• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned = {
43 	.seq = SEQCNT_ZERO(tk_core.seq),
44 };
45 
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48 
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:	Sequence counter for protecting updates. The lowest bit
52  *		is the index for the tk_read_base array
53  * @base:	tk_read_base array. Access is indexed by the lowest bit of
54  *		@seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59 	seqcount_t		seq;
60 	struct tk_read_base	base[2];
61 };
62 
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65 
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68 
tk_normalize_xtime(struct timekeeper * tk)69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 		tk->xtime_sec++;
74 	}
75 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
76 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
77 		tk->raw_sec++;
78 	}
79 }
80 
tk_xtime(struct timekeeper * tk)81 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
82 {
83 	struct timespec64 ts;
84 
85 	ts.tv_sec = tk->xtime_sec;
86 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
87 	return ts;
88 }
89 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)90 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec = ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 }
95 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)96 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
97 {
98 	tk->xtime_sec += ts->tv_sec;
99 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
100 	tk_normalize_xtime(tk);
101 }
102 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)103 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
104 {
105 	struct timespec64 tmp;
106 
107 	/*
108 	 * Verify consistency of: offset_real = -wall_to_monotonic
109 	 * before modifying anything
110 	 */
111 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
112 					-tk->wall_to_monotonic.tv_nsec);
113 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
114 	tk->wall_to_monotonic = wtm;
115 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
116 	tk->offs_real = timespec64_to_ktime(tmp);
117 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
118 }
119 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)120 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
121 {
122 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
123 }
124 
125 /*
126  * tk_clock_read - atomic clocksource read() helper
127  *
128  * This helper is necessary to use in the read paths because, while the
129  * seqlock ensures we don't return a bad value while structures are updated,
130  * it doesn't protect from potential crashes. There is the possibility that
131  * the tkr's clocksource may change between the read reference, and the
132  * clock reference passed to the read function.  This can cause crashes if
133  * the wrong clocksource is passed to the wrong read function.
134  * This isn't necessary to use when holding the timekeeper_lock or doing
135  * a read of the fast-timekeeper tkrs (which is protected by its own locking
136  * and update logic).
137  */
tk_clock_read(struct tk_read_base * tkr)138 static inline u64 tk_clock_read(struct tk_read_base *tkr)
139 {
140 	struct clocksource *clock = READ_ONCE(tkr->clock);
141 
142 	return clock->read(clock);
143 }
144 
145 #ifdef CONFIG_DEBUG_TIMEKEEPING
146 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
147 
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)148 static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
149 {
150 
151 	cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
152 	const char *name = tk->tkr_mono.clock->name;
153 
154 	if (offset > max_cycles) {
155 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
156 				offset, name, max_cycles);
157 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
158 	} else {
159 		if (offset > (max_cycles >> 1)) {
160 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
161 					offset, name, max_cycles >> 1);
162 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
163 		}
164 	}
165 
166 	if (tk->underflow_seen) {
167 		if (jiffies - tk->last_warning > WARNING_FREQ) {
168 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
169 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
170 			printk_deferred("         Your kernel is probably still fine.\n");
171 			tk->last_warning = jiffies;
172 		}
173 		tk->underflow_seen = 0;
174 	}
175 
176 	if (tk->overflow_seen) {
177 		if (jiffies - tk->last_warning > WARNING_FREQ) {
178 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
179 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
180 			printk_deferred("         Your kernel is probably still fine.\n");
181 			tk->last_warning = jiffies;
182 		}
183 		tk->overflow_seen = 0;
184 	}
185 }
186 
timekeeping_get_delta(struct tk_read_base * tkr)187 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
188 {
189 	struct timekeeper *tk = &tk_core.timekeeper;
190 	cycle_t now, last, mask, max, delta;
191 	unsigned int seq;
192 
193 	/*
194 	 * Since we're called holding a seqlock, the data may shift
195 	 * under us while we're doing the calculation. This can cause
196 	 * false positives, since we'd note a problem but throw the
197 	 * results away. So nest another seqlock here to atomically
198 	 * grab the points we are checking with.
199 	 */
200 	do {
201 		seq = read_seqcount_begin(&tk_core.seq);
202 		now = tk_clock_read(tkr);
203 		last = tkr->cycle_last;
204 		mask = tkr->mask;
205 		max = tkr->clock->max_cycles;
206 	} while (read_seqcount_retry(&tk_core.seq, seq));
207 
208 	delta = clocksource_delta(now, last, mask);
209 
210 	/*
211 	 * Try to catch underflows by checking if we are seeing small
212 	 * mask-relative negative values.
213 	 */
214 	if (unlikely((~delta & mask) < (mask >> 3))) {
215 		tk->underflow_seen = 1;
216 		delta = 0;
217 	}
218 
219 	/* Cap delta value to the max_cycles values to avoid mult overflows */
220 	if (unlikely(delta > max)) {
221 		tk->overflow_seen = 1;
222 		delta = tkr->clock->max_cycles;
223 	}
224 
225 	return delta;
226 }
227 #else
timekeeping_check_update(struct timekeeper * tk,cycle_t offset)228 static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
229 {
230 }
timekeeping_get_delta(struct tk_read_base * tkr)231 static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
232 {
233 	cycle_t cycle_now, delta;
234 
235 	/* read clocksource */
236 	cycle_now = tk_clock_read(tkr);
237 
238 	/* calculate the delta since the last update_wall_time */
239 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
240 
241 	return delta;
242 }
243 #endif
244 
245 /**
246  * tk_setup_internals - Set up internals to use clocksource clock.
