• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1999-2003		Andre Hedrick <andre@linux-ide.org>
3  * Portions Copyright (C) 2001	        Sun Microsystems, Inc.
4  * Portions Copyright (C) 2003		Red Hat Inc
5  * Portions Copyright (C) 2007		Bartlomiej Zolnierkiewicz
6  * Portions Copyright (C) 2005-2009	MontaVista Software, Inc.
7  *
8  * Thanks to HighPoint Technologies for their assistance, and hardware.
9  * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10  * donation of an ABit BP6 mainboard, processor, and memory acellerated
11  * development and support.
12  *
13  *
14  * HighPoint has its own drivers (open source except for the RAID part)
15  * available from http://www.highpoint-tech.com/USA_new/service_support.htm
16  * This may be useful to anyone wanting to work on this driver, however  do not
17  * trust  them too much since the code tends to become less and less meaningful
18  * as the time passes... :-/
19  *
20  * Note that final HPT370 support was done by force extraction of GPL.
21  *
22  * - add function for getting/setting power status of drive
23  * - the HPT370's state machine can get confused. reset it before each dma
24  *   xfer to prevent that from happening.
25  * - reset state engine whenever we get an error.
26  * - check for busmaster state at end of dma.
27  * - use new highpoint timings.
28  * - detect bus speed using highpoint register.
29  * - use pll if we don't have a clock table. added a 66MHz table that's
30  *   just 2x the 33MHz table.
31  * - removed turnaround. NOTE: we never want to switch between pll and
32  *   pci clocks as the chip can glitch in those cases. the highpoint
33  *   approved workaround slows everything down too much to be useful. in
34  *   addition, we would have to serialize access to each chip.
35  * 	Adrian Sun <a.sun@sun.com>
36  *
37  * add drive timings for 66MHz PCI bus,
38  * fix ATA Cable signal detection, fix incorrect /proc info
39  * add /proc display for per-drive PIO/DMA/UDMA mode and
40  * per-channel ATA-33/66 Cable detect.
41  * 	Duncan Laurie <void@sun.com>
42  *
43  * fixup /proc output for multiple controllers
44  *	Tim Hockin <thockin@sun.com>
45  *
46  * On hpt366:
47  * Reset the hpt366 on error, reset on dma
48  * Fix disabling Fast Interrupt hpt366.
49  * 	Mike Waychison <crlf@sun.com>
50  *
51  * Added support for 372N clocking and clock switching. The 372N needs
52  * different clocks on read/write. This requires overloading rw_disk and
53  * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54  * keeping me sane.
55  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
56  *
57  * - fix the clock turnaround code: it was writing to the wrong ports when
58  *   called for the secondary channel, caching the current clock mode per-
59  *   channel caused the cached register value to get out of sync with the
60  *   actual one, the channels weren't serialized, the turnaround shouldn't
61  *   be done on 66 MHz PCI bus
62  * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63  *   does not allow for this speed anyway
64  * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65  *   their primary channel is kind of virtual, it isn't tied to any pins)
66  * - fix/remove bad/unused timing tables and use one set of tables for the whole
67  *   HPT37x chip family; save space by introducing the separate transfer mode
68  *   table in which the mode lookup is done
69  * - use f_CNT value saved by  the HighPoint BIOS as reading it directly gives
70  *   the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71  *   read it only from the function 0 of HPT374 chips
72  * - fix the hotswap code:  it caused RESET- to glitch when tristating the bus,
73  *   and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74  * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75  *   they tamper with its fields
76  * - pass  to the init_setup handlers a copy of the ide_pci_device_t structure
77  *   since they may tamper with its fields
78  * - prefix the driver startup messages with the real chip name
79  * - claim the extra 240 bytes of I/O space for all chips
80  * - optimize the UltraDMA filtering and the drive list lookup code
81  * - use pci_get_slot() to get to the function 1 of HPT36x/374
82  * - cache offset of the channel's misc. control registers (MCRs) being used
83  *   throughout the driver
84  * - only touch the relevant MCR when detecting the cable type on HPT374's
85  *   function 1
86  * - rename all the register related variables consistently
87  * - move all the interrupt twiddling code from the speedproc handlers into
88  *   init_hwif_hpt366(), also grouping all the DMA related code together there
89  * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90  *   separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91  *   when setting an UltraDMA mode
92  * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93  *   the best possible one
94  * - clean up DMA timeout handling for HPT370
95  * - switch to using the enumeration type to differ between the numerous chip
96  *   variants, matching PCI device/revision ID with the chip type early, at the
97  *   init_setup stage
98  * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99  *   stop duplicating it for each channel by storing the pointer in the pci_dev
100  *   structure: first, at the init_setup stage, point it to a static "template"
101  *   with only the chip type and its specific base DPLL frequency, the highest
102  *   UltraDMA mode, and the chip settings table pointer filled,  then, at the
103  *   init_chipset stage, allocate per-chip instance  and fill it with the rest
104  *   of the necessary information
105  * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106  *   switch  to calculating  PCI clock frequency based on the chip's base DPLL
107  *   frequency
108  * - switch to using the  DPLL clock and enable UltraATA/133 mode by default on
109  *   anything  newer than HPT370/A (except HPT374 that is not capable of this
110  *   mode according to the manual)
111  * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112  *   also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113  *   unify HPT36x/37x timing setup code and the speedproc handlers by joining
114  *   the register setting lists into the table indexed by the clock selected
115  * - set the correct hwif->ultra_mask for each individual chip
116  * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117  * - stop resetting HPT370's state machine before each DMA transfer as that has
118  *   caused more harm than good
119  *	Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
120  */
121 
122 #include <linux/types.h>
123 #include <linux/module.h>
124 #include <linux/kernel.h>
125 #include <linux/delay.h>
126 #include <linux/blkdev.h>
127 #include <linux/interrupt.h>
128 #include <linux/pci.h>
129 #include <linux/init.h>
130 #include <linux/ide.h>
131 #include <linux/slab.h>
132 
133 #include <asm/uaccess.h>
134 #include <asm/io.h>
135 
136 #define DRV_NAME "hpt366"
137 
138 /* various tuning parameters */
139 #undef	HPT_RESET_STATE_ENGINE
140 #undef	HPT_DELAY_INTERRUPT
141 
142 static const char *bad_ata100_5[] = {
143 	"IBM-DTLA-307075",
144 	"IBM-DTLA-307060",
145 	"IBM-DTLA-307045",
146 	"IBM-DTLA-307030",
147 	"IBM-DTLA-307020",
148 	"IBM-DTLA-307015",
149 	"IBM-DTLA-305040",
150 	"IBM-DTLA-305030",
151 	"IBM-DTLA-305020",
152 	"IC35L010AVER07-0",
153 	"IC35L020AVER07-0",
154 	"IC35L030AVER07-0",
155 	"IC35L040AVER07-0",
156 	"IC35L060AVER07-0",
157 	"WDC AC310200R",
158 	NULL
159 };
160 
161 static const char *bad_ata66_4[] = {
162 	"IBM-DTLA-307075",
163 	"IBM-DTLA-307060",
164 	"IBM-DTLA-307045",
165 	"IBM-DTLA-307030",
166 	"IBM-DTLA-307020",
167 	"IBM-DTLA-307015",
168 	"IBM-DTLA-305040",
169 	"IBM-DTLA-305030",
170 	"IBM-DTLA-305020",
171 	"IC35L010AVER07-0",
172 	"IC35L020AVER07-0",
173 	"IC35L030AVER07-0",
174 	"IC35L040AVER07-0",
175 	"IC35L060AVER07-0",
176 	"WDC AC310200R",
177 	"MAXTOR STM3320620A",
178 	NULL
179 };
180 
181 static const char *bad_ata66_3[] = {
182 	"WDC AC310200R",
183 	NULL
184 };
185 
186 static const char *bad_ata33[] = {
187 	"Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
188 	"Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
189 	"Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
190 	"Maxtor 90510D4",
191 	"Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
192 	"Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
193 	"Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
194 	NULL
195 };
196 
197 static u8 xfer_speeds[] = {
198 	XFER_UDMA_6,
199 	XFER_UDMA_5,
200 	XFER_UDMA_4,
201 	XFER_UDMA_3,
202 	XFER_UDMA_2,
203 	XFER_UDMA_1,
204 	XFER_UDMA_0,
205 
206 	XFER_MW_DMA_2,
207 	XFER_MW_DMA_1,
208 	XFER_MW_DMA_0,
209 
210 	XFER_PIO_4,
211 	XFER_PIO_3,
212 	XFER_PIO_2,
213 	XFER_PIO_1,
214 	XFER_PIO_0
215 };
216 
217 /* Key for bus clock timings
218  * 36x   37x
219  * bits  bits
220  * 0:3	 0:3	data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
221  *		cycles = value + 1
222  * 4:7	 4:8	data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
223  *		cycles = value + 1
224  * 8:11  9:12	cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
225  *		register access.
