• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400
127 };
128 
129 EXPORT_SYMBOL(tty_std_termios);
130 
131 /* This list gets poked at by procfs and various bits of boot up code. This
132    could do with some rationalisation such as pulling the tty proc function
133    into this file */
134 
135 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
136 
137 /* Mutex to protect creating and releasing a tty. This is shared with
138    vt.c for deeply disgusting hack reasons */
139 DEFINE_MUTEX(tty_mutex);
140 EXPORT_SYMBOL(tty_mutex);
141 
142 /* Spinlock to protect the tty->tty_files list */
143 DEFINE_SPINLOCK(tty_files_lock);
144 
145 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
146 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
147 ssize_t redirected_tty_write(struct file *, const char __user *,
148 							size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
152 #ifdef CONFIG_COMPAT
153 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
154 				unsigned long arg);
155 #else
156 #define tty_compat_ioctl NULL
157 #endif
158 static int __tty_fasync(int fd, struct file *filp, int on);
159 static int tty_fasync(int fd, struct file *filp, int on);
160 static void release_tty(struct tty_struct *tty, int idx);
161 
162 /**
163  *	free_tty_struct		-	free a disused tty
164  *	@tty: tty struct to free
165  *
166  *	Free the write buffers, tty queue and tty memory itself.
167  *
168  *	Locking: none. Must be called after tty is definitely unused
169  */
170 
free_tty_struct(struct tty_struct * tty)171 void free_tty_struct(struct tty_struct *tty)
172 {
173 	if (!tty)
174 		return;
175 	put_device(tty->dev);
176 	kfree(tty->write_buf);
177 	tty->magic = 0xDEADDEAD;
178 	kfree(tty);
179 }
180 
file_tty(struct file * file)181 static inline struct tty_struct *file_tty(struct file *file)
182 {
183 	return ((struct tty_file_private *)file->private_data)->tty;
184 }
185 
tty_alloc_file(struct file * file)186 int tty_alloc_file(struct file *file)
187 {
188 	struct tty_file_private *priv;
189 
190 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
191 	if (!priv)
192 		return -ENOMEM;
193 
194 	file->private_data = priv;
195 
196 	return 0;
197 }
198 
199 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)200 void tty_add_file(struct tty_struct *tty, struct file *file)
201 {
202 	struct tty_file_private *priv = file->private_data;
203 
204 	priv->tty = tty;
205 	priv->file = file;
206 
207 	spin_lock(&tty_files_lock);
208 	list_add(&priv->list, &tty->tty_files);
209 	spin_unlock(&tty_files_lock);
210 }
211 
212 /**
213  * tty_free_file - free file->private_data
214  *
215  * This shall be used only for fail path handling when tty_add_file was not
216  * called yet.
217  */
tty_free_file(struct file * file)218 void tty_free_file(struct file *file)
219 {
220 	struct tty_file_private *priv = file->private_data;
221 
222 	file->private_data = NULL;
223 	kfree(priv);
224 }
225 
226 /* Delete file from its tty */
tty_del_file(struct file * file)227 static void tty_del_file(struct file *file)
228 {
229 	struct tty_file_private *priv = file->private_data;
230 
231 	spin_lock(&tty_files_lock);
232 	list_del(&priv->list);
233 	spin_unlock(&tty_files_lock);
234 	tty_free_file(file);
235 }
236 
237 
238 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
239 
240 /**
241  *	tty_name	-	return tty naming
242  *	@tty: tty structure
243  *
244  *	Convert a tty structure into a name. The name reflects the kernel
245  *	naming policy and if udev is in use may not reflect user space
246  *
247  *	Locking: none
248  */
249 
tty_name(const struct tty_struct * tty)250 const char *tty_name(const struct tty_struct *tty)
251 {
252 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
253 		return "NULL tty";
254 	return tty->name;
255 }
256 
257 EXPORT_SYMBOL(tty_name);
258 
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)259 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		printk(KERN_WARNING
265 			"null TTY for (%d:%d) in %s\n",
266 			imajor(inode), iminor(inode), routine);
267 		return 1;
268 	}
269 	if (tty->magic != TTY_MAGIC) {
270 		printk(KERN_WARNING
271 			"bad magic number for tty struct (%d:%d) in %s\n",
272 			imajor(inode), iminor(inode), routine);
273 		return 1;
274 	}
275 #endif
276 	return 0;
277 }
278 
279 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 	struct list_head *p;
284 	int count = 0;
285 
286 	spin_lock(&tty_files_lock);
287 	list_for_each(p, &tty->tty_files) {
288 		count++;
289 	}
290 	spin_unlock(&tty_files_lock);
291 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
293 	    tty->link && tty->link->count)
294 		count++;
295 	if (tty->count != count) {
296 		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 				    "!= #fd's(%d) in %s\n",
298 		       tty->name, tty->count, count, routine);
299 		return count;
300 	}
301 #endif
302 	return 0;
303 }
304 
305 /**
306  *	get_tty_driver		-	find device of a tty
307  *	@dev_t: device identifier
308  *	@index: returns the index of the tty
309  *
310  *	This routine returns a tty driver structure, given a device number
311  *	and also passes back the index number.
312  *
313  *	Locking: caller must hold tty_mutex
314  */
315 
get_tty_driver(dev_t device,int * index)316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 	struct tty_driver *p;
319 
320 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 		dev_t base = MKDEV(p->major, p->minor_start);
322 		if (device < base || device >= base + p->num)
323 			continue;
324 		*index = device - base;
325 		return tty_driver_kref_get(p);
326 	}
327 	return NULL;
328 }
329 
330 #ifdef CONFIG_CONSOLE_POLL
331 
332 /**
333  *	tty_find_polling_driver	-	find device of a polled tty
334  *	@name: name string to match
335  *	@line: pointer to resulting tty line nr
336  *
337  *	This routine returns a tty driver structure, given a name
338  *	and the condition that the tty driver is capable of polled
339  *	operation.
340  */
tty_find_polling_driver(char * name,int * line)341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 	struct tty_driver *p, *res = NULL;
344 	int tty_line = 0;
345 	int len;
346 	char *str, *stp;
347 
348 	for (str = name; *str; str++)
349 		if ((*str >= '0' && *str <= '9') || *str == ',')
350 			break;
351 	if (!*str)
352 		return NULL;
353 
354 	len = str - name;
355 	tty_line = simple_strtoul(str, &str, 10);
356 
357 	mutex_lock(&tty_mutex);
358 	/* Search through the tty devices to look for a match */
359 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 		if (!len || strncmp(name, p->name, len) != 0)
361 			continue;
362 		stp = str;
363 		if (*stp == ',')
364 			stp++;
365 		if (*stp == '\0')
366 			stp = NULL;
367 
368 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 			res = tty_driver_kref_get(p);
371 			*line = tty_line;
372 			break;
373 		}
374 	}
375 	mutex_unlock(&tty_mutex);
376 
377 	return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381 
382 /**
383  *	tty_check_change	-	check for POSIX terminal changes
384  *	@tty: tty to check
385  *
386  *	If we try to write to, or set the state of, a terminal and we're
387  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *	Locking: ctrl_lock
391  */
392 
__tty_check_change(struct tty_struct * tty,int sig)393 int __tty_check_change(struct tty_struct *tty, int sig)
394 {
395 	unsigned long flags;
396 	struct pid *pgrp, *tty_pgrp;
397 	int ret = 0;
398 
399 	if (current->signal->tty != tty)
400 		return 0;
401 
402 	rcu_read_lock();
403 	pgrp = task_pgrp(current);
404 
405 	spin_lock_irqsave(&tty->ctrl_lock, flags);
406 	tty_pgrp = tty->pgrp;
407 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
408 
409 	if (tty_pgrp && pgrp != tty->pgrp) {
410 		if (is_ignored(sig)) {
411 			if (sig == SIGTTIN)
412 				ret = -EIO;
413 		} else if (is_current_pgrp_orphaned())
414 			ret = -EIO;
415 		else {
416 			kill_pgrp(pgrp, sig, 1);
417 			set_thread_flag(TIF_SIGPENDING);
418 			ret = -ERESTARTSYS;
419 		}
420 	}
421 	rcu_read_unlock();
422 
423 	if (!tty_pgrp) {
424 		pr_warn("%s: tty_check_change: sig=%d, tty->pgrp == NULL!\n",
425 			tty_name(tty), sig);
426 	}
427 
428 	return ret;
429 }
430 
tty_check_change(struct tty_struct * tty)431 int tty_check_change(struct tty_struct *tty)
432 {
433 	return __tty_check_change(tty, SIGTTOU);
434 }
435 EXPORT_SYMBOL(tty_check_change);
436 
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)437 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
438 				size_t count, loff_t *ppos)
439 {
440 	return 0;
441 }
442 
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)443 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
444 				 size_t count, loff_t *ppos)
445 {
446 	return -EIO;
447 }
448 
449 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)450 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
451 {
452 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
453 }
454 
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)455 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
456 		unsigned long arg)
457 {
458 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460 
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)461 static long hung_up_tty_compat_ioctl(struct file *file,
462 				     unsigned int cmd, unsigned long arg)
463 {
464 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466 
467 static const struct file_operations tty_fops = {
468 	.llseek		= no_llseek,
469 	.read		= tty_read,
470 	.write		= tty_write,
471 	.poll		= tty_poll,
472 	.unlocked_ioctl	= tty_ioctl,
473 	.compat_ioctl	= tty_compat_ioctl,
474 	.open		= tty_open,
475 	.release	= tty_release,
476 	.fasync		= tty_fasync,
477 };
478 
479 static const struct file_operations console_fops = {
480 	.llseek		= no_llseek,
481 	.read		= tty_read,
482 	.write		= redirected_tty_write,
483 	.poll		= tty_poll,
484 	.unlocked_ioctl	= tty_ioctl,
485 	.compat_ioctl	= tty_compat_ioctl,
486 	.open		= tty_open,
487 	.release	= tty_release,
488 	.fasync		= tty_fasync,
489 };
490 
491 static const struct file_operations hung_up_tty_fops = {
492 	.llseek		= no_llseek,
493 	.read		= hung_up_tty_read,
494 	.write		= hung_up_tty_write,
495 	.poll		= hung_up_tty_poll,
496 	.unlocked_ioctl	= hung_up_tty_ioctl,
497 	.compat_ioctl	= hung_up_tty_compat_ioctl,
498 	.release	= tty_release,
499 };
500 
501 static DEFINE_SPINLOCK(redirect_lock);
502 static struct file *redirect;
503 
504 
proc_clear_tty(struct task_struct * p)505 void proc_clear_tty(struct task_struct *p)
506 {
507 	unsigned long flags;
508 	struct tty_struct *tty;
509 	spin_lock_irqsave(&p->sighand->siglock, flags);
510 	tty = p->signal->tty;
511 	p->signal->tty = NULL;
512 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
513 	tty_kref_put(tty);
514 }
515 
516 extern void tty_sysctl_init(void);
517 
518 /**
519  * proc_set_tty -  set the controlling terminal
520  *
521  * Only callable by the session leader and only if it does not already have
522  * a controlling terminal.
523  *
524  * Caller must hold:  tty_lock()
525  *		      a readlock on tasklist_lock
526  *		      sighand lock
527  */
__proc_set_tty(struct tty_struct * tty)528 static void __proc_set_tty(struct tty_struct *tty)
529 {
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&tty->ctrl_lock, flags);
533 	/*
534 	 * The session and fg pgrp references will be non-NULL if
535 	 * tiocsctty() is stealing the controlling tty
536 	 */
537 	put_pid(tty->session);
538 	put_pid(tty->pgrp);
539 	tty->pgrp = get_pid(task_pgrp(current));
540 	tty->session = get_pid(task_session(current));
541 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
542 	if (current->signal->tty) {
543 		tty_debug(tty, "current tty %s not NULL!!\n",
544 			  current->signal->tty->name);
545 		tty_kref_put(current->signal->tty);
546 	}
547 	put_pid(current->signal->tty_old_pgrp);
548 	current->signal->tty = tty_kref_get(tty);
549 	current->signal->tty_old_pgrp = NULL;
550 }
551 
proc_set_tty(struct tty_struct * tty)552 static void proc_set_tty(struct tty_struct *tty)
553 {
554 	spin_lock_irq(&current->sighand->siglock);
555 	__proc_set_tty(tty);
556 	spin_unlock_irq(&current->sighand->siglock);
557 }
558 
get_current_tty(void)559 struct tty_struct *get_current_tty(void)
560 {
561 	struct tty_struct *tty;
562 	unsigned long flags;
563 
564 	spin_lock_irqsave(&current->sighand->siglock, flags);
565 	tty = tty_kref_get(current->signal->tty);
566 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
567 	return tty;
568 }
569 EXPORT_SYMBOL_GPL(get_current_tty);
570 
session_clear_tty(struct pid * session)571 static void session_clear_tty(struct pid *session)
572 {
573 	struct task_struct *p;
574 	do_each_pid_task(session, PIDTYPE_SID, p) {
575 		proc_clear_tty(p);
576 	} while_each_pid_task(session, PIDTYPE_SID, p);
577 }
578 
579 /**
580  *	tty_wakeup	-	request more data
581  *	@tty: terminal
582  *
583  *	Internal and external helper for wakeups of tty. This function
584  *	informs the line discipline if present that the driver is ready
585  *	to receive more output data.
586  */
587 
tty_wakeup(struct tty_struct * tty)588 void tty_wakeup(struct tty_struct *tty)
589 {
590 	struct tty_ldisc *ld;
591 
592 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
593 		ld = tty_ldisc_ref(tty);
594 		if (ld) {
595 			if (ld->ops->write_wakeup)
596 				ld->ops->write_wakeup(tty);
597 			tty_ldisc_deref(ld);
598 		}
599 	}
600 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
601 }
602 
603 EXPORT_SYMBOL_GPL(tty_wakeup);
604 
605 /**
606  *	tty_signal_session_leader	- sends SIGHUP to session leader
607  *	@tty		controlling tty
608  *	@exit_session	if non-zero, signal all foreground group processes
609  *
610  *	Send SIGHUP and SIGCONT to the session leader and its process group.
611  *	Optionally, signal all processes in the foreground process group.
612  *
613  *	Returns the number of processes in the session with this tty
614  *	as their controlling terminal. This value is used to drop
615  *	tty references for those processes.
