• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27 
28 #define PANIC_TIMER_STEP 100
29 #define PANIC_BLINK_SPD 18
30 
31 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
32 static unsigned long tainted_mask;
33 static int pause_on_oops;
34 static int pause_on_oops_flag;
35 static DEFINE_SPINLOCK(pause_on_oops_lock);
36 bool crash_kexec_post_notifiers;
37 int panic_on_warn __read_mostly;
38 
39 int panic_timeout = CONFIG_PANIC_TIMEOUT;
40 EXPORT_SYMBOL_GPL(panic_timeout);
41 
42 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
43 
44 EXPORT_SYMBOL(panic_notifier_list);
45 
no_blink(int state)46 static long no_blink(int state)
47 {
48 	return 0;
49 }
50 
51 /* Returns how long it waited in ms */
52 long (*panic_blink)(int state);
53 EXPORT_SYMBOL(panic_blink);
54 
55 /*
56  * Stop ourself in panic -- architecture code may override this
57  */
panic_smp_self_stop(void)58 void __weak panic_smp_self_stop(void)
59 {
60 	while (1)
61 		cpu_relax();
62 }
63 
64 /**
65  *	panic - halt the system
66  *	@fmt: The text string to print
67  *
68  *	Display a message, then perform cleanups.
69  *
70  *	This function never returns.
71  */
panic(const char * fmt,...)72 void panic(const char *fmt, ...)
73 {
74 	static DEFINE_SPINLOCK(panic_lock);
75 	static char buf[1024];
76 	va_list args;
77 	long i, i_next = 0;
78 	int state = 0;
79 
80 	/*
81 	 * Disable local interrupts. This will prevent panic_smp_self_stop
82 	 * from deadlocking the first cpu that invokes the panic, since
83 	 * there is nothing to prevent an interrupt handler (that runs
84 	 * after the panic_lock is acquired) from invoking panic again.
85 	 */
86 	local_irq_disable();
87 	preempt_disable_notrace();
88 
89 	/*
90 	 * It's possible to come here directly from a panic-assertion and
91 	 * not have preempt disabled. Some functions called from here want
92 	 * preempt to be disabled. No point enabling it later though...
93 	 *
94 	 * Only one CPU is allowed to execute the panic code from here. For
95 	 * multiple parallel invocations of panic, all other CPUs either
96 	 * stop themself or will wait until they are stopped by the 1st CPU
97 	 * with smp_send_stop().
98 	 */
99 	if (!spin_trylock(&panic_lock))
100 		panic_smp_self_stop();
101 
102 	console_verbose();
103 	bust_spinlocks(1);
104 	va_start(args, fmt);
105 	vsnprintf(buf, sizeof(buf), fmt, args);
106 	va_end(args);
107 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
108 #ifdef CONFIG_DEBUG_BUGVERBOSE
109 	/*
110 	 * Avoid nested stack-dumping if a panic occurs during oops processing
111 	 */
112 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
113 		dump_stack();
114 #endif
115 
116 	/*
117 	 * If we have crashed and we have a crash kernel loaded let it handle
118 	 * everything else.
119 	 * If we want to run this after calling panic_notifiers, pass
120 	 * the "crash_kexec_post_notifiers" option to the kernel.
121 	 */
122 	if (!crash_kexec_post_notifiers)
123 		crash_kexec(NULL);
124 
125 	/*
126 	 * Note smp_send_stop is the usual smp shutdown function, which
127 	 * unfortunately means it may not be hardened to work in a panic
128 	 * situation.
129 	 */
130 	smp_send_stop();
131 
132 	/*
133 	 * Run any panic handlers, including those that might need to
134 	 * add information to the kmsg dump output.
135 	 */
136 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
137 
138 	kmsg_dump(KMSG_DUMP_PANIC);
139 
140 	/*
141 	 * If you doubt kdump always works fine in any situation,
142 	 * "crash_kexec_post_notifiers" offers you a chance to run
143 	 * panic_notifiers and dumping kmsg before kdump.
144 	 * Note: since some panic_notifiers can make crashed kernel
145 	 * more unstable, it can increase risks of the kdump failure too.