226  * 12:15 13:17	cmd_low_time. Active time of DIOW_/DIOR_ during task file
227  *		register access.
228  * 16:18 18:20	udma_cycle_time. Clock cycles for UDMA xfer.
229  * -	 21	CLK frequency: 0=ATA clock, 1=dual ATA clock.
230  * 19:21 22:24	pre_high_time. Time to initialize the 1st cycle for PIO and
231  *		MW DMA xfer.
232  * 22:24 25:27	cmd_pre_high_time. Time to initialize the 1st PIO cycle for
233  *		task file register access.
234  * 28	 28	UDMA enable.
235  * 29	 29	DMA  enable.
236  * 30	 30	PIO MST enable. If set, the chip is in bus master mode during
237  *		PIO xfer.
238  * 31	 31	FIFO enable.
239  */
240 
241 static u32 forty_base_hpt36x[] = {
242 	/* XFER_UDMA_6 */	0x900fd943,
243 	/* XFER_UDMA_5 */	0x900fd943,
244 	/* XFER_UDMA_4 */	0x900fd943,
245 	/* XFER_UDMA_3 */	0x900ad943,
246 	/* XFER_UDMA_2 */	0x900bd943,
247 	/* XFER_UDMA_1 */	0x9008d943,
248 	/* XFER_UDMA_0 */	0x9008d943,
249 
250 	/* XFER_MW_DMA_2 */	0xa008d943,
251 	/* XFER_MW_DMA_1 */	0xa010d955,
252 	/* XFER_MW_DMA_0 */	0xa010d9fc,
253 
254 	/* XFER_PIO_4 */	0xc008d963,
255 	/* XFER_PIO_3 */	0xc010d974,
256 	/* XFER_PIO_2 */	0xc010d997,
257 	/* XFER_PIO_1 */	0xc010d9c7,
258 	/* XFER_PIO_0 */	0xc018d9d9
259 };
260 
261 static u32 thirty_three_base_hpt36x[] = {
262 	/* XFER_UDMA_6 */	0x90c9a731,
263 	/* XFER_UDMA_5 */	0x90c9a731,
264 	/* XFER_UDMA_4 */	0x90c9a731,
265 	/* XFER_UDMA_3 */	0x90cfa731,
266 	/* XFER_UDMA_2 */	0x90caa731,
267 	/* XFER_UDMA_1 */	0x90cba731,
268 	/* XFER_UDMA_0 */	0x90c8a731,
269 
270 	/* XFER_MW_DMA_2 */	0xa0c8a731,
271 	/* XFER_MW_DMA_1 */	0xa0c8a732,	/* 0xa0c8a733 */
272 	/* XFER_MW_DMA_0 */	0xa0c8a797,
273 
274 	/* XFER_PIO_4 */	0xc0c8a731,
275 	/* XFER_PIO_3 */	0xc0c8a742,
276 	/* XFER_PIO_2 */	0xc0d0a753,
277 	/* XFER_PIO_1 */	0xc0d0a7a3,	/* 0xc0d0a793 */
278 	/* XFER_PIO_0 */	0xc0d0a7aa	/* 0xc0d0a7a7 */
279 };
280 
281 static u32 twenty_five_base_hpt36x[] = {
282 	/* XFER_UDMA_6 */	0x90c98521,
283 	/* XFER_UDMA_5 */	0x90c98521,
284 	/* XFER_UDMA_4 */	0x90c98521,
285 	/* XFER_UDMA_3 */	0x90cf8521,
286 	/* XFER_UDMA_2 */	0x90cf8521,
287 	/* XFER_UDMA_1 */	0x90cb8521,
288 	/* XFER_UDMA_0 */	0x90cb8521,
289 
290 	/* XFER_MW_DMA_2 */	0xa0ca8521,
291 	/* XFER_MW_DMA_1 */	0xa0ca8532,
292 	/* XFER_MW_DMA_0 */	0xa0ca8575,
293 
294 	/* XFER_PIO_4 */	0xc0ca8521,
295 	/* XFER_PIO_3 */	0xc0ca8532,
296 	/* XFER_PIO_2 */	0xc0ca8542,
297 	/* XFER_PIO_1 */	0xc0d08572,
298 	/* XFER_PIO_0 */	0xc0d08585
299 };
300 
301 /*
302  * The following are the new timing tables with PIO mode data/taskfile transfer
303  * overclocking fixed...