247  *
248  * @tk:		The target timekeeper to setup.
249  * @clock:		Pointer to clocksource.
250  *
251  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
252  * pair and interval request.
253  *
254  * Unless you're the timekeeping code, you should not be using this!
255  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)256 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
257 {
258 	cycle_t interval;
259 	u64 tmp, ntpinterval;
260 	struct clocksource *old_clock;
261 
262 	old_clock = tk->tkr_mono.clock;
263 	tk->tkr_mono.clock = clock;
264 	tk->tkr_mono.mask = clock->mask;
265 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
266 
267 	tk->tkr_raw.clock = clock;
268 	tk->tkr_raw.mask = clock->mask;
269 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
270 
271 	/* Do the ns -> cycle conversion first, using original mult */
272 	tmp = NTP_INTERVAL_LENGTH;
273 	tmp <<= clock->shift;
274 	ntpinterval = tmp;
275 	tmp += clock->mult/2;
276 	do_div(tmp, clock->mult);
277 	if (tmp == 0)
278 		tmp = 1;
279 
280 	interval = (cycle_t) tmp;
281 	tk->cycle_interval = interval;
282 
283 	/* Go back from cycles -> shifted ns */
284 	tk->xtime_interval = (u64) interval * clock->mult;
285 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
286 	tk->raw_interval = interval * clock->mult;
287 
288 	 /* if changing clocks, convert xtime_nsec shift units */
289 	if (old_clock) {
290 		int shift_change = clock->shift - old_clock->shift;
291 		if (shift_change < 0) {
292 			tk->tkr_mono.xtime_nsec >>= -shift_change;
293 			tk->tkr_raw.xtime_nsec >>= -shift_change;
294 		} else {
295 			tk->tkr_mono.xtime_nsec <<= shift_change;
296 			tk->tkr_raw.xtime_nsec <<= shift_change;
297 		}
298 	}
299 
300 	tk->tkr_mono.shift = clock->shift;
301 	tk->tkr_raw.shift = clock->shift;
302 
303 	tk->ntp_error = 0;
304 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
305 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
306 
307 	/*
308 	 * The timekeeper keeps its own mult values for the currently
309 	 * active clocksource. These value will be adjusted via NTP
310 	 * to counteract clock drifting.
311 	 */
312 	tk->tkr_mono.mult = clock->mult;
313 	tk->tkr_raw.mult = clock->mult;
314 	tk->ntp_err_mult = 0;
315 }
316 
317 /* Timekeeper helper functions. */
318 
319 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)320 static u32 default_arch_gettimeoffset(void) { return 0; }
321 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
322 #else
arch_gettimeoffset(void)323 static inline u32 arch_gettimeoffset(void) { return 0; }
324 #endif
325 
timekeeping_delta_to_ns(struct tk_read_base * tkr,cycle_t delta)326 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
327 					  cycle_t delta)
328 {
329 	u64 nsec;
330 
331 	nsec = delta * tkr->mult + tkr->xtime_nsec;
332 	nsec >>= tkr->shift;
333 
334 	/* If arch requires, add in get_arch_timeoffset() */
335 	return nsec + arch_gettimeoffset();
336 }
337 
timekeeping_get_ns(struct tk_read_base * tkr)338 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
339 {
340 	cycle_t delta;
341 
342 	delta = timekeeping_get_delta(tkr);
343 	return timekeeping_delta_to_ns(tkr, delta);
344 }
345 
timekeeping_cycles_to_ns(struct tk_read_base * tkr,cycle_t cycles)346 static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
347 					    cycle_t cycles)
348 {
349 	cycle_t delta;
350 
351 	/* calculate the delta since the last update_wall_time */
352 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
353 	return timekeeping_delta_to_ns(tkr, delta);
354 }
355 
356 /**
357  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
358  * @tkr: Timekeeping readout base from which we take the update
359  *
360  * We want to use this from any context including NMI and tracing /
361  * instrumenting the timekeeping code itself.
362  *
363  * Employ the latch technique; see @raw_write_seqcount_latch.
364  *
365  * So if a NMI hits the update of base[0] then it will use base[1]
366  * which is still consistent. In the worst case this can result is a
367  * slightly wrong timestamp (a few nanoseconds). See
368  * @ktime_get_mono_fast_ns.
369  */
update_fast_timekeeper(struct tk_read_base * tkr,struct tk_fast * tkf)370 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
371 {
372 	struct tk_read_base *base = tkf->base;
373 
374 	/* Force readers off to base[1] */
375 	raw_write_seqcount_latch(&tkf->seq);
376 
377 	/* Update base[0] */
378 	memcpy(base, tkr, sizeof(*base));
379 
380 	/* Force readers back to base[0] */
381 	raw_write_seqcount_latch(&tkf->seq);
382 
383 	/* Update base[1] */
384 	memcpy(base + 1, base, sizeof(*base));
385 }
386 
387 /**
388  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
389  *
390  * This timestamp is not guaranteed to be monotonic across an update.
391  * The timestamp is calculated by:
392  *
393  *	now = base_mono + clock_delta * slope
394  *
395  * So if the update lowers the slope, readers who are forced to the
396  * not yet updated second array are still using the old steeper slope.