146 	 */
147 	if (crash_kexec_post_notifiers)
148 		crash_kexec(NULL);
149 
150 	bust_spinlocks(0);
151 
152 	/*
153 	 * We may have ended up stopping the CPU holding the lock (in
154 	 * smp_send_stop()) while still having some valuable data in the console
155 	 * buffer.  Try to acquire the lock then release it regardless of the
156 	 * result.  The release will also print the buffers out.  Locks debug
157 	 * should be disabled to avoid reporting bad unlock balance when
158 	 * panic() is not being callled from OOPS.
159 	 */
160 	debug_locks_off();
161 	console_flush_on_panic();
162 
163 	if (!panic_blink)
164 		panic_blink = no_blink;
165 
166 	if (panic_timeout > 0) {
167 		/*
168 		 * Delay timeout seconds before rebooting the machine.
169 		 * We can't use the "normal" timers since we just panicked.
170 		 */
171 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
172 
173 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
174 			touch_nmi_watchdog();
175 			if (i >= i_next) {
176 				i += panic_blink(state ^= 1);
177 				i_next = i + 3600 / PANIC_BLINK_SPD;
178 			}
179 			mdelay(PANIC_TIMER_STEP);
180 		}
181 	}
182 	if (panic_timeout != 0) {
183 		/*
184 		 * This will not be a clean reboot, with everything
185 		 * shutting down.  But if there is a chance of
186 		 * rebooting the system it will be rebooted.
187 		 */
188 		emergency_restart();
189 	}
190 #ifdef __sparc__
191 	{
192 		extern int stop_a_enabled;
193 		/* Make sure the user can actually press Stop-A (L1-A) */
194 		stop_a_enabled = 1;
195 		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
196 	}
197 #endif
198 #if defined(CONFIG_S390)
199 	{
200 		unsigned long caller;
201 
202 		caller = (unsigned long)__builtin_return_address(0);
203 		disabled_wait(caller);
204 	}
205 #endif
206 	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
207 	local_irq_enable();
208 	for (i = 0; ; i += PANIC_TIMER_STEP) {
209 		touch_softlockup_watchdog();
210 		if (i >= i_next) {
211 			i += panic_blink(state ^= 1);
212 			i_next = i + 3600 / PANIC_BLINK_SPD;
213 		}
214 		mdelay(PANIC_TIMER_STEP);
215 	}
216 }
217 
218 EXPORT_SYMBOL(panic);
219 
220 
221 struct tnt {
222 	u8	bit;
223 	char	true;
224 	char	false;
225 };
226 
227 static const struct tnt tnts[] = {
228 	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
229 	{ TAINT_FORCED_MODULE,		'F', ' ' },
230 	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
231 	{ TAINT_FORCED_RMMOD,		'R', ' ' },
232 	{ TAINT_MACHINE_CHECK,		'M', ' ' },
233 	{ TAINT_BAD_PAGE,		'B', ' ' },
234 	{ TAINT_USER,			'U', ' ' },
235 	{ TAINT_DIE,			'D', ' ' },
236 	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
237 	{ TAINT_WARN,			'W', ' ' },
238 	{ TAINT_CRAP,			'C', ' ' },
239 	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
240 	{ TAINT_OOT_MODULE,		'O', ' ' },
241 	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
242 	{ TAINT_SOFTLOCKUP,		'L', ' ' },
243 	{ TAINT_LIVEPATCH,		'K', ' ' },
244 };
245 
246 /**
247  *	print_tainted - return a string to represent the kernel taint state.
248  *
249  *  'P' - Proprietary module has been loaded.
250  *  'F' - Module has been forcibly loaded.
251  *  'S' - SMP with CPUs not designed for SMP.
252  *  'R' - User forced a module unload.
253  *  'M' - System experienced a machine check exception.
254  *  'B' - System has hit bad_page.
255  *  'U' - Userspace-defined naughtiness.
256  *  'D' - Kernel has oopsed before
257  *  'A' - ACPI table overridden.
258  *  'W' - Taint on warning.
259  *  'C' - modules from drivers/staging are loaded.
260  *  'I' - Working around severe firmware bug.
261  *  'O' - Out-of-tree module has been loaded.
262  *  'E' - Unsigned module has been loaded.
263  *  'L' - A soft lockup has previously occurred.
264  *  'K' - Kernel has been live patched.
265  *
266  *	The string is overwritten by the next call to print_tainted().