304  */
305 
306 /* This table is taken from the HPT370 data manual rev. 1.02 */
307 static u32 thirty_three_base_hpt37x[] = {
308 	/* XFER_UDMA_6 */	0x16455031,	/* 0x16655031 ?? */
309 	/* XFER_UDMA_5 */	0x16455031,
310 	/* XFER_UDMA_4 */	0x16455031,
311 	/* XFER_UDMA_3 */	0x166d5031,
312 	/* XFER_UDMA_2 */	0x16495031,
313 	/* XFER_UDMA_1 */	0x164d5033,
314 	/* XFER_UDMA_0 */	0x16515097,
315 
316 	/* XFER_MW_DMA_2 */	0x26515031,
317 	/* XFER_MW_DMA_1 */	0x26515033,
318 	/* XFER_MW_DMA_0 */	0x26515097,
319 
320 	/* XFER_PIO_4 */	0x06515021,
321 	/* XFER_PIO_3 */	0x06515022,
322 	/* XFER_PIO_2 */	0x06515033,
323 	/* XFER_PIO_1 */	0x06915065,
324 	/* XFER_PIO_0 */	0x06d1508a
325 };
326 
327 static u32 fifty_base_hpt37x[] = {
328 	/* XFER_UDMA_6 */	0x1a861842,
329 	/* XFER_UDMA_5 */	0x1a861842,
330 	/* XFER_UDMA_4 */	0x1aae1842,
331 	/* XFER_UDMA_3 */	0x1a8e1842,
332 	/* XFER_UDMA_2 */	0x1a0e1842,
333 	/* XFER_UDMA_1 */	0x1a161854,
334 	/* XFER_UDMA_0 */	0x1a1a18ea,
335 
336 	/* XFER_MW_DMA_2 */	0x2a821842,
337 	/* XFER_MW_DMA_1 */	0x2a821854,
338 	/* XFER_MW_DMA_0 */	0x2a8218ea,
339 
340 	/* XFER_PIO_4 */	0x0a821842,
341 	/* XFER_PIO_3 */	0x0a821843,
342 	/* XFER_PIO_2 */	0x0a821855,
343 	/* XFER_PIO_1 */	0x0ac218a8,
344 	/* XFER_PIO_0 */	0x0b02190c
345 };
346 
347 static u32 sixty_six_base_hpt37x[] = {
348 	/* XFER_UDMA_6 */	0x1c86fe62,
349 	/* XFER_UDMA_5 */	0x1caefe62,	/* 0x1c8afe62 */
350 	/* XFER_UDMA_4 */	0x1c8afe62,
351 	/* XFER_UDMA_3 */	0x1c8efe62,
352 	/* XFER_UDMA_2 */	0x1c92fe62,
353 	/* XFER_UDMA_1 */	0x1c9afe62,
354 	/* XFER_UDMA_0 */	0x1c82fe62,
355 
356 	/* XFER_MW_DMA_2 */	0x2c82fe62,
357 	/* XFER_MW_DMA_1 */	0x2c82fe66,
358 	/* XFER_MW_DMA_0 */	0x2c82ff2e,
359 
360 	/* XFER_PIO_4 */	0x0c82fe62,
361 	/* XFER_PIO_3 */	0x0c82fe84,
362 	/* XFER_PIO_2 */	0x0c82fea6,
363 	/* XFER_PIO_1 */	0x0d02ff26,
364 	/* XFER_PIO_0 */	0x0d42ff7f
365 };
366 
367 #define HPT371_ALLOW_ATA133_6		1
368 #define HPT302_ALLOW_ATA133_6		1
369 #define HPT372_ALLOW_ATA133_6		1
370 #define HPT370_ALLOW_ATA100_5		0
371 #define HPT366_ALLOW_ATA66_4		1
372 #define HPT366_ALLOW_ATA66_3		1
373 
374 /* Supported ATA clock frequencies */
375 enum ata_clock {
376 	ATA_CLOCK_25MHZ,
377 	ATA_CLOCK_33MHZ,
378 	ATA_CLOCK_40MHZ,
379 	ATA_CLOCK_50MHZ,
380 	ATA_CLOCK_66MHZ,
381 	NUM_ATA_CLOCKS
382 };
383 
384 struct hpt_timings {
385 	u32 pio_mask;
386 	u32 dma_mask;
387 	u32 ultra_mask;
388 	u32 *clock_table[NUM_ATA_CLOCKS];
389 };
390 
391 /*
392  *	Hold all the HighPoint chip information in one place.
393  */
394 
395 struct hpt_info {
396 	char *chip_name;	/* Chip name */
397 	u8 chip_type;		/* Chip type */
398 	u8 udma_mask;		/* Allowed UltraDMA modes mask. */
399 	u8 dpll_clk;		/* DPLL clock in MHz */
400 	u8 pci_clk;		/* PCI  clock in MHz */
401 	struct hpt_timings *timings; /* Chipset timing data */
402 	u8 clock;		/* ATA clock selected */
403 };
404 
405 /* Supported HighPoint chips */
406 enum {
407 	HPT36x,
408 	HPT370,
409 	HPT370A,
410 	HPT374,
411 	HPT372,
412 	HPT372A,
413 	HPT302,
414 	HPT371,
415 	HPT372N,
416 	HPT302N,
417 	HPT371N
418 };
419 
420 static struct hpt_timings hpt36x_timings = {
421 	.pio_mask	= 0xc1f8ffff,
422 	.dma_mask	= 0x303800ff,
423 	.ultra_mask	= 0x30070000,
424 	.clock_table	= {
425 		[ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
426 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
427 		[ATA_CLOCK_40MHZ] = forty_base_hpt36x,
428 		[ATA_CLOCK_50MHZ] = NULL,
429 		[ATA_CLOCK_66MHZ] = NULL
430 	}
431 };
432 
433 static struct hpt_timings hpt37x_timings = {
434 	.pio_mask	= 0xcfc3ffff,
435 	.dma_mask	= 0x31c001ff,
436 	.ultra_mask	= 0x303c0000,
437 	.clock_table	= {
438 		[ATA_CLOCK_25MHZ] = NULL,
439 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
440 		[ATA_CLOCK_40MHZ] = NULL,
441 		[ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
442 		[ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
443 	}
444 };
445 
446 static const struct hpt_info hpt36x = {
447 	.chip_name	= "HPT36x",
448 	.chip_type	= HPT36x,
449 	.udma_mask	= HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
450 	.dpll_clk	= 0,	/* no DPLL */
451 	.timings	= &hpt36x_timings
452 };
453 
454 static const struct hpt_info hpt370 = {
455 	.chip_name	= "HPT370",
456 	.chip_type	= HPT370,
457 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
458 	.dpll_clk	= 48,
459 	.timings	= &hpt37x_timings
460 };
461 
462 static const struct hpt_info hpt370a = {
463 	.chip_name	= "HPT370A",
464 	.chip_type	= HPT370A,
465 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
466 	.dpll_clk	= 48,
467 	.timings	= &hpt37x_timings
468 };
469 
470 static const struct hpt_info hpt374 = {
471 	.chip_name	= "HPT374",
472 	.chip_type	= HPT374,
473 	.udma_mask	= ATA_UDMA5,
474 	.dpll_clk	= 48,
475 	.timings	= &hpt37x_timings
476 };
477 
478 static const struct hpt_info hpt372 = {
479 	.chip_name	= "HPT372",
480 	.chip_type	= HPT372,
481 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
482 	.dpll_clk	= 55,
483 	.timings	= &hpt37x_timings
484 };
485 
486 static const struct hpt_info hpt372a = {
487 	.chip_name	= "HPT372A",
488 	.chip_type	= HPT372A,
489 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
490 	.dpll_clk	= 66,
491 	.timings	= &hpt37x_timings
492 };
493 
494 static const struct hpt_info hpt302 = {
495 	.chip_name	= "HPT302",
496 	.chip_type	= HPT302,
497 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
498 	.dpll_clk	= 66,
499 	.timings	= &hpt37x_timings
500 };
501 
502 static const struct hpt_info hpt371 = {
503 	.chip_name	= "HPT371",
504 	.chip_type	= HPT371,
505 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
506 	.dpll_clk	= 66,
507 	.timings	= &hpt37x_timings
508 };
509 
510 static const struct hpt_info hpt372n = {
511 	.chip_name	= "HPT372N",
512 	.chip_type	= HPT372N,
513 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
514 	.dpll_clk	= 77,
515 	.timings	= &hpt37x_timings
516 };
517 
518 static const struct hpt_info hpt302n = {
519 	.chip_name	= "HPT302N",
520 	.chip_type	= HPT302N,
521 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
522 	.dpll_clk	= 77,
523 	.timings	= &hpt37x_timings
524 };
525 
526 static const struct hpt_info hpt371n = {
527 	.chip_name	= "HPT371N",
528 	.chip_type	= HPT371N,
529 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
530 	.dpll_clk	= 77,
531 	.timings	= &hpt37x_timings
532 };
533 
check_in_drive_list(ide_drive_t * drive,const char ** list)534 static int check_in_drive_list(ide_drive_t *drive, const char **list)
535 {
536 	char *m = (char *)&drive->id[ATA_ID_PROD];
537 
538 	while (*list)
539 		if (!strcmp(*list++, m))
540 			return 1;
541 	return 0;
542 }
543 
hpt3xx_get_info(struct device * dev)544 static struct hpt_info *hpt3xx_get_info(struct device *dev)
545 {
546 	struct ide_host *host	= dev_get_drvdata(dev);
547 	struct hpt_info *info	= (struct hpt_info *)host->host_priv;
548 
549 	return dev == host->dev[1] ? info + 1 : info;
550 }
551 
552 /*
553  * The Marvell bridge chips used on the HighPoint SATA cards do not seem
554  * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
555  */
556 
hpt3xx_udma_filter(ide_drive_t * drive)557 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
558 {
559 	ide_hwif_t *hwif	= drive->hwif;
560 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
561 	u8 mask 		= hwif->ultra_mask;
