1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 1000;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
99
100 int sysctl_tcp_thin_dupack __read_mostly;
101
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_early_retrans __read_mostly = 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
105 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_INIT_CWND * 2;
106
107 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
108 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
109 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
110 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
111 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
112 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
113 #define FLAG_ECE 0x40 /* ECE in this ACK */
114 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
115 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
116 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
117 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
118 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
119 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
120 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
121 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
122
123 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
124 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
125 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
126 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
127
128 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
129 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
130
131 /* Adapt the MSS value used to make delayed ack decision to the
132 * real world.
133 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 struct inet_connection_sock *icsk = inet_csk(sk);
137 const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 unsigned int len;
139
140 icsk->icsk_ack.last_seg_size = 0;
141
142 /* skb->len may jitter because of SACKs, even if peer
143 * sends good full-sized frames.
144 */
145 len = skb_shinfo(skb)->gso_size ? : skb->len;
146 if (len >= icsk->icsk_ack.rcv_mss) {
147 icsk->icsk_ack.rcv_mss = len;
148 } else {
149 /* Otherwise, we make more careful check taking into account,
150 * that SACKs block is variable.
151 *
152 * "len" is invariant segment length, including TCP header.
153 */
154 len += skb->data - skb_transport_header(skb);
155 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 /* If PSH is not set, packet should be
157 * full sized, provided peer TCP is not badly broken.
158 * This observation (if it is correct 8)) allows
159 * to handle super-low mtu links fairly.
160 */
161 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 /* Subtract also invariant (if peer is RFC compliant),
164 * tcp header plus fixed timestamp option length.
165 * Resulting "len" is MSS free of SACK jitter.
166 */
167 len -= tcp_sk(sk)->tcp_header_len;
168 icsk->icsk_ack.last_seg_size = len;
169 if (len == lss) {
170 icsk->icsk_ack.rcv_mss = len;
171 return;
172 }
173 }
174 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 }
178 }
179
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)180 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184
185 if (quickacks == 0)
186 quickacks = 2;
187 quickacks = min(quickacks, max_quickacks);
188 if (quickacks > icsk->icsk_ack.quick)
189 icsk->icsk_ack.quick = quickacks;
190 }
191
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)192 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
193 {
194 struct inet_connection_sock *icsk = inet_csk(sk);
195
196 tcp_incr_quickack(sk, max_quickacks);
197 icsk->icsk_ack.pingpong = 0;
198 icsk->icsk_ack.ato = TCP_ATO_MIN;
199 }
200 EXPORT_SYMBOL(tcp_enter_quickack_mode);
201
202 /* Send ACKs quickly, if "quick" count is not exhausted
203 * and the session is not interactive.
204 */
205
tcp_in_quickack_mode(struct sock * sk)206 static bool tcp_in_quickack_mode(struct sock *sk)
207 {
208 const struct inet_connection_sock *icsk = inet_csk(sk);
209 const struct dst_entry *dst = __sk_dst_get(sk);
210
211 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
212 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
213 }
214
tcp_ecn_queue_cwr(struct tcp_sock * tp)215 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
216 {
217 if (tp->ecn_flags & TCP_ECN_OK)
218 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
219 }
220
tcp_ecn_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)221 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 if (tcp_hdr(skb)->cwr)
224 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
225 }
226
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)227 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
228 {
229 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
230 }
231
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)232 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
233 {
234 struct tcp_sock *tp = tcp_sk(sk);
235
236 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
237 case INET_ECN_NOT_ECT:
238 /* Funny extension: if ECT is not set on a segment,
239 * and we already seen ECT on a previous segment,
240 * it is probably a retransmit.
241 */
242 if (tp->ecn_flags & TCP_ECN_SEEN)
243 tcp_enter_quickack_mode(sk, 2);
244 break;
245 case INET_ECN_CE:
246 if (tcp_ca_needs_ecn(sk))
247 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
248
249 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
250 /* Better not delay acks, sender can have a very low cwnd */
251 tcp_enter_quickack_mode(sk, 2);
252 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
253 }
254 tp->ecn_flags |= TCP_ECN_SEEN;
255 break;
256 default:
257 if (tcp_ca_needs_ecn(sk))
258 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
259 tp->ecn_flags |= TCP_ECN_SEEN;
260 break;
261 }
262 }
263
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)264 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
265 {
266 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
267 __tcp_ecn_check_ce(sk, skb);
268 }
269
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)270 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
271 {
272 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
273 tp->ecn_flags &= ~TCP_ECN_OK;
274 }
275
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)276 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
277 {
278 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
279 tp->ecn_flags &= ~TCP_ECN_OK;
280 }
281
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)282 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
283 {
284 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
285 return true;
286 return false;
287 }
288
289 /* Buffer size and advertised window tuning.
290 *
291 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
292 */
293
tcp_sndbuf_expand(struct sock * sk)294 static void tcp_sndbuf_expand(struct sock *sk)
295 {
296 const struct tcp_sock *tp = tcp_sk(sk);
297 int sndmem, per_mss;
298 u32 nr_segs;
299
300 /* Worst case is non GSO/TSO : each frame consumes one skb
301 * and skb->head is kmalloced using power of two area of memory
302 */
303 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
304 MAX_TCP_HEADER +
305 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
306
307 per_mss = roundup_pow_of_two(per_mss) +
308 SKB_DATA_ALIGN(sizeof(struct sk_buff));
309
310 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
311 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
312
313 /* Fast Recovery (RFC 5681 3.2) :
314 * Cubic needs 1.7 factor, rounded to 2 to include
315 * extra cushion (application might react slowly to POLLOUT)
316 */
317 sndmem = 2 * nr_segs * per_mss;
318
319 if (sk->sk_sndbuf < sndmem)
320 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
321 }
322
323 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
324 *
325 * All tcp_full_space() is split to two parts: "network" buffer, allocated
326 * forward and advertised in receiver window (tp->rcv_wnd) and
327 * "application buffer", required to isolate scheduling/application
328 * latencies from network.
329 * window_clamp is maximal advertised window. It can be less than
330 * tcp_full_space(), in this case tcp_full_space() - window_clamp
331 * is reserved for "application" buffer. The less window_clamp is
332 * the smoother our behaviour from viewpoint of network, but the lower
333 * throughput and the higher sensitivity of the connection to losses. 8)
334 *
335 * rcv_ssthresh is more strict window_clamp used at "slow start"
336 * phase to predict further behaviour of this connection.
337 * It is used for two goals:
338 * - to enforce header prediction at sender, even when application
339 * requires some significant "application buffer". It is check #1.
340 * - to prevent pruning of receive queue because of misprediction
341 * of receiver window. Check #2.
342 *
343 * The scheme does not work when sender sends good segments opening
344 * window and then starts to feed us spaghetti. But it should work
345 * in common situations. Otherwise, we have to rely on queue collapsing.
346 */
347
348 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)349 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
350 {
351 struct tcp_sock *tp = tcp_sk(sk);
352 /* Optimize this! */
353 int truesize = tcp_win_from_space(skb->truesize) >> 1;
354 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
355
356 while (tp->rcv_ssthresh <= window) {
357 if (truesize <= skb->len)
358 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
359
360 truesize >>= 1;
361 window >>= 1;
362 }
363 return 0;
364 }
365
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)366 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
367 {
368 struct tcp_sock *tp = tcp_sk(sk);
369 int room;
370
371 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
372
373 /* Check #1 */
374 if (room > 0 && !tcp_under_memory_pressure(sk)) {
375 int incr;
376
377 /* Check #2. Increase window, if skb with such overhead
378 * will fit to rcvbuf in future.
379 */
380 if (tcp_win_from_space(skb->truesize) <= skb->len)
381 incr = 2 * tp->advmss;
382 else
383 incr = __tcp_grow_window(sk, skb);
384
385 if (incr) {
386 incr = max_t(int, incr, 2 * skb->len);
387 tp->rcv_ssthresh += min(room, incr);
388 inet_csk(sk)->icsk_ack.quick |= 1;
389 }
390 }
391 }
392
393 /* 3. Tuning rcvbuf, when connection enters established state. */
tcp_fixup_rcvbuf(struct sock * sk)394 static void tcp_fixup_rcvbuf(struct sock *sk)
395 {
396 u32 mss = tcp_sk(sk)->advmss;
397 int rcvmem;
398
399 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
400 tcp_default_init_rwnd(mss);
401
402 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
403 * Allow enough cushion so that sender is not limited by our window
404 */
405 if (sysctl_tcp_moderate_rcvbuf)
406 rcvmem <<= 2;
407
408 if (sk->sk_rcvbuf < rcvmem)
409 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
410 }
411
412 /* 4. Try to fixup all. It is made immediately after connection enters
413 * established state.
414 */
tcp_init_buffer_space(struct sock * sk)415 void tcp_init_buffer_space(struct sock *sk)
416 {
417 struct tcp_sock *tp = tcp_sk(sk);
418 int maxwin;
419
420 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
421 tcp_fixup_rcvbuf(sk);
422 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
423 tcp_sndbuf_expand(sk);
424
425 tp->rcvq_space.space = tp->rcv_wnd;
426 tp->rcvq_space.time = tcp_time_stamp;
427 tp->rcvq_space.seq = tp->copied_seq;
428
429 maxwin = tcp_full_space(sk);
430
431 if (tp->window_clamp >= maxwin) {
432 tp->window_clamp = maxwin;
433
434 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
435 tp->window_clamp = max(maxwin -
436 (maxwin >> sysctl_tcp_app_win),
437 4 * tp->advmss);
438 }
439
440 /* Force reservation of one segment. */
441 if (sysctl_tcp_app_win &&
442 tp->window_clamp > 2 * tp->advmss &&
443 tp->window_clamp + tp->advmss > maxwin)
444 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
445
446 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
447 tp->snd_cwnd_stamp = tcp_time_stamp;
448 }
449
450 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)451 static void tcp_clamp_window(struct sock *sk)
452 {
453 struct tcp_sock *tp = tcp_sk(sk);
454 struct inet_connection_sock *icsk = inet_csk(sk);
455
456 icsk->icsk_ack.quick = 0;
457
458 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
459 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
460 !tcp_under_memory_pressure(sk) &&
461 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
462 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
463 sysctl_tcp_rmem[2]);
464 }
465 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
466 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
467 }
468
469 /* Initialize RCV_MSS value.
470 * RCV_MSS is an our guess about MSS used by the peer.
471 * We haven't any direct information about the MSS.
472 * It's better to underestimate the RCV_MSS rather than overestimate.
473 * Overestimations make us ACKing less frequently than needed.
474 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
475 */
tcp_initialize_rcv_mss(struct sock * sk)476 void tcp_initialize_rcv_mss(struct sock *sk)
477 {
478 const struct tcp_sock *tp = tcp_sk(sk);
479 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
480
481 hint = min(hint, tp->rcv_wnd / 2);
482 hint = min(hint, TCP_MSS_DEFAULT);
483 hint = max(hint, TCP_MIN_MSS);
484
485 inet_csk(sk)->icsk_ack.rcv_mss = hint;
486 }
487 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
488
489 /* Receiver "autotuning" code.
490 *
491 * The algorithm for RTT estimation w/o timestamps is based on
492 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
493 * <http://public.lanl.gov/radiant/pubs.html#DRS>
494 *
495 * More detail on this code can be found at
496 * <http://staff.psc.edu/jheffner/>,
497 * though this reference is out of date. A new paper
498 * is pending.
499 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)500 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
501 {
502 u32 new_sample = tp->rcv_rtt_est.rtt;
503 long m = sample;
504
505 if (m == 0)
506 m = 1;
507
508 if (new_sample != 0) {
509 /* If we sample in larger samples in the non-timestamp
510 * case, we could grossly overestimate the RTT especially
511 * with chatty applications or bulk transfer apps which
512 * are stalled on filesystem I/O.
513 *
514 * Also, since we are only going for a minimum in the
515 * non-timestamp case, we do not smooth things out
516 * else with timestamps disabled convergence takes too
517 * long.
518 */
519 if (!win_dep) {
520 m -= (new_sample >> 3);
521 new_sample += m;
522 } else {
523 m <<= 3;
524 if (m < new_sample)
525 new_sample = m;
526 }
527 } else {
528 /* No previous measure. */
529 new_sample = m << 3;
530 }
531
532 if (tp->rcv_rtt_est.rtt != new_sample)
533 tp->rcv_rtt_est.rtt = new_sample;
534 }
535
tcp_rcv_rtt_measure(struct tcp_sock * tp)536 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
537 {
538 if (tp->rcv_rtt_est.time == 0)
539 goto new_measure;
540 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
541 return;
542 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
543
544 new_measure:
545 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
546 tp->rcv_rtt_est.time = tcp_time_stamp;
547 }
548
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)549 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
550 const struct sk_buff *skb)
551 {
552 struct tcp_sock *tp = tcp_sk(sk);
553 if (tp->rx_opt.rcv_tsecr &&
554 (TCP_SKB_CB(skb)->end_seq -
555 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
556 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
557 }
558
559 /*
560 * This function should be called every time data is copied to user space.
561 * It calculates the appropriate TCP receive buffer space.
562 */
tcp_rcv_space_adjust(struct sock * sk)563 void tcp_rcv_space_adjust(struct sock *sk)
564 {
565 struct tcp_sock *tp = tcp_sk(sk);
566 u32 copied;
567 int time;
568
569 time = tcp_time_stamp - tp->rcvq_space.time;
570 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
571 return;
572
573 /* Number of bytes copied to user in last RTT */
574 copied = tp->copied_seq - tp->rcvq_space.seq;
575 if (copied <= tp->rcvq_space.space)
576 goto new_measure;
577
578 /* A bit of theory :
579 * copied = bytes received in previous RTT, our base window
580 * To cope with packet losses, we need a 2x factor
581 * To cope with slow start, and sender growing its cwin by 100 %
582 * every RTT, we need a 4x factor, because the ACK we are sending
583 * now is for the next RTT, not the current one :
584 * <prev RTT . ><current RTT .. ><next RTT .... >
585 */
586
587 if (sysctl_tcp_moderate_rcvbuf &&
588 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
589 int rcvmem, rcvbuf;
590 u64 rcvwin;
591
592 /* minimal window to cope with packet losses, assuming
593 * steady state. Add some cushion because of small variations.
594 */
595 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
596
597 /* If rate increased by 25%,
598 * assume slow start, rcvwin = 3 * copied
599 * If rate increased by 50%,
600 * assume sender can use 2x growth, rcvwin = 4 * copied
601 */
602 if (copied >=
603 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
604 if (copied >=
605 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
606 rcvwin <<= 1;
607 else
608 rcvwin += (rcvwin >> 1);
609 }
610
611 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
612 while (tcp_win_from_space(rcvmem) < tp->advmss)
613 rcvmem += 128;
614
615 do_div(rcvwin, tp->advmss);
616 rcvbuf = min_t(u64, rcvwin * rcvmem, sysctl_tcp_rmem[2]);
617 if (rcvbuf > sk->sk_rcvbuf) {
618 sk->sk_rcvbuf = rcvbuf;
619
620 /* Make the window clamp follow along. */
621 tp->window_clamp = tcp_win_from_space(rcvbuf);
622 }
623 }
624 tp->rcvq_space.space = copied;
625
626 new_measure:
627 tp->rcvq_space.seq = tp->copied_seq;
628 tp->rcvq_space.time = tcp_time_stamp;
629 }
630
631 /* There is something which you must keep in mind when you analyze the
632 * behavior of the tp->ato delayed ack timeout interval. When a
633 * connection starts up, we want to ack as quickly as possible. The
634 * problem is that "good" TCP's do slow start at the beginning of data
635 * transmission. The means that until we send the first few ACK's the
636 * sender will sit on his end and only queue most of his data, because
637 * he can only send snd_cwnd unacked packets at any given time. For
638 * each ACK we send, he increments snd_cwnd and transmits more of his
639 * queue. -DaveM
640 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)641 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
642 {
643 struct tcp_sock *tp = tcp_sk(sk);
644 struct inet_connection_sock *icsk = inet_csk(sk);
645 u32 now;
646
647 inet_csk_schedule_ack(sk);
648
649 tcp_measure_rcv_mss(sk, skb);
650
651 tcp_rcv_rtt_measure(tp);
652
653 now = tcp_time_stamp;
654
655 if (!icsk->icsk_ack.ato) {
656 /* The _first_ data packet received, initialize
657 * delayed ACK engine.
658 */
659 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
660 icsk->icsk_ack.ato = TCP_ATO_MIN;
661 } else {
662 int m = now - icsk->icsk_ack.lrcvtime;
663
664 if (m <= TCP_ATO_MIN / 2) {
665 /* The fastest case is the first. */
666 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
667 } else if (m < icsk->icsk_ack.ato) {
668 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
669 if (icsk->icsk_ack.ato > icsk->icsk_rto)
670 icsk->icsk_ack.ato = icsk->icsk_rto;
671 } else if (m > icsk->icsk_rto) {
672 /* Too long gap. Apparently sender failed to
673 * restart window, so that we send ACKs quickly.
674 */
675 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
676 sk_mem_reclaim(sk);
677 }
678 }
679 icsk->icsk_ack.lrcvtime = now;
680
681 tcp_ecn_check_ce(sk, skb);
682
683 if (skb->len >= 128)
684 tcp_grow_window(sk, skb);
685 }
686
687 /* Called to compute a smoothed rtt estimate. The data fed to this
688 * routine either comes from timestamps, or from segments that were
689 * known _not_ to have been retransmitted [see Karn/Partridge
690 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
691 * piece by Van Jacobson.
692 * NOTE: the next three routines used to be one big routine.
693 * To save cycles in the RFC 1323 implementation it was better to break
694 * it up into three procedures. -- erics
695 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)696 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
697 {
698 struct tcp_sock *tp = tcp_sk(sk);
699 long m = mrtt_us; /* RTT */
700 u32 srtt = tp->srtt_us;
701
702 /* The following amusing code comes from Jacobson's
703 * article in SIGCOMM '88. Note that rtt and mdev
704 * are scaled versions of rtt and mean deviation.
705 * This is designed to be as fast as possible
706 * m stands for "measurement".
707 *
708 * On a 1990 paper the rto value is changed to:
709 * RTO = rtt + 4 * mdev
710 *
711 * Funny. This algorithm seems to be very broken.
712 * These formulae increase RTO, when it should be decreased, increase
713 * too slowly, when it should be increased quickly, decrease too quickly
714 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
715 * does not matter how to _calculate_ it. Seems, it was trap
716 * that VJ failed to avoid. 8)
717 */
718 if (srtt != 0) {
719 m -= (srtt >> 3); /* m is now error in rtt est */
720 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
721 if (m < 0) {
722 m = -m; /* m is now abs(error) */
723 m -= (tp->mdev_us >> 2); /* similar update on mdev */
724 /* This is similar to one of Eifel findings.
725 * Eifel blocks mdev updates when rtt decreases.
726 * This solution is a bit different: we use finer gain
727 * for mdev in this case (alpha*beta).
728 * Like Eifel it also prevents growth of rto,
729 * but also it limits too fast rto decreases,
730 * happening in pure Eifel.
731 */
732 if (m > 0)
733 m >>= 3;
734 } else {
735 m -= (tp->mdev_us >> 2); /* similar update on mdev */
736 }
737 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
738 if (tp->mdev_us > tp->mdev_max_us) {
739 tp->mdev_max_us = tp->mdev_us;
740 if (tp->mdev_max_us > tp->rttvar_us)
741 tp->rttvar_us = tp->mdev_max_us;
742 }
743 if (after(tp->snd_una, tp->rtt_seq)) {
744 if (tp->mdev_max_us < tp->rttvar_us)
745 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
746 tp->rtt_seq = tp->snd_nxt;
747 tp->mdev_max_us = tcp_rto_min_us(sk);
748 }
749 } else {
750 /* no previous measure. */
751 srtt = m << 3; /* take the measured time to be rtt */
752 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
753 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
754 tp->mdev_max_us = tp->rttvar_us;
755 tp->rtt_seq = tp->snd_nxt;
756 }
757 tp->srtt_us = max(1U, srtt);
758 }
759
760 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
761 * Note: TCP stack does not yet implement pacing.
762 * FQ packet scheduler can be used to implement cheap but effective
763 * TCP pacing, to smooth the burst on large writes when packets
764 * in flight is significantly lower than cwnd (or rwin)
765 */
766 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
767 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
768
tcp_update_pacing_rate(struct sock * sk)769 static void tcp_update_pacing_rate(struct sock *sk)
770 {
771 const struct tcp_sock *tp = tcp_sk(sk);
772 u64 rate;
773
774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
775 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
776
777 /* current rate is (cwnd * mss) / srtt
778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 * In Congestion Avoidance phase, set it to 120 % the current rate.
780 *
781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 * end of slow start and should slow down.
784 */
785 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
786 rate *= sysctl_tcp_pacing_ss_ratio;
787 else
788 rate *= sysctl_tcp_pacing_ca_ratio;
789
790 rate *= max(tp->snd_cwnd, tp->packets_out);
791
792 if (likely(tp->srtt_us))
793 do_div(rate, tp->srtt_us);
794
795 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
796 * without any lock. We want to make sure compiler wont store
797 * intermediate values in this location.
798 */
799 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
800 sk->sk_max_pacing_rate);
801 }
802
803 /* Calculate rto without backoff. This is the second half of Van Jacobson's
804 * routine referred to above.
805 */
tcp_set_rto(struct sock * sk)806 static void tcp_set_rto(struct sock *sk)
807 {
808 const struct tcp_sock *tp = tcp_sk(sk);
809 /* Old crap is replaced with new one. 8)
810 *
811 * More seriously:
812 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 * It cannot be less due to utterly erratic ACK generation made
814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 * to do with delayed acks, because at cwnd>2 true delack timeout
816 * is invisible. Actually, Linux-2.4 also generates erratic
817 * ACKs in some circumstances.
818 */
819 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
820
821 /* 2. Fixups made earlier cannot be right.
822 * If we do not estimate RTO correctly without them,
823 * all the algo is pure shit and should be replaced
824 * with correct one. It is exactly, which we pretend to do.
825 */
826
827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 * guarantees that rto is higher.
829 */
830 tcp_bound_rto(sk);
831 }
832
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 {
835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836
837 if (!cwnd)
838 cwnd = TCP_INIT_CWND;
839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 }
841
842 /*
843 * Packet counting of FACK is based on in-order assumptions, therefore TCP
844 * disables it when reordering is detected
845 */
tcp_disable_fack(struct tcp_sock * tp)846 void tcp_disable_fack(struct tcp_sock *tp)
847 {
848 /* RFC3517 uses different metric in lost marker => reset on change */
849 if (tcp_is_fack(tp))
850 tp->lost_skb_hint = NULL;
851 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
852 }
853
854 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)855 static void tcp_dsack_seen(struct tcp_sock *tp)
856 {
857 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
858 }
859
tcp_update_reordering(struct sock * sk,const int metric,const int ts)860 static void tcp_update_reordering(struct sock *sk, const int metric,
861 const int ts)
862 {
863 struct tcp_sock *tp = tcp_sk(sk);
864 if (metric > tp->reordering) {
865 int mib_idx;
866
867 tp->reordering = min(sysctl_tcp_max_reordering, metric);
868
869 /* This exciting event is worth to be remembered. 8) */
870 if (ts)
871 mib_idx = LINUX_MIB_TCPTSREORDER;
872 else if (tcp_is_reno(tp))
873 mib_idx = LINUX_MIB_TCPRENOREORDER;
874 else if (tcp_is_fack(tp))
875 mib_idx = LINUX_MIB_TCPFACKREORDER;
876 else
877 mib_idx = LINUX_MIB_TCPSACKREORDER;
878
879 NET_INC_STATS_BH(sock_net(sk), mib_idx);
880 #if FASTRETRANS_DEBUG > 1
881 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
882 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
883 tp->reordering,
884 tp->fackets_out,
885 tp->sacked_out,
886 tp->undo_marker ? tp->undo_retrans : 0);
887 #endif
888 tcp_disable_fack(tp);
889 }
890
891 if (metric > 0)
892 tcp_disable_early_retrans(tp);
893 tp->rack.reord = 1;
894 }
895
896 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)897 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
898 {
899 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
900 (tp->retransmit_skb_hint &&
901 before(TCP_SKB_CB(skb)->seq,
902 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
903 tp->retransmit_skb_hint = skb;
904
905 if (!tp->lost_out ||
906 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
907 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
908 }
909
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)910 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
911 {
912 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
913 tcp_verify_retransmit_hint(tp, skb);
914
915 tp->lost_out += tcp_skb_pcount(skb);
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 }
918 }
919
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
921 {
922 tcp_verify_retransmit_hint(tp, skb);
923
924 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
925 tp->lost_out += tcp_skb_pcount(skb);
926 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
927 }
928 }
929
930 /* This procedure tags the retransmission queue when SACKs arrive.
