1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 #include <linux/nospec.h>
29
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40
41 #include "perf_event.h"
42
43 struct x86_pmu x86_pmu __read_mostly;
44
45 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
46 .enabled = 1,
47 };
48
49 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
50
51 u64 __read_mostly hw_cache_event_ids
52 [PERF_COUNT_HW_CACHE_MAX]
53 [PERF_COUNT_HW_CACHE_OP_MAX]
54 [PERF_COUNT_HW_CACHE_RESULT_MAX];
55 u64 __read_mostly hw_cache_extra_regs
56 [PERF_COUNT_HW_CACHE_MAX]
57 [PERF_COUNT_HW_CACHE_OP_MAX]
58 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59
60 /*
61 * Propagate event elapsed time into the generic event.
62 * Can only be executed on the CPU where the event is active.
63 * Returns the delta events processed.
64 */
x86_perf_event_update(struct perf_event * event)65 u64 x86_perf_event_update(struct perf_event *event)
66 {
67 struct hw_perf_event *hwc = &event->hw;
68 int shift = 64 - x86_pmu.cntval_bits;
69 u64 prev_raw_count, new_raw_count;
70 int idx = hwc->idx;
71 u64 delta;
72
73 if (idx == INTEL_PMC_IDX_FIXED_BTS)
74 return 0;
75
76 /*
77 * Careful: an NMI might modify the previous event value.
78 *
79 * Our tactic to handle this is to first atomically read and
80 * exchange a new raw count - then add that new-prev delta
81 * count to the generic event atomically:
82 */
83 again:
84 prev_raw_count = local64_read(&hwc->prev_count);
85 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
86
87 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
88 new_raw_count) != prev_raw_count)
89 goto again;
90
91 /*
92 * Now we have the new raw value and have updated the prev
93 * timestamp already. We can now calculate the elapsed delta
94 * (event-)time and add that to the generic event.
95 *
96 * Careful, not all hw sign-extends above the physical width
97 * of the count.
98 */
99 delta = (new_raw_count << shift) - (prev_raw_count << shift);
100 delta >>= shift;
101
102 local64_add(delta, &event->count);
103 local64_sub(delta, &hwc->period_left);
104
105 return new_raw_count;
106 }
107
108 /*
109 * Find and validate any extra registers to set up.
110 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)111 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
112 {
113 struct hw_perf_event_extra *reg;
114 struct extra_reg *er;
115
116 reg = &event->hw.extra_reg;
117
118 if (!x86_pmu.extra_regs)
119 return 0;
120
121 for (er = x86_pmu.extra_regs; er->msr; er++) {
122 if (er->event != (config & er->config_mask))
123 continue;
124 if (event->attr.config1 & ~er->valid_mask)
125 return -EINVAL;
126 /* Check if the extra msrs can be safely accessed*/
127 if (!er->extra_msr_access)
128 return -ENXIO;
129
130 reg->idx = er->idx;
131 reg->config = event->attr.config1;
132 reg->reg = er->msr;
133 break;
134 }
135 return 0;
136 }
137
138 static atomic_t active_events;
139 static atomic_t pmc_refcount;
140 static DEFINE_MUTEX(pmc_reserve_mutex);
141
142 #ifdef CONFIG_X86_LOCAL_APIC
143
reserve_pmc_hardware(void)144 static bool reserve_pmc_hardware(void)
145 {
146 int i;
147
148 for (i = 0; i < x86_pmu.num_counters; i++) {
149 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
150 goto perfctr_fail;
151 }
152
153 for (i = 0; i < x86_pmu.num_counters; i++) {
154 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
155 goto eventsel_fail;
156 }
157
158 return true;
159
160 eventsel_fail:
161 for (i--; i >= 0; i--)
162 release_evntsel_nmi(x86_pmu_config_addr(i));
163
164 i = x86_pmu.num_counters;
165
166 perfctr_fail:
167 for (i--; i >= 0; i--)
168 release_perfctr_nmi(x86_pmu_event_addr(i));
169
170 return false;
171 }
172
release_pmc_hardware(void)173 static void release_pmc_hardware(void)
174 {
175 int i;
176
177 for (i = 0; i < x86_pmu.num_counters; i++) {
178 release_perfctr_nmi(x86_pmu_event_addr(i));
179 release_evntsel_nmi(x86_pmu_config_addr(i));
180 }
181 }
182
183 #else
184
reserve_pmc_hardware(void)185 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)186 static void release_pmc_hardware(void) {}
187
188 #endif
189
check_hw_exists(void)190 static bool check_hw_exists(void)
191 {
192 u64 val, val_fail = -1, val_new= ~0;
193 int i, reg, reg_fail = -1, ret = 0;
194 int bios_fail = 0;
195 int reg_safe = -1;
196
197 /*
198 * Check to see if the BIOS enabled any of the counters, if so
199 * complain and bail.
200 */
201 for (i = 0; i < x86_pmu.num_counters; i++) {
202 reg = x86_pmu_config_addr(i);
203 ret = rdmsrl_safe(reg, &val);
204 if (ret)
205 goto msr_fail;
206 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
207 bios_fail = 1;
208 val_fail = val;
209 reg_fail = reg;
210 } else {
211 reg_safe = i;
212 }
213 }
214
215 if (x86_pmu.num_counters_fixed) {
216 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
217 ret = rdmsrl_safe(reg, &val);
218 if (ret)
219 goto msr_fail;
220 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
221 if (val & (0x03 << i*4)) {
222 bios_fail = 1;
223 val_fail = val;
224 reg_fail = reg;
225 }
226 }
227 }
228
229 /*
230 * If all the counters are enabled, the below test will always
231 * fail. The tools will also become useless in this scenario.
232 * Just fail and disable the hardware counters.
233 */
234
235 if (reg_safe == -1) {
236 reg = reg_safe;
237 goto msr_fail;
238 }
239
240 /*
241 * Read the current value, change it and read it back to see if it
242 * matches, this is needed to detect certain hardware emulators
243 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
244 */
245 reg = x86_pmu_event_addr(reg_safe);
246 if (rdmsrl_safe(reg, &val))
247 goto msr_fail;
248 val ^= 0xffffUL;
249 ret = wrmsrl_safe(reg, val);
250 ret |= rdmsrl_safe(reg, &val_new);
251 if (ret || val != val_new)
252 goto msr_fail;
253
254 /*
255 * We still allow the PMU driver to operate:
256 */
257 if (bios_fail) {
258 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
259 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
260 }
261
262 return true;
263
264 msr_fail:
265 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
266 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 reg, val_new);
269
270 return false;
271 }
272
hw_perf_event_destroy(struct perf_event * event)273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275 x86_release_hardware();
276 atomic_dec(&active_events);
277 }
278
hw_perf_lbr_event_destroy(struct perf_event * event)279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281 hw_perf_event_destroy(event);
282
283 /* undo the lbr/bts event accounting */
284 x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286
x86_pmu_initialized(void)287 static inline int x86_pmu_initialized(void)
288 {
289 return x86_pmu.handle_irq != NULL;
290 }
291
292 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295 struct perf_event_attr *attr = &event->attr;
296 unsigned int cache_type, cache_op, cache_result;
297 u64 config, val;
298
299 config = attr->config;
300
301 cache_type = (config >> 0) & 0xff;
302 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 return -EINVAL;
304 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
305
306 cache_op = (config >> 8) & 0xff;
307 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
308 return -EINVAL;
309 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
310
311 cache_result = (config >> 16) & 0xff;
312 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
313 return -EINVAL;
314 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
315
316 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
317
318 if (val == 0)
319 return -ENOENT;
320
321 if (val == -1)
322 return -EINVAL;
323
324 hwc->config |= val;
325 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
326 return x86_pmu_extra_regs(val, event);
327 }
328
x86_reserve_hardware(void)329 int x86_reserve_hardware(void)
330 {
331 int err = 0;
332
333 if (!atomic_inc_not_zero(&pmc_refcount)) {
334 mutex_lock(&pmc_reserve_mutex);
335 if (atomic_read(&pmc_refcount) == 0) {
336 if (!reserve_pmc_hardware())
337 err = -EBUSY;
338 else
339 reserve_ds_buffers();
340 }
341 if (!err)
342 atomic_inc(&pmc_refcount);
343 mutex_unlock(&pmc_reserve_mutex);
344 }
345
346 return err;
347 }
348
x86_release_hardware(void)349 void x86_release_hardware(void)
350 {
351 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
352 release_pmc_hardware();
353 release_ds_buffers();
354 mutex_unlock(&pmc_reserve_mutex);
355 }
356 }
357
358 /*
359 * Check if we can create event of a certain type (that no conflicting events
360 * are present).