562 
563 	switch (info->chip_type) {
564 	case HPT36x:
565 		if (!HPT366_ALLOW_ATA66_4 ||
566 		    check_in_drive_list(drive, bad_ata66_4))
567 			mask = ATA_UDMA3;
568 
569 		if (!HPT366_ALLOW_ATA66_3 ||
570 		    check_in_drive_list(drive, bad_ata66_3))
571 			mask = ATA_UDMA2;
572 		break;
573 	case HPT370:
574 		if (!HPT370_ALLOW_ATA100_5 ||
575 		    check_in_drive_list(drive, bad_ata100_5))
576 			mask = ATA_UDMA4;
577 		break;
578 	case HPT370A:
579 		if (!HPT370_ALLOW_ATA100_5 ||
580 		    check_in_drive_list(drive, bad_ata100_5))
581 			return ATA_UDMA4;
582 	case HPT372 :
583 	case HPT372A:
584 	case HPT372N:
585 	case HPT374 :
586 		if (ata_id_is_sata(drive->id))
587 			mask &= ~0x0e;
588 		/* Fall thru */
589 	default:
590 		return mask;
591 	}
592 
593 	return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
594 }
595 
hpt3xx_mdma_filter(ide_drive_t * drive)596 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
597 {
598 	ide_hwif_t *hwif	= drive->hwif;
599 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
600 
601 	switch (info->chip_type) {
602 	case HPT372 :
603 	case HPT372A:
604 	case HPT372N:
605 	case HPT374 :
606 		if (ata_id_is_sata(drive->id))
607 			return 0x00;
608 		/* Fall thru */
609 	default:
610 		return 0x07;
611 	}
612 }
613 
get_speed_setting(u8 speed,struct hpt_info * info)614 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
615 {
616 	int i;
617 
618 	/*
619 	 * Lookup the transfer mode table to get the index into
620 	 * the timing table.
621 	 *
622 	 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
623 	 */
624 	for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
625 		if (xfer_speeds[i] == speed)
626 			break;
627 
628 	return info->timings->clock_table[info->clock][i];
629 }
630 
hpt3xx_set_mode(ide_hwif_t * hwif,ide_drive_t * drive)631 static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
632 {
633 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
634 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
635 	struct hpt_timings *t	= info->timings;
636 	u8  itr_addr		= 0x40 + (drive->dn * 4);
637 	u32 old_itr		= 0;
638 	const u8 speed		= drive->dma_mode;
639 	u32 new_itr		= get_speed_setting(speed, info);
640 	u32 itr_mask		= speed < XFER_MW_DMA_0 ? t->pio_mask :
641 				 (speed < XFER_UDMA_0   ? t->dma_mask :
642 							  t->ultra_mask);
643 
644 	pci_read_config_dword(dev, itr_addr, &old_itr);
645 	new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
646 	/*
647 	 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
648 	 * to avoid problems handling I/O errors later
649 	 */
650 	new_itr &= ~0xc0000000;
651 
652 	pci_write_config_dword(dev, itr_addr, new_itr);
653 }
654 
hpt3xx_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)655 static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
656 {
657 	drive->dma_mode = drive->pio_mode;
658 	hpt3xx_set_mode(hwif, drive);
659 }
660 
hpt3xx_maskproc(ide_drive_t * drive,int mask)661 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
662 {
663 	ide_hwif_t *hwif	= drive->hwif;
664 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
665 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
666 
667 	if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
668 		return;
669 
670 	if (info->chip_type >= HPT370) {
671 		u8 scr1 = 0;
672 
673 		pci_read_config_byte(dev, 0x5a, &scr1);
674 		if (((scr1 & 0x10) >> 4) != mask) {
675 			if (mask)
676 				scr1 |=  0x10;
677 			else
678 				scr1 &= ~0x10;
679 			pci_write_config_byte(dev, 0x5a, scr1);
680 		}
681 	} else if (mask)
682 		disable_irq(hwif->irq);
683 	else
684 		enable_irq(hwif->irq);
685 }
686 
687 /*
688  * This is specific to the HPT366 UDMA chipset
689  * by HighPoint|Triones Technologies, Inc.
690  */
hpt366_dma_lost_irq(ide_drive_t * drive)691 static void hpt366_dma_lost_irq(ide_drive_t *drive)
692 {
693 	struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
694 	u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
695 
696 	pci_read_config_byte(dev, 0x50, &mcr1);
697 	pci_read_config_byte(dev, 0x52, &mcr3);
698 	pci_read_config_byte(dev, 0x5a, &scr1);
699 	printk("%s: (%s)  mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
700 		drive->name, __func__, mcr1, mcr3, scr1);
701 	if (scr1 & 0x10)
702 		pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
703 	ide_dma_lost_irq(drive);
704 }
705 
hpt370_clear_engine(ide_drive_t * drive)706 static void hpt370_clear_engine(ide_drive_t *drive)
707 {
708 	ide_hwif_t *hwif = drive->hwif;
709 	struct pci_dev *dev = to_pci_dev(hwif->dev);
710 
711 	pci_write_config_byte(dev, hwif->select_data, 0x37);
712 	udelay(10);
713 }
714 
hpt370_irq_timeout(ide_drive_t * drive)715 static void hpt370_irq_timeout(ide_drive_t *drive)
716 {
717 	ide_hwif_t *hwif	= drive->hwif;
718 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
719 	u16 bfifo		= 0;
720 	u8  dma_cmd;
721 
722 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
723 	printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
724 
725 	/* get DMA command mode */
726 	dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
727 	/* stop DMA */
728 	outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
729 	hpt370_clear_engine(drive);
730 }
731 
hpt370_dma_start(ide_drive_t * drive)732 static void hpt370_dma_start(ide_drive_t *drive)
733 {
734 #ifdef HPT_RESET_STATE_ENGINE
735 	hpt370_clear_engine(drive);
736 #endif
737 	ide_dma_start(drive);
738 }
739 
hpt370_dma_end(ide_drive_t * drive)740 static int hpt370_dma_end(ide_drive_t *drive)
741 {
742 	ide_hwif_t *hwif	= drive->hwif;
743 	u8  dma_stat		= inb(hwif->dma_base + ATA_DMA_STATUS);
744 
745 	if (dma_stat & ATA_DMA_ACTIVE) {
746 		/* wait a little */
747 		udelay(20);
748 		dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
749 		if (dma_stat & ATA_DMA_ACTIVE)
750 			hpt370_irq_timeout(drive);
751 	}
752 	return ide_dma_end(drive);
753 }
754 
755 /* returns 1 if DMA IRQ issued, 0 otherwise */
hpt374_dma_test_irq(ide_drive_t * drive)756 static int hpt374_dma_test_irq(ide_drive_t *drive)
757 {
758 	ide_hwif_t *hwif	= drive->hwif;
759 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
760 	u16 bfifo		= 0;
761 	u8  dma_stat;
762 
763 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
764 	if (bfifo & 0x1FF) {
765 //		printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
766 		return 0;
767 	}
768 
769 	dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
770 	/* return 1 if INTR asserted */
771 	if (dma_stat & ATA_DMA_INTR)
772 		return 1;
773 
774 	return 0;
775 }
776 
hpt374_dma_end(ide_drive_t * drive)777 static int hpt374_dma_end(ide_drive_t *drive)
778 {
779 	ide_hwif_t *hwif	= drive->hwif;
780 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
781 	u8 mcr	= 0, mcr_addr	= hwif->select_data;
782 	u8 bwsr = 0, mask	= hwif->channel ? 0x02 : 0x01;
783 
784 	pci_read_config_byte(dev, 0x6a, &bwsr);
785 	pci_read_config_byte(dev, mcr_addr, &mcr);
786 	if (bwsr & mask)
787 		pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
788 	return ide_dma_end(drive);
789 }
790 
791 /**
792  *	hpt3xxn_set_clock	-	perform clock switching dance
793  *	@hwif: hwif to switch
794  *	@mode: clocking mode (0x21 for write, 0x23 otherwise)
795  *
796  *	Switch the DPLL clock on the HPT3xxN devices. This is a	right mess.