616  */
tty_signal_session_leader(struct tty_struct * tty,int exit_session)617 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
618 {
619 	struct task_struct *p;
620 	int refs = 0;
621 	struct pid *tty_pgrp = NULL;
622 
623 	read_lock(&tasklist_lock);
624 	if (tty->session) {
625 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
626 			spin_lock_irq(&p->sighand->siglock);
627 			if (p->signal->tty == tty) {
628 				p->signal->tty = NULL;
629 				/* We defer the dereferences outside fo
630 				   the tasklist lock */
631 				refs++;
632 			}
633 			if (!p->signal->leader) {
634 				spin_unlock_irq(&p->sighand->siglock);
635 				continue;
636 			}
637 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
638 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
639 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
640 			spin_lock(&tty->ctrl_lock);
641 			tty_pgrp = get_pid(tty->pgrp);
642 			if (tty->pgrp)
643 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
644 			spin_unlock(&tty->ctrl_lock);
645 			spin_unlock_irq(&p->sighand->siglock);
646 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
647 	}
648 	read_unlock(&tasklist_lock);
649 
650 	if (tty_pgrp) {
651 		if (exit_session)
652 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
653 		put_pid(tty_pgrp);
654 	}
655 
656 	return refs;
657 }
658 
659 /**
660  *	__tty_hangup		-	actual handler for hangup events
661  *	@work: tty device
662  *
663  *	This can be called by a "kworker" kernel thread.  That is process
664  *	synchronous but doesn't hold any locks, so we need to make sure we
665  *	have the appropriate locks for what we're doing.
666  *
667  *	The hangup event clears any pending redirections onto the hung up
668  *	device. It ensures future writes will error and it does the needed
669  *	line discipline hangup and signal delivery. The tty object itself
670  *	remains intact.
671  *
672  *	Locking:
673  *		BTM
674  *		  redirect lock for undoing redirection
675  *		  file list lock for manipulating list of ttys
676  *		  tty_ldiscs_lock from called functions
677  *		  termios_rwsem resetting termios data
678  *		  tasklist_lock to walk task list for hangup event
679  *		    ->siglock to protect ->signal/->sighand
680  */
__tty_hangup(struct tty_struct * tty,int exit_session)681 static void __tty_hangup(struct tty_struct *tty, int exit_session)
682 {
683 	struct file *cons_filp = NULL;
684 	struct file *filp, *f = NULL;
685 	struct tty_file_private *priv;
686 	int    closecount = 0, n;
687 	int refs;
688 
689 	if (!tty)
690 		return;
691 
692 
693 	spin_lock(&redirect_lock);
694 	if (redirect && file_tty(redirect) == tty) {
695 		f = redirect;
696 		redirect = NULL;
697 	}
698 	spin_unlock(&redirect_lock);
699 
700 	tty_lock(tty);
701 
702 	if (test_bit(TTY_HUPPED, &tty->flags)) {
703 		tty_unlock(tty);
704 		return;
705 	}
706 
707 	/*
708 	 * Some console devices aren't actually hung up for technical and
709 	 * historical reasons, which can lead to indefinite interruptible
710 	 * sleep in n_tty_read().  The following explicitly tells
711 	 * n_tty_read() to abort readers.
712 	 */
713 	set_bit(TTY_HUPPING, &tty->flags);
714 
715 	/* inuse_filps is protected by the single tty lock,
716 	   this really needs to change if we want to flush the
717 	   workqueue with the lock held */
718 	check_tty_count(tty, "tty_hangup");
719 
720 	spin_lock(&tty_files_lock);
721 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
722 	list_for_each_entry(priv, &tty->tty_files, list) {
723 		filp = priv->file;
724 		if (filp->f_op->write == redirected_tty_write)
725 			cons_filp = filp;
726 		if (filp->f_op->write != tty_write)
727 			continue;
728 		closecount++;
729 		__tty_fasync(-1, filp, 0);	/* can't block */
730 		filp->f_op = &hung_up_tty_fops;
731 	}
732 	spin_unlock(&tty_files_lock);
733 
734 	refs = tty_signal_session_leader(tty, exit_session);
735 	/* Account for the p->signal references we killed */
736 	while (refs--)
737 		tty_kref_put(tty);
738 
739 	tty_ldisc_hangup(tty);
740 
741 	spin_lock_irq(&tty->ctrl_lock);
742 	clear_bit(TTY_THROTTLED, &tty->flags);
743 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
744 	put_pid(tty->session);
745 	put_pid(tty->pgrp);
746 	tty->session = NULL;
747 	tty->pgrp = NULL;
748 	tty->ctrl_status = 0;
749 	spin_unlock_irq(&tty->ctrl_lock);
750 
751 	/*
752 	 * If one of the devices matches a console pointer, we
753 	 * cannot just call hangup() because that will cause
754 	 * tty->count and state->count to go out of sync.
755 	 * So we just call close() the right number of times.
756 	 */
757 	if (cons_filp) {
758 		if (tty->ops->close)
759 			for (n = 0; n < closecount; n++)
760 				tty->ops->close(tty, cons_filp);
761 	} else if (tty->ops->hangup)
762 		tty->ops->hangup(tty);
763 	/*
764 	 * We don't want to have driver/ldisc interactions beyond
765 	 * the ones we did here. The driver layer expects no
766 	 * calls after ->hangup() from the ldisc side. However we
767 	 * can't yet guarantee all that.
768 	 */
769 	set_bit(TTY_HUPPED, &tty->flags);
770 	clear_bit(TTY_HUPPING, &tty->flags);
771 	tty_unlock(tty);
772 
773 	if (f)
774 		fput(f);
775 }
776 
do_tty_hangup(struct work_struct * work)777 static void do_tty_hangup(struct work_struct *work)
778 {
779 	struct tty_struct *tty =
780 		container_of(work, struct tty_struct, hangup_work);
781 
782 	__tty_hangup(tty, 0);
783 }
784 
785 /**
786  *	tty_hangup		-	trigger a hangup event
787  *	@tty: tty to hangup
788  *
789  *	A carrier loss (virtual or otherwise) has occurred on this like
790  *	schedule a hangup sequence to run after this event.
791  */
792 
tty_hangup(struct tty_struct * tty)793 void tty_hangup(struct tty_struct *tty)
794 {
795 	tty_debug_hangup(tty, "\n");
796 	schedule_work(&tty->hangup_work);
797 }
798 
799 EXPORT_SYMBOL(tty_hangup);
800 
801 /**
802  *	tty_vhangup		-	process vhangup
803  *	@tty: tty to hangup
804  *
805  *	The user has asked via system call for the terminal to be hung up.
806  *	We do this synchronously so that when the syscall returns the process
807  *	is complete. That guarantee is necessary for security reasons.
808  */
809 
tty_vhangup(struct tty_struct * tty)810 void tty_vhangup(struct tty_struct *tty)
811 {
812 	tty_debug_hangup(tty, "\n");
813 	__tty_hangup(tty, 0);
814 }
815 
816 EXPORT_SYMBOL(tty_vhangup);
817 
818 
819 /**
820  *	tty_vhangup_self	-	process vhangup for own ctty
821  *
822  *	Perform a vhangup on the current controlling tty
823  */
824 
tty_vhangup_self(void)825 void tty_vhangup_self(void)
826 {
827 	struct tty_struct *tty;
828 
829 	tty = get_current_tty();
830 	if (tty) {
831 		tty_vhangup(tty);
832 		tty_kref_put(tty);
833 	}
834 }
835 
836 /**
837  *	tty_vhangup_session		-	hangup session leader exit
838  *	@tty: tty to hangup
839  *
840  *	The session leader is exiting and hanging up its controlling terminal.
841  *	Every process in the foreground process group is signalled SIGHUP.
842  *
843  *	We do this synchronously so that when the syscall returns the process
844  *	is complete. That guarantee is necessary for security reasons.
845  */
846 
tty_vhangup_session(struct tty_struct * tty)847 static void tty_vhangup_session(struct tty_struct *tty)
848 {
849 	tty_debug_hangup(tty, "\n");
850 	__tty_hangup(tty, 1);
851 }
852 
853 /**
854  *	tty_hung_up_p		-	was tty hung up
855  *	@filp: file pointer of tty
856  *
857  *	Return true if the tty has been subject to a vhangup or a carrier
858  *	loss
859  */
860 
tty_hung_up_p(struct file * filp)861 int tty_hung_up_p(struct file *filp)
862 {
863 	return (filp->f_op == &hung_up_tty_fops);
864 }
865 
866 EXPORT_SYMBOL(tty_hung_up_p);
867 
868 /**
869  *	disassociate_ctty	-	disconnect controlling tty
870  *	@on_exit: true if exiting so need to "hang up" the session
871  *
872  *	This function is typically called only by the session leader, when
873  *	it wants to disassociate itself from its controlling tty.
874  *
875  *	It performs the following functions:
876  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
877  * 	(2)  Clears the tty from being controlling the session
878  * 	(3)  Clears the controlling tty for all processes in the
879  * 		session group.
880  *
881  *	The argument on_exit is set to 1 if called when a process is
882  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
883  *
884  *	Locking:
885  *		BTM is taken for hysterical raisins, and held when
886  *		  called from no_tty().
887  *		  tty_mutex is taken to protect tty
888  *		  ->siglock is taken to protect ->signal/->sighand
889  *		  tasklist_lock is taken to walk process list for sessions
890  *		    ->siglock is taken to protect ->signal/->sighand
891  */
892 
disassociate_ctty(int on_exit)893 void disassociate_ctty(int on_exit)
894 {
895 	struct tty_struct *tty;
896 
897 	if (!current->signal->leader)
898 		return;
899 
900 	tty = get_current_tty();
901 	if (tty) {
902 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
903 			tty_vhangup_session(tty);
904 		} else {
905 			struct pid *tty_pgrp = tty_get_pgrp(tty);
906 			if (tty_pgrp) {
907 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
908 				if (!on_exit)
909 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
910 				put_pid(tty_pgrp);
911 			}
912 		}
913 		tty_kref_put(tty);
914 
915 	} else if (on_exit) {
916 		struct pid *old_pgrp;
917 		spin_lock_irq(&current->sighand->siglock);
918 		old_pgrp = current->signal->tty_old_pgrp;
919 		current->signal->tty_old_pgrp = NULL;
920 		spin_unlock_irq(&current->sighand->siglock);
921 		if (old_pgrp) {
922 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
923 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
924 			put_pid(old_pgrp);
925 		}
926 		return;
927 	}
928 
929 	spin_lock_irq(&current->sighand->siglock);
930 	put_pid(current->signal->tty_old_pgrp);
931 	current->signal->tty_old_pgrp = NULL;
932 	tty = tty_kref_get(current->signal->tty);
933 	spin_unlock_irq(&current->sighand->siglock);
934 
935 	if (tty) {
936 		unsigned long flags;
937 
938 		tty_lock(tty);
939 		spin_lock_irqsave(&tty->ctrl_lock, flags);
940 		put_pid(tty->session);
941 		put_pid(tty->pgrp);
942 		tty->session = NULL;
943 		tty->pgrp = NULL;
944 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945 		tty_unlock(tty);
946 		tty_kref_put(tty);
947 	} else
948 		tty_debug_hangup(tty, "no current tty\n");
949 
950 	/* Now clear signal->tty under the lock */
951 	read_lock(&tasklist_lock);
952 	session_clear_tty(task_session(current));
953 	read_unlock(&tasklist_lock);
954 }
955 
956 /**
957  *
958  *	no_tty	- Ensure the current process does not have a controlling tty
959  */
no_tty(void)960 void no_tty(void)
961 {
962 	/* FIXME: Review locking here. The tty_lock never covered any race
963 	   between a new association and proc_clear_tty but possible we need
964 	   to protect against this anyway */
965 	struct task_struct *tsk = current;
966 	disassociate_ctty(0);
967 	proc_clear_tty(tsk);
968 }
969 
970 
971 /**
972  *	stop_tty	-	propagate flow control
973  *	@tty: tty to stop
974  *
975  *	Perform flow control to the driver. May be called
976  *	on an already stopped device and will not re-call the driver
977  *	method.
978  *
979  *	This functionality is used by both the line disciplines for
980  *	halting incoming flow and by the driver. It may therefore be
981  *	called from any context, may be under the tty atomic_write_lock
982  *	but not always.
983  *
984  *	Locking:
985  *		flow_lock
986  */
987 
__stop_tty(struct tty_struct * tty)988 void __stop_tty(struct tty_struct *tty)
989 {
990 	if (tty->stopped)
991 		return;
992 	tty->stopped = 1;
993 	if (tty->ops->stop)
994 		tty->ops->stop(tty);
995 }
996 
stop_tty(struct tty_struct * tty)997 void stop_tty(struct tty_struct *tty)
998 {
999 	unsigned long flags;
1000 
1001 	spin_lock_irqsave(&tty->flow_lock, flags);
1002 	__stop_tty(tty);
1003 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1004 }
1005 EXPORT_SYMBOL(stop_tty);
1006 
1007 /**
1008  *	start_tty	-	propagate flow control
1009  *	@tty: tty to start
1010  *
1011  *	Start a tty that has been stopped if at all possible. If this
1012  *	tty was previous stopped and is now being started, the driver
1013  *	start method is invoked and the line discipline woken.
1014  *
1015  *	Locking:
1016  *		flow_lock
1017  */
1018 
__start_tty(struct tty_struct * tty)1019 void __start_tty(struct tty_struct *tty)
1020 {
1021 	if (!tty->stopped || tty->flow_stopped)
1022 		return;
1023 	tty->stopped = 0;
1024 	if (tty->ops->start)
1025 		tty->ops->start(tty);
1026 	tty_wakeup(tty);
1027 }
1028 
start_tty(struct tty_struct * tty)1029 void start_tty(struct tty_struct *tty)
1030 {
1031 	unsigned long flags;
1032 
1033 	spin_lock_irqsave(&tty->flow_lock, flags);
1034 	__start_tty(tty);
1035 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1036 }
1037 EXPORT_SYMBOL(start_tty);
1038 
tty_update_time(struct timespec * time)1039 static void tty_update_time(struct timespec *time)
1040 {
1041 	unsigned long sec = get_seconds();
1042 
1043 	/*
1044 	 * We only care if the two values differ in anything other than the
1045 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1046 	 * the time of the tty device, otherwise it could be construded as a
1047 	 * security leak to let userspace know the exact timing of the tty.
1048 	 */
1049 	if ((sec ^ time->tv_sec) & ~7)
1050 		time->tv_sec = sec;
1051 }
1052 
1053 /**
1054  *	tty_read	-	read method for tty device files
1055  *	@file: pointer to tty file
1056  *	@buf: user buffer
1057  *	@count: size of user buffer
1058  *	@ppos: unused
1059  *
1060  *	Perform the read system call function on this terminal device. Checks
1061  *	for hung up devices before calling the line discipline method.
1062  *
1063  *	Locking:
1064  *		Locks the line discipline internally while needed. Multiple
1065  *	read calls may be outstanding in parallel.