931 *
932 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
933 * Packets in queue with these bits set are counted in variables
934 * sacked_out, retrans_out and lost_out, correspondingly.
935 *
936 * Valid combinations are:
937 * Tag InFlight Description
938 * 0 1 - orig segment is in flight.
939 * S 0 - nothing flies, orig reached receiver.
940 * L 0 - nothing flies, orig lost by net.
941 * R 2 - both orig and retransmit are in flight.
942 * L|R 1 - orig is lost, retransmit is in flight.
943 * S|R 1 - orig reached receiver, retrans is still in flight.
944 * (L|S|R is logically valid, it could occur when L|R is sacked,
945 * but it is equivalent to plain S and code short-curcuits it to S.
946 * L|S is logically invalid, it would mean -1 packet in flight 8))
947 *
948 * These 6 states form finite state machine, controlled by the following events:
949 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
950 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
951 * 3. Loss detection event of two flavors:
952 * A. Scoreboard estimator decided the packet is lost.
953 * A'. Reno "three dupacks" marks head of queue lost.
954 * A''. Its FACK modification, head until snd.fack is lost.
955 * B. SACK arrives sacking SND.NXT at the moment, when the
956 * segment was retransmitted.
957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
958 *
959 * It is pleasant to note, that state diagram turns out to be commutative,
960 * so that we are allowed not to be bothered by order of our actions,
961 * when multiple events arrive simultaneously. (see the function below).
962 *
963 * Reordering detection.
964 * --------------------
965 * Reordering metric is maximal distance, which a packet can be displaced
966 * in packet stream. With SACKs we can estimate it:
967 *
968 * 1. SACK fills old hole and the corresponding segment was not
969 * ever retransmitted -> reordering. Alas, we cannot use it
970 * when segment was retransmitted.
971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
972 * for retransmitted and already SACKed segment -> reordering..
973 * Both of these heuristics are not used in Loss state, when we cannot
974 * account for retransmits accurately.
975 *
976 * SACK block validation.
977 * ----------------------
978 *
979 * SACK block range validation checks that the received SACK block fits to
980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981 * Note that SND.UNA is not included to the range though being valid because
982 * it means that the receiver is rather inconsistent with itself reporting
983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
984 * perfectly valid, however, in light of RFC2018 which explicitly states
985 * that "SACK block MUST reflect the newest segment. Even if the newest
986 * segment is going to be discarded ...", not that it looks very clever
987 * in case of head skb. Due to potentional receiver driven attacks, we
988 * choose to avoid immediate execution of a walk in write queue due to
989 * reneging and defer head skb's loss recovery to standard loss recovery
990 * procedure that will eventually trigger (nothing forbids us doing this).
991 *
992 * Implements also blockage to start_seq wrap-around. Problem lies in the
993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994 * there's no guarantee that it will be before snd_nxt (n). The problem
995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
996 * wrap (s_w):
997 *
998 * <- outs wnd -> <- wrapzone ->
999 * u e n u_w e_w s n_w
1000 * | | | | | | |
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->| |<--------...
1003 * ...---- >2^31 ------>| |<--------...
1004 *
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1010 *
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013 * again, D-SACK block must not to go across snd_una (for the same reason as
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1023 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1024 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025 u32 start_seq, u32 end_seq)
1026 {
1027 /* Too far in future, or reversed (interpretation is ambiguous) */
1028 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1029 return false;
1030
1031 /* Nasty start_seq wrap-around check (see comments above) */
1032 if (!before(start_seq, tp->snd_nxt))
1033 return false;
1034
1035 /* In outstanding window? ...This is valid exit for D-SACKs too.
1036 * start_seq == snd_una is non-sensical (see comments above)
1037 */
1038 if (after(start_seq, tp->snd_una))
1039 return true;
1040
1041 if (!is_dsack || !tp->undo_marker)
1042 return false;
1043
1044 /* ...Then it's D-SACK, and must reside below snd_una completely */
1045 if (after(end_seq, tp->snd_una))
1046 return false;
1047
1048 if (!before(start_seq, tp->undo_marker))
1049 return true;
1050
1051 /* Too old */
1052 if (!after(end_seq, tp->undo_marker))
1053 return false;
1054
1055 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 * start_seq < undo_marker and end_seq >= undo_marker.
1057 */
1058 return !before(start_seq, end_seq - tp->max_window);
1059 }
1060
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1061 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062 struct tcp_sack_block_wire *sp, int num_sacks,
1063 u32 prior_snd_una)
1064 {
1065 struct tcp_sock *tp = tcp_sk(sk);
1066 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1068 bool dup_sack = false;
1069
1070 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1071 dup_sack = true;
1072 tcp_dsack_seen(tp);
1073 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1074 } else if (num_sacks > 1) {
1075 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1077
1078 if (!after(end_seq_0, end_seq_1) &&
1079 !before(start_seq_0, start_seq_1)) {
1080 dup_sack = true;
1081 tcp_dsack_seen(tp);
1082 NET_INC_STATS_BH(sock_net(sk),
1083 LINUX_MIB_TCPDSACKOFORECV);
1084 }
1085 }
1086
1087 /* D-SACK for already forgotten data... Do dumb counting. */
1088 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1089 !after(end_seq_0, prior_snd_una) &&
1090 after(end_seq_0, tp->undo_marker))
1091 tp->undo_retrans--;
1092
1093 return dup_sack;
1094 }
1095
1096 struct tcp_sacktag_state {
1097 int reord;
1098 int fack_count;
1099 /* Timestamps for earliest and latest never-retransmitted segment
1100 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1101 * but congestion control should still get an accurate delay signal.
1102 */
1103 struct skb_mstamp first_sackt;
1104 struct skb_mstamp last_sackt;
1105 int flag;
1106 };
1107
1108 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1109 * the incoming SACK may not exactly match but we can find smaller MSS
1110 * aligned portion of it that matches. Therefore we might need to fragment
1111 * which may fail and creates some hassle (caller must handle error case
1112 * returns).
1113 *
1114 * FIXME: this could be merged to shift decision code
1115 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1116 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1117 u32 start_seq, u32 end_seq)
1118 {
1119 int err;
1120 bool in_sack;
1121 unsigned int pkt_len;
1122 unsigned int mss;
1123
1124 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1125 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1126
1127 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1128 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1129 mss = tcp_skb_mss(skb);
1130 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1131
1132 if (!in_sack) {
1133 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1134 if (pkt_len < mss)
1135 pkt_len = mss;
1136 } else {
1137 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1138 if (pkt_len < mss)
1139 return -EINVAL;
1140 }
1141
1142 /* Round if necessary so that SACKs cover only full MSSes
1143 * and/or the remaining small portion (if present)
1144 */
1145 if (pkt_len > mss) {
1146 unsigned int new_len = (pkt_len / mss) * mss;
1147 if (!in_sack && new_len < pkt_len)
1148 new_len += mss;
1149 pkt_len = new_len;
1150 }
1151
1152 if (pkt_len >= skb->len && !in_sack)
1153 return 0;
1154
1155 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1156 if (err < 0)
1157 return err;
1158 }
1159
1160 return in_sack;
1161 }
1162
1163 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,const struct skb_mstamp * xmit_time)1164 static u8 tcp_sacktag_one(struct sock *sk,
1165 struct tcp_sacktag_state *state, u8 sacked,
1166 u32 start_seq, u32 end_seq,
1167 int dup_sack, int pcount,
1168 const struct skb_mstamp *xmit_time)
1169 {
1170 struct tcp_sock *tp = tcp_sk(sk);
1171 int fack_count = state->fack_count;
1172
1173 /* Account D-SACK for retransmitted packet. */
1174 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1175 if (tp->undo_marker && tp->undo_retrans > 0 &&
1176 after(end_seq, tp->undo_marker))
1177 tp->undo_retrans--;
1178 if (sacked & TCPCB_SACKED_ACKED)
1179 state->reord = min(fack_count, state->reord);
1180 }
1181
1182 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1183 if (!after(end_seq, tp->snd_una))
1184 return sacked;
1185
1186 if (!(sacked & TCPCB_SACKED_ACKED)) {
1187 tcp_rack_advance(tp, xmit_time, sacked);
1188
1189 if (sacked & TCPCB_SACKED_RETRANS) {
1190 /* If the segment is not tagged as lost,
1191 * we do not clear RETRANS, believing
1192 * that retransmission is still in flight.
1193 */
1194 if (sacked & TCPCB_LOST) {
1195 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1196 tp->lost_out -= pcount;
1197 tp->retrans_out -= pcount;
1198 }
1199 } else {
1200 if (!(sacked & TCPCB_RETRANS)) {
1201 /* New sack for not retransmitted frame,
1202 * which was in hole. It is reordering.
1203 */
1204 if (before(start_seq,
1205 tcp_highest_sack_seq(tp)))
1206 state->reord = min(fack_count,
1207 state->reord);
1208 if (!after(end_seq, tp->high_seq))
1209 state->flag |= FLAG_ORIG_SACK_ACKED;
1210 if (state->first_sackt.v64 == 0)
1211 state->first_sackt = *xmit_time;
1212 state->last_sackt = *xmit_time;
1213 }
1214
1215 if (sacked & TCPCB_LOST) {
1216 sacked &= ~TCPCB_LOST;
1217 tp->lost_out -= pcount;
1218 }
1219 }
1220
1221 sacked |= TCPCB_SACKED_ACKED;
1222 state->flag |= FLAG_DATA_SACKED;
1223 tp->sacked_out += pcount;
1224
1225 fack_count += pcount;
1226
1227 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1228 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1229 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1230 tp->lost_cnt_hint += pcount;
1231
1232 if (fack_count > tp->fackets_out)
1233 tp->fackets_out = fack_count;
1234 }
1235
1236 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1237 * frames and clear it. undo_retrans is decreased above, L|R frames
1238 * are accounted above as well.
1239 */
1240 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1241 sacked &= ~TCPCB_SACKED_RETRANS;
1242 tp->retrans_out -= pcount;
1243 }
1244
1245 return sacked;
1246 }
1247
1248 /* Shift newly-SACKed bytes from this skb to the immediately previous
1249 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1250 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1251 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1252 struct tcp_sacktag_state *state,
1253 unsigned int pcount, int shifted, int mss,
1254 bool dup_sack)
1255 {
1256 struct tcp_sock *tp = tcp_sk(sk);
1257 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1258 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1259 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1260
1261 BUG_ON(!pcount);
1262
1263 /* Adjust counters and hints for the newly sacked sequence
1264 * range but discard the return value since prev is already
1265 * marked. We must tag the range first because the seq
1266 * advancement below implicitly advances
1267 * tcp_highest_sack_seq() when skb is highest_sack.
1268 */
1269 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1270 start_seq, end_seq, dup_sack, pcount,
1271 &skb->skb_mstamp);
1272
1273 if (skb == tp->lost_skb_hint)
1274 tp->lost_cnt_hint += pcount;
1275
1276 TCP_SKB_CB(prev)->end_seq += shifted;
1277 TCP_SKB_CB(skb)->seq += shifted;
1278
1279 tcp_skb_pcount_add(prev, pcount);
1280 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1281 tcp_skb_pcount_add(skb, -pcount);
1282
1283 /* When we're adding to gso_segs == 1, gso_size will be zero,
1284 * in theory this shouldn't be necessary but as long as DSACK
1285 * code can come after this skb later on it's better to keep
1286 * setting gso_size to something.
1287 */
1288 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1290
1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292 if (tcp_skb_pcount(skb) <= 1)
1293 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1294
1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1297
1298 if (skb->len > 0) {
1299 BUG_ON(!tcp_skb_pcount(skb));
1300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1301 return false;
1302 }
1303
1304 /* Whole SKB was eaten :-) */
1305
1306 if (skb == tp->retransmit_skb_hint)
1307 tp->retransmit_skb_hint = prev;
1308 if (skb == tp->lost_skb_hint) {
1309 tp->lost_skb_hint = prev;
1310 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311 }
1312
1313 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1314 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1315 TCP_SKB_CB(prev)->end_seq++;
1316
1317 if (skb == tcp_highest_sack(sk))
1318 tcp_advance_highest_sack(sk, skb);
1319
1320 tcp_unlink_write_queue(skb, sk);
1321 sk_wmem_free_skb(sk, skb);
1322
1323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1324
1325 return true;
1326 }
1327
1328 /* I wish gso_size would have a bit more sane initialization than
1329 * something-or-zero which complicates things
1330 */
tcp_skb_seglen(const struct sk_buff * skb)1331 static int tcp_skb_seglen(const struct sk_buff *skb)
1332 {
1333 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1334 }
1335
1336 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1337 static int skb_can_shift(const struct sk_buff *skb)
1338 {
1339 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1340 }
1341
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1342 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1343 int pcount, int shiftlen)
1344 {
1345 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1346 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1347 * to make sure not storing more than 65535 * 8 bytes per skb,
1348 * even if current MSS is bigger.
1349 */
1350 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1351 return 0;
1352 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1353 return 0;
1354 return skb_shift(to, from, shiftlen);
1355 }
1356
1357 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1358 * skb.
1359 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1360 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1361 struct tcp_sacktag_state *state,
1362 u32 start_seq, u32 end_seq,
1363 bool dup_sack)
1364 {
1365 struct tcp_sock *tp = tcp_sk(sk);
1366 struct sk_buff *prev;
1367 int mss;
1368 int next_pcount;
1369 int pcount = 0;
1370 int len;
1371 int in_sack;
1372
1373 if (!sk_can_gso(sk))
1374 goto fallback;
1375
1376 /* Normally R but no L won't result in plain S */
1377 if (!dup_sack &&
1378 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1379 goto fallback;
1380 if (!skb_can_shift(skb))
1381 goto fallback;
1382 /* This frame is about to be dropped (was ACKed). */
1383 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1384 goto fallback;
1385
1386 /* Can only happen with delayed DSACK + discard craziness */
1387 if (unlikely(skb == tcp_write_queue_head(sk)))
1388 goto fallback;
1389 prev = tcp_write_queue_prev(sk, skb);
1390
1391 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1392 goto fallback;
1393
1394 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1395 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1396
1397 if (in_sack) {
1398 len = skb->len;
1399 pcount = tcp_skb_pcount(skb);
1400 mss = tcp_skb_seglen(skb);
1401
1402 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1403 * drop this restriction as unnecessary
1404 */
1405 if (mss != tcp_skb_seglen(prev))
1406 goto fallback;
1407 } else {
1408 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1409 goto noop;
1410 /* CHECKME: This is non-MSS split case only?, this will
1411 * cause skipped skbs due to advancing loop btw, original
1412 * has that feature too
1413 */
1414 if (tcp_skb_pcount(skb) <= 1)
1415 goto noop;
1416
1417 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1418 if (!in_sack) {
1419 /* TODO: head merge to next could be attempted here
1420 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1421 * though it might not be worth of the additional hassle
1422 *
1423 * ...we can probably just fallback to what was done
1424 * previously. We could try merging non-SACKed ones
1425 * as well but it probably isn't going to buy off
1426 * because later SACKs might again split them, and
1427 * it would make skb timestamp tracking considerably
1428 * harder problem.
1429 */
1430 goto fallback;
1431 }
1432
1433 len = end_seq - TCP_SKB_CB(skb)->seq;
1434 BUG_ON(len < 0);
1435 BUG_ON(len > skb->len);
1436
1437 /* MSS boundaries should be honoured or else pcount will
1438 * severely break even though it makes things bit trickier.
1439 * Optimize common case to avoid most of the divides
1440 */
1441 mss = tcp_skb_mss(skb);
1442
1443 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1444 * drop this restriction as unnecessary
1445 */
1446 if (mss != tcp_skb_seglen(prev))
1447 goto fallback;
1448
1449 if (len == mss) {
1450 pcount = 1;
1451 } else if (len < mss) {
1452 goto noop;
1453 } else {
1454 pcount = len / mss;
1455 len = pcount * mss;
1456 }
1457 }
1458
1459 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1460 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1461 goto fallback;
1462
1463 if (!tcp_skb_shift(prev, skb, pcount, len))
1464 goto fallback;
1465 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1466 goto out;
1467
1468 /* Hole filled allows collapsing with the next as well, this is very
1469 * useful when hole on every nth skb pattern happens
1470 */
1471 if (prev == tcp_write_queue_tail(sk))
1472 goto out;
1473 skb = tcp_write_queue_next(sk, prev);
1474
1475 if (!skb_can_shift(skb) ||
1476 (skb == tcp_send_head(sk)) ||
1477 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1478 (mss != tcp_skb_seglen(skb)))
1479 goto out;
1480
1481 len = skb->len;
1482 next_pcount = tcp_skb_pcount(skb);
1483 if (tcp_skb_shift(prev, skb, next_pcount, len)) {
1484 pcount += next_pcount;
1485 tcp_shifted_skb(sk, skb, state, next_pcount, len, mss, 0);
1486 }
1487 out:
1488 state->fack_count += pcount;
1489 return prev;
1490
1491 noop:
1492 return skb;
1493
1494 fallback:
1495 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1496 return NULL;
1497 }
1498
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1499 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1500 struct tcp_sack_block *next_dup,
1501 struct tcp_sacktag_state *state,
1502 u32 start_seq, u32 end_seq,
1503 bool dup_sack_in)
1504 {
1505 struct tcp_sock *tp = tcp_sk(sk);
1506 struct sk_buff *tmp;
1507
1508 tcp_for_write_queue_from(skb, sk) {
1509 int in_sack = 0;
1510 bool dup_sack = dup_sack_in;
1511
1512 if (skb == tcp_send_head(sk))
1513 break;
1514
1515 /* queue is in-order => we can short-circuit the walk early */
1516 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1517 break;
1518
1519 if (next_dup &&
1520 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1521 in_sack = tcp_match_skb_to_sack(sk, skb,
1522 next_dup->start_seq,
1523 next_dup->end_seq);
1524 if (in_sack > 0)
1525 dup_sack = true;
1526 }
1527
1528 /* skb reference here is a bit tricky to get right, since
1529 * shifting can eat and free both this skb and the next,
1530 * so not even _safe variant of the loop is enough.
1531 */
1532 if (in_sack <= 0) {
1533 tmp = tcp_shift_skb_data(sk, skb, state,
1534 start_seq, end_seq, dup_sack);
1535 if (tmp) {
1536 if (tmp != skb) {
1537 skb = tmp;
1538 continue;
1539 }
1540
1541 in_sack = 0;
1542 } else {
1543 in_sack = tcp_match_skb_to_sack(sk, skb,
1544 start_seq,
1545 end_seq);
1546 }
1547 }
1548
1549 if (unlikely(in_sack < 0))
1550 break;
1551
1552 if (in_sack) {
1553 TCP_SKB_CB(skb)->sacked =
1554 tcp_sacktag_one(sk,
1555 state,
1556 TCP_SKB_CB(skb)->sacked,
1557 TCP_SKB_CB(skb)->seq,
1558 TCP_SKB_CB(skb)->end_seq,
1559 dup_sack,
1560 tcp_skb_pcount(skb),
1561 &skb->skb_mstamp);
1562
1563 if (!before(TCP_SKB_CB(skb)->seq,
1564 tcp_highest_sack_seq(tp)))
1565 tcp_advance_highest_sack(sk, skb);
1566 }
1567
1568 state->fack_count += tcp_skb_pcount(skb);
1569 }
1570 return skb;
1571 }
1572
1573 /* Avoid all extra work that is being done by sacktag while walking in
1574 * a normal way
1575 */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1576 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1577 struct tcp_sacktag_state *state,
1578 u32 skip_to_seq)
1579 {
1580 tcp_for_write_queue_from(skb, sk) {
1581 if (skb == tcp_send_head(sk))
1582 break;
1583
1584 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1585 break;
1586
1587 state->fack_count += tcp_skb_pcount(skb);
1588 }
1589 return skb;
1590 }
1591
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1592 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1593 struct sock *sk,
1594 struct tcp_sack_block *next_dup,
1595 struct tcp_sacktag_state *state,
1596 u32 skip_to_seq)
1597 {
1598 if (!next_dup)
1599 return skb;
1600
1601 if (before(next_dup->start_seq, skip_to_seq)) {
1602 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1603 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1604 next_dup->start_seq, next_dup->end_seq,
1605 1);
1606 }
1607
1608 return skb;
1609 }
1610
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1611 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1612 {
1613 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1614 }
1615
1616 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1617 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1618 u32 prior_snd_una, struct tcp_sacktag_state *state)
1619 {
1620 struct tcp_sock *tp = tcp_sk(sk);
1621 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1622 TCP_SKB_CB(ack_skb)->sacked);
1623 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1624 struct tcp_sack_block sp[TCP_NUM_SACKS];
1625 struct tcp_sack_block *cache;
1626 struct sk_buff *skb;
1627 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1628 int used_sacks;
1629 bool found_dup_sack = false;
1630 int i, j;
1631 int first_sack_index;
1632
1633 state->flag = 0;
1634 state->reord = tp->packets_out;
1635
1636 if (!tp->sacked_out) {
1637 if (WARN_ON(tp->fackets_out))
1638 tp->fackets_out = 0;
1639 tcp_highest_sack_reset(sk);
1640 }
1641
1642 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1643 num_sacks, prior_snd_una);
1644 if (found_dup_sack)
1645 state->flag |= FLAG_DSACKING_ACK;
1646
1647 /* Eliminate too old ACKs, but take into
1648 * account more or less fresh ones, they can
1649 * contain valid SACK info.
