663 u32 status;
1664
1665 if (de->media_type != DE_MEDIA_TP_AUTO)
1666 return -EINVAL;
1667 if (netif_carrier_ok(de->dev))
1668 de_link_down(de);
1669
1670 status = dr32(SIAStatus);
1671 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1672 netif_info(de, link, dev, "link nway restart, status %x,%x\n",
1673 status, dr32(SIAStatus));
1674 return 0;
1675 }
1676
de_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * data)1677 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1678 void *data)
1679 {
1680 struct de_private *de = netdev_priv(dev);
1681
1682 regs->version = (DE_REGS_VER << 2) | de->de21040;
1683
1684 spin_lock_irq(&de->lock);
1685 __de_get_regs(de, data);
1686 spin_unlock_irq(&de->lock);
1687 }
1688
1689 static const struct ethtool_ops de_ethtool_ops = {
1690 .get_link = ethtool_op_get_link,
1691 .get_drvinfo = de_get_drvinfo,
1692 .get_regs_len = de_get_regs_len,
1693 .get_settings = de_get_settings,
1694 .set_settings = de_set_settings,
1695 .get_msglevel = de_get_msglevel,
1696 .set_msglevel = de_set_msglevel,
1697 .get_eeprom = de_get_eeprom,
1698 .nway_reset = de_nway_reset,
1699 .get_regs = de_get_regs,
1700 };
1701
de21040_get_mac_address(struct de_private * de)1702 static void de21040_get_mac_address(struct de_private *de)
1703 {
1704 unsigned i;
1705
1706 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1707 udelay(5);
1708
1709 for (i = 0; i < 6; i++) {
1710 int value, boguscnt = 100000;
1711 do {
1712 value = dr32(ROMCmd);
1713 rmb();
1714 } while (value < 0 && --boguscnt > 0);
1715 de->dev->dev_addr[i] = value;
1716 udelay(1);
1717 if (boguscnt <= 0)
1718 pr_warn("timeout reading 21040 MAC address byte %u\n",
1719 i);
1720 }
1721 }
1722
de21040_get_media_info(struct de_private * de)1723 static void de21040_get_media_info(struct de_private *de)
1724 {
1725 unsigned int i;
1726
1727 de->media_type = DE_MEDIA_TP;
1728 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1729 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1730 de->media_advertise = de->media_supported;
1731
1732 for (i = 0; i < DE_MAX_MEDIA; i++) {
1733 switch (i) {
1734 case DE_MEDIA_AUI:
1735 case DE_MEDIA_TP:
1736 case DE_MEDIA_TP_FD:
1737 de->media[i].type = i;
1738 de->media[i].csr13 = t21040_csr13[i];
1739 de->media[i].csr14 = t21040_csr14[i];
1740 de->media[i].csr15 = t21040_csr15[i];
1741 break;
1742 default:
1743 de->media[i].type = DE_MEDIA_INVALID;
1744 break;
1745 }
1746 }
1747 }
1748
1749 /* Note: this routine returns extra data bits for size detection. */
tulip_read_eeprom(void __iomem * regs,int location,int addr_len)1750 static unsigned tulip_read_eeprom(void __iomem *regs, int location,
1751 int addr_len)
1752 {
1753 int i;
1754 unsigned retval = 0;
1755 void __iomem *ee_addr = regs + ROMCmd;
1756 int read_cmd = location | (EE_READ_CMD << addr_len);
1757
1758 writel(EE_ENB & ~EE_CS, ee_addr);
1759 writel(EE_ENB, ee_addr);
1760
1761 /* Shift the read command bits out. */
1762 for (i = 4 + addr_len; i >= 0; i--) {
1763 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1764 writel(EE_ENB | dataval, ee_addr);
1765 readl(ee_addr);
1766 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1767 readl(ee_addr);
1768 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1769 }
1770 writel(EE_ENB, ee_addr);
1771 readl(ee_addr);
1772
1773 for (i = 16; i > 0; i--) {
1774 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1775 readl(ee_addr);
1776 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1777 writel(EE_ENB, ee_addr);
1778 readl(ee_addr);
1779 }
1780
1781 /* Terminate the EEPROM access. */
1782 writel(EE_ENB & ~EE_CS, ee_addr);
1783 return retval;
1784 }
1785
de21041_get_srom_info(struct de_private * de)1786 static void de21041_get_srom_info(struct de_private *de)
1787 {
1788 unsigned i, sa_offset = 0, ofs;
