• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 		struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71 
init_se_kmem_caches(void)72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_lba_map_cache = kmem_cache_create(
122 			"t10_alua_lba_map_cache",
123 			sizeof(struct t10_alua_lba_map),
124 			__alignof__(struct t10_alua_lba_map), 0, NULL);
125 	if (!t10_alua_lba_map_cache) {
126 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 				"cache failed\n");
128 		goto out_free_tg_pt_gp_cache;
129 	}
130 	t10_alua_lba_map_mem_cache = kmem_cache_create(
131 			"t10_alua_lba_map_mem_cache",
132 			sizeof(struct t10_alua_lba_map_member),
133 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 	if (!t10_alua_lba_map_mem_cache) {
135 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 				"cache failed\n");
137 		goto out_free_lba_map_cache;
138 	}
139 
140 	target_completion_wq = alloc_workqueue("target_completion",
141 					       WQ_MEM_RECLAIM, 0);
142 	if (!target_completion_wq)
143 		goto out_free_lba_map_mem_cache;
144 
145 	return 0;
146 
147 out_free_lba_map_mem_cache:
148 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 	kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_lba_map_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179 
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 
184 /*
185  * Allocate a new row index for the entry type specified
186  */
scsi_get_new_index(scsi_index_t type)187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 	u32 new_index;
190 
191 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192 
193 	spin_lock(&scsi_mib_index_lock);
194 	new_index = ++scsi_mib_index[type];
195 	spin_unlock(&scsi_mib_index_lock);
196 
197 	return new_index;
198 }
199 
transport_subsystem_check_init(void)200 void transport_subsystem_check_init(void)
201 {
202 	int ret;
203 	static int sub_api_initialized;
204 
205 	if (sub_api_initialized)
206 		return;
207 
208 	ret = request_module("target_core_iblock");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_iblock\n");
211 
212 	ret = request_module("target_core_file");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_file\n");
215 
216 	ret = request_module("target_core_pscsi");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_pscsi\n");
219 
220 	ret = request_module("target_core_user");
221 	if (ret != 0)
222 		pr_err("Unable to load target_core_user\n");
223 
224 	sub_api_initialized = 1;
225 }
226 
transport_init_session(enum target_prot_op sup_prot_ops)227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 	struct se_session *se_sess;
230 
231 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 	if (!se_sess) {
233 		pr_err("Unable to allocate struct se_session from"
234 				" se_sess_cache\n");
235 		return ERR_PTR(-ENOMEM);
236 	}
237 	INIT_LIST_HEAD(&se_sess->sess_list);
238 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 	spin_lock_init(&se_sess->sess_cmd_lock);
242 	kref_init(&se_sess->sess_kref);
243 	se_sess->sup_prot_ops = sup_prot_ops;
244 
245 	return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248 
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)249 int transport_alloc_session_tags(struct se_session *se_sess,
250 			         unsigned int tag_num, unsigned int tag_size)
251 {
252 	int rc;
253 
254 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 	if (!se_sess->sess_cmd_map) {
257 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 		if (!se_sess->sess_cmd_map) {
259 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 			return -ENOMEM;
261 		}
262 	}
263 
264 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 	if (rc < 0) {
266 		pr_err("Unable to init se_sess->sess_tag_pool,"
267 			" tag_num: %u\n", tag_num);
268 		kvfree(se_sess->sess_cmd_map);
269 		se_sess->sess_cmd_map = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276 
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 					       unsigned int tag_size,
279 					       enum target_prot_op sup_prot_ops)
280 {
281 	struct se_session *se_sess;
282 	int rc;
283 
284 	se_sess = transport_init_session(sup_prot_ops);
285 	if (IS_ERR(se_sess))
286 		return se_sess;
287 
288 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
289 	if (rc < 0) {
290 		transport_free_session(se_sess);
291 		return ERR_PTR(-ENOMEM);
292 	}
293 
294 	return se_sess;
295 }
296 EXPORT_SYMBOL(transport_init_session_tags);
297 
298 /*
299  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
300  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)301 void __transport_register_session(
302 	struct se_portal_group *se_tpg,
303 	struct se_node_acl *se_nacl,
304 	struct se_session *se_sess,
305 	void *fabric_sess_ptr)
306 {
307 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308 	unsigned char buf[PR_REG_ISID_LEN];
309 	unsigned long flags;
310 
311 	se_sess->se_tpg = se_tpg;
312 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
313 	/*
314 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
315 	 *
316 	 * Only set for struct se_session's that will actually be moving I/O.
317 	 * eg: *NOT* discovery sessions.
318 	 */
319 	if (se_nacl) {
320 		/*
321 		 *
322 		 * Determine if fabric allows for T10-PI feature bits exposed to
323 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
324 		 *
325 		 * If so, then always save prot_type on a per se_node_acl node
326 		 * basis and re-instate the previous sess_prot_type to avoid
327 		 * disabling PI from below any previously initiator side
328 		 * registered LUNs.
329 		 */
330 		if (se_nacl->saved_prot_type)
331 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
332 		else if (tfo->tpg_check_prot_fabric_only)
333 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
334 					tfo->tpg_check_prot_fabric_only(se_tpg);
335 		/*
336 		 * If the fabric module supports an ISID based TransportID,
337 		 * save this value in binary from the fabric I_T Nexus now.
338 		 */
339 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
340 			memset(&buf[0], 0, PR_REG_ISID_LEN);
341 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
342 					&buf[0], PR_REG_ISID_LEN);
343 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
344 		}
345 
346 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
347 		/*
348 		 * The se_nacl->nacl_sess pointer will be set to the
349 		 * last active I_T Nexus for each struct se_node_acl.
350 		 */
351 		se_nacl->nacl_sess = se_sess;
352 
353 		list_add_tail(&se_sess->sess_acl_list,
354 			      &se_nacl->acl_sess_list);
355 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
356 	}
357 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
358 
359 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
360 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
361 }
362 EXPORT_SYMBOL(__transport_register_session);
363 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)364 void transport_register_session(
365 	struct se_portal_group *se_tpg,
366 	struct se_node_acl *se_nacl,
367 	struct se_session *se_sess,
368 	void *fabric_sess_ptr)
369 {
370 	unsigned long flags;
371 
372 	spin_lock_irqsave(&se_tpg->session_lock, flags);
373 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
374 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
375 }
376 EXPORT_SYMBOL(transport_register_session);
377 
target_release_session(struct kref * kref)378 static void target_release_session(struct kref *kref)
379 {
380 	struct se_session *se_sess = container_of(kref,
381 			struct se_session, sess_kref);
382 	struct se_portal_group *se_tpg = se_sess->se_tpg;
383 
384 	se_tpg->se_tpg_tfo->close_session(se_sess);
385 }
386 
target_get_session(struct se_session * se_sess)387 int target_get_session(struct se_session *se_sess)
388 {
389 	return kref_get_unless_zero(&se_sess->sess_kref);
390 }
391 EXPORT_SYMBOL(target_get_session);
392 
target_put_session(struct se_session * se_sess)393 void target_put_session(struct se_session *se_sess)
394 {
395 	kref_put(&se_sess->sess_kref, target_release_session);
396 }
397 EXPORT_SYMBOL(target_put_session);
398 
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)399 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
400 {
401 	struct se_session *se_sess;
402 	ssize_t len = 0;
403 
404 	spin_lock_bh(&se_tpg->session_lock);
405 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
406 		if (!se_sess->se_node_acl)
407 			continue;
408 		if (!se_sess->se_node_acl->dynamic_node_acl)
409 			continue;
410 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
411 			break;
412 
413 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
414 				se_sess->se_node_acl->initiatorname);
415 		len += 1; /* Include NULL terminator */
416 	}
417 	spin_unlock_bh(&se_tpg->session_lock);
418 
419 	return len;
420 }
421 EXPORT_SYMBOL(target_show_dynamic_sessions);
422 
target_complete_nacl(struct kref * kref)423 static void target_complete_nacl(struct kref *kref)
424 {
425 	struct se_node_acl *nacl = container_of(kref,
426 				struct se_node_acl, acl_kref);
427 	struct se_portal_group *se_tpg = nacl->se_tpg;
428 
429 	if (!nacl->dynamic_stop) {
430 		complete(&nacl->acl_free_comp);
431 		return;
432 	}
433 
434 	mutex_lock(&se_tpg->acl_node_mutex);
435 	list_del_init(&nacl->acl_list);
436 	mutex_unlock(&se_tpg->acl_node_mutex);
437 
438 	core_tpg_wait_for_nacl_pr_ref(nacl);
439 	core_free_device_list_for_node(nacl, se_tpg);
440 	kfree(nacl);
441 }
442 
target_put_nacl(struct se_node_acl * nacl)443 void target_put_nacl(struct se_node_acl *nacl)
444 {
445 	kref_put(&nacl->acl_kref, target_complete_nacl);
446 }
447 EXPORT_SYMBOL(target_put_nacl);
448 
transport_deregister_session_configfs(struct se_session * se_sess)449 void transport_deregister_session_configfs(struct se_session *se_sess)
450 {
451 	struct se_node_acl *se_nacl;
452 	unsigned long flags;
453 	/*
454 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
455 	 */
456 	se_nacl = se_sess->se_node_acl;
457 	if (se_nacl) {
458 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
459 		if (se_nacl->acl_stop == 0)
460 			list_del(&se_sess->sess_acl_list);
461 		/*
462 		 * If the session list is empty, then clear the pointer.
463 		 * Otherwise, set the struct se_session pointer from the tail
464 		 * element of the per struct se_node_acl active session list.
465 		 */
466 		if (list_empty(&se_nacl->acl_sess_list))
467 			se_nacl->nacl_sess = NULL;
468 		else {
469 			se_nacl->nacl_sess = container_of(
470 					se_nacl->acl_sess_list.prev,
471 					struct se_session, sess_acl_list);
472 		}
473 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
474 	}
475 }
476 EXPORT_SYMBOL(transport_deregister_session_configfs);
477 
transport_free_session(struct se_session * se_sess)478 void transport_free_session(struct se_session *se_sess)
479 {
480 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
481 
482 	/*
483 	 * Drop the se_node_acl->nacl_kref obtained from within
484 	 * core_tpg_get_initiator_node_acl().
485 	 */
486 	if (se_nacl) {
487 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
488 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
489 		unsigned long flags;
490 
491 		se_sess->se_node_acl = NULL;
492 
493 		/*
494 		 * Also determine if we need to drop the extra ->cmd_kref if
495 		 * it had been previously dynamically generated, and
496 		 * the endpoint is not caching dynamic ACLs.
497 		 */
498 		mutex_lock(&se_tpg->acl_node_mutex);
499 		if (se_nacl->dynamic_node_acl &&
500 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
501 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
502 			if (list_empty(&se_nacl->acl_sess_list))
503 				se_nacl->dynamic_stop = true;
504 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
505 
506 			if (se_nacl->dynamic_stop)
507 				list_del_init(&se_nacl->acl_list);
508 		}
509 		mutex_unlock(&se_tpg->acl_node_mutex);
510 
511 		if (se_nacl->dynamic_stop)
512 			target_put_nacl(se_nacl);
513 
514 		target_put_nacl(se_nacl);
515 	}
516 	if (se_sess->sess_cmd_map) {
517 		percpu_ida_destroy(&se_sess->sess_tag_pool);
518 		kvfree(se_sess->sess_cmd_map);
519 	}
520 	kmem_cache_free(se_sess_cache, se_sess);
521 }
522 EXPORT_SYMBOL(transport_free_session);
523 
transport_deregister_session(struct se_session * se_sess)524 void transport_deregister_session(struct se_session *se_sess)
525 {
526 	struct se_portal_group *se_tpg = se_sess->se_tpg;
527 	unsigned long flags;
528 
529 	if (!se_tpg) {
530 		transport_free_session(se_sess);
531 		return;
532 	}
533 
534 	spin_lock_irqsave(&se_tpg->session_lock, flags);
535 	list_del(&se_sess->sess_list);
536 	se_sess->se_tpg = NULL;
537 	se_sess->fabric_sess_ptr = NULL;
538 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
539 
540 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
541 		se_tpg->se_tpg_tfo->get_fabric_name());
542 	/*
543 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
544 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
545 	 * removal context from within transport_free_session() code.