1650 */
1651 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1652 return 0;
1653
1654 if (!tp->packets_out)
1655 goto out;
1656
1657 used_sacks = 0;
1658 first_sack_index = 0;
1659 for (i = 0; i < num_sacks; i++) {
1660 bool dup_sack = !i && found_dup_sack;
1661
1662 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1663 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1664
1665 if (!tcp_is_sackblock_valid(tp, dup_sack,
1666 sp[used_sacks].start_seq,
1667 sp[used_sacks].end_seq)) {
1668 int mib_idx;
1669
1670 if (dup_sack) {
1671 if (!tp->undo_marker)
1672 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1673 else
1674 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1675 } else {
1676 /* Don't count olds caused by ACK reordering */
1677 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1678 !after(sp[used_sacks].end_seq, tp->snd_una))
1679 continue;
1680 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1681 }
1682
1683 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1684 if (i == 0)
1685 first_sack_index = -1;
1686 continue;
1687 }
1688
1689 /* Ignore very old stuff early */
1690 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1691 if (i == 0)
1692 first_sack_index = -1;
1693 continue;
1694 }
1695
1696 used_sacks++;
1697 }
1698
1699 /* order SACK blocks to allow in order walk of the retrans queue */
1700 for (i = used_sacks - 1; i > 0; i--) {
1701 for (j = 0; j < i; j++) {
1702 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1703 swap(sp[j], sp[j + 1]);
1704
1705 /* Track where the first SACK block goes to */
1706 if (j == first_sack_index)
1707 first_sack_index = j + 1;
1708 }
1709 }
1710 }
1711
1712 skb = tcp_write_queue_head(sk);
1713 state->fack_count = 0;
1714 i = 0;
1715
1716 if (!tp->sacked_out) {
1717 /* It's already past, so skip checking against it */
1718 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1719 } else {
1720 cache = tp->recv_sack_cache;
1721 /* Skip empty blocks in at head of the cache */
1722 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1723 !cache->end_seq)
1724 cache++;
1725 }
1726
1727 while (i < used_sacks) {
1728 u32 start_seq = sp[i].start_seq;
1729 u32 end_seq = sp[i].end_seq;
1730 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1731 struct tcp_sack_block *next_dup = NULL;
1732
1733 if (found_dup_sack && ((i + 1) == first_sack_index))
1734 next_dup = &sp[i + 1];
1735
1736 /* Skip too early cached blocks */
1737 while (tcp_sack_cache_ok(tp, cache) &&
1738 !before(start_seq, cache->end_seq))
1739 cache++;
1740
1741 /* Can skip some work by looking recv_sack_cache? */
1742 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1743 after(end_seq, cache->start_seq)) {
1744
1745 /* Head todo? */
1746 if (before(start_seq, cache->start_seq)) {
1747 skb = tcp_sacktag_skip(skb, sk, state,
1748 start_seq);
1749 skb = tcp_sacktag_walk(skb, sk, next_dup,
1750 state,
1751 start_seq,
1752 cache->start_seq,
1753 dup_sack);
1754 }
1755
1756 /* Rest of the block already fully processed? */
1757 if (!after(end_seq, cache->end_seq))
1758 goto advance_sp;
1759
1760 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1761 state,
1762 cache->end_seq);
1763
1764 /* ...tail remains todo... */
1765 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1766 /* ...but better entrypoint exists! */
1767 skb = tcp_highest_sack(sk);
1768 if (!skb)
1769 break;
1770 state->fack_count = tp->fackets_out;
1771 cache++;
1772 goto walk;
1773 }
1774
1775 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1776 /* Check overlap against next cached too (past this one already) */
1777 cache++;
1778 continue;
1779 }
1780
1781 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1782 skb = tcp_highest_sack(sk);
1783 if (!skb)
1784 break;
1785 state->fack_count = tp->fackets_out;
1786 }
1787 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1788
1789 walk:
1790 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1791 start_seq, end_seq, dup_sack);
1792
1793 advance_sp:
1794 i++;
1795 }
1796
1797 /* Clear the head of the cache sack blocks so we can skip it next time */
1798 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1799 tp->recv_sack_cache[i].start_seq = 0;
1800 tp->recv_sack_cache[i].end_seq = 0;
1801 }
1802 for (j = 0; j < used_sacks; j++)
1803 tp->recv_sack_cache[i++] = sp[j];
1804
1805 if ((state->reord < tp->fackets_out) &&
1806 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1807 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1808
1809 tcp_verify_left_out(tp);
1810 out:
1811
1812 #if FASTRETRANS_DEBUG > 0
1813 WARN_ON((int)tp->sacked_out < 0);
1814 WARN_ON((int)tp->lost_out < 0);
1815 WARN_ON((int)tp->retrans_out < 0);
1816 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1817 #endif
1818 return state->flag;
1819 }
1820
1821 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1822 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1823 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1824 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1825 {
1826 u32 holes;
1827
1828 holes = max(tp->lost_out, 1U);
1829 holes = min(holes, tp->packets_out);
1830
1831 if ((tp->sacked_out + holes) > tp->packets_out) {
1832 tp->sacked_out = tp->packets_out - holes;
1833 return true;
1834 }
1835 return false;
1836 }
1837
1838 /* If we receive more dupacks than we expected counting segments
1839 * in assumption of absent reordering, interpret this as reordering.
1840 * The only another reason could be bug in receiver TCP.
1841 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1842 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1843 {
1844 struct tcp_sock *tp = tcp_sk(sk);
1845 if (tcp_limit_reno_sacked(tp))
1846 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1847 }
1848
1849 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1850
tcp_add_reno_sack(struct sock * sk)1851 static void tcp_add_reno_sack(struct sock *sk)
1852 {
1853 struct tcp_sock *tp = tcp_sk(sk);
1854 tp->sacked_out++;
1855 tcp_check_reno_reordering(sk, 0);
1856 tcp_verify_left_out(tp);
1857 }
1858
1859 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1860
tcp_remove_reno_sacks(struct sock * sk,int acked)1861 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1862 {
1863 struct tcp_sock *tp = tcp_sk(sk);
1864
1865 if (acked > 0) {
1866 /* One ACK acked hole. The rest eat duplicate ACKs. */
1867 if (acked - 1 >= tp->sacked_out)
1868 tp->sacked_out = 0;
1869 else
1870 tp->sacked_out -= acked - 1;
1871 }
1872 tcp_check_reno_reordering(sk, acked);
1873 tcp_verify_left_out(tp);
1874 }
1875
tcp_reset_reno_sack(struct tcp_sock * tp)1876 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1877 {
1878 tp->sacked_out = 0;
1879 }
1880
tcp_clear_retrans(struct tcp_sock * tp)1881 void tcp_clear_retrans(struct tcp_sock *tp)
1882 {
1883 tp->retrans_out = 0;
1884 tp->lost_out = 0;
1885 tp->undo_marker = 0;
1886 tp->undo_retrans = -1;
1887 tp->fackets_out = 0;
1888 tp->sacked_out = 0;
1889 }
1890
tcp_init_undo(struct tcp_sock * tp)1891 static inline void tcp_init_undo(struct tcp_sock *tp)
1892 {
1893 tp->undo_marker = tp->snd_una;
1894 /* Retransmission still in flight may cause DSACKs later. */
1895 tp->undo_retrans = tp->retrans_out ? : -1;
1896 }
1897
1898 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1899 * and reset tags completely, otherwise preserve SACKs. If receiver
1900 * dropped its ofo queue, we will know this due to reneging detection.
1901 */
tcp_enter_loss(struct sock * sk)1902 void tcp_enter_loss(struct sock *sk)
1903 {
1904 const struct inet_connection_sock *icsk = inet_csk(sk);
1905 struct tcp_sock *tp = tcp_sk(sk);
1906 struct sk_buff *skb;
1907 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1908 bool is_reneg; /* is receiver reneging on SACKs? */
1909
1910 /* Reduce ssthresh if it has not yet been made inside this window. */
1911 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1912 !after(tp->high_seq, tp->snd_una) ||
1913 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1914 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1915 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1916 tcp_ca_event(sk, CA_EVENT_LOSS);
1917 tcp_init_undo(tp);
1918 }
1919 tp->snd_cwnd = 1;
1920 tp->snd_cwnd_cnt = 0;
1921 tp->snd_cwnd_stamp = tcp_time_stamp;
1922
1923 tp->retrans_out = 0;
1924 tp->lost_out = 0;
1925
1926 if (tcp_is_reno(tp))
1927 tcp_reset_reno_sack(tp);
1928
1929 skb = tcp_write_queue_head(sk);
1930 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1931 if (is_reneg) {
1932 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1933 tp->sacked_out = 0;
1934 tp->fackets_out = 0;
1935 }
1936 tcp_clear_all_retrans_hints(tp);
1937
1938 tcp_for_write_queue(skb, sk) {
1939 if (skb == tcp_send_head(sk))
1940 break;
1941
1942 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1943 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1944 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1945 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1946 tp->lost_out += tcp_skb_pcount(skb);
1947 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1948 }
1949 }
1950 tcp_verify_left_out(tp);
1951
1952 /* Timeout in disordered state after receiving substantial DUPACKs
1953 * suggests that the degree of reordering is over-estimated.
1954 */
1955 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1956 tp->sacked_out >= sysctl_tcp_reordering)
1957 tp->reordering = min_t(unsigned int, tp->reordering,
1958 sysctl_tcp_reordering);
1959 tcp_set_ca_state(sk, TCP_CA_Loss);
1960 tp->high_seq = tp->snd_nxt;
1961 tcp_ecn_queue_cwr(tp);
1962
1963 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1964 * loss recovery is underway except recurring timeout(s) on
1965 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1966 */
1967 tp->frto = sysctl_tcp_frto &&
1968 (new_recovery || icsk->icsk_retransmits) &&
1969 !inet_csk(sk)->icsk_mtup.probe_size;
1970 }
1971
1972 /* If ACK arrived pointing to a remembered SACK, it means that our
1973 * remembered SACKs do not reflect real state of receiver i.e.
1974 * receiver _host_ is heavily congested (or buggy).
1975 *
1976 * To avoid big spurious retransmission bursts due to transient SACK
1977 * scoreboard oddities that look like reneging, we give the receiver a
1978 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1979 * restore sanity to the SACK scoreboard. If the apparent reneging
1980 * persists until this RTO then we'll clear the SACK scoreboard.
1981 */
tcp_check_sack_reneging(struct sock * sk,int flag)1982 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1983 {
1984 if (flag & FLAG_SACK_RENEGING) {
1985 struct tcp_sock *tp = tcp_sk(sk);
1986 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1987 msecs_to_jiffies(10));
1988
1989 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1990 delay, TCP_RTO_MAX);
1991 return true;
1992 }
1993 return false;
1994 }
1995
tcp_fackets_out(const struct tcp_sock * tp)1996 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1997 {
1998 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1999 }
2000
2001 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2002 * counter when SACK is enabled (without SACK, sacked_out is used for
2003 * that purpose).
2004 *
2005 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2006 * segments up to the highest received SACK block so far and holes in
2007 * between them.
2008 *
2009 * With reordering, holes may still be in flight, so RFC3517 recovery
2010 * uses pure sacked_out (total number of SACKed segments) even though
2011 * it violates the RFC that uses duplicate ACKs, often these are equal
2012 * but when e.g. out-of-window ACKs or packet duplication occurs,
2013 * they differ. Since neither occurs due to loss, TCP should really
2014 * ignore them.
2015 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2016 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2017 {
2018 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2019 }
2020
tcp_pause_early_retransmit(struct sock * sk,int flag)2021 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2022 {
2023 struct tcp_sock *tp = tcp_sk(sk);
2024 unsigned long delay;
2025
2026 /* Delay early retransmit and entering fast recovery for
2027 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2028 * available, or RTO is scheduled to fire first.
2029 */
2030 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2031 (flag & FLAG_ECE) || !tp->srtt_us)
2032 return false;
2033
2034 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2035 msecs_to_jiffies(2));
2036
2037 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2038 return false;
2039
2040 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2041 TCP_RTO_MAX);
2042 return true;
2043 }
2044
2045 /* Linux NewReno/SACK/FACK/ECN state machine.
2046 * --------------------------------------
2047 *
2048 * "Open" Normal state, no dubious events, fast path.
2049 * "Disorder" In all the respects it is "Open",
2050 * but requires a bit more attention. It is entered when
2051 * we see some SACKs or dupacks. It is split of "Open"
2052 * mainly to move some processing from fast path to slow one.
2053 * "CWR" CWND was reduced due to some Congestion Notification event.
2054 * It can be ECN, ICMP source quench, local device congestion.
2055 * "Recovery" CWND was reduced, we are fast-retransmitting.
2056 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2057 *
2058 * tcp_fastretrans_alert() is entered:
2059 * - each incoming ACK, if state is not "Open"
2060 * - when arrived ACK is unusual, namely:
2061 * * SACK
2062 * * Duplicate ACK.
2063 * * ECN ECE.
2064 *
2065 * Counting packets in flight is pretty simple.
2066 *
2067 * in_flight = packets_out - left_out + retrans_out
2068 *
2069 * packets_out is SND.NXT-SND.UNA counted in packets.
2070 *
2071 * retrans_out is number of retransmitted segments.
2072 *
2073 * left_out is number of segments left network, but not ACKed yet.
2074 *
2075 * left_out = sacked_out + lost_out
2076 *
2077 * sacked_out: Packets, which arrived to receiver out of order
2078 * and hence not ACKed. With SACKs this number is simply
2079 * amount of SACKed data. Even without SACKs
2080 * it is easy to give pretty reliable estimate of this number,
2081 * counting duplicate ACKs.
2082 *
2083 * lost_out: Packets lost by network. TCP has no explicit
2084 * "loss notification" feedback from network (for now).
2085 * It means that this number can be only _guessed_.
2086 * Actually, it is the heuristics to predict lossage that
2087 * distinguishes different algorithms.
2088 *
2089 * F.e. after RTO, when all the queue is considered as lost,
2090 * lost_out = packets_out and in_flight = retrans_out.
2091 *
2092 * Essentially, we have now two algorithms counting
2093 * lost packets.
2094 *
2095 * FACK: It is the simplest heuristics. As soon as we decided
2096 * that something is lost, we decide that _all_ not SACKed
2097 * packets until the most forward SACK are lost. I.e.
2098 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2099 * It is absolutely correct estimate, if network does not reorder
2100 * packets. And it loses any connection to reality when reordering
2101 * takes place. We use FACK by default until reordering
2102 * is suspected on the path to this destination.
2103 *
2104 * NewReno: when Recovery is entered, we assume that one segment
2105 * is lost (classic Reno). While we are in Recovery and
2106 * a partial ACK arrives, we assume that one more packet
2107 * is lost (NewReno). This heuristics are the same in NewReno
2108 * and SACK.
2109 *
2110 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2111 * deflation etc. CWND is real congestion window, never inflated, changes
2112 * only according to classic VJ rules.
2113 *
2114 * Really tricky (and requiring careful tuning) part of algorithm
2115 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2116 * The first determines the moment _when_ we should reduce CWND and,
2117 * hence, slow down forward transmission. In fact, it determines the moment
2118 * when we decide that hole is caused by loss, rather than by a reorder.
2119 *
2120 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2121 * holes, caused by lost packets.
2122 *
2123 * And the most logically complicated part of algorithm is undo
2124 * heuristics. We detect false retransmits due to both too early
2125 * fast retransmit (reordering) and underestimated RTO, analyzing
2126 * timestamps and D-SACKs. When we detect that some segments were
2127 * retransmitted by mistake and CWND reduction was wrong, we undo
2128 * window reduction and abort recovery phase. This logic is hidden
2129 * inside several functions named tcp_try_undo_<something>.
2130 */
2131
2132 /* This function decides, when we should leave Disordered state
2133 * and enter Recovery phase, reducing congestion window.
2134 *
2135 * Main question: may we further continue forward transmission
2136 * with the same cwnd?
2137 */
tcp_time_to_recover(struct sock * sk,int flag)2138 static bool tcp_time_to_recover(struct sock *sk, int flag)
2139 {
2140 struct tcp_sock *tp = tcp_sk(sk);
2141 __u32 packets_out;
2142
2143 /* Trick#1: The loss is proven. */
2144 if (tp->lost_out)
2145 return true;
2146
2147 /* Not-A-Trick#2 : Classic rule... */
2148 if (tcp_dupack_heuristics(tp) > tp->reordering)
2149 return true;
2150
2151 /* Trick#4: It is still not OK... But will it be useful to delay
2152 * recovery more?
2153 */
2154 packets_out = tp->packets_out;
2155 if (packets_out <= tp->reordering &&
2156 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2157 !tcp_may_send_now(sk)) {
2158 /* We have nothing to send. This connection is limited
2159 * either by receiver window or by application.
2160 */
2161 return true;
2162 }
2163
2164 /* If a thin stream is detected, retransmit after first
2165 * received dupack. Employ only if SACK is supported in order
2166 * to avoid possible corner-case series of spurious retransmissions
2167 * Use only if there are no unsent data.
2168 */
2169 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2170 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2171 tcp_is_sack(tp) && !tcp_send_head(sk))
2172 return true;
2173
2174 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2175 * retransmissions due to small network reorderings, we implement
2176 * Mitigation A.3 in the RFC and delay the retransmission for a short
2177 * interval if appropriate.
2178 */
2179 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2180 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2181 !tcp_may_send_now(sk))
2182 return !tcp_pause_early_retransmit(sk, flag);
2183
2184 return false;
2185 }
2186
2187 /* Detect loss in event "A" above by marking head of queue up as lost.
2188 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2189 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2190 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2191 * the maximum SACKed segments to pass before reaching this limit.
2192 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2193 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2194 {
2195 struct tcp_sock *tp = tcp_sk(sk);
2196 struct sk_buff *skb;
2197 int cnt, oldcnt, lost;
2198 unsigned int mss;
2199 /* Use SACK to deduce losses of new sequences sent during recovery */
2200 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2201
2202 WARN_ON(packets > tp->packets_out);
2203 if (tp->lost_skb_hint) {
2204 skb = tp->lost_skb_hint;
2205 cnt = tp->lost_cnt_hint;
2206 /* Head already handled? */
2207 if (mark_head && skb != tcp_write_queue_head(sk))
2208 return;
2209 } else {
2210 skb = tcp_write_queue_head(sk);
2211 cnt = 0;
2212 }
2213
2214 tcp_for_write_queue_from(skb, sk) {
2215 if (skb == tcp_send_head(sk))
2216 break;
2217 /* TODO: do this better */
2218 /* this is not the most efficient way to do this... */
2219 tp->lost_skb_hint = skb;
2220 tp->lost_cnt_hint = cnt;
2221
2222 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2223 break;
2224
2225 oldcnt = cnt;
2226 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2227 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2228 cnt += tcp_skb_pcount(skb);
2229
2230 if (cnt > packets) {
2231 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2233 (oldcnt >= packets))
2234 break;
2235
2236 mss = tcp_skb_mss(skb);
2237 /* If needed, chop off the prefix to mark as lost. */
2238 lost = (packets - oldcnt) * mss;
2239 if (lost < skb->len &&
2240 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2241 break;
2242 cnt = packets;
2243 }
2244
2245 tcp_skb_mark_lost(tp, skb);
2246
2247 if (mark_head)
2248 break;
2249 }
2250 tcp_verify_left_out(tp);
2251 }
2252
2253 /* Account newly detected lost packet(s) */
2254
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2255 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2256 {
2257 struct tcp_sock *tp = tcp_sk(sk);
2258
2259 if (tcp_is_reno(tp)) {
2260 tcp_mark_head_lost(sk, 1, 1);
2261 } else if (tcp_is_fack(tp)) {
2262 int lost = tp->fackets_out - tp->reordering;
2263 if (lost <= 0)
2264 lost = 1;
2265 tcp_mark_head_lost(sk, lost, 0);
2266 } else {
2267 int sacked_upto = tp->sacked_out - tp->reordering;
2268 if (sacked_upto >= 0)
2269 tcp_mark_head_lost(sk, sacked_upto, 0);
2270 else if (fast_rexmit)
2271 tcp_mark_head_lost(sk, 1, 1);
2272 }
2273 }
2274
2275 /* CWND moderation, preventing bursts due to too big ACKs
2276 * in dubious situations.
2277 */
tcp_moderate_cwnd(struct tcp_sock * tp)2278 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2279 {
2280 tp->snd_cwnd = min(tp->snd_cwnd,
2281 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2282 tp->snd_cwnd_stamp = tcp_time_stamp;
2283 }
2284
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2285 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2286 {
2287 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2288 before(tp->rx_opt.rcv_tsecr, when);
2289 }
2290
2291 /* skb is spurious retransmitted if the returned timestamp echo
2292 * reply is prior to the skb transmission time
2293 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2294 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2295 const struct sk_buff *skb)
2296 {
2297 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2298 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2299 }
2300
2301 /* Nothing was retransmitted or returned timestamp is less
2302 * than timestamp of the first retransmission.
2303 */
tcp_packet_delayed(const struct tcp_sock * tp)2304 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2305 {
2306 return !tp->retrans_stamp ||
2307 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2308 }
2309
2310 /* Undo procedures. */
2311
2312 /* We can clear retrans_stamp when there are no retransmissions in the
2313 * window. It would seem that it is trivially available for us in
2314 * tp->retrans_out, however, that kind of assumptions doesn't consider
2315 * what will happen if errors occur when sending retransmission for the
2316 * second time. ...It could the that such segment has only
2317 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2318 * the head skb is enough except for some reneging corner cases that
2319 * are not worth the effort.
2320 *
2321 * Main reason for all this complexity is the fact that connection dying
2322 * time now depends on the validity of the retrans_stamp, in particular,
2323 * that successive retransmissions of a segment must not advance
2324 * retrans_stamp under any conditions.
2325 */
tcp_any_retrans_done(const struct sock * sk)2326 static bool tcp_any_retrans_done(const struct sock *sk)
2327 {
2328 const struct tcp_sock *tp = tcp_sk(sk);
2329 struct sk_buff *skb;
2330
2331 if (tp->retrans_out)
2332 return true;
2333
2334 skb = tcp_write_queue_head(sk);
2335 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2336 return true;
2337
2338 return false;
2339 }
2340
2341 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2342 static void DBGUNDO(struct sock *sk, const char *msg)
2343 {
2344 struct tcp_sock *tp = tcp_sk(sk);
2345 struct inet_sock *inet = inet_sk(sk);
2346
2347 if (sk->sk_family == AF_INET) {
2348 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2349 msg,
2350 &inet->inet_daddr, ntohs(inet->inet_dport),
2351 tp->snd_cwnd, tcp_left_out(tp),
2352 tp->snd_ssthresh, tp->prior_ssthresh,
2353 tp->packets_out);
2354 }
2355 #if IS_ENABLED(CONFIG_IPV6)
2356 else if (sk->sk_family == AF_INET6) {
2357 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2358 msg,
2359 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2360 tp->snd_cwnd, tcp_left_out(tp),
2361 tp->snd_ssthresh, tp->prior_ssthresh,
2362 tp->packets_out);
2363 }
2364 #endif
2365 }
2366 #else
2367 #define DBGUNDO(x...) do { } while (0)
2368 #endif
2369
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2370 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2371 {
2372 struct tcp_sock *tp = tcp_sk(sk);
2373
2374 if (unmark_loss) {
2375 struct sk_buff *skb;
2376
2377 tcp_for_write_queue(skb, sk) {
2378 if (skb == tcp_send_head(sk))
2379 break;
2380 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2381 }
2382 tp->lost_out = 0;
2383 tcp_clear_all_retrans_hints(tp);
2384 }
2385
2386 if (tp->prior_ssthresh) {
2387 const struct inet_connection_sock *icsk = inet_csk(sk);
2388
2389 if (icsk->icsk_ca_ops->undo_cwnd)
2390 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2391 else
2392 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2393
2394 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2395 tp->snd_ssthresh = tp->prior_ssthresh;
2396 tcp_ecn_withdraw_cwr(tp);
2397 }
2398 } else {
2399 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2400 }
2401 tp->snd_cwnd_stamp = tcp_time_stamp;
2402 tp->undo_marker = 0;
2403 }
2404
tcp_may_undo(const struct tcp_sock * tp)2405 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2406 {
2407 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2408 }
2409
2410 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2411 static bool tcp_try_undo_recovery(struct sock *sk)
2412 {
2413 struct tcp_sock *tp = tcp_sk(sk);
2414
2415 if (tcp_may_undo(tp)) {
2416 int mib_idx;
2417
2418 /* Happy end! We did not retransmit anything
2419 * or our original transmission succeeded.
2420 */
2421 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2422 tcp_undo_cwnd_reduction(sk, false);
2423 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2424 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2425 else
2426 mib_idx = LINUX_MIB_TCPFULLUNDO;
2427
2428 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2429 }
2430 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2431 /* Hold old state until something *above* high_seq
2432 * is ACKed. For Reno it is MUST to prevent false
2433 * fast retransmits (RFC2582). SACK TCP is safe. */
2434 tcp_moderate_cwnd(tp);
2435 if (!tcp_any_retrans_done(sk))
2436 tp->retrans_stamp = 0;
2437 return true;
2438 }
2439 tcp_set_ca_state(sk, TCP_CA_Open);
2440 return false;
2441 }
2442
2443 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2444 static bool tcp_try_undo_dsack(struct sock *sk)
2445 {
2446 struct tcp_sock *tp = tcp_sk(sk);
2447
2448 if (tp->undo_marker && !tp->undo_retrans) {
2449 DBGUNDO(sk, "D-SACK");
2450 tcp_undo_cwnd_reduction(sk, false);
2451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2452 return true;
2453 }
2454 return false;
2455 }
2456
2457 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2458 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2459 {
2460 struct tcp_sock *tp = tcp_sk(sk);
2461
2462 if (frto_undo || tcp_may_undo(tp)) {
2463 tcp_undo_cwnd_reduction(sk, true);
2464
2465 DBGUNDO(sk, "partial loss");
2466 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2467 if (frto_undo)
2468 NET_INC_STATS_BH(sock_net(sk),
2469 LINUX_MIB_TCPSPURIOUSRTOS);
2470 inet_csk(sk)->icsk_retransmits = 0;
2471 if (frto_undo || tcp_is_sack(tp))
2472 tcp_set_ca_state(sk, TCP_CA_Open);
2473 return true;
2474 }
2475 return false;
2476 }
2477
2478 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2479 * It computes the number of packets to send (sndcnt) based on packets newly
2480 * delivered:
2481 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2482 * cwnd reductions across a full RTT.
2483 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2484 * But when the retransmits are acked without further losses, PRR
2485 * slow starts cwnd up to ssthresh to speed up the recovery.
