• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 #include <linux/sched/prio.h>
7 
8 
9 struct sched_param {
10 	int sched_priority;
11 };
12 
13 #include <asm/param.h>	/* for HZ */
14 
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29 
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33 
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48 
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/kcov.h>
55 #include <linux/task_io_accounting.h>
56 #include <linux/latencytop.h>
57 #include <linux/cred.h>
58 #include <linux/llist.h>
59 #include <linux/uidgid.h>
60 #include <linux/gfp.h>
61 #include <linux/magic.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <asm/processor.h>
65 
66 #define SCHED_ATTR_SIZE_VER0	48	/* sizeof first published struct */
67 
68 /*
69  * Extended scheduling parameters data structure.
70  *
71  * This is needed because the original struct sched_param can not be
72  * altered without introducing ABI issues with legacy applications
73  * (e.g., in sched_getparam()).
74  *
75  * However, the possibility of specifying more than just a priority for
76  * the tasks may be useful for a wide variety of application fields, e.g.,
77  * multimedia, streaming, automation and control, and many others.
78  *
79  * This variant (sched_attr) is meant at describing a so-called
80  * sporadic time-constrained task. In such model a task is specified by:
81  *  - the activation period or minimum instance inter-arrival time;
82  *  - the maximum (or average, depending on the actual scheduling
83  *    discipline) computation time of all instances, a.k.a. runtime;
84  *  - the deadline (relative to the actual activation time) of each
85  *    instance.
86  * Very briefly, a periodic (sporadic) task asks for the execution of
87  * some specific computation --which is typically called an instance--
88  * (at most) every period. Moreover, each instance typically lasts no more
89  * than the runtime and must be completed by time instant t equal to
90  * the instance activation time + the deadline.
91  *
92  * This is reflected by the actual fields of the sched_attr structure:
93  *
94  *  @size		size of the structure, for fwd/bwd compat.
95  *
96  *  @sched_policy	task's scheduling policy
97  *  @sched_flags	for customizing the scheduler behaviour
98  *  @sched_nice		task's nice value      (SCHED_NORMAL/BATCH)
99  *  @sched_priority	task's static priority (SCHED_FIFO/RR)
100  *  @sched_deadline	representative of the task's deadline
101  *  @sched_runtime	representative of the task's runtime
102  *  @sched_period	representative of the task's period
103  *
104  * Given this task model, there are a multiplicity of scheduling algorithms
105  * and policies, that can be used to ensure all the tasks will make their
106  * timing constraints.
107  *
108  * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109  * only user of this new interface. More information about the algorithm
110  * available in the scheduling class file or in Documentation/.
111  */
112 struct sched_attr {
113 	u32 size;
114 
115 	u32 sched_policy;
116 	u64 sched_flags;
117 
118 	/* SCHED_NORMAL, SCHED_BATCH */
119 	s32 sched_nice;
120 
121 	/* SCHED_FIFO, SCHED_RR */
122 	u32 sched_priority;
123 
124 	/* SCHED_DEADLINE */
125 	u64 sched_runtime;
126 	u64 sched_deadline;
127 	u64 sched_period;
128 };
129 
130 struct futex_pi_state;
131 struct robust_list_head;
132 struct bio_list;
133 struct fs_struct;
134 struct perf_event_context;
135 struct blk_plug;
136 struct filename;
137 struct nameidata;
138 
139 #define VMACACHE_BITS 2
140 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
141 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
142 
143 /*
144  * These are the constant used to fake the fixed-point load-average
145  * counting. Some notes:
146  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
147  *    a load-average precision of 10 bits integer + 11 bits fractional
148  *  - if you want to count load-averages more often, you need more
149  *    precision, or rounding will get you. With 2-second counting freq,
150  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
151  *    11 bit fractions.
152  */
153 extern unsigned long avenrun[];		/* Load averages */
154 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
155 
156 #define FSHIFT		11		/* nr of bits of precision */
157 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
158 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
159 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
160 #define EXP_5		2014		/* 1/exp(5sec/5min) */
161 #define EXP_15		2037		/* 1/exp(5sec/15min) */
162 
163 #define CALC_LOAD(load,exp,n) \
164 	load *= exp; \
165 	load += n*(FIXED_1-exp); \
166 	load >>= FSHIFT;
167 
168 extern unsigned long total_forks;
169 extern int nr_threads;
170 DECLARE_PER_CPU(unsigned long, process_counts);
171 extern int nr_processes(void);
172 extern unsigned long nr_running(void);
173 extern bool single_task_running(void);
174 extern unsigned long nr_iowait(void);
175 extern unsigned long nr_iowait_cpu(int cpu);
176 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
177 #ifdef CONFIG_CPU_QUIET
178 extern u64 nr_running_integral(unsigned int cpu);
179 #endif
180 
181 extern void calc_global_load(unsigned long ticks);
182 
183 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
184 extern void update_cpu_load_nohz(void);
185 #else
update_cpu_load_nohz(void)186 static inline void update_cpu_load_nohz(void) { }
187 #endif
188 
189 extern unsigned long get_parent_ip(unsigned long addr);
190 
191 extern void dump_cpu_task(int cpu);
192 
193 struct seq_file;
194 struct cfs_rq;
195 struct task_group;
196 #ifdef CONFIG_SCHED_DEBUG
197 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
198 extern void proc_sched_set_task(struct task_struct *p);
199 #endif
200 
201 /*
202  * Task state bitmask. NOTE! These bits are also
203  * encoded in fs/proc/array.c: get_task_state().
204  *
205  * We have two separate sets of flags: task->state
206  * is about runnability, while task->exit_state are
207  * about the task exiting. Confusing, but this way
208  * modifying one set can't modify the other one by
209  * mistake.
210  */
211 #define TASK_RUNNING		0
212 #define TASK_INTERRUPTIBLE	1
213 #define TASK_UNINTERRUPTIBLE	2
214 #define __TASK_STOPPED		4
215 #define __TASK_TRACED		8
216 /* in tsk->exit_state */
217 #define EXIT_DEAD		16
218 #define EXIT_ZOMBIE		32
219 #define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
220 /* in tsk->state again */
221 #define TASK_DEAD		64
222 #define TASK_WAKEKILL		128
223 #define TASK_WAKING		256
224 #define TASK_PARKED		512
225 #define TASK_NOLOAD		1024
226 #define TASK_NEW		2048
227 #define TASK_STATE_MAX		4096
228 
229 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"
230 
231 extern char ___assert_task_state[1 - 2*!!(
232 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
233 
234 /* Convenience macros for the sake of set_task_state */
235 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
236 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
237 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
238 
239 #define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
240 
241 /* Convenience macros for the sake of wake_up */
242 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
243 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
244 
245 /* get_task_state() */
246 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
247 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
248 				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
249 
250 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
251 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
252 #define task_is_stopped_or_traced(task)	\
253 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
254 #define task_contributes_to_load(task)	\
255 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
256 				 (task->flags & PF_FROZEN) == 0 && \
257 				 (task->state & TASK_NOLOAD) == 0)
258 
259 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
260 
261 #define __set_task_state(tsk, state_value)			\
262 	do {							\
263 		(tsk)->task_state_change = _THIS_IP_;		\
264 		(tsk)->state = (state_value);			\
265 	} while (0)
266 #define set_task_state(tsk, state_value)			\
267 	do {							\
268 		(tsk)->task_state_change = _THIS_IP_;		\
269 		smp_store_mb((tsk)->state, (state_value));		\
270 	} while (0)
271 
272 /*
273  * set_current_state() includes a barrier so that the write of current->state
274  * is correctly serialised wrt the caller's subsequent test of whether to
275  * actually sleep:
276  *
277  *	set_current_state(TASK_UNINTERRUPTIBLE);
278  *	if (do_i_need_to_sleep())
279  *		schedule();
280  *
281  * If the caller does not need such serialisation then use __set_current_state()
282  */
283 #define __set_current_state(state_value)			\
284 	do {							\
285 		current->task_state_change = _THIS_IP_;		\
286 		current->state = (state_value);			\
287 	} while (0)
288 #define set_current_state(state_value)				\
289 	do {							\
290 		current->task_state_change = _THIS_IP_;		\
291 		smp_store_mb(current->state, (state_value));		\
292 	} while (0)
293 
294 #else
295 
296 #define __set_task_state(tsk, state_value)		\
297 	do { (tsk)->state = (state_value); } while (0)
298 #define set_task_state(tsk, state_value)		\
299 	smp_store_mb((tsk)->state, (state_value))
300 
301 /*
302  * set_current_state() includes a barrier so that the write of current->state
303  * is correctly serialised wrt the caller's subsequent test of whether to
304  * actually sleep:
305  *
306  *	set_current_state(TASK_UNINTERRUPTIBLE);
307  *	if (do_i_need_to_sleep())
308  *		schedule();
309  *
310  * If the caller does not need such serialisation then use __set_current_state()
311  */
312 #define __set_current_state(state_value)		\
313 	do { current->state = (state_value); } while (0)
314 #define set_current_state(state_value)			\
315 	smp_store_mb(current->state, (state_value))
316 
317 #endif
318 
319 /* Task command name length */
320 #define TASK_COMM_LEN 16
321 
322 enum task_event {
323 	PUT_PREV_TASK   = 0,
324 	PICK_NEXT_TASK  = 1,
325 	TASK_WAKE       = 2,
326 	TASK_MIGRATE    = 3,
327 	TASK_UPDATE     = 4,
328 	IRQ_UPDATE	= 5,
329 };
330 
331 #include <linux/spinlock.h>
332 
333 /*
334  * This serializes "schedule()" and also protects
335  * the run-queue from deletions/modifications (but
336  * _adding_ to the beginning of the run-queue has
337  * a separate lock).
338  */
339 extern rwlock_t tasklist_lock;
340 extern spinlock_t mmlist_lock;
341 
342 struct task_struct;
343 
344 #ifdef CONFIG_PROVE_RCU
345 extern int lockdep_tasklist_lock_is_held(void);
346 #endif /* #ifdef CONFIG_PROVE_RCU */
347 
348 extern void sched_init(void);
349 extern void sched_init_smp(void);
350 extern asmlinkage void schedule_tail(struct task_struct *prev);
351 extern void init_idle(struct task_struct *idle, int cpu);
352 extern void init_idle_bootup_task(struct task_struct *idle);
353 
354 extern cpumask_var_t cpu_isolated_map;
355 
356 extern int runqueue_is_locked(int cpu);
357 
358 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
359 extern void nohz_balance_enter_idle(int cpu);
360 extern void set_cpu_sd_state_idle(void);
361 extern int get_nohz_timer_target(void);
362 #else
nohz_balance_enter_idle(int cpu)363 static inline void nohz_balance_enter_idle(int cpu) { }
set_cpu_sd_state_idle(void)364 static inline void set_cpu_sd_state_idle(void) { }
365 #endif
366 
367 /*
368  * Only dump TASK_* tasks. (0 for all tasks)
369  */
370 extern void show_state_filter(unsigned long state_filter);
371 
show_state(void)372 static inline void show_state(void)
373 {
374 	show_state_filter(0);
375 }
376 
377 extern void show_regs(struct pt_regs *);
378 
379 /*
380  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
381  * task), SP is the stack pointer of the first frame that should be shown in the back
382  * trace (or NULL if the entire call-chain of the task should be shown).
383  */
384 extern void show_stack(struct task_struct *task, unsigned long *sp);
385 
386 extern void cpu_init (void);
387 extern void trap_init(void);
388 extern void update_process_times(int user);
389 extern void scheduler_tick(void);
390 
391 extern void sched_show_task(struct task_struct *p);
392 
393 #ifdef CONFIG_LOCKUP_DETECTOR
394 extern void touch_softlockup_watchdog(void);
395 extern void touch_softlockup_watchdog_sync(void);
396 extern void touch_all_softlockup_watchdogs(void);
397 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
398 				  void __user *buffer,
399 				  size_t *lenp, loff_t *ppos);
400 extern unsigned int  softlockup_panic;
401 extern unsigned int  hardlockup_panic;
402 void lockup_detector_init(void);
403 #else
touch_softlockup_watchdog(void)404 static inline void touch_softlockup_watchdog(void)
405 {
406 }
touch_softlockup_watchdog_sync(void)407 static inline void touch_softlockup_watchdog_sync(void)
408 {
409 }
touch_all_softlockup_watchdogs(void)410 static inline void touch_all_softlockup_watchdogs(void)
411 {
412 }
lockup_detector_init(void)413 static inline void lockup_detector_init(void)
414 {
415 }
416 #endif
417 
418 #ifdef CONFIG_DETECT_HUNG_TASK
419 void reset_hung_task_detector(void);
420 #else
reset_hung_task_detector(void)421 static inline void reset_hung_task_detector(void)
422 {
423 }
424 #endif
425 
426 /* Attach to any functions which should be ignored in wchan output. */
427 #define __sched		__attribute__((__section__(".sched.text")))
428 
429 /* Linker adds these: start and end of __sched functions */
430 extern char __sched_text_start[], __sched_text_end[];
431 
432 /* Is this address in the __sched functions? */
433 extern int in_sched_functions(unsigned long addr);
434 
435 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
436 extern signed long schedule_timeout(signed long timeout);
437 extern signed long schedule_timeout_interruptible(signed long timeout);
438 extern signed long schedule_timeout_killable(signed long timeout);
439 extern signed long schedule_timeout_uninterruptible(signed long timeout);
440 asmlinkage void schedule(void);
441 extern void schedule_preempt_disabled(void);
442 
443 extern long io_schedule_timeout(long timeout);
444 
io_schedule(void)445 static inline void io_schedule(void)
446 {
447 	io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
448 }
449 
450 struct nsproxy;
451 struct user_namespace;
452 
453 #ifdef CONFIG_MMU
454 extern void arch_pick_mmap_layout(struct mm_struct *mm);
455 extern unsigned long
456 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
457 		       unsigned long, unsigned long);
458 extern unsigned long
459 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
460 			  unsigned long len, unsigned long pgoff,
461 			  unsigned long flags);
462 #else
arch_pick_mmap_layout(struct mm_struct * mm)463 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
464 #endif
465 
466 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
467 #define SUID_DUMP_USER		1	/* Dump as user of process */
468 #define SUID_DUMP_ROOT		2	/* Dump as root */
469 
470 /* mm flags */
471 
472 /* for SUID_DUMP_* above */
473 #define MMF_DUMPABLE_BITS 2
474 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
475 
476 extern void set_dumpable(struct mm_struct *mm, int value);
477 /*
478  * This returns the actual value of the suid_dumpable flag. For things
479  * that are using this for checking for privilege transitions, it must
480  * test against SUID_DUMP_USER rather than treating it as a boolean
481  * value.