397  *
398  * tmono
399  * ^
400  * |    o  n
401  * |   o n
402  * |  u
403  * | o
404  * |o
405  * |12345678---> reader order
406  *
407  * o = old slope
408  * u = update
409  * n = new slope
410  *
411  * So reader 6 will observe time going backwards versus reader 5.
412  *
413  * While other CPUs are likely to be able observe that, the only way
414  * for a CPU local observation is when an NMI hits in the middle of
415  * the update. Timestamps taken from that NMI context might be ahead
416  * of the following timestamps. Callers need to be aware of that and
417  * deal with it.
418  */
__ktime_get_fast_ns(struct tk_fast * tkf)419 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
420 {
421 	struct tk_read_base *tkr;
422 	unsigned int seq;
423 	u64 now;
424 
425 	do {
426 		seq = raw_read_seqcount_latch(&tkf->seq);
427 		tkr = tkf->base + (seq & 0x01);
428 		now = ktime_to_ns(tkr->base);
429 
430 		now += timekeeping_delta_to_ns(tkr,
431 				clocksource_delta(
432 					tk_clock_read(tkr),
433 					tkr->cycle_last,
434 					tkr->mask));
435 	} while (read_seqcount_retry(&tkf->seq, seq));
436 
437 	return now;
438 }
439 
ktime_get_mono_fast_ns(void)440 u64 ktime_get_mono_fast_ns(void)
441 {
442 	return __ktime_get_fast_ns(&tk_fast_mono);
443 }
444 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
445 
ktime_get_raw_fast_ns(void)446 u64 ktime_get_raw_fast_ns(void)
447 {
448 	return __ktime_get_fast_ns(&tk_fast_raw);
449 }
450 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
451 
452 /**
453  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
454  *
455  * To keep it NMI safe since we're accessing from tracing, we're not using a
456  * separate timekeeper with updates to monotonic clock and boot offset
457  * protected with seqlocks. This has the following minor side effects:
458  *
459  * (1) Its possible that a timestamp be taken after the boot offset is updated
460  * but before the timekeeper is updated. If this happens, the new boot offset
461  * is added to the old timekeeping making the clock appear to update slightly
462  * earlier:
463  *    CPU 0                                        CPU 1
464  *    timekeeping_inject_sleeptime64()
465  *    __timekeeping_inject_sleeptime(tk, delta);
466  *                                                 timestamp();
467  *    timekeeping_update(tk, TK_CLEAR_NTP...);
468  *
469  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
470  * partially updated.  Since the tk->offs_boot update is a rare event, this
471  * should be a rare occurrence which postprocessing should be able to handle.
472  */
ktime_get_boot_fast_ns(void)473 u64 notrace ktime_get_boot_fast_ns(void)
474 {
475 	struct timekeeper *tk = &tk_core.timekeeper;
476 
477 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
478 }
479 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
480 
481 /* Suspend-time cycles value for halted fast timekeeper. */
482 static cycle_t cycles_at_suspend;
483 
dummy_clock_read(struct clocksource * cs)484 static cycle_t dummy_clock_read(struct clocksource *cs)
485 {
486 	return cycles_at_suspend;
487 }
488 
489 static struct clocksource dummy_clock = {
490 	.read = dummy_clock_read,
491 };
492 
493 /**
494  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
495  * @tk: Timekeeper to snapshot.
496  *
497  * It generally is unsafe to access the clocksource after timekeeping has been
498  * suspended, so take a snapshot of the readout base of @tk and use it as the
499  * fast timekeeper's readout base while suspended.  It will return the same
500  * number of cycles every time until timekeeping is resumed at which time the
501  * proper readout base for the fast timekeeper will be restored automatically.
502  */
halt_fast_timekeeper(struct timekeeper * tk)503 static void halt_fast_timekeeper(struct timekeeper *tk)
504 {
505 	static struct tk_read_base tkr_dummy;
506 	struct tk_read_base *tkr = &tk->tkr_mono;
507 
508 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
509 	cycles_at_suspend = tk_clock_read(tkr);
510 	tkr_dummy.clock = &dummy_clock;
511 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
512 
513 	tkr = &tk->tkr_raw;
514 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
515 	tkr_dummy.clock = &dummy_clock;
516 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
517 }
518 
519 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
520 
update_vsyscall(struct timekeeper * tk)521 static inline void update_vsyscall(struct timekeeper *tk)
522 {
523 	struct timespec xt, wm;
524 
525 	xt = timespec64_to_timespec(tk_xtime(tk));
526 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
527 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
528 			    tk->tkr_mono.cycle_last);
529 }
530 
old_vsyscall_fixup(struct timekeeper * tk)531 static inline void old_vsyscall_fixup(struct timekeeper *tk)
532 {
533 	s64 remainder;
534 
535 	/*
536 	* Store only full nanoseconds into xtime_nsec after rounding
537 	* it up and add the remainder to the error difference.
538 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
539 	* by truncating the remainder in vsyscalls. However, it causes
540 	* additional work to be done in timekeeping_adjust(). Once
541 	* the vsyscall implementations are converted to use xtime_nsec
542 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
543 	* users are removed, this can be killed.