2486 */
tcp_init_cwnd_reduction(struct sock * sk)2487 static void tcp_init_cwnd_reduction(struct sock *sk)
2488 {
2489 struct tcp_sock *tp = tcp_sk(sk);
2490
2491 tp->high_seq = tp->snd_nxt;
2492 tp->tlp_high_seq = 0;
2493 tp->snd_cwnd_cnt = 0;
2494 tp->prior_cwnd = tp->snd_cwnd;
2495 tp->prr_delivered = 0;
2496 tp->prr_out = 0;
2497 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2498 tcp_ecn_queue_cwr(tp);
2499 }
2500
tcp_cwnd_reduction(struct sock * sk,const int prior_unsacked,int fast_rexmit,int flag)2501 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2502 int fast_rexmit, int flag)
2503 {
2504 struct tcp_sock *tp = tcp_sk(sk);
2505 int sndcnt = 0;
2506 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2507 int newly_acked_sacked = prior_unsacked -
2508 (tp->packets_out - tp->sacked_out);
2509
2510 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2511 return;
2512
2513 tp->prr_delivered += newly_acked_sacked;
2514 if (delta < 0) {
2515 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2516 tp->prior_cwnd - 1;
2517 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2518 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2519 !(flag & FLAG_LOST_RETRANS)) {
2520 sndcnt = min_t(int, delta,
2521 max_t(int, tp->prr_delivered - tp->prr_out,
2522 newly_acked_sacked) + 1);
2523 } else {
2524 sndcnt = min(delta, newly_acked_sacked);
2525 }
2526 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2527 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2528 }
2529
tcp_end_cwnd_reduction(struct sock * sk)2530 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2531 {
2532 struct tcp_sock *tp = tcp_sk(sk);
2533
2534 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2535 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2536 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2537 tp->snd_cwnd = tp->snd_ssthresh;
2538 tp->snd_cwnd_stamp = tcp_time_stamp;
2539 }
2540 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2541 }
2542
2543 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2544 void tcp_enter_cwr(struct sock *sk)
2545 {
2546 struct tcp_sock *tp = tcp_sk(sk);
2547
2548 tp->prior_ssthresh = 0;
2549 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2550 tp->undo_marker = 0;
2551 tcp_init_cwnd_reduction(sk);
2552 tcp_set_ca_state(sk, TCP_CA_CWR);
2553 }
2554 }
2555 EXPORT_SYMBOL(tcp_enter_cwr);
2556
tcp_try_keep_open(struct sock * sk)2557 static void tcp_try_keep_open(struct sock *sk)
2558 {
2559 struct tcp_sock *tp = tcp_sk(sk);
2560 int state = TCP_CA_Open;
2561
2562 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2563 state = TCP_CA_Disorder;
2564
2565 if (inet_csk(sk)->icsk_ca_state != state) {
2566 tcp_set_ca_state(sk, state);
2567 tp->high_seq = tp->snd_nxt;
2568 }
2569 }
2570
tcp_try_to_open(struct sock * sk,int flag,const int prior_unsacked)2571 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2572 {
2573 struct tcp_sock *tp = tcp_sk(sk);
2574
2575 tcp_verify_left_out(tp);
2576
2577 if (!tcp_any_retrans_done(sk))
2578 tp->retrans_stamp = 0;
2579
2580 if (flag & FLAG_ECE)
2581 tcp_enter_cwr(sk);
2582
2583 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2584 tcp_try_keep_open(sk);
2585 } else {
2586 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2587 }
2588 }
2589
tcp_mtup_probe_failed(struct sock * sk)2590 static void tcp_mtup_probe_failed(struct sock *sk)
2591 {
2592 struct inet_connection_sock *icsk = inet_csk(sk);
2593
2594 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2595 icsk->icsk_mtup.probe_size = 0;
2596 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2597 }
2598
tcp_mtup_probe_success(struct sock * sk)2599 static void tcp_mtup_probe_success(struct sock *sk)
2600 {
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 struct inet_connection_sock *icsk = inet_csk(sk);
2603
2604 /* FIXME: breaks with very large cwnd */
2605 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2606 tp->snd_cwnd = tp->snd_cwnd *
2607 tcp_mss_to_mtu(sk, tp->mss_cache) /
2608 icsk->icsk_mtup.probe_size;
2609 tp->snd_cwnd_cnt = 0;
2610 tp->snd_cwnd_stamp = tcp_time_stamp;
2611 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2612
2613 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2614 icsk->icsk_mtup.probe_size = 0;
2615 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2616 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2617 }
2618
2619 /* Do a simple retransmit without using the backoff mechanisms in
2620 * tcp_timer. This is used for path mtu discovery.
2621 * The socket is already locked here.
2622 */
tcp_simple_retransmit(struct sock * sk)2623 void tcp_simple_retransmit(struct sock *sk)
2624 {
2625 const struct inet_connection_sock *icsk = inet_csk(sk);
2626 struct tcp_sock *tp = tcp_sk(sk);
2627 struct sk_buff *skb;
2628 unsigned int mss = tcp_current_mss(sk);
2629 u32 prior_lost = tp->lost_out;
2630
2631 tcp_for_write_queue(skb, sk) {
2632 if (skb == tcp_send_head(sk))
2633 break;
2634 if (tcp_skb_seglen(skb) > mss &&
2635 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2636 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2637 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2638 tp->retrans_out -= tcp_skb_pcount(skb);
2639 }
2640 tcp_skb_mark_lost_uncond_verify(tp, skb);
2641 }
2642 }
2643
2644 tcp_clear_retrans_hints_partial(tp);
2645
2646 if (prior_lost == tp->lost_out)
2647 return;
2648
2649 if (tcp_is_reno(tp))
2650 tcp_limit_reno_sacked(tp);
2651
2652 tcp_verify_left_out(tp);
2653
2654 /* Don't muck with the congestion window here.
2655 * Reason is that we do not increase amount of _data_
2656 * in network, but units changed and effective
2657 * cwnd/ssthresh really reduced now.
2658 */
2659 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2660 tp->high_seq = tp->snd_nxt;
2661 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2662 tp->prior_ssthresh = 0;
2663 tp->undo_marker = 0;
2664 tcp_set_ca_state(sk, TCP_CA_Loss);
2665 }
2666 tcp_xmit_retransmit_queue(sk);
2667 }
2668 EXPORT_SYMBOL(tcp_simple_retransmit);
2669
tcp_enter_recovery(struct sock * sk,bool ece_ack)2670 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2671 {
2672 struct tcp_sock *tp = tcp_sk(sk);
2673 int mib_idx;
2674
2675 if (tcp_is_reno(tp))
2676 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2677 else
2678 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2679
2680 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681
2682 tp->prior_ssthresh = 0;
2683 tcp_init_undo(tp);
2684
2685 if (!tcp_in_cwnd_reduction(sk)) {
2686 if (!ece_ack)
2687 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2688 tcp_init_cwnd_reduction(sk);
2689 }
2690 tcp_set_ca_state(sk, TCP_CA_Recovery);
2691 }
2692
2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2694 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2695 */
tcp_process_loss(struct sock * sk,int flag,bool is_dupack)2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2697 {
2698 struct tcp_sock *tp = tcp_sk(sk);
2699 bool recovered = !before(tp->snd_una, tp->high_seq);
2700
2701 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2702 tcp_try_undo_loss(sk, false))
2703 return;
2704
2705 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706 /* Step 3.b. A timeout is spurious if not all data are
2707 * lost, i.e., never-retransmitted data are (s)acked.
2708 */
2709 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2710 tcp_try_undo_loss(sk, true))
2711 return;
2712
2713 if (after(tp->snd_nxt, tp->high_seq)) {
2714 if (flag & FLAG_DATA_SACKED || is_dupack)
2715 tp->frto = 0; /* Step 3.a. loss was real */
2716 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2717 tp->high_seq = tp->snd_nxt;
2718 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2719 TCP_NAGLE_OFF);
2720 if (after(tp->snd_nxt, tp->high_seq))
2721 return; /* Step 2.b */
2722 tp->frto = 0;
2723 }
2724 }
2725
2726 if (recovered) {
2727 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2728 tcp_try_undo_recovery(sk);
2729 return;
2730 }
2731 if (tcp_is_reno(tp)) {
2732 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2733 * delivered. Lower inflight to clock out (re)tranmissions.
2734 */
2735 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2736 tcp_add_reno_sack(sk);
2737 else if (flag & FLAG_SND_UNA_ADVANCED)
2738 tcp_reset_reno_sack(tp);
2739 }
2740 tcp_xmit_retransmit_queue(sk);
2741 }
2742
2743 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,const int acked,const int prior_unsacked,int flag)2744 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2745 const int prior_unsacked, int flag)
2746 {
2747 struct tcp_sock *tp = tcp_sk(sk);
2748
2749 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2750 /* Plain luck! Hole if filled with delayed
2751 * packet, rather than with a retransmit.
2752 */
2753 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2754
2755 /* We are getting evidence that the reordering degree is higher
2756 * than we realized. If there are no retransmits out then we
2757 * can undo. Otherwise we clock out new packets but do not
2758 * mark more packets lost or retransmit more.
2759 */
2760 if (tp->retrans_out) {
2761 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2762 return true;
2763 }
2764
2765 if (!tcp_any_retrans_done(sk))
2766 tp->retrans_stamp = 0;
2767
2768 DBGUNDO(sk, "partial recovery");
2769 tcp_undo_cwnd_reduction(sk, true);
2770 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2771 tcp_try_keep_open(sk);
2772 return true;
2773 }
2774 return false;
2775 }
2776
2777 /* Process an event, which can update packets-in-flight not trivially.
2778 * Main goal of this function is to calculate new estimate for left_out,
2779 * taking into account both packets sitting in receiver's buffer and
2780 * packets lost by network.
2781 *
2782 * Besides that it does CWND reduction, when packet loss is detected
2783 * and changes state of machine.
2784 *
2785 * It does _not_ decide what to send, it is made in function
2786 * tcp_xmit_retransmit_queue().
2787 */
tcp_fastretrans_alert(struct sock * sk,const int acked,const int prior_unsacked,bool is_dupack,int flag)2788 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2789 const int prior_unsacked,
2790 bool is_dupack, int flag)
2791 {
2792 struct inet_connection_sock *icsk = inet_csk(sk);
2793 struct tcp_sock *tp = tcp_sk(sk);
2794 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2795 (tcp_fackets_out(tp) > tp->reordering));
2796 int fast_rexmit = 0;
2797
2798 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2799 tp->sacked_out = 0;
2800 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2801 tp->fackets_out = 0;
2802
2803 /* Now state machine starts.
2804 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2805 if (flag & FLAG_ECE)
2806 tp->prior_ssthresh = 0;
2807
2808 /* B. In all the states check for reneging SACKs. */
2809 if (tcp_check_sack_reneging(sk, flag))
2810 return;
2811
2812 /* C. Check consistency of the current state. */
2813 tcp_verify_left_out(tp);
2814
2815 /* D. Check state exit conditions. State can be terminated
2816 * when high_seq is ACKed. */
2817 if (icsk->icsk_ca_state == TCP_CA_Open) {
2818 WARN_ON(tp->retrans_out != 0);
2819 tp->retrans_stamp = 0;
2820 } else if (!before(tp->snd_una, tp->high_seq)) {
2821 switch (icsk->icsk_ca_state) {
2822 case TCP_CA_CWR:
2823 /* CWR is to be held something *above* high_seq
2824 * is ACKed for CWR bit to reach receiver. */
2825 if (tp->snd_una != tp->high_seq) {
2826 tcp_end_cwnd_reduction(sk);
2827 tcp_set_ca_state(sk, TCP_CA_Open);
2828 }
2829 break;
2830
2831 case TCP_CA_Recovery:
2832 if (tcp_is_reno(tp))
2833 tcp_reset_reno_sack(tp);
2834 if (tcp_try_undo_recovery(sk))
2835 return;
2836 tcp_end_cwnd_reduction(sk);
2837 break;
2838 }
2839 }
2840
2841 /* Use RACK to detect loss */
2842 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2843 tcp_rack_mark_lost(sk))
2844 flag |= FLAG_LOST_RETRANS;
2845
2846 /* E. Process state. */
2847 switch (icsk->icsk_ca_state) {
2848 case TCP_CA_Recovery:
2849 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2850 if (tcp_is_reno(tp) && is_dupack)
2851 tcp_add_reno_sack(sk);
2852 } else {
2853 if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2854 return;
2855 /* Partial ACK arrived. Force fast retransmit. */
2856 do_lost = tcp_is_reno(tp) ||
2857 tcp_fackets_out(tp) > tp->reordering;
2858 }
2859 if (tcp_try_undo_dsack(sk)) {
2860 tcp_try_keep_open(sk);
2861 return;
2862 }
2863 break;
2864 case TCP_CA_Loss:
2865 tcp_process_loss(sk, flag, is_dupack);
2866 if (icsk->icsk_ca_state != TCP_CA_Open &&
2867 !(flag & FLAG_LOST_RETRANS))
2868 return;
2869 /* Change state if cwnd is undone or retransmits are lost */
2870 default:
2871 if (tcp_is_reno(tp)) {
2872 if (flag & FLAG_SND_UNA_ADVANCED)
2873 tcp_reset_reno_sack(tp);
2874 if (is_dupack)
2875 tcp_add_reno_sack(sk);
2876 }
2877
2878 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2879 tcp_try_undo_dsack(sk);
2880
2881 if (!tcp_time_to_recover(sk, flag)) {
2882 tcp_try_to_open(sk, flag, prior_unsacked);
2883 return;
2884 }
2885
2886 /* MTU probe failure: don't reduce cwnd */
2887 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2888 icsk->icsk_mtup.probe_size &&
2889 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2890 tcp_mtup_probe_failed(sk);
2891 /* Restores the reduction we did in tcp_mtup_probe() */
2892 tp->snd_cwnd++;
2893 tcp_simple_retransmit(sk);
2894 return;
2895 }
2896
2897 /* Otherwise enter Recovery state */
2898 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2899 fast_rexmit = 1;
2900 }
2901
2902 if (do_lost)
2903 tcp_update_scoreboard(sk, fast_rexmit);
2904 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2905 tcp_xmit_retransmit_queue(sk);
2906 }
2907
2908 /* Kathleen Nichols' algorithm for tracking the minimum value of
2909 * a data stream over some fixed time interval. (E.g., the minimum
2910 * RTT over the past five minutes.) It uses constant space and constant
2911 * time per update yet almost always delivers the same minimum as an
2912 * implementation that has to keep all the data in the window.
2913 *
2914 * The algorithm keeps track of the best, 2nd best & 3rd best min
2915 * values, maintaining an invariant that the measurement time of the
2916 * n'th best >= n-1'th best. It also makes sure that the three values
2917 * are widely separated in the time window since that bounds the worse
2918 * case error when that data is monotonically increasing over the window.
2919 *
2920 * Upon getting a new min, we can forget everything earlier because it
2921 * has no value - the new min is <= everything else in the window by
2922 * definition and it's the most recent. So we restart fresh on every new min
2923 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2924 * best.
2925 */
tcp_update_rtt_min(struct sock * sk,u32 rtt_us)2926 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2927 {
2928 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2929 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2930 struct rtt_meas rttm = {
2931 .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2932 .ts = now,
2933 };
2934 u32 elapsed;
2935
2936 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2937 if (unlikely(rttm.rtt <= m[0].rtt))
2938 m[0] = m[1] = m[2] = rttm;
2939 else if (rttm.rtt <= m[1].rtt)
2940 m[1] = m[2] = rttm;
2941 else if (rttm.rtt <= m[2].rtt)
2942 m[2] = rttm;
2943
2944 elapsed = now - m[0].ts;
2945 if (unlikely(elapsed > wlen)) {
2946 /* Passed entire window without a new min so make 2nd choice
2947 * the new min & 3rd choice the new 2nd. So forth and so on.
2948 */
2949 m[0] = m[1];
2950 m[1] = m[2];
2951 m[2] = rttm;
2952 if (now - m[0].ts > wlen) {
2953 m[0] = m[1];
2954 m[1] = rttm;
2955 if (now - m[0].ts > wlen)
2956 m[0] = rttm;
2957 }
2958 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2959 /* Passed a quarter of the window without a new min so
2960 * take 2nd choice from the 2nd quarter of the window.
2961 */
2962 m[2] = m[1] = rttm;
2963 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2964 /* Passed half the window without a new min so take the 3rd
2965 * choice from the last half of the window.
2966 */
2967 m[2] = rttm;
2968 }
2969 }
2970
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us)2971 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2972 long seq_rtt_us, long sack_rtt_us,
2973 long ca_rtt_us)
2974 {
2975 const struct tcp_sock *tp = tcp_sk(sk);
2976
2977 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2978 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2979 * Karn's algorithm forbids taking RTT if some retransmitted data
2980 * is acked (RFC6298).
2981 */
2982 if (seq_rtt_us < 0)
2983 seq_rtt_us = sack_rtt_us;
2984
2985 /* RTTM Rule: A TSecr value received in a segment is used to
2986 * update the averaged RTT measurement only if the segment
2987 * acknowledges some new data, i.e., only if it advances the
2988 * left edge of the send window.
2989 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2990 */
2991 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2992 flag & FLAG_ACKED)
2993 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2994 tp->rx_opt.rcv_tsecr);
2995 if (seq_rtt_us < 0)
2996 return false;
2997
2998 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2999 * always taken together with ACK, SACK, or TS-opts. Any negative
3000 * values will be skipped with the seq_rtt_us < 0 check above.
3001 */
3002 tcp_update_rtt_min(sk, ca_rtt_us);
3003 tcp_rtt_estimator(sk, seq_rtt_us);
3004 tcp_set_rto(sk);
3005
3006 /* RFC6298: only reset backoff on valid RTT measurement. */
3007 inet_csk(sk)->icsk_backoff = 0;
3008 return true;
3009 }
3010
3011 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3012 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3013 {
3014 long rtt_us = -1L;
3015
3016 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
3017 struct skb_mstamp now;
3018
3019 skb_mstamp_get(&now);
3020 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3021 }
3022
3023 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3024 }
3025
3026
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3027 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3028 {
3029 const struct inet_connection_sock *icsk = inet_csk(sk);
3030
3031 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3032 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3033 }
3034
3035 /* Restart timer after forward progress on connection.
3036 * RFC2988 recommends to restart timer to now+rto.
3037 */
tcp_rearm_rto(struct sock * sk)3038 void tcp_rearm_rto(struct sock *sk)
3039 {
3040 const struct inet_connection_sock *icsk = inet_csk(sk);
3041 struct tcp_sock *tp = tcp_sk(sk);
3042
3043 /* If the retrans timer is currently being used by Fast Open
3044 * for SYN-ACK retrans purpose, stay put.
3045 */
3046 if (tp->fastopen_rsk)
3047 return;
3048
3049 if (!tp->packets_out) {
3050 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3051 } else {
3052 u32 rto = inet_csk(sk)->icsk_rto;
3053 /* Offset the time elapsed after installing regular RTO */
3054 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3055 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3056 struct sk_buff *skb = tcp_write_queue_head(sk);
3057 const u32 rto_time_stamp =
3058 tcp_skb_timestamp(skb) + rto;
3059 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3060 /* delta may not be positive if the socket is locked
3061 * when the retrans timer fires and is rescheduled.
3062 */
3063 rto = max(delta, 1);
3064 }
3065 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3066 TCP_RTO_MAX);
3067 }
3068 }
3069
3070 /* This function is called when the delayed ER timer fires. TCP enters
3071 * fast recovery and performs fast-retransmit.
3072 */
tcp_resume_early_retransmit(struct sock * sk)3073 void tcp_resume_early_retransmit(struct sock *sk)
3074 {
3075 struct tcp_sock *tp = tcp_sk(sk);
3076
3077 tcp_rearm_rto(sk);
3078
3079 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3080 if (!tp->do_early_retrans)
3081 return;
3082
3083 tcp_enter_recovery(sk, false);
3084 tcp_update_scoreboard(sk, 1);
3085 tcp_xmit_retransmit_queue(sk);
3086 }
3087
3088 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3089 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3090 {
3091 struct tcp_sock *tp = tcp_sk(sk);
3092 u32 packets_acked;
3093
3094 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3095
3096 packets_acked = tcp_skb_pcount(skb);
3097 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3098 return 0;
3099 packets_acked -= tcp_skb_pcount(skb);
3100
3101 if (packets_acked) {
3102 BUG_ON(tcp_skb_pcount(skb) == 0);
3103 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3104 }
3105
3106 return packets_acked;
3107 }
3108
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3109 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3110 u32 prior_snd_una)
3111 {
3112 const struct skb_shared_info *shinfo;
3113
3114 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3115 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3116 return;
3117
3118 shinfo = skb_shinfo(skb);
3119 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3120 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3121 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3122 }
3123
3124 /* Remove acknowledged frames from the retransmission queue. If our packet
3125 * is before the ack sequence we can discard it as it's confirmed to have
3126 * arrived at the other end.
3127 */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una,struct tcp_sacktag_state * sack)3128 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3129 u32 prior_snd_una,
3130 struct tcp_sacktag_state *sack)
3131 {
3132 const struct inet_connection_sock *icsk = inet_csk(sk);
3133 struct skb_mstamp first_ackt, last_ackt, now;
3134 struct tcp_sock *tp = tcp_sk(sk);
3135 u32 prior_sacked = tp->sacked_out;
3136 u32 reord = tp->packets_out;
3137 bool fully_acked = true;
3138 long sack_rtt_us = -1L;
3139 long seq_rtt_us = -1L;
3140 long ca_rtt_us = -1L;
3141 struct sk_buff *skb;
3142 u32 pkts_acked = 0;
3143 bool rtt_update;
3144 int flag = 0;
3145
3146 first_ackt.v64 = 0;
3147
3148 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3149 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3150 u8 sacked = scb->sacked;
3151 u32 acked_pcount;
3152
3153 tcp_ack_tstamp(sk, skb, prior_snd_una);
3154
3155 /* Determine how many packets and what bytes were acked, tso and else */
3156 if (after(scb->end_seq, tp->snd_una)) {
3157 if (tcp_skb_pcount(skb) == 1 ||
3158 !after(tp->snd_una, scb->seq))
3159 break;
3160
3161 acked_pcount = tcp_tso_acked(sk, skb);
3162 if (!acked_pcount)
3163 break;
3164
3165 fully_acked = false;
3166 } else {
3167 /* Speedup tcp_unlink_write_queue() and next loop */
3168 prefetchw(skb->next);
3169 acked_pcount = tcp_skb_pcount(skb);
3170 }
3171
3172 if (unlikely(sacked & TCPCB_RETRANS)) {
3173 if (sacked & TCPCB_SACKED_RETRANS)
3174 tp->retrans_out -= acked_pcount;
3175 flag |= FLAG_RETRANS_DATA_ACKED;
3176 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3177 last_ackt = skb->skb_mstamp;
3178 WARN_ON_ONCE(last_ackt.v64 == 0);
3179 if (!first_ackt.v64)
3180 first_ackt = last_ackt;
3181
3182 reord = min(pkts_acked, reord);
3183 if (!after(scb->end_seq, tp->high_seq))
3184 flag |= FLAG_ORIG_SACK_ACKED;
3185 }
3186
3187 if (sacked & TCPCB_SACKED_ACKED)
3188 tp->sacked_out -= acked_pcount;
3189 else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb))
3190 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3191 if (sacked & TCPCB_LOST)
3192 tp->lost_out -= acked_pcount;
3193
3194 tp->packets_out -= acked_pcount;
3195 pkts_acked += acked_pcount;
3196
3197 /* Initial outgoing SYN's get put onto the write_queue
3198 * just like anything else we transmit. It is not
3199 * true data, and if we misinform our callers that
3200 * this ACK acks real data, we will erroneously exit
3201 * connection startup slow start one packet too
3202 * quickly. This is severely frowned upon behavior.