546 	 *
547 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
548 	 * to release all remaining generate_node_acl=1 created ACL resources.
549 	 */
550 
551 	transport_free_session(se_sess);
552 }
553 EXPORT_SYMBOL(transport_deregister_session);
554 
target_remove_from_state_list(struct se_cmd * cmd)555 static void target_remove_from_state_list(struct se_cmd *cmd)
556 {
557 	struct se_device *dev = cmd->se_dev;
558 	unsigned long flags;
559 
560 	if (!dev)
561 		return;
562 
563 	if (cmd->transport_state & CMD_T_BUSY)
564 		return;
565 
566 	spin_lock_irqsave(&dev->execute_task_lock, flags);
567 	if (cmd->state_active) {
568 		list_del(&cmd->state_list);
569 		cmd->state_active = false;
570 	}
571 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
572 }
573 
transport_cmd_check_stop(struct se_cmd * cmd,bool remove_from_lists,bool write_pending)574 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
575 				    bool write_pending)
576 {
577 	unsigned long flags;
578 
579 	if (remove_from_lists) {
580 		target_remove_from_state_list(cmd);
581 
582 		/*
583 		 * Clear struct se_cmd->se_lun before the handoff to FE.
584 		 */
585 		cmd->se_lun = NULL;
586 	}
587 
588 	spin_lock_irqsave(&cmd->t_state_lock, flags);
589 	if (write_pending)
590 		cmd->t_state = TRANSPORT_WRITE_PENDING;
591 
592 	/*
593 	 * Determine if frontend context caller is requesting the stopping of
594 	 * this command for frontend exceptions.
595 	 */
596 	if (cmd->transport_state & CMD_T_STOP) {
597 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
598 			__func__, __LINE__, cmd->tag);
599 
600 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
601 
602 		complete_all(&cmd->t_transport_stop_comp);
603 		return 1;
604 	}
605 
606 	cmd->transport_state &= ~CMD_T_ACTIVE;
607 	if (remove_from_lists) {
608 		/*
609 		 * Some fabric modules like tcm_loop can release
610 		 * their internally allocated I/O reference now and
611 		 * struct se_cmd now.
612 		 *
613 		 * Fabric modules are expected to return '1' here if the
614 		 * se_cmd being passed is released at this point,
615 		 * or zero if not being released.
616 		 */
617 		if (cmd->se_tfo->check_stop_free != NULL) {
618 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
619 			return cmd->se_tfo->check_stop_free(cmd);
620 		}
621 	}
622 
623 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
624 	return 0;
625 }
626 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)627 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
628 {
629 	return transport_cmd_check_stop(cmd, true, false);
630 }
631 
transport_lun_remove_cmd(struct se_cmd * cmd)632 static void transport_lun_remove_cmd(struct se_cmd *cmd)
633 {
634 	struct se_lun *lun = cmd->se_lun;
635 
636 	if (!lun)
637 		return;
638 
639 	if (cmpxchg(&cmd->lun_ref_active, true, false))
640 		percpu_ref_put(&lun->lun_ref);
641 }
642 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)643 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
644 {
645 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
646 	int ret = 0;
647 
648 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
649 		transport_lun_remove_cmd(cmd);
650 	/*
651 	 * Allow the fabric driver to unmap any resources before
652 	 * releasing the descriptor via TFO->release_cmd()
653 	 */
654 	if (remove)
655 		cmd->se_tfo->aborted_task(cmd);
656 
657 	if (transport_cmd_check_stop_to_fabric(cmd))
658 		return 1;
659 	if (remove && ack_kref)
660 		ret = transport_put_cmd(cmd);
661 
662 	return ret;
663 }
664 
target_complete_failure_work(struct work_struct * work)665 static void target_complete_failure_work(struct work_struct *work)
666 {
667 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
668 
669 	transport_generic_request_failure(cmd,
670 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
671 }
672 
673 /*
674  * Used when asking transport to copy Sense Data from the underlying
675  * Linux/SCSI struct scsi_cmnd
676  */
transport_get_sense_buffer(struct se_cmd * cmd)677 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
678 {
679 	struct se_device *dev = cmd->se_dev;
680 
681 	WARN_ON(!cmd->se_lun);
682 
683 	if (!dev)
684 		return NULL;
685 
686 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
687 		return NULL;
688 
689 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
690 
691 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
692 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
693 	return cmd->sense_buffer;
694 }
695 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)696 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
697 {
698 	struct se_device *dev = cmd->se_dev;
699 	int success = scsi_status == GOOD;
700 	unsigned long flags;
701 
702 	cmd->scsi_status = scsi_status;
703 
704 
705 	spin_lock_irqsave(&cmd->t_state_lock, flags);
706 	cmd->transport_state &= ~CMD_T_BUSY;
707 
708 	if (dev && dev->transport->transport_complete) {
709 		dev->transport->transport_complete(cmd,
710 				cmd->t_data_sg,
711 				transport_get_sense_buffer(cmd));
712 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
713 			success = 1;
714 	}
715 
716 	/*
717 	 * See if we are waiting to complete for an exception condition.
718 	 */
719 	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
720 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
721 		complete(&cmd->task_stop_comp);
722 		return;
723 	}
724 
725 	/*
726 	 * Check for case where an explicit ABORT_TASK has been received
727 	 * and transport_wait_for_tasks() will be waiting for completion..
728 	 */
729 	if (cmd->transport_state & CMD_T_ABORTED ||
730 	    cmd->transport_state & CMD_T_STOP) {
731 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
732 		/*
733 		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
734 		 * release se_device->caw_sem obtained by sbc_compare_and_write()
735 		 * since target_complete_ok_work() or target_complete_failure_work()
736 		 * won't be called to invoke the normal CAW completion callbacks.
737 		 */
738 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
739 			up(&dev->caw_sem);
740 		}
741 		complete_all(&cmd->t_transport_stop_comp);
742 		return;
743 	} else if (!success) {
744 		INIT_WORK(&cmd->work, target_complete_failure_work);
745 	} else {
746 		INIT_WORK(&cmd->work, target_complete_ok_work);
747 	}
748 
749 	cmd->t_state = TRANSPORT_COMPLETE;
750 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
751 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
752 
753 	queue_work(target_completion_wq, &cmd->work);
754 }
755 EXPORT_SYMBOL(target_complete_cmd);
756 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)757 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
758 {
759 	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
760 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
761 			cmd->residual_count += cmd->data_length - length;
762 		} else {
763 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
764 			cmd->residual_count = cmd->data_length - length;
765 		}
766 
767 		cmd->data_length = length;
768 	}
769 
770 	target_complete_cmd(cmd, scsi_status);
771 }
772 EXPORT_SYMBOL(target_complete_cmd_with_length);
773 
target_add_to_state_list(struct se_cmd * cmd)774 static void target_add_to_state_list(struct se_cmd *cmd)
775 {
776 	struct se_device *dev = cmd->se_dev;
777 	unsigned long flags;
778 
779 	spin_lock_irqsave(&dev->execute_task_lock, flags);
780 	if (!cmd->state_active) {
781 		list_add_tail(&cmd->state_list, &dev->state_list);
782 		cmd->state_active = true;
783 	}
784 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
785 }
786 
787 /*
788  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
789  */
790 static void transport_write_pending_qf(struct se_cmd *cmd);
791 static void transport_complete_qf(struct se_cmd *cmd);
792 
target_qf_do_work(struct work_struct * work)793 void target_qf_do_work(struct work_struct *work)
794 {
795 	struct se_device *dev = container_of(work, struct se_device,
796 					qf_work_queue);
797 	LIST_HEAD(qf_cmd_list);
798 	struct se_cmd *cmd, *cmd_tmp;
799 
800 	spin_lock_irq(&dev->qf_cmd_lock);
801 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
802 	spin_unlock_irq(&dev->qf_cmd_lock);
803 
804 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
805 		list_del(&cmd->se_qf_node);
806 		atomic_dec_mb(&dev->dev_qf_count);
807 
808 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
809 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
810 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
811 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
812 			: "UNKNOWN");
813 
814 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
815 			transport_write_pending_qf(cmd);
816 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
817 			transport_complete_qf(cmd);
818 	}
819 }
820 
transport_dump_cmd_direction(struct se_cmd * cmd)821 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
822 {
823 	switch (cmd->data_direction) {
824 	case DMA_NONE:
825 		return "NONE";
826 	case DMA_FROM_DEVICE:
827 		return "READ";
828 	case DMA_TO_DEVICE:
829 		return "WRITE";
830 	case DMA_BIDIRECTIONAL:
831 		return "BIDI";
832 	default:
833 		break;
834 	}
835 
836 	return "UNKNOWN";
837 }
838 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)839 void transport_dump_dev_state(
840 	struct se_device *dev,
841 	char *b,
842 	int *bl)
843 {
844 	*bl += sprintf(b + *bl, "Status: ");
845 	if (dev->export_count)
846 		*bl += sprintf(b + *bl, "ACTIVATED");
847 	else
848 		*bl += sprintf(b + *bl, "DEACTIVATED");
849 
850 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
851 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
852 		dev->dev_attrib.block_size,
853 		dev->dev_attrib.hw_max_sectors);
854 	*bl += sprintf(b + *bl, "        ");
855 }
856 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)857 void transport_dump_vpd_proto_id(
858 	struct t10_vpd *vpd,
859 	unsigned char *p_buf,
860 	int p_buf_len)
861 {
862 	unsigned char buf[VPD_TMP_BUF_SIZE];
863 	int len;
864 
865 	memset(buf, 0, VPD_TMP_BUF_SIZE);
866 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
867 
868 	switch (vpd->protocol_identifier) {
869 	case 0x00:
870 		sprintf(buf+len, "Fibre Channel\n");
871 		break;
872 	case 0x10:
873 		sprintf(buf+len, "Parallel SCSI\n");
874 		break;
875 	case 0x20:
876 		sprintf(buf+len, "SSA\n");
877 		break;
878 	case 0x30:
879 		sprintf(buf+len, "IEEE 1394\n");
880 		break;
881 	case 0x40:
882 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
883 				" Protocol\n");
884 		break;
885 	case 0x50:
886 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
887 		break;
888 	case 0x60:
889 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
890 		break;
891 	case 0x70:
892 		sprintf(buf+len, "Automation/Drive Interface Transport"
893 				" Protocol\n");
894 		break;
895 	case 0x80:
896 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
897 		break;
898 	default:
899 		sprintf(buf+len, "Unknown 0x%02x\n",
900 				vpd->protocol_identifier);
901 		break;
902 	}
903 
904 	if (p_buf)
905 		strncpy(p_buf, buf, p_buf_len);
906 	else
907 		pr_debug("%s", buf);
908 }
909 
910 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)911 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
912 {
913 	/*
914 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
915 	 *
916 	 * from spc3r23.pdf section 7.5.1
917 	 */
918 	 if (page_83[1] & 0x80) {
919 		vpd->protocol_identifier = (page_83[0] & 0xf0);
920 		vpd->protocol_identifier_set = 1;
921 		transport_dump_vpd_proto_id(vpd, NULL, 0);
922 	}
923 }
924 EXPORT_SYMBOL(transport_set_vpd_proto_id);
925 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)926 int transport_dump_vpd_assoc(
927 	struct t10_vpd *vpd,
928 	unsigned char *p_buf,
929 	int p_buf_len)
930 {
931 	unsigned char buf[VPD_TMP_BUF_SIZE];
932 	int ret = 0;
933 	int len;
934 
935 	memset(buf, 0, VPD_TMP_BUF_SIZE);
936 	len = sprintf(buf, "T10 VPD Identifier Association: ");
937 
938 	switch (vpd->association) {
939 	case 0x00:
940 		sprintf(buf+len, "addressed logical unit\n");
941 		break;
942 	case 0x10:
943 		sprintf(buf+len, "target port\n");
944 		break;
945 	case 0x20:
946 		sprintf(buf+len, "SCSI target device\n");
947 		break;
948 	default:
949 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
950 		ret = -EINVAL;
951 		break;
952 	}
953 
954 	if (p_buf)
955 		strncpy(p_buf, buf, p_buf_len);
956 	else
957 		pr_debug("%s", buf);
958 
959 	return ret;
960 }
961 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)962 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
963 {
964 	/*
965 	 * The VPD identification association..