1066  */
1067 
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1068 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1069 			loff_t *ppos)
1070 {
1071 	int i;
1072 	struct inode *inode = file_inode(file);
1073 	struct tty_struct *tty = file_tty(file);
1074 	struct tty_ldisc *ld;
1075 
1076 	if (tty_paranoia_check(tty, inode, "tty_read"))
1077 		return -EIO;
1078 	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1079 		return -EIO;
1080 
1081 	/* We want to wait for the line discipline to sort out in this
1082 	   situation */
1083 	ld = tty_ldisc_ref_wait(tty);
1084 	if (ld->ops->read)
1085 		i = ld->ops->read(tty, file, buf, count);
1086 	else
1087 		i = -EIO;
1088 	tty_ldisc_deref(ld);
1089 
1090 	if (i > 0)
1091 		tty_update_time(&inode->i_atime);
1092 
1093 	return i;
1094 }
1095 
tty_write_unlock(struct tty_struct * tty)1096 static void tty_write_unlock(struct tty_struct *tty)
1097 {
1098 	mutex_unlock(&tty->atomic_write_lock);
1099 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1100 }
1101 
tty_write_lock(struct tty_struct * tty,int ndelay)1102 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1103 {
1104 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1105 		if (ndelay)
1106 			return -EAGAIN;
1107 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1108 			return -ERESTARTSYS;
1109 	}
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Split writes up in sane blocksizes to avoid
1115  * denial-of-service type attacks
1116  */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)1117 static inline ssize_t do_tty_write(
1118 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1119 	struct tty_struct *tty,
1120 	struct file *file,
1121 	const char __user *buf,
1122 	size_t count)
1123 {
1124 	ssize_t ret, written = 0;
1125 	unsigned int chunk;
1126 
1127 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1128 	if (ret < 0)
1129 		return ret;
1130 
1131 	/*
1132 	 * We chunk up writes into a temporary buffer. This
1133 	 * simplifies low-level drivers immensely, since they
1134 	 * don't have locking issues and user mode accesses.
1135 	 *
1136 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1137 	 * big chunk-size..
1138 	 *
1139 	 * The default chunk-size is 2kB, because the NTTY
1140 	 * layer has problems with bigger chunks. It will
1141 	 * claim to be able to handle more characters than
1142 	 * it actually does.
1143 	 *
1144 	 * FIXME: This can probably go away now except that 64K chunks
1145 	 * are too likely to fail unless switched to vmalloc...
1146 	 */
1147 	chunk = 2048;
1148 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1149 		chunk = 65536;
1150 	if (count < chunk)
1151 		chunk = count;
1152 
1153 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1154 	if (tty->write_cnt < chunk) {
1155 		unsigned char *buf_chunk;
1156 
1157 		if (chunk < 1024)
1158 			chunk = 1024;
1159 
1160 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1161 		if (!buf_chunk) {
1162 			ret = -ENOMEM;
1163 			goto out;
1164 		}
1165 		kfree(tty->write_buf);
1166 		tty->write_cnt = chunk;
1167 		tty->write_buf = buf_chunk;
1168 	}
1169 
1170 	/* Do the write .. */
1171 	for (;;) {
1172 		size_t size = count;
1173 		if (size > chunk)
1174 			size = chunk;
1175 		ret = -EFAULT;
1176 		if (copy_from_user(tty->write_buf, buf, size))
1177 			break;
1178 		ret = write(tty, file, tty->write_buf, size);
1179 		if (ret <= 0)
1180 			break;
1181 		written += ret;
1182 		buf += ret;
1183 		count -= ret;
1184 		if (!count)
1185 			break;
1186 		ret = -ERESTARTSYS;
1187 		if (signal_pending(current))
1188 			break;
1189 		cond_resched();
1190 	}
1191 	if (written) {
1192 		tty_update_time(&file_inode(file)->i_mtime);
1193 		ret = written;
1194 	}
1195 out:
1196 	tty_write_unlock(tty);
1197 	return ret;
1198 }
1199 
1200 /**
1201  * tty_write_message - write a message to a certain tty, not just the console.
1202  * @tty: the destination tty_struct
1203  * @msg: the message to write
1204  *
1205  * This is used for messages that need to be redirected to a specific tty.
1206  * We don't put it into the syslog queue right now maybe in the future if
1207  * really needed.
1208  *
1209  * We must still hold the BTM and test the CLOSING flag for the moment.
1210  */
1211 
tty_write_message(struct tty_struct * tty,char * msg)1212 void tty_write_message(struct tty_struct *tty, char *msg)
1213 {
1214 	if (tty) {
1215 		mutex_lock(&tty->atomic_write_lock);
1216 		tty_lock(tty);
1217 		if (tty->ops->write && tty->count > 0)
1218 			tty->ops->write(tty, msg, strlen(msg));
1219 		tty_unlock(tty);
1220 		tty_write_unlock(tty);
1221 	}
1222 	return;
1223 }
1224 
1225 
1226 /**
1227  *	tty_write		-	write method for tty device file
1228  *	@file: tty file pointer
1229  *	@buf: user data to write
1230  *	@count: bytes to write
1231  *	@ppos: unused
1232  *
1233  *	Write data to a tty device via the line discipline.
1234  *
1235  *	Locking:
1236  *		Locks the line discipline as required
1237  *		Writes to the tty driver are serialized by the atomic_write_lock
1238  *	and are then processed in chunks to the device. The line discipline
1239  *	write method will not be invoked in parallel for each device.
1240  */
1241 
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1242 static ssize_t tty_write(struct file *file, const char __user *buf,
1243 						size_t count, loff_t *ppos)
1244 {
1245 	struct tty_struct *tty = file_tty(file);
1246  	struct tty_ldisc *ld;
1247 	ssize_t ret;
1248 
1249 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1250 		return -EIO;
1251 	if (!tty || !tty->ops->write ||
1252 		(test_bit(TTY_IO_ERROR, &tty->flags)))
1253 			return -EIO;
1254 	/* Short term debug to catch buggy drivers */
1255 	if (tty->ops->write_room == NULL)
1256 		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1257 			tty->driver->name);
1258 	ld = tty_ldisc_ref_wait(tty);
1259 	if (!ld->ops->write)
1260 		ret = -EIO;
1261 	else
1262 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1263 	tty_ldisc_deref(ld);
1264 	return ret;
1265 }
1266 
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1267 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1268 						size_t count, loff_t *ppos)
1269 {
1270 	struct file *p = NULL;
1271 
1272 	spin_lock(&redirect_lock);
1273 	if (redirect)
1274 		p = get_file(redirect);
1275 	spin_unlock(&redirect_lock);
1276 
1277 	if (p) {
1278 		ssize_t res;
1279 		res = vfs_write(p, buf, count, &p->f_pos);
1280 		fput(p);
1281 		return res;
1282 	}
1283 	return tty_write(file, buf, count, ppos);
1284 }
1285 
1286 /**
1287  *	tty_send_xchar	-	send priority character
1288  *
1289  *	Send a high priority character to the tty even if stopped
1290  *
1291  *	Locking: none for xchar method, write ordering for write method.
1292  */
1293 
tty_send_xchar(struct tty_struct * tty,char ch)1294 int tty_send_xchar(struct tty_struct *tty, char ch)
1295 {
1296 	int	was_stopped = tty->stopped;
1297 
1298 	if (tty->ops->send_xchar) {
1299 		down_read(&tty->termios_rwsem);
1300 		tty->ops->send_xchar(tty, ch);
1301 		up_read(&tty->termios_rwsem);
1302 		return 0;
1303 	}
1304 
1305 	if (tty_write_lock(tty, 0) < 0)
1306 		return -ERESTARTSYS;
1307 
1308 	down_read(&tty->termios_rwsem);
1309 	if (was_stopped)
1310 		start_tty(tty);
1311 	tty->ops->write(tty, &ch, 1);
1312 	if (was_stopped)
1313 		stop_tty(tty);
1314 	up_read(&tty->termios_rwsem);
1315 	tty_write_unlock(tty);
1316 	return 0;
1317 }
1318 
1319 static char ptychar[] = "pqrstuvwxyzabcde";
1320 
1321 /**
1322  *	pty_line_name	-	generate name for a pty
1323  *	@driver: the tty driver in use
1324  *	@index: the minor number
1325  *	@p: output buffer of at least 6 bytes
1326  *
1327  *	Generate a name from a driver reference and write it to the output
1328  *	buffer.
1329  *
1330  *	Locking: None
1331  */
pty_line_name(struct tty_driver * driver,int index,char * p)1332 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1333 {
1334 	int i = index + driver->name_base;
1335 	/* ->name is initialized to "ttyp", but "tty" is expected */
1336 	sprintf(p, "%s%c%x",
1337 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1338 		ptychar[i >> 4 & 0xf], i & 0xf);
1339 }
1340 
1341 /**
1342  *	tty_line_name	-	generate name for a tty
1343  *	@driver: the tty driver in use
1344  *	@index: the minor number
1345  *	@p: output buffer of at least 7 bytes
1346  *
1347  *	Generate a name from a driver reference and write it to the output
1348  *	buffer.
1349  *
1350  *	Locking: None
1351  */
tty_line_name(struct tty_driver * driver,int index,char * p)1352 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1353 {
1354 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1355 		return sprintf(p, "%s", driver->name);
1356 	else
1357 		return sprintf(p, "%s%d", driver->name,
1358 			       index + driver->name_base);
1359 }
1360 
1361 /**
1362  *	tty_driver_lookup_tty() - find an existing tty, if any
1363  *	@driver: the driver for the tty
1364  *	@idx:	 the minor number
1365  *
1366  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1367  *	driver lookup() method returns an error.
1368  *
1369  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1370  */
tty_driver_lookup_tty(struct tty_driver * driver,struct inode * inode,int idx)1371 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1372 		struct inode *inode, int idx)
1373 {
1374 	struct tty_struct *tty;
1375 
1376 	if (driver->ops->lookup)
1377 		tty = driver->ops->lookup(driver, inode, idx);
1378 	else
1379 		tty = driver->ttys[idx];
1380 
1381 	if (!IS_ERR(tty))
1382 		tty_kref_get(tty);
1383 	return tty;
1384 }
1385 
1386 /**
1387  *	tty_init_termios	-  helper for termios setup
1388  *	@tty: the tty to set up
1389  *
1390  *	Initialise the termios structures for this tty. Thus runs under
1391  *	the tty_mutex currently so we can be relaxed about ordering.
1392  */
1393 
tty_init_termios(struct tty_struct * tty)1394 int tty_init_termios(struct tty_struct *tty)
1395 {
1396 	struct ktermios *tp;
1397 	int idx = tty->index;
1398 
1399 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1400 		tty->termios = tty->driver->init_termios;
1401 	else {
1402 		/* Check for lazy saved data */
1403 		tp = tty->driver->termios[idx];
1404 		if (tp != NULL)
1405 			tty->termios = *tp;
1406 		else
1407 			tty->termios = tty->driver->init_termios;
1408 	}
1409 	/* Compatibility until drivers always set this */
1410 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1411 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1412 	return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(tty_init_termios);
1415 
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1416 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1417 {
1418 	int ret = tty_init_termios(tty);
1419 	if (ret)
1420 		return ret;
1421 
1422 	tty_driver_kref_get(driver);
1423 	tty->count++;
1424 	driver->ttys[tty->index] = tty;
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(tty_standard_install);
1428 
1429 /**
1430  *	tty_driver_install_tty() - install a tty entry in the driver
1431  *	@driver: the driver for the tty
1432  *	@tty: the tty
1433  *
1434  *	Install a tty object into the driver tables. The tty->index field
1435  *	will be set by the time this is called. This method is responsible
1436  *	for ensuring any need additional structures are allocated and
1437  *	configured.
1438  *
1439  *	Locking: tty_mutex for now
1440  */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1441 static int tty_driver_install_tty(struct tty_driver *driver,
1442 						struct tty_struct *tty)
1443 {
1444 	return driver->ops->install ? driver->ops->install(driver, tty) :
1445 		tty_standard_install(driver, tty);
1446 }
1447 
1448 /**
1449  *	tty_driver_remove_tty() - remove a tty from the driver tables
1450  *	@driver: the driver for the tty
1451  *	@idx:	 the minor number
1452  *
1453  *	Remvoe a tty object from the driver tables. The tty->index field
1454  *	will be set by the time this is called.
1455  *
1456  *	Locking: tty_mutex for now
1457  */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1458 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1459 {
1460 	if (driver->ops->remove)
1461 		driver->ops->remove(driver, tty);
1462 	else
1463 		driver->ttys[tty->index] = NULL;
1464 }
1465 
1466 /*
1467  * 	tty_reopen()	- fast re-open of an open tty
1468  * 	@tty	- the tty to open
1469  *
1470  *	Return 0 on success, -errno on error.
1471  *	Re-opens on master ptys are not allowed and return -EIO.
1472  *
1473  *	Locking: Caller must hold tty_lock
1474  */
tty_reopen(struct tty_struct * tty)1475 static int tty_reopen(struct tty_struct *tty)
1476 {
1477 	struct tty_driver *driver = tty->driver;
1478 
1479 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1480 	    driver->subtype == PTY_TYPE_MASTER)
1481 		return -EIO;
1482 
1483 	if (!tty->count)
1484 		return -EAGAIN;
1485 
1486 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1487 		return -EBUSY;
1488 
1489 	tty->count++;
1490 
1491 	WARN_ON(!tty->ldisc);
1492 
1493 	return 0;
1494 }
1495 
1496 /**
1497  *	tty_init_dev		-	initialise a tty device
1498  *	@driver: tty driver we are opening a device on
1499  *	@idx: device index
1500  *	@ret_tty: returned tty structure
1501  *
1502  *	Prepare a tty device. This may not be a "new" clean device but
1503  *	could also be an active device. The pty drivers require special
1504  *	handling because of this.
1505  *
1506  *	Locking:
1507  *		The function is called under the tty_mutex, which
1508  *	protects us from the tty struct or driver itself going away.
1509  *
1510  *	On exit the tty device has the line discipline attached and
1511  *	a reference count of 1. If a pair was created for pty/tty use
1512  *	and the other was a pty master then it too has a reference count of 1.
1513  *
1514  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1515  * failed open.  The new code protects the open with a mutex, so it's
1516  * really quite straightforward.  The mutex locking can probably be
1517  * relaxed for the (most common) case of reopening a tty.
1518  */
1519 
tty_init_dev(struct tty_driver * driver,int idx)1520 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1521 {
1522 	struct tty_struct *tty;
1523 	int retval;
1524 
1525 	/*
1526 	 * First time open is complex, especially for PTY devices.
1527 	 * This code guarantees that either everything succeeds and the
1528 	 * TTY is ready for operation, or else the table slots are vacated
1529 	 * and the allocated memory released.  (Except that the termios
1530 	 * and locked termios may be retained.)
