1 /*
2 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
3 * Portions Copyright (C) 2001 Sun Microsystems, Inc.
4 * Portions Copyright (C) 2003 Red Hat Inc
5 * Portions Copyright (C) 2007 Bartlomiej Zolnierkiewicz
6 * Portions Copyright (C) 2005-2009 MontaVista Software, Inc.
7 *
8 * Thanks to HighPoint Technologies for their assistance, and hardware.
9 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10 * donation of an ABit BP6 mainboard, processor, and memory acellerated
11 * development and support.
12 *
13 *
14 * HighPoint has its own drivers (open source except for the RAID part)
15 * available from http://www.highpoint-tech.com/USA_new/service_support.htm
16 * This may be useful to anyone wanting to work on this driver, however do not
17 * trust them too much since the code tends to become less and less meaningful
18 * as the time passes... :-/
19 *
20 * Note that final HPT370 support was done by force extraction of GPL.
21 *
22 * - add function for getting/setting power status of drive
23 * - the HPT370's state machine can get confused. reset it before each dma
24 * xfer to prevent that from happening.
25 * - reset state engine whenever we get an error.
26 * - check for busmaster state at end of dma.
27 * - use new highpoint timings.
28 * - detect bus speed using highpoint register.
29 * - use pll if we don't have a clock table. added a 66MHz table that's
30 * just 2x the 33MHz table.
31 * - removed turnaround. NOTE: we never want to switch between pll and
32 * pci clocks as the chip can glitch in those cases. the highpoint
33 * approved workaround slows everything down too much to be useful. in
34 * addition, we would have to serialize access to each chip.
35 * Adrian Sun <a.sun@sun.com>
36 *
37 * add drive timings for 66MHz PCI bus,
38 * fix ATA Cable signal detection, fix incorrect /proc info
39 * add /proc display for per-drive PIO/DMA/UDMA mode and
40 * per-channel ATA-33/66 Cable detect.
41 * Duncan Laurie <void@sun.com>
42 *
43 * fixup /proc output for multiple controllers
44 * Tim Hockin <thockin@sun.com>
45 *
46 * On hpt366:
47 * Reset the hpt366 on error, reset on dma
48 * Fix disabling Fast Interrupt hpt366.
49 * Mike Waychison <crlf@sun.com>
50 *
51 * Added support for 372N clocking and clock switching. The 372N needs
52 * different clocks on read/write. This requires overloading rw_disk and
53 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54 * keeping me sane.
55 * Alan Cox <alan@lxorguk.ukuu.org.uk>
56 *
57 * - fix the clock turnaround code: it was writing to the wrong ports when
58 * called for the secondary channel, caching the current clock mode per-
59 * channel caused the cached register value to get out of sync with the
60 * actual one, the channels weren't serialized, the turnaround shouldn't
61 * be done on 66 MHz PCI bus
62 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63 * does not allow for this speed anyway
64 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65 * their primary channel is kind of virtual, it isn't tied to any pins)
66 * - fix/remove bad/unused timing tables and use one set of tables for the whole
67 * HPT37x chip family; save space by introducing the separate transfer mode
68 * table in which the mode lookup is done
69 * - use f_CNT value saved by the HighPoint BIOS as reading it directly gives
70 * the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71 * read it only from the function 0 of HPT374 chips
72 * - fix the hotswap code: it caused RESET- to glitch when tristating the bus,
73 * and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75 * they tamper with its fields
76 * - pass to the init_setup handlers a copy of the ide_pci_device_t structure
77 * since they may tamper with its fields
78 * - prefix the driver startup messages with the real chip name
79 * - claim the extra 240 bytes of I/O space for all chips
80 * - optimize the UltraDMA filtering and the drive list lookup code
81 * - use pci_get_slot() to get to the function 1 of HPT36x/374
82 * - cache offset of the channel's misc. control registers (MCRs) being used
83 * throughout the driver
84 * - only touch the relevant MCR when detecting the cable type on HPT374's
85 * function 1
86 * - rename all the register related variables consistently
87 * - move all the interrupt twiddling code from the speedproc handlers into
88 * init_hwif_hpt366(), also grouping all the DMA related code together there
89 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90 * separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91 * when setting an UltraDMA mode
92 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93 * the best possible one
94 * - clean up DMA timeout handling for HPT370
95 * - switch to using the enumeration type to differ between the numerous chip
96 * variants, matching PCI device/revision ID with the chip type early, at the
97 * init_setup stage
98 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99 * stop duplicating it for each channel by storing the pointer in the pci_dev
100 * structure: first, at the init_setup stage, point it to a static "template"
101 * with only the chip type and its specific base DPLL frequency, the highest
102 * UltraDMA mode, and the chip settings table pointer filled, then, at the
103 * init_chipset stage, allocate per-chip instance and fill it with the rest
104 * of the necessary information
105 * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106 * switch to calculating PCI clock frequency based on the chip's base DPLL
107 * frequency
108 * - switch to using the DPLL clock and enable UltraATA/133 mode by default on
109 * anything newer than HPT370/A (except HPT374 that is not capable of this
110 * mode according to the manual)
111 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112 * also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113 * unify HPT36x/37x timing setup code and the speedproc handlers by joining
114 * the register setting lists into the table indexed by the clock selected
115 * - set the correct hwif->ultra_mask for each individual chip
116 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117 * - stop resetting HPT370's state machine before each DMA transfer as that has
118 * caused more harm than good
119 * Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
120 */
121
122 #include <linux/types.h>
123 #include <linux/module.h>
124 #include <linux/kernel.h>
125 #include <linux/delay.h>
126 #include <linux/blkdev.h>
127 #include <linux/interrupt.h>
128 #include <linux/pci.h>
129 #include <linux/init.h>
130 #include <linux/ide.h>
131 #include <linux/slab.h>
132
133 #include <asm/uaccess.h>
134 #include <asm/io.h>
135
136 #define DRV_NAME "hpt366"
137
138 /* various tuning parameters */
139 #undef HPT_RESET_STATE_ENGINE
140 #undef HPT_DELAY_INTERRUPT
141
142 static const char *bad_ata100_5[] = {
143 "IBM-DTLA-307075",
144 "IBM-DTLA-307060",
145 "IBM-DTLA-307045",
146 "IBM-DTLA-307030",
147 "IBM-DTLA-307020",
148 "IBM-DTLA-307015",
149 "IBM-DTLA-305040",
150 "IBM-DTLA-305030",
151 "IBM-DTLA-305020",
152 "IC35L010AVER07-0",
153 "IC35L020AVER07-0",
154 "IC35L030AVER07-0",
155 "IC35L040AVER07-0",
156 "IC35L060AVER07-0",
157 "WDC AC310200R",
158 NULL
159 };
160
161 static const char *bad_ata66_4[] = {
162 "IBM-DTLA-307075",
163 "IBM-DTLA-307060",
164 "IBM-DTLA-307045",
165 "IBM-DTLA-307030",
166 "IBM-DTLA-307020",
167 "IBM-DTLA-307015",
168 "IBM-DTLA-305040",
169 "IBM-DTLA-305030",
170 "IBM-DTLA-305020",
171 "IC35L010AVER07-0",
172 "IC35L020AVER07-0",
173 "IC35L030AVER07-0",
174 "IC35L040AVER07-0",
175 "IC35L060AVER07-0",
176 "WDC AC310200R",
177 "MAXTOR STM3320620A",
178 NULL
179 };
180
181 static const char *bad_ata66_3[] = {
182 "WDC AC310200R",
183 NULL
184 };
185
186 static const char *bad_ata33[] = {
187 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
188 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
189 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
190 "Maxtor 90510D4",
191 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
192 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
193 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
194 NULL
195 };
196
197 static u8 xfer_speeds[] = {
198 XFER_UDMA_6,
199 XFER_UDMA_5,
200 XFER_UDMA_4,
201 XFER_UDMA_3,
202 XFER_UDMA_2,
203 XFER_UDMA_1,
204 XFER_UDMA_0,
205
206 XFER_MW_DMA_2,
207 XFER_MW_DMA_1,
208 XFER_MW_DMA_0,
209
210 XFER_PIO_4,
211 XFER_PIO_3,
212 XFER_PIO_2,
213 XFER_PIO_1,
214 XFER_PIO_0
215 };
216
217 /* Key for bus clock timings
218 * 36x 37x
219 * bits bits
220 * 0:3 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
221 * cycles = value + 1
222 * 4:7 4:8 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
223 * cycles = value + 1
224 * 8:11 9:12 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
225 * register access.
