• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Based on arch/arm/kernel/process.c
3  *
4  * Original Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <stdarg.h>
22 
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/unistd.h>
31 #include <linux/user.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/interrupt.h>
35 #include <linux/kallsyms.h>
36 #include <linux/init.h>
37 #include <linux/cpu.h>
38 #include <linux/elfcore.h>
39 #include <linux/pm.h>
40 #include <linux/tick.h>
41 #include <linux/utsname.h>
42 #include <linux/uaccess.h>
43 #include <linux/random.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/personality.h>
46 #include <linux/notifier.h>
47 #include <trace/events/power.h>
48 #ifdef CONFIG_THREAD_INFO_IN_TASK
49 #include <linux/percpu.h>
50 #endif
51 
52 #include <asm/alternative.h>
53 #include <asm/compat.h>
54 #include <asm/cacheflush.h>
55 #include <asm/exec.h>
56 #include <asm/fpsimd.h>
57 #include <asm/mmu_context.h>
58 #include <asm/processor.h>
59 #include <asm/stacktrace.h>
60 
61 #ifdef CONFIG_CC_STACKPROTECTOR
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __read_mostly;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66 
67 /*
68  * Function pointers to optional machine specific functions
69  */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72 
73 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
74 
75 /*
76  * This is our default idle handler.
77  */
arch_cpu_idle(void)78 void arch_cpu_idle(void)
79 {
80 	/*
81 	 * This should do all the clock switching and wait for interrupt
82 	 * tricks
83 	 */
84 	trace_cpu_idle_rcuidle(1, smp_processor_id());
85 	cpu_do_idle();
86 	local_irq_enable();
87 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
88 }
89 
90 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)91 void arch_cpu_idle_dead(void)
92 {
93        cpu_die();
94 }
95 #endif
96 
97 /*
98  * Called by kexec, immediately prior to machine_kexec().
99  *
100  * This must completely disable all secondary CPUs; simply causing those CPUs
101  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
102  * kexec'd kernel to use any and all RAM as it sees fit, without having to
103  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
104  * functionality embodied in disable_nonboot_cpus() to achieve this.
105  */
machine_shutdown(void)106 void machine_shutdown(void)
107 {
108 	disable_nonboot_cpus();
109 }
110 
111 /*
112  * Halting simply requires that the secondary CPUs stop performing any
113  * activity (executing tasks, handling interrupts). smp_send_stop()
114  * achieves this.
115  */
machine_halt(void)116 void machine_halt(void)
117 {
118 	local_irq_disable();
119 	smp_send_stop();
120 	while (1);
121 }
122 
123 /*
124  * Power-off simply requires that the secondary CPUs stop performing any
125  * activity (executing tasks, handling interrupts). smp_send_stop()
126  * achieves this. When the system power is turned off, it will take all CPUs
127  * with it.
128  */
machine_power_off(void)129 void machine_power_off(void)
130 {
131 	local_irq_disable();
132 	smp_send_stop();
133 	if (pm_power_off)
134 		pm_power_off();
135 }
136 
137 /*
138  * Restart requires that the secondary CPUs stop performing any activity
139  * while the primary CPU resets the system. Systems with multiple CPUs must
140  * provide a HW restart implementation, to ensure that all CPUs reset at once.
141  * This is required so that any code running after reset on the primary CPU
142  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
143  * executing pre-reset code, and using RAM that the primary CPU's code wishes
144  * to use. Implementing such co-ordination would be essentially impossible.
145  */
machine_restart(char * cmd)146 void machine_restart(char *cmd)
147 {
148 	/* Disable interrupts first */
149 	local_irq_disable();
150 	smp_send_stop();
151 
152 	/*
153 	 * UpdateCapsule() depends on the system being reset via
154 	 * ResetSystem().
155 	 */
156 	if (efi_enabled(EFI_RUNTIME_SERVICES))
157 		efi_reboot(reboot_mode, NULL);
158 
159 	/* Now call the architecture specific reboot code. */
160 	if (arm_pm_restart)
161 		arm_pm_restart(reboot_mode, cmd);
162 	else
163 		do_kernel_restart(cmd);
164 
165 	/*
166 	 * Whoops - the architecture was unable to reboot.