1531 	 */
1532 
1533 	if (!try_module_get(driver->owner))
1534 		return ERR_PTR(-ENODEV);
1535 
1536 	tty = alloc_tty_struct(driver, idx);
1537 	if (!tty) {
1538 		retval = -ENOMEM;
1539 		goto err_module_put;
1540 	}
1541 
1542 	tty_lock(tty);
1543 	retval = tty_driver_install_tty(driver, tty);
1544 	if (retval < 0)
1545 		goto err_deinit_tty;
1546 
1547 	if (!tty->port)
1548 		tty->port = driver->ports[idx];
1549 
1550 	WARN_RATELIMIT(!tty->port,
1551 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1552 			__func__, tty->driver->name);
1553 
1554 	tty->port->itty = tty;
1555 
1556 	/*
1557 	 * Structures all installed ... call the ldisc open routines.
1558 	 * If we fail here just call release_tty to clean up.  No need
1559 	 * to decrement the use counts, as release_tty doesn't care.
1560 	 */
1561 	retval = tty_ldisc_setup(tty, tty->link);
1562 	if (retval)
1563 		goto err_release_tty;
1564 	/* Return the tty locked so that it cannot vanish under the caller */
1565 	return tty;
1566 
1567 err_deinit_tty:
1568 	tty_unlock(tty);
1569 	deinitialize_tty_struct(tty);
1570 	free_tty_struct(tty);
1571 err_module_put:
1572 	module_put(driver->owner);
1573 	return ERR_PTR(retval);
1574 
1575 	/* call the tty release_tty routine to clean out this slot */
1576 err_release_tty:
1577 	tty_unlock(tty);
1578 	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1579 				 "clearing slot %d\n", idx);
1580 	release_tty(tty, idx);
1581 	return ERR_PTR(retval);
1582 }
1583 
tty_free_termios(struct tty_struct * tty)1584 void tty_free_termios(struct tty_struct *tty)
1585 {
1586 	struct ktermios *tp;
1587 	int idx = tty->index;
1588 
1589 	/* If the port is going to reset then it has no termios to save */
1590 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1591 		return;
1592 
1593 	/* Stash the termios data */
1594 	tp = tty->driver->termios[idx];
1595 	if (tp == NULL) {
1596 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1597 		if (tp == NULL) {
1598 			pr_warn("tty: no memory to save termios state.\n");
1599 			return;
1600 		}
1601 		tty->driver->termios[idx] = tp;
1602 	}
1603 	*tp = tty->termios;
1604 }
1605 EXPORT_SYMBOL(tty_free_termios);
1606 
1607 /**
1608  *	tty_flush_works		-	flush all works of a tty/pty pair
1609  *	@tty: tty device to flush works for (or either end of a pty pair)
1610  *
1611  *	Sync flush all works belonging to @tty (and the 'other' tty).
1612  */
tty_flush_works(struct tty_struct * tty)1613 static void tty_flush_works(struct tty_struct *tty)
1614 {
1615 	flush_work(&tty->SAK_work);
1616 	flush_work(&tty->hangup_work);
1617 	if (tty->link) {
1618 		flush_work(&tty->link->SAK_work);
1619 		flush_work(&tty->link->hangup_work);
1620 	}
1621 }
1622 
1623 /**
1624  *	release_one_tty		-	release tty structure memory
1625  *	@kref: kref of tty we are obliterating
1626  *
1627  *	Releases memory associated with a tty structure, and clears out the
1628  *	driver table slots. This function is called when a device is no longer
1629  *	in use. It also gets called when setup of a device fails.
1630  *
1631  *	Locking:
1632  *		takes the file list lock internally when working on the list
1633  *	of ttys that the driver keeps.
1634  *
1635  *	This method gets called from a work queue so that the driver private
1636  *	cleanup ops can sleep (needed for USB at least)
1637  */
release_one_tty(struct work_struct * work)1638 static void release_one_tty(struct work_struct *work)
1639 {
1640 	struct tty_struct *tty =
1641 		container_of(work, struct tty_struct, hangup_work);
1642 	struct tty_driver *driver = tty->driver;
1643 	struct module *owner = driver->owner;
1644 
1645 	if (tty->ops->cleanup)
1646 		tty->ops->cleanup(tty);
1647 
1648 	tty->magic = 0;
1649 	tty_driver_kref_put(driver);
1650 	module_put(owner);
1651 
1652 	spin_lock(&tty_files_lock);
1653 	list_del_init(&tty->tty_files);
1654 	spin_unlock(&tty_files_lock);
1655 
1656 	put_pid(tty->pgrp);
1657 	put_pid(tty->session);
1658 	free_tty_struct(tty);
1659 }
1660 
queue_release_one_tty(struct kref * kref)1661 static void queue_release_one_tty(struct kref *kref)
1662 {
1663 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1664 
1665 	/* The hangup queue is now free so we can reuse it rather than
1666 	   waste a chunk of memory for each port */
1667 	INIT_WORK(&tty->hangup_work, release_one_tty);
1668 	schedule_work(&tty->hangup_work);
1669 }
1670 
1671 /**
1672  *	tty_kref_put		-	release a tty kref
1673  *	@tty: tty device
1674  *
1675  *	Release a reference to a tty device and if need be let the kref
1676  *	layer destruct the object for us
1677  */
1678 
tty_kref_put(struct tty_struct * tty)1679 void tty_kref_put(struct tty_struct *tty)
1680 {
1681 	if (tty)
1682 		kref_put(&tty->kref, queue_release_one_tty);
1683 }
1684 EXPORT_SYMBOL(tty_kref_put);
1685 
1686 /**
1687  *	release_tty		-	release tty structure memory
1688  *
1689  *	Release both @tty and a possible linked partner (think pty pair),
1690  *	and decrement the refcount of the backing module.
1691  *
1692  *	Locking:
1693  *		tty_mutex
1694  *		takes the file list lock internally when working on the list
1695  *	of ttys that the driver keeps.
1696  *
1697  */
release_tty(struct tty_struct * tty,int idx)1698 static void release_tty(struct tty_struct *tty, int idx)
1699 {
1700 	/* This should always be true but check for the moment */
1701 	WARN_ON(tty->index != idx);
1702 	WARN_ON(!mutex_is_locked(&tty_mutex));
1703 	if (tty->ops->shutdown)
1704 		tty->ops->shutdown(tty);
1705 	tty_free_termios(tty);
1706 	tty_driver_remove_tty(tty->driver, tty);
1707 	tty->port->itty = NULL;
1708 	if (tty->link)
1709 		tty->link->port->itty = NULL;
1710 	tty_buffer_cancel_work(tty->port);
1711 	if (tty->link)
1712 		tty_buffer_cancel_work(tty->link->port);
1713 
1714 	tty_kref_put(tty->link);
1715 	tty_kref_put(tty);
1716 }
1717 
1718 /**
1719  *	tty_release_checks - check a tty before real release
1720  *	@tty: tty to check
1721  *	@o_tty: link of @tty (if any)
1722  *	@idx: index of the tty
1723  *
1724  *	Performs some paranoid checking before true release of the @tty.
1725  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1726  */
tty_release_checks(struct tty_struct * tty,int idx)1727 static int tty_release_checks(struct tty_struct *tty, int idx)
1728 {
1729 #ifdef TTY_PARANOIA_CHECK
1730 	if (idx < 0 || idx >= tty->driver->num) {
1731 		tty_debug(tty, "bad idx %d\n", idx);
1732 		return -1;
1733 	}
1734 
1735 	/* not much to check for devpts */
1736 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1737 		return 0;
1738 
1739 	if (tty != tty->driver->ttys[idx]) {
1740 		tty_debug(tty, "bad driver table[%d] = %p\n",
1741 			  idx, tty->driver->ttys[idx]);
1742 		return -1;
1743 	}
1744 	if (tty->driver->other) {
1745 		struct tty_struct *o_tty = tty->link;
1746 
1747 		if (o_tty != tty->driver->other->ttys[idx]) {
1748 			tty_debug(tty, "bad other table[%d] = %p\n",
1749 				  idx, tty->driver->other->ttys[idx]);
1750 			return -1;
1751 		}
1752 		if (o_tty->link != tty) {
1753 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1754 			return -1;
1755 		}
1756 	}
1757 #endif
1758 	return 0;
1759 }
1760 
1761 /**
1762  *	tty_release		-	vfs callback for close
1763  *	@inode: inode of tty
1764  *	@filp: file pointer for handle to tty
1765  *
1766  *	Called the last time each file handle is closed that references
1767  *	this tty. There may however be several such references.
1768  *
1769  *	Locking:
1770  *		Takes bkl. See tty_release_dev
1771  *
1772  * Even releasing the tty structures is a tricky business.. We have
1773  * to be very careful that the structures are all released at the
1774  * same time, as interrupts might otherwise get the wrong pointers.
1775  *
1776  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1777  * lead to double frees or releasing memory still in use.
1778  */
1779 
tty_release(struct inode * inode,struct file * filp)1780 int tty_release(struct inode *inode, struct file *filp)
1781 {
1782 	struct tty_struct *tty = file_tty(filp);
1783 	struct tty_struct *o_tty = NULL;
1784 	int	do_sleep, final;
1785 	int	idx;
1786 	long	timeout = 0;
1787 	int	once = 1;
1788 
1789 	if (tty_paranoia_check(tty, inode, __func__))
1790 		return 0;
1791 
1792 	tty_lock(tty);
1793 	check_tty_count(tty, __func__);
1794 
1795 	__tty_fasync(-1, filp, 0);
1796 
1797 	idx = tty->index;
1798 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1799 	    tty->driver->subtype == PTY_TYPE_MASTER)
1800 		o_tty = tty->link;
1801 
1802 	if (tty_release_checks(tty, idx)) {
1803 		tty_unlock(tty);
1804 		return 0;
1805 	}
1806 
1807 	tty_debug_hangup(tty, "(tty count=%d)...\n", tty->count);
1808 
1809 	if (tty->ops->close)
1810 		tty->ops->close(tty, filp);
1811 
1812 	/* If tty is pty master, lock the slave pty (stable lock order) */
1813 	tty_lock_slave(o_tty);
1814 
1815 	/*
1816 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1817 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1818 	 * wait queues and kick everyone out _before_ actually starting to
1819 	 * close.  This ensures that we won't block while releasing the tty
1820 	 * structure.
1821 	 *
1822 	 * The test for the o_tty closing is necessary, since the master and
1823 	 * slave sides may close in any order.  If the slave side closes out
1824 	 * first, its count will be one, since the master side holds an open.
1825 	 * Thus this test wouldn't be triggered at the time the slave closed,
1826 	 * so we do it now.
1827 	 */
1828 	while (1) {
1829 		do_sleep = 0;
1830 
1831 		if (tty->count <= 1) {
1832 			if (waitqueue_active(&tty->read_wait)) {
1833 				wake_up_poll(&tty->read_wait, POLLIN);
1834 				do_sleep++;
1835 			}
1836 			if (waitqueue_active(&tty->write_wait)) {
1837 				wake_up_poll(&tty->write_wait, POLLOUT);
1838 				do_sleep++;
1839 			}
1840 		}
1841 		if (o_tty && o_tty->count <= 1) {
1842 			if (waitqueue_active(&o_tty->read_wait)) {
1843 				wake_up_poll(&o_tty->read_wait, POLLIN);
1844 				do_sleep++;
1845 			}
1846 			if (waitqueue_active(&o_tty->write_wait)) {
1847 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1848 				do_sleep++;
1849 			}
1850 		}
1851 		if (!do_sleep)
1852 			break;
1853 
1854 		if (once) {
1855 			once = 0;
1856 			printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1857 			       __func__, tty_name(tty));
1858 		}
1859 		schedule_timeout_killable(timeout);
1860 		if (timeout < 120 * HZ)
1861 			timeout = 2 * timeout + 1;
1862 		else
1863 			timeout = MAX_SCHEDULE_TIMEOUT;
1864 	}
1865 
1866 	if (o_tty) {
1867 		if (--o_tty->count < 0) {
1868 			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1869 				__func__, o_tty->count, tty_name(o_tty));
1870 			o_tty->count = 0;
1871 		}
1872 	}
1873 	if (--tty->count < 0) {
1874 		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1875 				__func__, tty->count, tty_name(tty));
1876 		tty->count = 0;
1877 	}
1878 
1879 	/*
1880 	 * We've decremented tty->count, so we need to remove this file
1881 	 * descriptor off the tty->tty_files list; this serves two
1882 	 * purposes:
1883 	 *  - check_tty_count sees the correct number of file descriptors
1884 	 *    associated with this tty.
1885 	 *  - do_tty_hangup no longer sees this file descriptor as
1886 	 *    something that needs to be handled for hangups.
1887 	 */
1888 	tty_del_file(filp);
1889 
1890 	/*
1891 	 * Perform some housekeeping before deciding whether to return.
1892 	 *
1893 	 * If _either_ side is closing, make sure there aren't any
1894 	 * processes that still think tty or o_tty is their controlling
1895 	 * tty.
1896 	 */
1897 	if (!tty->count) {
1898 		read_lock(&tasklist_lock);
1899 		session_clear_tty(tty->session);
1900 		if (o_tty)
1901 			session_clear_tty(o_tty->session);
1902 		read_unlock(&tasklist_lock);
1903 	}
1904 
1905 	/* check whether both sides are closing ... */
1906 	final = !tty->count && !(o_tty && o_tty->count);
1907 
1908 	tty_unlock_slave(o_tty);
1909 	tty_unlock(tty);
1910 
1911 	/* At this point, the tty->count == 0 should ensure a dead tty
1912 	   cannot be re-opened by a racing opener */
1913 
1914 	if (!final)
1915 		return 0;
1916 
1917 	tty_debug_hangup(tty, "final close\n");
1918 	/*
1919 	 * Ask the line discipline code to release its structures
1920 	 */
1921 	tty_ldisc_release(tty);
1922 
1923 	/* Wait for pending work before tty destruction commmences */
1924 	tty_flush_works(tty);
1925 
1926 	tty_debug_hangup(tty, "freeing structure...\n");
1927 	/*
1928 	 * The release_tty function takes care of the details of clearing
1929 	 * the slots and preserving the termios structure. The tty_unlock_pair
1930 	 * should be safe as we keep a kref while the tty is locked (so the
1931 	 * unlock never unlocks a freed tty).
1932 	 */
1933 	mutex_lock(&tty_mutex);
1934 	release_tty(tty, idx);
1935 	mutex_unlock(&tty_mutex);
1936 
1937 	return 0;
1938 }
1939 
1940 /**
1941  *	tty_open_current_tty - get locked tty of current task
1942  *	@device: device number
1943  *	@filp: file pointer to tty
1944  *	@return: locked tty of the current task iff @device is /dev/tty
1945  *
1946  *	Performs a re-open of the current task's controlling tty.