544 	*/
545 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
546 	tk->tkr_mono.xtime_nsec -= remainder;
547 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
548 	tk->ntp_error += remainder << tk->ntp_error_shift;
549 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
550 }
551 #else
552 #define old_vsyscall_fixup(tk)
553 #endif
554 
555 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
556 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)557 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
558 {
559 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
560 }
561 
562 /**
563  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
564  */
pvclock_gtod_register_notifier(struct notifier_block * nb)565 int pvclock_gtod_register_notifier(struct notifier_block *nb)
566 {
567 	struct timekeeper *tk = &tk_core.timekeeper;
568 	unsigned long flags;
569 	int ret;
570 
571 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
572 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
573 	update_pvclock_gtod(tk, true);
574 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
575 
576 	return ret;
577 }
578 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
579 
580 /**
581  * pvclock_gtod_unregister_notifier - unregister a pvclock
582  * timedata update listener
583  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)584 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
585 {
586 	unsigned long flags;
587 	int ret;
588 
589 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
590 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
591 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
592 
593 	return ret;
594 }
595 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
596 
597 /*
598  * tk_update_leap_state - helper to update the next_leap_ktime
599  */
tk_update_leap_state(struct timekeeper * tk)600 static inline void tk_update_leap_state(struct timekeeper *tk)
601 {
602 	tk->next_leap_ktime = ntp_get_next_leap();
603 	if (tk->next_leap_ktime.tv64 != KTIME_MAX)
604 		/* Convert to monotonic time */
605 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
606 }
607 
608 /*
609  * Update the ktime_t based scalar nsec members of the timekeeper
610  */
tk_update_ktime_data(struct timekeeper * tk)611 static inline void tk_update_ktime_data(struct timekeeper *tk)
612 {
613 	u64 seconds;
614 	u32 nsec;
615 
616 	/*
617 	 * The xtime based monotonic readout is:
618 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
619 	 * The ktime based monotonic readout is:
620 	 *	nsec = base_mono + now();
621 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
622 	 */
623 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
624 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
625 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
626 
627 	/*
628 	 * The sum of the nanoseconds portions of xtime and
629 	 * wall_to_monotonic can be greater/equal one second. Take
630 	 * this into account before updating tk->ktime_sec.
631 	 */
632 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
633 	if (nsec >= NSEC_PER_SEC)
634 		seconds++;
635 	tk->ktime_sec = seconds;
636 
637 	/* Update the monotonic raw base */
638 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
639 }
640 
641 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)642 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
643 {
644 	if (action & TK_CLEAR_NTP) {
645 		tk->ntp_error = 0;
646 		ntp_clear();
647 	}
648 
649 	tk_update_leap_state(tk);
650 	tk_update_ktime_data(tk);
651 
652 	update_vsyscall(tk);
653 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
654 
655 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
656 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
657 
658 	if (action & TK_CLOCK_WAS_SET)
659 		tk->clock_was_set_seq++;
660 	/*
661 	 * The mirroring of the data to the shadow-timekeeper needs
662 	 * to happen last here to ensure we don't over-write the
663 	 * timekeeper structure on the next update with stale data
664 	 */
665 	if (action & TK_MIRROR)
666 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
667 		       sizeof(tk_core.timekeeper));
668 }
669 
670 /**
671  * timekeeping_forward_now - update clock to the current time
672  *
673  * Forward the current clock to update its state since the last call to
674  * update_wall_time(). This is useful before significant clock changes,
675  * as it avoids having to deal with this time offset explicitly.
676  */
timekeeping_forward_now(struct timekeeper * tk)677 static void timekeeping_forward_now(struct timekeeper *tk)
678 {
679 	cycle_t cycle_now, delta;
680 
681 	cycle_now = tk_clock_read(&tk->tkr_mono);
682 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
683 	tk->tkr_mono.cycle_last = cycle_now;
684 	tk->tkr_raw.cycle_last  = cycle_now;
685 
686 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
687 
688 	/* If arch requires, add in get_arch_timeoffset() */
689 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
690 
691 
692 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
693 
694 	/* If arch requires, add in get_arch_timeoffset() */
695 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
696 
697 	tk_normalize_xtime(tk);
698 }
699 
700 /**
701  * __getnstimeofday64 - Returns the time of day in a timespec64.
702  * @ts:		pointer to the timespec to be set
703  *
704  * Updates the time of day in the timespec.
705  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
706  */
__getnstimeofday64(struct timespec64 * ts)707 int __getnstimeofday64(struct timespec64 *ts)
708 {
709 	struct timekeeper *tk = &tk_core.timekeeper;
710 	unsigned long seq;
711 	s64 nsecs = 0;
712 
713 	do {
714 		seq = read_seqcount_begin(&tk_core.seq);
715 
716 		ts->tv_sec = tk->xtime_sec;
717 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
718 
719 	} while (read_seqcount_retry(&tk_core.seq, seq));
720 
721 	ts->tv_nsec = 0;
722 	timespec64_add_ns(ts, nsecs);
723 
724 	/*
725 	 * Do not bail out early, in case there were callers still using
726 	 * the value, even in the face of the WARN_ON.
727 	 */
728 	if (unlikely(timekeeping_suspended))
729 		return -EAGAIN;
730 	return 0;
731 }
732 EXPORT_SYMBOL(__getnstimeofday64);
733 
734 /**
735  * getnstimeofday64 - Returns the time of day in a timespec64.
736  * @ts:		pointer to the timespec64 to be set
737  *
738  * Returns the time of day in a timespec64 (WARN if suspended).
