• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
hwpoison_filter_dev(struct page * p)82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
hwpoison_filter_flags(struct page * p)112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
hwpoison_filter_task(struct page * p)148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
hwpoison_filter(struct page * p)151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
hwpoison_filter(struct page * p)168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
kill_proc(struct task_struct * t,unsigned long addr,int trapno,unsigned long pfn,struct page * page,int flags)181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	printk(KERN_ERR
188 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
189 		pfn, t->comm, t->pid);
190 	si.si_signo = SIGBUS;
191 	si.si_errno = 0;
192 	si.si_addr = (void *)addr;
193 #ifdef __ARCH_SI_TRAPNO
194 	si.si_trapno = trapno;
195 #endif
196 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197 
198 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199 		si.si_code = BUS_MCEERR_AR;
200 		ret = force_sig_info(SIGBUS, &si, current);
201 	} else {
202 		/*
203 		 * Don't use force here, it's convenient if the signal
204 		 * can be temporarily blocked.
205 		 * This could cause a loop when the user sets SIGBUS
206 		 * to SIG_IGN, but hopefully no one will do that?
207 		 */
208 		si.si_code = BUS_MCEERR_AO;
209 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
210 	}
211 	if (ret < 0)
212 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
213 		       t->comm, t->pid, ret);
214 	return ret;
215 }
216 
217 /*
218  * When a unknown page type is encountered drain as many buffers as possible
219  * in the hope to turn the page into a LRU or free page, which we can handle.
220  */
shake_page(struct page * p,int access)221 void shake_page(struct page *p, int access)
222 {
223 	if (!PageSlab(p)) {
224 		lru_add_drain_all();
225 		if (PageLRU(p))
226 			return;
227 		drain_all_pages(page_zone(p));
228 		if (PageLRU(p) || is_free_buddy_page(p))
229 			return;
230 	}
231 
232 	/*
233 	 * Only call shrink_node_slabs here (which would also shrink
234 	 * other caches) if access is not potentially fatal.
235 	 */
236 	if (access)
237 		drop_slab_node(page_to_nid(p));
238 }
239 EXPORT_SYMBOL_GPL(shake_page);
240 
241 /*
242  * Kill all processes that have a poisoned page mapped and then isolate
243  * the page.
244  *
245  * General strategy:
246  * Find all processes having the page mapped and kill them.
247  * But we keep a page reference around so that the page is not
248  * actually freed yet.
249  * Then stash the page away
250  *
251  * There's no convenient way to get back to mapped processes
252  * from the VMAs. So do a brute-force search over all
253  * running processes.
254  *
255  * Remember that machine checks are not common (or rather
256  * if they are common you have other problems), so this shouldn't
257  * be a performance issue.
258  *
259  * Also there are some races possible while we get from the
260  * error detection to actually handle it.
261  */
262 
263 struct to_kill {
264 	struct list_head nd;
265 	struct task_struct *tsk;
266 	unsigned long addr;
267 	char addr_valid;
268 };
269 
270 /*
271  * Failure handling: if we can't find or can't kill a process there's
272  * not much we can do.	We just print a message and ignore otherwise.
273  */
274 
275 /*
276  * Schedule a process for later kill.
277  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278  * TBD would GFP_NOIO be enough?
279  */
add_to_kill(struct task_struct * tsk,struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,struct to_kill ** tkc)280 static void add_to_kill(struct task_struct *tsk, struct page *p,
281 		       struct vm_area_struct *vma,
282 		       struct list_head *to_kill,
283 		       struct to_kill **tkc)
284 {
285 	struct to_kill *tk;
286 
287 	if (*tkc) {
288 		tk = *tkc;
289 		*tkc = NULL;
290 	} else {
291 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 		if (!tk) {
293 			printk(KERN_ERR
294 		"MCE: Out of memory while machine check handling\n");
295 			return;
296 		}
297 	}
298 	tk->addr = page_address_in_vma(p, vma);
299 	tk->addr_valid = 1;
300 
301 	/*
302 	 * In theory we don't have to kill when the page was
303 	 * munmaped. But it could be also a mremap. Since that's
304 	 * likely very rare kill anyways just out of paranoia, but use
305 	 * a SIGKILL because the error is not contained anymore.
306 	 */
307 	if (tk->addr == -EFAULT) {
308 		pr_info("MCE: Unable to find user space address %lx in %s\n",
309 			page_to_pfn(p), tsk->comm);
310 		tk->addr_valid = 0;
311 	}
312 	get_task_struct(tsk);
313 	tk->tsk = tsk;
314 	list_add_tail(&tk->nd, to_kill);
315 }
316 
317 /*
318  * Kill the processes that have been collected earlier.
319  *
320  * Only do anything when DOIT is set, otherwise just free the list
321  * (this is used for clean pages which do not need killing)
322  * Also when FAIL is set do a force kill because something went
323  * wrong earlier.
324  */
kill_procs(struct list_head * to_kill,int forcekill,int trapno,int fail,struct page * page,unsigned long pfn,int flags)325 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
326 			  int fail, struct page *page, unsigned long pfn,
327 			  int flags)
328 {
329 	struct to_kill *tk, *next;
330 
331 	list_for_each_entry_safe (tk, next, to_kill, nd) {
332 		if (forcekill) {
333 			/*
334 			 * In case something went wrong with munmapping
335 			 * make sure the process doesn't catch the
336 			 * signal and then access the memory. Just kill it.
337 			 */
338 			if (fail || tk->addr_valid == 0) {
339 				printk(KERN_ERR
340 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 					pfn, tk->tsk->comm, tk->tsk->pid);
342 				force_sig(SIGKILL, tk->tsk);
343 			}
344 
345 			/*
346 			 * In theory the process could have mapped
347 			 * something else on the address in-between. We could
348 			 * check for that, but we need to tell the
349 			 * process anyways.
350 			 */
351 			else if (kill_proc(tk->tsk, tk->addr, trapno,
352 					      pfn, page, flags) < 0)
353 				printk(KERN_ERR
354 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 					pfn, tk->tsk->comm, tk->tsk->pid);
356 		}
357 		put_task_struct(tk->tsk);
358 		kfree(tk);
359 	}
360 }
361 
362 /*
363  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364  * on behalf of the thread group. Return task_struct of the (first found)
365  * dedicated thread if found, and return NULL otherwise.
366  *
367  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368  * have to call rcu_read_lock/unlock() in this function.
369  */
find_early_kill_thread(struct task_struct * tsk)370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371 {
372 	struct task_struct *t;
373 
374 	for_each_thread(tsk, t)
375 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 			return t;
377 	return NULL;
378 }
379 
380 /*
381  * Determine whether a given process is "early kill" process which expects
382  * to be signaled when some page under the process is hwpoisoned.