1947  *
1948  *	We cannot return driver and index like for the other nodes because
1949  *	devpts will not work then. It expects inodes to be from devpts FS.
1950  */
tty_open_current_tty(dev_t device,struct file * filp)1951 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1952 {
1953 	struct tty_struct *tty;
1954 	int retval;
1955 
1956 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1957 		return NULL;
1958 
1959 	tty = get_current_tty();
1960 	if (!tty)
1961 		return ERR_PTR(-ENXIO);
1962 
1963 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1964 	/* noctty = 1; */
1965 	tty_lock(tty);
1966 	tty_kref_put(tty);	/* safe to drop the kref now */
1967 
1968 	retval = tty_reopen(tty);
1969 	if (retval < 0) {
1970 		tty_unlock(tty);
1971 		tty = ERR_PTR(retval);
1972 	}
1973 	return tty;
1974 }
1975 
1976 /**
1977  *	tty_lookup_driver - lookup a tty driver for a given device file
1978  *	@device: device number
1979  *	@filp: file pointer to tty
1980  *	@noctty: set if the device should not become a controlling tty
1981  *	@index: index for the device in the @return driver
1982  *	@return: driver for this inode (with increased refcount)
1983  *
1984  * 	If @return is not erroneous, the caller is responsible to decrement the
1985  * 	refcount by tty_driver_kref_put.
1986  *
1987  *	Locking: tty_mutex protects get_tty_driver
1988  */
tty_lookup_driver(dev_t device,struct file * filp,int * noctty,int * index)1989 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1990 		int *noctty, int *index)
1991 {
1992 	struct tty_driver *driver;
1993 
1994 	switch (device) {
1995 #ifdef CONFIG_VT
1996 	case MKDEV(TTY_MAJOR, 0): {
1997 		extern struct tty_driver *console_driver;
1998 		driver = tty_driver_kref_get(console_driver);
1999 		*index = fg_console;
2000 		*noctty = 1;
2001 		break;
2002 	}
2003 #endif
2004 	case MKDEV(TTYAUX_MAJOR, 1): {
2005 		struct tty_driver *console_driver = console_device(index);
2006 		if (console_driver) {
2007 			driver = tty_driver_kref_get(console_driver);
2008 			if (driver) {
2009 				/* Don't let /dev/console block */
2010 				filp->f_flags |= O_NONBLOCK;
2011 				*noctty = 1;
2012 				break;
2013 			}
2014 		}
2015 		return ERR_PTR(-ENODEV);
2016 	}
2017 	default:
2018 		driver = get_tty_driver(device, index);
2019 		if (!driver)
2020 			return ERR_PTR(-ENODEV);
2021 		break;
2022 	}
2023 	return driver;
2024 }
2025 
2026 /**
2027  *	tty_open		-	open a tty device
2028  *	@inode: inode of device file
2029  *	@filp: file pointer to tty
2030  *
2031  *	tty_open and tty_release keep up the tty count that contains the
2032  *	number of opens done on a tty. We cannot use the inode-count, as
2033  *	different inodes might point to the same tty.
2034  *
2035  *	Open-counting is needed for pty masters, as well as for keeping
2036  *	track of serial lines: DTR is dropped when the last close happens.
2037  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2038  *
2039  *	The termios state of a pty is reset on first open so that
2040  *	settings don't persist across reuse.
2041  *
2042  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2043  *		 tty->count should protect the rest.
2044  *		 ->siglock protects ->signal/->sighand
2045  *
2046  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2047  *	tty_mutex
2048  */
2049 
tty_open(struct inode * inode,struct file * filp)2050 static int tty_open(struct inode *inode, struct file *filp)
2051 {
2052 	struct tty_struct *tty;
2053 	int noctty, retval;
2054 	struct tty_driver *driver = NULL;
2055 	int index;
2056 	dev_t device = inode->i_rdev;
2057 	unsigned saved_flags = filp->f_flags;
2058 
2059 	nonseekable_open(inode, filp);
2060 
2061 retry_open:
2062 	retval = tty_alloc_file(filp);
2063 	if (retval)
2064 		return -ENOMEM;
2065 
2066 	noctty = filp->f_flags & O_NOCTTY;
2067 	index  = -1;
2068 	retval = 0;
2069 
2070 	tty = tty_open_current_tty(device, filp);
2071 	if (!tty) {
2072 		mutex_lock(&tty_mutex);
2073 		driver = tty_lookup_driver(device, filp, &noctty, &index);
2074 		if (IS_ERR(driver)) {
2075 			retval = PTR_ERR(driver);
2076 			goto err_unlock;
2077 		}
2078 
2079 		/* check whether we're reopening an existing tty */
2080 		tty = tty_driver_lookup_tty(driver, inode, index);
2081 		if (IS_ERR(tty)) {
2082 			retval = PTR_ERR(tty);
2083 			goto err_unlock;
2084 		}
2085 
2086 		if (tty) {
2087 			mutex_unlock(&tty_mutex);
2088 			retval = tty_lock_interruptible(tty);
2089 			tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2090 			if (retval) {
2091 				if (retval == -EINTR)
2092 					retval = -ERESTARTSYS;
2093 				goto err_unref;
2094 			}
2095 			retval = tty_reopen(tty);
2096 			if (retval < 0) {
2097 				tty_unlock(tty);
2098 				tty = ERR_PTR(retval);
2099 			}
2100 		} else { /* Returns with the tty_lock held for now */
2101 			tty = tty_init_dev(driver, index);
2102 			mutex_unlock(&tty_mutex);
2103 		}
2104 
2105 		tty_driver_kref_put(driver);
2106 	}
2107 
2108 	if (IS_ERR(tty)) {
2109 		retval = PTR_ERR(tty);
2110 		if (retval != -EAGAIN || signal_pending(current))
2111 			goto err_file;
2112 		tty_free_file(filp);
2113 		schedule();
2114 		goto retry_open;
2115 	}
2116 
2117 	tty_add_file(tty, filp);
2118 
2119 	check_tty_count(tty, __func__);
2120 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2121 	    tty->driver->subtype == PTY_TYPE_MASTER)
2122 		noctty = 1;
2123 
2124 	tty_debug_hangup(tty, "(tty count=%d)\n", tty->count);
2125 
2126 	if (tty->ops->open)
2127 		retval = tty->ops->open(tty, filp);
2128 	else
2129 		retval = -ENODEV;
2130 	filp->f_flags = saved_flags;
2131 
2132 	if (retval) {
2133 		tty_debug_hangup(tty, "error %d, releasing...\n", retval);
2134 
2135 		tty_unlock(tty); /* need to call tty_release without BTM */
2136 		tty_release(inode, filp);
2137 		if (retval != -ERESTARTSYS)
2138 			return retval;
2139 
2140 		if (signal_pending(current))
2141 			return retval;
2142 
2143 		schedule();
2144 		/*
2145 		 * Need to reset f_op in case a hangup happened.
2146 		 */
2147 		if (tty_hung_up_p(filp))
2148 			filp->f_op = &tty_fops;
2149 		goto retry_open;
2150 	}
2151 	clear_bit(TTY_HUPPED, &tty->flags);
2152 
2153 
2154 	read_lock(&tasklist_lock);
2155 	spin_lock_irq(&current->sighand->siglock);
2156 	if (!noctty &&
2157 	    current->signal->leader &&
2158 	    !current->signal->tty &&
2159 	    tty->session == NULL) {
2160 		/*
2161 		 * Don't let a process that only has write access to the tty
2162 		 * obtain the privileges associated with having a tty as
2163 		 * controlling terminal (being able to reopen it with full
2164 		 * access through /dev/tty, being able to perform pushback).
2165 		 * Many distributions set the group of all ttys to "tty" and
2166 		 * grant write-only access to all terminals for setgid tty
2167 		 * binaries, which should not imply full privileges on all ttys.
2168 		 *
2169 		 * This could theoretically break old code that performs open()
2170 		 * on a write-only file descriptor. In that case, it might be
2171 		 * necessary to also permit this if
2172 		 * inode_permission(inode, MAY_READ) == 0.
2173 		 */
2174 		if (filp->f_mode & FMODE_READ)
2175 			__proc_set_tty(tty);
2176 	}
2177 	spin_unlock_irq(&current->sighand->siglock);
2178 	read_unlock(&tasklist_lock);
2179 	tty_unlock(tty);
2180 	return 0;
2181 err_unlock:
2182 	mutex_unlock(&tty_mutex);
2183 err_unref:
2184 	/* after locks to avoid deadlock */
2185 	if (!IS_ERR_OR_NULL(driver))
2186 		tty_driver_kref_put(driver);
2187 err_file:
2188 	tty_free_file(filp);
2189 	return retval;
2190 }
2191 
2192 
2193 
2194 /**
2195  *	tty_poll	-	check tty status
2196  *	@filp: file being polled
2197  *	@wait: poll wait structures to update
2198  *
2199  *	Call the line discipline polling method to obtain the poll
2200  *	status of the device.
2201  *
2202  *	Locking: locks called line discipline but ldisc poll method
2203  *	may be re-entered freely by other callers.
2204  */
2205 
tty_poll(struct file * filp,poll_table * wait)2206 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207 {
2208 	struct tty_struct *tty = file_tty(filp);
2209 	struct tty_ldisc *ld;
2210 	int ret = 0;
2211 
2212 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213 		return 0;
2214 
2215 	ld = tty_ldisc_ref_wait(tty);
2216 	if (ld->ops->poll)
2217 		ret = ld->ops->poll(tty, filp, wait);
2218 	tty_ldisc_deref(ld);
2219 	return ret;
2220 }
2221 
__tty_fasync(int fd,struct file * filp,int on)2222 static int __tty_fasync(int fd, struct file *filp, int on)
2223 {
2224 	struct tty_struct *tty = file_tty(filp);
2225 	struct tty_ldisc *ldisc;
2226 	unsigned long flags;
2227 	int retval = 0;
2228 
2229 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2230 		goto out;
2231 
2232 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2233 	if (retval <= 0)
2234 		goto out;
2235 
2236 	ldisc = tty_ldisc_ref(tty);
2237 	if (ldisc) {
2238 		if (ldisc->ops->fasync)
2239 			ldisc->ops->fasync(tty, on);
2240 		tty_ldisc_deref(ldisc);
2241 	}
2242 
2243 	if (on) {
2244 		enum pid_type type;
2245 		struct pid *pid;
2246 
2247 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2248 		if (tty->pgrp) {
2249 			pid = tty->pgrp;
2250 			type = PIDTYPE_PGID;
2251 		} else {
2252 			pid = task_pid(current);
2253 			type = PIDTYPE_PID;
2254 		}
2255 		get_pid(pid);
2256 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2257 		__f_setown(filp, pid, type, 0);
2258 		put_pid(pid);
2259 		retval = 0;
2260 	}
2261 out:
2262 	return retval;
2263 }
2264 
tty_fasync(int fd,struct file * filp,int on)2265 static int tty_fasync(int fd, struct file *filp, int on)
2266 {
2267 	struct tty_struct *tty = file_tty(filp);
2268 	int retval;
2269 
2270 	tty_lock(tty);
2271 	retval = __tty_fasync(fd, filp, on);
2272 	tty_unlock(tty);
2273 
2274 	return retval;
2275 }
2276 
2277 /**
2278  *	tiocsti			-	fake input character
2279  *	@tty: tty to fake input into
2280  *	@p: pointer to character
2281  *
2282  *	Fake input to a tty device. Does the necessary locking and
2283  *	input management.
2284  *
2285  *	FIXME: does not honour flow control ??
2286  *
2287  *	Locking:
2288  *		Called functions take tty_ldiscs_lock
2289  *		current->signal->tty check is safe without locks
2290  */
2291 
tiocsti(struct tty_struct * tty,char __user * p)2292 static int tiocsti(struct tty_struct *tty, char __user *p)
2293 {
2294 	char ch, mbz = 0;
2295 	struct tty_ldisc *ld;
2296 
2297 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2298 		return -EPERM;
2299 	if (get_user(ch, p))
2300 		return -EFAULT;
2301 	tty_audit_tiocsti(tty, ch);
2302 	ld = tty_ldisc_ref_wait(tty);
2303 	tty_buffer_lock_exclusive(tty->port);
2304 	if (ld->ops->receive_buf)
2305 		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2306 	tty_buffer_unlock_exclusive(tty->port);
2307 	tty_ldisc_deref(ld);
2308 	return 0;
2309 }
2310 
2311 /**
2312  *	tiocgwinsz		-	implement window query ioctl
2313  *	@tty; tty
2314  *	@arg: user buffer for result
2315  *
2316  *	Copies the kernel idea of the window size into the user buffer.
2317  *
2318  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2319  *		is consistent.
2320  */
2321 
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2322 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2323 {
2324 	int err;
2325 
2326 	mutex_lock(&tty->winsize_mutex);
2327 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2328 	mutex_unlock(&tty->winsize_mutex);
2329 
2330 	return err ? -EFAULT: 0;
2331 }
2332 
2333 /**
2334  *	tty_do_resize		-	resize event
2335  *	@tty: tty being resized
2336  *	@rows: rows (character)
2337  *	@cols: cols (character)
2338  *
2339  *	Update the termios variables and send the necessary signals to
2340  *	peform a terminal resize correctly
2341  */
2342 
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2343 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2344 {
2345 	struct pid *pgrp;
2346 
2347 	/* Lock the tty */
2348 	mutex_lock(&tty->winsize_mutex);
2349 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2350 		goto done;
2351 
2352 	/* Signal the foreground process group */
2353 	pgrp = tty_get_pgrp(tty);
2354 	if (pgrp)
2355 		kill_pgrp(pgrp, SIGWINCH, 1);
2356 	put_pid(pgrp);
2357 
2358 	tty->winsize = *ws;
2359 done:
2360 	mutex_unlock(&tty->winsize_mutex);
2361 	return 0;
2362 }
2363 EXPORT_SYMBOL(tty_do_resize);
2364 
2365 /**
2366  *	tiocswinsz		-	implement window size set ioctl
2367  *	@tty; tty side of tty
2368  *	@arg: user buffer for result
2369  *
2370  *	Copies the user idea of the window size to the kernel. Traditionally
2371  *	this is just advisory information but for the Linux console it
2372  *	actually has driver level meaning and triggers a VC resize.
2373  *
2374  *	Locking:
2375  *		Driver dependent. The default do_resize method takes the
2376  *	tty termios mutex and ctrl_lock. The console takes its own lock
2377  *	then calls into the default method.