482  */
__get_dumpable(unsigned long mm_flags)483 static inline int __get_dumpable(unsigned long mm_flags)
484 {
485 	return mm_flags & MMF_DUMPABLE_MASK;
486 }
487 
get_dumpable(struct mm_struct * mm)488 static inline int get_dumpable(struct mm_struct *mm)
489 {
490 	return __get_dumpable(mm->flags);
491 }
492 
493 /* coredump filter bits */
494 #define MMF_DUMP_ANON_PRIVATE	2
495 #define MMF_DUMP_ANON_SHARED	3
496 #define MMF_DUMP_MAPPED_PRIVATE	4
497 #define MMF_DUMP_MAPPED_SHARED	5
498 #define MMF_DUMP_ELF_HEADERS	6
499 #define MMF_DUMP_HUGETLB_PRIVATE 7
500 #define MMF_DUMP_HUGETLB_SHARED  8
501 #define MMF_DUMP_DAX_PRIVATE	9
502 #define MMF_DUMP_DAX_SHARED	10
503 
504 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
505 #define MMF_DUMP_FILTER_BITS	9
506 #define MMF_DUMP_FILTER_MASK \
507 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
508 #define MMF_DUMP_FILTER_DEFAULT \
509 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
510 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
511 
512 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
513 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
514 #else
515 # define MMF_DUMP_MASK_DEFAULT_ELF	0
516 #endif
517 					/* leave room for more dump flags */
518 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
519 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
520 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
521 
522 #define MMF_HAS_UPROBES		19	/* has uprobes */
523 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
524 
525 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
526 
527 struct sighand_struct {
528 	atomic_t		count;
529 	struct k_sigaction	action[_NSIG];
530 	spinlock_t		siglock;
531 	wait_queue_head_t	signalfd_wqh;
532 };
533 
534 struct pacct_struct {
535 	int			ac_flag;
536 	long			ac_exitcode;
537 	unsigned long		ac_mem;
538 	cputime_t		ac_utime, ac_stime;
539 	unsigned long		ac_minflt, ac_majflt;
540 };
541 
542 struct cpu_itimer {
543 	cputime_t expires;
544 	cputime_t incr;
545 	u32 error;
546 	u32 incr_error;
547 };
548 
549 /**
550  * struct prev_cputime - snaphsot of system and user cputime
551  * @utime: time spent in user mode
552  * @stime: time spent in system mode
553  * @lock: protects the above two fields
554  *
555  * Stores previous user/system time values such that we can guarantee
556  * monotonicity.
557  */
558 struct prev_cputime {
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560 	cputime_t utime;
561 	cputime_t stime;
562 	raw_spinlock_t lock;
563 #endif
564 };
565 
prev_cputime_init(struct prev_cputime * prev)566 static inline void prev_cputime_init(struct prev_cputime *prev)
567 {
568 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
569 	prev->utime = prev->stime = 0;
570 	raw_spin_lock_init(&prev->lock);
571 #endif
572 }
573 
574 /**
575  * struct task_cputime - collected CPU time counts
576  * @utime:		time spent in user mode, in &cputime_t units
577  * @stime:		time spent in kernel mode, in &cputime_t units
578  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
579  *
580  * This structure groups together three kinds of CPU time that are tracked for
581  * threads and thread groups.  Most things considering CPU time want to group
582  * these counts together and treat all three of them in parallel.
583  */
584 struct task_cputime {
585 	cputime_t utime;
586 	cputime_t stime;
587 	unsigned long long sum_exec_runtime;
588 };
589 
590 /* Alternate field names when used to cache expirations. */
591 #define virt_exp	utime
592 #define prof_exp	stime
593 #define sched_exp	sum_exec_runtime
594 
595 #define INIT_CPUTIME	\
596 	(struct task_cputime) {					\
597 		.utime = 0,					\
598 		.stime = 0,					\
599 		.sum_exec_runtime = 0,				\
600 	}
601 
602 /*
603  * This is the atomic variant of task_cputime, which can be used for
604  * storing and updating task_cputime statistics without locking.
605  */
606 struct task_cputime_atomic {
607 	atomic64_t utime;
608 	atomic64_t stime;
609 	atomic64_t sum_exec_runtime;
610 };
611 
612 #define INIT_CPUTIME_ATOMIC \
613 	(struct task_cputime_atomic) {				\
614 		.utime = ATOMIC64_INIT(0),			\
615 		.stime = ATOMIC64_INIT(0),			\
616 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
617 	}
618 
619 #define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
620 
621 /*
622  * Disable preemption until the scheduler is running -- use an unconditional
623  * value so that it also works on !PREEMPT_COUNT kernels.
624  *
625  * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
626  */
627 #define INIT_PREEMPT_COUNT	PREEMPT_OFFSET
628 
629 /*
630  * Initial preempt_count value; reflects the preempt_count schedule invariant
631  * which states that during context switches:
632  *
633  *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
634  *
635  * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
636  * Note: See finish_task_switch().
637  */
638 #define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
639 
640 /**
641  * struct thread_group_cputimer - thread group interval timer counts
642  * @cputime_atomic:	atomic thread group interval timers.
643  * @running:		true when there are timers running and
644  *			@cputime_atomic receives updates.
645  * @checking_timer:	true when a thread in the group is in the
646  *			process of checking for thread group timers.
647  *
648  * This structure contains the version of task_cputime, above, that is
649  * used for thread group CPU timer calculations.
650  */
651 struct thread_group_cputimer {
652 	struct task_cputime_atomic cputime_atomic;
653 	bool running;
654 	bool checking_timer;
655 };
656 
657 #include <linux/rwsem.h>
658 struct autogroup;
659 
660 /*
661  * NOTE! "signal_struct" does not have its own
662  * locking, because a shared signal_struct always
663  * implies a shared sighand_struct, so locking
664  * sighand_struct is always a proper superset of
665  * the locking of signal_struct.
666  */
667 struct signal_struct {
668 	atomic_t		sigcnt;
669 	atomic_t		live;
670 	int			nr_threads;
671 	struct list_head	thread_head;
672 
673 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
674 
675 	/* current thread group signal load-balancing target: */
676 	struct task_struct	*curr_target;
677 
678 	/* shared signal handling: */
679 	struct sigpending	shared_pending;
680 
681 	/* thread group exit support */
682 	int			group_exit_code;
683 	/* overloaded:
684 	 * - notify group_exit_task when ->count is equal to notify_count
685 	 * - everyone except group_exit_task is stopped during signal delivery
686 	 *   of fatal signals, group_exit_task processes the signal.
687 	 */
688 	int			notify_count;
689 	struct task_struct	*group_exit_task;
690 
691 	/* thread group stop support, overloads group_exit_code too */
692 	int			group_stop_count;
693 	unsigned int		flags; /* see SIGNAL_* flags below */
694 
695 	/*
696 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
697 	 * manager, to re-parent orphan (double-forking) child processes
698 	 * to this process instead of 'init'. The service manager is
699 	 * able to receive SIGCHLD signals and is able to investigate
700 	 * the process until it calls wait(). All children of this
701 	 * process will inherit a flag if they should look for a
702 	 * child_subreaper process at exit.
703 	 */
704 	unsigned int		is_child_subreaper:1;
705 	unsigned int		has_child_subreaper:1;
706 
707 	/* POSIX.1b Interval Timers */
708 	int			posix_timer_id;
709 	struct list_head	posix_timers;
710 
711 	/* ITIMER_REAL timer for the process */
712 	struct hrtimer real_timer;
713 	struct pid *leader_pid;
714 	ktime_t it_real_incr;
715 
716 	/*
717 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
718 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
719 	 * values are defined to 0 and 1 respectively
720 	 */
721 	struct cpu_itimer it[2];
722 
723 	/*
724 	 * Thread group totals for process CPU timers.
725 	 * See thread_group_cputimer(), et al, for details.
726 	 */
727 	struct thread_group_cputimer cputimer;
728 
729 	/* Earliest-expiration cache. */
730 	struct task_cputime cputime_expires;
731 
732 	struct list_head cpu_timers[3];
733 
734 	struct pid *tty_old_pgrp;
735 
736 	/* boolean value for session group leader */
737 	int leader;
738 
739 	struct tty_struct *tty; /* NULL if no tty */
740 
741 #ifdef CONFIG_SCHED_AUTOGROUP
742 	struct autogroup *autogroup;
743 #endif
744 	/*
745 	 * Cumulative resource counters for dead threads in the group,
746 	 * and for reaped dead child processes forked by this group.
747 	 * Live threads maintain their own counters and add to these
748 	 * in __exit_signal, except for the group leader.
749 	 */
750 	seqlock_t stats_lock;
751 	cputime_t utime, stime, cutime, cstime;
752 	cputime_t gtime;
753 	cputime_t cgtime;
754 	struct prev_cputime prev_cputime;
755 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
756 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
757 	unsigned long inblock, oublock, cinblock, coublock;
758 	unsigned long maxrss, cmaxrss;
759 	struct task_io_accounting ioac;
760 
761 	/*
762 	 * Cumulative ns of schedule CPU time fo dead threads in the
763 	 * group, not including a zombie group leader, (This only differs
764 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
765 	 * other than jiffies.)
766 	 */
767 	unsigned long long sum_sched_runtime;
768 
769 	/*
770 	 * We don't bother to synchronize most readers of this at all,
771 	 * because there is no reader checking a limit that actually needs
772 	 * to get both rlim_cur and rlim_max atomically, and either one
773 	 * alone is a single word that can safely be read normally.
774 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
775 	 * protect this instead of the siglock, because they really
776 	 * have no need to disable irqs.
777 	 */
778 	struct rlimit rlim[RLIM_NLIMITS];
779 
780 #ifdef CONFIG_BSD_PROCESS_ACCT
781 	struct pacct_struct pacct;	/* per-process accounting information */
782 #endif
783 #ifdef CONFIG_TASKSTATS
784 	struct taskstats *stats;
785 #endif
786 #ifdef CONFIG_AUDIT
787 	unsigned audit_tty;
788 	unsigned audit_tty_log_passwd;
789 	struct tty_audit_buf *tty_audit_buf;
790 #endif
791 
792 	oom_flags_t oom_flags;
793 	short oom_score_adj;		/* OOM kill score adjustment */
794 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
795 					 * Only settable by CAP_SYS_RESOURCE. */
796 
797 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
798 					 * credential calculations
799 					 * (notably. ptrace) */
800 };
801 
802 /*
803  * Bits in flags field of signal_struct.
804  */
805 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
806 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
807 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
808 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
809 /*
810  * Pending notifications to parent.
811  */
812 #define SIGNAL_CLD_STOPPED	0x00000010
813 #define SIGNAL_CLD_CONTINUED	0x00000020
814 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
815 
816 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
817 
818 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
819 			  SIGNAL_STOP_CONTINUED)
820 
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)821 static inline void signal_set_stop_flags(struct signal_struct *sig,
822 					 unsigned int flags)
823 {
824 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
825 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
826 }
827 
828 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)829 static inline int signal_group_exit(const struct signal_struct *sig)
830 {
831 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
832 		(sig->group_exit_task != NULL);
833 }
834 
835 /*
836  * Some day this will be a full-fledged user tracking system..
837  */
838 struct user_struct {
839 	atomic_t __count;	/* reference count */
840 	atomic_t processes;	/* How many processes does this user have? */
841 	atomic_t sigpending;	/* How many pending signals does this user have? */
842 #ifdef CONFIG_INOTIFY_USER
843 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
844 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
845 #endif
846 #ifdef CONFIG_FANOTIFY
847 	atomic_t fanotify_listeners;
848 #endif
849 #ifdef CONFIG_EPOLL
850 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
851 #endif
852 #ifdef CONFIG_POSIX_MQUEUE
853 	/* protected by mq_lock	*/
854 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
855 #endif
856 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
857 	unsigned long unix_inflight;	/* How many files in flight in unix sockets */
858 	atomic_long_t pipe_bufs;  /* how many pages are allocated in pipe buffers */
859 
860 #ifdef CONFIG_KEYS
861 	struct key *uid_keyring;	/* UID specific keyring */
862 	struct key *session_keyring;	/* UID's default session keyring */
863 #endif
864 
865 	/* Hash table maintenance information */
866 	struct hlist_node uidhash_node;
867 	kuid_t uid;
868 
869 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
870 	atomic_long_t locked_vm;
871 #endif
872 };
873 
874 extern int uids_sysfs_init(void);
875 
876 extern struct user_struct *find_user(kuid_t);
877 
878 extern struct user_struct root_user;
879 #define INIT_USER (&root_user)
880 
881 
882 struct backing_dev_info;
883 struct reclaim_state;
884 
885 #ifdef CONFIG_SCHED_INFO
886 struct sched_info {
887 	/* cumulative counters */
888 	unsigned long pcount;	      /* # of times run on this cpu */
889 	unsigned long long run_delay; /* time spent waiting on a runqueue */
890 
891 	/* timestamps */
892 	unsigned long long last_arrival,/* when we last ran on a cpu */
893 			   last_queued;	/* when we were last queued to run */
894 };
895 #endif /* CONFIG_SCHED_INFO */
896 
897 #ifdef CONFIG_TASK_DELAY_ACCT
898 struct task_delay_info {
899 	spinlock_t	lock;
900 	unsigned int	flags;	/* Private per-task flags */
901 
902 	/* For each stat XXX, add following, aligned appropriately
903 	 *
904 	 * struct timespec XXX_start, XXX_end;
905 	 * u64 XXX_delay;
906 	 * u32 XXX_count;
907 	 *
908 	 * Atomicity of updates to XXX_delay, XXX_count protected by
909 	 * single lock above (split into XXX_lock if contention is an issue).
910 	 */
911 
912 	/*
913 	 * XXX_count is incremented on every XXX operation, the delay
914 	 * associated with the operation is added to XXX_delay.
915 	 * XXX_delay contains the accumulated delay time in nanoseconds.
916 	 */
917 	u64 blkio_start;	/* Shared by blkio, swapin */
918 	u64 blkio_delay;	/* wait for sync block io completion */
919 	u64 swapin_delay;	/* wait for swapin block io completion */
920 	u32 blkio_count;	/* total count of the number of sync block */
921 				/* io operations performed */
922 	u32 swapin_count;	/* total count of the number of swapin block */
923 				/* io operations performed */
924 
925 	u64 freepages_start;
926 	u64 freepages_delay;	/* wait for memory reclaim */
927 	u32 freepages_count;	/* total count of memory reclaim */
928 };
929 #endif	/* CONFIG_TASK_DELAY_ACCT */
930 
sched_info_on(void)931 static inline int sched_info_on(void)
932 {
933 #ifdef CONFIG_SCHEDSTATS
934 	return 1;
935 #elif defined(CONFIG_TASK_DELAY_ACCT)
936 	extern int delayacct_on;
937 	return delayacct_on;
938 #else
939 	return 0;
940 #endif
941 }
942 
943 enum cpu_idle_type {
944 	CPU_IDLE,
945 	CPU_NOT_IDLE,
946 	CPU_NEWLY_IDLE,
947 	CPU_MAX_IDLE_TYPES
948 };
949 
950 /*
951  * Increase resolution of cpu_capacity calculations
952  */
953 #define SCHED_CAPACITY_SHIFT	10
954 #define SCHED_CAPACITY_SCALE	(1L << SCHED_CAPACITY_SHIFT)
955 
956 struct sched_capacity_reqs {
957 	unsigned long cfs;
958 	unsigned long rt;
959 	unsigned long dl;
960 
961 	unsigned long total;
962 };
963 
964 /*
965  * Wake-queues are lists of tasks with a pending wakeup, whose
966  * callers have already marked the task as woken internally,
967  * and can thus carry on. A common use case is being able to
968  * do the wakeups once the corresponding user lock as been
969  * released.