966 	 *
967 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
968 	 */
969 	vpd->association = (page_83[1] & 0x30);
970 	return transport_dump_vpd_assoc(vpd, NULL, 0);
971 }
972 EXPORT_SYMBOL(transport_set_vpd_assoc);
973 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)974 int transport_dump_vpd_ident_type(
975 	struct t10_vpd *vpd,
976 	unsigned char *p_buf,
977 	int p_buf_len)
978 {
979 	unsigned char buf[VPD_TMP_BUF_SIZE];
980 	int ret = 0;
981 	int len;
982 
983 	memset(buf, 0, VPD_TMP_BUF_SIZE);
984 	len = sprintf(buf, "T10 VPD Identifier Type: ");
985 
986 	switch (vpd->device_identifier_type) {
987 	case 0x00:
988 		sprintf(buf+len, "Vendor specific\n");
989 		break;
990 	case 0x01:
991 		sprintf(buf+len, "T10 Vendor ID based\n");
992 		break;
993 	case 0x02:
994 		sprintf(buf+len, "EUI-64 based\n");
995 		break;
996 	case 0x03:
997 		sprintf(buf+len, "NAA\n");
998 		break;
999 	case 0x04:
1000 		sprintf(buf+len, "Relative target port identifier\n");
1001 		break;
1002 	case 0x08:
1003 		sprintf(buf+len, "SCSI name string\n");
1004 		break;
1005 	default:
1006 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1007 				vpd->device_identifier_type);
1008 		ret = -EINVAL;
1009 		break;
1010 	}
1011 
1012 	if (p_buf) {
1013 		if (p_buf_len < strlen(buf)+1)
1014 			return -EINVAL;
1015 		strncpy(p_buf, buf, p_buf_len);
1016 	} else {
1017 		pr_debug("%s", buf);
1018 	}
1019 
1020 	return ret;
1021 }
1022 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1023 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1024 {
1025 	/*
1026 	 * The VPD identifier type..
1027 	 *
1028 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1029 	 */
1030 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1031 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1032 }
1033 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1034 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1035 int transport_dump_vpd_ident(
1036 	struct t10_vpd *vpd,
1037 	unsigned char *p_buf,
1038 	int p_buf_len)
1039 {
1040 	unsigned char buf[VPD_TMP_BUF_SIZE];
1041 	int ret = 0;
1042 
1043 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1044 
1045 	switch (vpd->device_identifier_code_set) {
1046 	case 0x01: /* Binary */
1047 		snprintf(buf, sizeof(buf),
1048 			"T10 VPD Binary Device Identifier: %s\n",
1049 			&vpd->device_identifier[0]);
1050 		break;
1051 	case 0x02: /* ASCII */
1052 		snprintf(buf, sizeof(buf),
1053 			"T10 VPD ASCII Device Identifier: %s\n",
1054 			&vpd->device_identifier[0]);
1055 		break;
1056 	case 0x03: /* UTF-8 */
1057 		snprintf(buf, sizeof(buf),
1058 			"T10 VPD UTF-8 Device Identifier: %s\n",
1059 			&vpd->device_identifier[0]);
1060 		break;
1061 	default:
1062 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1063 			" 0x%02x", vpd->device_identifier_code_set);
1064 		ret = -EINVAL;
1065 		break;
1066 	}
1067 
1068 	if (p_buf)
1069 		strncpy(p_buf, buf, p_buf_len);
1070 	else
1071 		pr_debug("%s", buf);
1072 
1073 	return ret;
1074 }
1075 
1076 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1077 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1078 {
1079 	static const char hex_str[] = "0123456789abcdef";
1080 	int j = 0, i = 4; /* offset to start of the identifier */
1081 
1082 	/*
1083 	 * The VPD Code Set (encoding)
1084 	 *
1085 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1086 	 */
1087 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1088 	switch (vpd->device_identifier_code_set) {
1089 	case 0x01: /* Binary */
1090 		vpd->device_identifier[j++] =
1091 				hex_str[vpd->device_identifier_type];
1092 		while (i < (4 + page_83[3])) {
1093 			vpd->device_identifier[j++] =
1094 				hex_str[(page_83[i] & 0xf0) >> 4];
1095 			vpd->device_identifier[j++] =
1096 				hex_str[page_83[i] & 0x0f];
1097 			i++;
1098 		}
1099 		break;
1100 	case 0x02: /* ASCII */
1101 	case 0x03: /* UTF-8 */
1102 		while (i < (4 + page_83[3]))
1103 			vpd->device_identifier[j++] = page_83[i++];
1104 		break;
1105 	default:
1106 		break;
1107 	}
1108 
1109 	return transport_dump_vpd_ident(vpd, NULL, 0);
1110 }
1111 EXPORT_SYMBOL(transport_set_vpd_ident);
1112 
1113 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1114 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1115 			       unsigned int size)
1116 {
1117 	u32 mtl;
1118 
1119 	if (!cmd->se_tfo->max_data_sg_nents)
1120 		return TCM_NO_SENSE;
1121 	/*
1122 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1123 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1124 	 * residual_count and reduce original cmd->data_length to maximum
1125 	 * length based on single PAGE_SIZE entry scatter-lists.
1126 	 */
1127 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1128 	if (cmd->data_length > mtl) {
1129 		/*
1130 		 * If an existing CDB overflow is present, calculate new residual
1131 		 * based on CDB size minus fabric maximum transfer length.
1132 		 *
1133 		 * If an existing CDB underflow is present, calculate new residual
1134 		 * based on original cmd->data_length minus fabric maximum transfer
1135 		 * length.
1136 		 *
1137 		 * Otherwise, set the underflow residual based on cmd->data_length
1138 		 * minus fabric maximum transfer length.
1139 		 */
1140 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1141 			cmd->residual_count = (size - mtl);
1142 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1143 			u32 orig_dl = size + cmd->residual_count;
1144 			cmd->residual_count = (orig_dl - mtl);
1145 		} else {
1146 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1147 			cmd->residual_count = (cmd->data_length - mtl);
1148 		}
1149 		cmd->data_length = mtl;
1150 		/*
1151 		 * Reset sbc_check_prot() calculated protection payload
1152 		 * length based upon the new smaller MTL.
1153 		 */
1154 		if (cmd->prot_length) {
1155 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1156 			cmd->prot_length = dev->prot_length * sectors;
1157 		}
1158 	}
1159 	return TCM_NO_SENSE;
1160 }
1161 
1162 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1163 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1164 {
1165 	struct se_device *dev = cmd->se_dev;
1166 
1167 	if (cmd->unknown_data_length) {
1168 		cmd->data_length = size;
1169 	} else if (size != cmd->data_length) {
1170 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1171 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1172 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1173 				cmd->data_length, size, cmd->t_task_cdb[0]);
1174 
1175 		if (cmd->data_direction == DMA_TO_DEVICE) {
1176 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1177 				pr_err_ratelimited("Rejecting underflow/overflow"
1178 						   " for WRITE data CDB\n");
1179 				return TCM_INVALID_CDB_FIELD;
1180 			}
1181 			/*
1182 			 * Some fabric drivers like iscsi-target still expect to
1183 			 * always reject overflow writes.  Reject this case until
1184 			 * full fabric driver level support for overflow writes
1185 			 * is introduced tree-wide.
1186 			 */
1187 			if (size > cmd->data_length) {
1188 				pr_err_ratelimited("Rejecting overflow for"
1189 						   " WRITE control CDB\n");
1190 				return TCM_INVALID_CDB_FIELD;
1191 			}
1192 		}
1193 		/*
1194 		 * Reject READ_* or WRITE_* with overflow/underflow for
1195 		 * type SCF_SCSI_DATA_CDB.
1196 		 */
1197 		if (dev->dev_attrib.block_size != 512)  {
1198 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1199 				" CDB on non 512-byte sector setup subsystem"
1200 				" plugin: %s\n", dev->transport->name);
1201 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1202 			return TCM_INVALID_CDB_FIELD;
1203 		}
1204 		/*
1205 		 * For the overflow case keep the existing fabric provided
1206 		 * ->data_length.  Otherwise for the underflow case, reset
1207 		 * ->data_length to the smaller SCSI expected data transfer
1208 		 * length.
1209 		 */
1210 		if (size > cmd->data_length) {
1211 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1212 			cmd->residual_count = (size - cmd->data_length);
1213 		} else {
1214 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1215 			cmd->residual_count = (cmd->data_length - size);
1216 			cmd->data_length = size;
1217 		}
1218 	}
1219 
1220 	return target_check_max_data_sg_nents(cmd, dev, size);
1221 
1222 }
1223 
1224 /*
1225  * Used by fabric modules containing a local struct se_cmd within their
1226  * fabric dependent per I/O descriptor.
1227  *
1228  * Preserves the value of @cmd->tag.
1229  */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1230 void transport_init_se_cmd(
1231 	struct se_cmd *cmd,
1232 	const struct target_core_fabric_ops *tfo,
1233 	struct se_session *se_sess,
1234 	u32 data_length,
1235 	int data_direction,
1236 	int task_attr,
1237 	unsigned char *sense_buffer)
1238 {
1239 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1240 	INIT_LIST_HEAD(&cmd->se_qf_node);
1241 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1242 	INIT_LIST_HEAD(&cmd->state_list);
1243 	init_completion(&cmd->t_transport_stop_comp);
1244 	init_completion(&cmd->cmd_wait_comp);
1245 	init_completion(&cmd->task_stop_comp);
1246 	spin_lock_init(&cmd->t_state_lock);
1247 	kref_init(&cmd->cmd_kref);
1248 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1249 
1250 	cmd->se_tfo = tfo;
1251 	cmd->se_sess = se_sess;
1252 	cmd->data_length = data_length;
1253 	cmd->data_direction = data_direction;
1254 	cmd->sam_task_attr = task_attr;
1255 	cmd->sense_buffer = sense_buffer;
1256 
1257 	cmd->state_active = false;
1258 }
1259 EXPORT_SYMBOL(transport_init_se_cmd);
1260 
1261 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1262 transport_check_alloc_task_attr(struct se_cmd *cmd)
1263 {
1264 	struct se_device *dev = cmd->se_dev;
1265 
1266 	/*
1267 	 * Check if SAM Task Attribute emulation is enabled for this
1268 	 * struct se_device storage object
1269 	 */
1270 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1271 		return 0;
1272 
1273 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1274 		pr_debug("SAM Task Attribute ACA"
1275 			" emulation is not supported\n");
1276 		return TCM_INVALID_CDB_FIELD;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1283 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1284 {
1285 	struct se_device *dev = cmd->se_dev;
1286 	sense_reason_t ret;
1287 
1288 	/*
1289 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1290 	 * for VARIABLE_LENGTH_CMD
1291 	 */
1292 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1293 		pr_err("Received SCSI CDB with command_size: %d that"
1294 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1295 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1296 		return TCM_INVALID_CDB_FIELD;
1297 	}
1298 	/*
1299 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1300 	 * allocate the additional extended CDB buffer now..  Otherwise
1301 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1302 	 */
1303 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1304 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1305 						GFP_KERNEL);
1306 		if (!cmd->t_task_cdb) {
1307 			pr_err("Unable to allocate cmd->t_task_cdb"
1308 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1309 				scsi_command_size(cdb),
1310 				(unsigned long)sizeof(cmd->__t_task_cdb));
1311 			return TCM_OUT_OF_RESOURCES;
1312 		}
1313 	} else
1314 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1315 	/*
1316 	 * Copy the original CDB into cmd->
1317 	 */
1318 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1319 
1320 	trace_target_sequencer_start(cmd);
1321 
1322 	ret = dev->transport->parse_cdb(cmd);
1323 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1324 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1325 				    cmd->se_tfo->get_fabric_name(),
1326 				    cmd->se_sess->se_node_acl->initiatorname,
1327 				    cmd->t_task_cdb[0]);
1328 	if (ret)
1329 		return ret;
1330 
1331 	ret = transport_check_alloc_task_attr(cmd);
1332 	if (ret)
1333 		return ret;
1334 
1335 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1336 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1337 	return 0;
1338 }
1339 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1340 
1341 /*
1342  * Used by fabric module frontends to queue tasks directly.