1789 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1790 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1791 struct de_srom_info_leaf *il;
1792 void *bufp;
1793
1794 /* download entire eeprom */
1795 for (i = 0; i < DE_EEPROM_WORDS; i++)
1796 ((__le16 *)ee_data)[i] =
1797 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));
1798
1799 /* DEC now has a specification but early board makers
1800 just put the address in the first EEPROM locations. */
1801 /* This does memcmp(eedata, eedata+16, 8) */
1802
1803 #ifndef CONFIG_MIPS_COBALT
1804
1805 for (i = 0; i < 8; i ++)
1806 if (ee_data[i] != ee_data[16+i])
1807 sa_offset = 20;
1808
1809 #endif
1810
1811 /* store MAC address */
1812 for (i = 0; i < 6; i ++)
1813 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1814
1815 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1816 ofs = ee_data[SROMC0InfoLeaf];
1817 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1818 goto bad_srom;
1819
1820 /* get pointer to info leaf */
1821 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1822
1823 /* paranoia checks */
1824 if (il->n_blocks == 0)
1825 goto bad_srom;
1826 if ((sizeof(ee_data) - ofs) <
1827 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1828 goto bad_srom;
1829
1830 /* get default media type */
1831 switch (get_unaligned(&il->default_media)) {
1832 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1833 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1834 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1835 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1836 }
1837
1838 if (netif_msg_probe(de))
1839 pr_info("de%d: SROM leaf offset %u, default media %s\n",
1840 de->board_idx, ofs, media_name[de->media_type]);
1841
1842 /* init SIA register values to defaults */
1843 for (i = 0; i < DE_MAX_MEDIA; i++) {
1844 de->media[i].type = DE_MEDIA_INVALID;
1845 de->media[i].csr13 = 0xffff;
1846 de->media[i].csr14 = 0xffff;
1847 de->media[i].csr15 = 0xffff;
1848 }
1849
1850 /* parse media blocks to see what medias are supported,
1851 * and if any custom CSR values are provided
1852 */
1853 bufp = ((void *)il) + sizeof(*il);
1854 for (i = 0; i < il->n_blocks; i++) {
1855 struct de_srom_media_block *ib = bufp;
1856 unsigned idx;
1857
1858 /* index based on media type in media block */
1859 switch(ib->opts & MediaBlockMask) {
1860 case 0: /* 10baseT */
1861 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1862 | SUPPORTED_Autoneg;
1863 idx = DE_MEDIA_TP;
1864 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1865 break;
1866 case 1: /* BNC */
1867 de->media_supported |= SUPPORTED_BNC;
1868 idx = DE_MEDIA_BNC;
1869 break;
1870 case 2: /* AUI */
1871 de->media_supported |= SUPPORTED_AUI;
1872 idx = DE_MEDIA_AUI;
1873 break;
1874 case 4: /* 10baseT-FD */
1875 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1876 | SUPPORTED_Autoneg;
1877 idx = DE_MEDIA_TP_FD;
1878 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1879 break;
1880 default:
1881 goto bad_srom;
1882 }
1883
1884 de->media[idx].type = idx;
1885
1886 if (netif_msg_probe(de))
1887 pr_info("de%d: media block #%u: %s",
1888 de->board_idx, i,
1889 media_name[de->media[idx].type]);
1890
1891 bufp += sizeof (ib->opts);
1892
1893 if (ib->opts & MediaCustomCSRs) {
1894 de->media[idx].csr13 = get_unaligned(&ib->csr13);
1895 de->media[idx].csr14 = get_unaligned(&ib->csr14);
1896 de->media[idx].csr15 = get_unaligned(&ib->csr15);
1897 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1898 sizeof(ib->csr15);
1899
1900 if (netif_msg_probe(de))
1901 pr_cont(" (%x,%x,%x)\n",
1902 de->media[idx].csr13,
1903 de->media[idx].csr14,
1904 de->media[idx].csr15);
1905
1906 } else {
1907 if (netif_msg_probe(de))
1908 pr_cont("\n");
1909 }
1910
1911 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1912 break;
1913 }
1914
1915 de->media_advertise = de->media_supported;
1916
1917 fill_defaults:
1918 /* fill in defaults, for cases where custom CSRs not used */
1919 for (i = 0; i < DE_MAX_MEDIA; i++) {
1920 if (de->media[i].csr13 == 0xffff)
1921 de->media[i].csr13 = t21041_csr13[i];
1922 if (de->media[i].csr14 == 0xffff) {
1923 /* autonegotiation is broken at least on some chip
1924 revisions - rev. 0x21 works, 0x11 does not */
1925 if (de->pdev->revision < 0x20)
1926 de->media[i].csr14 = t21041_csr14_brk[i];
1927 else
1928 de->media[i].csr14 = t21041_csr14[i];
1929 }
1930 if (de->media[i].csr15 == 0xffff)
1931 de->media[i].csr15 = t21041_csr15[i];
1932 }
1933
1934 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1935
1936 return;
1937
1938 bad_srom:
1939 /* for error cases, it's ok to assume we support all these */
1940 for (i = 0; i < DE_MAX_MEDIA; i++)
1941 de->media[i].type = i;
1942 de->media_supported =
1943 SUPPORTED_10baseT_Half |
1944 SUPPORTED_10baseT_Full |
1945 SUPPORTED_Autoneg |
1946 SUPPORTED_TP |
1947 SUPPORTED_AUI |
1948 SUPPORTED_BNC;
1949 goto fill_defaults;
1950 }
1951
1952 static const struct net_device_ops de_netdev_ops = {
1953 .ndo_open = de_open,
1954 .ndo_stop = de_close,
1955 .ndo_set_rx_mode = de_set_rx_mode,
1956 .ndo_start_xmit = de_start_xmit,
1957 .ndo_get_stats = de_get_stats,
1958 .ndo_tx_timeout = de_tx_timeout,
1959 .ndo_change_mtu = eth_change_mtu,
1960 .ndo_set_mac_address = eth_mac_addr,
1961 .ndo_validate_addr = eth_validate_addr,
1962 };
1963
de_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1964 static int de_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1965 {
1966 struct net_device *dev;
1967 struct de_private *de;
1968 int rc;
1969 void __iomem *regs;
1970 unsigned long pciaddr;
1971 static int board_idx = -1;
1972
1973 board_idx++;
1974
1975 #ifndef MODULE
1976 if (board_idx == 0)
1977 pr_info("%s\n", version);
1978 #endif
1979
1980 /* allocate a new ethernet device structure, and fill in defaults */
1981 dev = alloc_etherdev(sizeof(struct de_private));
1982 if (!dev)
1983 return -ENOMEM;
1984
1985 dev->netdev_ops = &de_netdev_ops;
1986 SET_NETDEV_DEV(dev, &pdev->dev);
1987 dev->ethtool_ops = &de_ethtool_ops;
1988 dev->watchdog_timeo = TX_TIMEOUT;
1989
1990 de = netdev_priv(dev);
1991 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1992 de->pdev = pdev;
1993 de->dev = dev;
1994 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1995 de->board_idx = board_idx;
1996 spin_lock_init (&de->lock);
1997 init_timer(&de->media_timer);
1998 if (de->de21040)
1999 de->media_timer.function = de21040_media_timer;
2000 else
2001 de->media_timer.function = de21041_media_timer;
2002 de->media_timer.data = (unsigned long) de;
2003
2004 netif_carrier_off(dev);
2005
2006 /* wake up device, assign resources */
2007 rc = pci_enable_device(pdev);
2008 if (rc)
2009 goto err_out_free;
2010
2011 /* reserve PCI resources to ensure driver atomicity */
2012 rc = pci_request_regions(pdev, DRV_NAME);
2013 if (rc)
2014 goto err_out_disable;
2015
2016 /* check for invalid IRQ value */
2017 if (pdev->irq < 2) {
2018 rc = -EIO;
2019 pr_err("invalid irq (%d) for pci dev %s\n",
2020 pdev->irq, pci_name(pdev));
2021 goto err_out_res;
2022 }
2023
2024 /* obtain and check validity of PCI I/O address */
2025 pciaddr = pci_resource_start(pdev, 1);
2026 if (!pciaddr) {
2027 rc = -EIO;
2028 pr_err("no MMIO resource for pci dev %s\n", pci_name(pdev));
2029 goto err_out_res;
2030 }
2031 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2032 rc = -EIO;
2033 pr_err("MMIO resource (%llx) too small on pci dev %s\n",
2034 (unsigned long long)pci_resource_len(pdev, 1),
2035 pci_name(pdev));
2036 goto err_out_res;
2037 }
2038
2039 /* remap CSR registers */
2040 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2041 if (!regs) {
2042 rc = -EIO;
2043 pr_err("Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2044 (unsigned long long)pci_resource_len(pdev, 1),