970  *
971  * We hold reference to each task in the list across the wakeup,
972  * thus guaranteeing that the memory is still valid by the time
973  * the actual wakeups are performed in wake_up_q().
974  *
975  * One per task suffices, because there's never a need for a task to be
976  * in two wake queues simultaneously; it is forbidden to abandon a task
977  * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
978  * already in a wake queue, the wakeup will happen soon and the second
979  * waker can just skip it.
980  *
981  * The WAKE_Q macro declares and initializes the list head.
982  * wake_up_q() does NOT reinitialize the list; it's expected to be
983  * called near the end of a function, where the fact that the queue is
984  * not used again will be easy to see by inspection.
985  *
986  * Note that this can cause spurious wakeups. schedule() callers
987  * must ensure the call is done inside a loop, confirming that the
988  * wakeup condition has in fact occurred.
989  */
990 struct wake_q_node {
991 	struct wake_q_node *next;
992 };
993 
994 struct wake_q_head {
995 	struct wake_q_node *first;
996 	struct wake_q_node **lastp;
997 	int count;
998 };
999 
1000 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1001 
1002 #define WAKE_Q(name)					\
1003 	struct wake_q_head name = { WAKE_Q_TAIL, &name.first, 0 }
1004 
1005 extern void wake_q_add(struct wake_q_head *head,
1006 		       struct task_struct *task);
1007 extern void wake_up_q(struct wake_q_head *head);
1008 
1009 /*
1010  * sched-domains (multiprocessor balancing) declarations:
1011  */
1012 #ifdef CONFIG_SMP
1013 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
1014 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
1015 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
1016 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
1017 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
1018 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
1019 #define SD_ASYM_CPUCAPACITY	0x0040  /* Groups have different max cpu capacities */
1020 #define SD_SHARE_CPUCAPACITY	0x0080	/* Domain members share cpu capacity */
1021 #define SD_SHARE_POWERDOMAIN	0x0100	/* Domain members share power domain */
1022 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
1023 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
1024 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
1025 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
1026 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
1027 #define SD_NUMA			0x4000	/* cross-node balancing */
1028 #define SD_SHARE_CAP_STATES	0x8000  /* Domain members share capacity state */
1029 
1030 #ifdef CONFIG_SCHED_SMT
cpu_smt_flags(void)1031 static inline int cpu_smt_flags(void)
1032 {
1033 	return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1034 }
1035 #endif
1036 
1037 #ifdef CONFIG_SCHED_MC
cpu_core_flags(void)1038 static inline int cpu_core_flags(void)
1039 {
1040 	return SD_SHARE_PKG_RESOURCES;
1041 }
1042 #endif
1043 
1044 #ifdef CONFIG_NUMA
cpu_numa_flags(void)1045 static inline int cpu_numa_flags(void)
1046 {
1047 	return SD_NUMA;
1048 }
1049 #endif
1050 
1051 struct sched_domain_attr {
1052 	int relax_domain_level;
1053 };
1054 
1055 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
1056 	.relax_domain_level = -1,			\
1057 }
1058 
1059 extern int sched_domain_level_max;
1060 
1061 struct capacity_state {
1062 	unsigned long cap;	/* compute capacity */
1063 	unsigned long power;	/* power consumption at this compute capacity */
1064 };
1065 
1066 struct idle_state {
1067 	unsigned long power;	 /* power consumption in this idle state */
1068 };
1069 
1070 struct sched_group_energy {
1071 	unsigned int nr_idle_states;	/* number of idle states */
1072 	struct idle_state *idle_states;	/* ptr to idle state array */
1073 	unsigned int nr_cap_states;	/* number of capacity states */
1074 	struct capacity_state *cap_states; /* ptr to capacity state array */
1075 };
1076 
1077 unsigned long capacity_curr_of(int cpu);
1078 
1079 struct sched_group;
1080 
1081 struct eas_stats {
1082 	/* select_idle_sibling() stats */
1083 	u64 sis_attempts;
1084 	u64 sis_idle;
1085 	u64 sis_cache_affine;
1086 	u64 sis_suff_cap;
1087 	u64 sis_idle_cpu;
1088 	u64 sis_count;
1089 
1090 	/* select_energy_cpu_brute() stats */
1091 	u64 secb_attempts;
1092 	u64 secb_sync;
1093 	u64 secb_idle_bt;
1094 	u64 secb_insuff_cap;
1095 	u64 secb_no_nrg_sav;
1096 	u64 secb_nrg_sav;
1097 	u64 secb_count;
1098 
1099 	/* find_best_target() stats */
1100 	u64 fbt_attempts;
1101 	u64 fbt_no_cpu;
1102 	u64 fbt_no_sd;
1103 	u64 fbt_pref_idle;
1104 	u64 fbt_count;
1105 
1106 	/* cas */
1107 	/* select_task_rq_fair() stats */
1108 	u64 cas_attempts;
1109 	u64 cas_count;
1110 };
1111 
1112 struct sched_domain {
1113 	/* These fields must be setup */
1114 	struct sched_domain *parent;	/* top domain must be null terminated */
1115 	struct sched_domain *child;	/* bottom domain must be null terminated */
1116 	struct sched_group *groups;	/* the balancing groups of the domain */
1117 	unsigned long min_interval;	/* Minimum balance interval ms */
1118 	unsigned long max_interval;	/* Maximum balance interval ms */
1119 	unsigned int busy_factor;	/* less balancing by factor if busy */
1120 	unsigned int imbalance_pct;	/* No balance until over watermark */
1121 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
1122 	unsigned int busy_idx;
1123 	unsigned int idle_idx;
1124 	unsigned int newidle_idx;
1125 	unsigned int wake_idx;
1126 	unsigned int forkexec_idx;
1127 	unsigned int smt_gain;
1128 
1129 	int nohz_idle;			/* NOHZ IDLE status */
1130 	int flags;			/* See SD_* */
1131 	int level;
1132 
1133 	/* Runtime fields. */
1134 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
1135 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
1136 	unsigned int nr_balance_failed; /* initialise to 0 */
1137 
1138 	/* idle_balance() stats */
1139 	u64 max_newidle_lb_cost;
1140 	unsigned long next_decay_max_lb_cost;
1141 
1142 #ifdef CONFIG_SCHEDSTATS
1143 	/* load_balance() stats */
1144 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1145 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1146 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1147 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1148 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1149 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1150 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1151 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1152 
1153 	/* Active load balancing */
1154 	unsigned int alb_count;
1155 	unsigned int alb_failed;
1156 	unsigned int alb_pushed;
1157 
1158 	/* SD_BALANCE_EXEC stats */
1159 	unsigned int sbe_count;
1160 	unsigned int sbe_balanced;
1161 	unsigned int sbe_pushed;
1162 
1163 	/* SD_BALANCE_FORK stats */
1164 	unsigned int sbf_count;
1165 	unsigned int sbf_balanced;
1166 	unsigned int sbf_pushed;
1167 
1168 	/* try_to_wake_up() stats */
1169 	unsigned int ttwu_wake_remote;
1170 	unsigned int ttwu_move_affine;
1171 	unsigned int ttwu_move_balance;
1172 
1173 	struct eas_stats eas_stats;
1174 #endif
1175 #ifdef CONFIG_SCHED_DEBUG
1176 	char *name;
1177 #endif
1178 	union {
1179 		void *private;		/* used during construction */
1180 		struct rcu_head rcu;	/* used during destruction */
1181 	};
1182 
1183 	unsigned int span_weight;
1184 	/*
1185 	 * Span of all CPUs in this domain.
1186 	 *
1187 	 * NOTE: this field is variable length. (Allocated dynamically
1188 	 * by attaching extra space to the end of the structure,
1189 	 * depending on how many CPUs the kernel has booted up with)
1190 	 */
1191 	unsigned long span[0];
1192 };
1193 
sched_domain_span(struct sched_domain * sd)1194 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1195 {
1196 	return to_cpumask(sd->span);
1197 }
1198 
1199 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1200 				    struct sched_domain_attr *dattr_new);
1201 
1202 /* Allocate an array of sched domains, for partition_sched_domains(). */
1203 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1204 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1205 
1206 bool cpus_share_cache(int this_cpu, int that_cpu);
1207 
1208 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1209 typedef int (*sched_domain_flags_f)(void);
1210 typedef
1211 const struct sched_group_energy * const(*sched_domain_energy_f)(int cpu);
1212 
1213 #define SDTL_OVERLAP	0x01
1214 
1215 struct sd_data {
1216 	struct sched_domain **__percpu sd;
1217 	struct sched_group **__percpu sg;
1218 	struct sched_group_capacity **__percpu sgc;
1219 };
1220 
1221 struct sched_domain_topology_level {
1222 	sched_domain_mask_f mask;
1223 	sched_domain_flags_f sd_flags;
1224 	sched_domain_energy_f energy;
1225 	int		    flags;
1226 	int		    numa_level;
1227 	struct sd_data      data;
1228 #ifdef CONFIG_SCHED_DEBUG
1229 	char                *name;
1230 #endif
1231 };
1232 
1233 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1234 extern void wake_up_if_idle(int cpu);
1235 
1236 #ifdef CONFIG_SCHED_DEBUG
1237 # define SD_INIT_NAME(type)		.name = #type
1238 #else
1239 # define SD_INIT_NAME(type)
1240 #endif
1241 
1242 #else /* CONFIG_SMP */
1243 
1244 struct sched_domain_attr;
1245 
1246 static inline void
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1247 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1248 			struct sched_domain_attr *dattr_new)
1249 {
1250 }
1251 
cpus_share_cache(int this_cpu,int that_cpu)1252 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1253 {
1254 	return true;
1255 }
1256 
1257 #endif	/* !CONFIG_SMP */
1258 
1259 
1260 struct io_context;			/* See blkdev.h */
1261 
1262 
1263 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1264 extern void prefetch_stack(struct task_struct *t);
1265 #else
prefetch_stack(struct task_struct * t)1266 static inline void prefetch_stack(struct task_struct *t) { }
1267 #endif
1268 
1269 struct audit_context;		/* See audit.c */
1270 struct mempolicy;
1271 struct pipe_inode_info;
1272 struct uts_namespace;
1273 
1274 struct load_weight {
1275 	unsigned long weight;
1276 	u32 inv_weight;
1277 };
1278 
1279 /*
1280  * The load_avg/util_avg accumulates an infinite geometric series.
1281  * 1) load_avg factors frequency scaling into the amount of time that a
1282  * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1283  * aggregated such weights of all runnable and blocked sched_entities.
1284  * 2) util_avg factors frequency and cpu scaling into the amount of time
1285  * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1286  * For cfs_rq, it is the aggregated such times of all runnable and
1287  * blocked sched_entities.
1288  * The 64 bit load_sum can:
1289  * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1290  * the highest weight (=88761) always runnable, we should not overflow
1291  * 2) for entity, support any load.weight always runnable
1292  */
1293 struct sched_avg {
1294 	u64 last_update_time, load_sum;
1295 	u32 util_sum, period_contrib;
1296 	unsigned long load_avg, util_avg;
1297 };
1298 
1299 #ifdef CONFIG_SCHEDSTATS
1300 struct sched_statistics {
1301 	u64			wait_start;
1302 	u64			wait_max;
1303 	u64			wait_count;
1304 	u64			wait_sum;
1305 	u64			iowait_count;
1306 	u64			iowait_sum;
1307 
1308 	u64			sleep_start;
1309 	u64			sleep_max;
1310 	s64			sum_sleep_runtime;
1311 
1312 	u64			block_start;
1313 	u64			block_max;
1314 	u64			exec_max;
1315 	u64			slice_max;
1316 
1317 	u64			nr_migrations_cold;
1318 	u64			nr_failed_migrations_affine;
1319 	u64			nr_failed_migrations_running;
1320 	u64			nr_failed_migrations_hot;
1321 	u64			nr_forced_migrations;
1322 
1323 	u64			nr_wakeups;
1324 	u64			nr_wakeups_sync;
1325 	u64			nr_wakeups_migrate;
1326 	u64			nr_wakeups_local;
1327 	u64			nr_wakeups_remote;
1328 	u64			nr_wakeups_affine;
1329 	u64			nr_wakeups_affine_attempts;
1330 	u64			nr_wakeups_passive;
1331 	u64			nr_wakeups_idle;
1332 
1333 	/* select_idle_sibling() */
1334 	u64			nr_wakeups_sis_attempts;
1335 	u64			nr_wakeups_sis_idle;
1336 	u64			nr_wakeups_sis_cache_affine;
1337 	u64			nr_wakeups_sis_suff_cap;
1338 	u64			nr_wakeups_sis_idle_cpu;
1339 	u64			nr_wakeups_sis_count;
1340 
1341 	/* energy_aware_wake_cpu() */
1342 	u64			nr_wakeups_secb_attempts;
1343 	u64			nr_wakeups_secb_sync;
1344 	u64			nr_wakeups_secb_idle_bt;
1345 	u64			nr_wakeups_secb_insuff_cap;
1346 	u64			nr_wakeups_secb_no_nrg_sav;
1347 	u64			nr_wakeups_secb_nrg_sav;
1348 	u64			nr_wakeups_secb_count;
1349 
1350 	/* find_best_target() */
1351 	u64			nr_wakeups_fbt_attempts;
1352 	u64			nr_wakeups_fbt_no_cpu;
1353 	u64			nr_wakeups_fbt_no_sd;
1354 	u64			nr_wakeups_fbt_pref_idle;
1355 	u64			nr_wakeups_fbt_count;
1356 
1357 	/* cas */
1358 	/* select_task_rq_fair() */
1359 	u64			nr_wakeups_cas_attempts;
1360 	u64			nr_wakeups_cas_count;
1361 };
1362 #endif
1363 
1364 #ifdef CONFIG_SCHED_WALT
1365 #define RAVG_HIST_SIZE_MAX  5
1366 
1367 /* ravg represents frequency scaled cpu-demand of tasks */
1368 struct ravg {
1369 	/*
1370 	 * 'mark_start' marks the beginning of an event (task waking up, task
1371 	 * starting to execute, task being preempted) within a window
1372 	 *
1373 	 * 'sum' represents how runnable a task has been within current
1374 	 * window. It incorporates both running time and wait time and is
1375 	 * frequency scaled.