1343  * Many only be used from process context only
1344  */
transport_handle_cdb_direct(struct se_cmd * cmd)1345 int transport_handle_cdb_direct(
1346 	struct se_cmd *cmd)
1347 {
1348 	sense_reason_t ret;
1349 
1350 	if (!cmd->se_lun) {
1351 		dump_stack();
1352 		pr_err("cmd->se_lun is NULL\n");
1353 		return -EINVAL;
1354 	}
1355 	if (in_interrupt()) {
1356 		dump_stack();
1357 		pr_err("transport_generic_handle_cdb cannot be called"
1358 				" from interrupt context\n");
1359 		return -EINVAL;
1360 	}
1361 	/*
1362 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1363 	 * outstanding descriptors are handled correctly during shutdown via
1364 	 * transport_wait_for_tasks()
1365 	 *
1366 	 * Also, we don't take cmd->t_state_lock here as we only expect
1367 	 * this to be called for initial descriptor submission.
1368 	 */
1369 	cmd->t_state = TRANSPORT_NEW_CMD;
1370 	cmd->transport_state |= CMD_T_ACTIVE;
1371 
1372 	/*
1373 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1374 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1375 	 * and call transport_generic_request_failure() if necessary..
1376 	 */
1377 	ret = transport_generic_new_cmd(cmd);
1378 	if (ret)
1379 		transport_generic_request_failure(cmd, ret);
1380 	return 0;
1381 }
1382 EXPORT_SYMBOL(transport_handle_cdb_direct);
1383 
1384 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1385 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1386 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1387 {
1388 	if (!sgl || !sgl_count)
1389 		return 0;
1390 
1391 	/*
1392 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1393 	 * scatterlists already have been set to follow what the fabric
1394 	 * passes for the original expected data transfer length.
1395 	 */
1396 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1397 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1398 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1399 		return TCM_INVALID_CDB_FIELD;
1400 	}
1401 
1402 	cmd->t_data_sg = sgl;
1403 	cmd->t_data_nents = sgl_count;
1404 	cmd->t_bidi_data_sg = sgl_bidi;
1405 	cmd->t_bidi_data_nents = sgl_bidi_count;
1406 
1407 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1408 	return 0;
1409 }
1410 
1411 /*
1412  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1413  * 			 se_cmd + use pre-allocated SGL memory.
1414  *
1415  * @se_cmd: command descriptor to submit
1416  * @se_sess: associated se_sess for endpoint
1417  * @cdb: pointer to SCSI CDB
1418  * @sense: pointer to SCSI sense buffer
1419  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1420  * @data_length: fabric expected data transfer length
1421  * @task_addr: SAM task attribute
1422  * @data_dir: DMA data direction
1423  * @flags: flags for command submission from target_sc_flags_tables
1424  * @sgl: struct scatterlist memory for unidirectional mapping
1425  * @sgl_count: scatterlist count for unidirectional mapping
1426  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1427  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1428  * @sgl_prot: struct scatterlist memory protection information
1429  * @sgl_prot_count: scatterlist count for protection information
1430  *
1431  * Task tags are supported if the caller has set @se_cmd->tag.
1432  *
1433  * Returns non zero to signal active I/O shutdown failure.  All other
1434  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1435  * but still return zero here.
1436  *
1437  * This may only be called from process context, and also currently
1438  * assumes internal allocation of fabric payload buffer by target-core.
1439  */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1440 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1441 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1442 		u32 data_length, int task_attr, int data_dir, int flags,
1443 		struct scatterlist *sgl, u32 sgl_count,
1444 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1445 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1446 {
1447 	struct se_portal_group *se_tpg;
1448 	sense_reason_t rc;
1449 	int ret;
1450 
1451 	se_tpg = se_sess->se_tpg;
1452 	BUG_ON(!se_tpg);
1453 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1454 	BUG_ON(in_interrupt());
1455 	/*
1456 	 * Initialize se_cmd for target operation.  From this point
1457 	 * exceptions are handled by sending exception status via
1458 	 * target_core_fabric_ops->queue_status() callback
1459 	 */
1460 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1461 				data_length, data_dir, task_attr, sense);
1462 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1463 		se_cmd->unknown_data_length = 1;
1464 	/*
1465 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1466 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1467 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1468 	 * kref_put() to happen during fabric packet acknowledgement.
1469 	 */
1470 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1471 	if (ret)
1472 		return ret;
1473 	/*
1474 	 * Signal bidirectional data payloads to target-core
1475 	 */
1476 	if (flags & TARGET_SCF_BIDI_OP)
1477 		se_cmd->se_cmd_flags |= SCF_BIDI;
1478 	/*
1479 	 * Locate se_lun pointer and attach it to struct se_cmd
1480 	 */
1481 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1482 	if (rc) {
1483 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1484 		target_put_sess_cmd(se_cmd);
1485 		return 0;
1486 	}
1487 
1488 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1489 	if (rc != 0) {
1490 		transport_generic_request_failure(se_cmd, rc);
1491 		return 0;
1492 	}
1493 
1494 	/*
1495 	 * Save pointers for SGLs containing protection information,
1496 	 * if present.
1497 	 */
1498 	if (sgl_prot_count) {
1499 		se_cmd->t_prot_sg = sgl_prot;
1500 		se_cmd->t_prot_nents = sgl_prot_count;
1501 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1502 	}
1503 
1504 	/*
1505 	 * When a non zero sgl_count has been passed perform SGL passthrough
1506 	 * mapping for pre-allocated fabric memory instead of having target
1507 	 * core perform an internal SGL allocation..
1508 	 */
1509 	if (sgl_count != 0) {
1510 		BUG_ON(!sgl);
1511 
1512 		/*
1513 		 * A work-around for tcm_loop as some userspace code via
1514 		 * scsi-generic do not memset their associated read buffers,
1515 		 * so go ahead and do that here for type non-data CDBs.  Also
1516 		 * note that this is currently guaranteed to be a single SGL
1517 		 * for this case by target core in target_setup_cmd_from_cdb()
1518 		 * -> transport_generic_cmd_sequencer().
1519 		 */
1520 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1521 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1522 			unsigned char *buf = NULL;
1523 
1524 			if (sgl)
1525 				buf = kmap(sg_page(sgl)) + sgl->offset;
1526 
1527 			if (buf) {
1528 				memset(buf, 0, sgl->length);
1529 				kunmap(sg_page(sgl));
1530 			}
1531 		}
1532 
1533 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1534 				sgl_bidi, sgl_bidi_count);
1535 		if (rc != 0) {
1536 			transport_generic_request_failure(se_cmd, rc);
1537 			return 0;
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * Check if we need to delay processing because of ALUA
1543 	 * Active/NonOptimized primary access state..
1544 	 */
1545 	core_alua_check_nonop_delay(se_cmd);
1546 
1547 	transport_handle_cdb_direct(se_cmd);
1548 	return 0;
1549 }
1550 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1551 
1552 /*
1553  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1554  *
1555  * @se_cmd: command descriptor to submit
1556  * @se_sess: associated se_sess for endpoint
1557  * @cdb: pointer to SCSI CDB
1558  * @sense: pointer to SCSI sense buffer
1559  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1560  * @data_length: fabric expected data transfer length
1561  * @task_addr: SAM task attribute
1562  * @data_dir: DMA data direction
1563  * @flags: flags for command submission from target_sc_flags_tables
1564  *
1565  * Task tags are supported if the caller has set @se_cmd->tag.
1566  *
1567  * Returns non zero to signal active I/O shutdown failure.  All other
1568  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1569  * but still return zero here.
1570  *
1571  * This may only be called from process context, and also currently
1572  * assumes internal allocation of fabric payload buffer by target-core.
1573  *
1574  * It also assumes interal target core SGL memory allocation.
1575  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1576 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1577 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1578 		u32 data_length, int task_attr, int data_dir, int flags)
1579 {
1580 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1581 			unpacked_lun, data_length, task_attr, data_dir,
1582 			flags, NULL, 0, NULL, 0, NULL, 0);
1583 }
1584 EXPORT_SYMBOL(target_submit_cmd);
1585 
target_complete_tmr_failure(struct work_struct * work)1586 static void target_complete_tmr_failure(struct work_struct *work)
1587 {
1588 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1589 
1590 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1591 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1592 
1593 	transport_cmd_check_stop_to_fabric(se_cmd);
1594 }
1595 
1596 /**
1597  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1598  *                     for TMR CDBs
1599  *
1600  * @se_cmd: command descriptor to submit
1601  * @se_sess: associated se_sess for endpoint
1602  * @sense: pointer to SCSI sense buffer
1603  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1604  * @fabric_context: fabric context for TMR req
1605  * @tm_type: Type of TM request
1606  * @gfp: gfp type for caller
1607  * @tag: referenced task tag for TMR_ABORT_TASK
1608  * @flags: submit cmd flags
1609  *
1610  * Callable from all contexts.
1611  **/
1612 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1613 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1614 		unsigned char *sense, u64 unpacked_lun,
1615 		void *fabric_tmr_ptr, unsigned char tm_type,
1616 		gfp_t gfp, unsigned int tag, int flags)
1617 {
1618 	struct se_portal_group *se_tpg;
1619 	int ret;
1620 
1621 	se_tpg = se_sess->se_tpg;
1622 	BUG_ON(!se_tpg);
1623 
1624 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1625 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1626 	/*
1627 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1628 	 * allocation failure.
1629 	 */
1630 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1631 	if (ret < 0)
1632 		return -ENOMEM;
1633 
1634 	if (tm_type == TMR_ABORT_TASK)
1635 		se_cmd->se_tmr_req->ref_task_tag = tag;
1636 
1637 	/* See target_submit_cmd for commentary */
1638 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1639 	if (ret) {
1640 		core_tmr_release_req(se_cmd->se_tmr_req);
1641 		return ret;
1642 	}
1643 
1644 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1645 	if (ret) {
1646 		/*
1647 		 * For callback during failure handling, push this work off
1648 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1649 		 */
1650 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1651 		schedule_work(&se_cmd->work);
1652 		return 0;
1653 	}
1654 	transport_generic_handle_tmr(se_cmd);
1655 	return 0;
1656 }
1657 EXPORT_SYMBOL(target_submit_tmr);
1658 
1659 /*
1660  * If the cmd is active, request it to be stopped and sleep until it
1661  * has completed.
1662  */
target_stop_cmd(struct se_cmd * cmd,unsigned long * flags)1663 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1664 	__releases(&cmd->t_state_lock)
1665 	__acquires(&cmd->t_state_lock)
1666 {
1667 	bool was_active = false;
1668 
1669 	if (cmd->transport_state & CMD_T_BUSY) {
1670 		cmd->transport_state |= CMD_T_REQUEST_STOP;
1671 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1672 
1673 		pr_debug("cmd %p waiting to complete\n", cmd);
1674 		wait_for_completion(&cmd->task_stop_comp);
1675 		pr_debug("cmd %p stopped successfully\n", cmd);
1676 
1677 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1678 		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1679 		cmd->transport_state &= ~CMD_T_BUSY;
1680 		was_active = true;
1681 	}
1682 
1683 	return was_active;
1684 }
1685 
1686 /*
1687  * Handle SAM-esque emulation for generic transport request failures.
1688  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1689 void transport_generic_request_failure(struct se_cmd *cmd,
1690 		sense_reason_t sense_reason)
1691 {
1692 	int ret = 0, post_ret = 0;
1693 
1694 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1695 		" CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1696 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1697 		cmd->se_tfo->get_cmd_state(cmd),
1698 		cmd->t_state, sense_reason);
1699 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1700 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1701 		(cmd->transport_state & CMD_T_STOP) != 0,
1702 		(cmd->transport_state & CMD_T_SENT) != 0);
1703 
1704 	/*
1705 	 * For SAM Task Attribute emulation for failed struct se_cmd
1706 	 */
1707 	transport_complete_task_attr(cmd);
1708 	/*
1709 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1710 	 * callback is expected to drop the per device ->caw_sem.