739  */
getnstimeofday64(struct timespec64 * ts)740 void getnstimeofday64(struct timespec64 *ts)
741 {
742 	WARN_ON(__getnstimeofday64(ts));
743 }
744 EXPORT_SYMBOL(getnstimeofday64);
745 
ktime_get(void)746 ktime_t ktime_get(void)
747 {
748 	struct timekeeper *tk = &tk_core.timekeeper;
749 	unsigned int seq;
750 	ktime_t base;
751 	s64 nsecs;
752 
753 	WARN_ON(timekeeping_suspended);
754 
755 	do {
756 		seq = read_seqcount_begin(&tk_core.seq);
757 		base = tk->tkr_mono.base;
758 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
759 
760 	} while (read_seqcount_retry(&tk_core.seq, seq));
761 
762 	return ktime_add_ns(base, nsecs);
763 }
764 EXPORT_SYMBOL_GPL(ktime_get);
765 
ktime_get_resolution_ns(void)766 u32 ktime_get_resolution_ns(void)
767 {
768 	struct timekeeper *tk = &tk_core.timekeeper;
769 	unsigned int seq;
770 	u32 nsecs;
771 
772 	WARN_ON(timekeeping_suspended);
773 
774 	do {
775 		seq = read_seqcount_begin(&tk_core.seq);
776 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
777 	} while (read_seqcount_retry(&tk_core.seq, seq));
778 
779 	return nsecs;
780 }
781 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
782 
783 static ktime_t *offsets[TK_OFFS_MAX] = {
784 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
785 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
786 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
787 };
788 
ktime_get_with_offset(enum tk_offsets offs)789 ktime_t ktime_get_with_offset(enum tk_offsets offs)
790 {
791 	struct timekeeper *tk = &tk_core.timekeeper;
792 	unsigned int seq;
793 	ktime_t base, *offset = offsets[offs];
794 	s64 nsecs;
795 
796 	WARN_ON(timekeeping_suspended);
797 
798 	do {
799 		seq = read_seqcount_begin(&tk_core.seq);
800 		base = ktime_add(tk->tkr_mono.base, *offset);
801 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
802 
803 	} while (read_seqcount_retry(&tk_core.seq, seq));
804 
805 	return ktime_add_ns(base, nsecs);
806 
807 }
808 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
809 
810 /**
811  * ktime_mono_to_any() - convert mononotic time to any other time
812  * @tmono:	time to convert.
813  * @offs:	which offset to use
814  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)815 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
816 {
817 	ktime_t *offset = offsets[offs];
818 	unsigned long seq;
819 	ktime_t tconv;
820 
821 	do {
822 		seq = read_seqcount_begin(&tk_core.seq);
823 		tconv = ktime_add(tmono, *offset);
824 	} while (read_seqcount_retry(&tk_core.seq, seq));
825 
826 	return tconv;
827 }
828 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
829 
830 /**
831  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
832  */
ktime_get_raw(void)833 ktime_t ktime_get_raw(void)
834 {
835 	struct timekeeper *tk = &tk_core.timekeeper;
836 	unsigned int seq;
837 	ktime_t base;
838 	s64 nsecs;
839 
840 	do {
841 		seq = read_seqcount_begin(&tk_core.seq);
842 		base = tk->tkr_raw.base;
843 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
844 
845 	} while (read_seqcount_retry(&tk_core.seq, seq));
846 
847 	return ktime_add_ns(base, nsecs);
848 }
849 EXPORT_SYMBOL_GPL(ktime_get_raw);
850 
851 /**
852  * ktime_get_ts64 - get the monotonic clock in timespec64 format
853  * @ts:		pointer to timespec variable
854  *
855  * The function calculates the monotonic clock from the realtime
856  * clock and the wall_to_monotonic offset and stores the result
857  * in normalized timespec64 format in the variable pointed to by @ts.
858  */
ktime_get_ts64(struct timespec64 * ts)859 void ktime_get_ts64(struct timespec64 *ts)
860 {
861 	struct timekeeper *tk = &tk_core.timekeeper;
862 	struct timespec64 tomono;
863 	s64 nsec;
864 	unsigned int seq;
865 
866 	WARN_ON(timekeeping_suspended);
867 
868 	do {
869 		seq = read_seqcount_begin(&tk_core.seq);
870 		ts->tv_sec = tk->xtime_sec;
871 		nsec = timekeeping_get_ns(&tk->tkr_mono);
872 		tomono = tk->wall_to_monotonic;
873 
874 	} while (read_seqcount_retry(&tk_core.seq, seq));
875 
876 	ts->tv_sec += tomono.tv_sec;
877 	ts->tv_nsec = 0;
878 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
879 }
880 EXPORT_SYMBOL_GPL(ktime_get_ts64);
881 
882 /**
883  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
884  *
885  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
886  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
887  * works on both 32 and 64 bit systems. On 32 bit systems the readout
888  * covers ~136 years of uptime which should be enough to prevent
889  * premature wrap arounds.
890  */
ktime_get_seconds(void)891 time64_t ktime_get_seconds(void)
892 {
893 	struct timekeeper *tk = &tk_core.timekeeper;
894 
895 	WARN_ON(timekeeping_suspended);
896 	return tk->ktime_sec;
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_seconds);
899 
900 /**
901  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
902  *
903  * Returns the wall clock seconds since 1970. This replaces the
904  * get_seconds() interface which is not y2038 safe on 32bit systems.