167 	 */
168 	printk("Reboot failed -- System halted\n");
169 	while (1);
170 }
171 
172 /*
173  * dump a block of kernel memory from around the given address
174  */
show_data(unsigned long addr,int nbytes,const char * name)175 static void show_data(unsigned long addr, int nbytes, const char *name)
176 {
177 	int	i, j;
178 	int	nlines;
179 	u32	*p;
180 
181 	/*
182 	 * don't attempt to dump non-kernel addresses or
183 	 * values that are probably just small negative numbers
184 	 */
185 	if (addr < PAGE_OFFSET || addr > -256UL)
186 		return;
187 
188 	printk("\n%s: %#lx:\n", name, addr);
189 
190 	/*
191 	 * round address down to a 32 bit boundary
192 	 * and always dump a multiple of 32 bytes
193 	 */
194 	p = (u32 *)(addr & ~(sizeof(u32) - 1));
195 	nbytes += (addr & (sizeof(u32) - 1));
196 	nlines = (nbytes + 31) / 32;
197 
198 
199 	for (i = 0; i < nlines; i++) {
200 		/*
201 		 * just display low 16 bits of address to keep
202 		 * each line of the dump < 80 characters
203 		 */
204 		printk("%04lx ", (unsigned long)p & 0xffff);
205 		for (j = 0; j < 8; j++) {
206 			u32	data;
207 			if (probe_kernel_address(p, data)) {
208 				printk(" ********");
209 			} else {
210 				printk(" %08x", data);
211 			}
212 			++p;
213 		}
214 		printk("\n");
215 	}
216 }
217 
show_extra_register_data(struct pt_regs * regs,int nbytes)218 static void show_extra_register_data(struct pt_regs *regs, int nbytes)
219 {
220 	mm_segment_t fs;
221 	unsigned int i;
222 
223 	fs = get_fs();
224 	set_fs(KERNEL_DS);
225 	show_data(regs->pc - nbytes, nbytes * 2, "PC");
226 	show_data(regs->regs[30] - nbytes, nbytes * 2, "LR");
227 	show_data(regs->sp - nbytes, nbytes * 2, "SP");
228 	for (i = 0; i < 30; i++) {
229 		char name[4];
230 		snprintf(name, sizeof(name), "X%u", i);
231 		show_data(regs->regs[i] - nbytes, nbytes * 2, name);
232 	}
233 	set_fs(fs);
234 }
235 
__show_regs(struct pt_regs * regs)236 void __show_regs(struct pt_regs *regs)
237 {
238 	int i, top_reg;
239 	u64 lr, sp;
240 
241 	if (compat_user_mode(regs)) {
242 		lr = regs->compat_lr;
243 		sp = regs->compat_sp;
244 		top_reg = 12;
245 	} else {
246 		lr = regs->regs[30];
247 		sp = regs->sp;
248 		top_reg = 29;
249 	}
250 
251 	show_regs_print_info(KERN_DEFAULT);
252 	print_symbol("PC is at %s\n", instruction_pointer(regs));
253 	print_symbol("LR is at %s\n", lr);
254 	printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
255 	       regs->pc, lr, regs->pstate);
256 	printk("sp : %016llx\n", sp);
257 	for (i = top_reg; i >= 0; i--) {
258 		printk("x%-2d: %016llx ", i, regs->regs[i]);
259 		if (i % 2 == 0)
260 			printk("\n");
261 	}
262 	if (!user_mode(regs))
263 		show_extra_register_data(regs, 128);
264 	printk("\n");
265 }
266 
show_regs(struct pt_regs * regs)267 void show_regs(struct pt_regs * regs)
268 {
269 	printk("\n");
270 	__show_regs(regs);
271 }
272 
tls_thread_flush(void)273 static void tls_thread_flush(void)
274 {
275 	asm ("msr tpidr_el0, xzr");
276 
277 	if (is_compat_task()) {
278 		current->thread.tp_value = 0;
279 
280 		/*
281 		 * We need to ensure ordering between the shadow state and the
282 		 * hardware state, so that we don't corrupt the hardware state
283 		 * with a stale shadow state during context switch.
284 		 */
285 		barrier();
286 		asm ("msr tpidrro_el0, xzr");
287 	}
288 }
289 
flush_thread(void)290 void flush_thread(void)
291 {
292 	fpsimd_flush_thread();
293 	tls_thread_flush();
294 	flush_ptrace_hw_breakpoint(current);
295 }
296 
release_thread(struct task_struct * dead_task)297 void release_thread(struct task_struct *dead_task)
298 {
299 }
300 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)301 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
302 {
303 	if (current->mm)
304 		fpsimd_preserve_current_state();
305 	*dst = *src;
306 	return 0;
307 }
308 
309 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
310 
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p)311 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
312 		unsigned long stk_sz, struct task_struct *p)
313 {
314 	struct pt_regs *childregs = task_pt_regs(p);
315 
316 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
317 
318 	/*
319 	 * In case p was allocated the same task_struct pointer as some
320 	 * other recently-exited task, make sure p is disassociated from
321 	 * any cpu that may have run that now-exited task recently.
322 	 * Otherwise we could erroneously skip reloading the FPSIMD
323 	 * registers for p.
324 	 */
325 	fpsimd_flush_task_state(p);
326 
327 	if (likely(!(p->flags & PF_KTHREAD))) {
328 		*childregs = *current_pt_regs();
329 		childregs->regs[0] = 0;
330 
331 		/*
332 		 * Read the current TLS pointer from tpidr_el0 as it may be
333 		 * out-of-sync with the saved value.
334 		 */
335 		asm("mrs %0, tpidr_el0" : "=r" (*task_user_tls(p)));
336 
337 		if (stack_start) {
338 			if (is_compat_thread(task_thread_info(p)))
339 				childregs->compat_sp = stack_start;
340 			/* 16-byte aligned stack mandatory on AArch64 */
341 			else if (stack_start & 15)
342 				return -EINVAL;
343 			else
344 				childregs->sp = stack_start;
345 		}
346 
347 		/*
348 		 * If a TLS pointer was passed to clone (4th argument), use it
349 		 * for the new thread.