1711 	 */
1712 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1713 	     cmd->transport_complete_callback)
1714 		cmd->transport_complete_callback(cmd, false, &post_ret);
1715 
1716 	switch (sense_reason) {
1717 	case TCM_NON_EXISTENT_LUN:
1718 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1719 	case TCM_INVALID_CDB_FIELD:
1720 	case TCM_INVALID_PARAMETER_LIST:
1721 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1722 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1723 	case TCM_UNKNOWN_MODE_PAGE:
1724 	case TCM_WRITE_PROTECTED:
1725 	case TCM_ADDRESS_OUT_OF_RANGE:
1726 	case TCM_CHECK_CONDITION_ABORT_CMD:
1727 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1728 	case TCM_CHECK_CONDITION_NOT_READY:
1729 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1730 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1731 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1732 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1733 	case TCM_TOO_MANY_TARGET_DESCS:
1734 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1735 	case TCM_TOO_MANY_SEGMENT_DESCS:
1736 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1737 		break;
1738 	case TCM_OUT_OF_RESOURCES:
1739 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1740 		break;
1741 	case TCM_RESERVATION_CONFLICT:
1742 		/*
1743 		 * No SENSE Data payload for this case, set SCSI Status
1744 		 * and queue the response to $FABRIC_MOD.
1745 		 *
1746 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1747 		 */
1748 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1749 		/*
1750 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1751 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1752 		 * CONFLICT STATUS.
1753 		 *
1754 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1755 		 */
1756 		if (cmd->se_sess &&
1757 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1758 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1759 					       cmd->orig_fe_lun, 0x2C,
1760 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1761 		}
1762 		trace_target_cmd_complete(cmd);
1763 		ret = cmd->se_tfo->queue_status(cmd);
1764 		if (ret == -EAGAIN || ret == -ENOMEM)
1765 			goto queue_full;
1766 		goto check_stop;
1767 	default:
1768 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1769 			cmd->t_task_cdb[0], sense_reason);
1770 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1771 		break;
1772 	}
1773 
1774 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1775 	if (ret == -EAGAIN || ret == -ENOMEM)
1776 		goto queue_full;
1777 
1778 check_stop:
1779 	transport_lun_remove_cmd(cmd);
1780 	transport_cmd_check_stop_to_fabric(cmd);
1781 	return;
1782 
1783 queue_full:
1784 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1785 	transport_handle_queue_full(cmd, cmd->se_dev);
1786 }
1787 EXPORT_SYMBOL(transport_generic_request_failure);
1788 
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1789 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1790 {
1791 	sense_reason_t ret;
1792 
1793 	if (!cmd->execute_cmd) {
1794 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1795 		goto err;
1796 	}
1797 	if (do_checks) {
1798 		/*
1799 		 * Check for an existing UNIT ATTENTION condition after
1800 		 * target_handle_task_attr() has done SAM task attr
1801 		 * checking, and possibly have already defered execution
1802 		 * out to target_restart_delayed_cmds() context.
1803 		 */
1804 		ret = target_scsi3_ua_check(cmd);
1805 		if (ret)
1806 			goto err;
1807 
1808 		ret = target_alua_state_check(cmd);
1809 		if (ret)
1810 			goto err;
1811 
1812 		ret = target_check_reservation(cmd);
1813 		if (ret) {
1814 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1815 			goto err;
1816 		}
1817 	}
1818 
1819 	ret = cmd->execute_cmd(cmd);
1820 	if (!ret)
1821 		return;
1822 err:
1823 	spin_lock_irq(&cmd->t_state_lock);
1824 	cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1825 	spin_unlock_irq(&cmd->t_state_lock);
1826 
1827 	transport_generic_request_failure(cmd, ret);
1828 }
1829 
target_write_prot_action(struct se_cmd * cmd)1830 static int target_write_prot_action(struct se_cmd *cmd)
1831 {
1832 	u32 sectors;
1833 	/*
1834 	 * Perform WRITE_INSERT of PI using software emulation when backend
1835 	 * device has PI enabled, if the transport has not already generated
1836 	 * PI using hardware WRITE_INSERT offload.
1837 	 */
1838 	switch (cmd->prot_op) {
1839 	case TARGET_PROT_DOUT_INSERT:
1840 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1841 			sbc_dif_generate(cmd);
1842 		break;
1843 	case TARGET_PROT_DOUT_STRIP:
1844 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1845 			break;
1846 
1847 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1848 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1849 					     sectors, 0, cmd->t_prot_sg, 0);
1850 		if (unlikely(cmd->pi_err)) {
1851 			spin_lock_irq(&cmd->t_state_lock);
1852 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1853 			spin_unlock_irq(&cmd->t_state_lock);
1854 			transport_generic_request_failure(cmd, cmd->pi_err);
1855 			return -1;
1856 		}
1857 		break;
1858 	default:
1859 		break;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
target_handle_task_attr(struct se_cmd * cmd)1865 static bool target_handle_task_attr(struct se_cmd *cmd)
1866 {
1867 	struct se_device *dev = cmd->se_dev;
1868 
1869 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1870 		return false;
1871 
1872 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1873 
1874 	/*
1875 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1876 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1877 	 */
1878 	switch (cmd->sam_task_attr) {
1879 	case TCM_HEAD_TAG:
1880 		atomic_inc_mb(&dev->non_ordered);
1881 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1882 			 cmd->t_task_cdb[0]);
1883 		return false;
1884 	case TCM_ORDERED_TAG:
1885 		atomic_inc_mb(&dev->delayed_cmd_count);
1886 
1887 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1888 			 cmd->t_task_cdb[0]);
1889 		break;
1890 	default:
1891 		/*
1892 		 * For SIMPLE and UNTAGGED Task Attribute commands
1893 		 */
1894 		atomic_inc_mb(&dev->non_ordered);
1895 
1896 		if (atomic_read(&dev->delayed_cmd_count) == 0)
1897 			return false;
1898 		break;
1899 	}
1900 
1901 	if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
1902 		atomic_inc_mb(&dev->delayed_cmd_count);
1903 		/*
1904 		 * We will account for this when we dequeue from the delayed
1905 		 * list.
1906 		 */
1907 		atomic_dec_mb(&dev->non_ordered);
1908 	}
1909 
1910 	spin_lock(&dev->delayed_cmd_lock);
1911 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1912 	spin_unlock(&dev->delayed_cmd_lock);
1913 
1914 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1915 		cmd->t_task_cdb[0], cmd->sam_task_attr);
1916 	/*
1917 	 * We may have no non ordered cmds when this function started or we
1918 	 * could have raced with the last simple/head cmd completing, so kick
1919 	 * the delayed handler here.
1920 	 */
1921 	schedule_work(&dev->delayed_cmd_work);
1922 	return true;
1923 }
1924 
1925 static int __transport_check_aborted_status(struct se_cmd *, int);
1926 
target_execute_cmd(struct se_cmd * cmd)1927 void target_execute_cmd(struct se_cmd *cmd)
1928 {
1929 	/*
1930 	 * Determine if frontend context caller is requesting the stopping of
1931 	 * this command for frontend exceptions.
1932 	 *
1933 	 * If the received CDB has aleady been aborted stop processing it here.
1934 	 */
1935 	spin_lock_irq(&cmd->t_state_lock);
1936 	if (__transport_check_aborted_status(cmd, 1)) {
1937 		spin_unlock_irq(&cmd->t_state_lock);
1938 		return;
1939 	}
1940 	if (cmd->transport_state & CMD_T_STOP) {
1941 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1942 			__func__, __LINE__, cmd->tag);
1943 
1944 		spin_unlock_irq(&cmd->t_state_lock);
1945 		complete_all(&cmd->t_transport_stop_comp);
1946 		return;
1947 	}
1948 
1949 	cmd->t_state = TRANSPORT_PROCESSING;
1950 	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1951 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1952 	spin_unlock_irq(&cmd->t_state_lock);
1953 
1954 	if (target_write_prot_action(cmd))
1955 		return;
1956 
1957 	if (target_handle_task_attr(cmd)) {
1958 		spin_lock_irq(&cmd->t_state_lock);
1959 		cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1960 		spin_unlock_irq(&cmd->t_state_lock);
1961 		return;
1962 	}
1963 
1964 	__target_execute_cmd(cmd, true);
1965 }
1966 EXPORT_SYMBOL(target_execute_cmd);
1967 
1968 /*
1969  * Process all commands up to the last received ORDERED task attribute which
1970  * requires another blocking boundary
1971  */
target_do_delayed_work(struct work_struct * work)1972 void target_do_delayed_work(struct work_struct *work)
1973 {
1974 	struct se_device *dev = container_of(work, struct se_device,
1975 					     delayed_cmd_work);
1976 
1977 	spin_lock(&dev->delayed_cmd_lock);
1978 	while (!dev->ordered_sync_in_progress) {
1979 		struct se_cmd *cmd;
1980 
1981 		if (list_empty(&dev->delayed_cmd_list))
1982 			break;
1983 
1984 		cmd = list_entry(dev->delayed_cmd_list.next,
1985 				 struct se_cmd, se_delayed_node);
1986 
1987 		if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1988 			/*
1989 			 * Check if we started with:
1990 			 * [ordered] [simple] [ordered]
1991 			 * and we are now at the last ordered so we have to wait
1992 			 * for the simple cmd.
1993 			 */
1994 			if (atomic_read(&dev->non_ordered) > 0)
1995 				break;
1996 
1997 			dev->ordered_sync_in_progress = true;
1998 		}
1999 
2000 		list_del(&cmd->se_delayed_node);
2001 		atomic_dec_mb(&dev->delayed_cmd_count);
2002 		spin_unlock(&dev->delayed_cmd_lock);
2003 
2004 		if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2005 			atomic_inc_mb(&dev->non_ordered);
2006 
2007 		cmd->transport_state |= CMD_T_SENT;
2008 
2009 		__target_execute_cmd(cmd, true);
2010 
2011 		spin_lock(&dev->delayed_cmd_lock);
2012 	}
2013 	spin_unlock(&dev->delayed_cmd_lock);
2014 }
2015 
2016 /*
2017  * Called from I/O completion to determine which dormant/delayed
2018  * and ordered cmds need to have their tasks added to the execution queue.