383  * Return task_struct of the dedicated thread (main thread unless explicitly
384  * specified) if the process is "early kill," and otherwise returns NULL.
385  */
task_early_kill(struct task_struct * tsk,int force_early)386 static struct task_struct *task_early_kill(struct task_struct *tsk,
387 					   int force_early)
388 {
389 	struct task_struct *t;
390 	if (!tsk->mm)
391 		return NULL;
392 	if (force_early)
393 		return tsk;
394 	t = find_early_kill_thread(tsk);
395 	if (t)
396 		return t;
397 	if (sysctl_memory_failure_early_kill)
398 		return tsk;
399 	return NULL;
400 }
401 
402 /*
403  * Collect processes when the error hit an anonymous page.
404  */
collect_procs_anon(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)405 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406 			      struct to_kill **tkc, int force_early)
407 {
408 	struct vm_area_struct *vma;
409 	struct task_struct *tsk;
410 	struct anon_vma *av;
411 	pgoff_t pgoff;
412 
413 	av = page_lock_anon_vma_read(page);
414 	if (av == NULL)	/* Not actually mapped anymore */
415 		return;
416 
417 	pgoff = page_to_pgoff(page);
418 	read_lock(&tasklist_lock);
419 	for_each_process (tsk) {
420 		struct anon_vma_chain *vmac;
421 		struct task_struct *t = task_early_kill(tsk, force_early);
422 
423 		if (!t)
424 			continue;
425 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 					       pgoff, pgoff) {
427 			vma = vmac->vma;
428 			if (!page_mapped_in_vma(page, vma))
429 				continue;
430 			if (vma->vm_mm == t->mm)
431 				add_to_kill(t, page, vma, to_kill, tkc);
432 		}
433 	}
434 	read_unlock(&tasklist_lock);
435 	page_unlock_anon_vma_read(av);
436 }
437 
438 /*
439  * Collect processes when the error hit a file mapped page.
440  */
collect_procs_file(struct page * page,struct list_head * to_kill,struct to_kill ** tkc,int force_early)441 static void collect_procs_file(struct page *page, struct list_head *to_kill,
442 			      struct to_kill **tkc, int force_early)
443 {
444 	struct vm_area_struct *vma;
445 	struct task_struct *tsk;
446 	struct address_space *mapping = page->mapping;
447 
448 	i_mmap_lock_read(mapping);
449 	read_lock(&tasklist_lock);
450 	for_each_process(tsk) {
451 		pgoff_t pgoff = page_to_pgoff(page);
452 		struct task_struct *t = task_early_kill(tsk, force_early);
453 
454 		if (!t)
455 			continue;
456 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 				      pgoff) {
458 			/*
459 			 * Send early kill signal to tasks where a vma covers
460 			 * the page but the corrupted page is not necessarily
461 			 * mapped it in its pte.
462 			 * Assume applications who requested early kill want
463 			 * to be informed of all such data corruptions.
464 			 */
465 			if (vma->vm_mm == t->mm)
466 				add_to_kill(t, page, vma, to_kill, tkc);
467 		}
468 	}
469 	read_unlock(&tasklist_lock);
470 	i_mmap_unlock_read(mapping);
471 }
472 
473 /*
474  * Collect the processes who have the corrupted page mapped to kill.
475  * This is done in two steps for locking reasons.
476  * First preallocate one tokill structure outside the spin locks,
477  * so that we can kill at least one process reasonably reliable.
478  */
collect_procs(struct page * page,struct list_head * tokill,int force_early)479 static void collect_procs(struct page *page, struct list_head *tokill,
480 				int force_early)
481 {
482 	struct to_kill *tk;
483 
484 	if (!page->mapping)
485 		return;
486 
487 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 	if (!tk)
489 		return;
490 	if (PageAnon(page))
491 		collect_procs_anon(page, tokill, &tk, force_early);
492 	else
493 		collect_procs_file(page, tokill, &tk, force_early);
494 	kfree(tk);
495 }
496 
497 static const char *action_name[] = {
498 	[MF_IGNORED] = "Ignored",
499 	[MF_FAILED] = "Failed",
500 	[MF_DELAYED] = "Delayed",
501 	[MF_RECOVERED] = "Recovered",
502 };
503 
504 static const char * const action_page_types[] = {
505 	[MF_MSG_KERNEL]			= "reserved kernel page",
506 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
507 	[MF_MSG_SLAB]			= "kernel slab page",
508 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
509 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
510 	[MF_MSG_HUGE]			= "huge page",
511 	[MF_MSG_FREE_HUGE]		= "free huge page",
512 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
513 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
514 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
515 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
516 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
517 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
518 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
519 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
520 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
521 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
522 	[MF_MSG_BUDDY]			= "free buddy page",
523 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
524 	[MF_MSG_UNKNOWN]		= "unknown page",
525 };
526 
527 /*
528  * XXX: It is possible that a page is isolated from LRU cache,
529  * and then kept in swap cache or failed to remove from page cache.
530  * The page count will stop it from being freed by unpoison.
531  * Stress tests should be aware of this memory leak problem.
532  */
delete_from_lru_cache(struct page * p)533 static int delete_from_lru_cache(struct page *p)
534 {
535 	if (!isolate_lru_page(p)) {
536 		/*
537 		 * Clear sensible page flags, so that the buddy system won't
538 		 * complain when the page is unpoison-and-freed.
539 		 */
540 		ClearPageActive(p);
541 		ClearPageUnevictable(p);
542 
543 		/*
544 		 * Poisoned page might never drop its ref count to 0 so we have
545 		 * to uncharge it manually from its memcg.
546 		 */
547 		mem_cgroup_uncharge(p);
548 
549 		/*
550 		 * drop the page count elevated by isolate_lru_page()
551 		 */
552 		page_cache_release(p);
553 		return 0;
554 	}
555 	return -EIO;
556 }
557 
558 /*
559  * Error hit kernel page.
560  * Do nothing, try to be lucky and not touch this instead. For a few cases we
561  * could be more sophisticated.
562  */
me_kernel(struct page * p,unsigned long pfn)563 static int me_kernel(struct page *p, unsigned long pfn)
564 {
565 	return MF_IGNORED;
566 }
567 
568 /*
569  * Page in unknown state. Do nothing.
570  */
me_unknown(struct page * p,unsigned long pfn)571 static int me_unknown(struct page *p, unsigned long pfn)
572 {
573 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
574 	return MF_FAILED;
575 }
576 
577 /*
578  * Clean (or cleaned) page cache page.