2378  */
2379 
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2380 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2381 {
2382 	struct winsize tmp_ws;
2383 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2384 		return -EFAULT;
2385 
2386 	if (tty->ops->resize)
2387 		return tty->ops->resize(tty, &tmp_ws);
2388 	else
2389 		return tty_do_resize(tty, &tmp_ws);
2390 }
2391 
2392 /**
2393  *	tioccons	-	allow admin to move logical console
2394  *	@file: the file to become console
2395  *
2396  *	Allow the administrator to move the redirected console device
2397  *
2398  *	Locking: uses redirect_lock to guard the redirect information
2399  */
2400 
tioccons(struct file * file)2401 static int tioccons(struct file *file)
2402 {
2403 	if (!capable(CAP_SYS_ADMIN))
2404 		return -EPERM;
2405 	if (file->f_op->write == redirected_tty_write) {
2406 		struct file *f;
2407 		spin_lock(&redirect_lock);
2408 		f = redirect;
2409 		redirect = NULL;
2410 		spin_unlock(&redirect_lock);
2411 		if (f)
2412 			fput(f);
2413 		return 0;
2414 	}
2415 	spin_lock(&redirect_lock);
2416 	if (redirect) {
2417 		spin_unlock(&redirect_lock);
2418 		return -EBUSY;
2419 	}
2420 	redirect = get_file(file);
2421 	spin_unlock(&redirect_lock);
2422 	return 0;
2423 }
2424 
2425 /**
2426  *	fionbio		-	non blocking ioctl
2427  *	@file: file to set blocking value
2428  *	@p: user parameter
2429  *
2430  *	Historical tty interfaces had a blocking control ioctl before
2431  *	the generic functionality existed. This piece of history is preserved
2432  *	in the expected tty API of posix OS's.
2433  *
2434  *	Locking: none, the open file handle ensures it won't go away.
2435  */
2436 
fionbio(struct file * file,int __user * p)2437 static int fionbio(struct file *file, int __user *p)
2438 {
2439 	int nonblock;
2440 
2441 	if (get_user(nonblock, p))
2442 		return -EFAULT;
2443 
2444 	spin_lock(&file->f_lock);
2445 	if (nonblock)
2446 		file->f_flags |= O_NONBLOCK;
2447 	else
2448 		file->f_flags &= ~O_NONBLOCK;
2449 	spin_unlock(&file->f_lock);
2450 	return 0;
2451 }
2452 
2453 /**
2454  *	tiocsctty	-	set controlling tty
2455  *	@tty: tty structure
2456  *	@arg: user argument
2457  *
2458  *	This ioctl is used to manage job control. It permits a session
2459  *	leader to set this tty as the controlling tty for the session.
2460  *
2461  *	Locking:
2462  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2463  *		Takes tasklist_lock internally to walk sessions
2464  *		Takes ->siglock() when updating signal->tty
2465  */
2466 
tiocsctty(struct tty_struct * tty,struct file * file,int arg)2467 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2468 {
2469 	int ret = 0;
2470 
2471 	tty_lock(tty);
2472 	read_lock(&tasklist_lock);
2473 
2474 	if (current->signal->leader && (task_session(current) == tty->session))
2475 		goto unlock;
2476 
2477 	/*
2478 	 * The process must be a session leader and
2479 	 * not have a controlling tty already.
2480 	 */
2481 	if (!current->signal->leader || current->signal->tty) {
2482 		ret = -EPERM;
2483 		goto unlock;
2484 	}
2485 
2486 	if (tty->session) {
2487 		/*
2488 		 * This tty is already the controlling
2489 		 * tty for another session group!
2490 		 */
2491 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2492 			/*
2493 			 * Steal it away
2494 			 */
2495 			session_clear_tty(tty->session);
2496 		} else {
2497 			ret = -EPERM;
2498 			goto unlock;
2499 		}
2500 	}
2501 
2502 	/* See the comment in tty_open(). */
2503 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2504 		ret = -EPERM;
2505 		goto unlock;
2506 	}
2507 
2508 	proc_set_tty(tty);
2509 unlock:
2510 	read_unlock(&tasklist_lock);
2511 	tty_unlock(tty);
2512 	return ret;
2513 }
2514 
2515 /**
2516  *	tty_get_pgrp	-	return a ref counted pgrp pid
2517  *	@tty: tty to read
2518  *
2519  *	Returns a refcounted instance of the pid struct for the process
2520  *	group controlling the tty.
2521  */
2522 
tty_get_pgrp(struct tty_struct * tty)2523 struct pid *tty_get_pgrp(struct tty_struct *tty)
2524 {
2525 	unsigned long flags;
2526 	struct pid *pgrp;
2527 
2528 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2529 	pgrp = get_pid(tty->pgrp);
2530 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2531 
2532 	return pgrp;
2533 }
2534 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2535 
2536 /*
2537  * This checks not only the pgrp, but falls back on the pid if no
2538  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2539  * without this...
2540  *
2541  * The caller must hold rcu lock or the tasklist lock.
2542  */
session_of_pgrp(struct pid * pgrp)2543 static struct pid *session_of_pgrp(struct pid *pgrp)
2544 {
2545 	struct task_struct *p;
2546 	struct pid *sid = NULL;
2547 
2548 	p = pid_task(pgrp, PIDTYPE_PGID);
2549 	if (p == NULL)
2550 		p = pid_task(pgrp, PIDTYPE_PID);
2551 	if (p != NULL)
2552 		sid = task_session(p);
2553 
2554 	return sid;
2555 }
2556 
2557 /**
2558  *	tiocgpgrp		-	get process group
2559  *	@tty: tty passed by user
2560  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2561  *	@p: returned pid
2562  *
2563  *	Obtain the process group of the tty. If there is no process group
2564  *	return an error.
2565  *
2566  *	Locking: none. Reference to current->signal->tty is safe.
2567  */
2568 
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2569 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2570 {
2571 	struct pid *pid;
2572 	int ret;
2573 	/*
2574 	 * (tty == real_tty) is a cheap way of
2575 	 * testing if the tty is NOT a master pty.
2576 	 */
2577 	if (tty == real_tty && current->signal->tty != real_tty)
2578 		return -ENOTTY;
2579 	pid = tty_get_pgrp(real_tty);
2580 	ret =  put_user(pid_vnr(pid), p);
2581 	put_pid(pid);
2582 	return ret;
2583 }
2584 
2585 /**
2586  *	tiocspgrp		-	attempt to set process group
2587  *	@tty: tty passed by user
2588  *	@real_tty: tty side device matching tty passed by user
2589  *	@p: pid pointer
2590  *
2591  *	Set the process group of the tty to the session passed. Only
2592  *	permitted where the tty session is our session.
2593  *
2594  *	Locking: RCU, ctrl lock
2595  */
2596 
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2597 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2598 {
2599 	struct pid *pgrp;
2600 	pid_t pgrp_nr;
2601 	int retval = tty_check_change(real_tty);
2602 
2603 	if (retval == -EIO)
2604 		return -ENOTTY;
2605 	if (retval)
2606 		return retval;
2607 
2608 	if (get_user(pgrp_nr, p))
2609 		return -EFAULT;
2610 	if (pgrp_nr < 0)
2611 		return -EINVAL;
2612 
2613 	spin_lock_irq(&real_tty->ctrl_lock);
2614 	if (!current->signal->tty ||
2615 	    (current->signal->tty != real_tty) ||
2616 	    (real_tty->session != task_session(current))) {
2617 		retval = -ENOTTY;
2618 		goto out_unlock_ctrl;
2619 	}
2620 	rcu_read_lock();
2621 	pgrp = find_vpid(pgrp_nr);
2622 	retval = -ESRCH;
2623 	if (!pgrp)
2624 		goto out_unlock;
2625 	retval = -EPERM;
2626 	if (session_of_pgrp(pgrp) != task_session(current))
2627 		goto out_unlock;
2628 	retval = 0;
2629 	put_pid(real_tty->pgrp);
2630 	real_tty->pgrp = get_pid(pgrp);
2631 out_unlock:
2632 	rcu_read_unlock();
2633 out_unlock_ctrl:
2634 	spin_unlock_irq(&real_tty->ctrl_lock);
2635 	return retval;
2636 }
2637 
2638 /**
2639  *	tiocgsid		-	get session id
2640  *	@tty: tty passed by user
2641  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2642  *	@p: pointer to returned session id
2643  *
2644  *	Obtain the session id of the tty. If there is no session
2645  *	return an error.
2646  */
2647 
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2648 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2649 {
2650 	unsigned long flags;
2651 	pid_t sid;
2652 
2653 	/*
2654 	 * (tty == real_tty) is a cheap way of
2655 	 * testing if the tty is NOT a master pty.
2656 	*/
2657 	if (tty == real_tty && current->signal->tty != real_tty)
2658 		return -ENOTTY;
2659 
2660 	spin_lock_irqsave(&real_tty->ctrl_lock, flags);
2661 	if (!real_tty->session)
2662 		goto err;
2663 	sid = pid_vnr(real_tty->session);
2664 	spin_unlock_irqrestore(&real_tty->ctrl_lock, flags);
2665 
2666 	return put_user(sid, p);
2667 
2668 err:
2669 	spin_unlock_irqrestore(&real_tty->ctrl_lock, flags);
2670 	return -ENOTTY;
2671 }
2672 
2673 /**
2674  *	tiocsetd	-	set line discipline
2675  *	@tty: tty device
2676  *	@p: pointer to user data
2677  *
2678  *	Set the line discipline according to user request.
2679  *
2680  *	Locking: see tty_set_ldisc, this function is just a helper
2681  */
2682 
tiocsetd(struct tty_struct * tty,int __user * p)2683 static int tiocsetd(struct tty_struct *tty, int __user *p)
2684 {
2685 	int ldisc;
2686 	int ret;
2687 
2688 	if (get_user(ldisc, p))
2689 		return -EFAULT;
2690 
2691 	ret = tty_set_ldisc(tty, ldisc);
2692 
2693 	return ret;
2694 }
2695 
2696 /**
2697  *	tiocgetd	-	get line discipline
2698  *	@tty: tty device
2699  *	@p: pointer to user data
2700  *
2701  *	Retrieves the line discipline id directly from the ldisc.
2702  *
2703  *	Locking: waits for ldisc reference (in case the line discipline
2704  *		is changing or the tty is being hungup)
2705  */
2706 
tiocgetd(struct tty_struct * tty,int __user * p)2707 static int tiocgetd(struct tty_struct *tty, int __user *p)
2708 {
2709 	struct tty_ldisc *ld;
2710 	int ret;
2711 
2712 	ld = tty_ldisc_ref_wait(tty);
2713 	ret = put_user(ld->ops->num, p);
2714 	tty_ldisc_deref(ld);
2715 	return ret;
2716 }
2717 
2718 /**
2719  *	send_break	-	performed time break
2720  *	@tty: device to break on
2721  *	@duration: timeout in mS
2722  *
2723  *	Perform a timed break on hardware that lacks its own driver level
2724  *	timed break functionality.
2725  *
2726  *	Locking:
2727  *		atomic_write_lock serializes
2728  *
2729  */
2730 
send_break(struct tty_struct * tty,unsigned int duration)2731 static int send_break(struct tty_struct *tty, unsigned int duration)
2732 {
2733 	int retval;
2734 
2735 	if (tty->ops->break_ctl == NULL)
2736 		return 0;
2737 
2738 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2739 		retval = tty->ops->break_ctl(tty, duration);
2740 	else {
2741 		/* Do the work ourselves */
2742 		if (tty_write_lock(tty, 0) < 0)
2743 			return -EINTR;
2744 		retval = tty->ops->break_ctl(tty, -1);
2745 		if (retval)
2746 			goto out;
2747 		if (!signal_pending(current))
2748 			msleep_interruptible(duration);
2749 		retval = tty->ops->break_ctl(tty, 0);
2750 out:
2751 		tty_write_unlock(tty);
2752 		if (signal_pending(current))
2753 			retval = -EINTR;
2754 	}
2755 	return retval;
2756 }
2757 
2758 /**
2759  *	tty_tiocmget		-	get modem status
2760  *	@tty: tty device
2761  *	@file: user file pointer
2762  *	@p: pointer to result
2763  *
2764  *	Obtain the modem status bits from the tty driver if the feature
2765  *	is supported. Return -ENOTTY if it is not available.
2766  *
2767  *	Locking: none (up to the driver)
2768  */
2769 
tty_tiocmget(struct tty_struct * tty,int __user * p)2770 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2771 {
2772 	int retval = -ENOTTY;
2773 
2774 	if (tty->ops->tiocmget) {
2775 		retval = tty->ops->tiocmget(tty);
2776 
2777 		if (retval >= 0)
2778 			retval = put_user(retval, p);
2779 	}
2780 	return retval;
2781 }
2782 
2783 /**
2784  *	tty_tiocmset		-	set modem status
2785  *	@tty: tty device
2786  *	@cmd: command - clear bits, set bits or set all
2787  *	@p: pointer to desired bits
2788  *
2789  *	Set the modem status bits from the tty driver if the feature
2790  *	is supported. Return -ENOTTY if it is not available.
2791  *
2792  *	Locking: none (up to the driver)
2793  */
2794 
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2795 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2796 	     unsigned __user *p)
2797 {
2798 	int retval;
2799 	unsigned int set, clear, val;
2800 
2801 	if (tty->ops->tiocmset == NULL)
2802 		return -ENOTTY;
2803 
2804 	retval = get_user(val, p);
2805 	if (retval)
2806 		return retval;
2807 	set = clear = 0;
2808 	switch (cmd) {
2809 	case TIOCMBIS:
2810 		set = val;
2811 		break;
2812 	case TIOCMBIC:
2813 		clear = val;
2814 		break;
2815 	case TIOCMSET:
2816 		set = val;
2817 		clear = ~val;
2818 		break;
2819 	}
2820 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2821 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2822 	return tty->ops->tiocmset(tty, set, clear);
2823 }
2824 
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2825 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2826 {
2827 	int retval = -EINVAL;
2828 	struct serial_icounter_struct icount;
2829 	memset(&icount, 0, sizeof(icount));
2830 	if (tty->ops->get_icount)
2831 		retval = tty->ops->get_icount(tty, &icount);
2832 	if (retval != 0)
2833 		return retval;
2834 	if (copy_to_user(arg, &icount, sizeof(icount)))
2835 		return -EFAULT;
2836 	return 0;
2837 }
2838 
tty_warn_deprecated_flags(struct serial_struct __user * ss)2839 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2840 {
2841 	static DEFINE_RATELIMIT_STATE(depr_flags,
2842 			DEFAULT_RATELIMIT_INTERVAL,
2843 			DEFAULT_RATELIMIT_BURST);
2844 	char comm[TASK_COMM_LEN];
2845 	int flags;
2846 
2847 	if (get_user(flags, &ss->flags))
2848 		return;
2849 
2850 	flags &= ASYNC_DEPRECATED;
2851 
2852 	if (flags && __ratelimit(&depr_flags))
2853 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2854 				__func__, get_task_comm(comm, current), flags);
2855 }
2856 
2857 /*
2858  * if pty, return the slave side (real_tty)
2859  * otherwise, return self
2860  */
tty_pair_get_tty(struct tty_struct * tty)2861 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2862 {
2863 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2864 	    tty->driver->subtype == PTY_TYPE_MASTER)
2865 		tty = tty->link;
2866 	return tty;
2867 }
2868 
2869 /*
2870  * Split this up, as gcc can choke on it otherwise..