797  */
798 
hpt3xxn_set_clock(ide_hwif_t * hwif,u8 mode)799 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
800 {
801 	unsigned long base = hwif->extra_base;
802 	u8 scr2 = inb(base + 0x6b);
803 
804 	if ((scr2 & 0x7f) == mode)
805 		return;
806 
807 	/* Tristate the bus */
808 	outb(0x80, base + 0x63);
809 	outb(0x80, base + 0x67);
810 
811 	/* Switch clock and reset channels */
812 	outb(mode, base + 0x6b);
813 	outb(0xc0, base + 0x69);
814 
815 	/*
816 	 * Reset the state machines.
817 	 * NOTE: avoid accidentally enabling the disabled channels.
818 	 */
819 	outb(inb(base + 0x60) | 0x32, base + 0x60);
820 	outb(inb(base + 0x64) | 0x32, base + 0x64);
821 
822 	/* Complete reset */
823 	outb(0x00, base + 0x69);
824 
825 	/* Reconnect channels to bus */
826 	outb(0x00, base + 0x63);
827 	outb(0x00, base + 0x67);
828 }
829 
830 /**
831  *	hpt3xxn_rw_disk		-	prepare for I/O
832  *	@drive: drive for command
833  *	@rq: block request structure
834  *
835  *	This is called when a disk I/O is issued to HPT3xxN.
836  *	We need it because of the clock switching.
837  */
838 
hpt3xxn_rw_disk(ide_drive_t * drive,struct request * rq)839 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
840 {
841 	hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
842 }
843 
844 /**
845  *	hpt37x_calibrate_dpll	-	calibrate the DPLL
846  *	@dev: PCI device
847  *
848  *	Perform a calibration cycle on the DPLL.
849  *	Returns 1 if this succeeds
850  */
hpt37x_calibrate_dpll(struct pci_dev * dev,u16 f_low,u16 f_high)851 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
852 {
853 	u32 dpll = (f_high << 16) | f_low | 0x100;
854 	u8  scr2;
855 	int i;
856 
857 	pci_write_config_dword(dev, 0x5c, dpll);
858 
859 	/* Wait for oscillator ready */
860 	for(i = 0; i < 0x5000; ++i) {
861 		udelay(50);
862 		pci_read_config_byte(dev, 0x5b, &scr2);
863 		if (scr2 & 0x80)
864 			break;
865 	}
866 	/* See if it stays ready (we'll just bail out if it's not yet) */
867 	for(i = 0; i < 0x1000; ++i) {
868 		pci_read_config_byte(dev, 0x5b, &scr2);
869 		/* DPLL destabilized? */
870 		if(!(scr2 & 0x80))
871 			return 0;
872 	}
873 	/* Turn off tuning, we have the DPLL set */
874 	pci_read_config_dword (dev, 0x5c, &dpll);
875 	pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
876 	return 1;
877 }
878 
hpt3xx_disable_fast_irq(struct pci_dev * dev,u8 mcr_addr)879 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
880 {
881 	struct ide_host *host	= pci_get_drvdata(dev);
882 	struct hpt_info *info	= host->host_priv + (&dev->dev == host->dev[1]);
883 	u8  chip_type		= info->chip_type;
884 	u8  new_mcr, old_mcr	= 0;
885 
886 	/*
887 	 * Disable the "fast interrupt" prediction.  Don't hold off
888 	 * on interrupts. (== 0x01 despite what the docs say)
889 	 */
890 	pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
891 
892 	if (chip_type >= HPT374)
893 		new_mcr = old_mcr & ~0x07;
894 	else if (chip_type >= HPT370) {
895 		new_mcr = old_mcr;
896 		new_mcr &= ~0x02;
897 #ifdef HPT_DELAY_INTERRUPT
898 		new_mcr &= ~0x01;
899 #else
900 		new_mcr |=  0x01;
901 #endif
902 	} else					/* HPT366 and HPT368  */
903 		new_mcr = old_mcr & ~0x80;
904 
905 	if (new_mcr != old_mcr)
906 		pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
907 }
908 
init_chipset_hpt366(struct pci_dev * dev)909 static int init_chipset_hpt366(struct pci_dev *dev)
910 {
911 	unsigned long io_base	= pci_resource_start(dev, 4);
912 	struct hpt_info *info	= hpt3xx_get_info(&dev->dev);
913 	const char *name	= DRV_NAME;
914 	u8 pci_clk,  dpll_clk	= 0;	/* PCI and DPLL clock in MHz */
915 	u8 chip_type;
916 	enum ata_clock	clock;
917 
918 	chip_type = info->chip_type;
919 
920 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
921 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
922 	pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
923 	pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
924 
925 	/*
926 	 * First, try to estimate the PCI clock frequency...
927 	 */
928 	if (chip_type >= HPT370) {
929 		u8  scr1  = 0;
930 		u16 f_cnt = 0;
931 		u32 temp  = 0;
932 
933 		/* Interrupt force enable. */
934 		pci_read_config_byte(dev, 0x5a, &scr1);
935 		if (scr1 & 0x10)
936 			pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
937 
938 		/*
939 		 * HighPoint does this for HPT372A.
940 		 * NOTE: This register is only writeable via I/O space.
941 		 */
942 		if (chip_type == HPT372A)
943 			outb(0x0e, io_base + 0x9c);
944 
945 		/*
946 		 * Default to PCI clock. Make sure MA15/16 are set to output
947 		 * to prevent drives having problems with 40-pin cables.