579  */
me_pagecache_clean(struct page * p,unsigned long pfn)580 static int me_pagecache_clean(struct page *p, unsigned long pfn)
581 {
582 	int err;
583 	int ret = MF_FAILED;
584 	struct address_space *mapping;
585 
586 	delete_from_lru_cache(p);
587 
588 	/*
589 	 * For anonymous pages we're done the only reference left
590 	 * should be the one m_f() holds.
591 	 */
592 	if (PageAnon(p))
593 		return MF_RECOVERED;
594 
595 	/*
596 	 * Now truncate the page in the page cache. This is really
597 	 * more like a "temporary hole punch"
598 	 * Don't do this for block devices when someone else
599 	 * has a reference, because it could be file system metadata
600 	 * and that's not safe to truncate.
601 	 */
602 	mapping = page_mapping(p);
603 	if (!mapping) {
604 		/*
605 		 * Page has been teared down in the meanwhile
606 		 */
607 		return MF_FAILED;
608 	}
609 
610 	/*
611 	 * Truncation is a bit tricky. Enable it per file system for now.
612 	 *
613 	 * Open: to take i_mutex or not for this? Right now we don't.
614 	 */
615 	if (mapping->a_ops->error_remove_page) {
616 		err = mapping->a_ops->error_remove_page(mapping, p);
617 		if (err != 0) {
618 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
619 					pfn, err);
620 		} else if (page_has_private(p) &&
621 				!try_to_release_page(p, GFP_NOIO)) {
622 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
623 		} else {
624 			ret = MF_RECOVERED;
625 		}
626 	} else {
627 		/*
628 		 * If the file system doesn't support it just invalidate
629 		 * This fails on dirty or anything with private pages
630 		 */
631 		if (invalidate_inode_page(p))
632 			ret = MF_RECOVERED;
633 		else
634 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
635 				pfn);
636 	}
637 	return ret;
638 }
639 
640 /*
641  * Dirty pagecache page
642  * Issues: when the error hit a hole page the error is not properly
643  * propagated.
644  */
me_pagecache_dirty(struct page * p,unsigned long pfn)645 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
646 {
647 	struct address_space *mapping = page_mapping(p);
648 
649 	SetPageError(p);
650 	/* TBD: print more information about the file. */
651 	if (mapping) {
652 		/*
653 		 * IO error will be reported by write(), fsync(), etc.
654 		 * who check the mapping.
655 		 * This way the application knows that something went
656 		 * wrong with its dirty file data.
657 		 *
658 		 * There's one open issue:
659 		 *
660 		 * The EIO will be only reported on the next IO
661 		 * operation and then cleared through the IO map.
662 		 * Normally Linux has two mechanisms to pass IO error
663 		 * first through the AS_EIO flag in the address space
664 		 * and then through the PageError flag in the page.
665 		 * Since we drop pages on memory failure handling the
666 		 * only mechanism open to use is through AS_AIO.
667 		 *
668 		 * This has the disadvantage that it gets cleared on
669 		 * the first operation that returns an error, while
670 		 * the PageError bit is more sticky and only cleared
671 		 * when the page is reread or dropped.  If an
672 		 * application assumes it will always get error on
673 		 * fsync, but does other operations on the fd before
674 		 * and the page is dropped between then the error
675 		 * will not be properly reported.
676 		 *
677 		 * This can already happen even without hwpoisoned
678 		 * pages: first on metadata IO errors (which only
679 		 * report through AS_EIO) or when the page is dropped
680 		 * at the wrong time.
681 		 *
682 		 * So right now we assume that the application DTRT on
683 		 * the first EIO, but we're not worse than other parts
684 		 * of the kernel.
685 		 */
686 		mapping_set_error(mapping, EIO);
687 	}
688 
689 	return me_pagecache_clean(p, pfn);
690 }
691 
692 /*
693  * Clean and dirty swap cache.
694  *
695  * Dirty swap cache page is tricky to handle. The page could live both in page
696  * cache and swap cache(ie. page is freshly swapped in). So it could be
697  * referenced concurrently by 2 types of PTEs:
698  * normal PTEs and swap PTEs. We try to handle them consistently by calling
699  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
700  * and then
701  *      - clear dirty bit to prevent IO
702  *      - remove from LRU
703  *      - but keep in the swap cache, so that when we return to it on
704  *        a later page fault, we know the application is accessing
705  *        corrupted data and shall be killed (we installed simple
706  *        interception code in do_swap_page to catch it).
707  *
708  * Clean swap cache pages can be directly isolated. A later page fault will
709  * bring in the known good data from disk.
710  */
me_swapcache_dirty(struct page * p,unsigned long pfn)711 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
712 {
713 	ClearPageDirty(p);
714 	/* Trigger EIO in shmem: */
715 	ClearPageUptodate(p);
716 
717 	if (!delete_from_lru_cache(p))
718 		return MF_DELAYED;
719 	else
720 		return MF_FAILED;
721 }
722 
me_swapcache_clean(struct page * p,unsigned long pfn)723 static int me_swapcache_clean(struct page *p, unsigned long pfn)
724 {
725 	delete_from_swap_cache(p);
726 
727 	if (!delete_from_lru_cache(p))
728 		return MF_RECOVERED;
729 	else
730 		return MF_FAILED;
731 }
732 
733 /*
734  * Huge pages. Needs work.
735  * Issues:
736  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
737  *   To narrow down kill region to one page, we need to break up pmd.
738  */
me_huge_page(struct page * p,unsigned long pfn)739 static int me_huge_page(struct page *p, unsigned long pfn)
740 {
741 	int res = 0;
742 	struct page *hpage = compound_head(p);
743 
744 	if (!PageHuge(hpage))
745 		return MF_DELAYED;
746 
747 	/*
748 	 * We can safely recover from error on free or reserved (i.e.
749 	 * not in-use) hugepage by dequeuing it from freelist.
750 	 * To check whether a hugepage is in-use or not, we can't use
751 	 * page->lru because it can be used in other hugepage operations,
752 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
753 	 * So instead we use page_mapping() and PageAnon().
754 	 * We assume that this function is called with page lock held,
755 	 * so there is no race between isolation and mapping/unmapping.
756 	 */
757 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
758 		res = dequeue_hwpoisoned_huge_page(hpage);
759 		if (!res)
760 			return MF_RECOVERED;
761 	}
762 	return MF_DELAYED;
763 }
764 
765 /*
766  * Various page states we can handle.
767  *
768  * A page state is defined by its current page->flags bits.
769  * The table matches them in order and calls the right handler.
770  *
771  * This is quite tricky because we can access page at any time
772  * in its live cycle, so all accesses have to be extremely careful.