267  */
print_tainted(void)268 const char *print_tainted(void)
269 {
270 	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
271 
272 	if (tainted_mask) {
273 		char *s;
274 		int i;
275 
276 		s = buf + sprintf(buf, "Tainted: ");
277 		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
278 			const struct tnt *t = &tnts[i];
279 			*s++ = test_bit(t->bit, &tainted_mask) ?
280 					t->true : t->false;
281 		}
282 		*s = 0;
283 	} else
284 		snprintf(buf, sizeof(buf), "Not tainted");
285 
286 	return buf;
287 }
288 
test_taint(unsigned flag)289 int test_taint(unsigned flag)
290 {
291 	return test_bit(flag, &tainted_mask);
292 }
293 EXPORT_SYMBOL(test_taint);
294 
get_taint(void)295 unsigned long get_taint(void)
296 {
297 	return tainted_mask;
298 }
299 
300 /**
301  * add_taint: add a taint flag if not already set.
302  * @flag: one of the TAINT_* constants.
303  * @lockdep_ok: whether lock debugging is still OK.
304  *
305  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
306  * some notewortht-but-not-corrupting cases, it can be set to true.
307  */
add_taint(unsigned flag,enum lockdep_ok lockdep_ok)308 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
309 {
310 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
311 		pr_warn("Disabling lock debugging due to kernel taint\n");
312 
313 	set_bit(flag, &tainted_mask);
314 }
315 EXPORT_SYMBOL(add_taint);
316 
spin_msec(int msecs)317 static void spin_msec(int msecs)
318 {
319 	int i;
320 
321 	for (i = 0; i < msecs; i++) {
322 		touch_nmi_watchdog();
323 		mdelay(1);
324 	}
325 }
326 
327 /*
328  * It just happens that oops_enter() and oops_exit() are identically
329  * implemented...
330  */
do_oops_enter_exit(void)331 static void do_oops_enter_exit(void)
332 {
333 	unsigned long flags;
334 	static int spin_counter;
335 
336 	if (!pause_on_oops)
337 		return;
338 
339 	spin_lock_irqsave(&pause_on_oops_lock, flags);
340 	if (pause_on_oops_flag == 0) {
341 		/* This CPU may now print the oops message */
342 		pause_on_oops_flag = 1;
343 	} else {
344 		/* We need to stall this CPU */
345 		if (!spin_counter) {
346 			/* This CPU gets to do the counting */
347 			spin_counter = pause_on_oops;
348 			do {
349 				spin_unlock(&pause_on_oops_lock);
350 				spin_msec(MSEC_PER_SEC);
351 				spin_lock(&pause_on_oops_lock);
352 			} while (--spin_counter);
353 			pause_on_oops_flag = 0;
354 		} else {
355 			/* This CPU waits for a different one */
356 			while (spin_counter) {
357 				spin_unlock(&pause_on_oops_lock);
358 				spin_msec(1);
359 				spin_lock(&pause_on_oops_lock);
360 			}
361 		}
362 	}
363 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
364 }
365 
366 /*
367  * Return true if the calling CPU is allowed to print oops-related info.
368  * This is a bit racy..
369  */
oops_may_print(void)370 int oops_may_print(void)
371 {
372 	return pause_on_oops_flag == 0;
373 }
374 
375 /*
376  * Called when the architecture enters its oops handler, before it prints
377  * anything.  If this is the first CPU to oops, and it's oopsing the first
378  * time then let it proceed.
379  *
380  * This is all enabled by the pause_on_oops kernel boot option.  We do all
381  * this to ensure that oopses don't scroll off the screen.  It has the
382  * side-effect of preventing later-oopsing CPUs from mucking up the display,
383  * too.
384  *
385  * It turns out that the CPU which is allowed to print ends up pausing for
386  * the right duration, whereas all the other CPUs pause for twice as long:
387  * once in oops_enter(), once in oops_exit().
388  */
oops_enter(void)389 void oops_enter(void)
390 {
391 	tracing_off();
392 	/* can't trust the integrity of the kernel anymore: */
393 	debug_locks_off();
394 	do_oops_enter_exit();
395 }
396 
397 /*
398  * 64-bit random ID for oopses:
399  */
400 static u64 oops_id;
401 
init_oops_id(void)402 static int init_oops_id(void)
403 {
404 	if (!oops_id)
405 		get_random_bytes(&oops_id, sizeof(oops_id));
406 	else
407 		oops_id++;
408 
409 	return 0;
410 }
411 late_initcall(init_oops_id);
412 
print_oops_end_marker(void)413 void print_oops_end_marker(void)
414 {
415 	init_oops_id();
416 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
417 }
418 
419 /*
420  * Called when the architecture exits its oops handler, after printing
421  * everything.