361 */
x86_add_exclusive(unsigned int what)362 int x86_add_exclusive(unsigned int what)
363 {
364 int i;
365
366 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
367 mutex_lock(&pmc_reserve_mutex);
368 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
369 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
370 goto fail_unlock;
371 }
372 atomic_inc(&x86_pmu.lbr_exclusive[what]);
373 mutex_unlock(&pmc_reserve_mutex);
374 }
375
376 atomic_inc(&active_events);
377 return 0;
378
379 fail_unlock:
380 mutex_unlock(&pmc_reserve_mutex);
381 return -EBUSY;
382 }
383
x86_del_exclusive(unsigned int what)384 void x86_del_exclusive(unsigned int what)
385 {
386 atomic_dec(&x86_pmu.lbr_exclusive[what]);
387 atomic_dec(&active_events);
388 }
389
x86_setup_perfctr(struct perf_event * event)390 int x86_setup_perfctr(struct perf_event *event)
391 {
392 struct perf_event_attr *attr = &event->attr;
393 struct hw_perf_event *hwc = &event->hw;
394 u64 config;
395
396 if (!is_sampling_event(event)) {
397 hwc->sample_period = x86_pmu.max_period;
398 hwc->last_period = hwc->sample_period;
399 local64_set(&hwc->period_left, hwc->sample_period);
400 }
401
402 if (attr->type == PERF_TYPE_RAW)
403 return x86_pmu_extra_regs(event->attr.config, event);
404
405 if (attr->type == PERF_TYPE_HW_CACHE)
406 return set_ext_hw_attr(hwc, event);
407
408 if (attr->config >= x86_pmu.max_events)
409 return -EINVAL;
410
411 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
412
413 /*
414 * The generic map:
415 */
416 config = x86_pmu.event_map(attr->config);
417
418 if (config == 0)
419 return -ENOENT;
420
421 if (config == -1LL)
422 return -EINVAL;
423
424 /*
425 * Branch tracing:
426 */
427 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
428 !attr->freq && hwc->sample_period == 1) {
429 /* BTS is not supported by this architecture. */
430 if (!x86_pmu.bts_active)
431 return -EOPNOTSUPP;
432
433 /* BTS is currently only allowed for user-mode. */
434 if (!attr->exclude_kernel)
435 return -EOPNOTSUPP;
436
437 /* disallow bts if conflicting events are present */
438 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
439 return -EBUSY;
440
441 event->destroy = hw_perf_lbr_event_destroy;
442 }
443
444 hwc->config |= config;
445
446 return 0;
447 }
448
449 /*
450 * check that branch_sample_type is compatible with
451 * settings needed for precise_ip > 1 which implies
452 * using the LBR to capture ALL taken branches at the
453 * priv levels of the measurement
454 */
precise_br_compat(struct perf_event * event)455 static inline int precise_br_compat(struct perf_event *event)
456 {
457 u64 m = event->attr.branch_sample_type;
458 u64 b = 0;
459
460 /* must capture all branches */
461 if (!(m & PERF_SAMPLE_BRANCH_ANY))
462 return 0;
463
464 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
465
466 if (!event->attr.exclude_user)
467 b |= PERF_SAMPLE_BRANCH_USER;
468
469 if (!event->attr.exclude_kernel)
470 b |= PERF_SAMPLE_BRANCH_KERNEL;
471
472 /*
473 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
474 */
475
476 return m == b;
477 }
478
x86_pmu_hw_config(struct perf_event * event)479 int x86_pmu_hw_config(struct perf_event *event)
480 {
481 if (event->attr.precise_ip) {
482 int precise = 0;
483
484 /* Support for constant skid */
485 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
486 precise++;
487
488 /* Support for IP fixup */
489 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
490 precise++;
491 }
492
493 if (event->attr.precise_ip > precise)
494 return -EOPNOTSUPP;
495 }
496 /*
497 * check that PEBS LBR correction does not conflict with
498 * whatever the user is asking with attr->branch_sample_type
499 */
500 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
501 u64 *br_type = &event->attr.branch_sample_type;
502
503 if (has_branch_stack(event)) {
504 if (!precise_br_compat(event))
505 return -EOPNOTSUPP;
506
507 /* branch_sample_type is compatible */
508
509 } else {
510 /*
511 * user did not specify branch_sample_type
512 *
513 * For PEBS fixups, we capture all
514 * the branches at the priv level of the
515 * event.
516 */
517 *br_type = PERF_SAMPLE_BRANCH_ANY;
518
519 if (!event->attr.exclude_user)
520 *br_type |= PERF_SAMPLE_BRANCH_USER;
521
522 if (!event->attr.exclude_kernel)
523 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
524 }
525 }
526
527 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
528 event->attach_state |= PERF_ATTACH_TASK_DATA;
529
530 /*
531 * Generate PMC IRQs:
532 * (keep 'enabled' bit clear for now)
533 */
534 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
535
536 /*
537 * Count user and OS events unless requested not to
538 */
539 if (!event->attr.exclude_user)
540 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
541 if (!event->attr.exclude_kernel)
542 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
543
544 if (event->attr.type == PERF_TYPE_RAW)
545 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
546
547 if (event->attr.sample_period && x86_pmu.limit_period) {
548 if (x86_pmu.limit_period(event, event->attr.sample_period) >
549 event->attr.sample_period)
550 return -EINVAL;
551 }
552
553 return x86_setup_perfctr(event);
554 }
555
556 /*
557 * Setup the hardware configuration for a given attr_type
558 */
__x86_pmu_event_init(struct perf_event * event)559 static int __x86_pmu_event_init(struct perf_event *event)
560 {
561 int err;
562
563 if (!x86_pmu_initialized())
564 return -ENODEV;
565
566 err = x86_reserve_hardware();
567 if (err)
568 return err;
569
570 atomic_inc(&active_events);
571 event->destroy = hw_perf_event_destroy;
572
573 event->hw.idx = -1;
574 event->hw.last_cpu = -1;
575 event->hw.last_tag = ~0ULL;
576
577 /* mark unused */
578 event->hw.extra_reg.idx = EXTRA_REG_NONE;
579 event->hw.branch_reg.idx = EXTRA_REG_NONE;
580
581 return x86_pmu.hw_config(event);
582 }
583
x86_pmu_disable_all(void)584 void x86_pmu_disable_all(void)
585 {
586 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
587 int idx;
588
589 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
590 u64 val;
591
592 if (!test_bit(idx, cpuc->active_mask))
593 continue;
594 rdmsrl(x86_pmu_config_addr(idx), val);
595 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
596 continue;
597 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
598 wrmsrl(x86_pmu_config_addr(idx), val);
599 }
600 }
601
602 /*
603 * There may be PMI landing after enabled=0. The PMI hitting could be before or
604 * after disable_all.
605 *
606 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
607 * It will not be re-enabled in the NMI handler again, because enabled=0. After
608 * handling the NMI, disable_all will be called, which will not change the
609 * state either. If PMI hits after disable_all, the PMU is already disabled
610 * before entering NMI handler. The NMI handler will not change the state
611 * either.
612 *
613 * So either situation is harmless.
614 */
x86_pmu_disable(struct pmu * pmu)615 static void x86_pmu_disable(struct pmu *pmu)
616 {
617 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
618
619 if (!x86_pmu_initialized())
620 return;
621
622 if (!cpuc->enabled)
623 return;
624
625 cpuc->n_added = 0;
626 cpuc->enabled = 0;
627 barrier();
628
629 x86_pmu.disable_all();
630 }
631
x86_pmu_enable_all(int added)632 void x86_pmu_enable_all(int added)
633 {
634 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
635 int idx;
636
637 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
638 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
639
640 if (!test_bit(idx, cpuc->active_mask))
641 continue;
642
643 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
644 }
645 }
646
647 static struct pmu pmu;
648
is_x86_event(struct perf_event * event)649 static inline int is_x86_event(struct perf_event *event)
650 {
651 return event->pmu == &pmu;
652 }
653
654 /*
655 * Event scheduler state:
656 *
657 * Assign events iterating over all events and counters, beginning
658 * with events with least weights first. Keep the current iterator
659 * state in struct sched_state.