773  *
774  * This is not complete. More states could be added.
775  * For any missing state don't attempt recovery.
776  */
777 
778 #define dirty		(1UL << PG_dirty)
779 #define sc		(1UL << PG_swapcache)
780 #define unevict		(1UL << PG_unevictable)
781 #define mlock		(1UL << PG_mlocked)
782 #define writeback	(1UL << PG_writeback)
783 #define lru		(1UL << PG_lru)
784 #define swapbacked	(1UL << PG_swapbacked)
785 #define head		(1UL << PG_head)
786 #define slab		(1UL << PG_slab)
787 #define reserved	(1UL << PG_reserved)
788 
789 static struct page_state {
790 	unsigned long mask;
791 	unsigned long res;
792 	enum mf_action_page_type type;
793 	int (*action)(struct page *p, unsigned long pfn);
794 } error_states[] = {
795 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
796 	/*
797 	 * free pages are specially detected outside this table:
798 	 * PG_buddy pages only make a small fraction of all free pages.
799 	 */
800 
801 	/*
802 	 * Could in theory check if slab page is free or if we can drop
803 	 * currently unused objects without touching them. But just
804 	 * treat it as standard kernel for now.
805 	 */
806 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
807 
808 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
809 
810 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
811 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
812 
813 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
814 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
815 
816 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
817 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
818 
819 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
820 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
821 
822 	/*
823 	 * Catchall entry: must be at end.
824 	 */
825 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
826 };
827 
828 #undef dirty
829 #undef sc
830 #undef unevict
831 #undef mlock
832 #undef writeback
833 #undef lru
834 #undef swapbacked
835 #undef head
836 #undef tail
837 #undef compound
838 #undef slab
839 #undef reserved
840 
841 /*
842  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
843  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
844  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)845 static void action_result(unsigned long pfn, enum mf_action_page_type type,
846 			  enum mf_result result)
847 {
848 	trace_memory_failure_event(pfn, type, result);
849 
850 	pr_err("MCE %#lx: recovery action for %s: %s\n",
851 		pfn, action_page_types[type], action_name[result]);
852 }
853 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)854 static int page_action(struct page_state *ps, struct page *p,
855 			unsigned long pfn)
856 {
857 	int result;
858 	int count;
859 
860 	result = ps->action(p, pfn);
861 
862 	count = page_count(p) - 1;
863 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
864 		count--;
865 	if (count != 0) {
866 		printk(KERN_ERR
867 		       "MCE %#lx: %s still referenced by %d users\n",
868 		       pfn, action_page_types[ps->type], count);
869 		result = MF_FAILED;
870 	}
871 	action_result(pfn, ps->type, result);
872 
873 	/* Could do more checks here if page looks ok */
874 	/*
875 	 * Could adjust zone counters here to correct for the missing page.
876 	 */
877 
878 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
879 }
880 
881 /**
882  * get_hwpoison_page() - Get refcount for memory error handling:
883  * @page:	raw error page (hit by memory error)
884  *
885  * Return: return 0 if failed to grab the refcount, otherwise true (some
886  * non-zero value.)
887  */
get_hwpoison_page(struct page * page)888 int get_hwpoison_page(struct page *page)
889 {
890 	struct page *head = compound_head(page);
891 
892 	if (PageHuge(head))
893 		return get_page_unless_zero(head);
894 
895 	/*
896 	 * Thp tail page has special refcounting rule (refcount of tail pages
897 	 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
898 	 * directly for tail pages.
899 	 */
900 	if (PageTransHuge(head)) {
901 		/*
902 		 * Non anonymous thp exists only in allocation/free time. We
903 		 * can't handle such a case correctly, so let's give it up.
904 		 * This should be better than triggering BUG_ON when kernel
905 		 * tries to touch the "partially handled" page.
906 		 */
907 		if (!PageAnon(head)) {
908 			pr_err("MCE: %#lx: non anonymous thp\n",
909 				page_to_pfn(page));
910 			return 0;
911 		}
912 
913 		if (get_page_unless_zero(head)) {
914 			if (PageTail(page))
915 				get_page(page);
916 			return 1;
917 		} else {
918 			return 0;
919 		}
920 	}
921 
922 	return get_page_unless_zero(page);
923 }
924 EXPORT_SYMBOL_GPL(get_hwpoison_page);
925 
926 /**
927  * put_hwpoison_page() - Put refcount for memory error handling:
928  * @page:	raw error page (hit by memory error)
929  */
put_hwpoison_page(struct page * page)930 void put_hwpoison_page(struct page *page)
931 {
932 	struct page *head = compound_head(page);
933 
934 	if (PageHuge(head)) {
935 		put_page(head);
936 		return;
937 	}
938 
939 	if (PageTransHuge(head))
940 		if (page != head)
941 			put_page(head);
942 
943 	put_page(page);
944 }
945 EXPORT_SYMBOL_GPL(put_hwpoison_page);
946 
947 /*
948  * Do all that is necessary to remove user space mappings. Unmap
949  * the pages and send SIGBUS to the processes if the data was dirty.
950  */
hwpoison_user_mappings(struct page * p,unsigned long pfn,int trapno,int flags,struct page ** hpagep)951 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
952 				  int trapno, int flags, struct page **hpagep)
953 {
954 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
955 	struct address_space *mapping;
956 	LIST_HEAD(tokill);
957 	int ret;
958 	int kill = 1, forcekill;
959 	struct page *hpage = *hpagep;
960 
961 	/*
962 	 * Here we are interested only in user-mapped pages, so skip any
963 	 * other types of pages.
964 	 */
965 	if (PageReserved(p) || PageSlab(p))
966 		return SWAP_SUCCESS;
967 	if (!(PageLRU(hpage) || PageHuge(p)))
968 		return SWAP_SUCCESS;
969 
970 	/*
971 	 * This check implies we don't kill processes if their pages
972 	 * are in the swap cache early. Those are always late kills.
973 	 */
974 	if (!page_mapped(hpage))
975 		return SWAP_SUCCESS;
976 
977 	if (PageKsm(p)) {
978 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
979 		return SWAP_FAIL;
980 	}
981 
982 	if (PageSwapCache(p)) {
983 		printk(KERN_ERR
984 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
985 		ttu |= TTU_IGNORE_HWPOISON;
986 	}
987 
988 	/*
989 	 * Propagate the dirty bit from PTEs to struct page first, because we
990 	 * need this to decide if we should kill or just drop the page.
991 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
992 	 * be called inside page lock (it's recommended but not enforced).