1376 	 *
1377 	 * 'sum_history' keeps track of history of 'sum' seen over previous
1378 	 * RAVG_HIST_SIZE windows. Windows where task was entirely sleeping are
1379 	 * ignored.
1380 	 *
1381 	 * 'demand' represents maximum sum seen over previous
1382 	 * sysctl_sched_ravg_hist_size windows. 'demand' could drive frequency
1383 	 * demand for tasks.
1384 	 *
1385 	 * 'curr_window' represents task's contribution to cpu busy time
1386 	 * statistics (rq->curr_runnable_sum) in current window
1387 	 *
1388 	 * 'prev_window' represents task's contribution to cpu busy time
1389 	 * statistics (rq->prev_runnable_sum) in previous window
1390 	 */
1391 	u64 mark_start;
1392 	u32 sum, demand;
1393 	u32 sum_history[RAVG_HIST_SIZE_MAX];
1394 	u32 curr_window, prev_window;
1395 	u16 active_windows;
1396 };
1397 #endif
1398 
1399 struct sched_entity {
1400 	struct load_weight	load;		/* for load-balancing */
1401 	struct rb_node		run_node;
1402 	struct list_head	group_node;
1403 	unsigned int		on_rq;
1404 
1405 	u64			exec_start;
1406 	u64			sum_exec_runtime;
1407 	u64			vruntime;
1408 	u64			prev_sum_exec_runtime;
1409 
1410 	u64			nr_migrations;
1411 
1412 #ifdef CONFIG_SCHEDSTATS
1413 	struct sched_statistics statistics;
1414 #endif
1415 
1416 #ifdef CONFIG_FAIR_GROUP_SCHED
1417 	int			depth;
1418 	struct sched_entity	*parent;
1419 	/* rq on which this entity is (to be) queued: */
1420 	struct cfs_rq		*cfs_rq;
1421 	/* rq "owned" by this entity/group: */
1422 	struct cfs_rq		*my_q;
1423 #endif
1424 
1425 #ifdef CONFIG_SMP
1426 	/* Per entity load average tracking */
1427 	struct sched_avg	avg;
1428 #endif
1429 };
1430 
1431 struct sched_rt_entity {
1432 	struct list_head run_list;
1433 	unsigned long timeout;
1434 	unsigned long watchdog_stamp;
1435 	unsigned int time_slice;
1436 
1437 	/* Accesses for these must be guarded by rq->lock of the task's rq */
1438 	bool schedtune_enqueued;
1439 	struct hrtimer schedtune_timer;
1440 
1441 	struct sched_rt_entity *back;
1442 #ifdef CONFIG_RT_GROUP_SCHED
1443 	struct sched_rt_entity	*parent;
1444 	/* rq on which this entity is (to be) queued: */
1445 	struct rt_rq		*rt_rq;
1446 	/* rq "owned" by this entity/group: */
1447 	struct rt_rq		*my_q;
1448 #endif
1449 };
1450 
1451 struct sched_dl_entity {
1452 	struct rb_node	rb_node;
1453 
1454 	/*
1455 	 * Original scheduling parameters. Copied here from sched_attr
1456 	 * during sched_setattr(), they will remain the same until
1457 	 * the next sched_setattr().
1458 	 */
1459 	u64 dl_runtime;		/* maximum runtime for each instance	*/
1460 	u64 dl_deadline;	/* relative deadline of each instance	*/
1461 	u64 dl_period;		/* separation of two instances (period) */
1462 	u64 dl_bw;		/* dl_runtime / dl_deadline		*/
1463 	u64 dl_density;		/* dl_runtime / dl_deadline		*/
1464 
1465 	/*
1466 	 * Actual scheduling parameters. Initialized with the values above,
1467 	 * they are continously updated during task execution. Note that
1468 	 * the remaining runtime could be < 0 in case we are in overrun.
1469 	 */
1470 	s64 runtime;		/* remaining runtime for this instance	*/
1471 	u64 deadline;		/* absolute deadline for this instance	*/
1472 	unsigned int flags;	/* specifying the scheduler behaviour	*/
1473 
1474 	/*
1475 	 * Some bool flags:
1476 	 *
1477 	 * @dl_throttled tells if we exhausted the runtime. If so, the
1478 	 * task has to wait for a replenishment to be performed at the
1479 	 * next firing of dl_timer.
1480 	 *
1481 	 * @dl_new tells if a new instance arrived. If so we must
1482 	 * start executing it with full runtime and reset its absolute
1483 	 * deadline;
1484 	 *
1485 	 * @dl_boosted tells if we are boosted due to DI. If so we are
1486 	 * outside bandwidth enforcement mechanism (but only until we
1487 	 * exit the critical section);
1488 	 *
1489 	 * @dl_yielded tells if task gave up the cpu before consuming
1490 	 * all its available runtime during the last job.
1491 	 */
1492 	int dl_throttled, dl_new, dl_boosted, dl_yielded;
1493 
1494 	/*
1495 	 * Bandwidth enforcement timer. Each -deadline task has its
1496 	 * own bandwidth to be enforced, thus we need one timer per task.
1497 	 */
1498 	struct hrtimer dl_timer;
1499 };
1500 
1501 union rcu_special {
1502 	struct {
1503 		u8 blocked;
1504 		u8 need_qs;
1505 		u8 exp_need_qs;
1506 		u8 pad;	/* Otherwise the compiler can store garbage here. */
1507 	} b; /* Bits. */
1508 	u32 s; /* Set of bits. */
1509 };
1510 struct rcu_node;
1511 
1512 enum perf_event_task_context {
1513 	perf_invalid_context = -1,
1514 	perf_hw_context = 0,
1515 	perf_sw_context,
1516 	perf_nr_task_contexts,
1517 };
1518 
1519 /* Track pages that require TLB flushes */
1520 struct tlbflush_unmap_batch {
1521 	/*
1522 	 * Each bit set is a CPU that potentially has a TLB entry for one of
1523 	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1524 	 */
1525 	struct cpumask cpumask;
1526 
1527 	/* True if any bit in cpumask is set */
1528 	bool flush_required;
1529 
1530 	/*
1531 	 * If true then the PTE was dirty when unmapped. The entry must be
1532 	 * flushed before IO is initiated or a stale TLB entry potentially
1533 	 * allows an update without redirtying the page.
1534 	 */
1535 	bool writable;
1536 };
1537 
1538 struct task_struct {
1539 #ifdef CONFIG_THREAD_INFO_IN_TASK
1540 	/*
1541 	 * For reasons of header soup (see current_thread_info()), this
1542 	 * must be the first element of task_struct.
1543 	 */
1544 	struct thread_info thread_info;
1545 #endif
1546 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1547 	void *stack;
1548 	atomic_t usage;
1549 	unsigned int flags;	/* per process flags, defined below */
1550 	unsigned int ptrace;
1551 
1552 #ifdef CONFIG_SMP
1553 	struct llist_node wake_entry;
1554 	int on_cpu;
1555 #ifdef CONFIG_THREAD_INFO_IN_TASK
1556 	unsigned int cpu;	/* current CPU */
1557 #endif
1558 	unsigned int wakee_flips;
1559 	unsigned long wakee_flip_decay_ts;
1560 	struct task_struct *last_wakee;
1561 
1562 	int wake_cpu;
1563 #endif
1564 	int on_rq;
1565 
1566 	int prio, static_prio, normal_prio;
1567 	unsigned int rt_priority;
1568 	const struct sched_class *sched_class;
1569 	struct sched_entity se;
1570 	struct sched_rt_entity rt;
1571 #ifdef CONFIG_SCHED_WALT
1572 	struct ravg ravg;
1573 	/*
1574 	 * 'init_load_pct' represents the initial task load assigned to children
1575 	 * of this task
1576 	 */
1577 	u32 init_load_pct;
1578 	u64 last_sleep_ts;
1579 #endif
1580 
1581 #ifdef CONFIG_CGROUP_SCHED
1582 	struct task_group *sched_task_group;
1583 #endif
1584 	struct sched_dl_entity dl;
1585 
1586 #ifdef CONFIG_PREEMPT_NOTIFIERS
1587 	/* list of struct preempt_notifier: */
1588 	struct hlist_head preempt_notifiers;
1589 #endif
1590 
1591 #ifdef CONFIG_BLK_DEV_IO_TRACE
1592 	unsigned int btrace_seq;
1593 #endif
1594 
1595 	unsigned int policy;
1596 	int nr_cpus_allowed;
1597 	cpumask_t cpus_allowed;
1598 
1599 #ifdef CONFIG_PREEMPT_RCU
1600 	int rcu_read_lock_nesting;
1601 	union rcu_special rcu_read_unlock_special;
1602 	struct list_head rcu_node_entry;
1603 	struct rcu_node *rcu_blocked_node;
1604 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1605 #ifdef CONFIG_TASKS_RCU
1606 	unsigned long rcu_tasks_nvcsw;
1607 	bool rcu_tasks_holdout;
1608 	struct list_head rcu_tasks_holdout_list;
1609 	int rcu_tasks_idle_cpu;
1610 #endif /* #ifdef CONFIG_TASKS_RCU */
1611 
1612 #ifdef CONFIG_SCHED_INFO
1613 	struct sched_info sched_info;
1614 #endif
1615 
1616 	struct list_head tasks;
1617 #ifdef CONFIG_SMP
1618 	struct plist_node pushable_tasks;
1619 	struct rb_node pushable_dl_tasks;
1620 #endif
1621 
1622 	struct mm_struct *mm, *active_mm;
1623 	/* per-thread vma caching */
1624 	u64 vmacache_seqnum;
1625 	struct vm_area_struct *vmacache[VMACACHE_SIZE];
1626 #if defined(SPLIT_RSS_COUNTING)
1627 	struct task_rss_stat	rss_stat;
1628 #endif
1629 /* task state */
1630 	int exit_state;
1631 	int exit_code, exit_signal;
1632 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1633 	unsigned long jobctl;	/* JOBCTL_*, siglock protected */
1634 
1635 	/* Used for emulating ABI behavior of previous Linux versions */
1636 	unsigned int personality;
1637 
1638 	/* scheduler bits, serialized by scheduler locks */
1639 	unsigned sched_reset_on_fork:1;
1640 	unsigned sched_contributes_to_load:1;
1641 	unsigned sched_migrated:1;
1642 	unsigned :0; /* force alignment to the next boundary */
1643 
1644 	/* unserialized, strictly 'current' */
1645 	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1646 	unsigned in_iowait:1;
1647 #ifdef CONFIG_MEMCG
1648 	unsigned memcg_may_oom:1;
1649 #endif
1650 #ifdef CONFIG_MEMCG_KMEM
1651 	unsigned memcg_kmem_skip_account:1;
1652 #endif
1653 #ifdef CONFIG_COMPAT_BRK
1654 	unsigned brk_randomized:1;
1655 #endif
1656 #ifdef CONFIG_CGROUPS
1657 	/* disallow userland-initiated cgroup migration */
1658 	unsigned no_cgroup_migration:1;
1659 #endif
1660 
1661 	unsigned long atomic_flags; /* Flags needing atomic access. */
1662 
1663 	struct restart_block restart_block;
1664 
1665 	pid_t pid;
1666 	pid_t tgid;
1667 
1668 #ifdef CONFIG_CC_STACKPROTECTOR
1669 	/* Canary value for the -fstack-protector gcc feature */
1670 	unsigned long stack_canary;
1671 #endif
1672 	/*
1673 	 * pointers to (original) parent process, youngest child, younger sibling,
1674 	 * older sibling, respectively.  (p->father can be replaced with
1675 	 * p->real_parent->pid)
1676 	 */
1677 	struct task_struct __rcu *real_parent; /* real parent process */
1678 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1679 	/*
1680 	 * children/sibling forms the list of my natural children
1681 	 */
1682 	struct list_head children;	/* list of my children */
1683 	struct list_head sibling;	/* linkage in my parent's children list */
1684 	struct task_struct *group_leader;	/* threadgroup leader */
1685 
1686 	/*
1687 	 * ptraced is the list of tasks this task is using ptrace on.
1688 	 * This includes both natural children and PTRACE_ATTACH targets.