660 */
661 struct sched_state {
662 int weight;
663 int event; /* event index */
664 int counter; /* counter index */
665 int unassigned; /* number of events to be assigned left */
666 int nr_gp; /* number of GP counters used */
667 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
668 };
669
670 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
671 #define SCHED_STATES_MAX 2
672
673 struct perf_sched {
674 int max_weight;
675 int max_events;
676 int max_gp;
677 int saved_states;
678 struct event_constraint **constraints;
679 struct sched_state state;
680 struct sched_state saved[SCHED_STATES_MAX];
681 };
682
683 /*
684 * Initialize interator that runs through all events and counters.
685 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)686 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
687 int num, int wmin, int wmax, int gpmax)
688 {
689 int idx;
690
691 memset(sched, 0, sizeof(*sched));
692 sched->max_events = num;
693 sched->max_weight = wmax;
694 sched->max_gp = gpmax;
695 sched->constraints = constraints;
696
697 for (idx = 0; idx < num; idx++) {
698 if (constraints[idx]->weight == wmin)
699 break;
700 }
701
702 sched->state.event = idx; /* start with min weight */
703 sched->state.weight = wmin;
704 sched->state.unassigned = num;
705 }
706
perf_sched_save_state(struct perf_sched * sched)707 static void perf_sched_save_state(struct perf_sched *sched)
708 {
709 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
710 return;
711
712 sched->saved[sched->saved_states] = sched->state;
713 sched->saved_states++;
714 }
715
perf_sched_restore_state(struct perf_sched * sched)716 static bool perf_sched_restore_state(struct perf_sched *sched)
717 {
718 if (!sched->saved_states)
719 return false;
720
721 sched->saved_states--;
722 sched->state = sched->saved[sched->saved_states];
723
724 /* continue with next counter: */
725 clear_bit(sched->state.counter++, sched->state.used);
726
727 return true;
728 }
729
730 /*
731 * Select a counter for the current event to schedule. Return true on
732 * success.
733 */
__perf_sched_find_counter(struct perf_sched * sched)734 static bool __perf_sched_find_counter(struct perf_sched *sched)
735 {
736 struct event_constraint *c;
737 int idx;
738
739 if (!sched->state.unassigned)
740 return false;
741
742 if (sched->state.event >= sched->max_events)
743 return false;
744
745 c = sched->constraints[sched->state.event];
746 /* Prefer fixed purpose counters */
747 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
748 idx = INTEL_PMC_IDX_FIXED;
749 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
750 if (!__test_and_set_bit(idx, sched->state.used))
751 goto done;
752 }
753 }
754
755 /* Grab the first unused counter starting with idx */
756 idx = sched->state.counter;
757 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
758 if (!__test_and_set_bit(idx, sched->state.used)) {
759 if (sched->state.nr_gp++ >= sched->max_gp)
760 return false;
761
762 goto done;
763 }
764 }
765
766 return false;
767
768 done:
769 sched->state.counter = idx;
770
771 if (c->overlap)
772 perf_sched_save_state(sched);
773
774 return true;
775 }
776
perf_sched_find_counter(struct perf_sched * sched)777 static bool perf_sched_find_counter(struct perf_sched *sched)
778 {
779 while (!__perf_sched_find_counter(sched)) {
780 if (!perf_sched_restore_state(sched))
781 return false;
782 }
783
784 return true;
785 }
786
787 /*
788 * Go through all unassigned events and find the next one to schedule.
789 * Take events with the least weight first. Return true on success.
790 */
perf_sched_next_event(struct perf_sched * sched)791 static bool perf_sched_next_event(struct perf_sched *sched)
792 {
793 struct event_constraint *c;
794
795 if (!sched->state.unassigned || !--sched->state.unassigned)
796 return false;
797
798 do {
799 /* next event */
800 sched->state.event++;
801 if (sched->state.event >= sched->max_events) {
802 /* next weight */
803 sched->state.event = 0;
804 sched->state.weight++;
805 if (sched->state.weight > sched->max_weight)
806 return false;
807 }
808 c = sched->constraints[sched->state.event];
809 } while (c->weight != sched->state.weight);
810
811 sched->state.counter = 0; /* start with first counter */
812
813 return true;
814 }
815
816 /*
817 * Assign a counter for each event.
818 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)819 int perf_assign_events(struct event_constraint **constraints, int n,
820 int wmin, int wmax, int gpmax, int *assign)
821 {
822 struct perf_sched sched;
823
824 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
825
826 do {
827 if (!perf_sched_find_counter(&sched))
828 break; /* failed */
829 if (assign)
830 assign[sched.state.event] = sched.state.counter;
831 } while (perf_sched_next_event(&sched));
832
833 return sched.state.unassigned;
834 }
835 EXPORT_SYMBOL_GPL(perf_assign_events);
836
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)837 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
838 {
839 struct event_constraint *c;
840 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
841 struct perf_event *e;
842 int i, wmin, wmax, unsched = 0;
843 struct hw_perf_event *hwc;
844
845 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
846
847 if (x86_pmu.start_scheduling)
848 x86_pmu.start_scheduling(cpuc);
849
850 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
851 cpuc->event_constraint[i] = NULL;
852 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
853 cpuc->event_constraint[i] = c;
854
855 wmin = min(wmin, c->weight);
856 wmax = max(wmax, c->weight);
857 }
858
859 /*
860 * fastpath, try to reuse previous register
861 */
862 for (i = 0; i < n; i++) {
863 hwc = &cpuc->event_list[i]->hw;
864 c = cpuc->event_constraint[i];
865
866 /* never assigned */
867 if (hwc->idx == -1)
868 break;
869
870 /* constraint still honored */
871 if (!test_bit(hwc->idx, c->idxmsk))
872 break;
873
874 /* not already used */
875 if (test_bit(hwc->idx, used_mask))
876 break;
877
878 __set_bit(hwc->idx, used_mask);
879 if (assign)
880 assign[i] = hwc->idx;
881 }
882
883 /* slow path */
884 if (i != n) {
885 int gpmax = x86_pmu.num_counters;
886
887 /*
888 * Do not allow scheduling of more than half the available
889 * generic counters.
890 *
891 * This helps avoid counter starvation of sibling thread by
892 * ensuring at most half the counters cannot be in exclusive
893 * mode. There is no designated counters for the limits. Any
894 * N/2 counters can be used. This helps with events with
895 * specific counter constraints.