993 	 */
994 	mapping = page_mapping(hpage);
995 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
996 	    mapping_cap_writeback_dirty(mapping)) {
997 		if (page_mkclean(hpage)) {
998 			SetPageDirty(hpage);
999 		} else {
1000 			kill = 0;
1001 			ttu |= TTU_IGNORE_HWPOISON;
1002 			printk(KERN_INFO
1003 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
1004 				pfn);
1005 		}
1006 	}
1007 
1008 	/*
1009 	 * First collect all the processes that have the page
1010 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1011 	 * because ttu takes the rmap data structures down.
1012 	 *
1013 	 * Error handling: We ignore errors here because
1014 	 * there's nothing that can be done.
1015 	 */
1016 	if (kill)
1017 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1018 
1019 	ret = try_to_unmap(hpage, ttu);
1020 	if (ret != SWAP_SUCCESS)
1021 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1022 				pfn, page_mapcount(hpage));
1023 
1024 	/*
1025 	 * Now that the dirty bit has been propagated to the
1026 	 * struct page and all unmaps done we can decide if
1027 	 * killing is needed or not.  Only kill when the page
1028 	 * was dirty or the process is not restartable,
1029 	 * otherwise the tokill list is merely
1030 	 * freed.  When there was a problem unmapping earlier
1031 	 * use a more force-full uncatchable kill to prevent
1032 	 * any accesses to the poisoned memory.
1033 	 */
1034 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1035 	kill_procs(&tokill, forcekill, trapno,
1036 		      ret != SWAP_SUCCESS, p, pfn, flags);
1037 
1038 	return ret;
1039 }
1040 
set_page_hwpoison_huge_page(struct page * hpage)1041 static void set_page_hwpoison_huge_page(struct page *hpage)
1042 {
1043 	int i;
1044 	int nr_pages = 1 << compound_order(hpage);
1045 	for (i = 0; i < nr_pages; i++)
1046 		SetPageHWPoison(hpage + i);
1047 }
1048 
clear_page_hwpoison_huge_page(struct page * hpage)1049 static void clear_page_hwpoison_huge_page(struct page *hpage)
1050 {
1051 	int i;
1052 	int nr_pages = 1 << compound_order(hpage);
1053 	for (i = 0; i < nr_pages; i++)
1054 		ClearPageHWPoison(hpage + i);
1055 }
1056 
1057 /**
1058  * memory_failure - Handle memory failure of a page.
1059  * @pfn: Page Number of the corrupted page
1060  * @trapno: Trap number reported in the signal to user space.
1061  * @flags: fine tune action taken
1062  *
1063  * This function is called by the low level machine check code
1064  * of an architecture when it detects hardware memory corruption
1065  * of a page. It tries its best to recover, which includes
1066  * dropping pages, killing processes etc.
1067  *
1068  * The function is primarily of use for corruptions that
1069  * happen outside the current execution context (e.g. when
1070  * detected by a background scrubber)
1071  *
1072  * Must run in process context (e.g. a work queue) with interrupts
1073  * enabled and no spinlocks hold.
1074  */
memory_failure(unsigned long pfn,int trapno,int flags)1075 int memory_failure(unsigned long pfn, int trapno, int flags)
1076 {
1077 	struct page_state *ps;
1078 	struct page *p;
1079 	struct page *hpage;
1080 	struct page *orig_head;
1081 	int res;
1082 	unsigned int nr_pages;
1083 	unsigned long page_flags;
1084 
1085 	if (!sysctl_memory_failure_recovery)
1086 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1087 
1088 	if (!pfn_valid(pfn)) {
1089 		printk(KERN_ERR
1090 		       "MCE %#lx: memory outside kernel control\n",
1091 		       pfn);
1092 		return -ENXIO;
1093 	}
1094 
1095 	p = pfn_to_page(pfn);
1096 	orig_head = hpage = compound_head(p);
1097 	if (TestSetPageHWPoison(p)) {
1098 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1099 		return 0;
1100 	}
1101 
1102 	/*
1103 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1104 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1105 	 * transparent hugepages, they are supposed to be split and error
1106 	 * measurement is done in normal page units.  So nr_pages should be one
1107 	 * in this case.
1108 	 */
1109 	if (PageHuge(p))
1110 		nr_pages = 1 << compound_order(hpage);
1111 	else /* normal page or thp */
1112 		nr_pages = 1;
1113 	num_poisoned_pages_add(nr_pages);
1114 
1115 	/*
1116 	 * We need/can do nothing about count=0 pages.
1117 	 * 1) it's a free page, and therefore in safe hand:
1118 	 *    prep_new_page() will be the gate keeper.
1119 	 * 2) it's a free hugepage, which is also safe:
1120 	 *    an affected hugepage will be dequeued from hugepage freelist,
1121 	 *    so there's no concern about reusing it ever after.
1122 	 * 3) it's part of a non-compound high order page.
1123 	 *    Implies some kernel user: cannot stop them from
1124 	 *    R/W the page; let's pray that the page has been
1125 	 *    used and will be freed some time later.
1126 	 * In fact it's dangerous to directly bump up page count from 0,
1127 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1128 	 */
1129 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1130 		if (is_free_buddy_page(p)) {
1131 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1132 			return 0;
1133 		} else if (PageHuge(hpage)) {
1134 			/*
1135 			 * Check "filter hit" and "race with other subpage."
1136 			 */
1137 			lock_page(hpage);
1138 			if (PageHWPoison(hpage)) {
1139 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1140 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1141 					num_poisoned_pages_sub(nr_pages);
1142 					unlock_page(hpage);
1143 					return 0;
1144 				}
1145 			}
1146 			set_page_hwpoison_huge_page(hpage);
1147 			res = dequeue_hwpoisoned_huge_page(hpage);
1148 			action_result(pfn, MF_MSG_FREE_HUGE,
1149 				      res ? MF_IGNORED : MF_DELAYED);
1150 			unlock_page(hpage);
1151 			return res;
1152 		} else {
1153 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1154 			return -EBUSY;
1155 		}
1156 	}
1157 
1158 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1159 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1160 			if (!PageAnon(hpage))
1161 				pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1162 			else
1163 				pr_err("MCE: %#lx: thp split failed\n", pfn);
1164 			if (TestClearPageHWPoison(p))
1165 				num_poisoned_pages_sub(nr_pages);
1166 			put_hwpoison_page(p);
1167 			return -EBUSY;
1168 		}
1169 		VM_BUG_ON_PAGE(!page_count(p), p);
1170 		hpage = compound_head(p);
1171 	}
1172 
1173 	/*
1174 	 * We ignore non-LRU pages for good reasons.
1175 	 * - PG_locked is only well defined for LRU pages and a few others
1176 	 * - to avoid races with __set_page_locked()
1177 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1178 	 * The check (unnecessarily) ignores LRU pages being isolated and
1179 	 * walked by the page reclaim code, however that's not a big loss.