948 		 */
949 		pci_write_config_byte(dev, 0x5b, 0x23);
950 
951 		/*
952 		 * We'll have to read f_CNT value in order to determine
953 		 * the PCI clock frequency according to the following ratio:
954 		 *
955 		 * f_CNT = Fpci * 192 / Fdpll
956 		 *
957 		 * First try reading the register in which the HighPoint BIOS
958 		 * saves f_CNT value before  reprogramming the DPLL from its
959 		 * default setting (which differs for the various chips).
960 		 *
961 		 * NOTE: This register is only accessible via I/O space;
962 		 * HPT374 BIOS only saves it for the function 0, so we have to
963 		 * always read it from there -- no need to check the result of
964 		 * pci_get_slot() for the function 0 as the whole device has
965 		 * been already "pinned" (via function 1) in init_setup_hpt374()
966 		 */
967 		if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
968 			struct pci_dev	*dev1 = pci_get_slot(dev->bus,
969 							     dev->devfn - 1);
970 			unsigned long io_base = pci_resource_start(dev1, 4);
971 
972 			temp =	inl(io_base + 0x90);
973 			pci_dev_put(dev1);
974 		} else
975 			temp =	inl(io_base + 0x90);
976 
977 		/*
978 		 * In case the signature check fails, we'll have to
979 		 * resort to reading the f_CNT register itself in hopes
980 		 * that nobody has touched the DPLL yet...
981 		 */
982 		if ((temp & 0xFFFFF000) != 0xABCDE000) {
983 			int i;
984 
985 			printk(KERN_WARNING "%s %s: no clock data saved by "
986 				"BIOS\n", name, pci_name(dev));
987 
988 			/* Calculate the average value of f_CNT. */
989 			for (temp = i = 0; i < 128; i++) {
990 				pci_read_config_word(dev, 0x78, &f_cnt);
991 				temp += f_cnt & 0x1ff;
992 				mdelay(1);
993 			}
994 			f_cnt = temp / 128;
995 		} else
996 			f_cnt = temp & 0x1ff;
997 
998 		dpll_clk = info->dpll_clk;
999 		pci_clk  = (f_cnt * dpll_clk) / 192;
1000 
1001 		/* Clamp PCI clock to bands. */
1002 		if (pci_clk < 40)
1003 			pci_clk = 33;
1004 		else if(pci_clk < 45)
1005 			pci_clk = 40;
1006 		else if(pci_clk < 55)
1007 			pci_clk = 50;
1008 		else
1009 			pci_clk = 66;
1010 
1011 		printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1012 			"assuming %d MHz PCI\n", name, pci_name(dev),
1013 			dpll_clk, f_cnt, pci_clk);
1014 	} else {
1015 		u32 itr1 = 0;
1016 
1017 		pci_read_config_dword(dev, 0x40, &itr1);
1018 
1019 		/* Detect PCI clock by looking at cmd_high_time. */
1020 		switch((itr1 >> 8) & 0x07) {
1021 			case 0x09:
1022 				pci_clk = 40;
1023 				break;
1024 			case 0x05:
1025 				pci_clk = 25;
1026 				break;
1027 			case 0x07:
1028 			default:
1029 				pci_clk = 33;
1030 				break;
1031 		}
1032 	}
1033 
1034 	/* Let's assume we'll use PCI clock for the ATA clock... */
1035 	switch (pci_clk) {
1036 		case 25:
1037 			clock = ATA_CLOCK_25MHZ;
1038 			break;
1039 		case 33:
1040 		default:
1041 			clock = ATA_CLOCK_33MHZ;
1042 			break;
1043 		case 40:
1044 			clock = ATA_CLOCK_40MHZ;
1045 			break;
1046 		case 50:
1047 			clock = ATA_CLOCK_50MHZ;
1048 			break;
1049 		case 66:
1050 			clock = ATA_CLOCK_66MHZ;
1051 			break;
1052 	}
1053 
1054 	/*
1055 	 * Only try the DPLL if we don't have a table for the PCI clock that
1056 	 * we are running at for HPT370/A, always use it  for anything newer...
1057 	 *
1058 	 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1059 	 * We also  don't like using  the DPLL because this causes glitches
1060 	 * on PRST-/SRST- when the state engine gets reset...
1061 	 */
1062 	if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1063 		u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1064 		int adjust;
1065 
1066 		 /*
1067 		  * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1068 		  * supported/enabled, use 50 MHz DPLL clock otherwise...
1069 		  */
1070 		if (info->udma_mask == ATA_UDMA6) {
1071 			dpll_clk = 66;
1072 			clock = ATA_CLOCK_66MHZ;
1073 		} else if (dpll_clk) {	/* HPT36x chips don't have DPLL */
1074 			dpll_clk = 50;
1075 			clock = ATA_CLOCK_50MHZ;
1076 		}
1077 
1078 		if (info->timings->clock_table[clock] == NULL) {
1079 			printk(KERN_ERR "%s %s: unknown bus timing!\n",
1080 				name, pci_name(dev));
1081 			return -EIO;
1082 		}
1083 
1084 		/* Select the DPLL clock. */
1085 		pci_write_config_byte(dev, 0x5b, 0x21);
1086 
1087 		/*
1088 		 * Adjust the DPLL based upon PCI clock, enable it,
1089 		 * and wait for stabilization...
1090 		 */
1091 		f_low = (pci_clk * 48) / dpll_clk;
1092 
1093 		for (adjust = 0; adjust < 8; adjust++) {
1094 			if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1095 				break;
1096 
1097 			/*
1098 			 * See if it'll settle at a fractionally different clock
1099 			 */
1100 			if (adjust & 1)
1101 				f_low -= adjust >> 1;
1102 			else
1103 				f_low += adjust >> 1;
1104 		}
1105 		if (adjust == 8) {
1106 			printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1107 				name, pci_name(dev));
1108 			return -EIO;
1109 		}
1110 
1111 		printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1112 			name, pci_name(dev), dpll_clk);
1113 	} else {
1114 		/* Mark the fact that we're not using the DPLL. */
1115 		dpll_clk = 0;
1116 
1117 		printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1118 			name, pci_name(dev), pci_clk);
1119 	}
1120 
1121 	/* Store the clock frequencies. */
1122 	info->dpll_clk	= dpll_clk;
1123 	info->pci_clk	= pci_clk;
1124 	info->clock	= clock;
1125 
1126 	if (chip_type >= HPT370) {
1127 		u8  mcr1, mcr4;
1128 
1129 		/*
1130 		 * Reset the state engines.
1131 		 * NOTE: Avoid accidentally enabling the disabled channels.
1132 		 */
1133 		pci_read_config_byte (dev, 0x50, &mcr1);
1134 		pci_read_config_byte (dev, 0x54, &mcr4);
1135 		pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1136 		pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1137 		udelay(100);
1138 	}
1139 
1140 	/*
1141 	 * On  HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1142 	 * the MISC. register to stretch the UltraDMA Tss timing.
1143 	 * NOTE: This register is only writeable via I/O space.
1144 	 */
1145 	if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1146 		outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1147 
1148 	hpt3xx_disable_fast_irq(dev, 0x50);
1149 	hpt3xx_disable_fast_irq(dev, 0x54);
1150 
1151 	return 0;
1152 }
1153 
hpt3xx_cable_detect(ide_hwif_t * hwif)1154 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1155 {
1156 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
1157 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1158 	u8 chip_type		= info->chip_type;
1159 	u8 scr1 = 0, ata66	= hwif->channel ? 0x01 : 0x02;
1160 
1161 	/*
1162 	 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1163 	 * address lines to access an external EEPROM.  To read valid
1164 	 * cable detect state the pins must be enabled as inputs.