896 */
897 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
898 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
899 gpmax /= 2;
900
901 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
902 wmax, gpmax, assign);
903 }
904
905 /*
906 * In case of success (unsched = 0), mark events as committed,
907 * so we do not put_constraint() in case new events are added
908 * and fail to be scheduled
909 *
910 * We invoke the lower level commit callback to lock the resource
911 *
912 * We do not need to do all of this in case we are called to
913 * validate an event group (assign == NULL)
914 */
915 if (!unsched && assign) {
916 for (i = 0; i < n; i++) {
917 e = cpuc->event_list[i];
918 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
919 if (x86_pmu.commit_scheduling)
920 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
921 }
922 } else {
923 for (i = 0; i < n; i++) {
924 e = cpuc->event_list[i];
925 /*
926 * do not put_constraint() on comitted events,
927 * because they are good to go
928 */
929 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
930 continue;
931
932 /*
933 * release events that failed scheduling
934 */
935 if (x86_pmu.put_event_constraints)
936 x86_pmu.put_event_constraints(cpuc, e);
937 }
938 }
939
940 if (x86_pmu.stop_scheduling)
941 x86_pmu.stop_scheduling(cpuc);
942
943 return unsched ? -EINVAL : 0;
944 }
945
946 /*
947 * dogrp: true if must collect siblings events (group)
948 * returns total number of events and error code
949 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)950 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
951 {
952 struct perf_event *event;
953 int n, max_count;
954
955 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
956
957 /* current number of events already accepted */
958 n = cpuc->n_events;
959
960 if (is_x86_event(leader)) {
961 if (n >= max_count)
962 return -EINVAL;
963 cpuc->event_list[n] = leader;
964 n++;
965 }
966 if (!dogrp)
967 return n;
968
969 list_for_each_entry(event, &leader->sibling_list, group_entry) {
970 if (!is_x86_event(event) ||
971 event->state <= PERF_EVENT_STATE_OFF)
972 continue;
973
974 if (n >= max_count)
975 return -EINVAL;
976
977 cpuc->event_list[n] = event;
978 n++;
979 }
980 return n;
981 }
982
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)983 static inline void x86_assign_hw_event(struct perf_event *event,
984 struct cpu_hw_events *cpuc, int i)
985 {
986 struct hw_perf_event *hwc = &event->hw;
987
988 hwc->idx = cpuc->assign[i];
989 hwc->last_cpu = smp_processor_id();
990 hwc->last_tag = ++cpuc->tags[i];
991
992 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
993 hwc->config_base = 0;
994 hwc->event_base = 0;
995 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
996 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
997 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
998 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
999 } else {
1000 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1001 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1002 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1003 }
1004 }
1005
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1006 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1007 struct cpu_hw_events *cpuc,
1008 int i)
1009 {
1010 return hwc->idx == cpuc->assign[i] &&
1011 hwc->last_cpu == smp_processor_id() &&
1012 hwc->last_tag == cpuc->tags[i];
1013 }
1014
1015 static void x86_pmu_start(struct perf_event *event, int flags);
1016
x86_pmu_enable(struct pmu * pmu)1017 static void x86_pmu_enable(struct pmu *pmu)
1018 {
1019 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020 struct perf_event *event;
1021 struct hw_perf_event *hwc;
1022 int i, added = cpuc->n_added;
1023
1024 if (!x86_pmu_initialized())
1025 return;
1026
1027 if (cpuc->enabled)
1028 return;
1029
1030 if (cpuc->n_added) {
1031 int n_running = cpuc->n_events - cpuc->n_added;
1032 /*
1033 * apply assignment obtained either from
1034 * hw_perf_group_sched_in() or x86_pmu_enable()
1035 *
1036 * step1: save events moving to new counters
1037 */
1038 for (i = 0; i < n_running; i++) {
1039 event = cpuc->event_list[i];
1040 hwc = &event->hw;
1041
1042 /*
1043 * we can avoid reprogramming counter if:
1044 * - assigned same counter as last time
1045 * - running on same CPU as last time
1046 * - no other event has used the counter since
1047 */
1048 if (hwc->idx == -1 ||
1049 match_prev_assignment(hwc, cpuc, i))
1050 continue;
1051
1052 /*
1053 * Ensure we don't accidentally enable a stopped
1054 * counter simply because we rescheduled.
1055 */
1056 if (hwc->state & PERF_HES_STOPPED)
1057 hwc->state |= PERF_HES_ARCH;
1058
1059 x86_pmu_stop(event, PERF_EF_UPDATE);
1060 }
1061
1062 /*
1063 * step2: reprogram moved events into new counters
1064 */
1065 for (i = 0; i < cpuc->n_events; i++) {
1066 event = cpuc->event_list[i];
1067 hwc = &event->hw;
1068
1069 if (!match_prev_assignment(hwc, cpuc, i))
1070 x86_assign_hw_event(event, cpuc, i);
1071 else if (i < n_running)
1072 continue;
1073
1074 if (hwc->state & PERF_HES_ARCH)
1075 continue;
1076
1077 x86_pmu_start(event, PERF_EF_RELOAD);
1078 }
1079 cpuc->n_added = 0;
1080 perf_events_lapic_init();
1081 }
1082
1083 cpuc->enabled = 1;
1084 barrier();
1085
1086 x86_pmu.enable_all(added);
1087 }
1088
1089 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1090
1091 /*
1092 * Set the next IRQ period, based on the hwc->period_left value.
1093 * To be called with the event disabled in hw:
1094 */
x86_perf_event_set_period(struct perf_event * event)1095 int x86_perf_event_set_period(struct perf_event *event)
1096 {
1097 struct hw_perf_event *hwc = &event->hw;
1098 s64 left = local64_read(&hwc->period_left);
1099 s64 period = hwc->sample_period;
1100 int ret = 0, idx = hwc->idx;
1101
1102 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1103 return 0;
1104
1105 /*
1106 * If we are way outside a reasonable range then just skip forward:
1107 */
1108 if (unlikely(left <= -period)) {
1109 left = period;
1110 local64_set(&hwc->period_left, left);
1111 hwc->last_period = period;
1112 ret = 1;
1113 }
1114
1115 if (unlikely(left <= 0)) {
1116 left += period;
1117 local64_set(&hwc->period_left, left);
1118 hwc->last_period = period;
1119 ret = 1;
1120 }
1121 /*
1122 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1123 */
1124 if (unlikely(left < 2))
1125 left = 2;
1126
1127 if (left > x86_pmu.max_period)
1128 left = x86_pmu.max_period;
1129
1130 if (x86_pmu.limit_period)
1131 left = x86_pmu.limit_period(event, left);
1132
1133 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1134
1135 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1136 local64_read(&hwc->prev_count) != (u64)-left) {
1137 /*
1138 * The hw event starts counting from this event offset,
1139 * mark it to be able to extra future deltas:
1140 */
1141 local64_set(&hwc->prev_count, (u64)-left);
1142
1143 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1144 }
1145
1146 /*
1147 * Due to erratum on certan cpu we need
1148 * a second write to be sure the register
1149 * is updated properly
1150 */
1151 if (x86_pmu.perfctr_second_write) {
1152 wrmsrl(hwc->event_base,
1153 (u64)(-left) & x86_pmu.cntval_mask);
1154 }
1155
1156 perf_event_update_userpage(event);
1157
1158 return ret;
1159 }
1160
x86_pmu_enable_event(struct perf_event * event)1161 void x86_pmu_enable_event(struct perf_event *event)
1162 {
1163 if (__this_cpu_read(cpu_hw_events.enabled))
1164 __x86_pmu_enable_event(&event->hw,
1165 ARCH_PERFMON_EVENTSEL_ENABLE);
1166 }
1167
1168 /*
1169 * Add a single event to the PMU.
1170 *
1171 * The event is added to the group of enabled events
1172 * but only if it can be scehduled with existing events.
1173 */
x86_pmu_add(struct perf_event * event,int flags)1174 static int x86_pmu_add(struct perf_event *event, int flags)
1175 {
1176 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1177 struct hw_perf_event *hwc;
1178 int assign[X86_PMC_IDX_MAX];
1179 int n, n0, ret;
1180
1181 hwc = &event->hw;
1182
1183 n0 = cpuc->n_events;
1184 ret = n = collect_events(cpuc, event, false);
1185 if (ret < 0)
1186 goto out;
1187
1188 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1189 if (!(flags & PERF_EF_START))
1190 hwc->state |= PERF_HES_ARCH;
1191
1192 /*
1193 * If group events scheduling transaction was started,
1194 * skip the schedulability test here, it will be performed
1195 * at commit time (->commit_txn) as a whole.
1196 */
1197 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1198 goto done_collect;
1199
1200 ret = x86_pmu.schedule_events(cpuc, n, assign);
1201 if (ret)
1202 goto out;
1203 /*
1204 * copy new assignment, now we know it is possible
1205 * will be used by hw_perf_enable()
1206 */
1207 memcpy(cpuc->assign, assign, n*sizeof(int));
1208
1209 done_collect:
1210 /*
1211 * Commit the collect_events() state. See x86_pmu_del() and
1212 * x86_pmu_*_txn().