1180 	 */
1181 	if (!PageHuge(p)) {
1182 		if (!PageLRU(p))
1183 			shake_page(p, 0);
1184 		if (!PageLRU(p)) {
1185 			/*
1186 			 * shake_page could have turned it free.
1187 			 */
1188 			if (is_free_buddy_page(p)) {
1189 				if (flags & MF_COUNT_INCREASED)
1190 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1191 				else
1192 					action_result(pfn, MF_MSG_BUDDY_2ND,
1193 						      MF_DELAYED);
1194 				return 0;
1195 			}
1196 		}
1197 	}
1198 
1199 	lock_page(hpage);
1200 
1201 	/*
1202 	 * The page could have changed compound pages during the locking.
1203 	 * If this happens just bail out.
1204 	 */
1205 	if (PageCompound(p) && compound_head(p) != orig_head) {
1206 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1207 		res = -EBUSY;
1208 		goto out;
1209 	}
1210 
1211 	/*
1212 	 * We use page flags to determine what action should be taken, but
1213 	 * the flags can be modified by the error containment action.  One
1214 	 * example is an mlocked page, where PG_mlocked is cleared by
1215 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1216 	 * correctly, we save a copy of the page flags at this time.
1217 	 */
1218 	if (PageHuge(p))
1219 		page_flags = hpage->flags;
1220 	else
1221 		page_flags = p->flags;
1222 
1223 	/*
1224 	 * unpoison always clear PG_hwpoison inside page lock
1225 	 */
1226 	if (!PageHWPoison(p)) {
1227 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1228 		num_poisoned_pages_sub(nr_pages);
1229 		unlock_page(hpage);
1230 		put_hwpoison_page(hpage);
1231 		return 0;
1232 	}
1233 	if (hwpoison_filter(p)) {
1234 		if (TestClearPageHWPoison(p))
1235 			num_poisoned_pages_sub(nr_pages);
1236 		unlock_page(hpage);
1237 		put_hwpoison_page(hpage);
1238 		return 0;
1239 	}
1240 
1241 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1242 		goto identify_page_state;
1243 
1244 	/*
1245 	 * For error on the tail page, we should set PG_hwpoison
1246 	 * on the head page to show that the hugepage is hwpoisoned
1247 	 */
1248 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1249 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1250 		unlock_page(hpage);
1251 		put_hwpoison_page(hpage);
1252 		return 0;
1253 	}
1254 	/*
1255 	 * Set PG_hwpoison on all pages in an error hugepage,
1256 	 * because containment is done in hugepage unit for now.
1257 	 * Since we have done TestSetPageHWPoison() for the head page with
1258 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1259 	 */
1260 	if (PageHuge(p))
1261 		set_page_hwpoison_huge_page(hpage);
1262 
1263 	/*
1264 	 * It's very difficult to mess with pages currently under IO
1265 	 * and in many cases impossible, so we just avoid it here.
1266 	 */
1267 	wait_on_page_writeback(p);
1268 
1269 	/*
1270 	 * Now take care of user space mappings.
1271 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1272 	 *
1273 	 * When the raw error page is thp tail page, hpage points to the raw
1274 	 * page after thp split.
1275 	 */
1276 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1277 	    != SWAP_SUCCESS) {
1278 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1279 		res = -EBUSY;
1280 		goto out;
1281 	}
1282 
1283 	/*
1284 	 * Torn down by someone else?
1285 	 */
1286 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1287 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1288 		res = -EBUSY;
1289 		goto out;
1290 	}
1291 
1292 identify_page_state:
1293 	res = -EBUSY;
1294 	/*
1295 	 * The first check uses the current page flags which may not have any
1296 	 * relevant information. The second check with the saved page flagss is
1297 	 * carried out only if the first check can't determine the page status.
1298 	 */
1299 	for (ps = error_states;; ps++)
1300 		if ((p->flags & ps->mask) == ps->res)
1301 			break;
1302 
1303 	page_flags |= (p->flags & (1UL << PG_dirty));
1304 
1305 	if (!ps->mask)
1306 		for (ps = error_states;; ps++)
1307 			if ((page_flags & ps->mask) == ps->res)
1308 				break;
1309 	res = page_action(ps, p, pfn);
1310 out:
1311 	unlock_page(hpage);
1312 	return res;
1313 }
1314 EXPORT_SYMBOL_GPL(memory_failure);
1315 
1316 #define MEMORY_FAILURE_FIFO_ORDER	4
1317 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1318 
1319 struct memory_failure_entry {
1320 	unsigned long pfn;
1321 	int trapno;
1322 	int flags;
1323 };
1324 
1325 struct memory_failure_cpu {
1326 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1327 		      MEMORY_FAILURE_FIFO_SIZE);
1328 	spinlock_t lock;
1329 	struct work_struct work;
1330 };
1331 
1332 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1333 
1334 /**
1335  * memory_failure_queue - Schedule handling memory failure of a page.
1336  * @pfn: Page Number of the corrupted page
1337  * @trapno: Trap number reported in the signal to user space.
1338  * @flags: Flags for memory failure handling
1339  *
1340  * This function is called by the low level hardware error handler
1341  * when it detects hardware memory corruption of a page. It schedules
1342  * the recovering of error page, including dropping pages, killing
1343  * processes etc.
1344  *
1345  * The function is primarily of use for corruptions that
1346  * happen outside the current execution context (e.g. when
1347  * detected by a background scrubber)
1348  *
1349  * Can run in IRQ context.