1165 	 */
1166 	if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1167 		/*
1168 		 * HPT374 PCI function 1
1169 		 * - set bit 15 of reg 0x52 to enable TCBLID as input
1170 		 * - set bit 15 of reg 0x56 to enable FCBLID as input
1171 		 */
1172 		u8  mcr_addr = hwif->select_data + 2;
1173 		u16 mcr;
1174 
1175 		pci_read_config_word(dev, mcr_addr, &mcr);
1176 		pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1177 		/* Debounce, then read cable ID register */
1178 		udelay(10);
1179 		pci_read_config_byte(dev, 0x5a, &scr1);
1180 		pci_write_config_word(dev, mcr_addr, mcr);
1181 	} else if (chip_type >= HPT370) {
1182 		/*
1183 		 * HPT370/372 and 374 pcifn 0
1184 		 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1185 		 */
1186 		u8 scr2 = 0;
1187 
1188 		pci_read_config_byte(dev, 0x5b, &scr2);
1189 		pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1190 		/* Debounce, then read cable ID register */
1191 		udelay(10);
1192 		pci_read_config_byte(dev, 0x5a, &scr1);
1193 		pci_write_config_byte(dev, 0x5b, scr2);
1194 	} else
1195 		pci_read_config_byte(dev, 0x5a, &scr1);
1196 
1197 	return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1198 }
1199 
init_hwif_hpt366(ide_hwif_t * hwif)1200 static void init_hwif_hpt366(ide_hwif_t *hwif)
1201 {
1202 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1203 	u8  chip_type		= info->chip_type;
1204 
1205 	/* Cache the channel's MISC. control registers' offset */
1206 	hwif->select_data	= hwif->channel ? 0x54 : 0x50;
1207 
1208 	/*
1209 	 * HPT3xxN chips have some complications:
1210 	 *
1211 	 * - on 33 MHz PCI we must clock switch
1212 	 * - on 66 MHz PCI we must NOT use the PCI clock
1213 	 */
1214 	if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1215 		/*
1216 		 * Clock is shared between the channels,
1217 		 * so we'll have to serialize them... :-(
1218 		 */
1219 		hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1220 		hwif->rw_disk = &hpt3xxn_rw_disk;
1221 	}
1222 }
1223 
init_dma_hpt366(ide_hwif_t * hwif,const struct ide_port_info * d)1224 static int init_dma_hpt366(ide_hwif_t *hwif,
1225 				     const struct ide_port_info *d)
1226 {
1227 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1228 	unsigned long flags, base = ide_pci_dma_base(hwif, d);
1229 	u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1230 
1231 	if (base == 0)
1232 		return -1;
1233 
1234 	hwif->dma_base = base;
1235 
1236 	if (ide_pci_check_simplex(hwif, d) < 0)
1237 		return -1;
1238 
1239 	if (ide_pci_set_master(dev, d->name) < 0)
1240 		return -1;
1241 
1242 	dma_old = inb(base + 2);
1243 
1244 	local_irq_save(flags);
1245 
1246 	dma_new = dma_old;
1247 	pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1248 	pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47,  &slavedma);
1249 
1250 	if (masterdma & 0x30)	dma_new |= 0x20;
1251 	if ( slavedma & 0x30)	dma_new |= 0x40;
1252 	if (dma_new != dma_old)
1253 		outb(dma_new, base + 2);
1254 
1255 	local_irq_restore(flags);
1256 
1257 	printk(KERN_INFO "    %s: BM-DMA at 0x%04lx-0x%04lx\n",
1258 			 hwif->name, base, base + 7);
1259 
1260 	hwif->extra_base = base + (hwif->channel ? 8 : 16);
1261 
1262 	if (ide_allocate_dma_engine(hwif))
1263 		return -1;
1264 
1265 	return 0;
1266 }
1267 
hpt374_init(struct pci_dev * dev,struct pci_dev * dev2)1268 static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1269 {
1270 	if (dev2->irq != dev->irq) {
1271 		/* FIXME: we need a core pci_set_interrupt() */
1272 		dev2->irq = dev->irq;
1273 		printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1274 			"fixed\n", pci_name(dev2));
1275 	}
1276 }
1277 
hpt371_init(struct pci_dev * dev)1278 static void hpt371_init(struct pci_dev *dev)
1279 {
1280 	u8 mcr1 = 0;
1281 
1282 	/*
1283 	 * HPT371 chips physically have only one channel, the secondary one,
1284 	 * but the primary channel registers do exist!  Go figure...
1285 	 * So,  we manually disable the non-existing channel here
1286 	 * (if the BIOS hasn't done this already).
1287 	 */
1288 	pci_read_config_byte(dev, 0x50, &mcr1);
1289 	if (mcr1 & 0x04)
1290 		pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1291 }
1292 
hpt36x_init(struct pci_dev * dev,struct pci_dev * dev2)1293 static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1294 {
1295 	u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1296 
1297 	/*
1298 	 * Now we'll have to force both channels enabled if
1299 	 * at least one of them has been enabled by BIOS...
1300 	 */
1301 	pci_read_config_byte(dev, 0x50, &mcr1);
1302 	if (mcr1 & 0x30)
1303 		pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1304 
1305 	pci_read_config_byte(dev,  PCI_INTERRUPT_PIN, &pin1);
1306 	pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1307 
1308 	if (pin1 != pin2 && dev->irq == dev2->irq) {
1309 		printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1310 			"pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1311 		return 1;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 #define IDE_HFLAGS_HPT3XX \
1318 	(IDE_HFLAG_NO_ATAPI_DMA | \
1319 	 IDE_HFLAG_OFF_BOARD)
1320 
1321 static const struct ide_port_ops hpt3xx_port_ops = {
1322 	.set_pio_mode		= hpt3xx_set_pio_mode,
1323 	.set_dma_mode		= hpt3xx_set_mode,
1324 	.maskproc		= hpt3xx_maskproc,
1325 	.mdma_filter		= hpt3xx_mdma_filter,
1326 	.udma_filter		= hpt3xx_udma_filter,
1327 	.cable_detect		= hpt3xx_cable_detect,
1328 };
1329 
1330 static const struct ide_dma_ops hpt37x_dma_ops = {
1331 	.dma_host_set		= ide_dma_host_set,
1332 	.dma_setup		= ide_dma_setup,
1333 	.dma_start		= ide_dma_start,
1334 	.dma_end		= hpt374_dma_end,
1335 	.dma_test_irq		= hpt374_dma_test_irq,
1336 	.dma_lost_irq		= ide_dma_lost_irq,
1337 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1338 	.dma_sff_read_status	= ide_dma_sff_read_status,
1339 };
1340 
1341 static const struct ide_dma_ops hpt370_dma_ops = {
1342 	.dma_host_set		= ide_dma_host_set,
1343 	.dma_setup		= ide_dma_setup,
1344 	.dma_start		= hpt370_dma_start,
1345 	.dma_end		= hpt370_dma_end,
1346 	.dma_test_irq		= ide_dma_test_irq,
1347 	.dma_lost_irq		= ide_dma_lost_irq,
1348 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1349 	.dma_clear		= hpt370_irq_timeout,
1350 	.dma_sff_read_status	= ide_dma_sff_read_status,
1351 };
1352 
1353 static const struct ide_dma_ops hpt36x_dma_ops = {
1354 	.dma_host_set		= ide_dma_host_set,
1355 	.dma_setup		= ide_dma_setup,
1356 	.dma_start		= ide_dma_start,
1357 	.dma_end		= ide_dma_end,
1358 	.dma_test_irq		= ide_dma_test_irq,
1359 	.dma_lost_irq		= hpt366_dma_lost_irq,
1360 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1361 	.dma_sff_read_status	= ide_dma_sff_read_status,
1362 };
1363 
1364 static const struct ide_port_info hpt366_chipsets[] = {
1365 	{	/* 0: HPT36x */
1366 		.name		= DRV_NAME,
1367 		.init_chipset	= init_chipset_hpt366,
1368 		.init_hwif	= init_hwif_hpt366,
1369 		.init_dma	= init_dma_hpt366,
1370 		/*
1371 		 * HPT36x chips have one channel per function and have
1372 		 * both channel enable bits located differently and visible
1373 		 * to both functions -- really stupid design decision... :-(
1374 		 * Bit 4 is for the primary channel, bit 5 for the secondary.