226 * 12:15 13:17 cmd_low_time. Active time of DIOW_/DIOR_ during task file
227 * register access.
228 * 16:18 18:20 udma_cycle_time. Clock cycles for UDMA xfer.
229 * - 21 CLK frequency: 0=ATA clock, 1=dual ATA clock.
230 * 19:21 22:24 pre_high_time. Time to initialize the 1st cycle for PIO and
231 * MW DMA xfer.
232 * 22:24 25:27 cmd_pre_high_time. Time to initialize the 1st PIO cycle for
233 * task file register access.
234 * 28 28 UDMA enable.
235 * 29 29 DMA enable.
236 * 30 30 PIO MST enable. If set, the chip is in bus master mode during
237 * PIO xfer.
238 * 31 31 FIFO enable.
239 */
240
241 static u32 forty_base_hpt36x[] = {
242 /* XFER_UDMA_6 */ 0x900fd943,
243 /* XFER_UDMA_5 */ 0x900fd943,
244 /* XFER_UDMA_4 */ 0x900fd943,
245 /* XFER_UDMA_3 */ 0x900ad943,
246 /* XFER_UDMA_2 */ 0x900bd943,
247 /* XFER_UDMA_1 */ 0x9008d943,
248 /* XFER_UDMA_0 */ 0x9008d943,
249
250 /* XFER_MW_DMA_2 */ 0xa008d943,
251 /* XFER_MW_DMA_1 */ 0xa010d955,
252 /* XFER_MW_DMA_0 */ 0xa010d9fc,
253
254 /* XFER_PIO_4 */ 0xc008d963,
255 /* XFER_PIO_3 */ 0xc010d974,
256 /* XFER_PIO_2 */ 0xc010d997,
257 /* XFER_PIO_1 */ 0xc010d9c7,
258 /* XFER_PIO_0 */ 0xc018d9d9
259 };
260
261 static u32 thirty_three_base_hpt36x[] = {
262 /* XFER_UDMA_6 */ 0x90c9a731,
263 /* XFER_UDMA_5 */ 0x90c9a731,
264 /* XFER_UDMA_4 */ 0x90c9a731,
265 /* XFER_UDMA_3 */ 0x90cfa731,
266 /* XFER_UDMA_2 */ 0x90caa731,
267 /* XFER_UDMA_1 */ 0x90cba731,
268 /* XFER_UDMA_0 */ 0x90c8a731,
269
270 /* XFER_MW_DMA_2 */ 0xa0c8a731,
271 /* XFER_MW_DMA_1 */ 0xa0c8a732, /* 0xa0c8a733 */
272 /* XFER_MW_DMA_0 */ 0xa0c8a797,
273
274 /* XFER_PIO_4 */ 0xc0c8a731,
275 /* XFER_PIO_3 */ 0xc0c8a742,
276 /* XFER_PIO_2 */ 0xc0d0a753,
277 /* XFER_PIO_1 */ 0xc0d0a7a3, /* 0xc0d0a793 */
278 /* XFER_PIO_0 */ 0xc0d0a7aa /* 0xc0d0a7a7 */
279 };
280
281 static u32 twenty_five_base_hpt36x[] = {
282 /* XFER_UDMA_6 */ 0x90c98521,
283 /* XFER_UDMA_5 */ 0x90c98521,
284 /* XFER_UDMA_4 */ 0x90c98521,
285 /* XFER_UDMA_3 */ 0x90cf8521,
286 /* XFER_UDMA_2 */ 0x90cf8521,
287 /* XFER_UDMA_1 */ 0x90cb8521,
288 /* XFER_UDMA_0 */ 0x90cb8521,
289
290 /* XFER_MW_DMA_2 */ 0xa0ca8521,
291 /* XFER_MW_DMA_1 */ 0xa0ca8532,
292 /* XFER_MW_DMA_0 */ 0xa0ca8575,
293
294 /* XFER_PIO_4 */ 0xc0ca8521,
295 /* XFER_PIO_3 */ 0xc0ca8532,
296 /* XFER_PIO_2 */ 0xc0ca8542,
297 /* XFER_PIO_1 */ 0xc0d08572,
298 /* XFER_PIO_0 */ 0xc0d08585
299 };
300
301 /*
302 * The following are the new timing tables with PIO mode data/taskfile transfer
303 * overclocking fixed...