2019  */
transport_complete_task_attr(struct se_cmd * cmd)2020 static void transport_complete_task_attr(struct se_cmd *cmd)
2021 {
2022 	struct se_device *dev = cmd->se_dev;
2023 
2024 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2025 		return;
2026 
2027 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2028 		goto restart;
2029 
2030 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2031 		atomic_dec_mb(&dev->non_ordered);
2032 		dev->dev_cur_ordered_id++;
2033 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
2034 			 dev->dev_cur_ordered_id);
2035 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2036 		atomic_dec_mb(&dev->non_ordered);
2037 		dev->dev_cur_ordered_id++;
2038 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2039 			 dev->dev_cur_ordered_id);
2040 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2041 		spin_lock(&dev->delayed_cmd_lock);
2042 		dev->ordered_sync_in_progress = false;
2043 		spin_unlock(&dev->delayed_cmd_lock);
2044 
2045 		dev->dev_cur_ordered_id++;
2046 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2047 			 dev->dev_cur_ordered_id);
2048 	}
2049 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2050 
2051 restart:
2052 	if (atomic_read(&dev->delayed_cmd_count) > 0)
2053 		schedule_work(&dev->delayed_cmd_work);
2054 }
2055 
transport_complete_qf(struct se_cmd * cmd)2056 static void transport_complete_qf(struct se_cmd *cmd)
2057 {
2058 	int ret = 0;
2059 
2060 	transport_complete_task_attr(cmd);
2061 
2062 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2063 		trace_target_cmd_complete(cmd);
2064 		ret = cmd->se_tfo->queue_status(cmd);
2065 		goto out;
2066 	}
2067 
2068 	switch (cmd->data_direction) {
2069 	case DMA_FROM_DEVICE:
2070 		trace_target_cmd_complete(cmd);
2071 		ret = cmd->se_tfo->queue_data_in(cmd);
2072 		break;
2073 	case DMA_TO_DEVICE:
2074 		if (cmd->se_cmd_flags & SCF_BIDI) {
2075 			ret = cmd->se_tfo->queue_data_in(cmd);
2076 			break;
2077 		}
2078 		/* Fall through for DMA_TO_DEVICE */
2079 	case DMA_NONE:
2080 		trace_target_cmd_complete(cmd);
2081 		ret = cmd->se_tfo->queue_status(cmd);
2082 		break;
2083 	default:
2084 		break;
2085 	}
2086 
2087 out:
2088 	if (ret < 0) {
2089 		transport_handle_queue_full(cmd, cmd->se_dev);
2090 		return;
2091 	}
2092 	transport_lun_remove_cmd(cmd);
2093 	transport_cmd_check_stop_to_fabric(cmd);
2094 }
2095 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)2096 static void transport_handle_queue_full(
2097 	struct se_cmd *cmd,
2098 	struct se_device *dev)
2099 {
2100 	spin_lock_irq(&dev->qf_cmd_lock);
2101 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2102 	atomic_inc_mb(&dev->dev_qf_count);
2103 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2104 
2105 	schedule_work(&cmd->se_dev->qf_work_queue);
2106 }
2107 
target_read_prot_action(struct se_cmd * cmd)2108 static bool target_read_prot_action(struct se_cmd *cmd)
2109 {
2110 	switch (cmd->prot_op) {
2111 	case TARGET_PROT_DIN_STRIP:
2112 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2113 			u32 sectors = cmd->data_length >>
2114 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2115 
2116 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2117 						     sectors, 0, cmd->t_prot_sg,
2118 						     0);
2119 			if (cmd->pi_err)
2120 				return true;
2121 		}
2122 		break;
2123 	case TARGET_PROT_DIN_INSERT:
2124 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2125 			break;
2126 
2127 		sbc_dif_generate(cmd);
2128 		break;
2129 	default:
2130 		break;
2131 	}
2132 
2133 	return false;
2134 }
2135 
target_complete_ok_work(struct work_struct * work)2136 static void target_complete_ok_work(struct work_struct *work)
2137 {
2138 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2139 	int ret;
2140 
2141 	/*
2142 	 * Check if we need to move delayed/dormant tasks from cmds on the
2143 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2144 	 * Attribute.
2145 	 */
2146 	transport_complete_task_attr(cmd);
2147 
2148 	/*
2149 	 * Check to schedule QUEUE_FULL work, or execute an existing
2150 	 * cmd->transport_qf_callback()
2151 	 */
2152 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2153 		schedule_work(&cmd->se_dev->qf_work_queue);
2154 
2155 	/*
2156 	 * Check if we need to send a sense buffer from
2157 	 * the struct se_cmd in question.
2158 	 */
2159 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2160 		WARN_ON(!cmd->scsi_status);
2161 		ret = transport_send_check_condition_and_sense(
2162 					cmd, 0, 1);
2163 		if (ret == -EAGAIN || ret == -ENOMEM)
2164 			goto queue_full;
2165 
2166 		transport_lun_remove_cmd(cmd);
2167 		transport_cmd_check_stop_to_fabric(cmd);
2168 		return;
2169 	}
2170 	/*
2171 	 * Check for a callback, used by amongst other things
2172 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2173 	 */
2174 	if (cmd->transport_complete_callback) {
2175 		sense_reason_t rc;
2176 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2177 		bool zero_dl = !(cmd->data_length);
2178 		int post_ret = 0;
2179 
2180 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2181 		if (!rc && !post_ret) {
2182 			if (caw && zero_dl)
2183 				goto queue_rsp;
2184 
2185 			return;
2186 		} else if (rc) {
2187 			ret = transport_send_check_condition_and_sense(cmd,
2188 						rc, 0);
2189 			if (ret == -EAGAIN || ret == -ENOMEM)
2190 				goto queue_full;
2191 
2192 			transport_lun_remove_cmd(cmd);
2193 			transport_cmd_check_stop_to_fabric(cmd);
2194 			return;
2195 		}
2196 	}
2197 
2198 queue_rsp:
2199 	switch (cmd->data_direction) {
2200 	case DMA_FROM_DEVICE:
2201 		atomic_long_add(cmd->data_length,
2202 				&cmd->se_lun->lun_stats.tx_data_octets);
2203 		/*
2204 		 * Perform READ_STRIP of PI using software emulation when
2205 		 * backend had PI enabled, if the transport will not be
2206 		 * performing hardware READ_STRIP offload.
2207 		 */
2208 		if (target_read_prot_action(cmd)) {
2209 			ret = transport_send_check_condition_and_sense(cmd,
2210 						cmd->pi_err, 0);
2211 			if (ret == -EAGAIN || ret == -ENOMEM)
2212 				goto queue_full;
2213 
2214 			transport_lun_remove_cmd(cmd);
2215 			transport_cmd_check_stop_to_fabric(cmd);
2216 			return;
2217 		}
2218 
2219 		trace_target_cmd_complete(cmd);
2220 		ret = cmd->se_tfo->queue_data_in(cmd);
2221 		if (ret == -EAGAIN || ret == -ENOMEM)
2222 			goto queue_full;
2223 		break;
2224 	case DMA_TO_DEVICE:
2225 		atomic_long_add(cmd->data_length,
2226 				&cmd->se_lun->lun_stats.rx_data_octets);
2227 		/*
2228 		 * Check if we need to send READ payload for BIDI-COMMAND
2229 		 */
2230 		if (cmd->se_cmd_flags & SCF_BIDI) {
2231 			atomic_long_add(cmd->data_length,
2232 					&cmd->se_lun->lun_stats.tx_data_octets);
2233 			ret = cmd->se_tfo->queue_data_in(cmd);
2234 			if (ret == -EAGAIN || ret == -ENOMEM)
2235 				goto queue_full;
2236 			break;
2237 		}
2238 		/* Fall through for DMA_TO_DEVICE */
2239 	case DMA_NONE:
2240 		trace_target_cmd_complete(cmd);
2241 		ret = cmd->se_tfo->queue_status(cmd);
2242 		if (ret == -EAGAIN || ret == -ENOMEM)
2243 			goto queue_full;
2244 		break;
2245 	default:
2246 		break;
2247 	}
2248 
2249 	transport_lun_remove_cmd(cmd);
2250 	transport_cmd_check_stop_to_fabric(cmd);
2251 	return;
2252 
2253 queue_full:
2254 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2255 		" data_direction: %d\n", cmd, cmd->data_direction);
2256 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2257 	transport_handle_queue_full(cmd, cmd->se_dev);
2258 }
2259 
transport_free_sgl(struct scatterlist * sgl,int nents)2260 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2261 {
2262 	struct scatterlist *sg;
2263 	int count;
2264 
2265 	for_each_sg(sgl, sg, nents, count)
2266 		__free_page(sg_page(sg));
2267 
2268 	kfree(sgl);
2269 }
2270 
transport_reset_sgl_orig(struct se_cmd * cmd)2271 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2272 {
2273 	/*
2274 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2275 	 * emulation, and free + reset pointers if necessary..
2276 	 */
2277 	if (!cmd->t_data_sg_orig)
2278 		return;
2279 
2280 	kfree(cmd->t_data_sg);
2281 	cmd->t_data_sg = cmd->t_data_sg_orig;
2282 	cmd->t_data_sg_orig = NULL;
2283 	cmd->t_data_nents = cmd->t_data_nents_orig;
2284 	cmd->t_data_nents_orig = 0;
2285 }
2286 
transport_free_pages(struct se_cmd * cmd)2287 static inline void transport_free_pages(struct se_cmd *cmd)
2288 {
2289 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2290 		transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2291 		cmd->t_prot_sg = NULL;
2292 		cmd->t_prot_nents = 0;
2293 	}
2294 
2295 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2296 		/*
2297 		 * Release special case READ buffer payload required for
2298 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2299 		 */
2300 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2301 			transport_free_sgl(cmd->t_bidi_data_sg,
2302 					   cmd->t_bidi_data_nents);
2303 			cmd->t_bidi_data_sg = NULL;
2304 			cmd->t_bidi_data_nents = 0;
2305 		}
2306 		transport_reset_sgl_orig(cmd);
2307 		return;
2308 	}
2309 	transport_reset_sgl_orig(cmd);
2310 
2311 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2312 	cmd->t_data_sg = NULL;
2313 	cmd->t_data_nents = 0;
2314 
2315 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2316 	cmd->t_bidi_data_sg = NULL;
2317 	cmd->t_bidi_data_nents = 0;
2318 }
2319 
2320 /**
2321  * transport_put_cmd - release a reference to a command
2322  * @cmd:       command to release
2323  *
2324  * This routine releases our reference to the command and frees it if possible.
2325  */
transport_put_cmd(struct se_cmd * cmd)2326 static int transport_put_cmd(struct se_cmd *cmd)
2327 {
2328 	BUG_ON(!cmd->se_tfo);
2329 	/*
2330 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2331 	 * the kref and call ->release_cmd() in kref callback.
2332 	 */
2333 	return target_put_sess_cmd(cmd);
2334 }
2335 
transport_kmap_data_sg(struct se_cmd * cmd)2336 void *transport_kmap_data_sg(struct se_cmd *cmd)
2337 {
2338 	struct scatterlist *sg = cmd->t_data_sg;
2339 	struct page **pages;
2340 	int i;
2341 
2342 	/*
2343 	 * We need to take into account a possible offset here for fabrics like
2344 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2345 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2346 	 */
2347 	if (!cmd->t_data_nents)
2348 		return NULL;
2349 
2350 	BUG_ON(!sg);
2351 	if (cmd->t_data_nents == 1)
2352 		return kmap(sg_page(sg)) + sg->offset;
2353 
2354 	/* >1 page. use vmap */
2355 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2356 	if (!pages)
2357 		return NULL;
2358 
2359 	/* convert sg[] to pages[] */
2360 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2361 		pages[i] = sg_page(sg);
2362 	}
2363 
2364 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2365 	kfree(pages);
2366 	if (!cmd->t_data_vmap)
2367 		return NULL;
2368 
2369 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2370 }
2371 EXPORT_SYMBOL(transport_kmap_data_sg);
2372 
transport_kunmap_data_sg(struct se_cmd * cmd)2373 void transport_kunmap_data_sg(struct se_cmd *cmd)
2374 {
2375 	if (!cmd->t_data_nents) {
2376 		return;
2377 	} else if (cmd->t_data_nents == 1) {
2378 		kunmap(sg_page(cmd->t_data_sg));
2379 		return;
2380 	}
2381 
2382 	vunmap(cmd->t_data_vmap);
2383 	cmd->t_data_vmap = NULL;
2384 }
2385 EXPORT_SYMBOL(transport_kunmap_data_sg);
2386 
2387 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page)2388 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2389 		 bool zero_page)
2390 {
2391 	struct scatterlist *sg;
2392 	struct page *page;
2393 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2394 	unsigned int nent;
2395 	int i = 0;
2396 
2397 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
2398 	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2399 	if (!sg)
2400 		return -ENOMEM;
2401 
2402 	sg_init_table(sg, nent);
2403 
2404 	while (length) {
2405 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2406 		page = alloc_page(GFP_KERNEL | zero_flag);
2407 		if (!page)
2408 			goto out;
2409 
2410 		sg_set_page(&sg[i], page, page_len, 0);
2411 		length -= page_len;
2412 		i++;
2413 	}
2414 	*sgl = sg;
2415 	*nents = nent;
2416 	return 0;
2417 
2418 out:
2419 	while (i > 0) {
2420 		i--;
2421 		__free_page(sg_page(&sg[i]));
2422 	}
2423 	kfree(sg);
2424 	return -ENOMEM;
2425 }
2426 
2427 /*
2428  * Allocate any required resources to execute the command.  For writes we
2429  * might not have the payload yet, so notify the fabric via a call to
2430  * ->write_pending instead. Otherwise place it on the execution queue.