3203 */
3204 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3205 flag |= FLAG_DATA_ACKED;
3206 } else {
3207 flag |= FLAG_SYN_ACKED;
3208 tp->retrans_stamp = 0;
3209 }
3210
3211 if (!fully_acked)
3212 break;
3213
3214 tcp_unlink_write_queue(skb, sk);
3215 sk_wmem_free_skb(sk, skb);
3216 if (unlikely(skb == tp->retransmit_skb_hint))
3217 tp->retransmit_skb_hint = NULL;
3218 if (unlikely(skb == tp->lost_skb_hint))
3219 tp->lost_skb_hint = NULL;
3220 }
3221
3222 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3223 tp->snd_up = tp->snd_una;
3224
3225 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3226 flag |= FLAG_SACK_RENEGING;
3227
3228 skb_mstamp_get(&now);
3229 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3230 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3231 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3232 }
3233 if (sack->first_sackt.v64) {
3234 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3235 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3236 }
3237
3238 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3239 ca_rtt_us);
3240
3241 if (flag & FLAG_ACKED) {
3242 tcp_rearm_rto(sk);
3243 if (unlikely(icsk->icsk_mtup.probe_size &&
3244 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3245 tcp_mtup_probe_success(sk);
3246 }
3247
3248 if (tcp_is_reno(tp)) {
3249 tcp_remove_reno_sacks(sk, pkts_acked);
3250
3251 /* If any of the cumulatively ACKed segments was
3252 * retransmitted, non-SACK case cannot confirm that
3253 * progress was due to original transmission due to
3254 * lack of TCPCB_SACKED_ACKED bits even if some of
3255 * the packets may have been never retransmitted.
3256 */
3257 if (flag & FLAG_RETRANS_DATA_ACKED)
3258 flag &= ~FLAG_ORIG_SACK_ACKED;
3259 } else {
3260 int delta;
3261
3262 /* Non-retransmitted hole got filled? That's reordering */
3263 if (reord < prior_fackets && reord <= tp->fackets_out)
3264 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3265
3266 delta = tcp_is_fack(tp) ? pkts_acked :
3267 prior_sacked - tp->sacked_out;
3268 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3269 }
3270
3271 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3272
3273 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3274 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3275 /* Do not re-arm RTO if the sack RTT is measured from data sent
3276 * after when the head was last (re)transmitted. Otherwise the
3277 * timeout may continue to extend in loss recovery.
3278 */
3279 tcp_rearm_rto(sk);
3280 }
3281
3282 if (icsk->icsk_ca_ops->pkts_acked)
3283 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3284
3285 #if FASTRETRANS_DEBUG > 0
3286 WARN_ON((int)tp->sacked_out < 0);
3287 WARN_ON((int)tp->lost_out < 0);
3288 WARN_ON((int)tp->retrans_out < 0);
3289 if (!tp->packets_out && tcp_is_sack(tp)) {
3290 icsk = inet_csk(sk);
3291 if (tp->lost_out) {
3292 pr_debug("Leak l=%u %d\n",
3293 tp->lost_out, icsk->icsk_ca_state);
3294 tp->lost_out = 0;
3295 }
3296 if (tp->sacked_out) {
3297 pr_debug("Leak s=%u %d\n",
3298 tp->sacked_out, icsk->icsk_ca_state);
3299 tp->sacked_out = 0;
3300 }
3301 if (tp->retrans_out) {
3302 pr_debug("Leak r=%u %d\n",
3303 tp->retrans_out, icsk->icsk_ca_state);
3304 tp->retrans_out = 0;
3305 }
3306 }
3307 #endif
3308 return flag;
3309 }
3310
tcp_ack_probe(struct sock * sk)3311 static void tcp_ack_probe(struct sock *sk)
3312 {
3313 const struct tcp_sock *tp = tcp_sk(sk);
3314 struct inet_connection_sock *icsk = inet_csk(sk);
3315
3316 /* Was it a usable window open? */
3317
3318 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3319 icsk->icsk_backoff = 0;
3320 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3321 /* Socket must be waked up by subsequent tcp_data_snd_check().
3322 * This function is not for random using!
3323 */
3324 } else {
3325 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3326
3327 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3328 when, TCP_RTO_MAX);
3329 }
3330 }
3331
tcp_ack_is_dubious(const struct sock * sk,const int flag)3332 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3333 {
3334 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3335 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3336 }
3337
3338 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3339 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3340 {
3341 if (tcp_in_cwnd_reduction(sk))
3342 return false;
3343
3344 /* If reordering is high then always grow cwnd whenever data is
3345 * delivered regardless of its ordering. Otherwise stay conservative
3346 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3347 * new SACK or ECE mark may first advance cwnd here and later reduce
3348 * cwnd in tcp_fastretrans_alert() based on more states.
3349 */
3350 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3351 return flag & FLAG_FORWARD_PROGRESS;
3352
3353 return flag & FLAG_DATA_ACKED;
3354 }
3355
3356 /* Check that window update is acceptable.
3357 * The function assumes that snd_una<=ack<=snd_next.
3358 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3359 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3360 const u32 ack, const u32 ack_seq,
3361 const u32 nwin)
3362 {
3363 return after(ack, tp->snd_una) ||
3364 after(ack_seq, tp->snd_wl1) ||
3365 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3366 }
3367
3368 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3369 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3370 {
3371 u32 delta = ack - tp->snd_una;
3372
3373 u64_stats_update_begin(&tp->syncp);
3374 tp->bytes_acked += delta;
3375 u64_stats_update_end(&tp->syncp);
3376 tp->snd_una = ack;
3377 }
3378
3379 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3380 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3381 {
3382 u32 delta = seq - tp->rcv_nxt;
3383
3384 u64_stats_update_begin(&tp->syncp);
3385 tp->bytes_received += delta;
3386 u64_stats_update_end(&tp->syncp);
3387 tp->rcv_nxt = seq;
3388 }
3389
3390 /* Update our send window.
3391 *
3392 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3393 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3394 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3395 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3396 u32 ack_seq)
3397 {
3398 struct tcp_sock *tp = tcp_sk(sk);
3399 int flag = 0;
3400 u32 nwin = ntohs(tcp_hdr(skb)->window);
3401
3402 if (likely(!tcp_hdr(skb)->syn))
3403 nwin <<= tp->rx_opt.snd_wscale;
3404
3405 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3406 flag |= FLAG_WIN_UPDATE;
3407 tcp_update_wl(tp, ack_seq);
3408
3409 if (tp->snd_wnd != nwin) {
3410 tp->snd_wnd = nwin;
3411
3412 /* Note, it is the only place, where
3413 * fast path is recovered for sending TCP.
3414 */
3415 tp->pred_flags = 0;
3416 tcp_fast_path_check(sk);
3417
3418 if (tcp_send_head(sk))
3419 tcp_slow_start_after_idle_check(sk);
3420
3421 if (nwin > tp->max_window) {
3422 tp->max_window = nwin;
3423 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3424 }
3425 }
3426 }
3427
3428 tcp_snd_una_update(tp, ack);
3429
3430 return flag;
3431 }
3432
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3433 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3434 u32 *last_oow_ack_time)
3435 {
3436 if (*last_oow_ack_time) {
3437 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3438
3439 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3440 NET_INC_STATS_BH(net, mib_idx);
3441 return true; /* rate-limited: don't send yet! */
3442 }
3443 }
3444
3445 *last_oow_ack_time = tcp_time_stamp;
3446
3447 return false; /* not rate-limited: go ahead, send dupack now! */
3448 }
3449
3450 /* Return true if we're currently rate-limiting out-of-window ACKs and
3451 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3452 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3453 * attacks that send repeated SYNs or ACKs for the same connection. To
3454 * do this, we do not send a duplicate SYNACK or ACK if the remote
3455 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3456 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3457 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3458 int mib_idx, u32 *last_oow_ack_time)
3459 {
3460 /* Data packets without SYNs are not likely part of an ACK loop. */
3461 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3462 !tcp_hdr(skb)->syn)
3463 return false;
3464
3465 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3466 }
3467
3468 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3469 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3470 {
3471 /* unprotected vars, we dont care of overwrites */
3472 static u32 challenge_timestamp;
3473 static unsigned int challenge_count;
3474 struct tcp_sock *tp = tcp_sk(sk);
3475 u32 count, now;
3476
3477 /* First check our per-socket dupack rate limit. */
3478 if (__tcp_oow_rate_limited(sock_net(sk),
3479 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3480 &tp->last_oow_ack_time))
3481 return;
3482
3483 /* Then check host-wide RFC 5961 rate limit. */
3484 now = jiffies / HZ;
3485 if (now != challenge_timestamp) {
3486 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3487
3488 challenge_timestamp = now;
3489 WRITE_ONCE(challenge_count, half +
3490 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3491 }
3492 count = READ_ONCE(challenge_count);
3493 if (count > 0) {
3494 WRITE_ONCE(challenge_count, count - 1);
3495 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3496 tcp_send_ack(sk);
3497 }
3498 }
3499
tcp_store_ts_recent(struct tcp_sock * tp)3500 static void tcp_store_ts_recent(struct tcp_sock *tp)
3501 {
3502 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3503 tp->rx_opt.ts_recent_stamp = get_seconds();
3504 }
3505
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3506 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3507 {
3508 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3509 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3510 * extra check below makes sure this can only happen
3511 * for pure ACK frames. -DaveM
3512 *
3513 * Not only, also it occurs for expired timestamps.
3514 */
3515
3516 if (tcp_paws_check(&tp->rx_opt, 0))
3517 tcp_store_ts_recent(tp);
3518 }
3519 }
3520
3521 /* This routine deals with acks during a TLP episode and ends an episode by
3522 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3523 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3524 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3525 {
3526 struct tcp_sock *tp = tcp_sk(sk);
3527
3528 if (before(ack, tp->tlp_high_seq))
3529 return;
3530
3531 if (!tp->tlp_retrans) {
3532 /* TLP of new data has been acknowledged */
3533 tp->tlp_high_seq = 0;
3534 } else if (flag & FLAG_DSACKING_ACK) {
3535 /* This DSACK means original and TLP probe arrived; no loss */
3536 tp->tlp_high_seq = 0;
3537 } else if (after(ack, tp->tlp_high_seq)) {
3538 /* ACK advances: there was a loss, so reduce cwnd. Reset
3539 * tlp_high_seq in tcp_init_cwnd_reduction()
3540 */
3541 tcp_init_cwnd_reduction(sk);
3542 tcp_set_ca_state(sk, TCP_CA_CWR);
3543 tcp_end_cwnd_reduction(sk);
3544 tcp_try_keep_open(sk);
3545 NET_INC_STATS_BH(sock_net(sk),
3546 LINUX_MIB_TCPLOSSPROBERECOVERY);
3547 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3548 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3549 /* Pure dupack: original and TLP probe arrived; no loss */
3550 tp->tlp_high_seq = 0;
3551 }
3552 }
3553
tcp_in_ack_event(struct sock * sk,u32 flags)3554 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3555 {
3556 const struct inet_connection_sock *icsk = inet_csk(sk);
3557
3558 if (icsk->icsk_ca_ops->in_ack_event)
3559 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3560 }
3561
3562 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3563 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3564 {
3565 struct inet_connection_sock *icsk = inet_csk(sk);
3566 struct tcp_sock *tp = tcp_sk(sk);
3567 struct tcp_sacktag_state sack_state;
3568 u32 prior_snd_una = tp->snd_una;
3569 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3570 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3571 bool is_dupack = false;
3572 u32 prior_fackets;
3573 int prior_packets = tp->packets_out;
3574 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3575 int acked = 0; /* Number of packets newly acked */
3576
3577 sack_state.first_sackt.v64 = 0;
3578
3579 /* We very likely will need to access write queue head. */
3580 prefetchw(sk->sk_write_queue.next);
3581
3582 /* If the ack is older than previous acks
3583 * then we can probably ignore it.
3584 */
3585 if (before(ack, prior_snd_una)) {
3586 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3587 if (before(ack, prior_snd_una - tp->max_window)) {
3588 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3589 tcp_send_challenge_ack(sk, skb);
3590 return -1;
3591 }
3592 goto old_ack;
3593 }
3594
3595 /* If the ack includes data we haven't sent yet, discard
3596 * this segment (RFC793 Section 3.9).
3597 */
3598 if (after(ack, tp->snd_nxt))
3599 goto invalid_ack;
3600
3601 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3602 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3603 tcp_rearm_rto(sk);
3604
3605 if (after(ack, prior_snd_una)) {
3606 flag |= FLAG_SND_UNA_ADVANCED;
3607 icsk->icsk_retransmits = 0;
3608 }
3609
3610 prior_fackets = tp->fackets_out;
3611
3612 /* ts_recent update must be made after we are sure that the packet
3613 * is in window.
3614 */
3615 if (flag & FLAG_UPDATE_TS_RECENT)
3616 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3617
3618 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3619 /* Window is constant, pure forward advance.
3620 * No more checks are required.
3621 * Note, we use the fact that SND.UNA>=SND.WL2.
3622 */
3623 tcp_update_wl(tp, ack_seq);
3624 tcp_snd_una_update(tp, ack);
3625 flag |= FLAG_WIN_UPDATE;
3626
3627 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3628
3629 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3630 } else {
3631 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3632
3633 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3634 flag |= FLAG_DATA;
3635 else
3636 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3637
3638 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3639
3640 if (TCP_SKB_CB(skb)->sacked)
3641 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3642 &sack_state);
3643
3644 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3645 flag |= FLAG_ECE;
3646 ack_ev_flags |= CA_ACK_ECE;
3647 }
3648
3649 if (flag & FLAG_WIN_UPDATE)
3650 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3651
3652 tcp_in_ack_event(sk, ack_ev_flags);
3653 }
3654
3655 /* We passed data and got it acked, remove any soft error
3656 * log. Something worked...
3657 */
3658 sk->sk_err_soft = 0;
3659 icsk->icsk_probes_out = 0;
3660 tp->rcv_tstamp = tcp_time_stamp;
3661 if (!prior_packets)
3662 goto no_queue;
3663
3664 /* See if we can take anything off of the retransmit queue. */
3665 acked = tp->packets_out;
3666 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3667 &sack_state);
3668 acked -= tp->packets_out;
3669
3670 if (tcp_ack_is_dubious(sk, flag)) {
3671 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3672 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3673 is_dupack, flag);
3674 }
3675 if (tp->tlp_high_seq)
3676 tcp_process_tlp_ack(sk, ack, flag);
3677
3678 /* Advance cwnd if state allows */
3679 if (tcp_may_raise_cwnd(sk, flag))
3680 tcp_cong_avoid(sk, ack, acked);
3681
3682 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3683 struct dst_entry *dst = __sk_dst_get(sk);
3684 if (dst)
3685 dst_confirm(dst);
3686 }
3687
3688 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3689 tcp_schedule_loss_probe(sk);
3690 tcp_update_pacing_rate(sk);
3691 return 1;
3692
3693 no_queue:
3694 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3695 if (flag & FLAG_DSACKING_ACK)
3696 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3697 is_dupack, flag);
3698 /* If this ack opens up a zero window, clear backoff. It was
3699 * being used to time the probes, and is probably far higher than
3700 * it needs to be for normal retransmission.
3701 */
3702 if (tcp_send_head(sk))
3703 tcp_ack_probe(sk);
3704
3705 if (tp->tlp_high_seq)
3706 tcp_process_tlp_ack(sk, ack, flag);
3707 return 1;
3708
3709 invalid_ack:
3710 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3711 return -1;
3712
3713 old_ack:
3714 /* If data was SACKed, tag it and see if we should send more data.
3715 * If data was DSACKed, see if we can undo a cwnd reduction.
3716 */
3717 if (TCP_SKB_CB(skb)->sacked) {
3718 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3719 &sack_state);
3720 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3721 is_dupack, flag);
3722 }
3723
3724 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3725 return 0;
3726 }
3727
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3728 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3729 bool syn, struct tcp_fastopen_cookie *foc,
3730 bool exp_opt)
3731 {
3732 /* Valid only in SYN or SYN-ACK with an even length. */
3733 if (!foc || !syn || len < 0 || (len & 1))
3734 return;
3735
3736 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3737 len <= TCP_FASTOPEN_COOKIE_MAX)
3738 memcpy(foc->val, cookie, len);
3739 else if (len != 0)
3740 len = -1;
3741 foc->len = len;
3742 foc->exp = exp_opt;
3743 }
3744
3745 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3746 * But, this can also be called on packets in the established flow when
3747 * the fast version below fails.
3748 */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3749 void tcp_parse_options(const struct sk_buff *skb,
3750 struct tcp_options_received *opt_rx, int estab,
3751 struct tcp_fastopen_cookie *foc)
3752 {
3753 const unsigned char *ptr;
3754 const struct tcphdr *th = tcp_hdr(skb);
3755 int length = (th->doff * 4) - sizeof(struct tcphdr);
3756
3757 ptr = (const unsigned char *)(th + 1);
3758 opt_rx->saw_tstamp = 0;
3759
3760 while (length > 0) {
3761 int opcode = *ptr++;
3762 int opsize;
3763
3764 switch (opcode) {
3765 case TCPOPT_EOL:
3766 return;
3767 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3768 length--;
3769 continue;
3770 default:
3771 opsize = *ptr++;
3772 if (opsize < 2) /* "silly options" */
3773 return;
3774 if (opsize > length)
3775 return; /* don't parse partial options */
3776 switch (opcode) {
3777 case TCPOPT_MSS:
3778 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3779 u16 in_mss = get_unaligned_be16(ptr);
3780 if (in_mss) {
3781 if (opt_rx->user_mss &&
3782 opt_rx->user_mss < in_mss)
3783 in_mss = opt_rx->user_mss;
3784 opt_rx->mss_clamp = in_mss;
3785 }
3786 }
3787 break;
3788 case TCPOPT_WINDOW:
3789 if (opsize == TCPOLEN_WINDOW && th->syn &&
3790 !estab && sysctl_tcp_window_scaling) {
3791 __u8 snd_wscale = *(__u8 *)ptr;
3792 opt_rx->wscale_ok = 1;
3793 if (snd_wscale > 14) {
3794 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3795 __func__,
3796 snd_wscale);
3797 snd_wscale = 14;
3798 }
3799 opt_rx->snd_wscale = snd_wscale;
3800 }
3801 break;
3802 case TCPOPT_TIMESTAMP:
3803 if ((opsize == TCPOLEN_TIMESTAMP) &&
3804 ((estab && opt_rx->tstamp_ok) ||
3805 (!estab && sysctl_tcp_timestamps))) {
3806 opt_rx->saw_tstamp = 1;
3807 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3808 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3809 }
3810 break;
3811 case TCPOPT_SACK_PERM:
3812 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3813 !estab && sysctl_tcp_sack) {
3814 opt_rx->sack_ok = TCP_SACK_SEEN;
3815 tcp_sack_reset(opt_rx);
3816 }
3817 break;
3818
3819 case TCPOPT_SACK:
3820 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3821 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3822 opt_rx->sack_ok) {
3823 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3824 }
3825 break;
3826 #ifdef CONFIG_TCP_MD5SIG
3827 case TCPOPT_MD5SIG:
3828 /*
3829 * The MD5 Hash has already been
3830 * checked (see tcp_v{4,6}_do_rcv()).
3831 */
3832 break;
3833 #endif
3834 case TCPOPT_FASTOPEN:
3835 tcp_parse_fastopen_option(
3836 opsize - TCPOLEN_FASTOPEN_BASE,
3837 ptr, th->syn, foc, false);
3838 break;
3839
3840 case TCPOPT_EXP:
3841 /* Fast Open option shares code 254 using a
3842 * 16 bits magic number.
3843 */
3844 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3845 get_unaligned_be16(ptr) ==
3846 TCPOPT_FASTOPEN_MAGIC)
3847 tcp_parse_fastopen_option(opsize -
3848 TCPOLEN_EXP_FASTOPEN_BASE,
3849 ptr + 2, th->syn, foc, true);
3850 break;
3851
3852 }
3853 ptr += opsize-2;
3854 length -= opsize;
3855 }
3856 }
3857 }
3858 EXPORT_SYMBOL(tcp_parse_options);
3859
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3860 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3861 {
3862 const __be32 *ptr = (const __be32 *)(th + 1);
3863
3864 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3865 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3866 tp->rx_opt.saw_tstamp = 1;
3867 ++ptr;
3868 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3869 ++ptr;
3870 if (*ptr)
3871 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3872 else
3873 tp->rx_opt.rcv_tsecr = 0;
3874 return true;
3875 }
3876 return false;
3877 }
3878
3879 /* Fast parse options. This hopes to only see timestamps.
3880 * If it is wrong it falls back on tcp_parse_options().
3881 */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3882 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3883 const struct tcphdr *th, struct tcp_sock *tp)
3884 {
3885 /* In the spirit of fast parsing, compare doff directly to constant
3886 * values. Because equality is used, short doff can be ignored here.
3887 */
3888 if (th->doff == (sizeof(*th) / 4)) {
3889 tp->rx_opt.saw_tstamp = 0;
3890 return false;
3891 } else if (tp->rx_opt.tstamp_ok &&
3892 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3893 if (tcp_parse_aligned_timestamp(tp, th))
3894 return true;
3895 }
3896
3897 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3898 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3899 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3900
3901 return true;
3902 }
3903
3904 #ifdef CONFIG_TCP_MD5SIG
3905 /*
3906 * Parse MD5 Signature option
3907 */
tcp_parse_md5sig_option(const struct tcphdr * th)3908 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3909 {
3910 int length = (th->doff << 2) - sizeof(*th);
3911 const u8 *ptr = (const u8 *)(th + 1);
3912
3913 /* If not enough data remaining, we can short cut */
3914 while (length >= TCPOLEN_MD5SIG) {
3915 int opcode = *ptr++;
3916 int opsize;
3917
3918 switch (opcode) {
3919 case TCPOPT_EOL:
3920 return NULL;
3921 case TCPOPT_NOP:
3922 length--;
3923 continue;
3924 default:
3925 opsize = *ptr++;
3926 if (opsize < 2 || opsize > length)
3927 return NULL;
3928 if (opcode == TCPOPT_MD5SIG)
3929 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3930 }
3931 ptr += opsize - 2;
3932 length -= opsize;
3933 }
3934 return NULL;
3935 }
3936 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3937 #endif
3938
3939 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3940 *
3941 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3942 * it can pass through stack. So, the following predicate verifies that
3943 * this segment is not used for anything but congestion avoidance or
3944 * fast retransmit. Moreover, we even are able to eliminate most of such
3945 * second order effects, if we apply some small "replay" window (~RTO)
3946 * to timestamp space.
3947 *
3948 * All these measures still do not guarantee that we reject wrapped ACKs
3949 * on networks with high bandwidth, when sequence space is recycled fastly,
3950 * but it guarantees that such events will be very rare and do not affect
3951 * connection seriously. This doesn't look nice, but alas, PAWS is really
3952 * buggy extension.
3953 *
3954 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3955 * states that events when retransmit arrives after original data are rare.
3956 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3957 * the biggest problem on large power networks even with minor reordering.
3958 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3959 * up to bandwidth of 18Gigabit/sec. 8) ]
3960 */
3961
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)3962 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3963 {
3964 const struct tcp_sock *tp = tcp_sk(sk);
3965 const struct tcphdr *th = tcp_hdr(skb);
3966 u32 seq = TCP_SKB_CB(skb)->seq;
3967 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3968
3969 return (/* 1. Pure ACK with correct sequence number. */
3970 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3971
3972 /* 2. ... and duplicate ACK. */
3973 ack == tp->snd_una &&
3974
3975 /* 3. ... and does not update window. */
3976 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3977
3978 /* 4. ... and sits in replay window. */
3979 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3980 }
3981
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)3982 static inline bool tcp_paws_discard(const struct sock *sk,
3983 const struct sk_buff *skb)
3984 {
3985 const struct tcp_sock *tp = tcp_sk(sk);
3986
3987 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3988 !tcp_disordered_ack(sk, skb);
3989 }
3990
3991 /* Check segment sequence number for validity.
3992 *
3993 * Segment controls are considered valid, if the segment
3994 * fits to the window after truncation to the window. Acceptability
3995 * of data (and SYN, FIN, of course) is checked separately.
3996 * See tcp_data_queue(), for example.
3997 *
3998 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3999 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4000 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4001 * (borrowed from freebsd)
4002 */
4003
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4004 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4005 {
4006 return !before(end_seq, tp->rcv_wup) &&
4007 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4008 }
4009
4010 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4011 void tcp_reset(struct sock *sk)
4012 {
4013 /* We want the right error as BSD sees it (and indeed as we do). */
4014 switch (sk->sk_state) {
4015 case TCP_SYN_SENT:
4016 sk->sk_err = ECONNREFUSED;
4017 break;
4018 case TCP_CLOSE_WAIT:
4019 sk->sk_err = EPIPE;
4020 break;
4021 case TCP_CLOSE:
4022 return;
4023 default:
4024 sk->sk_err = ECONNRESET;
4025 }
4026 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4027 smp_wmb();
4028
4029 if (!sock_flag(sk, SOCK_DEAD))
4030 sk->sk_error_report(sk);
4031
4032 tcp_done(sk);
4033 }
4034
4035 /*
4036 * Process the FIN bit. This now behaves as it is supposed to work
4037 * and the FIN takes effect when it is validly part of sequence
4038 * space. Not before when we get holes.