2871  */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2872 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2873 {
2874 	struct tty_struct *tty = file_tty(file);
2875 	struct tty_struct *real_tty;
2876 	void __user *p = (void __user *)arg;
2877 	int retval;
2878 	struct tty_ldisc *ld;
2879 
2880 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2881 		return -EINVAL;
2882 
2883 	real_tty = tty_pair_get_tty(tty);
2884 
2885 	/*
2886 	 * Factor out some common prep work
2887 	 */
2888 	switch (cmd) {
2889 	case TIOCSETD:
2890 	case TIOCSBRK:
2891 	case TIOCCBRK:
2892 	case TCSBRK:
2893 	case TCSBRKP:
2894 		retval = tty_check_change(tty);
2895 		if (retval)
2896 			return retval;
2897 		if (cmd != TIOCCBRK) {
2898 			tty_wait_until_sent(tty, 0);
2899 			if (signal_pending(current))
2900 				return -EINTR;
2901 		}
2902 		break;
2903 	}
2904 
2905 	/*
2906 	 *	Now do the stuff.
2907 	 */
2908 	switch (cmd) {
2909 	case TIOCSTI:
2910 		return tiocsti(tty, p);
2911 	case TIOCGWINSZ:
2912 		return tiocgwinsz(real_tty, p);
2913 	case TIOCSWINSZ:
2914 		return tiocswinsz(real_tty, p);
2915 	case TIOCCONS:
2916 		return real_tty != tty ? -EINVAL : tioccons(file);
2917 	case FIONBIO:
2918 		return fionbio(file, p);
2919 	case TIOCEXCL:
2920 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2921 		return 0;
2922 	case TIOCNXCL:
2923 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2924 		return 0;
2925 	case TIOCGEXCL:
2926 	{
2927 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2928 		return put_user(excl, (int __user *)p);
2929 	}
2930 	case TIOCNOTTY:
2931 		if (current->signal->tty != tty)
2932 			return -ENOTTY;
2933 		no_tty();
2934 		return 0;
2935 	case TIOCSCTTY:
2936 		return tiocsctty(tty, file, arg);
2937 	case TIOCGPGRP:
2938 		return tiocgpgrp(tty, real_tty, p);
2939 	case TIOCSPGRP:
2940 		return tiocspgrp(tty, real_tty, p);
2941 	case TIOCGSID:
2942 		return tiocgsid(tty, real_tty, p);
2943 	case TIOCGETD:
2944 		return tiocgetd(tty, p);
2945 	case TIOCSETD:
2946 		return tiocsetd(tty, p);
2947 	case TIOCVHANGUP:
2948 		if (!capable(CAP_SYS_ADMIN))
2949 			return -EPERM;
2950 		tty_vhangup(tty);
2951 		return 0;
2952 	case TIOCGDEV:
2953 	{
2954 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2955 		return put_user(ret, (unsigned int __user *)p);
2956 	}
2957 	/*
2958 	 * Break handling
2959 	 */
2960 	case TIOCSBRK:	/* Turn break on, unconditionally */
2961 		if (tty->ops->break_ctl)
2962 			return tty->ops->break_ctl(tty, -1);
2963 		return 0;
2964 	case TIOCCBRK:	/* Turn break off, unconditionally */
2965 		if (tty->ops->break_ctl)
2966 			return tty->ops->break_ctl(tty, 0);
2967 		return 0;
2968 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2969 		/* non-zero arg means wait for all output data
2970 		 * to be sent (performed above) but don't send break.
2971 		 * This is used by the tcdrain() termios function.
2972 		 */
2973 		if (!arg)
2974 			return send_break(tty, 250);
2975 		return 0;
2976 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2977 		return send_break(tty, arg ? arg*100 : 250);
2978 
2979 	case TIOCMGET:
2980 		return tty_tiocmget(tty, p);
2981 	case TIOCMSET:
2982 	case TIOCMBIC:
2983 	case TIOCMBIS:
2984 		return tty_tiocmset(tty, cmd, p);
2985 	case TIOCGICOUNT:
2986 		retval = tty_tiocgicount(tty, p);
2987 		/* For the moment allow fall through to the old method */
2988         	if (retval != -EINVAL)
2989 			return retval;
2990 		break;
2991 	case TCFLSH:
2992 		switch (arg) {
2993 		case TCIFLUSH:
2994 		case TCIOFLUSH:
2995 		/* flush tty buffer and allow ldisc to process ioctl */
2996 			tty_buffer_flush(tty, NULL);
2997 			break;
2998 		}
2999 		break;
3000 	case TIOCSSERIAL:
3001 		tty_warn_deprecated_flags(p);
3002 		break;
3003 	}
3004 	if (tty->ops->ioctl) {
3005 		retval = tty->ops->ioctl(tty, cmd, arg);
3006 		if (retval != -ENOIOCTLCMD)
3007 			return retval;
3008 	}
3009 	ld = tty_ldisc_ref_wait(tty);
3010 	retval = -EINVAL;
3011 	if (ld->ops->ioctl) {
3012 		retval = ld->ops->ioctl(tty, file, cmd, arg);
3013 		if (retval == -ENOIOCTLCMD)
3014 			retval = -ENOTTY;
3015 	}
3016 	tty_ldisc_deref(ld);
3017 	return retval;
3018 }
3019 
3020 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3021 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3022 				unsigned long arg)
3023 {
3024 	struct tty_struct *tty = file_tty(file);
3025 	struct tty_ldisc *ld;
3026 	int retval = -ENOIOCTLCMD;
3027 
3028 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3029 		return -EINVAL;
3030 
3031 	if (tty->ops->compat_ioctl) {
3032 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3033 		if (retval != -ENOIOCTLCMD)
3034 			return retval;
3035 	}
3036 
3037 	ld = tty_ldisc_ref_wait(tty);
3038 	if (ld->ops->compat_ioctl)
3039 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3040 	else
3041 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3042 	tty_ldisc_deref(ld);
3043 
3044 	return retval;
3045 }
3046 #endif
3047 
this_tty(const void * t,struct file * file,unsigned fd)3048 static int this_tty(const void *t, struct file *file, unsigned fd)
3049 {
3050 	if (likely(file->f_op->read != tty_read))
3051 		return 0;
3052 	return file_tty(file) != t ? 0 : fd + 1;
3053 }
3054 
3055 /*
3056  * This implements the "Secure Attention Key" ---  the idea is to
3057  * prevent trojan horses by killing all processes associated with this
3058  * tty when the user hits the "Secure Attention Key".  Required for
3059  * super-paranoid applications --- see the Orange Book for more details.
3060  *
3061  * This code could be nicer; ideally it should send a HUP, wait a few
3062  * seconds, then send a INT, and then a KILL signal.  But you then
3063  * have to coordinate with the init process, since all processes associated
3064  * with the current tty must be dead before the new getty is allowed
3065  * to spawn.
3066  *
3067  * Now, if it would be correct ;-/ The current code has a nasty hole -
3068  * it doesn't catch files in flight. We may send the descriptor to ourselves
3069  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3070  *
3071  * Nasty bug: do_SAK is being called in interrupt context.  This can
3072  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3073  */
__do_SAK(struct tty_struct * tty)3074 void __do_SAK(struct tty_struct *tty)
3075 {
3076 #ifdef TTY_SOFT_SAK
3077 	tty_hangup(tty);
3078 #else
3079 	struct task_struct *g, *p;
3080 	struct pid *session;
3081 	int		i;
3082 	unsigned long flags;
3083 
3084 	if (!tty)
3085 		return;
3086 
3087 	spin_lock_irqsave(&tty->ctrl_lock, flags);
3088 	session = get_pid(tty->session);
3089 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3090 
3091 	tty_ldisc_flush(tty);
3092 
3093 	tty_driver_flush_buffer(tty);
3094 
3095 	read_lock(&tasklist_lock);
3096 	/* Kill the entire session */
3097 	do_each_pid_task(session, PIDTYPE_SID, p) {
3098 		printk(KERN_NOTICE "SAK: killed process %d"
3099 			" (%s): task_session(p)==tty->session\n",
3100 			task_pid_nr(p), p->comm);
3101 		send_sig(SIGKILL, p, 1);
3102 	} while_each_pid_task(session, PIDTYPE_SID, p);
3103 	/* Now kill any processes that happen to have the
3104 	 * tty open.
3105 	 */
3106 	do_each_thread(g, p) {
3107 		if (p->signal->tty == tty) {
3108 			printk(KERN_NOTICE "SAK: killed process %d"
3109 			    " (%s): task_session(p)==tty->session\n",
3110 			    task_pid_nr(p), p->comm);
3111 			send_sig(SIGKILL, p, 1);
3112 			continue;
3113 		}
3114 		task_lock(p);
3115 		i = iterate_fd(p->files, 0, this_tty, tty);
3116 		if (i != 0) {
3117 			printk(KERN_NOTICE "SAK: killed process %d"
3118 			    " (%s): fd#%d opened to the tty\n",
3119 				    task_pid_nr(p), p->comm, i - 1);
3120 			force_sig(SIGKILL, p);
3121 		}
3122 		task_unlock(p);
3123 	} while_each_thread(g, p);
3124 	read_unlock(&tasklist_lock);
3125 	put_pid(session);
3126 #endif
3127 }
3128 
do_SAK_work(struct work_struct * work)3129 static void do_SAK_work(struct work_struct *work)
3130 {
3131 	struct tty_struct *tty =
3132 		container_of(work, struct tty_struct, SAK_work);
3133 	__do_SAK(tty);
3134 }
3135 
3136 /*
3137  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3138  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3139  * the values which we write to it will be identical to the values which it
3140  * already has. --akpm
3141  */
do_SAK(struct tty_struct * tty)3142 void do_SAK(struct tty_struct *tty)
3143 {
3144 	if (!tty)
3145 		return;
3146 	schedule_work(&tty->SAK_work);
3147 }
3148 
3149 EXPORT_SYMBOL(do_SAK);
3150 
dev_match_devt(struct device * dev,const void * data)3151 static int dev_match_devt(struct device *dev, const void *data)
3152 {
3153 	const dev_t *devt = data;
3154 	return dev->devt == *devt;
3155 }
3156 
3157 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3158 static struct device *tty_get_device(struct tty_struct *tty)
3159 {
3160 	dev_t devt = tty_devnum(tty);
3161 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3162 }
3163 
3164 
3165 /**
3166  *	alloc_tty_struct
3167  *
3168  *	This subroutine allocates and initializes a tty structure.
3169  *
3170  *	Locking: none - tty in question is not exposed at this point
3171  */
3172 
alloc_tty_struct(struct tty_driver * driver,int idx)3173 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3174 {
3175 	struct tty_struct *tty;
3176 
3177 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3178 	if (!tty)
3179 		return NULL;
3180 
3181 	kref_init(&tty->kref);
3182 	tty->magic = TTY_MAGIC;
3183 	if (tty_ldisc_init(tty)) {
3184 		kfree(tty);
3185 		return NULL;
3186 	}
3187 	tty->session = NULL;
3188 	tty->pgrp = NULL;
3189 	mutex_init(&tty->legacy_mutex);
3190 	mutex_init(&tty->throttle_mutex);
3191 	init_rwsem(&tty->termios_rwsem);
3192 	mutex_init(&tty->winsize_mutex);
3193 	init_ldsem(&tty->ldisc_sem);
3194 	init_waitqueue_head(&tty->write_wait);
3195 	init_waitqueue_head(&tty->read_wait);
3196 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3197 	mutex_init(&tty->atomic_write_lock);
3198 	spin_lock_init(&tty->ctrl_lock);
3199 	spin_lock_init(&tty->flow_lock);
3200 	INIT_LIST_HEAD(&tty->tty_files);
3201 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3202 
3203 	tty->driver = driver;
3204 	tty->ops = driver->ops;
3205 	tty->index = idx;
3206 	tty_line_name(driver, idx, tty->name);
3207 	tty->dev = tty_get_device(tty);
3208 
3209 	return tty;
3210 }
3211 
3212 /**
3213  *	deinitialize_tty_struct
3214  *	@tty: tty to deinitialize
3215  *
3216  *	This subroutine deinitializes a tty structure that has been newly
3217  *	allocated but tty_release cannot be called on that yet.
3218  *
3219  *	Locking: none - tty in question must not be exposed at this point
3220  */
deinitialize_tty_struct(struct tty_struct * tty)3221 void deinitialize_tty_struct(struct tty_struct *tty)
3222 {
3223 	tty_ldisc_deinit(tty);
3224 }
3225 
3226 /**
3227  *	tty_put_char	-	write one character to a tty
3228  *	@tty: tty
3229  *	@ch: character
3230  *
3231  *	Write one byte to the tty using the provided put_char method
3232  *	if present. Returns the number of characters successfully output.
3233  *
3234  *	Note: the specific put_char operation in the driver layer may go
3235  *	away soon. Don't call it directly, use this method
3236  */
3237 
tty_put_char(struct tty_struct * tty,unsigned char ch)3238 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3239 {
3240 	if (tty->ops->put_char)
3241 		return tty->ops->put_char(tty, ch);
3242 	return tty->ops->write(tty, &ch, 1);
3243 }
3244 EXPORT_SYMBOL_GPL(tty_put_char);
3245 
3246 struct class *tty_class;
3247 
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3248 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3249 		unsigned int index, unsigned int count)
3250 {
3251 	int err;
3252 
3253 	/* init here, since reused cdevs cause crashes */
3254 	driver->cdevs[index] = cdev_alloc();
3255 	if (!driver->cdevs[index])
3256 		return -ENOMEM;
3257 	driver->cdevs[index]->ops = &tty_fops;
3258 	driver->cdevs[index]->owner = driver->owner;
3259 	err = cdev_add(driver->cdevs[index], dev, count);
3260 	if (err)
3261 		kobject_put(&driver->cdevs[index]->kobj);
3262 	return err;
3263 }
3264 
3265 /**
3266  *	tty_register_device - register a tty device
3267  *	@driver: the tty driver that describes the tty device
3268  *	@index: the index in the tty driver for this tty device
3269  *	@device: a struct device that is associated with this tty device.