304 */
305
306 /* This table is taken from the HPT370 data manual rev. 1.02 */
307 static u32 thirty_three_base_hpt37x[] = {
308 /* XFER_UDMA_6 */ 0x16455031, /* 0x16655031 ?? */
309 /* XFER_UDMA_5 */ 0x16455031,
310 /* XFER_UDMA_4 */ 0x16455031,
311 /* XFER_UDMA_3 */ 0x166d5031,
312 /* XFER_UDMA_2 */ 0x16495031,
313 /* XFER_UDMA_1 */ 0x164d5033,
314 /* XFER_UDMA_0 */ 0x16515097,
315
316 /* XFER_MW_DMA_2 */ 0x26515031,
317 /* XFER_MW_DMA_1 */ 0x26515033,
318 /* XFER_MW_DMA_0 */ 0x26515097,
319
320 /* XFER_PIO_4 */ 0x06515021,
321 /* XFER_PIO_3 */ 0x06515022,
322 /* XFER_PIO_2 */ 0x06515033,
323 /* XFER_PIO_1 */ 0x06915065,
324 /* XFER_PIO_0 */ 0x06d1508a
325 };
326
327 static u32 fifty_base_hpt37x[] = {
328 /* XFER_UDMA_6 */ 0x1a861842,
329 /* XFER_UDMA_5 */ 0x1a861842,
330 /* XFER_UDMA_4 */ 0x1aae1842,
331 /* XFER_UDMA_3 */ 0x1a8e1842,
332 /* XFER_UDMA_2 */ 0x1a0e1842,
333 /* XFER_UDMA_1 */ 0x1a161854,
334 /* XFER_UDMA_0 */ 0x1a1a18ea,
335
336 /* XFER_MW_DMA_2 */ 0x2a821842,
337 /* XFER_MW_DMA_1 */ 0x2a821854,
338 /* XFER_MW_DMA_0 */ 0x2a8218ea,
339
340 /* XFER_PIO_4 */ 0x0a821842,
341 /* XFER_PIO_3 */ 0x0a821843,
342 /* XFER_PIO_2 */ 0x0a821855,
343 /* XFER_PIO_1 */ 0x0ac218a8,
344 /* XFER_PIO_0 */ 0x0b02190c
345 };
346
347 static u32 sixty_six_base_hpt37x[] = {
348 /* XFER_UDMA_6 */ 0x1c86fe62,
349 /* XFER_UDMA_5 */ 0x1caefe62, /* 0x1c8afe62 */
350 /* XFER_UDMA_4 */ 0x1c8afe62,
351 /* XFER_UDMA_3 */ 0x1c8efe62,
352 /* XFER_UDMA_2 */ 0x1c92fe62,
353 /* XFER_UDMA_1 */ 0x1c9afe62,
354 /* XFER_UDMA_0 */ 0x1c82fe62,
355
356 /* XFER_MW_DMA_2 */ 0x2c82fe62,
357 /* XFER_MW_DMA_1 */ 0x2c82fe66,
358 /* XFER_MW_DMA_0 */ 0x2c82ff2e,
359
360 /* XFER_PIO_4 */ 0x0c82fe62,
361 /* XFER_PIO_3 */ 0x0c82fe84,
362 /* XFER_PIO_2 */ 0x0c82fea6,
363 /* XFER_PIO_1 */ 0x0d02ff26,
364 /* XFER_PIO_0 */ 0x0d42ff7f
365 };
366
367 #define HPT371_ALLOW_ATA133_6 1
368 #define HPT302_ALLOW_ATA133_6 1
369 #define HPT372_ALLOW_ATA133_6 1
370 #define HPT370_ALLOW_ATA100_5 0
371 #define HPT366_ALLOW_ATA66_4 1
372 #define HPT366_ALLOW_ATA66_3 1
373
374 /* Supported ATA clock frequencies */
375 enum ata_clock {
376 ATA_CLOCK_25MHZ,
377 ATA_CLOCK_33MHZ,
378 ATA_CLOCK_40MHZ,
379 ATA_CLOCK_50MHZ,
380 ATA_CLOCK_66MHZ,
381 NUM_ATA_CLOCKS
382 };
383
384 struct hpt_timings {
385 u32 pio_mask;
386 u32 dma_mask;
387 u32 ultra_mask;
388 u32 *clock_table[NUM_ATA_CLOCKS];
389 };
390
391 /*
392 * Hold all the HighPoint chip information in one place.
393 */
394
395 struct hpt_info {
396 char *chip_name; /* Chip name */
397 u8 chip_type; /* Chip type */
398 u8 udma_mask; /* Allowed UltraDMA modes mask. */
399 u8 dpll_clk; /* DPLL clock in MHz */
400 u8 pci_clk; /* PCI clock in MHz */
401 struct hpt_timings *timings; /* Chipset timing data */
402 u8 clock; /* ATA clock selected */
403 };
404
405 /* Supported HighPoint chips */
406 enum {
407 HPT36x,
408 HPT370,
409 HPT370A,
410 HPT374,
411 HPT372,
412 HPT372A,
413 HPT302,
414 HPT371,
415 HPT372N,
416 HPT302N,
417 HPT371N
418 };
419
420 static struct hpt_timings hpt36x_timings = {
421 .pio_mask = 0xc1f8ffff,
422 .dma_mask = 0x303800ff,
423 .ultra_mask = 0x30070000,
424 .clock_table = {
425 [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
426 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
427 [ATA_CLOCK_40MHZ] = forty_base_hpt36x,
428 [ATA_CLOCK_50MHZ] = NULL,
429 [ATA_CLOCK_66MHZ] = NULL
430 }
431 };
432
433 static struct hpt_timings hpt37x_timings = {
434 .pio_mask = 0xcfc3ffff,
435 .dma_mask = 0x31c001ff,
436 .ultra_mask = 0x303c0000,
437 .clock_table = {
438 [ATA_CLOCK_25MHZ] = NULL,
439 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
440 [ATA_CLOCK_40MHZ] = NULL,
441 [ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
442 [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
443 }
444 };
445
446 static const struct hpt_info hpt36x = {
447 .chip_name = "HPT36x",
448 .chip_type = HPT36x,
449 .udma_mask = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
450 .dpll_clk = 0, /* no DPLL */
451 .timings = &hpt36x_timings
452 };
453
454 static const struct hpt_info hpt370 = {
455 .chip_name = "HPT370",
456 .chip_type = HPT370,
457 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
458 .dpll_clk = 48,
459 .timings = &hpt37x_timings
460 };
461
462 static const struct hpt_info hpt370a = {
463 .chip_name = "HPT370A",
464 .chip_type = HPT370A,
465 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
466 .dpll_clk = 48,
467 .timings = &hpt37x_timings
468 };
469
470 static const struct hpt_info hpt374 = {
471 .chip_name = "HPT374",
472 .chip_type = HPT374,
473 .udma_mask = ATA_UDMA5,
474 .dpll_clk = 48,
475 .timings = &hpt37x_timings
476 };
477
478 static const struct hpt_info hpt372 = {
479 .chip_name = "HPT372",
480 .chip_type = HPT372,
481 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
482 .dpll_clk = 55,
483 .timings = &hpt37x_timings
484 };
485
486 static const struct hpt_info hpt372a = {
487 .chip_name = "HPT372A",
488 .chip_type = HPT372A,
489 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
490 .dpll_clk = 66,
491 .timings = &hpt37x_timings
492 };
493
494 static const struct hpt_info hpt302 = {
495 .chip_name = "HPT302",
496 .chip_type = HPT302,
497 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
498 .dpll_clk = 66,
499 .timings = &hpt37x_timings
500 };
501
502 static const struct hpt_info hpt371 = {