350 		 */
351 		if (clone_flags & CLONE_SETTLS)
352 			p->thread.tp_value = childregs->regs[3];
353 	} else {
354 		memset(childregs, 0, sizeof(struct pt_regs));
355 		childregs->pstate = PSR_MODE_EL1h;
356 		if (IS_ENABLED(CONFIG_ARM64_UAO) &&
357 		    cpus_have_cap(ARM64_HAS_UAO))
358 			childregs->pstate |= PSR_UAO_BIT;
359 		p->thread.cpu_context.x19 = stack_start;
360 		p->thread.cpu_context.x20 = stk_sz;
361 	}
362 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
363 	p->thread.cpu_context.sp = (unsigned long)childregs;
364 
365 	ptrace_hw_copy_thread(p);
366 
367 	return 0;
368 }
369 
tls_thread_switch(struct task_struct * next)370 static void tls_thread_switch(struct task_struct *next)
371 {
372 	unsigned long tpidr;
373 
374 	asm("mrs %0, tpidr_el0" : "=r" (tpidr));
375 	*task_user_tls(current) = tpidr;
376 
377 	if (is_compat_thread(task_thread_info(next)))
378 		write_sysreg(next->thread.tp_value, tpidrro_el0);
379 	else if (!arm64_kernel_unmapped_at_el0())
380 		write_sysreg(0, tpidrro_el0);
381 
382 	write_sysreg(*task_user_tls(next), tpidr_el0);
383 }
384 
385 /* Restore the UAO state depending on next's addr_limit */
uao_thread_switch(struct task_struct * next)386 void uao_thread_switch(struct task_struct *next)
387 {
388 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
389 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
390 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
391 		else
392 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
393 	}
394 }
395 
396 #ifdef CONFIG_THREAD_INFO_IN_TASK
397 /*
398  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
399  * shadow copy so that we can restore this upon entry from userspace.
400  *
401  * This is *only* for exception entry from EL0, and is not valid until we
402  * __switch_to() a user task.
403  */
404 DEFINE_PER_CPU(struct task_struct *, __entry_task);
405 
entry_task_switch(struct task_struct * next)406 static void entry_task_switch(struct task_struct *next)
407 {
408 	__this_cpu_write(__entry_task, next);
409 }
410 #endif
411 
412 /*
413  * Thread switching.
414  */
__switch_to(struct task_struct * prev,struct task_struct * next)415 struct task_struct *__switch_to(struct task_struct *prev,
416 				struct task_struct *next)
417 {
418 	struct task_struct *last;
419 
420 	fpsimd_thread_switch(next);
421 	tls_thread_switch(next);
422 	hw_breakpoint_thread_switch(next);
423 	contextidr_thread_switch(next);
424 #ifdef CONFIG_THREAD_INFO_IN_TASK
425 	entry_task_switch(next);
426 #endif
427 	uao_thread_switch(next);
428 
429 	/*
430 	 * Complete any pending TLB or cache maintenance on this CPU in case
431 	 * the thread migrates to a different CPU.
432 	 */
433 	dsb(ish);
434 
435 	/* the actual thread switch */
436 	last = cpu_switch_to(prev, next);
437 
438 	return last;
439 }
440 
get_wchan(struct task_struct * p)441 unsigned long get_wchan(struct task_struct *p)
442 {
443 	struct stackframe frame;
444 	unsigned long stack_page, ret = 0;
445 	int count = 0;
446 	if (!p || p == current || p->state == TASK_RUNNING)
447 		return 0;
448 
449 	stack_page = (unsigned long)try_get_task_stack(p);
450 	if (!stack_page)
451 		return 0;
452 
453 	frame.fp = thread_saved_fp(p);
454 	frame.sp = thread_saved_sp(p);
455 	frame.pc = thread_saved_pc(p);
456 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
457 	frame.graph = p->curr_ret_stack;
458 #endif
459 	do {
460 		if (frame.sp < stack_page ||
461 		    frame.sp >= stack_page + THREAD_SIZE ||
462 		    unwind_frame(p, &frame))
463 			goto out;
464 		if (!in_sched_functions(frame.pc)) {
465 			ret = frame.pc;
466 			goto out;
467 		}
468 	} while (count ++ < 16);
469 
470 out:
471 	put_task_stack(p);
472 	return ret;
473 }
474 
arch_align_stack(unsigned long sp)475 unsigned long arch_align_stack(unsigned long sp)
476 {
477 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
478 		sp -= get_random_int() & ~PAGE_MASK;
479 	return sp & ~0xf;
480 }
481 
randomize_base(unsigned long base)482 static unsigned long randomize_base(unsigned long base)
483 {
484 	unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
485 	return randomize_range(base, range_end, 0) ? : base;
486 }
487 
arch_randomize_brk(struct mm_struct * mm)488 unsigned long arch_randomize_brk(struct mm_struct *mm)
489 {
490 	return randomize_base(mm->brk);
491 }
492