905  *
906  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
907  * 32bit systems the access must be protected with the sequence
908  * counter to provide "atomic" access to the 64bit tk->xtime_sec
909  * value.
910  */
ktime_get_real_seconds(void)911 time64_t ktime_get_real_seconds(void)
912 {
913 	struct timekeeper *tk = &tk_core.timekeeper;
914 	time64_t seconds;
915 	unsigned int seq;
916 
917 	if (IS_ENABLED(CONFIG_64BIT))
918 		return tk->xtime_sec;
919 
920 	do {
921 		seq = read_seqcount_begin(&tk_core.seq);
922 		seconds = tk->xtime_sec;
923 
924 	} while (read_seqcount_retry(&tk_core.seq, seq));
925 
926 	return seconds;
927 }
928 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
929 
930 #ifdef CONFIG_NTP_PPS
931 
932 /**
933  * ktime_get_raw_and_real_ts64 - get day and raw monotonic time in timespec format
934  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
935  * @ts_real:	pointer to the timespec to be set to the time of day
936  *
937  * This function reads both the time of day and raw monotonic time at the
938  * same time atomically and stores the resulting timestamps in timespec
939  * format.
940  */
ktime_get_raw_and_real_ts64(struct timespec64 * ts_raw,struct timespec64 * ts_real)941 void ktime_get_raw_and_real_ts64(struct timespec64 *ts_raw, struct timespec64 *ts_real)
942 {
943 	struct timekeeper *tk = &tk_core.timekeeper;
944 	unsigned long seq;
945 	s64 nsecs_raw, nsecs_real;
946 
947 	WARN_ON_ONCE(timekeeping_suspended);
948 
949 	do {
950 		seq = read_seqcount_begin(&tk_core.seq);
951 
952 		*ts_raw = tk->raw_time;
953 		ts_real->tv_sec = tk->xtime_sec;
954 		ts_real->tv_nsec = 0;
955 
956 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
957 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
958 
959 	} while (read_seqcount_retry(&tk_core.seq, seq));
960 
961 	timespec64_add_ns(ts_raw, nsecs_raw);
962 	timespec64_add_ns(ts_real, nsecs_real);
963 }
964 EXPORT_SYMBOL(ktime_get_raw_and_real_ts64);
965 
966 #endif /* CONFIG_NTP_PPS */
967 
968 /**
969  * do_gettimeofday - Returns the time of day in a timeval
970  * @tv:		pointer to the timeval to be set
971  *
972  * NOTE: Users should be converted to using getnstimeofday()
973  */
do_gettimeofday(struct timeval * tv)974 void do_gettimeofday(struct timeval *tv)
975 {
976 	struct timespec64 now;
977 
978 	getnstimeofday64(&now);
979 	tv->tv_sec = now.tv_sec;
980 	tv->tv_usec = now.tv_nsec/1000;
981 }
982 EXPORT_SYMBOL(do_gettimeofday);
983 
984 /**
985  * do_settimeofday64 - Sets the time of day.
986  * @ts:     pointer to the timespec64 variable containing the new time
987  *
988  * Sets the time of day to the new time and update NTP and notify hrtimers
989  */
do_settimeofday64(const struct timespec64 * ts)990 int do_settimeofday64(const struct timespec64 *ts)
991 {
992 	struct timekeeper *tk = &tk_core.timekeeper;
993 	struct timespec64 ts_delta, xt;
994 	unsigned long flags;
995 	int ret = 0;
996 
997 	if (!timespec64_valid_strict(ts))
998 		return -EINVAL;
999 
1000 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1001 	write_seqcount_begin(&tk_core.seq);
1002 
1003 	timekeeping_forward_now(tk);
1004 
1005 	xt = tk_xtime(tk);
1006 	ts_delta = timespec64_sub(*ts, xt);
1007 
1008 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1009 		ret = -EINVAL;
1010 		goto out;
1011 	}
1012 
1013 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1014 
1015 	tk_set_xtime(tk, ts);
1016 out:
1017 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1018 
1019 	write_seqcount_end(&tk_core.seq);
1020 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1021 
1022 	/* signal hrtimers about time change */
1023 	clock_was_set();
1024 
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(do_settimeofday64);
1028 
1029 /**
1030  * timekeeping_inject_offset - Adds or subtracts from the current time.
1031  * @tv:		pointer to the timespec variable containing the offset
1032  *
1033  * Adds or subtracts an offset value from the current time.