503 .chip_name = "HPT371",
504 .chip_type = HPT371,
505 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
506 .dpll_clk = 66,
507 .timings = &hpt37x_timings
508 };
509
510 static const struct hpt_info hpt372n = {
511 .chip_name = "HPT372N",
512 .chip_type = HPT372N,
513 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
514 .dpll_clk = 77,
515 .timings = &hpt37x_timings
516 };
517
518 static const struct hpt_info hpt302n = {
519 .chip_name = "HPT302N",
520 .chip_type = HPT302N,
521 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
522 .dpll_clk = 77,
523 .timings = &hpt37x_timings
524 };
525
526 static const struct hpt_info hpt371n = {
527 .chip_name = "HPT371N",
528 .chip_type = HPT371N,
529 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
530 .dpll_clk = 77,
531 .timings = &hpt37x_timings
532 };
533
check_in_drive_list(ide_drive_t * drive,const char ** list)534 static int check_in_drive_list(ide_drive_t *drive, const char **list)
535 {
536 char *m = (char *)&drive->id[ATA_ID_PROD];
537
538 while (*list)
539 if (!strcmp(*list++, m))
540 return 1;
541 return 0;
542 }
543
hpt3xx_get_info(struct device * dev)544 static struct hpt_info *hpt3xx_get_info(struct device *dev)
545 {
546 struct ide_host *host = dev_get_drvdata(dev);
547 struct hpt_info *info = (struct hpt_info *)host->host_priv;
548
549 return dev == host->dev[1] ? info + 1 : info;
550 }
551
552 /*
553 * The Marvell bridge chips used on the HighPoint SATA cards do not seem
554 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
555 */
556
hpt3xx_udma_filter(ide_drive_t * drive)557 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
558 {
559 ide_hwif_t *hwif = drive->hwif;
560 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
561 u8 mask = hwif->ultra_mask;
562
563 switch (info->chip_type) {
564 case HPT36x:
565 if (!HPT366_ALLOW_ATA66_4 ||
566 check_in_drive_list(drive, bad_ata66_4))
567 mask = ATA_UDMA3;
568
569 if (!HPT366_ALLOW_ATA66_3 ||
570 check_in_drive_list(drive, bad_ata66_3))
571 mask = ATA_UDMA2;
572 break;
573 case HPT370:
574 if (!HPT370_ALLOW_ATA100_5 ||
575 check_in_drive_list(drive, bad_ata100_5))
576 mask = ATA_UDMA4;
577 break;
578 case HPT370A:
579 if (!HPT370_ALLOW_ATA100_5 ||
580 check_in_drive_list(drive, bad_ata100_5))
581 return ATA_UDMA4;
582 case HPT372 :
583 case HPT372A:
584 case HPT372N:
585 case HPT374 :
586 if (ata_id_is_sata(drive->id))
587 mask &= ~0x0e;
588 /* Fall thru */
589 default:
590 return mask;
591 }
592
593 return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
594 }
595
hpt3xx_mdma_filter(ide_drive_t * drive)596 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
597 {
598 ide_hwif_t *hwif = drive->hwif;
599 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
600
601 switch (info->chip_type) {
602 case HPT372 :
603 case HPT372A:
604 case HPT372N:
605 case HPT374 :
606 if (ata_id_is_sata(drive->id))
607 return 0x00;
608 /* Fall thru */
609 default:
610 return 0x07;
611 }
612 }
613
get_speed_setting(u8 speed,struct hpt_info * info)614 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
615 {
616 int i;
617
618 /*
619 * Lookup the transfer mode table to get the index into
620 * the timing table.
621 *
622 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
623 */
624 for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
625 if (xfer_speeds[i] == speed)
626 break;
627
628 return info->timings->clock_table[info->clock][i];
629 }
630
hpt3xx_set_mode(ide_hwif_t * hwif,ide_drive_t * drive)631 static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
632 {
633 struct pci_dev *dev = to_pci_dev(hwif->dev);
634 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
635 struct hpt_timings *t = info->timings;
636 u8 itr_addr = 0x40 + (drive->dn * 4);
637 u32 old_itr = 0;
638 const u8 speed = drive->dma_mode;
639 u32 new_itr = get_speed_setting(speed, info);
640 u32 itr_mask = speed < XFER_MW_DMA_0 ? t->pio_mask :
641 (speed < XFER_UDMA_0 ? t->dma_mask :
642 t->ultra_mask);
643
644 pci_read_config_dword(dev, itr_addr, &old_itr);
645 new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
646 /*
647 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
648 * to avoid problems handling I/O errors later
649 */
650 new_itr &= ~0xc0000000;
651
652 pci_write_config_dword(dev, itr_addr, new_itr);
653 }
654
hpt3xx_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)655 static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
656 {
657 drive->dma_mode = drive->pio_mode;
658 hpt3xx_set_mode(hwif, drive);
659 }
660
hpt3xx_maskproc(ide_drive_t * drive,int mask)661 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
662 {
663 ide_hwif_t *hwif = drive->hwif;
664 struct pci_dev *dev = to_pci_dev(hwif->dev);
665 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
666
667 if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
668 return;
669
670 if (info->chip_type >= HPT370) {
671 u8 scr1 = 0;
672
673 pci_read_config_byte(dev, 0x5a, &scr1);
674 if (((scr1 & 0x10) >> 4) != mask) {
675 if (mask)
676 scr1 |= 0x10;
677 else
678 scr1 &= ~0x10;
679 pci_write_config_byte(dev, 0x5a, scr1);
680 }
681 } else if (mask)
682 disable_irq(hwif->irq);
683 else
684 enable_irq(hwif->irq);
685 }
686
687 /*
688 * This is specific to the HPT366 UDMA chipset
689 * by HighPoint|Triones Technologies, Inc.