2045 pciaddr, pci_name(pdev));
2046 goto err_out_res;
2047 }
2048 de->regs = regs;
2049
2050 de_adapter_wake(de);
2051
2052 /* make sure hardware is not running */
2053 rc = de_reset_mac(de);
2054 if (rc) {
2055 pr_err("Cannot reset MAC, pci dev %s\n", pci_name(pdev));
2056 goto err_out_iomap;
2057 }
2058
2059 /* get MAC address, initialize default media type and
2060 * get list of supported media
2061 */
2062 if (de->de21040) {
2063 de21040_get_mac_address(de);
2064 de21040_get_media_info(de);
2065 } else {
2066 de21041_get_srom_info(de);
2067 }
2068
2069 /* register new network interface with kernel */
2070 rc = register_netdev(dev);
2071 if (rc)
2072 goto err_out_iomap;
2073
2074 /* print info about board and interface just registered */
2075 netdev_info(dev, "%s at %p, %pM, IRQ %d\n",
2076 de->de21040 ? "21040" : "21041",
2077 regs, dev->dev_addr, pdev->irq);
2078
2079 pci_set_drvdata(pdev, dev);
2080
2081 /* enable busmastering */
2082 pci_set_master(pdev);
2083
2084 /* put adapter to sleep */
2085 de_adapter_sleep(de);
2086
2087 return 0;
2088
2089 err_out_iomap:
2090 kfree(de->ee_data);
2091 iounmap(regs);
2092 err_out_res:
2093 pci_release_regions(pdev);
2094 err_out_disable:
2095 pci_disable_device(pdev);
2096 err_out_free:
2097 free_netdev(dev);
2098 return rc;
2099 }
2100
de_remove_one(struct pci_dev * pdev)2101 static void de_remove_one(struct pci_dev *pdev)
2102 {
2103 struct net_device *dev = pci_get_drvdata(pdev);
2104 struct de_private *de = netdev_priv(dev);
2105
2106 BUG_ON(!dev);
2107 unregister_netdev(dev);
2108 kfree(de->ee_data);
2109 iounmap(de->regs);
2110 pci_release_regions(pdev);
2111 pci_disable_device(pdev);
2112 free_netdev(dev);
2113 }
2114
2115 #ifdef CONFIG_PM
2116
de_suspend(struct pci_dev * pdev,pm_message_t state)2117 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2118 {
2119 struct net_device *dev = pci_get_drvdata (pdev);
2120 struct de_private *de = netdev_priv(dev);
2121
2122 rtnl_lock();
2123 if (netif_running (dev)) {
2124 const int irq = pdev->irq;
2125
2126 del_timer_sync(&de->media_timer);
2127
2128 disable_irq(irq);
2129 spin_lock_irq(&de->lock);
2130
2131 de_stop_hw(de);
2132 netif_stop_queue(dev);
2133 netif_device_detach(dev);
2134 netif_carrier_off(dev);
2135
2136 spin_unlock_irq(&de->lock);
2137 enable_irq(irq);
2138
2139 /* Update the error counts. */
2140 __de_get_stats(de);
2141
2142 synchronize_irq(irq);
2143 de_clean_rings(de);
2144
2145 de_adapter_sleep(de);
2146 pci_disable_device(pdev);
2147 } else {
2148 netif_device_detach(dev);
2149 }
2150 rtnl_unlock();
2151 return 0;
2152 }
2153
de_resume(struct pci_dev * pdev)2154 static int de_resume (struct pci_dev *pdev)
2155 {
2156 struct net_device *dev = pci_get_drvdata (pdev);
2157 struct de_private *de = netdev_priv(dev);
2158 int retval = 0;
2159
2160 rtnl_lock();
2161 if (netif_device_present(dev))
2162 goto out;
2163 if (!netif_running(dev))
2164 goto out_attach;
2165 if ((retval = pci_enable_device(pdev))) {
2166 netdev_err(dev, "pci_enable_device failed in resume\n");
2167 goto out;
2168 }
2169 pci_set_master(pdev);
2170 de_init_rings(de);
2171 de_init_hw(de);
2172 out_attach:
2173 netif_device_attach(dev);
2174 out:
2175 rtnl_unlock();
2176 return 0;
2177 }
2178
2179 #endif /* CONFIG_PM */
2180
2181 static struct pci_driver de_driver = {
2182 .name = DRV_NAME,
2183 .id_table = de_pci_tbl,
2184 .probe = de_init_one,
2185 .remove = de_remove_one,
2186 #ifdef CONFIG_PM
2187 .suspend = de_suspend,
2188 .resume = de_resume,
2189 #endif
2190 };
2191
de_init(void)2192 static int __init de_init (void)
2193 {
2194 #ifdef MODULE
2195 pr_info("%s\n", version);
2196 #endif
2197 return pci_register_driver(&de_driver);
2198 }
2199
de_exit(void)2200 static void __exit de_exit (void)
2201 {
2202 pci_unregister_driver (&de_driver);
2203 }
2204
2205 module_init(de_init);
2206 module_exit(de_exit);
2207