1689 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1690 	 */
1691 	struct list_head ptraced;
1692 	struct list_head ptrace_entry;
1693 
1694 	/* PID/PID hash table linkage. */
1695 	struct pid_link pids[PIDTYPE_MAX];
1696 	struct list_head thread_group;
1697 	struct list_head thread_node;
1698 
1699 	struct completion *vfork_done;		/* for vfork() */
1700 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1701 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1702 
1703 	cputime_t utime, stime, utimescaled, stimescaled;
1704 	cputime_t gtime;
1705 #ifdef CONFIG_CPU_FREQ_TIMES
1706 	u64 *time_in_state;
1707 	unsigned int max_state;
1708 #endif
1709 	struct prev_cputime prev_cputime;
1710 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1711 	seqlock_t vtime_seqlock;
1712 	unsigned long long vtime_snap;
1713 	enum {
1714 		VTIME_SLEEPING = 0,
1715 		VTIME_USER,
1716 		VTIME_SYS,
1717 	} vtime_snap_whence;
1718 #endif
1719 	unsigned long nvcsw, nivcsw; /* context switch counts */
1720 	u64 start_time;		/* monotonic time in nsec */
1721 	u64 real_start_time;	/* boot based time in nsec */
1722 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1723 	unsigned long min_flt, maj_flt;
1724 
1725 	struct task_cputime cputime_expires;
1726 	struct list_head cpu_timers[3];
1727 
1728 /* process credentials */
1729 	const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
1730 	const struct cred __rcu *real_cred; /* objective and real subjective task
1731 					 * credentials (COW) */
1732 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1733 					 * credentials (COW) */
1734 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1735 				     - access with [gs]et_task_comm (which lock
1736 				       it with task_lock())
1737 				     - initialized normally by setup_new_exec */
1738 /* file system info */
1739 	struct nameidata *nameidata;
1740 #ifdef CONFIG_SYSVIPC
1741 /* ipc stuff */
1742 	struct sysv_sem sysvsem;
1743 	struct sysv_shm sysvshm;
1744 #endif
1745 #ifdef CONFIG_DETECT_HUNG_TASK
1746 /* hung task detection */
1747 	unsigned long last_switch_count;
1748 #endif
1749 /* filesystem information */
1750 	struct fs_struct *fs;
1751 /* open file information */
1752 	struct files_struct *files;
1753 /* namespaces */
1754 	struct nsproxy *nsproxy;
1755 /* signal handlers */
1756 	struct signal_struct *signal;
1757 	struct sighand_struct *sighand;
1758 
1759 	sigset_t blocked, real_blocked;
1760 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1761 	struct sigpending pending;
1762 
1763 	unsigned long sas_ss_sp;
1764 	size_t sas_ss_size;
1765 
1766 	struct callback_head *task_works;
1767 
1768 	struct audit_context *audit_context;
1769 #ifdef CONFIG_AUDITSYSCALL
1770 	kuid_t loginuid;
1771 	unsigned int sessionid;
1772 #endif
1773 	struct seccomp seccomp;
1774 
1775 /* Thread group tracking */
1776 	u64 parent_exec_id;
1777 	u64 self_exec_id;
1778 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1779  * mempolicy */
1780 	spinlock_t alloc_lock;
1781 
1782 	/* Protection of the PI data structures: */
1783 	raw_spinlock_t pi_lock;
1784 
1785 	struct wake_q_node wake_q;
1786 
1787 #ifdef CONFIG_RT_MUTEXES
1788 	/* PI waiters blocked on a rt_mutex held by this task */
1789 	struct rb_root pi_waiters;
1790 	struct rb_node *pi_waiters_leftmost;
1791 	/* Deadlock detection and priority inheritance handling */
1792 	struct rt_mutex_waiter *pi_blocked_on;
1793 #endif
1794 
1795 #ifdef CONFIG_DEBUG_MUTEXES
1796 	/* mutex deadlock detection */
1797 	struct mutex_waiter *blocked_on;
1798 #endif
1799 #ifdef CONFIG_TRACE_IRQFLAGS
1800 	unsigned int irq_events;
1801 	unsigned long hardirq_enable_ip;
1802 	unsigned long hardirq_disable_ip;
1803 	unsigned int hardirq_enable_event;
1804 	unsigned int hardirq_disable_event;
1805 	int hardirqs_enabled;
1806 	int hardirq_context;
1807 	unsigned long softirq_disable_ip;
1808 	unsigned long softirq_enable_ip;
1809 	unsigned int softirq_disable_event;
1810 	unsigned int softirq_enable_event;
1811 	int softirqs_enabled;
1812 	int softirq_context;
1813 #endif
1814 #ifdef CONFIG_LOCKDEP
1815 # define MAX_LOCK_DEPTH 48UL
1816 	u64 curr_chain_key;
1817 	int lockdep_depth;
1818 	unsigned int lockdep_recursion;
1819 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1820 	gfp_t lockdep_reclaim_gfp;
1821 #endif
1822 
1823 /* journalling filesystem info */
1824 	void *journal_info;
1825 
1826 /* stacked block device info */
1827 	struct bio_list *bio_list;
1828 
1829 #ifdef CONFIG_BLOCK
1830 /* stack plugging */
1831 	struct blk_plug *plug;
1832 #endif
1833 
1834 /* VM state */
1835 	struct reclaim_state *reclaim_state;
1836 
1837 	struct backing_dev_info *backing_dev_info;
1838 
1839 	struct io_context *io_context;
1840 
1841 	unsigned long ptrace_message;
1842 	siginfo_t *last_siginfo; /* For ptrace use.  */
1843 	struct task_io_accounting ioac;
1844 #if defined(CONFIG_TASK_XACCT)
1845 	u64 acct_rss_mem1;	/* accumulated rss usage */
1846 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1847 	cputime_t acct_timexpd;	/* stime + utime since last update */
1848 #endif
1849 #ifdef CONFIG_CPUSETS
1850 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1851 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1852 	int cpuset_mem_spread_rotor;
1853 	int cpuset_slab_spread_rotor;
1854 #endif
1855 #ifdef CONFIG_CGROUPS
1856 	/* Control Group info protected by css_set_lock */
1857 	struct css_set __rcu *cgroups;
1858 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1859 	struct list_head cg_list;
1860 #endif
1861 #ifdef CONFIG_FUTEX
1862 	struct robust_list_head __user *robust_list;
1863 #ifdef CONFIG_COMPAT
1864 	struct compat_robust_list_head __user *compat_robust_list;
1865 #endif
1866 	struct list_head pi_state_list;
1867 	struct futex_pi_state *pi_state_cache;
1868 	struct mutex futex_exit_mutex;
1869 	unsigned int futex_state;
1870 #endif
1871 #ifdef CONFIG_PERF_EVENTS
1872 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1873 	struct mutex perf_event_mutex;
1874 	struct list_head perf_event_list;
1875 #endif
1876 #ifdef CONFIG_DEBUG_PREEMPT
1877 	unsigned long preempt_disable_ip;
1878 #endif
1879 #ifdef CONFIG_NUMA
1880 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1881 	short il_next;
1882 	short pref_node_fork;
1883 #endif
1884 #ifdef CONFIG_NUMA_BALANCING
1885 	int numa_scan_seq;
1886 	unsigned int numa_scan_period;
1887 	unsigned int numa_scan_period_max;
1888 	int numa_preferred_nid;
1889 	unsigned long numa_migrate_retry;
1890 	u64 node_stamp;			/* migration stamp  */
1891 	u64 last_task_numa_placement;
1892 	u64 last_sum_exec_runtime;
1893 	struct callback_head numa_work;
1894 
1895 	struct list_head numa_entry;
1896 	struct numa_group *numa_group;
1897 
1898 	/*
1899 	 * numa_faults is an array split into four regions:
1900 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1901 	 * in this precise order.
1902 	 *
1903 	 * faults_memory: Exponential decaying average of faults on a per-node
1904 	 * basis. Scheduling placement decisions are made based on these
1905 	 * counts. The values remain static for the duration of a PTE scan.
1906 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1907 	 * hinting fault was incurred.
1908 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1909 	 * during the current scan window. When the scan completes, the counts
1910 	 * in faults_memory and faults_cpu decay and these values are copied.
1911 	 */
1912 	unsigned long *numa_faults;
1913 	unsigned long total_numa_faults;
1914 
1915 	/*
1916 	 * numa_faults_locality tracks if faults recorded during the last
1917 	 * scan window were remote/local or failed to migrate. The task scan
1918 	 * period is adapted based on the locality of the faults with different
1919 	 * weights depending on whether they were shared or private faults
1920 	 */
1921 	unsigned long numa_faults_locality[3];
1922 
1923 	unsigned long numa_pages_migrated;
1924 #endif /* CONFIG_NUMA_BALANCING */
1925 
1926 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1927 	struct tlbflush_unmap_batch tlb_ubc;
1928 #endif
1929 
1930 	struct rcu_head rcu;
1931 
1932 	/*
1933 	 * cache last used pipe for splice
1934 	 */
1935 	struct pipe_inode_info *splice_pipe;
1936 
1937 	struct page_frag task_frag;
1938 
1939 #ifdef	CONFIG_TASK_DELAY_ACCT
1940 	struct task_delay_info *delays;
1941 #endif
1942 #ifdef CONFIG_FAULT_INJECTION
1943 	int make_it_fail;
1944 #endif
1945 	/*
1946 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1947 	 * balance_dirty_pages() for some dirty throttling pause
1948 	 */
1949 	int nr_dirtied;
1950 	int nr_dirtied_pause;
1951 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1952 
1953 #ifdef CONFIG_LATENCYTOP
1954 	int latency_record_count;
1955 	struct latency_record latency_record[LT_SAVECOUNT];
1956 #endif
1957 	/*
1958 	 * time slack values; these are used to round up poll() and
1959 	 * select() etc timeout values. These are in nanoseconds.
1960 	 */
1961 	u64 timer_slack_ns;
1962 	u64 default_timer_slack_ns;
1963 
1964 #ifdef CONFIG_KASAN
1965 	unsigned int kasan_depth;
1966 #endif
1967 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1968 	/* Index of current stored address in ret_stack */
1969 	int curr_ret_stack;
1970 	/* Stack of return addresses for return function tracing */
1971 	struct ftrace_ret_stack	*ret_stack;
1972 	/* time stamp for last schedule */
1973 	unsigned long long ftrace_timestamp;
1974 	/*
1975 	 * Number of functions that haven't been traced
1976 	 * because of depth overrun.
1977 	 */
1978 	atomic_t trace_overrun;
1979 	/* Pause for the tracing */
1980 	atomic_t tracing_graph_pause;
1981 #endif
1982 #ifdef CONFIG_TRACING
1983 	/* state flags for use by tracers */
1984 	unsigned long trace;
1985 	/* bitmask and counter of trace recursion */
1986 	unsigned long trace_recursion;
1987 #endif /* CONFIG_TRACING */
1988 #ifdef CONFIG_KCOV
1989 	/* Coverage collection mode enabled for this task (0 if disabled). */
1990 	enum kcov_mode kcov_mode;
1991 	/* Size of the kcov_area. */
1992 	unsigned	kcov_size;
1993 	/* Buffer for coverage collection. */
1994 	void		*kcov_area;
1995 	/* kcov desciptor wired with this task or NULL. */
1996 	struct kcov	*kcov;
1997 #endif
1998 #ifdef CONFIG_MEMCG
1999 	struct mem_cgroup *memcg_in_oom;
2000 	gfp_t memcg_oom_gfp_mask;
2001 	int memcg_oom_order;
2002 
2003 	/* number of pages to reclaim on returning to userland */
2004 	unsigned int memcg_nr_pages_over_high;
2005 #endif
2006 #ifdef CONFIG_UPROBES
2007 	struct uprobe_task *utask;
2008 #endif
2009 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
2010 	unsigned int	sequential_io;
2011 	unsigned int	sequential_io_avg;
2012 #endif
2013 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2014 	unsigned long	task_state_change;
2015 #endif
2016 	int pagefault_disabled;
2017 /* CPU-specific state of this task */
2018 	struct thread_struct thread;
2019 /*
2020  * WARNING: on x86, 'thread_struct' contains a variable-sized
2021  * structure.  It *MUST* be at the end of 'task_struct'.
2022  *
2023  * Do not put anything below here!
2024  */
2025 };
2026 
2027 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
2028 extern int arch_task_struct_size __read_mostly;
2029 #else
2030 # define arch_task_struct_size (sizeof(struct task_struct))
2031 #endif
2032 
2033 /* Future-safe accessor for struct task_struct's cpus_allowed. */
2034 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
2035 
2036 #define TNF_MIGRATED	0x01
2037 #define TNF_NO_GROUP	0x02
2038 #define TNF_SHARED	0x04
2039 #define TNF_FAULT_LOCAL	0x08
2040 #define TNF_MIGRATE_FAIL 0x10
2041 
2042 #ifdef CONFIG_NUMA_BALANCING
2043 extern void task_numa_fault(int last_node, int node, int pages, int flags);
2044 extern pid_t task_numa_group_id(struct task_struct *p);
2045 extern void set_numabalancing_state(bool enabled);
2046 extern void task_numa_free(struct task_struct *p, bool final);
2047 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
2048 					int src_nid, int dst_cpu);
2049 #else
task_numa_fault(int last_node,int node,int pages,int flags)2050 static inline void task_numa_fault(int last_node, int node, int pages,
2051 				   int flags)
2052 {
2053 }
task_numa_group_id(struct task_struct * p)2054 static inline pid_t task_numa_group_id(struct task_struct *p)
2055 {
2056 	return 0;
2057 }
set_numabalancing_state(bool enabled)2058 static inline void set_numabalancing_state(bool enabled)
2059 {
2060 }
task_numa_free(struct task_struct * p,bool final)2061 static inline void task_numa_free(struct task_struct *p, bool final)
2062 {
2063 }
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)2064 static inline bool should_numa_migrate_memory(struct task_struct *p,
2065 				struct page *page, int src_nid, int dst_cpu)
2066 {
2067 	return true;
2068 }
2069 #endif
2070 
task_pid(struct task_struct * task)2071 static inline struct pid *task_pid(struct task_struct *task)
2072 {
2073 	return task->pids[PIDTYPE_PID].pid;
2074 }
2075 
task_tgid(struct task_struct * task)2076 static inline struct pid *task_tgid(struct task_struct *task)
2077 {
2078 	return task->group_leader->pids[PIDTYPE_PID].pid;
2079 }
2080 
2081 /*
2082  * Without tasklist or rcu lock it is not safe to dereference
2083  * the result of task_pgrp/task_session even if task == current,
2084  * we can race with another thread doing sys_setsid/sys_setpgid.
2085  */
task_pgrp(struct task_struct * task)2086 static inline struct pid *task_pgrp(struct task_struct *task)
2087 {
2088 	return task->group_leader->pids[PIDTYPE_PGID].pid;
2089 }
2090 
task_session(struct task_struct * task)2091 static inline struct pid *task_session(struct task_struct *task)
2092 {
2093 	return task->group_leader->pids[PIDTYPE_SID].pid;
2094 }
2095 
2096 struct pid_namespace;
2097 
2098 /*
2099  * the helpers to get the task's different pids as they are seen
2100  * from various namespaces
2101  *
2102  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
2103  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
2104  *                     current.
2105  * task_xid_nr_ns()  : id seen from the ns specified;
2106  *
2107  * set_task_vxid()   : assigns a virtual id to a task;
2108  *
2109  * see also pid_nr() etc in include/linux/pid.h
2110  */
2111 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2112 			struct pid_namespace *ns);
2113 
task_pid_nr(struct task_struct * tsk)2114 static inline pid_t task_pid_nr(struct task_struct *tsk)
2115 {
2116 	return tsk->pid;
2117 }
2118 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2119 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2120 					struct pid_namespace *ns)
2121 {
2122 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2123 }
2124 
task_pid_vnr(struct task_struct * tsk)2125 static inline pid_t task_pid_vnr(struct task_struct *tsk)
2126 {
2127 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
2128 }
2129 
2130 
task_tgid_nr(struct task_struct * tsk)2131 static inline pid_t task_tgid_nr(struct task_struct *tsk)
2132 {
2133 	return tsk->tgid;
2134 }
2135 
2136 
2137 static inline int pid_alive(const struct task_struct *p);
2138 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2139 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2140 					struct pid_namespace *ns)
2141 {
2142 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2143 }
2144 
task_pgrp_vnr(struct task_struct * tsk)2145 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2146 {
2147 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2148 }
2149 
2150 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2151 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2152 					struct pid_namespace *ns)
2153 {
2154 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2155 }
2156 
task_session_vnr(struct task_struct * tsk)2157 static inline pid_t task_session_vnr(struct task_struct *tsk)
2158 {
2159 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2160 }
2161 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)2162 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
2163 {
2164 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
2165 }
2166 
task_tgid_vnr(struct task_struct * tsk)2167 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2168 {
2169 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
2170 }
2171 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)2172 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2173 {
2174 	pid_t pid = 0;
2175 
2176 	rcu_read_lock();
2177 	if (pid_alive(tsk))
2178 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2179 	rcu_read_unlock();
2180 
2181 	return pid;
2182 }
2183 
task_ppid_nr(const struct task_struct * tsk)2184 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2185 {
2186 	return task_ppid_nr_ns(tsk, &init_pid_ns);
2187 }
2188 
2189 /* obsolete, do not use */
task_pgrp_nr(struct task_struct * tsk)2190 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2191 {
2192 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
2193 }
2194 
2195 /**
2196  * pid_alive - check that a task structure is not stale
2197  * @p: Task structure to be checked.
2198  *
2199  * Test if a process is not yet dead (at most zombie state)
2200  * If pid_alive fails, then pointers within the task structure
2201  * can be stale and must not be dereferenced.