690 */
hpt366_dma_lost_irq(ide_drive_t * drive)691 static void hpt366_dma_lost_irq(ide_drive_t *drive)
692 {
693 struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
694 u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
695
696 pci_read_config_byte(dev, 0x50, &mcr1);
697 pci_read_config_byte(dev, 0x52, &mcr3);
698 pci_read_config_byte(dev, 0x5a, &scr1);
699 printk("%s: (%s) mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
700 drive->name, __func__, mcr1, mcr3, scr1);
701 if (scr1 & 0x10)
702 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
703 ide_dma_lost_irq(drive);
704 }
705
hpt370_clear_engine(ide_drive_t * drive)706 static void hpt370_clear_engine(ide_drive_t *drive)
707 {
708 ide_hwif_t *hwif = drive->hwif;
709 struct pci_dev *dev = to_pci_dev(hwif->dev);
710
711 pci_write_config_byte(dev, hwif->select_data, 0x37);
712 udelay(10);
713 }
714
hpt370_irq_timeout(ide_drive_t * drive)715 static void hpt370_irq_timeout(ide_drive_t *drive)
716 {
717 ide_hwif_t *hwif = drive->hwif;
718 struct pci_dev *dev = to_pci_dev(hwif->dev);
719 u16 bfifo = 0;
720 u8 dma_cmd;
721
722 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
723 printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
724
725 /* get DMA command mode */
726 dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
727 /* stop DMA */
728 outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
729 hpt370_clear_engine(drive);
730 }
731
hpt370_dma_start(ide_drive_t * drive)732 static void hpt370_dma_start(ide_drive_t *drive)
733 {
734 #ifdef HPT_RESET_STATE_ENGINE
735 hpt370_clear_engine(drive);
736 #endif
737 ide_dma_start(drive);
738 }
739
hpt370_dma_end(ide_drive_t * drive)740 static int hpt370_dma_end(ide_drive_t *drive)
741 {
742 ide_hwif_t *hwif = drive->hwif;
743 u8 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
744
745 if (dma_stat & ATA_DMA_ACTIVE) {
746 /* wait a little */
747 udelay(20);
748 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
749 if (dma_stat & ATA_DMA_ACTIVE)
750 hpt370_irq_timeout(drive);
751 }
752 return ide_dma_end(drive);
753 }
754
755 /* returns 1 if DMA IRQ issued, 0 otherwise */
hpt374_dma_test_irq(ide_drive_t * drive)756 static int hpt374_dma_test_irq(ide_drive_t *drive)
757 {
758 ide_hwif_t *hwif = drive->hwif;
759 struct pci_dev *dev = to_pci_dev(hwif->dev);
760 u16 bfifo = 0;
761 u8 dma_stat;
762
763 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
764 if (bfifo & 0x1FF) {
765 // printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
766 return 0;
767 }
768
769 dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
770 /* return 1 if INTR asserted */
771 if (dma_stat & ATA_DMA_INTR)
772 return 1;
773
774 return 0;
775 }
776
hpt374_dma_end(ide_drive_t * drive)777 static int hpt374_dma_end(ide_drive_t *drive)
778 {
779 ide_hwif_t *hwif = drive->hwif;
780 struct pci_dev *dev = to_pci_dev(hwif->dev);
781 u8 mcr = 0, mcr_addr = hwif->select_data;
782 u8 bwsr = 0, mask = hwif->channel ? 0x02 : 0x01;
783
784 pci_read_config_byte(dev, 0x6a, &bwsr);
785 pci_read_config_byte(dev, mcr_addr, &mcr);
786 if (bwsr & mask)
787 pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
788 return ide_dma_end(drive);
789 }
790
791 /**
792 * hpt3xxn_set_clock - perform clock switching dance
793 * @hwif: hwif to switch
794 * @mode: clocking mode (0x21 for write, 0x23 otherwise)
795 *
796 * Switch the DPLL clock on the HPT3xxN devices. This is a right mess.
797 */
798
hpt3xxn_set_clock(ide_hwif_t * hwif,u8 mode)799 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
800 {
801 unsigned long base = hwif->extra_base;
802 u8 scr2 = inb(base + 0x6b);
803
804 if ((scr2 & 0x7f) == mode)
805 return;
806
807 /* Tristate the bus */
808 outb(0x80, base + 0x63);
809 outb(0x80, base + 0x67);
810
811 /* Switch clock and reset channels */
812 outb(mode, base + 0x6b);
813 outb(0xc0, base + 0x69);
814
815 /*
816 * Reset the state machines.
817 * NOTE: avoid accidentally enabling the disabled channels.
818 */
819 outb(inb(base + 0x60) | 0x32, base + 0x60);
820 outb(inb(base + 0x64) | 0x32, base + 0x64);
821
822 /* Complete reset */
823 outb(0x00, base + 0x69);
824
825 /* Reconnect channels to bus */
826 outb(0x00, base + 0x63);
827 outb(0x00, base + 0x67);
828 }
829
830 /**
831 * hpt3xxn_rw_disk - prepare for I/O
832 * @drive: drive for command
833 * @rq: block request structure
834 *
835 * This is called when a disk I/O is issued to HPT3xxN.
836 * We need it because of the clock switching.
837 */
838
hpt3xxn_rw_disk(ide_drive_t * drive,struct request * rq)839 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
840 {
841 hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
842 }
843
844 /**
845 * hpt37x_calibrate_dpll - calibrate the DPLL
846 * @dev: PCI device
847 *
848 * Perform a calibration cycle on the DPLL.
849 * Returns 1 if this succeeds
850 */
hpt37x_calibrate_dpll(struct pci_dev * dev,u16 f_low,u16 f_high)851 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
852 {
853 u32 dpll = (f_high << 16) | f_low | 0x100;
854 u8 scr2;
855 int i;
856
857 pci_write_config_dword(dev, 0x5c, dpll);
858
859 /* Wait for oscillator ready */
860 for(i = 0; i < 0x5000; ++i) {
861 udelay(50);
862 pci_read_config_byte(dev, 0x5b, &scr2);
863 if (scr2 & 0x80)
864 break;
865 }
866 /* See if it stays ready (we'll just bail out if it's not yet) */
867 for(i = 0; i < 0x1000; ++i) {
868 pci_read_config_byte(dev, 0x5b, &scr2);
869 /* DPLL destabilized? */
870 if(!(scr2 & 0x80))
871 return 0;
872 }
873 /* Turn off tuning, we have the DPLL set */
874 pci_read_config_dword (dev, 0x5c, &dpll);
875 pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
876 return 1;
877 }
878
hpt3xx_disable_fast_irq(struct pci_dev * dev,u8 mcr_addr)879 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
880 {
881 struct ide_host *host = pci_get_drvdata(dev);
882 struct hpt_info *info = host->host_priv + (&dev->dev == host->dev[1]);
883 u8 chip_type = info->chip_type;
884 u8 new_mcr, old_mcr = 0;
885
886 /*
887 * Disable the "fast interrupt" prediction. Don't hold off
888 * on interrupts. (== 0x01 despite what the docs say)
889 */
890 pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
891
892 if (chip_type >= HPT374)
893 new_mcr = old_mcr & ~0x07;
894 else if (chip_type >= HPT370) {
895 new_mcr = old_mcr;
896 new_mcr &= ~0x02;
897 #ifdef HPT_DELAY_INTERRUPT
898 new_mcr &= ~0x01;
899 #else
900 new_mcr |= 0x01;
901 #endif
902 } else /* HPT366 and HPT368 */
903 new_mcr = old_mcr & ~0x80;
904
905 if (new_mcr != old_mcr)
906 pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
907 }
908
init_chipset_hpt366(struct pci_dev * dev)909 static int init_chipset_hpt366(struct pci_dev *dev)
910 {
911 unsigned long io_base = pci_resource_start(dev, 4);
912 struct hpt_info *info = hpt3xx_get_info(&dev->dev);
913 const char *name = DRV_NAME;
914 u8 pci_clk, dpll_clk = 0; /* PCI and DPLL clock in MHz */
915 u8 chip_type;
916 enum ata_clock clock;
917
918 chip_type = info->chip_type;
919
920 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
921 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
922 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
923 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
924
925 /*
926 * First, try to estimate the PCI clock frequency...
927 */
928 if (chip_type >= HPT370) {
929 u8 scr1 = 0;
930 u16 f_cnt = 0;
931 u32 temp = 0;
932
933 /* Interrupt force enable. */
934 pci_read_config_byte(dev, 0x5a, &scr1);
935 if (scr1 & 0x10)
936 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
937
938 /*
939 * HighPoint does this for HPT372A.
940 * NOTE: This register is only writeable via I/O space.