1213 */
1214 cpuc->n_events = n;
1215 cpuc->n_added += n - n0;
1216 cpuc->n_txn += n - n0;
1217
1218 ret = 0;
1219 out:
1220 return ret;
1221 }
1222
x86_pmu_start(struct perf_event * event,int flags)1223 static void x86_pmu_start(struct perf_event *event, int flags)
1224 {
1225 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1226 int idx = event->hw.idx;
1227
1228 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1229 return;
1230
1231 if (WARN_ON_ONCE(idx == -1))
1232 return;
1233
1234 if (flags & PERF_EF_RELOAD) {
1235 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1236 x86_perf_event_set_period(event);
1237 }
1238
1239 event->hw.state = 0;
1240
1241 cpuc->events[idx] = event;
1242 __set_bit(idx, cpuc->active_mask);
1243 __set_bit(idx, cpuc->running);
1244 x86_pmu.enable(event);
1245 perf_event_update_userpage(event);
1246 }
1247
perf_event_print_debug(void)1248 void perf_event_print_debug(void)
1249 {
1250 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1251 u64 pebs, debugctl;
1252 struct cpu_hw_events *cpuc;
1253 unsigned long flags;
1254 int cpu, idx;
1255
1256 if (!x86_pmu.num_counters)
1257 return;
1258
1259 local_irq_save(flags);
1260
1261 cpu = smp_processor_id();
1262 cpuc = &per_cpu(cpu_hw_events, cpu);
1263
1264 if (x86_pmu.version >= 2) {
1265 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1266 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1267 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1268 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1269
1270 pr_info("\n");
1271 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1272 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1273 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1274 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1275 if (x86_pmu.pebs_constraints) {
1276 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1277 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1278 }
1279 if (x86_pmu.lbr_nr) {
1280 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1281 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1282 }
1283 }
1284 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1285
1286 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1287 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1288 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1289
1290 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1291
1292 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1293 cpu, idx, pmc_ctrl);
1294 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1295 cpu, idx, pmc_count);
1296 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1297 cpu, idx, prev_left);
1298 }
1299 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1300 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1301
1302 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1303 cpu, idx, pmc_count);
1304 }
1305 local_irq_restore(flags);
1306 }
1307
x86_pmu_stop(struct perf_event * event,int flags)1308 void x86_pmu_stop(struct perf_event *event, int flags)
1309 {
1310 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1311 struct hw_perf_event *hwc = &event->hw;
1312
1313 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1314 x86_pmu.disable(event);
1315 cpuc->events[hwc->idx] = NULL;
1316 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1317 hwc->state |= PERF_HES_STOPPED;
1318 }
1319
1320 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1321 /*
1322 * Drain the remaining delta count out of a event
1323 * that we are disabling:
1324 */
1325 x86_perf_event_update(event);
1326 hwc->state |= PERF_HES_UPTODATE;
1327 }
1328 }
1329
x86_pmu_del(struct perf_event * event,int flags)1330 static void x86_pmu_del(struct perf_event *event, int flags)
1331 {
1332 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1333 int i;
1334
1335 /*
1336 * event is descheduled
1337 */
1338 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1339
1340 /*
1341 * If we're called during a txn, we don't need to do anything.
1342 * The events never got scheduled and ->cancel_txn will truncate
1343 * the event_list.
1344 *
1345 * XXX assumes any ->del() called during a TXN will only be on
1346 * an event added during that same TXN.
1347 */
1348 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1349 return;
1350
1351 /*
1352 * Not a TXN, therefore cleanup properly.
1353 */
1354 x86_pmu_stop(event, PERF_EF_UPDATE);
1355
1356 for (i = 0; i < cpuc->n_events; i++) {
1357 if (event == cpuc->event_list[i])
1358 break;
1359 }
1360
1361 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1362 return;
1363
1364 /* If we have a newly added event; make sure to decrease n_added. */
1365 if (i >= cpuc->n_events - cpuc->n_added)
1366 --cpuc->n_added;
1367
1368 if (x86_pmu.put_event_constraints)
1369 x86_pmu.put_event_constraints(cpuc, event);
1370
1371 /* Delete the array entry. */
1372 while (++i < cpuc->n_events) {
1373 cpuc->event_list[i-1] = cpuc->event_list[i];
1374 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1375 }
1376 --cpuc->n_events;
1377
1378 perf_event_update_userpage(event);
1379 }
1380
x86_pmu_handle_irq(struct pt_regs * regs)1381 int x86_pmu_handle_irq(struct pt_regs *regs)
1382 {
1383 struct perf_sample_data data;
1384 struct cpu_hw_events *cpuc;
1385 struct perf_event *event;
1386 int idx, handled = 0;
1387 u64 val;
1388
1389 cpuc = this_cpu_ptr(&cpu_hw_events);
1390
1391 /*
1392 * Some chipsets need to unmask the LVTPC in a particular spot
1393 * inside the nmi handler. As a result, the unmasking was pushed
1394 * into all the nmi handlers.
1395 *
1396 * This generic handler doesn't seem to have any issues where the
1397 * unmasking occurs so it was left at the top.
1398 */
1399 apic_write(APIC_LVTPC, APIC_DM_NMI);
1400
1401 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1402 if (!test_bit(idx, cpuc->active_mask)) {
1403 /*
1404 * Though we deactivated the counter some cpus
1405 * might still deliver spurious interrupts still
1406 * in flight. Catch them:
1407 */
1408 if (__test_and_clear_bit(idx, cpuc->running))
1409 handled++;
1410 continue;
1411 }
1412
1413 event = cpuc->events[idx];
1414
1415 val = x86_perf_event_update(event);
1416 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1417 continue;
1418
1419 /*
1420 * event overflow
1421 */
1422 handled++;
1423 perf_sample_data_init(&data, 0, event->hw.last_period);
1424
1425 if (!x86_perf_event_set_period(event))
1426 continue;
1427
1428 if (perf_event_overflow(event, &data, regs))
1429 x86_pmu_stop(event, 0);
1430 }
1431
1432 if (handled)
1433 inc_irq_stat(apic_perf_irqs);
1434
1435 return handled;
1436 }
1437
perf_events_lapic_init(void)1438 void perf_events_lapic_init(void)
1439 {
1440 if (!x86_pmu.apic || !x86_pmu_initialized())
1441 return;
1442
1443 /*
1444 * Always use NMI for PMU
1445 */
1446 apic_write(APIC_LVTPC, APIC_DM_NMI);
1447 }
1448
1449 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1450 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1451 {
1452 u64 start_clock;
1453 u64 finish_clock;
1454 int ret;
1455
1456 /*
1457 * All PMUs/events that share this PMI handler should make sure to
1458 * increment active_events for their events.
1459 */
1460 if (!atomic_read(&active_events))
1461 return NMI_DONE;
1462
1463 start_clock = sched_clock();
1464 ret = x86_pmu.handle_irq(regs);
1465 finish_clock = sched_clock();
1466
1467 perf_sample_event_took(finish_clock - start_clock);
1468
1469 return ret;
1470 }
1471 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1472
1473 struct event_constraint emptyconstraint;
1474 struct event_constraint unconstrained;
1475
1476 static int
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1477 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1478 {
1479 unsigned int cpu = (long)hcpu;
1480 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1481 int i, ret = NOTIFY_OK;
1482
1483 switch (action & ~CPU_TASKS_FROZEN) {
1484 case CPU_UP_PREPARE:
1485 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1486 cpuc->kfree_on_online[i] = NULL;
1487 if (x86_pmu.cpu_prepare)
1488 ret = x86_pmu.cpu_prepare(cpu);
1489 break;
1490
1491 case CPU_STARTING:
1492 if (x86_pmu.cpu_starting)
1493 x86_pmu.cpu_starting(cpu);
1494 break;
1495
1496 case CPU_ONLINE:
1497 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1498 kfree(cpuc->kfree_on_online[i]);
1499 cpuc->kfree_on_online[i] = NULL;
1500 }
1501 break;
1502
1503 case CPU_DYING:
1504 if (x86_pmu.cpu_dying)
1505 x86_pmu.cpu_dying(cpu);
1506 break;
1507
1508 case CPU_UP_CANCELED:
1509 case CPU_DEAD:
1510 if (x86_pmu.cpu_dead)
1511 x86_pmu.cpu_dead(cpu);
1512 break;
1513
1514 default:
1515 break;
1516 }
1517
1518 return ret;
1519 }
1520
pmu_check_apic(void)1521 static void __init pmu_check_apic(void)
1522 {
1523 if (cpu_has_apic)
1524 return;
1525
1526 x86_pmu.apic = 0;
1527 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1528 pr_info("no hardware sampling interrupt available.\n");
1529
1530 /*
1531 * If we have a PMU initialized but no APIC
1532 * interrupts, we cannot sample hardware
1533 * events (user-space has to fall back and
1534 * sample via a hrtimer based software event):
1535 */
1536 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1537
1538 }
1539
1540 static struct attribute_group x86_pmu_format_group = {
1541 .name = "format",
1542 .attrs = NULL,
1543 };
1544
1545 /*
1546 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1547 * out of events_attr attributes.