1034  */
timekeeping_inject_offset(struct timespec * ts)1035 int timekeeping_inject_offset(struct timespec *ts)
1036 {
1037 	struct timekeeper *tk = &tk_core.timekeeper;
1038 	unsigned long flags;
1039 	struct timespec64 ts64, tmp;
1040 	int ret = 0;
1041 
1042 	if (!timespec_inject_offset_valid(ts))
1043 		return -EINVAL;
1044 
1045 	ts64 = timespec_to_timespec64(*ts);
1046 
1047 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1048 	write_seqcount_begin(&tk_core.seq);
1049 
1050 	timekeeping_forward_now(tk);
1051 
1052 	/* Make sure the proposed value is valid */
1053 	tmp = timespec64_add(tk_xtime(tk),  ts64);
1054 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1055 	    !timespec64_valid_strict(&tmp)) {
1056 		ret = -EINVAL;
1057 		goto error;
1058 	}
1059 
1060 	tk_xtime_add(tk, &ts64);
1061 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1062 
1063 error: /* even if we error out, we forwarded the time, so call update */
1064 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1065 
1066 	write_seqcount_end(&tk_core.seq);
1067 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1068 
1069 	/* signal hrtimers about time change */
1070 	clock_was_set();
1071 
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL(timekeeping_inject_offset);
1075 
1076 
1077 /**
1078  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1079  *
1080  */
timekeeping_get_tai_offset(void)1081 s32 timekeeping_get_tai_offset(void)
1082 {
1083 	struct timekeeper *tk = &tk_core.timekeeper;
1084 	unsigned int seq;
1085 	s32 ret;
1086 
1087 	do {
1088 		seq = read_seqcount_begin(&tk_core.seq);
1089 		ret = tk->tai_offset;
1090 	} while (read_seqcount_retry(&tk_core.seq, seq));
1091 
1092 	return ret;
1093 }
1094 
1095 /**
1096  * __timekeeping_set_tai_offset - Lock free worker function
1097  *
1098  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1099 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1100 {
1101 	tk->tai_offset = tai_offset;
1102 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1103 }
1104 
1105 /**
1106  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1107  *
1108  */
timekeeping_set_tai_offset(s32 tai_offset)1109 void timekeeping_set_tai_offset(s32 tai_offset)
1110 {
1111 	struct timekeeper *tk = &tk_core.timekeeper;
1112 	unsigned long flags;
1113 
1114 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1115 	write_seqcount_begin(&tk_core.seq);
1116 	__timekeeping_set_tai_offset(tk, tai_offset);
1117 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1118 	write_seqcount_end(&tk_core.seq);
1119 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1120 	clock_was_set();
1121 }
1122 
1123 /**
1124  * change_clocksource - Swaps clocksources if a new one is available
1125  *
1126  * Accumulates current time interval and initializes new clocksource
1127  */
change_clocksource(void * data)1128 static int change_clocksource(void *data)
1129 {
1130 	struct timekeeper *tk = &tk_core.timekeeper;
1131 	struct clocksource *new, *old;
1132 	unsigned long flags;
1133 
1134 	new = (struct clocksource *) data;
1135 
1136 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1137 	write_seqcount_begin(&tk_core.seq);
1138 
1139 	timekeeping_forward_now(tk);
1140 	/*
1141 	 * If the cs is in module, get a module reference. Succeeds
1142 	 * for built-in code (owner == NULL) as well.
1143 	 */
1144 	if (try_module_get(new->owner)) {
1145 		if (!new->enable || new->enable(new) == 0) {
1146 			old = tk->tkr_mono.clock;
1147 			tk_setup_internals(tk, new);
1148 			if (old->disable)
1149 				old->disable(old);
1150 			module_put(old->owner);
1151 		} else {
1152 			module_put(new->owner);
1153 		}
1154 	}
1155 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1156 
1157 	write_seqcount_end(&tk_core.seq);
1158 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1159 
1160 	return 0;
1161 }
1162 
1163 /**
1164  * timekeeping_notify - Install a new clock source
1165  * @clock:		pointer to the clock source
1166  *
1167  * This function is called from clocksource.c after a new, better clock
1168  * source has been registered. The caller holds the clocksource_mutex.
1169  */
timekeeping_notify(struct clocksource * clock)1170 int timekeeping_notify(struct clocksource *clock)
1171 {
1172 	struct timekeeper *tk = &tk_core.timekeeper;
1173 
1174 	if (tk->tkr_mono.clock == clock)
1175 		return 0;
1176 	stop_machine(change_clocksource, clock, NULL);
1177 	tick_clock_notify();
1178 	return tk->tkr_mono.clock == clock ? 0 : -1;
1179 }
1180 
1181 /**
1182  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1183  * @ts:		pointer to the timespec64 to be set
1184  *
1185  * Returns the raw monotonic time (completely un-modified by ntp)
1186  */
getrawmonotonic64(struct timespec64 * ts)1187 void getrawmonotonic64(struct timespec64 *ts)
1188 {
1189 	struct timekeeper *tk = &tk_core.timekeeper;
1190 	unsigned long seq;
1191 	s64 nsecs;
1192 
1193 	do {
1194 		seq = read_seqcount_begin(&tk_core.seq);
1195 		ts->tv_sec = tk->raw_sec;
1196 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1197 
1198 	} while (read_seqcount_retry(&tk_core.seq, seq));
1199 
1200 	ts->tv_nsec = 0;
1201 	timespec64_add_ns(ts, nsecs);
1202 }
1203 EXPORT_SYMBOL(getrawmonotonic64);
1204 
1205 
1206 /**
1207  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1208  */
timekeeping_valid_for_hres(void)1209 int timekeeping_valid_for_hres(void)
1210 {
1211 	struct timekeeper *tk = &tk_core.timekeeper;
1212 	unsigned long seq;
1213 	int ret;
1214 
1215 	do {
1216 		seq = read_seqcount_begin(&tk_core.seq);
1217 
1218 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1219 
1220 	} while (read_seqcount_retry(&tk_core.seq, seq));
1221 
1222 	return ret;
1223 }
1224 
1225 /**
1226  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1227  */
timekeeping_max_deferment(void)1228 u64 timekeeping_max_deferment(void)
1229 {
1230 	struct timekeeper *tk = &tk_core.timekeeper;
1231 	unsigned long seq;
1232 	u64 ret;
1233 
1234 	do {
1235 		seq = read_seqcount_begin(&tk_core.seq);
1236 
1237 		ret = tk->tkr_mono.clock->max_idle_ns;
1238 
1239 	} while (read_seqcount_retry(&tk_core.seq, seq));
1240 
1241 	return ret;
1242 }
1243 
1244 /**
1245  * read_persistent_clock -  Return time from the persistent clock.