941 */
942 if (chip_type == HPT372A)
943 outb(0x0e, io_base + 0x9c);
944
945 /*
946 * Default to PCI clock. Make sure MA15/16 are set to output
947 * to prevent drives having problems with 40-pin cables.
948 */
949 pci_write_config_byte(dev, 0x5b, 0x23);
950
951 /*
952 * We'll have to read f_CNT value in order to determine
953 * the PCI clock frequency according to the following ratio:
954 *
955 * f_CNT = Fpci * 192 / Fdpll
956 *
957 * First try reading the register in which the HighPoint BIOS
958 * saves f_CNT value before reprogramming the DPLL from its
959 * default setting (which differs for the various chips).
960 *
961 * NOTE: This register is only accessible via I/O space;
962 * HPT374 BIOS only saves it for the function 0, so we have to
963 * always read it from there -- no need to check the result of
964 * pci_get_slot() for the function 0 as the whole device has
965 * been already "pinned" (via function 1) in init_setup_hpt374()
966 */
967 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
968 struct pci_dev *dev1 = pci_get_slot(dev->bus,
969 dev->devfn - 1);
970 unsigned long io_base = pci_resource_start(dev1, 4);
971
972 temp = inl(io_base + 0x90);
973 pci_dev_put(dev1);
974 } else
975 temp = inl(io_base + 0x90);
976
977 /*
978 * In case the signature check fails, we'll have to
979 * resort to reading the f_CNT register itself in hopes
980 * that nobody has touched the DPLL yet...
981 */
982 if ((temp & 0xFFFFF000) != 0xABCDE000) {
983 int i;
984
985 printk(KERN_WARNING "%s %s: no clock data saved by "
986 "BIOS\n", name, pci_name(dev));
987
988 /* Calculate the average value of f_CNT. */
989 for (temp = i = 0; i < 128; i++) {
990 pci_read_config_word(dev, 0x78, &f_cnt);
991 temp += f_cnt & 0x1ff;
992 mdelay(1);
993 }
994 f_cnt = temp / 128;
995 } else
996 f_cnt = temp & 0x1ff;
997
998 dpll_clk = info->dpll_clk;
999 pci_clk = (f_cnt * dpll_clk) / 192;
1000
1001 /* Clamp PCI clock to bands. */
1002 if (pci_clk < 40)
1003 pci_clk = 33;
1004 else if(pci_clk < 45)
1005 pci_clk = 40;
1006 else if(pci_clk < 55)
1007 pci_clk = 50;
1008 else
1009 pci_clk = 66;
1010
1011 printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1012 "assuming %d MHz PCI\n", name, pci_name(dev),
1013 dpll_clk, f_cnt, pci_clk);
1014 } else {
1015 u32 itr1 = 0;
1016
1017 pci_read_config_dword(dev, 0x40, &itr1);
1018
1019 /* Detect PCI clock by looking at cmd_high_time. */
1020 switch((itr1 >> 8) & 0x07) {
1021 case 0x09:
1022 pci_clk = 40;
1023 break;
1024 case 0x05:
1025 pci_clk = 25;
1026 break;
1027 case 0x07:
1028 default:
1029 pci_clk = 33;
1030 break;
1031 }
1032 }
1033
1034 /* Let's assume we'll use PCI clock for the ATA clock... */
1035 switch (pci_clk) {
1036 case 25:
1037 clock = ATA_CLOCK_25MHZ;
1038 break;
1039 case 33:
1040 default:
1041 clock = ATA_CLOCK_33MHZ;
1042 break;
1043 case 40:
1044 clock = ATA_CLOCK_40MHZ;
1045 break;
1046 case 50:
1047 clock = ATA_CLOCK_50MHZ;
1048 break;
1049 case 66:
1050 clock = ATA_CLOCK_66MHZ;
1051 break;
1052 }
1053
1054 /*
1055 * Only try the DPLL if we don't have a table for the PCI clock that
1056 * we are running at for HPT370/A, always use it for anything newer...
1057 *
1058 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1059 * We also don't like using the DPLL because this causes glitches
1060 * on PRST-/SRST- when the state engine gets reset...
1061 */
1062 if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1063 u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1064 int adjust;
1065
1066 /*
1067 * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1068 * supported/enabled, use 50 MHz DPLL clock otherwise...
1069 */
1070 if (info->udma_mask == ATA_UDMA6) {
1071 dpll_clk = 66;
1072 clock = ATA_CLOCK_66MHZ;
1073 } else if (dpll_clk) { /* HPT36x chips don't have DPLL */
1074 dpll_clk = 50;
1075 clock = ATA_CLOCK_50MHZ;
1076 }
1077
1078 if (info->timings->clock_table[clock] == NULL) {
1079 printk(KERN_ERR "%s %s: unknown bus timing!\n",
1080 name, pci_name(dev));
1081 return -EIO;
1082 }
1083
1084 /* Select the DPLL clock. */
1085 pci_write_config_byte(dev, 0x5b, 0x21);
1086
1087 /*
1088 * Adjust the DPLL based upon PCI clock, enable it,
1089 * and wait for stabilization...
1090 */
1091 f_low = (pci_clk * 48) / dpll_clk;
1092
1093 for (adjust = 0; adjust < 8; adjust++) {
1094 if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1095 break;
1096
1097 /*
1098 * See if it'll settle at a fractionally different clock
1099 */
1100 if (adjust & 1)
1101 f_low -= adjust >> 1;
1102 else
1103 f_low += adjust >> 1;
1104 }
1105 if (adjust == 8) {
1106 printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1107 name, pci_name(dev));
1108 return -EIO;
1109 }
1110
1111 printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1112 name, pci_name(dev), dpll_clk);
1113 } else {
1114 /* Mark the fact that we're not using the DPLL. */
1115 dpll_clk = 0;
1116
1117 printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1118 name, pci_name(dev), pci_clk);
1119 }
1120
1121 /* Store the clock frequencies. */
1122 info->dpll_clk = dpll_clk;
1123 info->pci_clk = pci_clk;
1124 info->clock = clock;
1125
1126 if (chip_type >= HPT370) {
1127 u8 mcr1, mcr4;
1128
1129 /*
1130 * Reset the state engines.
1131 * NOTE: Avoid accidentally enabling the disabled channels.
1132 */
1133 pci_read_config_byte (dev, 0x50, &mcr1);
1134 pci_read_config_byte (dev, 0x54, &mcr4);
1135 pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1136 pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1137 udelay(100);
1138 }
1139
1140 /*
1141 * On HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1142 * the MISC. register to stretch the UltraDMA Tss timing.
1143 * NOTE: This register is only writeable via I/O space.
1144 */
1145 if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1146 outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1147
1148 hpt3xx_disable_fast_irq(dev, 0x50);
1149 hpt3xx_disable_fast_irq(dev, 0x54);
1150
1151 return 0;
1152 }
1153
hpt3xx_cable_detect(ide_hwif_t * hwif)1154 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1155 {
1156 struct pci_dev *dev = to_pci_dev(hwif->dev);
1157 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1158 u8 chip_type = info->chip_type;
1159 u8 scr1 = 0, ata66 = hwif->channel ? 0x01 : 0x02;
1160
1161 /*
1162 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1163 * address lines to access an external EEPROM. To read valid
1164 * cable detect state the pins must be enabled as inputs.