2202  *
2203  * Return: 1 if the process is alive. 0 otherwise.
2204  */
pid_alive(const struct task_struct * p)2205 static inline int pid_alive(const struct task_struct *p)
2206 {
2207 	return p->pids[PIDTYPE_PID].pid != NULL;
2208 }
2209 
2210 /**
2211  * is_global_init - check if a task structure is init. Since init
2212  * is free to have sub-threads we need to check tgid.
2213  * @tsk: Task structure to be checked.
2214  *
2215  * Check if a task structure is the first user space task the kernel created.
2216  *
2217  * Return: 1 if the task structure is init. 0 otherwise.
2218  */
is_global_init(struct task_struct * tsk)2219 static inline int is_global_init(struct task_struct *tsk)
2220 {
2221 	return task_tgid_nr(tsk) == 1;
2222 }
2223 
2224 extern struct pid *cad_pid;
2225 
2226 extern void free_task(struct task_struct *tsk);
2227 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2228 
2229 extern void __put_task_struct(struct task_struct *t);
2230 
put_task_struct(struct task_struct * t)2231 static inline void put_task_struct(struct task_struct *t)
2232 {
2233 	if (atomic_dec_and_test(&t->usage))
2234 		__put_task_struct(t);
2235 }
2236 
2237 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2238 extern void task_cputime(struct task_struct *t,
2239 			 cputime_t *utime, cputime_t *stime);
2240 extern void task_cputime_scaled(struct task_struct *t,
2241 				cputime_t *utimescaled, cputime_t *stimescaled);
2242 extern cputime_t task_gtime(struct task_struct *t);
2243 #else
task_cputime(struct task_struct * t,cputime_t * utime,cputime_t * stime)2244 static inline void task_cputime(struct task_struct *t,
2245 				cputime_t *utime, cputime_t *stime)
2246 {
2247 	if (utime)
2248 		*utime = t->utime;
2249 	if (stime)
2250 		*stime = t->stime;
2251 }
2252 
task_cputime_scaled(struct task_struct * t,cputime_t * utimescaled,cputime_t * stimescaled)2253 static inline void task_cputime_scaled(struct task_struct *t,
2254 				       cputime_t *utimescaled,
2255 				       cputime_t *stimescaled)
2256 {
2257 	if (utimescaled)
2258 		*utimescaled = t->utimescaled;
2259 	if (stimescaled)
2260 		*stimescaled = t->stimescaled;
2261 }
2262 
task_gtime(struct task_struct * t)2263 static inline cputime_t task_gtime(struct task_struct *t)
2264 {
2265 	return t->gtime;
2266 }
2267 #endif
2268 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2269 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2270 
2271 /*
2272  * Per process flags
2273  */
2274 #define PF_EXITING	0x00000004	/* getting shut down */
2275 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
2276 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
2277 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
2278 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
2279 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
2280 #define PF_DUMPCORE	0x00000200	/* dumped core */
2281 #define PF_SIGNALED	0x00000400	/* killed by a signal */
2282 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
2283 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
2284 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
2285 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
2286 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
2287 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
2288 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
2289 #define PF_KSWAPD	0x00040000	/* I am kswapd */
2290 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
2291 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
2292 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
2293 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
2294 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
2295 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
2296 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
2297 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
2298 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
2299 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
2300 
2301 /*
2302  * Only the _current_ task can read/write to tsk->flags, but other
2303  * tasks can access tsk->flags in readonly mode for example
2304  * with tsk_used_math (like during threaded core dumping).
2305  * There is however an exception to this rule during ptrace
2306  * or during fork: the ptracer task is allowed to write to the
2307  * child->flags of its traced child (same goes for fork, the parent
2308  * can write to the child->flags), because we're guaranteed the
2309  * child is not running and in turn not changing child->flags
2310  * at the same time the parent does it.
2311  */
2312 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2313 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2314 #define clear_used_math() clear_stopped_child_used_math(current)
2315 #define set_used_math() set_stopped_child_used_math(current)
2316 #define conditional_stopped_child_used_math(condition, child) \
2317 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2318 #define conditional_used_math(condition) \
2319 	conditional_stopped_child_used_math(condition, current)
2320 #define copy_to_stopped_child_used_math(child) \
2321 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2322 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2323 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2324 #define used_math() tsk_used_math(current)
2325 
2326 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2327  * __GFP_FS is also cleared as it implies __GFP_IO.
2328  */
memalloc_noio_flags(gfp_t flags)2329 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2330 {
2331 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2332 		flags &= ~(__GFP_IO | __GFP_FS);
2333 	return flags;
2334 }
2335 
memalloc_noio_save(void)2336 static inline unsigned int memalloc_noio_save(void)
2337 {
2338 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2339 	current->flags |= PF_MEMALLOC_NOIO;
2340 	return flags;
2341 }
2342 
memalloc_noio_restore(unsigned int flags)2343 static inline void memalloc_noio_restore(unsigned int flags)
2344 {
2345 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2346 }
2347 
2348 /* Per-process atomic flags. */
2349 #define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
2350 #define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
2351 #define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
2352 #define PFA_SPEC_SSB_DISABLE		4	/* Speculative Store Bypass disabled */
2353 #define PFA_SPEC_SSB_FORCE_DISABLE	5	/* Speculative Store Bypass force disabled*/
2354 #define PFA_SPEC_IB_DISABLE		6	/* Indirect branch speculation restricted */
2355 #define PFA_SPEC_IB_FORCE_DISABLE	7	/* Indirect branch speculation permanently restricted */
2356 
2357 
2358 #define TASK_PFA_TEST(name, func)					\
2359 	static inline bool task_##func(struct task_struct *p)		\
2360 	{ return test_bit(PFA_##name, &p->atomic_flags); }
2361 #define TASK_PFA_SET(name, func)					\
2362 	static inline void task_set_##func(struct task_struct *p)	\
2363 	{ set_bit(PFA_##name, &p->atomic_flags); }
2364 #define TASK_PFA_CLEAR(name, func)					\
2365 	static inline void task_clear_##func(struct task_struct *p)	\
2366 	{ clear_bit(PFA_##name, &p->atomic_flags); }
2367 
2368 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2369 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2370 
2371 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2372 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2373 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2374 
2375 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2376 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2377 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2378 
2379 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
2380 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
2381 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
2382 
2383 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
2384 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
2385 
2386 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
2387 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
2388 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
2389 
2390 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
2391 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
2392 
2393 /*
2394  * task->jobctl flags
2395  */
2396 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
2397 
2398 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
2399 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
2400 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
2401 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
2402 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
2403 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
2404 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
2405 
2406 #define JOBCTL_STOP_DEQUEUED	(1UL << JOBCTL_STOP_DEQUEUED_BIT)
2407 #define JOBCTL_STOP_PENDING	(1UL << JOBCTL_STOP_PENDING_BIT)
2408 #define JOBCTL_STOP_CONSUME	(1UL << JOBCTL_STOP_CONSUME_BIT)
2409 #define JOBCTL_TRAP_STOP	(1UL << JOBCTL_TRAP_STOP_BIT)
2410 #define JOBCTL_TRAP_NOTIFY	(1UL << JOBCTL_TRAP_NOTIFY_BIT)
2411 #define JOBCTL_TRAPPING		(1UL << JOBCTL_TRAPPING_BIT)
2412 #define JOBCTL_LISTENING	(1UL << JOBCTL_LISTENING_BIT)
2413 
2414 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2415 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2416 
2417 extern bool task_set_jobctl_pending(struct task_struct *task,
2418 				    unsigned long mask);
2419 extern void task_clear_jobctl_trapping(struct task_struct *task);
2420 extern void task_clear_jobctl_pending(struct task_struct *task,
2421 				      unsigned long mask);
2422 
rcu_copy_process(struct task_struct * p)2423 static inline void rcu_copy_process(struct task_struct *p)
2424 {
2425 #ifdef CONFIG_PREEMPT_RCU
2426 	p->rcu_read_lock_nesting = 0;
2427 	p->rcu_read_unlock_special.s = 0;
2428 	p->rcu_blocked_node = NULL;
2429 	INIT_LIST_HEAD(&p->rcu_node_entry);
2430 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2431 #ifdef CONFIG_TASKS_RCU
2432 	p->rcu_tasks_holdout = false;
2433 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2434 	p->rcu_tasks_idle_cpu = -1;
2435 #endif /* #ifdef CONFIG_TASKS_RCU */
2436 }
2437 
tsk_restore_flags(struct task_struct * task,unsigned long orig_flags,unsigned long flags)2438 static inline void tsk_restore_flags(struct task_struct *task,
2439 				unsigned long orig_flags, unsigned long flags)
2440 {
2441 	task->flags &= ~flags;
2442 	task->flags |= orig_flags & flags;
2443 }
2444 
2445 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2446 				     const struct cpumask *trial);
2447 extern int task_can_attach(struct task_struct *p,
2448 			   const struct cpumask *cs_cpus_allowed);
2449 #ifdef CONFIG_SMP
2450 extern void do_set_cpus_allowed(struct task_struct *p,
2451 			       const struct cpumask *new_mask);
2452 
2453 extern int set_cpus_allowed_ptr(struct task_struct *p,
2454 				const struct cpumask *new_mask);
2455 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2456 static inline void do_set_cpus_allowed(struct task_struct *p,
2457 				      const struct cpumask *new_mask)
2458 {
2459 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2460 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2461 				       const struct cpumask *new_mask)
2462 {
2463 	if (!cpumask_test_cpu(0, new_mask))
2464 		return -EINVAL;
2465 	return 0;
2466 }
2467 #endif
2468 
2469 #ifdef CONFIG_NO_HZ_COMMON
2470 void calc_load_enter_idle(void);
2471 void calc_load_exit_idle(void);
2472 #else
calc_load_enter_idle(void)2473 static inline void calc_load_enter_idle(void) { }
calc_load_exit_idle(void)2474 static inline void calc_load_exit_idle(void) { }
2475 #endif /* CONFIG_NO_HZ_COMMON */
2476 
2477 /*
2478  * Do not use outside of architecture code which knows its limitations.
2479  *
2480  * sched_clock() has no promise of monotonicity or bounded drift between
2481  * CPUs, use (which you should not) requires disabling IRQs.
2482  *
2483  * Please use one of the three interfaces below.
2484  */
2485 extern unsigned long long notrace sched_clock(void);
2486 /*
2487  * See the comment in kernel/sched/clock.c
2488  */
2489 extern u64 cpu_clock(int cpu);
2490 extern u64 local_clock(void);
2491 extern u64 running_clock(void);
2492 extern u64 sched_clock_cpu(int cpu);
2493 
2494 
2495 extern void sched_clock_init(void);
2496 
2497 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_tick(void)2498 static inline void sched_clock_tick(void)
2499 {
2500 }
2501 
sched_clock_idle_sleep_event(void)2502 static inline void sched_clock_idle_sleep_event(void)
2503 {
2504 }
2505 
sched_clock_idle_wakeup_event(u64 delta_ns)2506 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2507 {
2508 }
2509 #else
2510 /*
2511  * Architectures can set this to 1 if they have specified
2512  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2513  * but then during bootup it turns out that sched_clock()
2514  * is reliable after all:
2515  */
2516 extern int sched_clock_stable(void);
2517 extern void set_sched_clock_stable(void);
2518 extern void clear_sched_clock_stable(void);
2519 
2520 extern void sched_clock_tick(void);
2521 extern void sched_clock_idle_sleep_event(void);
2522 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2523 #endif
2524 
2525 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2526 /*
2527  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2528  * The reason for this explicit opt-in is not to have perf penalty with
2529  * slow sched_clocks.
2530  */
2531 extern void enable_sched_clock_irqtime(void);
2532 extern void disable_sched_clock_irqtime(void);
2533 #else
enable_sched_clock_irqtime(void)2534 static inline void enable_sched_clock_irqtime(void) {}
disable_sched_clock_irqtime(void)2535 static inline void disable_sched_clock_irqtime(void) {}
2536 #endif
2537 
2538 extern unsigned long long
2539 task_sched_runtime(struct task_struct *task);
2540 
2541 /* sched_exec is called by processes performing an exec */
2542 #ifdef CONFIG_SMP
2543 extern void sched_exec(void);
2544 #else
2545 #define sched_exec()   {}
2546 #endif
2547 
2548 extern void sched_clock_idle_sleep_event(void);
2549 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2550 
2551 #ifdef CONFIG_HOTPLUG_CPU
2552 extern void idle_task_exit(void);
2553 #else
idle_task_exit(void)2554 static inline void idle_task_exit(void) {}
2555 #endif
2556 
2557 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2558 extern void wake_up_nohz_cpu(int cpu);
2559 #else
wake_up_nohz_cpu(int cpu)2560 static inline void wake_up_nohz_cpu(int cpu) { }
2561 #endif
2562 
2563 #ifdef CONFIG_NO_HZ_FULL
2564 extern bool sched_can_stop_tick(void);
2565 extern u64 scheduler_tick_max_deferment(void);
2566 #else
sched_can_stop_tick(void)2567 static inline bool sched_can_stop_tick(void) { return false; }
2568 #endif
2569 
2570 #ifdef CONFIG_SCHED_AUTOGROUP
2571 extern void sched_autogroup_create_attach(struct task_struct *p);
2572 extern void sched_autogroup_detach(struct task_struct *p);
2573 extern void sched_autogroup_fork(struct signal_struct *sig);
2574 extern void sched_autogroup_exit(struct signal_struct *sig);
2575 #ifdef CONFIG_PROC_FS
2576 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2577 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2578 #endif
2579 #else
sched_autogroup_create_attach(struct task_struct * p)2580 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
sched_autogroup_detach(struct task_struct * p)2581 static inline void sched_autogroup_detach(struct task_struct *p) { }
sched_autogroup_fork(struct signal_struct * sig)2582 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
sched_autogroup_exit(struct signal_struct * sig)2583 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2584 #endif
2585 
2586 extern int yield_to(struct task_struct *p, bool preempt);
2587 extern void set_user_nice(struct task_struct *p, long nice);
2588 extern int task_prio(const struct task_struct *p);
2589 /**
2590  * task_nice - return the nice value of a given task.
2591  * @p: the task in question.
2592  *
2593  * Return: The nice value [ -20 ... 0 ... 19 ].
2594  */
task_nice(const struct task_struct * p)2595 static inline int task_nice(const struct task_struct *p)
2596 {
2597 	return PRIO_TO_NICE((p)->static_prio);
2598 }
2599 extern int can_nice(const struct task_struct *p, const int nice);
2600 extern int task_curr(const struct task_struct *p);
2601 extern int idle_cpu(int cpu);
2602 extern int sched_setscheduler(struct task_struct *, int,
2603 			      const struct sched_param *);
2604 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2605 				      const struct sched_param *);
2606 extern int sched_setattr(struct task_struct *,
2607 			 const struct sched_attr *);
2608 extern struct task_struct *idle_task(int cpu);
2609 /**
2610  * is_idle_task - is the specified task an idle task?