1548 */
filter_events(struct attribute ** attrs)1549 static void __init filter_events(struct attribute **attrs)
1550 {
1551 struct device_attribute *d;
1552 struct perf_pmu_events_attr *pmu_attr;
1553 int offset = 0;
1554 int i, j;
1555
1556 for (i = 0; attrs[i]; i++) {
1557 d = (struct device_attribute *)attrs[i];
1558 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1559 /* str trumps id */
1560 if (pmu_attr->event_str)
1561 continue;
1562 if (x86_pmu.event_map(i + offset))
1563 continue;
1564
1565 for (j = i; attrs[j]; j++)
1566 attrs[j] = attrs[j + 1];
1567
1568 /* Check the shifted attr. */
1569 i--;
1570
1571 /*
1572 * event_map() is index based, the attrs array is organized
1573 * by increasing event index. If we shift the events, then
1574 * we need to compensate for the event_map(), otherwise
1575 * we are looking up the wrong event in the map
1576 */
1577 offset++;
1578 }
1579 }
1580
1581 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1582 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1583 {
1584 struct attribute **new;
1585 int j, i;
1586
1587 for (j = 0; a[j]; j++)
1588 ;
1589 for (i = 0; b[i]; i++)
1590 j++;
1591 j++;
1592
1593 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1594 if (!new)
1595 return NULL;
1596
1597 j = 0;
1598 for (i = 0; a[i]; i++)
1599 new[j++] = a[i];
1600 for (i = 0; b[i]; i++)
1601 new[j++] = b[i];
1602 new[j] = NULL;
1603
1604 return new;
1605 }
1606
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1607 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1608 char *page)
1609 {
1610 struct perf_pmu_events_attr *pmu_attr = \
1611 container_of(attr, struct perf_pmu_events_attr, attr);
1612 u64 config = x86_pmu.event_map(pmu_attr->id);
1613
1614 /* string trumps id */
1615 if (pmu_attr->event_str)
1616 return sprintf(page, "%s", pmu_attr->event_str);
1617
1618 return x86_pmu.events_sysfs_show(page, config);
1619 }
1620
1621 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1622 EVENT_ATTR(instructions, INSTRUCTIONS );
1623 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1624 EVENT_ATTR(cache-misses, CACHE_MISSES );
1625 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1626 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1627 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1628 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1629 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1630 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1631
1632 static struct attribute *empty_attrs;
1633
1634 static struct attribute *events_attr[] = {
1635 EVENT_PTR(CPU_CYCLES),
1636 EVENT_PTR(INSTRUCTIONS),
1637 EVENT_PTR(CACHE_REFERENCES),
1638 EVENT_PTR(CACHE_MISSES),
1639 EVENT_PTR(BRANCH_INSTRUCTIONS),
1640 EVENT_PTR(BRANCH_MISSES),
1641 EVENT_PTR(BUS_CYCLES),
1642 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1643 EVENT_PTR(STALLED_CYCLES_BACKEND),
1644 EVENT_PTR(REF_CPU_CYCLES),
1645 NULL,
1646 };
1647
1648 static struct attribute_group x86_pmu_events_group = {
1649 .name = "events",
1650 .attrs = events_attr,
1651 };
1652
x86_event_sysfs_show(char * page,u64 config,u64 event)1653 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1654 {
1655 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1656 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1657 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1658 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1659 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1660 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1661 ssize_t ret;
1662
1663 /*
1664 * We have whole page size to spend and just little data
1665 * to write, so we can safely use sprintf.
1666 */
1667 ret = sprintf(page, "event=0x%02llx", event);
1668
1669 if (umask)
1670 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1671
1672 if (edge)
1673 ret += sprintf(page + ret, ",edge");
1674
1675 if (pc)
1676 ret += sprintf(page + ret, ",pc");
1677
1678 if (any)
1679 ret += sprintf(page + ret, ",any");
1680
1681 if (inv)
1682 ret += sprintf(page + ret, ",inv");
1683
1684 if (cmask)
1685 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1686
1687 ret += sprintf(page + ret, "\n");
1688
1689 return ret;
1690 }
1691
init_hw_perf_events(void)1692 static int __init init_hw_perf_events(void)
1693 {
1694 struct x86_pmu_quirk *quirk;
1695 int err;
1696
1697 pr_info("Performance Events: ");
1698
1699 switch (boot_cpu_data.x86_vendor) {
1700 case X86_VENDOR_INTEL:
1701 err = intel_pmu_init();
1702 break;
1703 case X86_VENDOR_AMD:
1704 err = amd_pmu_init();
1705 break;
1706 default:
1707 err = -ENOTSUPP;
1708 }
1709 if (err != 0) {
1710 pr_cont("no PMU driver, software events only.\n");
1711 return 0;
1712 }
1713
1714 pmu_check_apic();
1715
1716 /* sanity check that the hardware exists or is emulated */
1717 if (!check_hw_exists())
1718 return 0;
1719
1720 pr_cont("%s PMU driver.\n", x86_pmu.name);
1721
1722 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1723
1724 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1725 quirk->func();
1726
1727 if (!x86_pmu.intel_ctrl)
1728 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1729
1730 perf_events_lapic_init();
1731 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1732
1733 unconstrained = (struct event_constraint)
1734 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1735 0, x86_pmu.num_counters, 0, 0);
1736
1737 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1738
1739 if (x86_pmu.event_attrs)
1740 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1741
1742 if (!x86_pmu.events_sysfs_show)
1743 x86_pmu_events_group.attrs = &empty_attrs;
1744 else
1745 filter_events(x86_pmu_events_group.attrs);
1746
1747 if (x86_pmu.cpu_events) {
1748 struct attribute **tmp;
1749
1750 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1751 if (!WARN_ON(!tmp))
1752 x86_pmu_events_group.attrs = tmp;
1753 }
1754
1755 pr_info("... version: %d\n", x86_pmu.version);
1756 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1757 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1758 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1759 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1760 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1761 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1762
1763 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1764 perf_cpu_notifier(x86_pmu_notifier);
1765
1766 return 0;
1767 }
1768 early_initcall(init_hw_perf_events);
1769
x86_pmu_read(struct perf_event * event)1770 static inline void x86_pmu_read(struct perf_event *event)
1771 {
1772 x86_perf_event_update(event);
1773 }
1774
1775 /*
1776 * Start group events scheduling transaction
1777 * Set the flag to make pmu::enable() not perform the
1778 * schedulability test, it will be performed at commit time
1779 *
1780 * We only support PERF_PMU_TXN_ADD transactions. Save the
1781 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1782 * transactions.
1783 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1784 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1785 {
1786 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1787
1788 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1789
1790 cpuc->txn_flags = txn_flags;
1791 if (txn_flags & ~PERF_PMU_TXN_ADD)
1792 return;
1793
1794 perf_pmu_disable(pmu);
1795 __this_cpu_write(cpu_hw_events.n_txn, 0);
1796 }
1797
1798 /*
1799 * Stop group events scheduling transaction
1800 * Clear the flag and pmu::enable() will perform the
1801 * schedulability test.
1802 */
x86_pmu_cancel_txn(struct pmu * pmu)1803 static void x86_pmu_cancel_txn(struct pmu *pmu)
1804 {
1805 unsigned int txn_flags;
1806 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1807
1808 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1809
1810 txn_flags = cpuc->txn_flags;
1811 cpuc->txn_flags = 0;
1812 if (txn_flags & ~PERF_PMU_TXN_ADD)
1813 return;
1814
1815 /*
1816 * Truncate collected array by the number of events added in this
1817 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1818 */
1819 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1820 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1821 perf_pmu_enable(pmu);
1822 }
1823
1824 /*
1825 * Commit group events scheduling transaction
1826 * Perform the group schedulability test as a whole
1827 * Return 0 if success
1828 *
1829 * Does not cancel the transaction on failure; expects the caller to do this.
1830 */
x86_pmu_commit_txn(struct pmu * pmu)1831 static int x86_pmu_commit_txn(struct pmu *pmu)
1832 {
1833 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1834 int assign[X86_PMC_IDX_MAX];
1835 int n, ret;
1836
1837 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1838
1839 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1840 cpuc->txn_flags = 0;
1841 return 0;
1842 }
1843
1844 n = cpuc->n_events;
1845
1846 if (!x86_pmu_initialized())
1847 return -EAGAIN;
1848
1849 ret = x86_pmu.schedule_events(cpuc, n, assign);
1850 if (ret)
1851 return ret;
1852
1853 /*
1854 * copy new assignment, now we know it is possible
1855 * will be used by hw_perf_enable()
1856 */
1857 memcpy(cpuc->assign, assign, n*sizeof(int));
1858
1859 cpuc->txn_flags = 0;
1860 perf_pmu_enable(pmu);
1861 return 0;
1862 }
1863 /*
1864 * a fake_cpuc is used to validate event groups. Due to
1865 * the extra reg logic, we need to also allocate a fake
1866 * per_core and per_cpu structure. Otherwise, group events
1867 * using extra reg may conflict without the kernel being
1868 * able to catch this when the last event gets added to
1869 * the group.