4039 *
4040 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4041 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4042 * TIME-WAIT)
4043 *
4044 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4045 * close and we go into CLOSING (and later onto TIME-WAIT)
4046 *
4047 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4048 */
tcp_fin(struct sock * sk)4049 static void tcp_fin(struct sock *sk)
4050 {
4051 struct tcp_sock *tp = tcp_sk(sk);
4052
4053 inet_csk_schedule_ack(sk);
4054
4055 sk->sk_shutdown |= RCV_SHUTDOWN;
4056 sock_set_flag(sk, SOCK_DONE);
4057
4058 switch (sk->sk_state) {
4059 case TCP_SYN_RECV:
4060 case TCP_ESTABLISHED:
4061 /* Move to CLOSE_WAIT */
4062 tcp_set_state(sk, TCP_CLOSE_WAIT);
4063 inet_csk(sk)->icsk_ack.pingpong = 1;
4064 break;
4065
4066 case TCP_CLOSE_WAIT:
4067 case TCP_CLOSING:
4068 /* Received a retransmission of the FIN, do
4069 * nothing.
4070 */
4071 break;
4072 case TCP_LAST_ACK:
4073 /* RFC793: Remain in the LAST-ACK state. */
4074 break;
4075
4076 case TCP_FIN_WAIT1:
4077 /* This case occurs when a simultaneous close
4078 * happens, we must ack the received FIN and
4079 * enter the CLOSING state.
4080 */
4081 tcp_send_ack(sk);
4082 tcp_set_state(sk, TCP_CLOSING);
4083 break;
4084 case TCP_FIN_WAIT2:
4085 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4086 tcp_send_ack(sk);
4087 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4088 break;
4089 default:
4090 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4091 * cases we should never reach this piece of code.
4092 */
4093 pr_err("%s: Impossible, sk->sk_state=%d\n",
4094 __func__, sk->sk_state);
4095 break;
4096 }
4097
4098 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4099 * Probably, we should reset in this case. For now drop them.
4100 */
4101 skb_rbtree_purge(&tp->out_of_order_queue);
4102 if (tcp_is_sack(tp))
4103 tcp_sack_reset(&tp->rx_opt);
4104 sk_mem_reclaim(sk);
4105
4106 if (!sock_flag(sk, SOCK_DEAD)) {
4107 sk->sk_state_change(sk);
4108
4109 /* Do not send POLL_HUP for half duplex close. */
4110 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4111 sk->sk_state == TCP_CLOSE)
4112 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4113 else
4114 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4115 }
4116 }
4117
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4118 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4119 u32 end_seq)
4120 {
4121 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4122 if (before(seq, sp->start_seq))
4123 sp->start_seq = seq;
4124 if (after(end_seq, sp->end_seq))
4125 sp->end_seq = end_seq;
4126 return true;
4127 }
4128 return false;
4129 }
4130
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4131 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4132 {
4133 struct tcp_sock *tp = tcp_sk(sk);
4134
4135 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4136 int mib_idx;
4137
4138 if (before(seq, tp->rcv_nxt))
4139 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4140 else
4141 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4142
4143 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4144
4145 tp->rx_opt.dsack = 1;
4146 tp->duplicate_sack[0].start_seq = seq;
4147 tp->duplicate_sack[0].end_seq = end_seq;
4148 }
4149 }
4150
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4151 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4152 {
4153 struct tcp_sock *tp = tcp_sk(sk);
4154
4155 if (!tp->rx_opt.dsack)
4156 tcp_dsack_set(sk, seq, end_seq);
4157 else
4158 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4159 }
4160
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4161 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4162 {
4163 struct tcp_sock *tp = tcp_sk(sk);
4164
4165 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4166 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4168 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4169
4170 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4171 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4172
4173 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4174 end_seq = tp->rcv_nxt;
4175 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4176 }
4177 }
4178
4179 tcp_send_ack(sk);
4180 }
4181
4182 /* These routines update the SACK block as out-of-order packets arrive or
4183 * in-order packets close up the sequence space.
4184 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4185 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4186 {
4187 int this_sack;
4188 struct tcp_sack_block *sp = &tp->selective_acks[0];
4189 struct tcp_sack_block *swalk = sp + 1;
4190
4191 /* See if the recent change to the first SACK eats into
4192 * or hits the sequence space of other SACK blocks, if so coalesce.
4193 */
4194 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4195 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4196 int i;
4197
4198 /* Zap SWALK, by moving every further SACK up by one slot.
4199 * Decrease num_sacks.
4200 */
4201 tp->rx_opt.num_sacks--;
4202 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4203 sp[i] = sp[i + 1];
4204 continue;
4205 }
4206 this_sack++, swalk++;
4207 }
4208 }
4209
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4210 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4211 {
4212 struct tcp_sock *tp = tcp_sk(sk);
4213 struct tcp_sack_block *sp = &tp->selective_acks[0];
4214 int cur_sacks = tp->rx_opt.num_sacks;
4215 int this_sack;
4216
4217 if (!cur_sacks)
4218 goto new_sack;
4219
4220 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4221 if (tcp_sack_extend(sp, seq, end_seq)) {
4222 /* Rotate this_sack to the first one. */
4223 for (; this_sack > 0; this_sack--, sp--)
4224 swap(*sp, *(sp - 1));
4225 if (cur_sacks > 1)
4226 tcp_sack_maybe_coalesce(tp);
4227 return;
4228 }
4229 }
4230
4231 /* Could not find an adjacent existing SACK, build a new one,
4232 * put it at the front, and shift everyone else down. We
4233 * always know there is at least one SACK present already here.
4234 *
4235 * If the sack array is full, forget about the last one.
4236 */
4237 if (this_sack >= TCP_NUM_SACKS) {
4238 this_sack--;
4239 tp->rx_opt.num_sacks--;
4240 sp--;
4241 }
4242 for (; this_sack > 0; this_sack--, sp--)
4243 *sp = *(sp - 1);
4244
4245 new_sack:
4246 /* Build the new head SACK, and we're done. */
4247 sp->start_seq = seq;
4248 sp->end_seq = end_seq;
4249 tp->rx_opt.num_sacks++;
4250 }
4251
4252 /* RCV.NXT advances, some SACKs should be eaten. */
4253
tcp_sack_remove(struct tcp_sock * tp)4254 static void tcp_sack_remove(struct tcp_sock *tp)
4255 {
4256 struct tcp_sack_block *sp = &tp->selective_acks[0];
4257 int num_sacks = tp->rx_opt.num_sacks;
4258 int this_sack;
4259
4260 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4261 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4262 tp->rx_opt.num_sacks = 0;
4263 return;
4264 }
4265
4266 for (this_sack = 0; this_sack < num_sacks;) {
4267 /* Check if the start of the sack is covered by RCV.NXT. */
4268 if (!before(tp->rcv_nxt, sp->start_seq)) {
4269 int i;
4270
4271 /* RCV.NXT must cover all the block! */
4272 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4273
4274 /* Zap this SACK, by moving forward any other SACKS. */
4275 for (i = this_sack+1; i < num_sacks; i++)
4276 tp->selective_acks[i-1] = tp->selective_acks[i];
4277 num_sacks--;
4278 continue;
4279 }
4280 this_sack++;
4281 sp++;
4282 }
4283 tp->rx_opt.num_sacks = num_sacks;
4284 }
4285
4286 /**
4287 * tcp_try_coalesce - try to merge skb to prior one
4288 * @sk: socket
4289 * @to: prior buffer
4290 * @from: buffer to add in queue
4291 * @fragstolen: pointer to boolean
4292 *
4293 * Before queueing skb @from after @to, try to merge them
4294 * to reduce overall memory use and queue lengths, if cost is small.
4295 * Packets in ofo or receive queues can stay a long time.
4296 * Better try to coalesce them right now to avoid future collapses.
4297 * Returns true if caller should free @from instead of queueing it
4298 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4299 static bool tcp_try_coalesce(struct sock *sk,
4300 struct sk_buff *to,
4301 struct sk_buff *from,
4302 bool *fragstolen)
4303 {
4304 int delta;
4305
4306 *fragstolen = false;
4307
4308 /* Its possible this segment overlaps with prior segment in queue */
4309 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4310 return false;
4311
4312 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4313 return false;
4314
4315 atomic_add(delta, &sk->sk_rmem_alloc);
4316 sk_mem_charge(sk, delta);
4317 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4318 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4319 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4320 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4321 return true;
4322 }
4323
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4324 static bool tcp_ooo_try_coalesce(struct sock *sk,
4325 struct sk_buff *to,
4326 struct sk_buff *from,
4327 bool *fragstolen)
4328 {
4329 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4330
4331 /* In case tcp_drop() is called later, update to->gso_segs */
4332 if (res) {
4333 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4334 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4335
4336 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4337 }
4338 return res;
4339 }
4340
tcp_drop(struct sock * sk,struct sk_buff * skb)4341 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4342 {
4343 sk_drops_add(sk, skb);
4344 __kfree_skb(skb);
4345 }
4346
4347 /* This one checks to see if we can put data from the
4348 * out_of_order queue into the receive_queue.
4349 */
tcp_ofo_queue(struct sock * sk)4350 static void tcp_ofo_queue(struct sock *sk)
4351 {
4352 struct tcp_sock *tp = tcp_sk(sk);
4353 __u32 dsack_high = tp->rcv_nxt;
4354 bool fin, fragstolen, eaten;
4355 struct sk_buff *skb, *tail;
4356 struct rb_node *p;
4357
4358 p = rb_first(&tp->out_of_order_queue);
4359 while (p) {
4360 skb = rb_entry(p, struct sk_buff, rbnode);
4361 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4362 break;
4363
4364 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4365 __u32 dsack = dsack_high;
4366 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4367 dsack_high = TCP_SKB_CB(skb)->end_seq;
4368 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4369 }
4370 p = rb_next(p);
4371 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4372
4373 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4374 SOCK_DEBUG(sk, "ofo packet was already received\n");
4375 tcp_drop(sk, skb);
4376 continue;
4377 }
4378 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4379 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4380 TCP_SKB_CB(skb)->end_seq);
4381
4382 tail = skb_peek_tail(&sk->sk_receive_queue);
4383 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4384 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4385 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4386 if (!eaten)
4387 __skb_queue_tail(&sk->sk_receive_queue, skb);
4388 else
4389 kfree_skb_partial(skb, fragstolen);
4390
4391 if (unlikely(fin)) {
4392 tcp_fin(sk);
4393 /* tcp_fin() purges tp->out_of_order_queue,
4394 * so we must end this loop right now.
4395 */
4396 break;
4397 }
4398 }
4399 }
4400
4401 static bool tcp_prune_ofo_queue(struct sock *sk);
4402 static int tcp_prune_queue(struct sock *sk);
4403
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4404 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4405 unsigned int size)
4406 {
4407 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4408 !sk_rmem_schedule(sk, skb, size)) {
4409
4410 if (tcp_prune_queue(sk) < 0)
4411 return -1;
4412
4413 if (!sk_rmem_schedule(sk, skb, size)) {
4414 if (!tcp_prune_ofo_queue(sk))
4415 return -1;
4416
4417 if (!sk_rmem_schedule(sk, skb, size))
4418 return -1;
4419 }
4420 }
4421 return 0;
4422 }
4423
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4424 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4425 {
4426 struct tcp_sock *tp = tcp_sk(sk);
4427 struct rb_node **p, *q, *parent;
4428 struct sk_buff *skb1;
4429 u32 seq, end_seq;
4430 bool fragstolen;
4431
4432 tcp_ecn_check_ce(sk, skb);
4433
4434 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4435 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4436 tcp_drop(sk, skb);
4437 return;
4438 }
4439
4440 /* Disable header prediction. */
4441 tp->pred_flags = 0;
4442 inet_csk_schedule_ack(sk);
4443
4444 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4445 seq = TCP_SKB_CB(skb)->seq;
4446 end_seq = TCP_SKB_CB(skb)->end_seq;
4447 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4448 tp->rcv_nxt, seq, end_seq);
4449
4450 p = &tp->out_of_order_queue.rb_node;
4451 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4452 /* Initial out of order segment, build 1 SACK. */
4453 if (tcp_is_sack(tp)) {
4454 tp->rx_opt.num_sacks = 1;
4455 tp->selective_acks[0].start_seq = seq;
4456 tp->selective_acks[0].end_seq = end_seq;
4457 }
4458 rb_link_node(&skb->rbnode, NULL, p);
4459 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4460 tp->ooo_last_skb = skb;
4461 goto end;
4462 }
4463
4464 /* In the typical case, we are adding an skb to the end of the list.
4465 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4466 */
4467 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4468 skb, &fragstolen)) {
4469 coalesce_done:
4470 /* For non sack flows, do not grow window to force DUPACK
4471 * and trigger fast retransmit.
4472 */
4473 if (tcp_is_sack(tp))
4474 tcp_grow_window(sk, skb);
4475 kfree_skb_partial(skb, fragstolen);
4476 skb = NULL;
4477 goto add_sack;
4478 }
4479
4480 /* Find place to insert this segment. Handle overlaps on the way. */
4481 parent = NULL;
4482 while (*p) {
4483 parent = *p;
4484 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4485 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4486 p = &parent->rb_left;
4487 continue;
4488 }
4489
4490 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4491 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4492 /* All the bits are present. Drop. */
4493 NET_INC_STATS(sock_net(sk),
4494 LINUX_MIB_TCPOFOMERGE);
4495 tcp_drop(sk, skb);
4496 skb = NULL;
4497 tcp_dsack_set(sk, seq, end_seq);
4498 goto add_sack;
4499 }
4500 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4501 /* Partial overlap. */
4502 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4503 } else {
4504 /* skb's seq == skb1's seq and skb covers skb1.
4505 * Replace skb1 with skb.
4506 */
4507 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4508 &tp->out_of_order_queue);
4509 tcp_dsack_extend(sk,
4510 TCP_SKB_CB(skb1)->seq,
4511 TCP_SKB_CB(skb1)->end_seq);
4512 NET_INC_STATS(sock_net(sk),
4513 LINUX_MIB_TCPOFOMERGE);
4514 tcp_drop(sk, skb1);
4515 goto merge_right;
4516 }
4517 } else if (tcp_ooo_try_coalesce(sk, skb1,
4518 skb, &fragstolen)) {
4519 goto coalesce_done;
4520 }
4521 p = &parent->rb_right;
4522 }
4523
4524 /* Insert segment into RB tree. */
4525 rb_link_node(&skb->rbnode, parent, p);
4526 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4527
4528 merge_right:
4529 /* Remove other segments covered by skb. */
4530 while ((q = rb_next(&skb->rbnode)) != NULL) {
4531 skb1 = rb_entry(q, struct sk_buff, rbnode);
4532 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4533 break;
4534 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4535 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4536 end_seq);
4537 break;
4538 }
4539 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4540 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4541 TCP_SKB_CB(skb1)->end_seq);
4542 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4543 tcp_drop(sk, skb1);
4544 }
4545 /* If there is no skb after us, we are the last_skb ! */
4546 if (!q)
4547 tp->ooo_last_skb = skb;
4548
4549 add_sack:
4550 if (tcp_is_sack(tp))
4551 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4552 end:
4553 if (skb) {
4554 /* For non sack flows, do not grow window to force DUPACK
4555 * and trigger fast retransmit.
4556 */
4557 if (tcp_is_sack(tp))
4558 tcp_grow_window(sk, skb);
4559 skb_set_owner_r(skb, sk);
4560 }
4561 }
4562
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,int hdrlen,bool * fragstolen)4563 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4564 bool *fragstolen)
4565 {
4566 int eaten;
4567 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4568
4569 __skb_pull(skb, hdrlen);
4570 eaten = (tail &&
4571 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4572 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4573 if (!eaten) {
4574 __skb_queue_tail(&sk->sk_receive_queue, skb);
4575 skb_set_owner_r(skb, sk);
4576 }
4577 return eaten;
4578 }
4579
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4580 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4581 {
4582 struct sk_buff *skb;
4583 int err = -ENOMEM;
4584 int data_len = 0;
4585 bool fragstolen;
4586
4587 if (size == 0)
4588 return 0;
4589
4590 if (size > PAGE_SIZE) {
4591 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4592
4593 data_len = npages << PAGE_SHIFT;
4594 size = data_len + (size & ~PAGE_MASK);
4595 }
4596 skb = alloc_skb_with_frags(size - data_len, data_len,
4597 PAGE_ALLOC_COSTLY_ORDER,
4598 &err, sk->sk_allocation);
4599 if (!skb)
4600 goto err;
4601
4602 skb_put(skb, size - data_len);
4603 skb->data_len = data_len;
4604 skb->len = size;
4605
4606 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4607 goto err_free;
4608
4609 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4610 if (err)
4611 goto err_free;
4612
4613 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4614 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4615 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4616
4617 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4618 WARN_ON_ONCE(fragstolen); /* should not happen */
4619 __kfree_skb(skb);
4620 }
4621 return size;
4622
4623 err_free:
4624 kfree_skb(skb);
4625 err:
4626 return err;
4627
4628 }
4629
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4630 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4631 {
4632 struct tcp_sock *tp = tcp_sk(sk);
4633 bool fragstolen = false;
4634 int eaten = -1;
4635
4636 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4637 __kfree_skb(skb);
4638 return;
4639 }
4640 skb_dst_drop(skb);
4641 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4642
4643 tcp_ecn_accept_cwr(tp, skb);
4644
4645 tp->rx_opt.dsack = 0;
4646
4647 /* Queue data for delivery to the user.
4648 * Packets in sequence go to the receive queue.
4649 * Out of sequence packets to the out_of_order_queue.
4650 */
4651 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4652 if (tcp_receive_window(tp) == 0)
4653 goto out_of_window;
4654
4655 /* Ok. In sequence. In window. */
4656 if (tp->ucopy.task == current &&
4657 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4658 sock_owned_by_user(sk) && !tp->urg_data) {
4659 int chunk = min_t(unsigned int, skb->len,
4660 tp->ucopy.len);
4661
4662 __set_current_state(TASK_RUNNING);
4663
4664 local_bh_enable();
4665 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4666 tp->ucopy.len -= chunk;
4667 tp->copied_seq += chunk;
4668 eaten = (chunk == skb->len);
4669 tcp_rcv_space_adjust(sk);
4670 }
4671 local_bh_disable();
4672 }
4673
4674 if (eaten <= 0) {
4675 queue_and_out:
4676 if (eaten < 0) {
4677 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4678 sk_forced_mem_schedule(sk, skb->truesize);
4679 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4680 goto drop;
4681 }
4682 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4683 }
4684 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4685 if (skb->len)
4686 tcp_event_data_recv(sk, skb);
4687 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4688 tcp_fin(sk);
4689
4690 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4691 tcp_ofo_queue(sk);
4692
4693 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4694 * gap in queue is filled.
4695 */
4696 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4697 inet_csk(sk)->icsk_ack.pingpong = 0;
4698 }
4699
4700 if (tp->rx_opt.num_sacks)
4701 tcp_sack_remove(tp);
4702
4703 tcp_fast_path_check(sk);
4704
4705 if (eaten > 0)
4706 kfree_skb_partial(skb, fragstolen);
4707 if (!sock_flag(sk, SOCK_DEAD))
4708 sk->sk_data_ready(sk);
4709 return;
4710 }
4711
4712 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4713 /* A retransmit, 2nd most common case. Force an immediate ack. */
4714 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4715 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4716
4717 out_of_window:
4718 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4719 inet_csk_schedule_ack(sk);
4720 drop:
4721 tcp_drop(sk, skb);
4722 return;
4723 }
4724
4725 /* Out of window. F.e. zero window probe. */
4726 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4727 goto out_of_window;
4728
4729 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4730 /* Partial packet, seq < rcv_next < end_seq */
4731 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4732 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4733 TCP_SKB_CB(skb)->end_seq);
4734
4735 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4736
4737 /* If window is closed, drop tail of packet. But after
4738 * remembering D-SACK for its head made in previous line.
4739 */
4740 if (!tcp_receive_window(tp))
4741 goto out_of_window;
4742 goto queue_and_out;
4743 }
4744
4745 tcp_data_queue_ofo(sk, skb);
4746 }
4747
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4748 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4749 {
4750 if (list)
4751 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4752
4753 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4754 }
4755
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4756 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4757 struct sk_buff_head *list,
4758 struct rb_root *root)
4759 {
4760 struct sk_buff *next = tcp_skb_next(skb, list);
4761
4762 if (list)
4763 __skb_unlink(skb, list);
4764 else
4765 rb_erase(&skb->rbnode, root);
4766
4767 __kfree_skb(skb);
4768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4769
4770 return next;
4771 }
4772
4773 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4774 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4775 {
4776 struct rb_node **p = &root->rb_node;
4777 struct rb_node *parent = NULL;
4778 struct sk_buff *skb1;
4779
4780 while (*p) {
4781 parent = *p;
4782 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4783 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4784 p = &parent->rb_left;
4785 else
4786 p = &parent->rb_right;
4787 }
4788 rb_link_node(&skb->rbnode, parent, p);
4789 rb_insert_color(&skb->rbnode, root);
4790 }
4791
4792 /* Collapse contiguous sequence of skbs head..tail with
4793 * sequence numbers start..end.
4794 *
4795 * If tail is NULL, this means until the end of the queue.
4796 *
4797 * Segments with FIN/SYN are not collapsed (only because this
4798 * simplifies code)
4799 */
4800 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4801 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4802 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4803 {
4804 struct sk_buff *skb = head, *n;
4805 struct sk_buff_head tmp;
4806 bool end_of_skbs;
4807
4808 /* First, check that queue is collapsible and find
4809 * the point where collapsing can be useful.
4810 */
4811 restart:
4812 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4813 n = tcp_skb_next(skb, list);
4814
4815 /* No new bits? It is possible on ofo queue. */
4816 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4817 skb = tcp_collapse_one(sk, skb, list, root);
4818 if (!skb)
4819 break;
4820 goto restart;
4821 }
4822
4823 /* The first skb to collapse is:
4824 * - not SYN/FIN and
4825 * - bloated or contains data before "start" or
4826 * overlaps to the next one.
4827 */
4828 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4829 (tcp_win_from_space(skb->truesize) > skb->len ||
4830 before(TCP_SKB_CB(skb)->seq, start))) {
4831 end_of_skbs = false;
4832 break;
4833 }
4834
4835 if (n && n != tail &&
4836 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4837 end_of_skbs = false;
4838 break;
4839 }
4840
4841 /* Decided to skip this, advance start seq. */
4842 start = TCP_SKB_CB(skb)->end_seq;
4843 }
4844 if (end_of_skbs ||
4845 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4846 return;
4847
4848 __skb_queue_head_init(&tmp);
4849
4850 while (before(start, end)) {
4851 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4852 struct sk_buff *nskb;
4853
4854 nskb = alloc_skb(copy, GFP_ATOMIC);
4855 if (!nskb)
4856 break;
4857
4858 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4859 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4860 if (list)
4861 __skb_queue_before(list, skb, nskb);
4862 else
4863 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4864 skb_set_owner_r(nskb, sk);
4865
4866 /* Copy data, releasing collapsed skbs. */
4867 while (copy > 0) {
4868 int offset = start - TCP_SKB_CB(skb)->seq;
4869 int size = TCP_SKB_CB(skb)->end_seq - start;
4870
4871 BUG_ON(offset < 0);
4872 if (size > 0) {
4873 size = min(copy, size);
4874 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4875 BUG();
4876 TCP_SKB_CB(nskb)->end_seq += size;
4877 copy -= size;
4878 start += size;
4879 }
4880 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4881 skb = tcp_collapse_one(sk, skb, list, root);
4882 if (!skb ||
4883 skb == tail ||
4884 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4885 goto end;
4886 }
4887 }
4888 }
4889 end:
4890 skb_queue_walk_safe(&tmp, skb, n)
4891 tcp_rbtree_insert(root, skb);
4892 }
4893
4894 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4895 * and tcp_collapse() them until all the queue is collapsed.