1350  */
memory_failure_queue(unsigned long pfn,int trapno,int flags)1351 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1352 {
1353 	struct memory_failure_cpu *mf_cpu;
1354 	unsigned long proc_flags;
1355 	struct memory_failure_entry entry = {
1356 		.pfn =		pfn,
1357 		.trapno =	trapno,
1358 		.flags =	flags,
1359 	};
1360 
1361 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1362 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1363 	if (kfifo_put(&mf_cpu->fifo, entry))
1364 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1365 	else
1366 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1367 		       pfn);
1368 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1369 	put_cpu_var(memory_failure_cpu);
1370 }
1371 EXPORT_SYMBOL_GPL(memory_failure_queue);
1372 
memory_failure_work_func(struct work_struct * work)1373 static void memory_failure_work_func(struct work_struct *work)
1374 {
1375 	struct memory_failure_cpu *mf_cpu;
1376 	struct memory_failure_entry entry = { 0, };
1377 	unsigned long proc_flags;
1378 	int gotten;
1379 
1380 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1381 	for (;;) {
1382 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1383 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1384 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1385 		if (!gotten)
1386 			break;
1387 		if (entry.flags & MF_SOFT_OFFLINE)
1388 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1389 		else
1390 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1391 	}
1392 }
1393 
memory_failure_init(void)1394 static int __init memory_failure_init(void)
1395 {
1396 	struct memory_failure_cpu *mf_cpu;
1397 	int cpu;
1398 
1399 	for_each_possible_cpu(cpu) {
1400 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1401 		spin_lock_init(&mf_cpu->lock);
1402 		INIT_KFIFO(mf_cpu->fifo);
1403 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1404 	}
1405 
1406 	return 0;
1407 }
1408 core_initcall(memory_failure_init);
1409 
1410 #define unpoison_pr_info(fmt, pfn, rs)			\
1411 ({							\
1412 	if (__ratelimit(rs))				\
1413 		pr_info(fmt, pfn);			\
1414 })
1415 
1416 /**
1417  * unpoison_memory - Unpoison a previously poisoned page
1418  * @pfn: Page number of the to be unpoisoned page
1419  *
1420  * Software-unpoison a page that has been poisoned by
1421  * memory_failure() earlier.
1422  *
1423  * This is only done on the software-level, so it only works
1424  * for linux injected failures, not real hardware failures
1425  *
1426  * Returns 0 for success, otherwise -errno.
1427  */
unpoison_memory(unsigned long pfn)1428 int unpoison_memory(unsigned long pfn)
1429 {
1430 	struct page *page;
1431 	struct page *p;
1432 	int freeit = 0;
1433 	unsigned int nr_pages;
1434 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1435 					DEFAULT_RATELIMIT_BURST);
1436 
1437 	if (!pfn_valid(pfn))
1438 		return -ENXIO;
1439 
1440 	p = pfn_to_page(pfn);
1441 	page = compound_head(p);
1442 
1443 	if (!PageHWPoison(p)) {
1444 		unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1445 				 pfn, &unpoison_rs);
1446 		return 0;
1447 	}
1448 
1449 	if (page_count(page) > 1) {
1450 		unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1451 				 pfn, &unpoison_rs);
1452 		return 0;
1453 	}
1454 
1455 	if (page_mapped(page)) {
1456 		unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1457 				 pfn, &unpoison_rs);
1458 		return 0;
1459 	}
1460 
1461 	if (page_mapping(page)) {
1462 		unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1463 				 pfn, &unpoison_rs);
1464 		return 0;
1465 	}
1466 
1467 	/*
1468 	 * unpoison_memory() can encounter thp only when the thp is being
1469 	 * worked by memory_failure() and the page lock is not held yet.
1470 	 * In such case, we yield to memory_failure() and make unpoison fail.
1471 	 */
1472 	if (!PageHuge(page) && PageTransHuge(page)) {
1473 		unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1474 				 pfn, &unpoison_rs);
1475 		return 0;
1476 	}
1477 
1478 	nr_pages = 1 << compound_order(page);
1479 
1480 	if (!get_hwpoison_page(p)) {
1481 		/*
1482 		 * Since HWPoisoned hugepage should have non-zero refcount,
1483 		 * race between memory failure and unpoison seems to happen.
1484 		 * In such case unpoison fails and memory failure runs
1485 		 * to the end.
1486 		 */
1487 		if (PageHuge(page)) {
1488 			unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1489 					 pfn, &unpoison_rs);
1490 			return 0;
1491 		}
1492 		if (TestClearPageHWPoison(p))
1493 			num_poisoned_pages_dec();
1494 		unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1495 				 pfn, &unpoison_rs);
1496 		return 0;
1497 	}
1498 
1499 	lock_page(page);
1500 	/*
1501 	 * This test is racy because PG_hwpoison is set outside of page lock.
1502 	 * That's acceptable because that won't trigger kernel panic. Instead,
1503 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1504 	 * the free buddy page pool.
1505 	 */
1506 	if (TestClearPageHWPoison(page)) {
1507 		unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1508 				 pfn, &unpoison_rs);
1509 		num_poisoned_pages_sub(nr_pages);
1510 		freeit = 1;
1511 		if (PageHuge(page))
1512 			clear_page_hwpoison_huge_page(page);
1513 	}
1514 	unlock_page(page);
1515 
1516 	put_hwpoison_page(page);
1517 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1518 		put_hwpoison_page(page);
1519 
1520 	return 0;
1521 }
1522 EXPORT_SYMBOL(unpoison_memory);
1523 
new_page(struct page * p,unsigned long private,int ** x)1524 static struct page *new_page(struct page *p, unsigned long private, int **x)
1525 {
1526 	int nid = page_to_nid(p);
1527 	if (PageHuge(p))
1528 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1529 						   nid);
1530 	else
1531 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1532 }
1533 
1534 /*
1535  * Safely get reference count of an arbitrary page.
1536  * Returns 0 for a free page, -EIO for a zero refcount page
1537  * that is not free, and 1 for any other page type.
1538  * For 1 the page is returned with increased page count, otherwise not.
1539  */
__get_any_page(struct page * p,unsigned long pfn,int flags)1540 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1541 {
1542 	int ret;
1543 
1544 	if (flags & MF_COUNT_INCREASED)
1545 		return 1;
1546 
1547 	/*
1548 	 * When the target page is a free hugepage, just remove it
1549 	 * from free hugepage list.
1550 	 */
1551 	if (!get_hwpoison_page(p)) {
1552 		if (PageHuge(p)) {
1553 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1554 			ret = 0;
1555 		} else if (is_free_buddy_page(p)) {
1556 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1557 			ret = 0;
1558 		} else {
1559 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1560 				__func__, pfn, p->flags);
1561 			ret = -EIO;
1562 		}
1563 	} else {
1564 		/* Not a free page */
1565 		ret = 1;
1566 	}
1567 	return ret;
1568 }
1569 
get_any_page(struct page * page,unsigned long pfn,int flags)1570 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1571 {
1572 	int ret = __get_any_page(page, pfn, flags);
1573 
1574 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1575 		/*
1576 		 * Try to free it.
1577 		 */
1578 		put_hwpoison_page(page);
1579 		shake_page(page, 1);
1580 
1581 		/*
1582 		 * Did it turn free?