1375 		 */
1376 		.enablebits	= {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1377 		.port_ops	= &hpt3xx_port_ops,
1378 		.dma_ops	= &hpt36x_dma_ops,
1379 		.host_flags	= IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1380 		.pio_mask	= ATA_PIO4,
1381 		.mwdma_mask	= ATA_MWDMA2,
1382 	},
1383 	{	/* 1: HPT3xx */
1384 		.name		= DRV_NAME,
1385 		.init_chipset	= init_chipset_hpt366,
1386 		.init_hwif	= init_hwif_hpt366,
1387 		.init_dma	= init_dma_hpt366,
1388 		.enablebits	= {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1389 		.port_ops	= &hpt3xx_port_ops,
1390 		.dma_ops	= &hpt37x_dma_ops,
1391 		.host_flags	= IDE_HFLAGS_HPT3XX,
1392 		.pio_mask	= ATA_PIO4,
1393 		.mwdma_mask	= ATA_MWDMA2,
1394 	}
1395 };
1396 
1397 /**
1398  *	hpt366_init_one	-	called when an HPT366 is found
1399  *	@dev: the hpt366 device
1400  *	@id: the matching pci id
1401  *
1402  *	Called when the PCI registration layer (or the IDE initialization)
1403  *	finds a device matching our IDE device tables.
1404  */
hpt366_init_one(struct pci_dev * dev,const struct pci_device_id * id)1405 static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1406 {
1407 	const struct hpt_info *info = NULL;
1408 	struct hpt_info *dyn_info;
1409 	struct pci_dev *dev2 = NULL;
1410 	struct ide_port_info d;
1411 	u8 idx = id->driver_data;
1412 	u8 rev = dev->revision;
1413 	int ret;
1414 
1415 	if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1416 		return -ENODEV;
1417 
1418 	switch (idx) {
1419 	case 0:
1420 		if (rev < 3)
1421 			info = &hpt36x;
1422 		else {
1423 			switch (min_t(u8, rev, 6)) {
1424 			case 3: info = &hpt370;  break;
1425 			case 4: info = &hpt370a; break;
1426 			case 5: info = &hpt372;  break;
1427 			case 6: info = &hpt372n; break;
1428 			}
1429 			idx++;
1430 		}
1431 		break;
1432 	case 1:
1433 		info = (rev > 1) ? &hpt372n : &hpt372a;
1434 		break;
1435 	case 2:
1436 		info = (rev > 1) ? &hpt302n : &hpt302;
1437 		break;
1438 	case 3:
1439 		hpt371_init(dev);
1440 		info = (rev > 1) ? &hpt371n : &hpt371;
1441 		break;
1442 	case 4:
1443 		info = &hpt374;
1444 		break;
1445 	case 5:
1446 		info = &hpt372n;
1447 		break;
1448 	}
1449 
1450 	printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1451 
1452 	d = hpt366_chipsets[min_t(u8, idx, 1)];
1453 
1454 	d.udma_mask = info->udma_mask;
1455 
1456 	/* fixup ->dma_ops for HPT370/HPT370A */
1457 	if (info == &hpt370 || info == &hpt370a)
1458 		d.dma_ops = &hpt370_dma_ops;
1459 
1460 	if (info == &hpt36x || info == &hpt374)
1461 		dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1462 
1463 	dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1464 	if (dyn_info == NULL) {
1465 		printk(KERN_ERR "%s %s: out of memory!\n",
1466 			d.name, pci_name(dev));
1467 		pci_dev_put(dev2);
1468 		return -ENOMEM;
1469 	}
1470 
1471 	/*
1472 	 * Copy everything from a static "template" structure
1473 	 * to just allocated per-chip hpt_info structure.
1474 	 */
1475 	memcpy(dyn_info, info, sizeof(*dyn_info));
1476 
1477 	if (dev2) {
1478 		memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1479 
1480 		if (info == &hpt374)
1481 			hpt374_init(dev, dev2);
1482 		else {
1483 			if (hpt36x_init(dev, dev2))
1484 				d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1485 		}
1486 
1487 		ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1488 		if (ret < 0) {
1489 			pci_dev_put(dev2);
1490 			kfree(dyn_info);
1491 		}
1492 		return ret;
1493 	}
1494 
1495 	ret = ide_pci_init_one(dev, &d, dyn_info);
1496 	if (ret < 0)
1497 		kfree(dyn_info);
1498 
1499 	return ret;
1500 }
1501 
hpt366_remove(struct pci_dev * dev)1502 static void hpt366_remove(struct pci_dev *dev)
1503 {
1504 	struct ide_host *host = pci_get_drvdata(dev);
1505 	struct ide_info *info = host->host_priv;
1506 	struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1507 
1508 	ide_pci_remove(dev);
1509 	pci_dev_put(dev2);
1510 	kfree(info);
1511 }
1512 
1513 static const struct pci_device_id hpt366_pci_tbl[] = {
1514 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366),  0 },
1515 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372),  1 },
1516 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302),  2 },
1517 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371),  3 },
1518 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374),  4 },
1519 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1520 	{ 0, },
1521 };
1522 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1523 
1524 static struct pci_driver hpt366_pci_driver = {
1525 	.name		= "HPT366_IDE",
1526 	.id_table	= hpt366_pci_tbl,
1527 	.probe		= hpt366_init_one,
1528 	.remove		= hpt366_remove,
1529 	.suspend	= ide_pci_suspend,
1530 	.resume		= ide_pci_resume,
1531 };
1532 
hpt366_ide_init(void)1533 static int __init hpt366_ide_init(void)
1534 {
1535 	return ide_pci_register_driver(&hpt366_pci_driver);
1536 }
1537 
hpt366_ide_exit(void)1538 static void __exit hpt366_ide_exit(void)
1539 {
1540 	pci_unregister_driver(&hpt366_pci_driver);
1541 }
1542 
1543 module_init(hpt366_ide_init);
1544 module_exit(hpt366_ide_exit);
1545 
1546 MODULE_AUTHOR("Andre Hedrick");
1547 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1548 MODULE_LICENSE("GPL");
1549