1870 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1871 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1872 {
1873 kfree(cpuc->shared_regs);
1874 kfree(cpuc);
1875 }
1876
allocate_fake_cpuc(void)1877 static struct cpu_hw_events *allocate_fake_cpuc(void)
1878 {
1879 struct cpu_hw_events *cpuc;
1880 int cpu = raw_smp_processor_id();
1881
1882 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1883 if (!cpuc)
1884 return ERR_PTR(-ENOMEM);
1885
1886 /* only needed, if we have extra_regs */
1887 if (x86_pmu.extra_regs) {
1888 cpuc->shared_regs = allocate_shared_regs(cpu);
1889 if (!cpuc->shared_regs)
1890 goto error;
1891 }
1892 cpuc->is_fake = 1;
1893 return cpuc;
1894 error:
1895 free_fake_cpuc(cpuc);
1896 return ERR_PTR(-ENOMEM);
1897 }
1898
1899 /*
1900 * validate that we can schedule this event
1901 */
validate_event(struct perf_event * event)1902 static int validate_event(struct perf_event *event)
1903 {
1904 struct cpu_hw_events *fake_cpuc;
1905 struct event_constraint *c;
1906 int ret = 0;
1907
1908 fake_cpuc = allocate_fake_cpuc();
1909 if (IS_ERR(fake_cpuc))
1910 return PTR_ERR(fake_cpuc);
1911
1912 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1913
1914 if (!c || !c->weight)
1915 ret = -EINVAL;
1916
1917 if (x86_pmu.put_event_constraints)
1918 x86_pmu.put_event_constraints(fake_cpuc, event);
1919
1920 free_fake_cpuc(fake_cpuc);
1921
1922 return ret;
1923 }
1924
1925 /*
1926 * validate a single event group
1927 *
1928 * validation include:
1929 * - check events are compatible which each other
1930 * - events do not compete for the same counter
1931 * - number of events <= number of counters
1932 *
1933 * validation ensures the group can be loaded onto the
1934 * PMU if it was the only group available.
1935 */
validate_group(struct perf_event * event)1936 static int validate_group(struct perf_event *event)
1937 {
1938 struct perf_event *leader = event->group_leader;
1939 struct cpu_hw_events *fake_cpuc;
1940 int ret = -EINVAL, n;
1941
1942 fake_cpuc = allocate_fake_cpuc();
1943 if (IS_ERR(fake_cpuc))
1944 return PTR_ERR(fake_cpuc);
1945 /*
1946 * the event is not yet connected with its
1947 * siblings therefore we must first collect
1948 * existing siblings, then add the new event
1949 * before we can simulate the scheduling
1950 */
1951 n = collect_events(fake_cpuc, leader, true);
1952 if (n < 0)
1953 goto out;
1954
1955 fake_cpuc->n_events = n;
1956 n = collect_events(fake_cpuc, event, false);
1957 if (n < 0)
1958 goto out;
1959
1960 fake_cpuc->n_events = n;
1961
1962 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1963
1964 out:
1965 free_fake_cpuc(fake_cpuc);
1966 return ret;
1967 }
1968
x86_pmu_event_init(struct perf_event * event)1969 static int x86_pmu_event_init(struct perf_event *event)
1970 {
1971 struct pmu *tmp;
1972 int err;
1973
1974 switch (event->attr.type) {
1975 case PERF_TYPE_RAW:
1976 case PERF_TYPE_HARDWARE:
1977 case PERF_TYPE_HW_CACHE:
1978 break;
1979
1980 default:
1981 return -ENOENT;
1982 }
1983
1984 err = __x86_pmu_event_init(event);
1985 if (!err) {
1986 /*
1987 * we temporarily connect event to its pmu
1988 * such that validate_group() can classify
1989 * it as an x86 event using is_x86_event()
1990 */
1991 tmp = event->pmu;
1992 event->pmu = &pmu;
1993
1994 if (event->group_leader != event)
1995 err = validate_group(event);
1996 else
1997 err = validate_event(event);
1998
1999 event->pmu = tmp;
2000 }
2001 if (err) {
2002 if (event->destroy)
2003 event->destroy(event);
2004 event->destroy = NULL;
2005 }
2006
2007 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2008 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2009
2010 return err;
2011 }
2012
refresh_pce(void * ignored)2013 static void refresh_pce(void *ignored)
2014 {
2015 if (current->active_mm)
2016 load_mm_cr4(current->active_mm);
2017 }
2018
x86_pmu_event_mapped(struct perf_event * event)2019 static void x86_pmu_event_mapped(struct perf_event *event)
2020 {
2021 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2022 return;
2023
2024 if (atomic_inc_return(¤t->mm->context.perf_rdpmc_allowed) == 1)
2025 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2026 }
2027
x86_pmu_event_unmapped(struct perf_event * event)2028 static void x86_pmu_event_unmapped(struct perf_event *event)
2029 {
2030 if (!current->mm)
2031 return;
2032
2033 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2034 return;
2035
2036 if (atomic_dec_and_test(¤t->mm->context.perf_rdpmc_allowed))
2037 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2038 }
2039
x86_pmu_event_idx(struct perf_event * event)2040 static int x86_pmu_event_idx(struct perf_event *event)
2041 {
2042 int idx = event->hw.idx;
2043
2044 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2045 return 0;
2046
2047 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2048 idx -= INTEL_PMC_IDX_FIXED;
2049 idx |= 1 << 30;
2050 }
2051
2052 return idx + 1;
2053 }
2054
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2055 static ssize_t get_attr_rdpmc(struct device *cdev,
2056 struct device_attribute *attr,
2057 char *buf)
2058 {
2059 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2060 }
2061
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2062 static ssize_t set_attr_rdpmc(struct device *cdev,
2063 struct device_attribute *attr,
2064 const char *buf, size_t count)
2065 {
2066 unsigned long val;
2067 ssize_t ret;
2068
2069 ret = kstrtoul(buf, 0, &val);
2070 if (ret)
2071 return ret;
2072
2073 if (val > 2)
2074 return -EINVAL;
2075
2076 if (x86_pmu.attr_rdpmc_broken)
2077 return -ENOTSUPP;
2078
2079 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2080 /*
2081 * Changing into or out of always available, aka
2082 * perf-event-bypassing mode. This path is extremely slow,
2083 * but only root can trigger it, so it's okay.
2084 */
2085 if (val == 2)
2086 static_key_slow_inc(&rdpmc_always_available);
2087 else
2088 static_key_slow_dec(&rdpmc_always_available);
2089 on_each_cpu(refresh_pce, NULL, 1);
2090 }
2091
2092 x86_pmu.attr_rdpmc = val;
2093
2094 return count;
2095 }
2096
2097 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2098
2099 static struct attribute *x86_pmu_attrs[] = {
2100 &dev_attr_rdpmc.attr,
2101 NULL,
2102 };
2103
2104 static struct attribute_group x86_pmu_attr_group = {
2105 .attrs = x86_pmu_attrs,
2106 };
2107
2108 static const struct attribute_group *x86_pmu_attr_groups[] = {
2109 &x86_pmu_attr_group,
2110 &x86_pmu_format_group,
2111 &x86_pmu_events_group,
2112 NULL,
2113 };
2114
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2115 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2116 {
2117 if (x86_pmu.sched_task)
2118 x86_pmu.sched_task(ctx, sched_in);
2119 }
2120
perf_check_microcode(void)2121 void perf_check_microcode(void)
2122 {
2123 if (x86_pmu.check_microcode)
2124 x86_pmu.check_microcode();
2125 }
2126 EXPORT_SYMBOL_GPL(perf_check_microcode);
2127
2128 static struct pmu pmu = {
2129 .pmu_enable = x86_pmu_enable,
2130 .pmu_disable = x86_pmu_disable,
2131
2132 .attr_groups = x86_pmu_attr_groups,
2133
2134 .event_init = x86_pmu_event_init,
2135
2136 .event_mapped = x86_pmu_event_mapped,
2137 .event_unmapped = x86_pmu_event_unmapped,
2138
2139 .add = x86_pmu_add,
2140 .del = x86_pmu_del,
2141 .start = x86_pmu_start,
2142 .stop = x86_pmu_stop,
2143 .read = x86_pmu_read,
2144
2145 .start_txn = x86_pmu_start_txn,
2146 .cancel_txn = x86_pmu_cancel_txn,
2147 .commit_txn = x86_pmu_commit_txn,
2148
2149 .event_idx = x86_pmu_event_idx,
2150 .sched_task = x86_pmu_sched_task,
2151 .task_ctx_size = sizeof(struct x86_perf_task_context),
2152 };
2153
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2154 void arch_perf_update_userpage(struct perf_event *event,
2155 struct perf_event_mmap_page *userpg, u64 now)
2156 {
2157 struct cyc2ns_data *data;
2158
2159 userpg->cap_user_time = 0;
2160 userpg->cap_user_time_zero = 0;
2161 userpg->cap_user_rdpmc =
2162 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2163 userpg->pmc_width = x86_pmu.cntval_bits;
2164
2165 if (!sched_clock_stable())
2166 return;
2167
2168 data = cyc2ns_read_begin();
2169
2170 /*
2171 * Internal timekeeping for enabled/running/stopped times
2172 * is always in the local_clock domain.