2611  * @p: the task in question.
2612  *
2613  * Return: 1 if @p is an idle task. 0 otherwise.
2614  */
is_idle_task(const struct task_struct * p)2615 static inline bool is_idle_task(const struct task_struct *p)
2616 {
2617 	return p->pid == 0;
2618 }
2619 extern struct task_struct *curr_task(int cpu);
2620 extern void set_curr_task(int cpu, struct task_struct *p);
2621 
2622 void yield(void);
2623 
2624 union thread_union {
2625 #ifndef CONFIG_THREAD_INFO_IN_TASK
2626 	struct thread_info thread_info;
2627 #endif
2628 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2629 };
2630 
2631 #ifndef __HAVE_ARCH_KSTACK_END
kstack_end(void * addr)2632 static inline int kstack_end(void *addr)
2633 {
2634 	/* Reliable end of stack detection:
2635 	 * Some APM bios versions misalign the stack
2636 	 */
2637 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2638 }
2639 #endif
2640 
2641 extern union thread_union init_thread_union;
2642 extern struct task_struct init_task;
2643 
2644 extern struct   mm_struct init_mm;
2645 
2646 extern struct pid_namespace init_pid_ns;
2647 
2648 /*
2649  * find a task by one of its numerical ids
2650  *
2651  * find_task_by_pid_ns():
2652  *      finds a task by its pid in the specified namespace
2653  * find_task_by_vpid():
2654  *      finds a task by its virtual pid
2655  *
2656  * see also find_vpid() etc in include/linux/pid.h
2657  */
2658 
2659 extern struct task_struct *find_task_by_vpid(pid_t nr);
2660 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2661 		struct pid_namespace *ns);
2662 
2663 /* per-UID process charging. */
2664 extern struct user_struct * alloc_uid(kuid_t);
get_uid(struct user_struct * u)2665 static inline struct user_struct *get_uid(struct user_struct *u)
2666 {
2667 	atomic_inc(&u->__count);
2668 	return u;
2669 }
2670 extern void free_uid(struct user_struct *);
2671 
2672 #include <asm/current.h>
2673 
2674 extern void xtime_update(unsigned long ticks);
2675 
2676 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2677 extern int wake_up_process(struct task_struct *tsk);
2678 extern void wake_up_new_task(struct task_struct *tsk);
2679 #ifdef CONFIG_SMP
2680  extern void kick_process(struct task_struct *tsk);
2681 #else
kick_process(struct task_struct * tsk)2682  static inline void kick_process(struct task_struct *tsk) { }
2683 #endif
2684 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2685 extern void sched_dead(struct task_struct *p);
2686 
2687 extern void proc_caches_init(void);
2688 extern void flush_signals(struct task_struct *);
2689 extern void ignore_signals(struct task_struct *);
2690 extern void flush_signal_handlers(struct task_struct *, int force_default);
2691 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2692 
kernel_dequeue_signal(siginfo_t * info)2693 static inline int kernel_dequeue_signal(siginfo_t *info)
2694 {
2695 	struct task_struct *tsk = current;
2696 	siginfo_t __info;
2697 	int ret;
2698 
2699 	spin_lock_irq(&tsk->sighand->siglock);
2700 	ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2701 	spin_unlock_irq(&tsk->sighand->siglock);
2702 
2703 	return ret;
2704 }
2705 
kernel_signal_stop(void)2706 static inline void kernel_signal_stop(void)
2707 {
2708 	spin_lock_irq(&current->sighand->siglock);
2709 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2710 		__set_current_state(TASK_STOPPED);
2711 	spin_unlock_irq(&current->sighand->siglock);
2712 
2713 	schedule();
2714 }
2715 
2716 extern void release_task(struct task_struct * p);
2717 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2718 extern int force_sigsegv(int, struct task_struct *);
2719 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2720 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2721 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2722 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2723 				const struct cred *, u32);
2724 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2725 extern int kill_pid(struct pid *pid, int sig, int priv);
2726 extern int kill_proc_info(int, struct siginfo *, pid_t);
2727 extern __must_check bool do_notify_parent(struct task_struct *, int);
2728 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2729 extern void force_sig(int, struct task_struct *);
2730 extern int send_sig(int, struct task_struct *, int);
2731 extern int zap_other_threads(struct task_struct *p);
2732 extern struct sigqueue *sigqueue_alloc(void);
2733 extern void sigqueue_free(struct sigqueue *);
2734 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2735 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2736 
restore_saved_sigmask(void)2737 static inline void restore_saved_sigmask(void)
2738 {
2739 	if (test_and_clear_restore_sigmask())
2740 		__set_current_blocked(&current->saved_sigmask);
2741 }
2742 
sigmask_to_save(void)2743 static inline sigset_t *sigmask_to_save(void)
2744 {
2745 	sigset_t *res = &current->blocked;
2746 	if (unlikely(test_restore_sigmask()))
2747 		res = &current->saved_sigmask;
2748 	return res;
2749 }
2750 
kill_cad_pid(int sig,int priv)2751 static inline int kill_cad_pid(int sig, int priv)
2752 {
2753 	return kill_pid(cad_pid, sig, priv);
2754 }
2755 
2756 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2757 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2758 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2759 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2760 
2761 /*
2762  * True if we are on the alternate signal stack.
2763  */
on_sig_stack(unsigned long sp)2764 static inline int on_sig_stack(unsigned long sp)
2765 {
2766 #ifdef CONFIG_STACK_GROWSUP
2767 	return sp >= current->sas_ss_sp &&
2768 		sp - current->sas_ss_sp < current->sas_ss_size;
2769 #else
2770 	return sp > current->sas_ss_sp &&
2771 		sp - current->sas_ss_sp <= current->sas_ss_size;
2772 #endif
2773 }
2774 
sas_ss_flags(unsigned long sp)2775 static inline int sas_ss_flags(unsigned long sp)
2776 {
2777 	if (!current->sas_ss_size)
2778 		return SS_DISABLE;
2779 
2780 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
2781 }
2782 
sigsp(unsigned long sp,struct ksignal * ksig)2783 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2784 {
2785 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2786 #ifdef CONFIG_STACK_GROWSUP
2787 		return current->sas_ss_sp;
2788 #else
2789 		return current->sas_ss_sp + current->sas_ss_size;
2790 #endif
2791 	return sp;
2792 }
2793 
2794 /*
2795  * Routines for handling mm_structs
2796  */
2797 extern struct mm_struct * mm_alloc(void);
2798 
2799 /* mmdrop drops the mm and the page tables */
2800 extern void __mmdrop(struct mm_struct *);
mmdrop(struct mm_struct * mm)2801 static inline void mmdrop(struct mm_struct *mm)
2802 {
2803 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2804 		__mmdrop(mm);
2805 }
2806 
mmget_not_zero(struct mm_struct * mm)2807 static inline bool mmget_not_zero(struct mm_struct *mm)
2808 {
2809 	return atomic_inc_not_zero(&mm->mm_users);
2810 }
2811 
2812 /* mmput gets rid of the mappings and all user-space */
2813 extern void mmput(struct mm_struct *);
2814 /* same as above but performs the slow path from the async kontext. Can
2815  * be called from the atomic context as well
2816  */
2817 extern void mmput_async(struct mm_struct *);
2818 
2819 /* Grab a reference to a task's mm, if it is not already going away */
2820 extern struct mm_struct *get_task_mm(struct task_struct *task);
2821 /*
2822  * Grab a reference to a task's mm, if it is not already going away
2823  * and ptrace_may_access with the mode parameter passed to it
2824  * succeeds.
2825  */
2826 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2827 /* Remove the current tasks stale references to the old mm_struct on exit() */
2828 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
2829 /* Remove the current tasks stale references to the old mm_struct on exec() */
2830 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
2831 
2832 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2833 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2834 			struct task_struct *, unsigned long);
2835 #else
2836 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2837 			struct task_struct *);
2838 
2839 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2840  * via pt_regs, so ignore the tls argument passed via C. */
copy_thread_tls(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)2841 static inline int copy_thread_tls(
2842 		unsigned long clone_flags, unsigned long sp, unsigned long arg,
2843 		struct task_struct *p, unsigned long tls)
2844 {
2845 	return copy_thread(clone_flags, sp, arg, p);
2846 }
2847 #endif
2848 extern void flush_thread(void);
2849 
2850 #ifdef CONFIG_HAVE_EXIT_THREAD
2851 extern void exit_thread(struct task_struct *tsk);
2852 #else
exit_thread(struct task_struct * tsk)2853 static inline void exit_thread(struct task_struct *tsk)
2854 {
2855 }
2856 #endif
2857 
2858 extern void exit_files(struct task_struct *);
2859 extern void __cleanup_sighand(struct sighand_struct *);
2860 
2861 extern void exit_itimers(struct signal_struct *);
2862 extern void flush_itimer_signals(void);
2863 
2864 extern void do_group_exit(int);
2865 
2866 extern int do_execve(struct filename *,
2867 		     const char __user * const __user *,
2868 		     const char __user * const __user *);
2869 extern int do_execveat(int, struct filename *,
2870 		       const char __user * const __user *,
2871 		       const char __user * const __user *,
2872 		       int);
2873 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2874 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2875 struct task_struct *fork_idle(int);
2876 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2877 
2878 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
set_task_comm(struct task_struct * tsk,const char * from)2879 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2880 {
2881 	__set_task_comm(tsk, from, false);
2882 }
2883 
2884 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2885 #define get_task_comm(buf, tsk) ({			\
2886 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2887 	__get_task_comm(buf, sizeof(buf), tsk);		\
2888 })
2889 
2890 #ifdef CONFIG_SMP
2891 void scheduler_ipi(void);
2892 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2893 #else
scheduler_ipi(void)2894 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)2895 static inline unsigned long wait_task_inactive(struct task_struct *p,
2896 					       long match_state)
2897 {
2898 	return 1;
2899 }
2900 #endif
2901 
2902 #define tasklist_empty() \
2903 	list_empty(&init_task.tasks)
2904 
2905 #define next_task(p) \
2906 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2907 
2908 #define for_each_process(p) \
2909 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2910 
2911 extern bool current_is_single_threaded(void);
2912 
2913 /*
2914  * Careful: do_each_thread/while_each_thread is a double loop so
2915  *          'break' will not work as expected - use goto instead.
2916  */
2917 #define do_each_thread(g, t) \
2918 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2919 
2920 #define while_each_thread(g, t) \
2921 	while ((t = next_thread(t)) != g)
2922 
2923 #define __for_each_thread(signal, t)	\
2924 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2925 
2926 #define for_each_thread(p, t)		\
2927 	__for_each_thread((p)->signal, t)
2928 
2929 /* Careful: this is a double loop, 'break' won't work as expected. */
2930 #define for_each_process_thread(p, t)	\
2931 	for_each_process(p) for_each_thread(p, t)
2932 
get_nr_threads(struct task_struct * tsk)2933 static inline int get_nr_threads(struct task_struct *tsk)
2934 {
2935 	return tsk->signal->nr_threads;
2936 }
2937 
thread_group_leader(struct task_struct * p)2938 static inline bool thread_group_leader(struct task_struct *p)
2939 {
2940 	return p->exit_signal >= 0;
2941 }
2942 
2943 /* Do to the insanities of de_thread it is possible for a process
2944  * to have the pid of the thread group leader without actually being
2945  * the thread group leader.  For iteration through the pids in proc
2946  * all we care about is that we have a task with the appropriate
2947  * pid, we don't actually care if we have the right task.
2948  */
has_group_leader_pid(struct task_struct * p)2949 static inline bool has_group_leader_pid(struct task_struct *p)
2950 {
2951 	return task_pid(p) == p->signal->leader_pid;
2952 }
2953 
2954 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)2955 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2956 {
2957 	return p1->signal == p2->signal;
2958 }
2959 
next_thread(const struct task_struct * p)2960 static inline struct task_struct *next_thread(const struct task_struct *p)
2961 {
2962 	return list_entry_rcu(p->thread_group.next,
2963 			      struct task_struct, thread_group);
2964 }
2965 
thread_group_empty(struct task_struct * p)2966 static inline int thread_group_empty(struct task_struct *p)
2967 {
2968 	return list_empty(&p->thread_group);
2969 }
2970 
2971 #define delay_group_leader(p) \
2972 		(thread_group_leader(p) && !thread_group_empty(p))
2973 
2974 /*
2975  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2976  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2977  * pins the final release of task.io_context.  Also protects ->cpuset and
2978  * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist.
2979  *
2980  * Nests both inside and outside of read_lock(&tasklist_lock).
2981  * It must not be nested with write_lock_irq(&tasklist_lock),
2982  * neither inside nor outside.
2983  */
task_lock(struct task_struct * p)2984 static inline void task_lock(struct task_struct *p)
2985 {
2986 	spin_lock(&p->alloc_lock);
2987 }
2988 
task_unlock(struct task_struct * p)2989 static inline void task_unlock(struct task_struct *p)
2990 {
2991 	spin_unlock(&p->alloc_lock);
2992 }
2993 
2994 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2995 							unsigned long *flags);
2996 
lock_task_sighand(struct task_struct * tsk,unsigned long * flags)2997 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2998 						       unsigned long *flags)
2999 {
3000 	struct sighand_struct *ret;
3001 
3002 	ret = __lock_task_sighand(tsk, flags);
3003 	(void)__cond_lock(&tsk->sighand->siglock, ret);
3004 	return ret;
3005 }
3006 
unlock_task_sighand(struct task_struct * tsk,unsigned long * flags)3007 static inline void unlock_task_sighand(struct task_struct *tsk,
3008 						unsigned long *flags)
3009 {
3010 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
3011 }
3012 
3013 /**
3014  * threadgroup_change_begin - mark the beginning of changes to a threadgroup
3015  * @tsk: task causing the changes
3016  *
3017  * All operations which modify a threadgroup - a new thread joining the
3018  * group, death of a member thread (the assertion of PF_EXITING) and
3019  * exec(2) dethreading the process and replacing the leader - are wrapped
3020  * by threadgroup_change_{begin|end}().  This is to provide a place which
3021  * subsystems needing threadgroup stability can hook into for
3022  * synchronization.
3023  */
threadgroup_change_begin(struct task_struct * tsk)3024 static inline void threadgroup_change_begin(struct task_struct *tsk)
3025 {
3026 	might_sleep();
3027 	cgroup_threadgroup_change_begin(tsk);
3028 }
3029 
3030 /**
3031  * threadgroup_change_end - mark the end of changes to a threadgroup
3032  * @tsk: task causing the changes
3033  *
3034  * See threadgroup_change_begin().