1165 */
1166 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1167 /*
1168 * HPT374 PCI function 1
1169 * - set bit 15 of reg 0x52 to enable TCBLID as input
1170 * - set bit 15 of reg 0x56 to enable FCBLID as input
1171 */
1172 u8 mcr_addr = hwif->select_data + 2;
1173 u16 mcr;
1174
1175 pci_read_config_word(dev, mcr_addr, &mcr);
1176 pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1177 /* Debounce, then read cable ID register */
1178 udelay(10);
1179 pci_read_config_byte(dev, 0x5a, &scr1);
1180 pci_write_config_word(dev, mcr_addr, mcr);
1181 } else if (chip_type >= HPT370) {
1182 /*
1183 * HPT370/372 and 374 pcifn 0
1184 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1185 */
1186 u8 scr2 = 0;
1187
1188 pci_read_config_byte(dev, 0x5b, &scr2);
1189 pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1190 /* Debounce, then read cable ID register */
1191 udelay(10);
1192 pci_read_config_byte(dev, 0x5a, &scr1);
1193 pci_write_config_byte(dev, 0x5b, scr2);
1194 } else
1195 pci_read_config_byte(dev, 0x5a, &scr1);
1196
1197 return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1198 }
1199
init_hwif_hpt366(ide_hwif_t * hwif)1200 static void init_hwif_hpt366(ide_hwif_t *hwif)
1201 {
1202 struct hpt_info *info = hpt3xx_get_info(hwif->dev);
1203 u8 chip_type = info->chip_type;
1204
1205 /* Cache the channel's MISC. control registers' offset */
1206 hwif->select_data = hwif->channel ? 0x54 : 0x50;
1207
1208 /*
1209 * HPT3xxN chips have some complications:
1210 *
1211 * - on 33 MHz PCI we must clock switch
1212 * - on 66 MHz PCI we must NOT use the PCI clock
1213 */
1214 if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1215 /*
1216 * Clock is shared between the channels,
1217 * so we'll have to serialize them... :-(
1218 */
1219 hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1220 hwif->rw_disk = &hpt3xxn_rw_disk;
1221 }
1222 }
1223
init_dma_hpt366(ide_hwif_t * hwif,const struct ide_port_info * d)1224 static int init_dma_hpt366(ide_hwif_t *hwif,
1225 const struct ide_port_info *d)
1226 {
1227 struct pci_dev *dev = to_pci_dev(hwif->dev);
1228 unsigned long flags, base = ide_pci_dma_base(hwif, d);
1229 u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1230
1231 if (base == 0)
1232 return -1;
1233
1234 hwif->dma_base = base;
1235
1236 if (ide_pci_check_simplex(hwif, d) < 0)
1237 return -1;
1238
1239 if (ide_pci_set_master(dev, d->name) < 0)
1240 return -1;
1241
1242 dma_old = inb(base + 2);
1243
1244 local_irq_save(flags);
1245
1246 dma_new = dma_old;
1247 pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1248 pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47, &slavedma);
1249
1250 if (masterdma & 0x30) dma_new |= 0x20;
1251 if ( slavedma & 0x30) dma_new |= 0x40;
1252 if (dma_new != dma_old)
1253 outb(dma_new, base + 2);
1254
1255 local_irq_restore(flags);
1256
1257 printk(KERN_INFO " %s: BM-DMA at 0x%04lx-0x%04lx\n",
1258 hwif->name, base, base + 7);
1259
1260 hwif->extra_base = base + (hwif->channel ? 8 : 16);
1261
1262 if (ide_allocate_dma_engine(hwif))
1263 return -1;
1264
1265 return 0;
1266 }
1267
hpt374_init(struct pci_dev * dev,struct pci_dev * dev2)1268 static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1269 {
1270 if (dev2->irq != dev->irq) {
1271 /* FIXME: we need a core pci_set_interrupt() */
1272 dev2->irq = dev->irq;
1273 printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1274 "fixed\n", pci_name(dev2));
1275 }
1276 }
1277
hpt371_init(struct pci_dev * dev)1278 static void hpt371_init(struct pci_dev *dev)
1279 {
1280 u8 mcr1 = 0;
1281
1282 /*
1283 * HPT371 chips physically have only one channel, the secondary one,
1284 * but the primary channel registers do exist! Go figure...
1285 * So, we manually disable the non-existing channel here
1286 * (if the BIOS hasn't done this already).
1287 */
1288 pci_read_config_byte(dev, 0x50, &mcr1);
1289 if (mcr1 & 0x04)
1290 pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1291 }
1292
hpt36x_init(struct pci_dev * dev,struct pci_dev * dev2)1293 static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1294 {
1295 u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1296
1297 /*
1298 * Now we'll have to force both channels enabled if
1299 * at least one of them has been enabled by BIOS...
1300 */
1301 pci_read_config_byte(dev, 0x50, &mcr1);
1302 if (mcr1 & 0x30)
1303 pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1304
1305 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin1);
1306 pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1307
1308 if (pin1 != pin2 && dev->irq == dev2->irq) {
1309 printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1310 "pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1311 return 1;
1312 }
1313
1314 return 0;
1315 }
1316
1317 #define IDE_HFLAGS_HPT3XX \
1318 (IDE_HFLAG_NO_ATAPI_DMA | \
1319 IDE_HFLAG_OFF_BOARD)
1320
1321 static const struct ide_port_ops hpt3xx_port_ops = {
1322 .set_pio_mode = hpt3xx_set_pio_mode,
1323 .set_dma_mode = hpt3xx_set_mode,
1324 .maskproc = hpt3xx_maskproc,
1325 .mdma_filter = hpt3xx_mdma_filter,
1326 .udma_filter = hpt3xx_udma_filter,
1327 .cable_detect = hpt3xx_cable_detect,
1328 };
1329
1330 static const struct ide_dma_ops hpt37x_dma_ops = {
1331 .dma_host_set = ide_dma_host_set,
1332 .dma_setup = ide_dma_setup,
1333 .dma_start = ide_dma_start,
1334 .dma_end = hpt374_dma_end,
1335 .dma_test_irq = hpt374_dma_test_irq,
1336 .dma_lost_irq = ide_dma_lost_irq,
1337 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1338 .dma_sff_read_status = ide_dma_sff_read_status,
1339 };
1340
1341 static const struct ide_dma_ops hpt370_dma_ops = {
1342 .dma_host_set = ide_dma_host_set,
1343 .dma_setup = ide_dma_setup,
1344 .dma_start = hpt370_dma_start,
1345 .dma_end = hpt370_dma_end,
1346 .dma_test_irq = ide_dma_test_irq,
1347 .dma_lost_irq = ide_dma_lost_irq,
1348 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1349 .dma_clear = hpt370_irq_timeout,
1350 .dma_sff_read_status = ide_dma_sff_read_status,
1351 };
1352
1353 static const struct ide_dma_ops hpt36x_dma_ops = {
1354 .dma_host_set = ide_dma_host_set,
1355 .dma_setup = ide_dma_setup,
1356 .dma_start = ide_dma_start,
1357 .dma_end = ide_dma_end,
1358 .dma_test_irq = ide_dma_test_irq,
1359 .dma_lost_irq = hpt366_dma_lost_irq,
1360 .dma_timer_expiry = ide_dma_sff_timer_expiry,
1361 .dma_sff_read_status = ide_dma_sff_read_status,
1362 };
1363
1364 static const struct ide_port_info hpt366_chipsets[] = {
1365 { /* 0: HPT36x */
1366 .name = DRV_NAME,
1367 .init_chipset = init_chipset_hpt366,
1368 .init_hwif = init_hwif_hpt366,
1369 .init_dma = init_dma_hpt366,
1370 /*
1371 * HPT36x chips have one channel per function and have
1372 * both channel enable bits located differently and visible
1373 * to both functions -- really stupid design decision... :-(
1374 * Bit 4 is for the primary channel, bit 5 for the secondary.