4896 */
tcp_collapse_ofo_queue(struct sock * sk)4897 static void tcp_collapse_ofo_queue(struct sock *sk)
4898 {
4899 struct tcp_sock *tp = tcp_sk(sk);
4900 u32 range_truesize, sum_tiny = 0;
4901 struct sk_buff *skb, *head;
4902 struct rb_node *p;
4903 u32 start, end;
4904
4905 p = rb_first(&tp->out_of_order_queue);
4906 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4907 new_range:
4908 if (!skb) {
4909 p = rb_last(&tp->out_of_order_queue);
4910 /* Note: This is possible p is NULL here. We do not
4911 * use rb_entry_safe(), as ooo_last_skb is valid only
4912 * if rbtree is not empty.
4913 */
4914 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4915 return;
4916 }
4917 start = TCP_SKB_CB(skb)->seq;
4918 end = TCP_SKB_CB(skb)->end_seq;
4919 range_truesize = skb->truesize;
4920
4921 for (head = skb;;) {
4922 skb = tcp_skb_next(skb, NULL);
4923
4924 /* Range is terminated when we see a gap or when
4925 * we are at the queue end.
4926 */
4927 if (!skb ||
4928 after(TCP_SKB_CB(skb)->seq, end) ||
4929 before(TCP_SKB_CB(skb)->end_seq, start)) {
4930 /* Do not attempt collapsing tiny skbs */
4931 if (range_truesize != head->truesize ||
4932 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4933 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4934 head, skb, start, end);
4935 } else {
4936 sum_tiny += range_truesize;
4937 if (sum_tiny > sk->sk_rcvbuf >> 3)
4938 return;
4939 }
4940
4941 goto new_range;
4942 }
4943
4944 range_truesize += skb->truesize;
4945 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4946 start = TCP_SKB_CB(skb)->seq;
4947 if (after(TCP_SKB_CB(skb)->end_seq, end))
4948 end = TCP_SKB_CB(skb)->end_seq;
4949 }
4950 }
4951
4952 /*
4953 * Purge the out-of-order queue.
4954 * Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4955 * Return true if queue was pruned.
4956 */
tcp_prune_ofo_queue(struct sock * sk)4957 static bool tcp_prune_ofo_queue(struct sock *sk)
4958 {
4959 struct tcp_sock *tp = tcp_sk(sk);
4960 struct rb_node *node, *prev;
4961 int goal;
4962
4963 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4964 return false;
4965
4966 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4967 goal = sk->sk_rcvbuf >> 3;
4968 node = &tp->ooo_last_skb->rbnode;
4969 do {
4970 prev = rb_prev(node);
4971 rb_erase(node, &tp->out_of_order_queue);
4972 goal -= rb_to_skb(node)->truesize;
4973 __kfree_skb(rb_to_skb(node));
4974 if (!prev || goal <= 0) {
4975 sk_mem_reclaim(sk);
4976 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4977 !tcp_under_memory_pressure(sk))
4978 break;
4979 goal = sk->sk_rcvbuf >> 3;
4980 }
4981
4982 node = prev;
4983 } while (node);
4984 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4985
4986 /* Reset SACK state. A conforming SACK implementation will
4987 * do the same at a timeout based retransmit. When a connection
4988 * is in a sad state like this, we care only about integrity
4989 * of the connection not performance.
4990 */
4991 if (tp->rx_opt.sack_ok)
4992 tcp_sack_reset(&tp->rx_opt);
4993
4994 return true;
4995 }
4996
4997 /* Reduce allocated memory if we can, trying to get
4998 * the socket within its memory limits again.
4999 *
5000 * Return less than zero if we should start dropping frames
5001 * until the socket owning process reads some of the data
5002 * to stabilize the situation.
5003 */
tcp_prune_queue(struct sock * sk)5004 static int tcp_prune_queue(struct sock *sk)
5005 {
5006 struct tcp_sock *tp = tcp_sk(sk);
5007
5008 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5009
5010 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5011
5012 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5013 tcp_clamp_window(sk);
5014 else if (tcp_under_memory_pressure(sk))
5015 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5016
5017 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5018 return 0;
5019
5020 tcp_collapse_ofo_queue(sk);
5021 if (!skb_queue_empty(&sk->sk_receive_queue))
5022 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5023 skb_peek(&sk->sk_receive_queue),
5024 NULL,
5025 tp->copied_seq, tp->rcv_nxt);
5026 sk_mem_reclaim(sk);
5027
5028 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5029 return 0;
5030
5031 /* Collapsing did not help, destructive actions follow.
5032 * This must not ever occur. */
5033
5034 tcp_prune_ofo_queue(sk);
5035
5036 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5037 return 0;
5038
5039 /* If we are really being abused, tell the caller to silently
5040 * drop receive data on the floor. It will get retransmitted
5041 * and hopefully then we'll have sufficient space.
5042 */
5043 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5044
5045 /* Massive buffer overcommit. */
5046 tp->pred_flags = 0;
5047 return -1;
5048 }
5049
tcp_should_expand_sndbuf(const struct sock * sk)5050 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5051 {
5052 const struct tcp_sock *tp = tcp_sk(sk);
5053
5054 /* If the user specified a specific send buffer setting, do
5055 * not modify it.
5056 */
5057 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5058 return false;
5059
5060 /* If we are under global TCP memory pressure, do not expand. */
5061 if (tcp_under_memory_pressure(sk))
5062 return false;
5063
5064 /* If we are under soft global TCP memory pressure, do not expand. */
5065 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5066 return false;
5067
5068 /* If we filled the congestion window, do not expand. */
5069 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5070 return false;
5071
5072 return true;
5073 }
5074
5075 /* When incoming ACK allowed to free some skb from write_queue,
5076 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5077 * on the exit from tcp input handler.
5078 *
5079 * PROBLEM: sndbuf expansion does not work well with largesend.
5080 */
tcp_new_space(struct sock * sk)5081 static void tcp_new_space(struct sock *sk)
5082 {
5083 struct tcp_sock *tp = tcp_sk(sk);
5084
5085 if (tcp_should_expand_sndbuf(sk)) {
5086 tcp_sndbuf_expand(sk);
5087 tp->snd_cwnd_stamp = tcp_time_stamp;
5088 }
5089
5090 sk->sk_write_space(sk);
5091 }
5092
tcp_check_space(struct sock * sk)5093 static void tcp_check_space(struct sock *sk)
5094 {
5095 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5096 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5097 /* pairs with tcp_poll() */
5098 smp_mb();
5099 if (sk->sk_socket &&
5100 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5101 tcp_new_space(sk);
5102 }
5103 }
5104
tcp_data_snd_check(struct sock * sk)5105 static inline void tcp_data_snd_check(struct sock *sk)
5106 {
5107 tcp_push_pending_frames(sk);
5108 tcp_check_space(sk);
5109 }
5110
5111 /*
5112 * Check if sending an ack is needed.
5113 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5114 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5115 {
5116 struct tcp_sock *tp = tcp_sk(sk);
5117
5118 /* More than one full frame received... */
5119 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5120 /* ... and right edge of window advances far enough.
5121 * (tcp_recvmsg() will send ACK otherwise). Or...
5122 */
5123 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5124 /* We ACK each frame or... */
5125 tcp_in_quickack_mode(sk) ||
5126 /* We have out of order data. */
5127 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5128 /* Then ack it now */
5129 tcp_send_ack(sk);
5130 } else {
5131 /* Else, send delayed ack. */
5132 tcp_send_delayed_ack(sk);
5133 }
5134 }
5135
tcp_ack_snd_check(struct sock * sk)5136 static inline void tcp_ack_snd_check(struct sock *sk)
5137 {
5138 if (!inet_csk_ack_scheduled(sk)) {
5139 /* We sent a data segment already. */
5140 return;
5141 }
5142 __tcp_ack_snd_check(sk, 1);
5143 }
5144
5145 /*
5146 * This routine is only called when we have urgent data
5147 * signaled. Its the 'slow' part of tcp_urg. It could be
5148 * moved inline now as tcp_urg is only called from one
5149 * place. We handle URGent data wrong. We have to - as
5150 * BSD still doesn't use the correction from RFC961.
5151 * For 1003.1g we should support a new option TCP_STDURG to permit
5152 * either form (or just set the sysctl tcp_stdurg).
5153 */
5154
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5155 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5156 {
5157 struct tcp_sock *tp = tcp_sk(sk);
5158 u32 ptr = ntohs(th->urg_ptr);
5159
5160 if (ptr && !sysctl_tcp_stdurg)
5161 ptr--;
5162 ptr += ntohl(th->seq);
5163
5164 /* Ignore urgent data that we've already seen and read. */
5165 if (after(tp->copied_seq, ptr))
5166 return;
5167
5168 /* Do not replay urg ptr.
5169 *
5170 * NOTE: interesting situation not covered by specs.
5171 * Misbehaving sender may send urg ptr, pointing to segment,
5172 * which we already have in ofo queue. We are not able to fetch
5173 * such data and will stay in TCP_URG_NOTYET until will be eaten
5174 * by recvmsg(). Seems, we are not obliged to handle such wicked
5175 * situations. But it is worth to think about possibility of some
5176 * DoSes using some hypothetical application level deadlock.
5177 */
5178 if (before(ptr, tp->rcv_nxt))
5179 return;
5180
5181 /* Do we already have a newer (or duplicate) urgent pointer? */
5182 if (tp->urg_data && !after(ptr, tp->urg_seq))
5183 return;
5184
5185 /* Tell the world about our new urgent pointer. */
5186 sk_send_sigurg(sk);
5187
5188 /* We may be adding urgent data when the last byte read was
5189 * urgent. To do this requires some care. We cannot just ignore
5190 * tp->copied_seq since we would read the last urgent byte again
5191 * as data, nor can we alter copied_seq until this data arrives
5192 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5193 *
5194 * NOTE. Double Dutch. Rendering to plain English: author of comment
5195 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5196 * and expect that both A and B disappear from stream. This is _wrong_.
5197 * Though this happens in BSD with high probability, this is occasional.
5198 * Any application relying on this is buggy. Note also, that fix "works"
5199 * only in this artificial test. Insert some normal data between A and B and we will
5200 * decline of BSD again. Verdict: it is better to remove to trap
5201 * buggy users.
5202 */
5203 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5204 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5205 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5206 tp->copied_seq++;
5207 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5208 __skb_unlink(skb, &sk->sk_receive_queue);
5209 __kfree_skb(skb);
5210 }
5211 }
5212
5213 tp->urg_data = TCP_URG_NOTYET;
5214 tp->urg_seq = ptr;
5215
5216 /* Disable header prediction. */
5217 tp->pred_flags = 0;
5218 }
5219
5220 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5221 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5222 {
5223 struct tcp_sock *tp = tcp_sk(sk);
5224
5225 /* Check if we get a new urgent pointer - normally not. */
5226 if (th->urg)
5227 tcp_check_urg(sk, th);
5228
5229 /* Do we wait for any urgent data? - normally not... */
5230 if (tp->urg_data == TCP_URG_NOTYET) {
5231 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5232 th->syn;
5233
5234 /* Is the urgent pointer pointing into this packet? */
5235 if (ptr < skb->len) {
5236 u8 tmp;
5237 if (skb_copy_bits(skb, ptr, &tmp, 1))
5238 BUG();
5239 tp->urg_data = TCP_URG_VALID | tmp;
5240 if (!sock_flag(sk, SOCK_DEAD))
5241 sk->sk_data_ready(sk);
5242 }
5243 }
5244 }
5245
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)5246 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5247 {
5248 struct tcp_sock *tp = tcp_sk(sk);
5249 int chunk = skb->len - hlen;
5250 int err;
5251
5252 local_bh_enable();
5253 if (skb_csum_unnecessary(skb))
5254 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5255 else
5256 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5257
5258 if (!err) {
5259 tp->ucopy.len -= chunk;
5260 tp->copied_seq += chunk;
5261 tcp_rcv_space_adjust(sk);
5262 }
5263
5264 local_bh_disable();
5265 return err;
5266 }
5267
__tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5268 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5269 struct sk_buff *skb)
5270 {
5271 __sum16 result;
5272
5273 if (sock_owned_by_user(sk)) {
5274 local_bh_enable();
5275 result = __tcp_checksum_complete(skb);
5276 local_bh_disable();
5277 } else {
5278 result = __tcp_checksum_complete(skb);
5279 }
5280 return result;
5281 }
5282
tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5283 static inline bool tcp_checksum_complete_user(struct sock *sk,
5284 struct sk_buff *skb)
5285 {
5286 return !skb_csum_unnecessary(skb) &&
5287 __tcp_checksum_complete_user(sk, skb);
5288 }
5289
5290 /* Does PAWS and seqno based validation of an incoming segment, flags will
5291 * play significant role here.
5292 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5293 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5294 const struct tcphdr *th, int syn_inerr)
5295 {
5296 struct tcp_sock *tp = tcp_sk(sk);
5297
5298 /* RFC1323: H1. Apply PAWS check first. */
5299 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5300 tcp_paws_discard(sk, skb)) {
5301 if (!th->rst) {
5302 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5303 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5304 LINUX_MIB_TCPACKSKIPPEDPAWS,
5305 &tp->last_oow_ack_time))
5306 tcp_send_dupack(sk, skb);
5307 goto discard;
5308 }
5309 /* Reset is accepted even if it did not pass PAWS. */
5310 }
5311
5312 /* Step 1: check sequence number */
5313 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5314 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5315 * (RST) segments are validated by checking their SEQ-fields."
5316 * And page 69: "If an incoming segment is not acceptable,
5317 * an acknowledgment should be sent in reply (unless the RST
5318 * bit is set, if so drop the segment and return)".
5319 */
5320 if (!th->rst) {
5321 if (th->syn)
5322 goto syn_challenge;
5323 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5324 LINUX_MIB_TCPACKSKIPPEDSEQ,
5325 &tp->last_oow_ack_time))
5326 tcp_send_dupack(sk, skb);
5327 }
5328 goto discard;
5329 }
5330
5331 /* Step 2: check RST bit */
5332 if (th->rst) {
5333 /* RFC 5961 3.2 :
5334 * If sequence number exactly matches RCV.NXT, then
5335 * RESET the connection
5336 * else
5337 * Send a challenge ACK
5338 */
5339 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5340 tcp_reset(sk);
5341 else
5342 tcp_send_challenge_ack(sk, skb);
5343 goto discard;
5344 }
5345
5346 /* step 3: check security and precedence [ignored] */
5347
5348 /* step 4: Check for a SYN
5349 * RFC 5961 4.2 : Send a challenge ack
5350 */
5351 if (th->syn) {
5352 syn_challenge:
5353 if (syn_inerr)
5354 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5355 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5356 tcp_send_challenge_ack(sk, skb);
5357 goto discard;
5358 }
5359
5360 return true;
5361
5362 discard:
5363 tcp_drop(sk, skb);
5364 return false;
5365 }
5366
5367 /*
5368 * TCP receive function for the ESTABLISHED state.
5369 *
5370 * It is split into a fast path and a slow path. The fast path is
5371 * disabled when:
5372 * - A zero window was announced from us - zero window probing
5373 * is only handled properly in the slow path.
5374 * - Out of order segments arrived.
5375 * - Urgent data is expected.
5376 * - There is no buffer space left
5377 * - Unexpected TCP flags/window values/header lengths are received
5378 * (detected by checking the TCP header against pred_flags)
5379 * - Data is sent in both directions. Fast path only supports pure senders
5380 * or pure receivers (this means either the sequence number or the ack
5381 * value must stay constant)
5382 * - Unexpected TCP option.
5383 *
5384 * When these conditions are not satisfied it drops into a standard
5385 * receive procedure patterned after RFC793 to handle all cases.
5386 * The first three cases are guaranteed by proper pred_flags setting,
5387 * the rest is checked inline. Fast processing is turned on in
5388 * tcp_data_queue when everything is OK.
5389 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5390 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5391 const struct tcphdr *th, unsigned int len)
5392 {
5393 struct tcp_sock *tp = tcp_sk(sk);
5394
5395 if (unlikely(!sk->sk_rx_dst))
5396 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5397 /*
5398 * Header prediction.
5399 * The code loosely follows the one in the famous
5400 * "30 instruction TCP receive" Van Jacobson mail.
5401 *
5402 * Van's trick is to deposit buffers into socket queue
5403 * on a device interrupt, to call tcp_recv function
5404 * on the receive process context and checksum and copy
5405 * the buffer to user space. smart...
5406 *
5407 * Our current scheme is not silly either but we take the
5408 * extra cost of the net_bh soft interrupt processing...
5409 * We do checksum and copy also but from device to kernel.
5410 */
5411
5412 tp->rx_opt.saw_tstamp = 0;
5413
5414 /* pred_flags is 0xS?10 << 16 + snd_wnd
5415 * if header_prediction is to be made
5416 * 'S' will always be tp->tcp_header_len >> 2
5417 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5418 * turn it off (when there are holes in the receive
5419 * space for instance)
5420 * PSH flag is ignored.
5421 */
5422
5423 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5424 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5425 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5426 int tcp_header_len = tp->tcp_header_len;
5427
5428 /* Timestamp header prediction: tcp_header_len
5429 * is automatically equal to th->doff*4 due to pred_flags
5430 * match.
5431 */
5432
5433 /* Check timestamp */
5434 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5435 /* No? Slow path! */
5436 if (!tcp_parse_aligned_timestamp(tp, th))
5437 goto slow_path;
5438
5439 /* If PAWS failed, check it more carefully in slow path */
5440 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5441 goto slow_path;
5442
5443 /* DO NOT update ts_recent here, if checksum fails
5444 * and timestamp was corrupted part, it will result
5445 * in a hung connection since we will drop all
5446 * future packets due to the PAWS test.
5447 */
5448 }
5449
5450 if (len <= tcp_header_len) {
5451 /* Bulk data transfer: sender */
5452 if (len == tcp_header_len) {
5453 /* Predicted packet is in window by definition.
5454 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5455 * Hence, check seq<=rcv_wup reduces to:
5456 */
5457 if (tcp_header_len ==
5458 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5459 tp->rcv_nxt == tp->rcv_wup)
5460 tcp_store_ts_recent(tp);
5461
5462 /* We know that such packets are checksummed
5463 * on entry.
5464 */
5465 tcp_ack(sk, skb, 0);
5466 __kfree_skb(skb);
5467 tcp_data_snd_check(sk);
5468 return;
5469 } else { /* Header too small */
5470 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5471 goto discard;
5472 }
5473 } else {
5474 int eaten = 0;
5475 bool fragstolen = false;
5476
5477 if (tp->ucopy.task == current &&
5478 tp->copied_seq == tp->rcv_nxt &&
5479 len - tcp_header_len <= tp->ucopy.len &&
5480 sock_owned_by_user(sk)) {
5481 __set_current_state(TASK_RUNNING);
5482
5483 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5484 /* Predicted packet is in window by definition.
5485 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5486 * Hence, check seq<=rcv_wup reduces to:
5487 */
5488 if (tcp_header_len ==
5489 (sizeof(struct tcphdr) +
5490 TCPOLEN_TSTAMP_ALIGNED) &&
5491 tp->rcv_nxt == tp->rcv_wup)
5492 tcp_store_ts_recent(tp);
5493
5494 tcp_rcv_rtt_measure_ts(sk, skb);
5495
5496 __skb_pull(skb, tcp_header_len);
5497 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5498 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5499 eaten = 1;
5500 }
5501 }
5502 if (!eaten) {
5503 if (tcp_checksum_complete_user(sk, skb))
5504 goto csum_error;
5505
5506 if ((int)skb->truesize > sk->sk_forward_alloc)
5507 goto step5;
5508
5509 /* Predicted packet is in window by definition.
5510 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5511 * Hence, check seq<=rcv_wup reduces to:
5512 */
5513 if (tcp_header_len ==
5514 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5515 tp->rcv_nxt == tp->rcv_wup)
5516 tcp_store_ts_recent(tp);
5517
5518 tcp_rcv_rtt_measure_ts(sk, skb);
5519
5520 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5521
5522 /* Bulk data transfer: receiver */
5523 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5524 &fragstolen);
5525 }
5526
5527 tcp_event_data_recv(sk, skb);
5528
5529 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5530 /* Well, only one small jumplet in fast path... */
5531 tcp_ack(sk, skb, FLAG_DATA);
5532 tcp_data_snd_check(sk);
5533 if (!inet_csk_ack_scheduled(sk))
5534 goto no_ack;
5535 } else {
5536 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5537 }
5538
5539 __tcp_ack_snd_check(sk, 0);
5540 no_ack:
5541 if (eaten)
5542 kfree_skb_partial(skb, fragstolen);
5543 sk->sk_data_ready(sk);
5544 return;
5545 }
5546 }
5547
5548 slow_path:
5549 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5550 goto csum_error;
5551
5552 if (!th->ack && !th->rst && !th->syn)
5553 goto discard;
5554
5555 /*
5556 * Standard slow path.
5557 */
5558
5559 if (!tcp_validate_incoming(sk, skb, th, 1))
5560 return;
5561
5562 step5:
5563 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5564 goto discard;
5565
5566 tcp_rcv_rtt_measure_ts(sk, skb);
5567
5568 /* Process urgent data. */
5569 tcp_urg(sk, skb, th);
5570
5571 /* step 7: process the segment text */
5572 tcp_data_queue(sk, skb);
5573
5574 tcp_data_snd_check(sk);
5575 tcp_ack_snd_check(sk);
5576 return;
5577
5578 csum_error:
5579 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5580 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5581
5582 discard:
5583 tcp_drop(sk, skb);
5584 }
5585 EXPORT_SYMBOL(tcp_rcv_established);
5586
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5587 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5588 {
5589 struct tcp_sock *tp = tcp_sk(sk);
5590 struct inet_connection_sock *icsk = inet_csk(sk);
5591
5592 tcp_set_state(sk, TCP_ESTABLISHED);
5593 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5594
5595 if (skb) {
5596 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5597 security_inet_conn_established(sk, skb);
5598 }
5599
5600 /* Make sure socket is routed, for correct metrics. */
5601 icsk->icsk_af_ops->rebuild_header(sk);
5602
5603 tcp_init_metrics(sk);
5604
5605 tcp_init_congestion_control(sk);
5606
5607 /* Prevent spurious tcp_cwnd_restart() on first data
5608 * packet.
5609 */
5610 tp->lsndtime = tcp_time_stamp;
5611
5612 tcp_init_buffer_space(sk);
5613
5614 if (sock_flag(sk, SOCK_KEEPOPEN))
5615 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5616
5617 if (!tp->rx_opt.snd_wscale)
5618 __tcp_fast_path_on(tp, tp->snd_wnd);
5619 else
5620 tp->pred_flags = 0;
5621
5622 }
5623
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5624 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5625 struct tcp_fastopen_cookie *cookie)
5626 {
5627 struct tcp_sock *tp = tcp_sk(sk);
5628 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5629 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5630 bool syn_drop = false;
5631
5632 if (mss == tp->rx_opt.user_mss) {
5633 struct tcp_options_received opt;
5634
5635 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5636 tcp_clear_options(&opt);
5637 opt.user_mss = opt.mss_clamp = 0;
5638 tcp_parse_options(synack, &opt, 0, NULL);
5639 mss = opt.mss_clamp;
5640 }
5641
5642 if (!tp->syn_fastopen) {
5643 /* Ignore an unsolicited cookie */
5644 cookie->len = -1;
5645 } else if (tp->total_retrans) {
5646 /* SYN timed out and the SYN-ACK neither has a cookie nor
5647 * acknowledges data. Presumably the remote received only
5648 * the retransmitted (regular) SYNs: either the original
5649 * SYN-data or the corresponding SYN-ACK was dropped.
5650 */
5651 syn_drop = (cookie->len < 0 && data);
5652 } else if (cookie->len < 0 && !tp->syn_data) {
5653 /* We requested a cookie but didn't get it. If we did not use
5654 * the (old) exp opt format then try so next time (try_exp=1).