3035  */
threadgroup_change_end(struct task_struct * tsk)3036 static inline void threadgroup_change_end(struct task_struct *tsk)
3037 {
3038 	cgroup_threadgroup_change_end(tsk);
3039 }
3040 
3041 #ifdef CONFIG_THREAD_INFO_IN_TASK
3042 
task_thread_info(struct task_struct * task)3043 static inline struct thread_info *task_thread_info(struct task_struct *task)
3044 {
3045 	return &task->thread_info;
3046 }
3047 
3048 /*
3049  * When accessing the stack of a non-current task that might exit, use
3050  * try_get_task_stack() instead.  task_stack_page will return a pointer
3051  * that could get freed out from under you.
3052  */
task_stack_page(const struct task_struct * task)3053 static inline void *task_stack_page(const struct task_struct *task)
3054 {
3055 	return task->stack;
3056 }
3057 
3058 #define setup_thread_stack(new,old)	do { } while(0)
3059 
end_of_stack(const struct task_struct * task)3060 static inline unsigned long *end_of_stack(const struct task_struct *task)
3061 {
3062 	return task->stack;
3063 }
3064 
3065 #elif !defined(__HAVE_THREAD_FUNCTIONS)
3066 
3067 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
3068 #define task_stack_page(task)	((void *)(task)->stack)
3069 
setup_thread_stack(struct task_struct * p,struct task_struct * org)3070 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
3071 {
3072 	*task_thread_info(p) = *task_thread_info(org);
3073 	task_thread_info(p)->task = p;
3074 }
3075 
3076 /*
3077  * Return the address of the last usable long on the stack.
3078  *
3079  * When the stack grows down, this is just above the thread
3080  * info struct. Going any lower will corrupt the threadinfo.
3081  *
3082  * When the stack grows up, this is the highest address.
3083  * Beyond that position, we corrupt data on the next page.
3084  */
end_of_stack(struct task_struct * p)3085 static inline unsigned long *end_of_stack(struct task_struct *p)
3086 {
3087 #ifdef CONFIG_STACK_GROWSUP
3088 	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
3089 #else
3090 	return (unsigned long *)(task_thread_info(p) + 1);
3091 #endif
3092 }
3093 
3094 #endif
3095 
try_get_task_stack(struct task_struct * tsk)3096 static inline void *try_get_task_stack(struct task_struct *tsk)
3097 {
3098 	return task_stack_page(tsk);
3099 }
3100 
put_task_stack(struct task_struct * tsk)3101 static inline void put_task_stack(struct task_struct *tsk) {}
3102 
3103 #define task_stack_end_corrupted(task) \
3104 		(*(end_of_stack(task)) != STACK_END_MAGIC)
3105 
object_is_on_stack(void * obj)3106 static inline int object_is_on_stack(void *obj)
3107 {
3108 	void *stack = task_stack_page(current);
3109 
3110 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
3111 }
3112 
3113 extern void thread_stack_cache_init(void);
3114 
3115 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)3116 static inline unsigned long stack_not_used(struct task_struct *p)
3117 {
3118 	unsigned long *n = end_of_stack(p);
3119 
3120 	do { 	/* Skip over canary */
3121 		n++;
3122 	} while (!*n);
3123 
3124 	return (unsigned long)n - (unsigned long)end_of_stack(p);
3125 }
3126 #endif
3127 extern void set_task_stack_end_magic(struct task_struct *tsk);
3128 
3129 /* set thread flags in other task's structures
3130  * - see asm/thread_info.h for TIF_xxxx flags available
3131  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)3132 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3133 {
3134 	set_ti_thread_flag(task_thread_info(tsk), flag);
3135 }
3136 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)3137 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3138 {
3139 	clear_ti_thread_flag(task_thread_info(tsk), flag);
3140 }
3141 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)3142 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3143 {
3144 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
3145 }
3146 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)3147 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3148 {
3149 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
3150 }
3151 
test_tsk_thread_flag(struct task_struct * tsk,int flag)3152 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3153 {
3154 	return test_ti_thread_flag(task_thread_info(tsk), flag);
3155 }
3156 
set_tsk_need_resched(struct task_struct * tsk)3157 static inline void set_tsk_need_resched(struct task_struct *tsk)
3158 {
3159 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3160 }
3161 
clear_tsk_need_resched(struct task_struct * tsk)3162 static inline void clear_tsk_need_resched(struct task_struct *tsk)
3163 {
3164 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3165 }
3166 
test_tsk_need_resched(struct task_struct * tsk)3167 static inline int test_tsk_need_resched(struct task_struct *tsk)
3168 {
3169 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3170 }
3171 
restart_syscall(void)3172 static inline int restart_syscall(void)
3173 {
3174 	set_tsk_thread_flag(current, TIF_SIGPENDING);
3175 	return -ERESTARTNOINTR;
3176 }
3177 
signal_pending(struct task_struct * p)3178 static inline int signal_pending(struct task_struct *p)
3179 {
3180 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3181 }
3182 
__fatal_signal_pending(struct task_struct * p)3183 static inline int __fatal_signal_pending(struct task_struct *p)
3184 {
3185 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
3186 }
3187 
fatal_signal_pending(struct task_struct * p)3188 static inline int fatal_signal_pending(struct task_struct *p)
3189 {
3190 	return signal_pending(p) && __fatal_signal_pending(p);
3191 }
3192 
signal_pending_state(long state,struct task_struct * p)3193 static inline int signal_pending_state(long state, struct task_struct *p)
3194 {
3195 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3196 		return 0;
3197 	if (!signal_pending(p))
3198 		return 0;
3199 
3200 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3201 }
3202 
3203 /*
3204  * cond_resched() and cond_resched_lock(): latency reduction via
3205  * explicit rescheduling in places that are safe. The return
3206  * value indicates whether a reschedule was done in fact.
3207  * cond_resched_lock() will drop the spinlock before scheduling,
3208  * cond_resched_softirq() will enable bhs before scheduling.
3209  */
3210 extern int _cond_resched(void);
3211 
3212 #define cond_resched() ({			\
3213 	___might_sleep(__FILE__, __LINE__, 0);	\
3214 	_cond_resched();			\
3215 })
3216 
3217 extern int __cond_resched_lock(spinlock_t *lock);
3218 
3219 #define cond_resched_lock(lock) ({				\
3220 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
3221 	__cond_resched_lock(lock);				\
3222 })
3223 
3224 extern int __cond_resched_softirq(void);
3225 
3226 #define cond_resched_softirq() ({					\
3227 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
3228 	__cond_resched_softirq();					\
3229 })
3230 
cond_resched_rcu(void)3231 static inline void cond_resched_rcu(void)
3232 {
3233 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3234 	rcu_read_unlock();
3235 	cond_resched();
3236 	rcu_read_lock();
3237 #endif
3238 }
3239 
3240 /*
3241  * Does a critical section need to be broken due to another
3242  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3243  * but a general need for low latency)
3244  */
spin_needbreak(spinlock_t * lock)3245 static inline int spin_needbreak(spinlock_t *lock)
3246 {
3247 #ifdef CONFIG_PREEMPT
3248 	return spin_is_contended(lock);
3249 #else
3250 	return 0;
3251 #endif
3252 }
3253 
3254 /*
3255  * Idle thread specific functions to determine the need_resched
3256  * polling state.
3257  */
3258 #ifdef TIF_POLLING_NRFLAG
tsk_is_polling(struct task_struct * p)3259 static inline int tsk_is_polling(struct task_struct *p)
3260 {
3261 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3262 }
3263 
__current_set_polling(void)3264 static inline void __current_set_polling(void)
3265 {
3266 	set_thread_flag(TIF_POLLING_NRFLAG);
3267 }
3268 
current_set_polling_and_test(void)3269 static inline bool __must_check current_set_polling_and_test(void)
3270 {
3271 	__current_set_polling();
3272 
3273 	/*
3274 	 * Polling state must be visible before we test NEED_RESCHED,
3275 	 * paired by resched_curr()
3276 	 */
3277 	smp_mb__after_atomic();
3278 
3279 	return unlikely(tif_need_resched());
3280 }
3281 
__current_clr_polling(void)3282 static inline void __current_clr_polling(void)
3283 {
3284 	clear_thread_flag(TIF_POLLING_NRFLAG);
3285 }
3286 
current_clr_polling_and_test(void)3287 static inline bool __must_check current_clr_polling_and_test(void)
3288 {
3289 	__current_clr_polling();
3290 
3291 	/*
3292 	 * Polling state must be visible before we test NEED_RESCHED,
3293 	 * paired by resched_curr()
3294 	 */
3295 	smp_mb__after_atomic();
3296 
3297 	return unlikely(tif_need_resched());
3298 }
3299 
3300 #else
tsk_is_polling(struct task_struct * p)3301 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
__current_set_polling(void)3302 static inline void __current_set_polling(void) { }
__current_clr_polling(void)3303 static inline void __current_clr_polling(void) { }
3304 
current_set_polling_and_test(void)3305 static inline bool __must_check current_set_polling_and_test(void)
3306 {
3307 	return unlikely(tif_need_resched());
3308 }
current_clr_polling_and_test(void)3309 static inline bool __must_check current_clr_polling_and_test(void)
3310 {
3311 	return unlikely(tif_need_resched());
3312 }
3313 #endif
3314 
current_clr_polling(void)3315 static inline void current_clr_polling(void)
3316 {
3317 	__current_clr_polling();
3318 
3319 	/*
3320 	 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3321 	 * Once the bit is cleared, we'll get IPIs with every new
3322 	 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3323 	 * fold.
3324 	 */
3325 	smp_mb(); /* paired with resched_curr() */
3326 
3327 	preempt_fold_need_resched();
3328 }
3329 
need_resched(void)3330 static __always_inline bool need_resched(void)
3331 {
3332 	return unlikely(tif_need_resched());
3333 }
3334 
3335 /*
3336  * Thread group CPU time accounting.
3337  */
3338 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3339 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3340 
3341 /*
3342  * Reevaluate whether the task has signals pending delivery.
3343  * Wake the task if so.
3344  * This is required every time the blocked sigset_t changes.
3345  * callers must hold sighand->siglock.
3346  */
3347 extern void recalc_sigpending_and_wake(struct task_struct *t);
3348 extern void recalc_sigpending(void);
3349 
3350 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3351 
signal_wake_up(struct task_struct * t,bool resume)3352 static inline void signal_wake_up(struct task_struct *t, bool resume)
3353 {
3354 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3355 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)3356 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3357 {
3358 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3359 }
3360 
3361 /*
3362  * Wrappers for p->thread_info->cpu access. No-op on UP.
3363  */
3364 #ifdef CONFIG_SMP
3365 
task_cpu(const struct task_struct * p)3366 static inline unsigned int task_cpu(const struct task_struct *p)
3367 {
3368 #ifdef CONFIG_THREAD_INFO_IN_TASK
3369 	return p->cpu;
3370 #else
3371 	return task_thread_info(p)->cpu;
3372 #endif
3373 }
3374 
task_node(const struct task_struct * p)3375 static inline int task_node(const struct task_struct *p)
3376 {
3377 	return cpu_to_node(task_cpu(p));
3378 }
3379 
3380 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3381 
3382 #else
3383 
task_cpu(const struct task_struct * p)3384 static inline unsigned int task_cpu(const struct task_struct *p)
3385 {
3386 	return 0;
3387 }
3388 
set_task_cpu(struct task_struct * p,unsigned int cpu)3389 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3390 {
3391 }
3392 
3393 #endif /* CONFIG_SMP */
3394 
3395 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3396 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3397 
3398 #ifdef CONFIG_CGROUP_SCHED
3399 extern struct task_group root_task_group;
3400 #endif /* CONFIG_CGROUP_SCHED */
3401 
3402 extern int task_can_switch_user(struct user_struct *up,
3403 					struct task_struct *tsk);
3404 
3405 #ifdef CONFIG_TASK_XACCT
add_rchar(struct task_struct * tsk,ssize_t amt)3406 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3407 {
3408 	tsk->ioac.rchar += amt;
3409 }
3410 
add_wchar(struct task_struct * tsk,ssize_t amt)3411 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3412 {
3413 	tsk->ioac.wchar += amt;
3414 }
3415 
inc_syscr(struct task_struct * tsk)3416 static inline void inc_syscr(struct task_struct *tsk)
3417 {
3418 	tsk->ioac.syscr++;
3419 }
3420 
inc_syscw(struct task_struct * tsk)3421 static inline void inc_syscw(struct task_struct *tsk)
3422 {
3423 	tsk->ioac.syscw++;
3424 }
3425 
inc_syscfs(struct task_struct * tsk)3426 static inline void inc_syscfs(struct task_struct *tsk)
3427 {
3428 	tsk->ioac.syscfs++;
3429 }
3430 #else
add_rchar(struct task_struct * tsk,ssize_t amt)3431 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3432 {
3433 }
3434 
add_wchar(struct task_struct * tsk,ssize_t amt)3435 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3436 {
3437 }
3438 
inc_syscr(struct task_struct * tsk)3439 static inline void inc_syscr(struct task_struct *tsk)
3440 {
3441 }
3442 
inc_syscw(struct task_struct * tsk)3443 static inline void inc_syscw(struct task_struct *tsk)
3444 {
3445 }
inc_syscfs(struct task_struct * tsk)3446 static inline void inc_syscfs(struct task_struct *tsk)
3447 {
3448 }
3449 #endif
3450 
3451 #ifndef TASK_SIZE_OF
3452 #define TASK_SIZE_OF(tsk)	TASK_SIZE
3453 #endif
3454 
3455 #ifdef CONFIG_MEMCG
3456 extern void mm_update_next_owner(struct mm_struct *mm);
3457 #else
mm_update_next_owner(struct mm_struct * mm)3458 static inline void mm_update_next_owner(struct mm_struct *mm)
3459 {
3460 }
3461 #endif /* CONFIG_MEMCG */
3462 
task_rlimit(const struct task_struct * tsk,unsigned int limit)3463 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3464 		unsigned int limit)
3465 {
3466 	return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3467 }
3468 
task_rlimit_max(const struct task_struct * tsk,unsigned int limit)3469 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3470 		unsigned int limit)
3471 {
3472 	return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3473 }
3474 
rlimit(unsigned int limit)3475 static inline unsigned long rlimit(unsigned int limit)
3476 {
3477 	return task_rlimit(current, limit);
3478 }
3479 
rlimit_max(unsigned int limit)3480 static inline unsigned long rlimit_max(unsigned int limit)
3481 {
3482 	return task_rlimit_max(current, limit);
3483 }
3484 
3485 #define SCHED_CPUFREQ_RT        (1U << 0)
3486 #define SCHED_CPUFREQ_DL        (1U << 1)
3487 #define SCHED_CPUFREQ_IOWAIT    (1U << 2)
3488 
3489 #ifdef CONFIG_CPU_FREQ
3490 struct update_util_data {
3491 	void (*func)(struct update_util_data *data, u64 time, unsigned int flags);
3492 };
3493 
3494 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3495                        void (*func)(struct update_util_data *data, u64 time,
3496                                     unsigned int flags));
3497 void cpufreq_remove_update_util_hook(int cpu);
3498 #endif /* CONFIG_CPU_FREQ */
3499 
3500 #endif
3501