3270  *		This field is optional, if there is no known struct device
3271  *		for this tty device it can be set to NULL safely.
3272  *
3273  *	Returns a pointer to the struct device for this tty device
3274  *	(or ERR_PTR(-EFOO) on error).
3275  *
3276  *	This call is required to be made to register an individual tty device
3277  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3278  *	that bit is not set, this function should not be called by a tty
3279  *	driver.
3280  *
3281  *	Locking: ??
3282  */
3283 
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3284 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3285 				   struct device *device)
3286 {
3287 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3288 }
3289 EXPORT_SYMBOL(tty_register_device);
3290 
tty_device_create_release(struct device * dev)3291 static void tty_device_create_release(struct device *dev)
3292 {
3293 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3294 	kfree(dev);
3295 }
3296 
3297 /**
3298  *	tty_register_device_attr - register a tty device
3299  *	@driver: the tty driver that describes the tty device
3300  *	@index: the index in the tty driver for this tty device
3301  *	@device: a struct device that is associated with this tty device.
3302  *		This field is optional, if there is no known struct device
3303  *		for this tty device it can be set to NULL safely.
3304  *	@drvdata: Driver data to be set to device.
3305  *	@attr_grp: Attribute group to be set on device.
3306  *
3307  *	Returns a pointer to the struct device for this tty device
3308  *	(or ERR_PTR(-EFOO) on error).
3309  *
3310  *	This call is required to be made to register an individual tty device
3311  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3312  *	that bit is not set, this function should not be called by a tty
3313  *	driver.
3314  *
3315  *	Locking: ??
3316  */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3317 struct device *tty_register_device_attr(struct tty_driver *driver,
3318 				   unsigned index, struct device *device,
3319 				   void *drvdata,
3320 				   const struct attribute_group **attr_grp)
3321 {
3322 	char name[64];
3323 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3324 	struct device *dev = NULL;
3325 	int retval = -ENODEV;
3326 	bool cdev = false;
3327 
3328 	if (index >= driver->num) {
3329 		printk(KERN_ERR "Attempt to register invalid tty line number "
3330 		       " (%d).\n", index);
3331 		return ERR_PTR(-EINVAL);
3332 	}
3333 
3334 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3335 		pty_line_name(driver, index, name);
3336 	else
3337 		tty_line_name(driver, index, name);
3338 
3339 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3340 		retval = tty_cdev_add(driver, devt, index, 1);
3341 		if (retval)
3342 			goto error;
3343 		cdev = true;
3344 	}
3345 
3346 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3347 	if (!dev) {
3348 		retval = -ENOMEM;
3349 		goto error;
3350 	}
3351 
3352 	dev->devt = devt;
3353 	dev->class = tty_class;
3354 	dev->parent = device;
3355 	dev->release = tty_device_create_release;
3356 	dev_set_name(dev, "%s", name);
3357 	dev->groups = attr_grp;
3358 	dev_set_drvdata(dev, drvdata);
3359 
3360 	retval = device_register(dev);
3361 	if (retval)
3362 		goto error;
3363 
3364 	return dev;
3365 
3366 error:
3367 	put_device(dev);
3368 	if (cdev) {
3369 		cdev_del(driver->cdevs[index]);
3370 		driver->cdevs[index] = NULL;
3371 	}
3372 	return ERR_PTR(retval);
3373 }
3374 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3375 
3376 /**
3377  * 	tty_unregister_device - unregister a tty device
3378  * 	@driver: the tty driver that describes the tty device
3379  * 	@index: the index in the tty driver for this tty device
3380  *
3381  * 	If a tty device is registered with a call to tty_register_device() then
3382  *	this function must be called when the tty device is gone.
3383  *
3384  *	Locking: ??
3385  */
3386 
tty_unregister_device(struct tty_driver * driver,unsigned index)3387 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3388 {
3389 	device_destroy(tty_class,
3390 		MKDEV(driver->major, driver->minor_start) + index);
3391 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3392 		cdev_del(driver->cdevs[index]);
3393 		driver->cdevs[index] = NULL;
3394 	}
3395 }
3396 EXPORT_SYMBOL(tty_unregister_device);
3397 
3398 /**
3399  * __tty_alloc_driver -- allocate tty driver
3400  * @lines: count of lines this driver can handle at most
3401  * @owner: module which is repsonsible for this driver
3402  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3403  *
3404  * This should not be called directly, some of the provided macros should be
3405  * used instead. Use IS_ERR and friends on @retval.
3406  */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3407 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3408 		unsigned long flags)
3409 {
3410 	struct tty_driver *driver;
3411 	unsigned int cdevs = 1;
3412 	int err;
3413 
3414 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3415 		return ERR_PTR(-EINVAL);
3416 
3417 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3418 	if (!driver)
3419 		return ERR_PTR(-ENOMEM);
3420 
3421 	kref_init(&driver->kref);
3422 	driver->magic = TTY_DRIVER_MAGIC;
3423 	driver->num = lines;
3424 	driver->owner = owner;
3425 	driver->flags = flags;
3426 
3427 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3428 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3429 				GFP_KERNEL);
3430 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3431 				GFP_KERNEL);
3432 		if (!driver->ttys || !driver->termios) {
3433 			err = -ENOMEM;
3434 			goto err_free_all;
3435 		}
3436 	}
3437 
3438 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3439 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3440 				GFP_KERNEL);
3441 		if (!driver->ports) {
3442 			err = -ENOMEM;
3443 			goto err_free_all;
3444 		}
3445 		cdevs = lines;
3446 	}
3447 
3448 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3449 	if (!driver->cdevs) {
3450 		err = -ENOMEM;
3451 		goto err_free_all;
3452 	}
3453 
3454 	return driver;
3455 err_free_all:
3456 	kfree(driver->ports);
3457 	kfree(driver->ttys);
3458 	kfree(driver->termios);
3459 	kfree(driver->cdevs);
3460 	kfree(driver);
3461 	return ERR_PTR(err);
3462 }
3463 EXPORT_SYMBOL(__tty_alloc_driver);
3464 
destruct_tty_driver(struct kref * kref)3465 static void destruct_tty_driver(struct kref *kref)
3466 {
3467 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3468 	int i;
3469 	struct ktermios *tp;
3470 
3471 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3472 		/*
3473 		 * Free the termios and termios_locked structures because
3474 		 * we don't want to get memory leaks when modular tty
3475 		 * drivers are removed from the kernel.
3476 		 */
3477 		for (i = 0; i < driver->num; i++) {
3478 			tp = driver->termios[i];
3479 			if (tp) {
3480 				driver->termios[i] = NULL;
3481 				kfree(tp);
3482 			}
3483 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3484 				tty_unregister_device(driver, i);
3485 		}
3486 		proc_tty_unregister_driver(driver);
3487 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3488 			cdev_del(driver->cdevs[0]);
3489 	}
3490 	kfree(driver->cdevs);
3491 	kfree(driver->ports);
3492 	kfree(driver->termios);
3493 	kfree(driver->ttys);
3494 	kfree(driver);
3495 }
3496 
tty_driver_kref_put(struct tty_driver * driver)3497 void tty_driver_kref_put(struct tty_driver *driver)
3498 {
3499 	kref_put(&driver->kref, destruct_tty_driver);
3500 }
3501 EXPORT_SYMBOL(tty_driver_kref_put);
3502 
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3503 void tty_set_operations(struct tty_driver *driver,
3504 			const struct tty_operations *op)
3505 {
3506 	driver->ops = op;
3507 };
3508 EXPORT_SYMBOL(tty_set_operations);
3509 
put_tty_driver(struct tty_driver * d)3510 void put_tty_driver(struct tty_driver *d)
3511 {
3512 	tty_driver_kref_put(d);
3513 }
3514 EXPORT_SYMBOL(put_tty_driver);
3515 
3516 /*
3517  * Called by a tty driver to register itself.
3518  */
tty_register_driver(struct tty_driver * driver)3519 int tty_register_driver(struct tty_driver *driver)
3520 {
3521 	int error;
3522 	int i;
3523 	dev_t dev;
3524 	struct device *d;
3525 
3526 	if (!driver->major) {
3527 		error = alloc_chrdev_region(&dev, driver->minor_start,
3528 						driver->num, driver->name);
3529 		if (!error) {
3530 			driver->major = MAJOR(dev);
3531 			driver->minor_start = MINOR(dev);
3532 		}
3533 	} else {
3534 		dev = MKDEV(driver->major, driver->minor_start);
3535 		error = register_chrdev_region(dev, driver->num, driver->name);
3536 	}
3537 	if (error < 0)
3538 		goto err;
3539 
3540 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3541 		error = tty_cdev_add(driver, dev, 0, driver->num);
3542 		if (error)
3543 			goto err_unreg_char;
3544 	}
3545 
3546 	mutex_lock(&tty_mutex);
3547 	list_add(&driver->tty_drivers, &tty_drivers);
3548 	mutex_unlock(&tty_mutex);
3549 
3550 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3551 		for (i = 0; i < driver->num; i++) {
3552 			d = tty_register_device(driver, i, NULL);
3553 			if (IS_ERR(d)) {
3554 				error = PTR_ERR(d);
3555 				goto err_unreg_devs;
3556 			}
3557 		}
3558 	}
3559 	proc_tty_register_driver(driver);
3560 	driver->flags |= TTY_DRIVER_INSTALLED;
3561 	return 0;
3562 
3563 err_unreg_devs:
3564 	for (i--; i >= 0; i--)
3565 		tty_unregister_device(driver, i);
3566 
3567 	mutex_lock(&tty_mutex);
3568 	list_del(&driver->tty_drivers);
3569 	mutex_unlock(&tty_mutex);
3570 
3571 err_unreg_char:
3572 	unregister_chrdev_region(dev, driver->num);
3573 err:
3574 	return error;
3575 }
3576 EXPORT_SYMBOL(tty_register_driver);
3577 
3578 /*
3579  * Called by a tty driver to unregister itself.
3580  */
tty_unregister_driver(struct tty_driver * driver)3581 int tty_unregister_driver(struct tty_driver *driver)
3582 {
3583 #if 0
3584 	/* FIXME */
3585 	if (driver->refcount)
3586 		return -EBUSY;
3587 #endif
3588 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3589 				driver->num);
3590 	mutex_lock(&tty_mutex);
3591 	list_del(&driver->tty_drivers);
3592 	mutex_unlock(&tty_mutex);
3593 	return 0;
3594 }
3595 
3596 EXPORT_SYMBOL(tty_unregister_driver);
3597 
tty_devnum(struct tty_struct * tty)3598 dev_t tty_devnum(struct tty_struct *tty)
3599 {
3600 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3601 }
3602 EXPORT_SYMBOL(tty_devnum);
3603 
tty_default_fops(struct file_operations * fops)3604 void tty_default_fops(struct file_operations *fops)
3605 {
3606 	*fops = tty_fops;
3607 }
3608 
3609 /*
3610  * Initialize the console device. This is called *early*, so
3611  * we can't necessarily depend on lots of kernel help here.
3612  * Just do some early initializations, and do the complex setup
3613  * later.
3614  */
console_init(void)3615 void __init console_init(void)
3616 {
3617 	initcall_t *call;
3618 
3619 	/* Setup the default TTY line discipline. */
3620 	tty_ldisc_begin();
3621 
3622 	/*
3623 	 * set up the console device so that later boot sequences can
3624 	 * inform about problems etc..
3625 	 */
3626 	call = __con_initcall_start;
3627 	while (call < __con_initcall_end) {
3628 		(*call)();
3629 		call++;
3630 	}
3631 }
3632 
tty_devnode(struct device * dev,umode_t * mode)3633 static char *tty_devnode(struct device *dev, umode_t *mode)
3634 {
3635 	if (!mode)
3636 		return NULL;
3637 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3638 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3639 		*mode = 0666;
3640 	return NULL;
3641 }
3642 
tty_class_init(void)3643 static int __init tty_class_init(void)
3644 {
3645 	tty_class = class_create(THIS_MODULE, "tty");
3646 	if (IS_ERR(tty_class))
3647 		return PTR_ERR(tty_class);
3648 	tty_class->devnode = tty_devnode;
3649 	return 0;
3650 }
3651 
3652 postcore_initcall(tty_class_init);
3653 
3654 /* 3/2004 jmc: why do these devices exist? */
3655 static struct cdev tty_cdev, console_cdev;
3656 
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3657 static ssize_t show_cons_active(struct device *dev,
3658 				struct device_attribute *attr, char *buf)
3659 {
3660 	struct console *cs[16];
3661 	int i = 0;
3662 	struct console *c;
3663 	ssize_t count = 0;
3664 
3665 	console_lock();
3666 	for_each_console(c) {
3667 		if (!c->device)
3668 			continue;
3669 		if (!c->write)
3670 			continue;
3671 		if ((c->flags & CON_ENABLED) == 0)
3672 			continue;
3673 		cs[i++] = c;
3674 		if (i >= ARRAY_SIZE(cs))
3675 			break;
3676 	}
3677 	while (i--) {
3678 		int index = cs[i]->index;
3679 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3680 
3681 		/* don't resolve tty0 as some programs depend on it */
3682 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3683 			count += tty_line_name(drv, index, buf + count);
3684 		else
3685 			count += sprintf(buf + count, "%s%d",
3686 					 cs[i]->name, cs[i]->index);
3687 
3688 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3689 	}
3690 	console_unlock();
3691 
3692 	return count;
3693 }
3694 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3695 
3696 static struct attribute *cons_dev_attrs[] = {
3697 	&dev_attr_active.attr,
3698 	NULL
3699 };
3700 
3701 ATTRIBUTE_GROUPS(cons_dev);
3702 
3703 static struct device *consdev;
3704 
console_sysfs_notify(void)3705 void console_sysfs_notify(void)
3706 {
3707 	if (consdev)
3708 		sysfs_notify(&consdev->kobj, NULL, "active");
3709 }
3710 
3711 /*
3712  * Ok, now we can initialize the rest of the tty devices and can count
3713  * on memory allocations, interrupts etc..
3714  */
tty_init(void)3715 int __init tty_init(void)
3716 {
3717 	tty_sysctl_init();
3718 	cdev_init(&tty_cdev, &tty_fops);
3719 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3720 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3721 		panic("Couldn't register /dev/tty driver\n");
3722 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3723 
3724 	cdev_init(&console_cdev, &console_fops);
3725 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3726 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3727 		panic("Couldn't register /dev/console driver\n");
3728 	consdev = device_create_with_groups(tty_class, NULL,
3729 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3730 					    cons_dev_groups, "console");
3731 	if (IS_ERR(consdev))
3732 		consdev = NULL;
3733 
3734 #ifdef CONFIG_VT
3735 	vty_init(&console_fops);
3736 #endif
3737 	return 0;
3738 }
3739 
3740