422  */
oops_exit(void)423 void oops_exit(void)
424 {
425 	do_oops_enter_exit();
426 	print_oops_end_marker();
427 	kmsg_dump(KMSG_DUMP_OOPS);
428 }
429 
430 #ifdef WANT_WARN_ON_SLOWPATH
431 struct slowpath_args {
432 	const char *fmt;
433 	va_list args;
434 };
435 
warn_slowpath_common(const char * file,int line,void * caller,unsigned taint,struct slowpath_args * args)436 static void warn_slowpath_common(const char *file, int line, void *caller,
437 				 unsigned taint, struct slowpath_args *args)
438 {
439 	disable_trace_on_warning();
440 
441 	pr_warn("------------[ cut here ]------------\n");
442 	pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS()\n",
443 		raw_smp_processor_id(), current->pid, file, line, caller);
444 
445 	if (args)
446 		vprintk(args->fmt, args->args);
447 
448 	if (panic_on_warn) {
449 		/*
450 		 * This thread may hit another WARN() in the panic path.
451 		 * Resetting this prevents additional WARN() from panicking the
452 		 * system on this thread.  Other threads are blocked by the
453 		 * panic_mutex in panic().
454 		 */
455 		panic_on_warn = 0;
456 		panic("panic_on_warn set ...\n");
457 	}
458 
459 	print_modules();
460 	dump_stack();
461 	print_oops_end_marker();
462 	/* Just a warning, don't kill lockdep. */
463 	add_taint(taint, LOCKDEP_STILL_OK);
464 }
465 
warn_slowpath_fmt(const char * file,int line,const char * fmt,...)466 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
467 {
468 	struct slowpath_args args;
469 
470 	args.fmt = fmt;
471 	va_start(args.args, fmt);
472 	warn_slowpath_common(file, line, __builtin_return_address(0),
473 			     TAINT_WARN, &args);
474 	va_end(args.args);
475 }
476 EXPORT_SYMBOL(warn_slowpath_fmt);
477 
warn_slowpath_fmt_taint(const char * file,int line,unsigned taint,const char * fmt,...)478 void warn_slowpath_fmt_taint(const char *file, int line,
479 			     unsigned taint, const char *fmt, ...)
480 {
481 	struct slowpath_args args;
482 
483 	args.fmt = fmt;
484 	va_start(args.args, fmt);
485 	warn_slowpath_common(file, line, __builtin_return_address(0),
486 			     taint, &args);
487 	va_end(args.args);
488 }
489 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
490 
warn_slowpath_null(const char * file,int line)491 void warn_slowpath_null(const char *file, int line)
492 {
493 	warn_slowpath_common(file, line, __builtin_return_address(0),
494 			     TAINT_WARN, NULL);
495 }
496 EXPORT_SYMBOL(warn_slowpath_null);
497 #endif
498 
499 #ifdef CONFIG_CC_STACKPROTECTOR
500 
501 /*
502  * Called when gcc's -fstack-protector feature is used, and
503  * gcc detects corruption of the on-stack canary value
504  */
__stack_chk_fail(void)505 __visible void __stack_chk_fail(void)
506 {
507 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
508 		__builtin_return_address(0));
509 }
510 EXPORT_SYMBOL(__stack_chk_fail);
511 
512 #endif
513 
514 core_param(panic, panic_timeout, int, 0644);
515 core_param(pause_on_oops, pause_on_oops, int, 0644);
516 core_param(panic_on_warn, panic_on_warn, int, 0644);
517 
setup_crash_kexec_post_notifiers(char * s)518 static int __init setup_crash_kexec_post_notifiers(char *s)
519 {
520 	crash_kexec_post_notifiers = true;
521 	return 0;
522 }
523 early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
524 
oops_setup(char * s)525 static int __init oops_setup(char *s)
526 {
527 	if (!s)
528 		return -EINVAL;
529 	if (!strcmp(s, "panic"))
530 		panic_on_oops = 1;
531 	return 0;
532 }
533 early_param("oops", oops_setup);
534