1583 		 */
1584 		ret = __get_any_page(page, pfn, 0);
1585 		if (ret == 1 && !PageLRU(page)) {
1586 			/* Drop page reference which is from __get_any_page() */
1587 			put_hwpoison_page(page);
1588 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1589 				pfn, page->flags);
1590 			return -EIO;
1591 		}
1592 	}
1593 	return ret;
1594 }
1595 
soft_offline_huge_page(struct page * page,int flags)1596 static int soft_offline_huge_page(struct page *page, int flags)
1597 {
1598 	int ret;
1599 	unsigned long pfn = page_to_pfn(page);
1600 	struct page *hpage = compound_head(page);
1601 	LIST_HEAD(pagelist);
1602 
1603 	/*
1604 	 * This double-check of PageHWPoison is to avoid the race with
1605 	 * memory_failure(). See also comment in __soft_offline_page().
1606 	 */
1607 	lock_page(hpage);
1608 	if (PageHWPoison(hpage)) {
1609 		unlock_page(hpage);
1610 		put_hwpoison_page(hpage);
1611 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1612 		return -EBUSY;
1613 	}
1614 	unlock_page(hpage);
1615 
1616 	ret = isolate_huge_page(hpage, &pagelist);
1617 	/*
1618 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1619 	 * so need to drop one here.
1620 	 */
1621 	put_hwpoison_page(hpage);
1622 	if (!ret) {
1623 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1624 		return -EBUSY;
1625 	}
1626 
1627 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1628 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1629 	if (ret) {
1630 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1631 			pfn, ret, page->flags);
1632 		if (!list_empty(&pagelist))
1633 			putback_movable_pages(&pagelist);
1634 		if (ret > 0)
1635 			ret = -EIO;
1636 	} else {
1637 		/* overcommit hugetlb page will be freed to buddy */
1638 		if (PageHuge(page)) {
1639 			set_page_hwpoison_huge_page(hpage);
1640 			dequeue_hwpoisoned_huge_page(hpage);
1641 			num_poisoned_pages_add(1 << compound_order(hpage));
1642 		} else {
1643 			SetPageHWPoison(page);
1644 			num_poisoned_pages_inc();
1645 		}
1646 	}
1647 	return ret;
1648 }
1649 
__soft_offline_page(struct page * page,int flags)1650 static int __soft_offline_page(struct page *page, int flags)
1651 {
1652 	int ret;
1653 	unsigned long pfn = page_to_pfn(page);
1654 
1655 	/*
1656 	 * Check PageHWPoison again inside page lock because PageHWPoison
1657 	 * is set by memory_failure() outside page lock. Note that
1658 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1659 	 * so there's no race between soft_offline_page() and memory_failure().
1660 	 */
1661 	lock_page(page);
1662 	wait_on_page_writeback(page);
1663 	if (PageHWPoison(page)) {
1664 		unlock_page(page);
1665 		put_hwpoison_page(page);
1666 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1667 		return -EBUSY;
1668 	}
1669 	/*
1670 	 * Try to invalidate first. This should work for
1671 	 * non dirty unmapped page cache pages.
1672 	 */
1673 	ret = invalidate_inode_page(page);
1674 	unlock_page(page);
1675 	/*
1676 	 * RED-PEN would be better to keep it isolated here, but we
1677 	 * would need to fix isolation locking first.
1678 	 */
1679 	if (ret == 1) {
1680 		put_hwpoison_page(page);
1681 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1682 		SetPageHWPoison(page);
1683 		num_poisoned_pages_inc();
1684 		return 0;
1685 	}
1686 
1687 	/*
1688 	 * Simple invalidation didn't work.
1689 	 * Try to migrate to a new page instead. migrate.c
1690 	 * handles a large number of cases for us.
1691 	 */
1692 	ret = isolate_lru_page(page);
1693 	/*
1694 	 * Drop page reference which is came from get_any_page()
1695 	 * successful isolate_lru_page() already took another one.
1696 	 */
1697 	put_hwpoison_page(page);
1698 	if (!ret) {
1699 		LIST_HEAD(pagelist);
1700 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1701 					page_is_file_cache(page));
1702 		list_add(&page->lru, &pagelist);
1703 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1704 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1705 		if (ret) {
1706 			if (!list_empty(&pagelist)) {
1707 				list_del(&page->lru);
1708 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1709 						page_is_file_cache(page));
1710 				putback_lru_page(page);
1711 			}
1712 
1713 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1714 				pfn, ret, page->flags);
1715 			if (ret > 0)
1716 				ret = -EIO;
1717 		}
1718 	} else {
1719 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1720 			pfn, ret, page_count(page), page->flags);
1721 	}
1722 	return ret;
1723 }
1724 
1725 /**
1726  * soft_offline_page - Soft offline a page.
1727  * @page: page to offline
1728  * @flags: flags. Same as memory_failure().
1729  *
1730  * Returns 0 on success, otherwise negated errno.
1731  *
1732  * Soft offline a page, by migration or invalidation,
1733  * without killing anything. This is for the case when
1734  * a page is not corrupted yet (so it's still valid to access),
1735  * but has had a number of corrected errors and is better taken
1736  * out.
1737  *
1738  * The actual policy on when to do that is maintained by
1739  * user space.
1740  *
1741  * This should never impact any application or cause data loss,
1742  * however it might take some time.
1743  *
1744  * This is not a 100% solution for all memory, but tries to be
1745  * ``good enough'' for the majority of memory.
1746  */
soft_offline_page(struct page * page,int flags)1747 int soft_offline_page(struct page *page, int flags)
1748 {
1749 	int ret;
1750 	unsigned long pfn = page_to_pfn(page);
1751 	struct page *hpage = compound_head(page);
1752 
1753 	if (PageHWPoison(page)) {
1754 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1755 		if (flags & MF_COUNT_INCREASED)
1756 			put_hwpoison_page(page);
1757 		return -EBUSY;
1758 	}
1759 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1760 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1761 			pr_info("soft offline: %#lx: failed to split THP\n",
1762 				pfn);
1763 			if (flags & MF_COUNT_INCREASED)
1764 				put_hwpoison_page(page);
1765 			return -EBUSY;
1766 		}
1767 	}
1768 
1769 	get_online_mems();
1770 
1771 	ret = get_any_page(page, pfn, flags);
1772 	put_online_mems();
1773 	if (ret > 0) { /* for in-use pages */
1774 		if (PageHuge(page))
1775 			ret = soft_offline_huge_page(page, flags);
1776 		else
1777 			ret = __soft_offline_page(page, flags);
1778 	} else if (ret == 0) { /* for free pages */
1779 		if (PageHuge(page)) {
1780 			set_page_hwpoison_huge_page(hpage);
1781 			if (!dequeue_hwpoisoned_huge_page(hpage))
1782 				num_poisoned_pages_add(1 << compound_order(hpage));
1783 		} else {
1784 			if (!TestSetPageHWPoison(page))
1785 				num_poisoned_pages_inc();
1786 		}
1787 	}
1788 	return ret;
1789 }
1790