1375 */
1376 .enablebits = {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1377 .port_ops = &hpt3xx_port_ops,
1378 .dma_ops = &hpt36x_dma_ops,
1379 .host_flags = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1380 .pio_mask = ATA_PIO4,
1381 .mwdma_mask = ATA_MWDMA2,
1382 },
1383 { /* 1: HPT3xx */
1384 .name = DRV_NAME,
1385 .init_chipset = init_chipset_hpt366,
1386 .init_hwif = init_hwif_hpt366,
1387 .init_dma = init_dma_hpt366,
1388 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1389 .port_ops = &hpt3xx_port_ops,
1390 .dma_ops = &hpt37x_dma_ops,
1391 .host_flags = IDE_HFLAGS_HPT3XX,
1392 .pio_mask = ATA_PIO4,
1393 .mwdma_mask = ATA_MWDMA2,
1394 }
1395 };
1396
1397 /**
1398 * hpt366_init_one - called when an HPT366 is found
1399 * @dev: the hpt366 device
1400 * @id: the matching pci id
1401 *
1402 * Called when the PCI registration layer (or the IDE initialization)
1403 * finds a device matching our IDE device tables.
1404 */
hpt366_init_one(struct pci_dev * dev,const struct pci_device_id * id)1405 static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1406 {
1407 const struct hpt_info *info = NULL;
1408 struct hpt_info *dyn_info;
1409 struct pci_dev *dev2 = NULL;
1410 struct ide_port_info d;
1411 u8 idx = id->driver_data;
1412 u8 rev = dev->revision;
1413 int ret;
1414
1415 if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1416 return -ENODEV;
1417
1418 switch (idx) {
1419 case 0:
1420 if (rev < 3)
1421 info = &hpt36x;
1422 else {
1423 switch (min_t(u8, rev, 6)) {
1424 case 3: info = &hpt370; break;
1425 case 4: info = &hpt370a; break;
1426 case 5: info = &hpt372; break;
1427 case 6: info = &hpt372n; break;
1428 }
1429 idx++;
1430 }
1431 break;
1432 case 1:
1433 info = (rev > 1) ? &hpt372n : &hpt372a;
1434 break;
1435 case 2:
1436 info = (rev > 1) ? &hpt302n : &hpt302;
1437 break;
1438 case 3:
1439 hpt371_init(dev);
1440 info = (rev > 1) ? &hpt371n : &hpt371;
1441 break;
1442 case 4:
1443 info = &hpt374;
1444 break;
1445 case 5:
1446 info = &hpt372n;
1447 break;
1448 }
1449
1450 printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1451
1452 d = hpt366_chipsets[min_t(u8, idx, 1)];
1453
1454 d.udma_mask = info->udma_mask;
1455
1456 /* fixup ->dma_ops for HPT370/HPT370A */
1457 if (info == &hpt370 || info == &hpt370a)
1458 d.dma_ops = &hpt370_dma_ops;
1459
1460 if (info == &hpt36x || info == &hpt374)
1461 dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1462
1463 dyn_info = kzalloc(sizeof(*dyn_info) * (dev2 ? 2 : 1), GFP_KERNEL);
1464 if (dyn_info == NULL) {
1465 printk(KERN_ERR "%s %s: out of memory!\n",
1466 d.name, pci_name(dev));
1467 pci_dev_put(dev2);
1468 return -ENOMEM;
1469 }
1470
1471 /*
1472 * Copy everything from a static "template" structure
1473 * to just allocated per-chip hpt_info structure.
1474 */
1475 memcpy(dyn_info, info, sizeof(*dyn_info));
1476
1477 if (dev2) {
1478 memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1479
1480 if (info == &hpt374)
1481 hpt374_init(dev, dev2);
1482 else {
1483 if (hpt36x_init(dev, dev2))
1484 d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1485 }
1486
1487 ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1488 if (ret < 0) {
1489 pci_dev_put(dev2);
1490 kfree(dyn_info);
1491 }
1492 return ret;
1493 }
1494
1495 ret = ide_pci_init_one(dev, &d, dyn_info);
1496 if (ret < 0)
1497 kfree(dyn_info);
1498
1499 return ret;
1500 }
1501
hpt366_remove(struct pci_dev * dev)1502 static void hpt366_remove(struct pci_dev *dev)
1503 {
1504 struct ide_host *host = pci_get_drvdata(dev);
1505 struct ide_info *info = host->host_priv;
1506 struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1507
1508 ide_pci_remove(dev);
1509 pci_dev_put(dev2);
1510 kfree(info);
1511 }
1512
1513 static const struct pci_device_id hpt366_pci_tbl[] = {
1514 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), 0 },
1515 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372), 1 },
1516 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302), 2 },
1517 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371), 3 },
1518 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374), 4 },
1519 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1520 { 0, },
1521 };
1522 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1523
1524 static struct pci_driver hpt366_pci_driver = {
1525 .name = "HPT366_IDE",
1526 .id_table = hpt366_pci_tbl,
1527 .probe = hpt366_init_one,
1528 .remove = hpt366_remove,
1529 .suspend = ide_pci_suspend,
1530 .resume = ide_pci_resume,
1531 };
1532
hpt366_ide_init(void)1533 static int __init hpt366_ide_init(void)
1534 {
1535 return ide_pci_register_driver(&hpt366_pci_driver);
1536 }
1537
hpt366_ide_exit(void)1538 static void __exit hpt366_ide_exit(void)
1539 {
1540 pci_unregister_driver(&hpt366_pci_driver);
1541 }
1542
1543 module_init(hpt366_ide_init);
1544 module_exit(hpt366_ide_exit);
1545
1546 MODULE_AUTHOR("Andre Hedrick");
1547 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1548 MODULE_LICENSE("GPL");
1549