2431  */
2432 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2433 transport_generic_new_cmd(struct se_cmd *cmd)
2434 {
2435 	int ret = 0;
2436 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2437 
2438 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2439 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2440 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2441 				       cmd->prot_length, true);
2442 		if (ret < 0)
2443 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2444 	}
2445 
2446 	/*
2447 	 * Determine is the TCM fabric module has already allocated physical
2448 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2449 	 * beforehand.
2450 	 */
2451 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2452 	    cmd->data_length) {
2453 
2454 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2455 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2456 			u32 bidi_length;
2457 
2458 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2459 				bidi_length = cmd->t_task_nolb *
2460 					      cmd->se_dev->dev_attrib.block_size;
2461 			else
2462 				bidi_length = cmd->data_length;
2463 
2464 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2465 					       &cmd->t_bidi_data_nents,
2466 					       bidi_length, zero_flag);
2467 			if (ret < 0)
2468 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2469 		}
2470 
2471 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2472 				       cmd->data_length, zero_flag);
2473 		if (ret < 0)
2474 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2475 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2476 		    cmd->data_length) {
2477 		/*
2478 		 * Special case for COMPARE_AND_WRITE with fabrics
2479 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2480 		 */
2481 		u32 caw_length = cmd->t_task_nolb *
2482 				 cmd->se_dev->dev_attrib.block_size;
2483 
2484 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2485 				       &cmd->t_bidi_data_nents,
2486 				       caw_length, zero_flag);
2487 		if (ret < 0)
2488 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2489 	}
2490 	/*
2491 	 * If this command is not a write we can execute it right here,
2492 	 * for write buffers we need to notify the fabric driver first
2493 	 * and let it call back once the write buffers are ready.
2494 	 */
2495 	target_add_to_state_list(cmd);
2496 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2497 		target_execute_cmd(cmd);
2498 		return 0;
2499 	}
2500 	transport_cmd_check_stop(cmd, false, true);
2501 
2502 	ret = cmd->se_tfo->write_pending(cmd);
2503 	if (ret == -EAGAIN || ret == -ENOMEM)
2504 		goto queue_full;
2505 
2506 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2507 	WARN_ON(ret);
2508 
2509 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2510 
2511 queue_full:
2512 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2513 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2514 	transport_handle_queue_full(cmd, cmd->se_dev);
2515 	return 0;
2516 }
2517 EXPORT_SYMBOL(transport_generic_new_cmd);
2518 
transport_write_pending_qf(struct se_cmd * cmd)2519 static void transport_write_pending_qf(struct se_cmd *cmd)
2520 {
2521 	int ret;
2522 
2523 	ret = cmd->se_tfo->write_pending(cmd);
2524 	if (ret == -EAGAIN || ret == -ENOMEM) {
2525 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2526 			 cmd);
2527 		transport_handle_queue_full(cmd, cmd->se_dev);
2528 	}
2529 }
2530 
2531 static bool
2532 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2533 			   unsigned long *flags);
2534 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2535 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2536 {
2537 	unsigned long flags;
2538 
2539 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2540 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2541 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2542 }
2543 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2544 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2545 {
2546 	int ret = 0;
2547 	bool aborted = false, tas = false;
2548 
2549 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2550 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2551 			target_wait_free_cmd(cmd, &aborted, &tas);
2552 
2553 		if (!aborted || tas)
2554 			ret = transport_put_cmd(cmd);
2555 	} else {
2556 		if (wait_for_tasks)
2557 			target_wait_free_cmd(cmd, &aborted, &tas);
2558 		/*
2559 		 * Handle WRITE failure case where transport_generic_new_cmd()
2560 		 * has already added se_cmd to state_list, but fabric has
2561 		 * failed command before I/O submission.
2562 		 */
2563 		if (cmd->state_active)
2564 			target_remove_from_state_list(cmd);
2565 
2566 		if (cmd->se_lun)
2567 			transport_lun_remove_cmd(cmd);
2568 
2569 		if (!aborted || tas)
2570 			ret = transport_put_cmd(cmd);
2571 	}
2572 	/*
2573 	 * If the task has been internally aborted due to TMR ABORT_TASK
2574 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2575 	 * the remaining calls to target_put_sess_cmd(), and not the
2576 	 * callers of this function.
2577 	 */
2578 	if (aborted) {
2579 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2580 		wait_for_completion(&cmd->cmd_wait_comp);
2581 		cmd->se_tfo->release_cmd(cmd);
2582 		ret = 1;
2583 	}
2584 	return ret;
2585 }
2586 EXPORT_SYMBOL(transport_generic_free_cmd);
2587 
2588 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2589  * @se_cmd:	command descriptor to add
2590  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2591  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2592 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2593 {
2594 	struct se_session *se_sess = se_cmd->se_sess;
2595 	unsigned long flags;
2596 	int ret = 0;
2597 
2598 	/*
2599 	 * Add a second kref if the fabric caller is expecting to handle
2600 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2601 	 * invocations before se_cmd descriptor release.
2602 	 */
2603 	if (ack_kref) {
2604 		kref_get(&se_cmd->cmd_kref);
2605 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2606 	}
2607 
2608 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2609 	if (se_sess->sess_tearing_down) {
2610 		ret = -ESHUTDOWN;
2611 		goto out;
2612 	}
2613 	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2614 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2615 out:
2616 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2617 
2618 	if (ret && ack_kref)
2619 		target_put_sess_cmd(se_cmd);
2620 
2621 	return ret;
2622 }
2623 EXPORT_SYMBOL(target_get_sess_cmd);
2624 
target_free_cmd_mem(struct se_cmd * cmd)2625 static void target_free_cmd_mem(struct se_cmd *cmd)
2626 {
2627 	transport_free_pages(cmd);
2628 
2629 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2630 		core_tmr_release_req(cmd->se_tmr_req);
2631 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2632 		kfree(cmd->t_task_cdb);
2633 }
2634 
target_release_cmd_kref(struct kref * kref)2635 static void target_release_cmd_kref(struct kref *kref)
2636 {
2637 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2638 	struct se_session *se_sess = se_cmd->se_sess;
2639 	unsigned long flags;
2640 	bool fabric_stop;
2641 
2642 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2643 
2644 	spin_lock(&se_cmd->t_state_lock);
2645 	fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2646 		      (se_cmd->transport_state & CMD_T_ABORTED);
2647 	spin_unlock(&se_cmd->t_state_lock);
2648 
2649 	if (se_cmd->cmd_wait_set || fabric_stop) {
2650 		list_del_init(&se_cmd->se_cmd_list);
2651 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2652 		target_free_cmd_mem(se_cmd);
2653 		complete(&se_cmd->cmd_wait_comp);
2654 		return;
2655 	}
2656 	list_del_init(&se_cmd->se_cmd_list);
2657 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2658 
2659 	target_free_cmd_mem(se_cmd);
2660 	se_cmd->se_tfo->release_cmd(se_cmd);
2661 }
2662 
2663 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2664  * @se_cmd:	command descriptor to drop
2665  */
target_put_sess_cmd(struct se_cmd * se_cmd)2666 int target_put_sess_cmd(struct se_cmd *se_cmd)
2667 {
2668 	struct se_session *se_sess = se_cmd->se_sess;
2669 
2670 	if (!se_sess) {
2671 		target_free_cmd_mem(se_cmd);
2672 		se_cmd->se_tfo->release_cmd(se_cmd);
2673 		return 1;
2674 	}
2675 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2676 }
2677 EXPORT_SYMBOL(target_put_sess_cmd);
2678 
2679 /* target_sess_cmd_list_set_waiting - Flag all commands in
2680  *         sess_cmd_list to complete cmd_wait_comp.  Set
2681  *         sess_tearing_down so no more commands are queued.
2682  * @se_sess:	session to flag
2683  */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2684 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2685 {
2686 	struct se_cmd *se_cmd;
2687 	unsigned long flags;
2688 	int rc;
2689 
2690 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2691 	if (se_sess->sess_tearing_down) {
2692 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2693 		return;
2694 	}
2695 	se_sess->sess_tearing_down = 1;
2696 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2697 
2698 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2699 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2700 		if (rc) {
2701 			se_cmd->cmd_wait_set = 1;
2702 			spin_lock(&se_cmd->t_state_lock);
2703 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2704 			spin_unlock(&se_cmd->t_state_lock);
2705 		}
2706 	}
2707 
2708 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2709 }
2710 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2711 
2712 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2713  * @se_sess:    session to wait for active I/O
2714  */
target_wait_for_sess_cmds(struct se_session * se_sess)2715 void target_wait_for_sess_cmds(struct se_session *se_sess)
2716 {
2717 	struct se_cmd *se_cmd, *tmp_cmd;
2718 	unsigned long flags;
2719 	bool tas;
2720 
2721 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2722 				&se_sess->sess_wait_list, se_cmd_list) {
2723 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2724 			" %d\n", se_cmd, se_cmd->t_state,
2725 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2726 
2727 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2728 		tas = (se_cmd->transport_state & CMD_T_TAS);
2729 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2730 
2731 		if (!target_put_sess_cmd(se_cmd)) {
2732 			if (tas)
2733 				target_put_sess_cmd(se_cmd);
2734 		}
2735 
2736 		wait_for_completion(&se_cmd->cmd_wait_comp);
2737 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2738 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2739 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2740 
2741 		se_cmd->se_tfo->release_cmd(se_cmd);
2742 	}
2743 
2744 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2745 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2746 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2747 
2748 }
2749 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2750 
target_lun_confirm(struct percpu_ref * ref)2751 static void target_lun_confirm(struct percpu_ref *ref)
2752 {
2753 	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2754 
2755 	complete(&lun->lun_ref_comp);
2756 }
2757 
transport_clear_lun_ref(struct se_lun * lun)2758 void transport_clear_lun_ref(struct se_lun *lun)
2759 {
2760 	/*
2761 	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2762 	 * the initial reference and schedule confirm kill to be
2763 	 * executed after one full RCU grace period has completed.
2764 	 */
2765 	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2766 	/*
2767 	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2768 	 * to call target_lun_confirm after lun->lun_ref has been marked
2769 	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2770 	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2771 	 * fails for all new incoming I/O.
2772 	 */
2773 	wait_for_completion(&lun->lun_ref_comp);
2774 	/*
2775 	 * The second completion waits for percpu_ref_put_many() to
2776 	 * invoke ->release() after lun->lun_ref has switched to
2777 	 * atomic_t mode, and lun->lun_ref.count has reached zero.
2778 	 *
2779 	 * At this point all target-core lun->lun_ref references have
2780 	 * been dropped via transport_lun_remove_cmd(), and it's safe
2781 	 * to proceed with the remaining LUN shutdown.
2782 	 */
2783 	wait_for_completion(&lun->lun_shutdown_comp);
2784 }
2785 
2786 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2787 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2788 			   bool *aborted, bool *tas, unsigned long *flags)
2789 	__releases(&cmd->t_state_lock)
2790 	__acquires(&cmd->t_state_lock)
2791 {
2792 	lockdep_assert_held(&cmd->t_state_lock);
2793 
2794 	if (fabric_stop)
2795 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2796 
2797 	if (cmd->transport_state & CMD_T_ABORTED)
2798 		*aborted = true;
2799 
2800 	if (cmd->transport_state & CMD_T_TAS)
2801 		*tas = true;
2802 
2803 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2804 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2805 		return false;
2806 
2807 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2808 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2809 		return false;
2810 
2811 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2812 		return false;
2813 
2814 	if (fabric_stop && *aborted)
2815 		return false;
2816 
2817 	cmd->transport_state |= CMD_T_STOP;
2818 
2819 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2820 		 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2821 		 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2822 
2823 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2824 
2825 	wait_for_completion(&cmd->t_transport_stop_comp);
2826 
2827 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2828 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2829 
2830 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2831 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2832 
2833 	return true;
2834 }
2835 
2836 /**
2837  * transport_wait_for_tasks - wait for completion to occur
2838  * @cmd:	command to wait
2839  *
2840  * Called from frontend fabric context to wait for storage engine
2841  * to pause and/or release frontend generated struct se_cmd.