2173 */
2174 userpg->cap_user_time = 1;
2175 userpg->time_mult = data->cyc2ns_mul;
2176 userpg->time_shift = data->cyc2ns_shift;
2177 userpg->time_offset = data->cyc2ns_offset - now;
2178
2179 /*
2180 * cap_user_time_zero doesn't make sense when we're using a different
2181 * time base for the records.
2182 */
2183 if (event->clock == &local_clock) {
2184 userpg->cap_user_time_zero = 1;
2185 userpg->time_zero = data->cyc2ns_offset;
2186 }
2187
2188 cyc2ns_read_end(data);
2189 }
2190
2191 /*
2192 * callchain support
2193 */
2194
backtrace_stack(void * data,char * name)2195 static int backtrace_stack(void *data, char *name)
2196 {
2197 return 0;
2198 }
2199
backtrace_address(void * data,unsigned long addr,int reliable)2200 static void backtrace_address(void *data, unsigned long addr, int reliable)
2201 {
2202 struct perf_callchain_entry *entry = data;
2203
2204 perf_callchain_store(entry, addr);
2205 }
2206
2207 static const struct stacktrace_ops backtrace_ops = {
2208 .stack = backtrace_stack,
2209 .address = backtrace_address,
2210 .walk_stack = print_context_stack_bp,
2211 };
2212
2213 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)2214 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2215 {
2216 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2217 /* TODO: We don't support guest os callchain now */
2218 return;
2219 }
2220
2221 perf_callchain_store(entry, regs->ip);
2222
2223 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2224 }
2225
2226 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2227 valid_user_frame(const void __user *fp, unsigned long size)
2228 {
2229 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2230 }
2231
get_segment_base(unsigned int segment)2232 static unsigned long get_segment_base(unsigned int segment)
2233 {
2234 struct desc_struct *desc;
2235 int idx = segment >> 3;
2236
2237 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2238 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2239 struct ldt_struct *ldt;
2240
2241 if (idx > LDT_ENTRIES)
2242 return 0;
2243
2244 /* IRQs are off, so this synchronizes with smp_store_release */
2245 ldt = lockless_dereference(current->active_mm->context.ldt);
2246 if (!ldt || idx > ldt->size)
2247 return 0;
2248
2249 desc = &ldt->entries[idx];
2250 #else
2251 return 0;
2252 #endif
2253 } else {
2254 if (idx > GDT_ENTRIES)
2255 return 0;
2256
2257 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2258 }
2259
2260 return get_desc_base(desc);
2261 }
2262
2263 #ifdef CONFIG_IA32_EMULATION
2264
2265 #include <asm/compat.h>
2266
2267 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2268 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2269 {
2270 /* 32-bit process in 64-bit kernel. */
2271 unsigned long ss_base, cs_base;
2272 struct stack_frame_ia32 frame;
2273 const void __user *fp;
2274
2275 if (!test_thread_flag(TIF_IA32))
2276 return 0;
2277
2278 cs_base = get_segment_base(regs->cs);
2279 ss_base = get_segment_base(regs->ss);
2280
2281 fp = compat_ptr(ss_base + regs->bp);
2282 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2283 unsigned long bytes;
2284 frame.next_frame = 0;
2285 frame.return_address = 0;
2286
2287 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2288 if (bytes != 0)
2289 break;
2290
2291 if (!valid_user_frame(fp, sizeof(frame)))
2292 break;
2293
2294 perf_callchain_store(entry, cs_base + frame.return_address);
2295 fp = compat_ptr(ss_base + frame.next_frame);
2296 }
2297 return 1;
2298 }
2299 #else
2300 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2301 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2302 {
2303 return 0;
2304 }
2305 #endif
2306
2307 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)2308 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2309 {
2310 struct stack_frame frame;
2311 const void __user *fp;
2312
2313 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2314 /* TODO: We don't support guest os callchain now */
2315 return;
2316 }
2317
2318 /*
2319 * We don't know what to do with VM86 stacks.. ignore them for now.
2320 */
2321 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2322 return;
2323
2324 fp = (void __user *)regs->bp;
2325
2326 perf_callchain_store(entry, regs->ip);
2327
2328 if (!current->mm)
2329 return;
2330
2331 if (perf_callchain_user32(regs, entry))
2332 return;
2333
2334 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2335 unsigned long bytes;
2336 frame.next_frame = NULL;
2337 frame.return_address = 0;
2338
2339 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2340 if (bytes != 0)
2341 break;
2342
2343 if (!valid_user_frame(fp, sizeof(frame)))
2344 break;
2345
2346 perf_callchain_store(entry, frame.return_address);
2347 fp = frame.next_frame;
2348 }
2349 }
2350
2351 /*
2352 * Deal with code segment offsets for the various execution modes:
2353 *
2354 * VM86 - the good olde 16 bit days, where the linear address is
2355 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2356 *
2357 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2358 * to figure out what the 32bit base address is.
2359 *
2360 * X32 - has TIF_X32 set, but is running in x86_64
2361 *
2362 * X86_64 - CS,DS,SS,ES are all zero based.
2363 */
code_segment_base(struct pt_regs * regs)2364 static unsigned long code_segment_base(struct pt_regs *regs)
2365 {
2366 /*
2367 * For IA32 we look at the GDT/LDT segment base to convert the
2368 * effective IP to a linear address.
2369 */
2370
2371 #ifdef CONFIG_X86_32
2372 /*
2373 * If we are in VM86 mode, add the segment offset to convert to a
2374 * linear address.
2375 */
2376 if (regs->flags & X86_VM_MASK)
2377 return 0x10 * regs->cs;
2378
2379 if (user_mode(regs) && regs->cs != __USER_CS)
2380 return get_segment_base(regs->cs);
2381 #else
2382 if (user_mode(regs) && !user_64bit_mode(regs) &&
2383 regs->cs != __USER32_CS)
2384 return get_segment_base(regs->cs);
2385 #endif
2386 return 0;
2387 }
2388
perf_instruction_pointer(struct pt_regs * regs)2389 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2390 {
2391 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2392 return perf_guest_cbs->get_guest_ip();
2393
2394 return regs->ip + code_segment_base(regs);
2395 }
2396
perf_misc_flags(struct pt_regs * regs)2397 unsigned long perf_misc_flags(struct pt_regs *regs)
2398 {
2399 int misc = 0;
2400
2401 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2402 if (perf_guest_cbs->is_user_mode())
2403 misc |= PERF_RECORD_MISC_GUEST_USER;
2404 else
2405 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2406 } else {
2407 if (user_mode(regs))
2408 misc |= PERF_RECORD_MISC_USER;
2409 else
2410 misc |= PERF_RECORD_MISC_KERNEL;
2411 }
2412
2413 if (regs->flags & PERF_EFLAGS_EXACT)
2414 misc |= PERF_RECORD_MISC_EXACT_IP;
2415
2416 return misc;
2417 }
2418
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2419 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2420 {
2421 cap->version = x86_pmu.version;
2422 cap->num_counters_gp = x86_pmu.num_counters;
2423 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2424 cap->bit_width_gp = x86_pmu.cntval_bits;
2425 cap->bit_width_fixed = x86_pmu.cntval_bits;
2426 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2427 cap->events_mask_len = x86_pmu.events_mask_len;
2428 }
2429 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2430