5655 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5656 */
5657 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5658 }
5659
5660 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5661
5662 if (data) { /* Retransmit unacked data in SYN */
5663 tcp_for_write_queue_from(data, sk) {
5664 if (data == tcp_send_head(sk) ||
5665 __tcp_retransmit_skb(sk, data))
5666 break;
5667 }
5668 tcp_rearm_rto(sk);
5669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5670 return true;
5671 }
5672 tp->syn_data_acked = tp->syn_data;
5673 if (tp->syn_data_acked)
5674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5675 return false;
5676 }
5677
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5678 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5679 const struct tcphdr *th)
5680 {
5681 struct inet_connection_sock *icsk = inet_csk(sk);
5682 struct tcp_sock *tp = tcp_sk(sk);
5683 struct tcp_fastopen_cookie foc = { .len = -1 };
5684 int saved_clamp = tp->rx_opt.mss_clamp;
5685 bool fastopen_fail;
5686
5687 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5688 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5689 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5690
5691 if (th->ack) {
5692 /* rfc793:
5693 * "If the state is SYN-SENT then
5694 * first check the ACK bit
5695 * If the ACK bit is set
5696 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5697 * a reset (unless the RST bit is set, if so drop
5698 * the segment and return)"
5699 */
5700 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5701 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5702 goto reset_and_undo;
5703
5704 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5705 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5706 tcp_time_stamp)) {
5707 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5708 goto reset_and_undo;
5709 }
5710
5711 /* Now ACK is acceptable.
5712 *
5713 * "If the RST bit is set
5714 * If the ACK was acceptable then signal the user "error:
5715 * connection reset", drop the segment, enter CLOSED state,
5716 * delete TCB, and return."
5717 */
5718
5719 if (th->rst) {
5720 tcp_reset(sk);
5721 goto discard;
5722 }
5723
5724 /* rfc793:
5725 * "fifth, if neither of the SYN or RST bits is set then
5726 * drop the segment and return."
5727 *
5728 * See note below!
5729 * --ANK(990513)
5730 */
5731 if (!th->syn)
5732 goto discard_and_undo;
5733
5734 /* rfc793:
5735 * "If the SYN bit is on ...
5736 * are acceptable then ...
5737 * (our SYN has been ACKed), change the connection
5738 * state to ESTABLISHED..."
5739 */
5740
5741 tcp_ecn_rcv_synack(tp, th);
5742
5743 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5744 tcp_ack(sk, skb, FLAG_SLOWPATH);
5745
5746 /* Ok.. it's good. Set up sequence numbers and
5747 * move to established.
5748 */
5749 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5750 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5751
5752 /* RFC1323: The window in SYN & SYN/ACK segments is
5753 * never scaled.
5754 */
5755 tp->snd_wnd = ntohs(th->window);
5756
5757 if (!tp->rx_opt.wscale_ok) {
5758 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5759 tp->window_clamp = min(tp->window_clamp, 65535U);
5760 }
5761
5762 if (tp->rx_opt.saw_tstamp) {
5763 tp->rx_opt.tstamp_ok = 1;
5764 tp->tcp_header_len =
5765 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5766 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5767 tcp_store_ts_recent(tp);
5768 } else {
5769 tp->tcp_header_len = sizeof(struct tcphdr);
5770 }
5771
5772 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5773 tcp_enable_fack(tp);
5774
5775 tcp_mtup_init(sk);
5776 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5777 tcp_initialize_rcv_mss(sk);
5778
5779 /* Remember, tcp_poll() does not lock socket!
5780 * Change state from SYN-SENT only after copied_seq
5781 * is initialized. */
5782 tp->copied_seq = tp->rcv_nxt;
5783
5784 smp_mb();
5785
5786 tcp_finish_connect(sk, skb);
5787
5788 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5789 tcp_rcv_fastopen_synack(sk, skb, &foc);
5790
5791 if (!sock_flag(sk, SOCK_DEAD)) {
5792 sk->sk_state_change(sk);
5793 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5794 }
5795 if (fastopen_fail)
5796 return -1;
5797 if (sk->sk_write_pending ||
5798 icsk->icsk_accept_queue.rskq_defer_accept ||
5799 icsk->icsk_ack.pingpong) {
5800 /* Save one ACK. Data will be ready after
5801 * several ticks, if write_pending is set.
5802 *
5803 * It may be deleted, but with this feature tcpdumps
5804 * look so _wonderfully_ clever, that I was not able
5805 * to stand against the temptation 8) --ANK
5806 */
5807 inet_csk_schedule_ack(sk);
5808 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5809 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5810 TCP_DELACK_MAX, TCP_RTO_MAX);
5811
5812 discard:
5813 tcp_drop(sk, skb);
5814 return 0;
5815 } else {
5816 tcp_send_ack(sk);
5817 }
5818 return -1;
5819 }
5820
5821 /* No ACK in the segment */
5822
5823 if (th->rst) {
5824 /* rfc793:
5825 * "If the RST bit is set
5826 *
5827 * Otherwise (no ACK) drop the segment and return."
5828 */
5829
5830 goto discard_and_undo;
5831 }
5832
5833 /* PAWS check. */
5834 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5835 tcp_paws_reject(&tp->rx_opt, 0))
5836 goto discard_and_undo;
5837
5838 if (th->syn) {
5839 /* We see SYN without ACK. It is attempt of
5840 * simultaneous connect with crossed SYNs.
5841 * Particularly, it can be connect to self.
5842 */
5843 tcp_set_state(sk, TCP_SYN_RECV);
5844
5845 if (tp->rx_opt.saw_tstamp) {
5846 tp->rx_opt.tstamp_ok = 1;
5847 tcp_store_ts_recent(tp);
5848 tp->tcp_header_len =
5849 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5850 } else {
5851 tp->tcp_header_len = sizeof(struct tcphdr);
5852 }
5853
5854 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5855 tp->copied_seq = tp->rcv_nxt;
5856 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5857
5858 /* RFC1323: The window in SYN & SYN/ACK segments is
5859 * never scaled.
5860 */
5861 tp->snd_wnd = ntohs(th->window);
5862 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5863 tp->max_window = tp->snd_wnd;
5864
5865 tcp_ecn_rcv_syn(tp, th);
5866
5867 tcp_mtup_init(sk);
5868 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5869 tcp_initialize_rcv_mss(sk);
5870
5871 tcp_send_synack(sk);
5872 #if 0
5873 /* Note, we could accept data and URG from this segment.
5874 * There are no obstacles to make this (except that we must
5875 * either change tcp_recvmsg() to prevent it from returning data
5876 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5877 *
5878 * However, if we ignore data in ACKless segments sometimes,
5879 * we have no reasons to accept it sometimes.
5880 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5881 * is not flawless. So, discard packet for sanity.
5882 * Uncomment this return to process the data.
5883 */
5884 return -1;
5885 #else
5886 goto discard;
5887 #endif
5888 }
5889 /* "fifth, if neither of the SYN or RST bits is set then
5890 * drop the segment and return."
5891 */
5892
5893 discard_and_undo:
5894 tcp_clear_options(&tp->rx_opt);
5895 tp->rx_opt.mss_clamp = saved_clamp;
5896 goto discard;
5897
5898 reset_and_undo:
5899 tcp_clear_options(&tp->rx_opt);
5900 tp->rx_opt.mss_clamp = saved_clamp;
5901 return 1;
5902 }
5903
5904 /*
5905 * This function implements the receiving procedure of RFC 793 for
5906 * all states except ESTABLISHED and TIME_WAIT.
5907 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5908 * address independent.
5909 */
5910
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)5911 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5912 {
5913 struct tcp_sock *tp = tcp_sk(sk);
5914 struct inet_connection_sock *icsk = inet_csk(sk);
5915 const struct tcphdr *th = tcp_hdr(skb);
5916 struct request_sock *req;
5917 int queued = 0;
5918 bool acceptable;
5919
5920 tp->rx_opt.saw_tstamp = 0;
5921
5922 switch (sk->sk_state) {
5923 case TCP_CLOSE:
5924 goto discard;
5925
5926 case TCP_LISTEN:
5927 if (th->ack)
5928 return 1;
5929
5930 if (th->rst)
5931 goto discard;
5932
5933 if (th->syn) {
5934 if (th->fin)
5935 goto discard;
5936 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5937 return 1;
5938
5939 /* Now we have several options: In theory there is
5940 * nothing else in the frame. KA9Q has an option to
5941 * send data with the syn, BSD accepts data with the
5942 * syn up to the [to be] advertised window and
5943 * Solaris 2.1 gives you a protocol error. For now
5944 * we just ignore it, that fits the spec precisely
5945 * and avoids incompatibilities. It would be nice in
5946 * future to drop through and process the data.
5947 *
5948 * Now that TTCP is starting to be used we ought to
5949 * queue this data.
5950 * But, this leaves one open to an easy denial of
5951 * service attack, and SYN cookies can't defend
5952 * against this problem. So, we drop the data
5953 * in the interest of security over speed unless
5954 * it's still in use.
5955 */
5956 kfree_skb(skb);
5957 return 0;
5958 }
5959 goto discard;
5960
5961 case TCP_SYN_SENT:
5962 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5963 if (queued >= 0)
5964 return queued;
5965
5966 /* Do step6 onward by hand. */
5967 tcp_urg(sk, skb, th);
5968 __kfree_skb(skb);
5969 tcp_data_snd_check(sk);
5970 return 0;
5971 }
5972
5973 req = tp->fastopen_rsk;
5974 if (req) {
5975 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5976 sk->sk_state != TCP_FIN_WAIT1);
5977
5978 if (!tcp_check_req(sk, skb, req, true))
5979 goto discard;
5980 }
5981
5982 if (!th->ack && !th->rst && !th->syn)
5983 goto discard;
5984
5985 if (!tcp_validate_incoming(sk, skb, th, 0))
5986 return 0;
5987
5988 /* step 5: check the ACK field */
5989 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5990 FLAG_UPDATE_TS_RECENT |
5991 FLAG_NO_CHALLENGE_ACK) > 0;
5992
5993 if (!acceptable) {
5994 if (sk->sk_state == TCP_SYN_RECV)
5995 return 1; /* send one RST */
5996 tcp_send_challenge_ack(sk, skb);
5997 goto discard;
5998 }
5999 switch (sk->sk_state) {
6000 case TCP_SYN_RECV:
6001 if (!tp->srtt_us)
6002 tcp_synack_rtt_meas(sk, req);
6003
6004 /* Once we leave TCP_SYN_RECV, we no longer need req
6005 * so release it.
6006 */
6007 if (req) {
6008 tp->total_retrans = req->num_retrans;
6009 reqsk_fastopen_remove(sk, req, false);
6010 } else {
6011 /* Make sure socket is routed, for correct metrics. */
6012 icsk->icsk_af_ops->rebuild_header(sk);
6013 tcp_init_congestion_control(sk);
6014
6015 tcp_mtup_init(sk);
6016 tp->copied_seq = tp->rcv_nxt;
6017 tcp_init_buffer_space(sk);
6018 }
6019 smp_mb();
6020 tcp_set_state(sk, TCP_ESTABLISHED);
6021 sk->sk_state_change(sk);
6022
6023 /* Note, that this wakeup is only for marginal crossed SYN case.
6024 * Passively open sockets are not waked up, because
6025 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6026 */
6027 if (sk->sk_socket)
6028 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6029
6030 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6031 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6032 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6033
6034 if (tp->rx_opt.tstamp_ok)
6035 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6036
6037 if (req) {
6038 /* Re-arm the timer because data may have been sent out.
6039 * This is similar to the regular data transmission case
6040 * when new data has just been ack'ed.
6041 *
6042 * (TFO) - we could try to be more aggressive and
6043 * retransmitting any data sooner based on when they
6044 * are sent out.
6045 */
6046 tcp_rearm_rto(sk);
6047 } else
6048 tcp_init_metrics(sk);
6049
6050 tcp_update_pacing_rate(sk);
6051
6052 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6053 tp->lsndtime = tcp_time_stamp;
6054
6055 tcp_initialize_rcv_mss(sk);
6056 tcp_fast_path_on(tp);
6057 break;
6058
6059 case TCP_FIN_WAIT1: {
6060 struct dst_entry *dst;
6061 int tmo;
6062
6063 /* If we enter the TCP_FIN_WAIT1 state and we are a
6064 * Fast Open socket and this is the first acceptable
6065 * ACK we have received, this would have acknowledged
6066 * our SYNACK so stop the SYNACK timer.
6067 */
6068 if (req) {
6069 /* We no longer need the request sock. */
6070 reqsk_fastopen_remove(sk, req, false);
6071 tcp_rearm_rto(sk);
6072 }
6073 if (tp->snd_una != tp->write_seq)
6074 break;
6075
6076 tcp_set_state(sk, TCP_FIN_WAIT2);
6077 sk->sk_shutdown |= SEND_SHUTDOWN;
6078
6079 dst = __sk_dst_get(sk);
6080 if (dst)
6081 dst_confirm(dst);
6082
6083 if (!sock_flag(sk, SOCK_DEAD)) {
6084 /* Wake up lingering close() */
6085 sk->sk_state_change(sk);
6086 break;
6087 }
6088
6089 if (tp->linger2 < 0 ||
6090 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6091 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6092 tcp_done(sk);
6093 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6094 return 1;
6095 }
6096
6097 tmo = tcp_fin_time(sk);
6098 if (tmo > TCP_TIMEWAIT_LEN) {
6099 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6100 } else if (th->fin || sock_owned_by_user(sk)) {
6101 /* Bad case. We could lose such FIN otherwise.
6102 * It is not a big problem, but it looks confusing
6103 * and not so rare event. We still can lose it now,
6104 * if it spins in bh_lock_sock(), but it is really
6105 * marginal case.
6106 */
6107 inet_csk_reset_keepalive_timer(sk, tmo);
6108 } else {
6109 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6110 goto discard;
6111 }
6112 break;
6113 }
6114
6115 case TCP_CLOSING:
6116 if (tp->snd_una == tp->write_seq) {
6117 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6118 goto discard;
6119 }
6120 break;
6121
6122 case TCP_LAST_ACK:
6123 if (tp->snd_una == tp->write_seq) {
6124 tcp_update_metrics(sk);
6125 tcp_done(sk);
6126 goto discard;
6127 }
6128 break;
6129 }
6130
6131 /* step 6: check the URG bit */
6132 tcp_urg(sk, skb, th);
6133
6134 /* step 7: process the segment text */
6135 switch (sk->sk_state) {
6136 case TCP_CLOSE_WAIT:
6137 case TCP_CLOSING:
6138 case TCP_LAST_ACK:
6139 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6140 break;
6141 case TCP_FIN_WAIT1:
6142 case TCP_FIN_WAIT2:
6143 /* RFC 793 says to queue data in these states,
6144 * RFC 1122 says we MUST send a reset.
6145 * BSD 4.4 also does reset.
6146 */
6147 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6148 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6149 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6150 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6151 tcp_reset(sk);
6152 return 1;
6153 }
6154 }
6155 /* Fall through */
6156 case TCP_ESTABLISHED:
6157 tcp_data_queue(sk, skb);
6158 queued = 1;
6159 break;
6160 }
6161
6162 /* tcp_data could move socket to TIME-WAIT */
6163 if (sk->sk_state != TCP_CLOSE) {
6164 tcp_data_snd_check(sk);
6165 tcp_ack_snd_check(sk);
6166 }
6167
6168 if (!queued) {
6169 discard:
6170 tcp_drop(sk, skb);
6171 }
6172 return 0;
6173 }
6174 EXPORT_SYMBOL(tcp_rcv_state_process);
6175
pr_drop_req(struct request_sock * req,__u16 port,int family)6176 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6177 {
6178 struct inet_request_sock *ireq = inet_rsk(req);
6179
6180 if (family == AF_INET)
6181 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6182 &ireq->ir_rmt_addr, port);
6183 #if IS_ENABLED(CONFIG_IPV6)
6184 else if (family == AF_INET6)
6185 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6186 &ireq->ir_v6_rmt_addr, port);
6187 #endif
6188 }
6189
6190 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6191 *
6192 * If we receive a SYN packet with these bits set, it means a
6193 * network is playing bad games with TOS bits. In order to
6194 * avoid possible false congestion notifications, we disable
6195 * TCP ECN negotiation.
6196 *
6197 * Exception: tcp_ca wants ECN. This is required for DCTCP
6198 * congestion control: Linux DCTCP asserts ECT on all packets,
6199 * including SYN, which is most optimal solution; however,
6200 * others, such as FreeBSD do not.
6201 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6202 static void tcp_ecn_create_request(struct request_sock *req,
6203 const struct sk_buff *skb,
6204 const struct sock *listen_sk,
6205 const struct dst_entry *dst)
6206 {
6207 const struct tcphdr *th = tcp_hdr(skb);
6208 const struct net *net = sock_net(listen_sk);
6209 bool th_ecn = th->ece && th->cwr;
6210 bool ect, ecn_ok;
6211 u32 ecn_ok_dst;
6212
6213 if (!th_ecn)
6214 return;
6215
6216 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6217 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6218 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6219
6220 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6221 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6222 inet_rsk(req)->ecn_ok = 1;
6223 }
6224
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6225 static void tcp_openreq_init(struct request_sock *req,
6226 const struct tcp_options_received *rx_opt,
6227 struct sk_buff *skb, const struct sock *sk)
6228 {
6229 struct inet_request_sock *ireq = inet_rsk(req);
6230
6231 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6232 req->cookie_ts = 0;
6233 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6234 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6235 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6236 tcp_rsk(req)->last_oow_ack_time = 0;
6237 req->mss = rx_opt->mss_clamp;
6238 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6239 ireq->tstamp_ok = rx_opt->tstamp_ok;
6240 ireq->sack_ok = rx_opt->sack_ok;
6241 ireq->snd_wscale = rx_opt->snd_wscale;
6242 ireq->wscale_ok = rx_opt->wscale_ok;
6243 ireq->acked = 0;
6244 ireq->ecn_ok = 0;
6245 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6246 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6247 ireq->ir_mark = inet_request_mark(sk, skb);
6248 }
6249
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6250 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6251 struct sock *sk_listener,
6252 bool attach_listener)
6253 {
6254 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6255 attach_listener);
6256
6257 if (req) {
6258 struct inet_request_sock *ireq = inet_rsk(req);
6259
6260 kmemcheck_annotate_bitfield(ireq, flags);
6261 ireq->ireq_opt = NULL;
6262 atomic64_set(&ireq->ir_cookie, 0);
6263 ireq->ireq_state = TCP_NEW_SYN_RECV;
6264 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6265 ireq->ireq_family = sk_listener->sk_family;
6266 }
6267
6268 return req;
6269 }
6270 EXPORT_SYMBOL(inet_reqsk_alloc);
6271
6272 /*
6273 * Return true if a syncookie should be sent
6274 */
tcp_syn_flood_action(const struct sock * sk,const struct sk_buff * skb,const char * proto)6275 static bool tcp_syn_flood_action(const struct sock *sk,
6276 const struct sk_buff *skb,
6277 const char *proto)
6278 {
6279 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6280 const char *msg = "Dropping request";
6281 bool want_cookie = false;
6282
6283 #ifdef CONFIG_SYN_COOKIES
6284 if (sysctl_tcp_syncookies) {
6285 msg = "Sending cookies";
6286 want_cookie = true;
6287 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6288 } else
6289 #endif
6290 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6291
6292 if (!queue->synflood_warned &&
6293 sysctl_tcp_syncookies != 2 &&
6294 xchg(&queue->synflood_warned, 1) == 0)
6295 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6296 proto, ntohs(tcp_hdr(skb)->dest), msg);
6297
6298 return want_cookie;
6299 }
6300
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6301 static void tcp_reqsk_record_syn(const struct sock *sk,
6302 struct request_sock *req,
6303 const struct sk_buff *skb)
6304 {
6305 if (tcp_sk(sk)->save_syn) {
6306 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6307 u32 *copy;
6308
6309 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6310 if (copy) {
6311 copy[0] = len;
6312 memcpy(©[1], skb_network_header(skb), len);
6313 req->saved_syn = copy;
6314 }
6315 }
6316 }
6317
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6318 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6319 const struct tcp_request_sock_ops *af_ops,
6320 struct sock *sk, struct sk_buff *skb)
6321 {
6322 struct tcp_fastopen_cookie foc = { .len = -1 };
6323 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6324 struct tcp_options_received tmp_opt;
6325 struct tcp_sock *tp = tcp_sk(sk);
6326 struct sock *fastopen_sk = NULL;
6327 struct dst_entry *dst = NULL;
6328 struct request_sock *req;
6329 bool want_cookie = false;
6330 struct flowi fl;
6331
6332 /* TW buckets are converted to open requests without
6333 * limitations, they conserve resources and peer is
6334 * evidently real one.
6335 */
6336 if ((sysctl_tcp_syncookies == 2 ||
6337 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6338 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6339 if (!want_cookie)
6340 goto drop;
6341 }
6342
6343 if (sk_acceptq_is_full(sk)) {
6344 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6345 goto drop;
6346 }
6347
6348 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6349 if (!req)
6350 goto drop;
6351
6352 tcp_rsk(req)->af_specific = af_ops;
6353
6354 tcp_clear_options(&tmp_opt);
6355 tmp_opt.mss_clamp = af_ops->mss_clamp;
6356 tmp_opt.user_mss = tp->rx_opt.user_mss;
6357 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6358
6359 if (want_cookie && !tmp_opt.saw_tstamp)
6360 tcp_clear_options(&tmp_opt);
6361
6362 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6363 tcp_openreq_init(req, &tmp_opt, skb, sk);
6364
6365 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6366 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6367
6368 af_ops->init_req(req, sk, skb);
6369
6370 if (security_inet_conn_request(sk, skb, req))
6371 goto drop_and_free;
6372
6373 if (!want_cookie && !isn) {
6374 /* VJ's idea. We save last timestamp seen
6375 * from the destination in peer table, when entering
6376 * state TIME-WAIT, and check against it before
6377 * accepting new connection request.
6378 *
6379 * If "isn" is not zero, this request hit alive
6380 * timewait bucket, so that all the necessary checks
6381 * are made in the function processing timewait state.
6382 */
6383 if (tcp_death_row.sysctl_tw_recycle) {
6384 bool strict;
6385
6386 dst = af_ops->route_req(sk, &fl, req, &strict);
6387
6388 if (dst && strict &&
6389 !tcp_peer_is_proven(req, dst, true,
6390 tmp_opt.saw_tstamp)) {
6391 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6392 goto drop_and_release;
6393 }
6394 }
6395 /* Kill the following clause, if you dislike this way. */
6396 else if (!sysctl_tcp_syncookies &&
6397 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6398 (sysctl_max_syn_backlog >> 2)) &&
6399 !tcp_peer_is_proven(req, dst, false,
6400 tmp_opt.saw_tstamp)) {
6401 /* Without syncookies last quarter of
6402 * backlog is filled with destinations,
6403 * proven to be alive.
6404 * It means that we continue to communicate
6405 * to destinations, already remembered
6406 * to the moment of synflood.
6407 */
6408 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6409 rsk_ops->family);
6410 goto drop_and_release;
6411 }
6412
6413 isn = af_ops->init_seq(skb);
6414 }
6415 if (!dst) {
6416 dst = af_ops->route_req(sk, &fl, req, NULL);
6417 if (!dst)
6418 goto drop_and_free;
6419 }
6420
6421 tcp_ecn_create_request(req, skb, sk, dst);
6422
6423 if (want_cookie) {
6424 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6425 req->cookie_ts = tmp_opt.tstamp_ok;
6426 if (!tmp_opt.tstamp_ok)
6427 inet_rsk(req)->ecn_ok = 0;
6428 }
6429
6430 tcp_rsk(req)->snt_isn = isn;
6431 tcp_rsk(req)->txhash = net_tx_rndhash();
6432 tcp_openreq_init_rwin(req, sk, dst);
6433 if (!want_cookie) {
6434 tcp_reqsk_record_syn(sk, req, skb);
6435 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6436 }
6437 if (fastopen_sk) {
6438 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6439 &foc, false);
6440 /* Add the child socket directly into the accept queue */
6441 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6442 reqsk_fastopen_remove(fastopen_sk, req, false);
6443 bh_unlock_sock(fastopen_sk);
6444 sock_put(fastopen_sk);
6445 reqsk_put(req);
6446 goto drop;
6447 }
6448 sk->sk_data_ready(sk);
6449 bh_unlock_sock(fastopen_sk);
6450 sock_put(fastopen_sk);
6451 } else {
6452 tcp_rsk(req)->tfo_listener = false;
6453 if (!want_cookie)
6454 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6455 af_ops->send_synack(sk, dst, &fl, req,
6456 &foc, !want_cookie);
6457 if (want_cookie)
6458 goto drop_and_free;
6459 }
6460 reqsk_put(req);
6461 return 0;
6462
6463 drop_and_release:
6464 dst_release(dst);
6465 drop_and_free:
6466 reqsk_free(req);
6467 drop:
6468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6469 return 0;
6470 }
6471 EXPORT_SYMBOL(tcp_conn_request);
6472