2842  */
transport_wait_for_tasks(struct se_cmd * cmd)2843 bool transport_wait_for_tasks(struct se_cmd *cmd)
2844 {
2845 	unsigned long flags;
2846 	bool ret, aborted = false, tas = false;
2847 
2848 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2849 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2850 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2851 
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL(transport_wait_for_tasks);
2855 
2856 struct sense_info {
2857 	u8 key;
2858 	u8 asc;
2859 	u8 ascq;
2860 	bool add_sector_info;
2861 };
2862 
2863 static const struct sense_info sense_info_table[] = {
2864 	[TCM_NO_SENSE] = {
2865 		.key = NOT_READY
2866 	},
2867 	[TCM_NON_EXISTENT_LUN] = {
2868 		.key = ILLEGAL_REQUEST,
2869 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2870 	},
2871 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
2872 		.key = ILLEGAL_REQUEST,
2873 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2874 	},
2875 	[TCM_SECTOR_COUNT_TOO_MANY] = {
2876 		.key = ILLEGAL_REQUEST,
2877 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2878 	},
2879 	[TCM_UNKNOWN_MODE_PAGE] = {
2880 		.key = ILLEGAL_REQUEST,
2881 		.asc = 0x24, /* INVALID FIELD IN CDB */
2882 	},
2883 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
2884 		.key = ABORTED_COMMAND,
2885 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2886 		.ascq = 0x03,
2887 	},
2888 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
2889 		.key = ABORTED_COMMAND,
2890 		.asc = 0x0c, /* WRITE ERROR */
2891 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2892 	},
2893 	[TCM_INVALID_CDB_FIELD] = {
2894 		.key = ILLEGAL_REQUEST,
2895 		.asc = 0x24, /* INVALID FIELD IN CDB */
2896 	},
2897 	[TCM_INVALID_PARAMETER_LIST] = {
2898 		.key = ILLEGAL_REQUEST,
2899 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2900 	},
2901 	[TCM_TOO_MANY_TARGET_DESCS] = {
2902 		.key = ILLEGAL_REQUEST,
2903 		.asc = 0x26,
2904 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
2905 	},
2906 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
2907 		.key = ILLEGAL_REQUEST,
2908 		.asc = 0x26,
2909 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
2910 	},
2911 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
2912 		.key = ILLEGAL_REQUEST,
2913 		.asc = 0x26,
2914 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
2915 	},
2916 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
2917 		.key = ILLEGAL_REQUEST,
2918 		.asc = 0x26,
2919 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
2920 	},
2921 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2922 		.key = ILLEGAL_REQUEST,
2923 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2924 	},
2925 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2926 		.key = ILLEGAL_REQUEST,
2927 		.asc = 0x0c, /* WRITE ERROR */
2928 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2929 	},
2930 	[TCM_SERVICE_CRC_ERROR] = {
2931 		.key = ABORTED_COMMAND,
2932 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2933 		.ascq = 0x05, /* N/A */
2934 	},
2935 	[TCM_SNACK_REJECTED] = {
2936 		.key = ABORTED_COMMAND,
2937 		.asc = 0x11, /* READ ERROR */
2938 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2939 	},
2940 	[TCM_WRITE_PROTECTED] = {
2941 		.key = DATA_PROTECT,
2942 		.asc = 0x27, /* WRITE PROTECTED */
2943 	},
2944 	[TCM_ADDRESS_OUT_OF_RANGE] = {
2945 		.key = ILLEGAL_REQUEST,
2946 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2947 	},
2948 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2949 		.key = UNIT_ATTENTION,
2950 	},
2951 	[TCM_CHECK_CONDITION_NOT_READY] = {
2952 		.key = NOT_READY,
2953 	},
2954 	[TCM_MISCOMPARE_VERIFY] = {
2955 		.key = MISCOMPARE,
2956 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2957 		.ascq = 0x00,
2958 	},
2959 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2960 		.key = ABORTED_COMMAND,
2961 		.asc = 0x10,
2962 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2963 		.add_sector_info = true,
2964 	},
2965 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2966 		.key = ABORTED_COMMAND,
2967 		.asc = 0x10,
2968 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2969 		.add_sector_info = true,
2970 	},
2971 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2972 		.key = ABORTED_COMMAND,
2973 		.asc = 0x10,
2974 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2975 		.add_sector_info = true,
2976 	},
2977 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2978 		.key = COPY_ABORTED,
2979 		.asc = 0x0d,
2980 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2981 
2982 	},
2983 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2984 		/*
2985 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2986 		 * Solaris initiators.  Returning NOT READY instead means the
2987 		 * operations will be retried a finite number of times and we
2988 		 * can survive intermittent errors.
2989 		 */
2990 		.key = NOT_READY,
2991 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2992 	},
2993 };
2994 
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)2995 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2996 {
2997 	const struct sense_info *si;
2998 	u8 *buffer = cmd->sense_buffer;
2999 	int r = (__force int)reason;
3000 	u8 asc, ascq;
3001 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3002 
3003 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3004 		si = &sense_info_table[r];
3005 	else
3006 		si = &sense_info_table[(__force int)
3007 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3008 
3009 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3010 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3011 		WARN_ON_ONCE(asc == 0);
3012 	} else if (si->asc == 0) {
3013 		WARN_ON_ONCE(cmd->scsi_asc == 0);
3014 		asc = cmd->scsi_asc;
3015 		ascq = cmd->scsi_ascq;
3016 	} else {
3017 		asc = si->asc;
3018 		ascq = si->ascq;
3019 	}
3020 
3021 	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3022 	if (si->add_sector_info)
3023 		return scsi_set_sense_information(buffer,
3024 						  cmd->scsi_sense_length,
3025 						  cmd->bad_sector);
3026 
3027 	return 0;
3028 }
3029 
3030 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3031 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3032 		sense_reason_t reason, int from_transport)
3033 {
3034 	unsigned long flags;
3035 
3036 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3037 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3038 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3039 		return 0;
3040 	}
3041 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3042 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3043 
3044 	if (!from_transport) {
3045 		int rc;
3046 
3047 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3048 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3049 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3050 		rc = translate_sense_reason(cmd, reason);
3051 		if (rc)
3052 			return rc;
3053 	}
3054 
3055 	trace_target_cmd_complete(cmd);
3056 	return cmd->se_tfo->queue_status(cmd);
3057 }
3058 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3059 
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)3060 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3061 	__releases(&cmd->t_state_lock)
3062 	__acquires(&cmd->t_state_lock)
3063 {
3064 	assert_spin_locked(&cmd->t_state_lock);
3065 	WARN_ON_ONCE(!irqs_disabled());
3066 
3067 	if (!(cmd->transport_state & CMD_T_ABORTED))
3068 		return 0;
3069 	/*
3070 	 * If cmd has been aborted but either no status is to be sent or it has
3071 	 * already been sent, just return
3072 	 */
3073 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3074 		if (send_status)
3075 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3076 		return 1;
3077 	}
3078 
3079 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3080 		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3081 
3082 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3083 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3084 	trace_target_cmd_complete(cmd);
3085 
3086 	spin_unlock_irq(&cmd->t_state_lock);
3087 	cmd->se_tfo->queue_status(cmd);
3088 	spin_lock_irq(&cmd->t_state_lock);
3089 
3090 	return 1;
3091 }
3092 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)3093 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3094 {
3095 	int ret;
3096 
3097 	spin_lock_irq(&cmd->t_state_lock);
3098 	ret = __transport_check_aborted_status(cmd, send_status);
3099 	spin_unlock_irq(&cmd->t_state_lock);
3100 
3101 	return ret;
3102 }
3103 EXPORT_SYMBOL(transport_check_aborted_status);
3104 
transport_send_task_abort(struct se_cmd * cmd)3105 void transport_send_task_abort(struct se_cmd *cmd)
3106 {
3107 	unsigned long flags;
3108 
3109 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3110 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3111 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3112 		return;
3113 	}
3114 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3115 
3116 	/*
3117 	 * If there are still expected incoming fabric WRITEs, we wait
3118 	 * until until they have completed before sending a TASK_ABORTED
3119 	 * response.  This response with TASK_ABORTED status will be
3120 	 * queued back to fabric module by transport_check_aborted_status().
3121 	 */
3122 	if (cmd->data_direction == DMA_TO_DEVICE) {
3123 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3124 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3125 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3126 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3127 				goto send_abort;
3128 			}
3129 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3130 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3131 			return;
3132 		}
3133 	}
3134 send_abort:
3135 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3136 
3137 	transport_lun_remove_cmd(cmd);
3138 
3139 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3140 		 cmd->t_task_cdb[0], cmd->tag);
3141 
3142 	trace_target_cmd_complete(cmd);
3143 	cmd->se_tfo->queue_status(cmd);
3144 }
3145 
target_tmr_work(struct work_struct * work)3146 static void target_tmr_work(struct work_struct *work)
3147 {
3148 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3149 	struct se_device *dev = cmd->se_dev;
3150 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3151 	unsigned long flags;
3152 	int ret;
3153 
3154 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3155 	if (cmd->transport_state & CMD_T_ABORTED) {
3156 		tmr->response = TMR_FUNCTION_REJECTED;
3157 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3158 		goto check_stop;
3159 	}
3160 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3161 
3162 	switch (tmr->function) {
3163 	case TMR_ABORT_TASK:
3164 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3165 		break;
3166 	case TMR_ABORT_TASK_SET:
3167 	case TMR_CLEAR_ACA:
3168 	case TMR_CLEAR_TASK_SET:
3169 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3170 		break;
3171 	case TMR_LUN_RESET:
3172 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3173 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3174 					 TMR_FUNCTION_REJECTED;
3175 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3176 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3177 					       cmd->orig_fe_lun, 0x29,
3178 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3179 		}
3180 		break;
3181 	case TMR_TARGET_WARM_RESET:
3182 		tmr->response = TMR_FUNCTION_REJECTED;
3183 		break;
3184 	case TMR_TARGET_COLD_RESET:
3185 		tmr->response = TMR_FUNCTION_REJECTED;
3186 		break;
3187 	default:
3188 		pr_err("Uknown TMR function: 0x%02x.\n",
3189 				tmr->function);
3190 		tmr->response = TMR_FUNCTION_REJECTED;
3191 		break;
3192 	}
3193 
3194 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3195 	if (cmd->transport_state & CMD_T_ABORTED) {
3196 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3197 		goto check_stop;
3198 	}
3199 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3200 
3201 	cmd->se_tfo->queue_tm_rsp(cmd);
3202 
3203 check_stop:
3204 	transport_cmd_check_stop_to_fabric(cmd);
3205 }
3206 
transport_generic_handle_tmr(struct se_cmd * cmd)3207 int transport_generic_handle_tmr(
3208 	struct se_cmd *cmd)
3209 {
3210 	unsigned long flags;
3211 	bool aborted = false;
3212 
3213 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3214 	if (cmd->transport_state & CMD_T_ABORTED) {
3215 		aborted = true;
3216 	} else {
3217 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3218 		cmd->transport_state |= CMD_T_ACTIVE;
3219 	}
3220 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3221 
3222 	if (aborted) {
3223 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3224 			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3225 			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3226 		transport_cmd_check_stop_to_fabric(cmd);
3227 		return 0;
3228 	}
3229 
3230 	INIT_WORK(&cmd->work, target_tmr_work);
3231 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3232 	return 0;
3233 }
3234 EXPORT_SYMBOL(transport_generic_handle_tmr);
3235 
3236 bool
target_check_wce(struct se_device * dev)3237 target_check_wce(struct se_device *dev)
3238 {
3239 	bool wce = false;
3240 
3241 	if (dev->transport->get_write_cache)
3242 		wce = dev->transport->get_write_cache(dev);
3243 	else if (dev->dev_attrib.emulate_write_cache > 0)
3244 		wce = true;
3245 
3246 	return wce;
3247 }
3248 
3249 bool
target_check_fua(struct se_device * dev)3250 target_check_fua(struct se_device *dev)
3251 {
3252 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3253 }
3254