1246  *
1247  * Weak dummy function for arches that do not yet support it.
1248  * Reads the time from the battery backed persistent clock.
1249  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1250  *
1251  *  XXX - Do be sure to remove it once all arches implement it.
1252  */
read_persistent_clock(struct timespec * ts)1253 void __weak read_persistent_clock(struct timespec *ts)
1254 {
1255 	ts->tv_sec = 0;
1256 	ts->tv_nsec = 0;
1257 }
1258 
read_persistent_clock64(struct timespec64 * ts64)1259 void __weak read_persistent_clock64(struct timespec64 *ts64)
1260 {
1261 	struct timespec ts;
1262 
1263 	read_persistent_clock(&ts);
1264 	*ts64 = timespec_to_timespec64(ts);
1265 }
1266 
1267 /**
1268  * read_boot_clock64 -  Return time of the system start.
1269  *
1270  * Weak dummy function for arches that do not yet support it.
1271  * Function to read the exact time the system has been started.
1272  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1273  *
1274  *  XXX - Do be sure to remove it once all arches implement it.
1275  */
read_boot_clock64(struct timespec64 * ts)1276 void __weak read_boot_clock64(struct timespec64 *ts)
1277 {
1278 	ts->tv_sec = 0;
1279 	ts->tv_nsec = 0;
1280 }
1281 
1282 /* Flag for if timekeeping_resume() has injected sleeptime */
1283 static bool sleeptime_injected;
1284 
1285 /* Flag for if there is a persistent clock on this platform */
1286 static bool persistent_clock_exists;
1287 
1288 /*
1289  * timekeeping_init - Initializes the clocksource and common timekeeping values
1290  */
timekeeping_init(void)1291 void __init timekeeping_init(void)
1292 {
1293 	struct timekeeper *tk = &tk_core.timekeeper;
1294 	struct clocksource *clock;
1295 	unsigned long flags;
1296 	struct timespec64 now, boot, tmp;
1297 
1298 	read_persistent_clock64(&now);
1299 	if (!timespec64_valid_strict(&now)) {
1300 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1301 			"         Check your CMOS/BIOS settings.\n");
1302 		now.tv_sec = 0;
1303 		now.tv_nsec = 0;
1304 	} else if (now.tv_sec || now.tv_nsec)
1305 		persistent_clock_exists = true;
1306 
1307 	read_boot_clock64(&boot);
1308 	if (!timespec64_valid_strict(&boot)) {
1309 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1310 			"         Check your CMOS/BIOS settings.\n");
1311 		boot.tv_sec = 0;
1312 		boot.tv_nsec = 0;
1313 	}
1314 
1315 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1316 	write_seqcount_begin(&tk_core.seq);
1317 	ntp_init();
1318 
1319 	clock = clocksource_default_clock();
1320 	if (clock->enable)
1321 		clock->enable(clock);
1322 	tk_setup_internals(tk, clock);
1323 
1324 	tk_set_xtime(tk, &now);
1325 	tk->raw_sec = 0;
1326 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1327 		boot = tk_xtime(tk);
1328 
1329 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1330 	tk_set_wall_to_mono(tk, tmp);
1331 
1332 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1333 
1334 	write_seqcount_end(&tk_core.seq);
1335 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1336 }
1337 
1338 /* time in seconds when suspend began for persistent clock */
1339 static struct timespec64 timekeeping_suspend_time;
1340 
1341 /**
1342  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1343  * @delta: pointer to a timespec delta value
1344  *
1345  * Takes a timespec offset measuring a suspend interval and properly
1346  * adds the sleep offset to the timekeeping variables.
1347  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,struct timespec64 * delta)1348 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1349 					   struct timespec64 *delta)
1350 {
1351 	if (!timespec64_valid_strict(delta)) {
1352 		printk_deferred(KERN_WARNING
1353 				"__timekeeping_inject_sleeptime: Invalid "
1354 				"sleep delta value!\n");
1355 		return;
1356 	}
1357 	tk_xtime_add(tk, delta);
1358 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1359 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1360 	tk_debug_account_sleep_time(delta);
1361 }
1362 
1363 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1364 /**
1365  * We have three kinds of time sources to use for sleep time
1366  * injection, the preference order is:
1367  * 1) non-stop clocksource
1368  * 2) persistent clock (ie: RTC accessible when irqs are off)
1369  * 3) RTC
1370  *
1371  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1372  * If system has neither 1) nor 2), 3) will be used finally.
1373  *
1374  *
1375  * If timekeeping has injected sleeptime via either 1) or 2),
1376  * 3) becomes needless, so in this case we don't need to call
1377  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1378  * means.
1379  */
timekeeping_rtc_skipresume(void)1380 bool timekeeping_rtc_skipresume(void)
1381 {
1382 	return sleeptime_injected;
1383 }
1384 
1385 /**
1386  * 1) can be determined whether to use or not only when doing
1387  * timekeeping_resume() which is invoked after rtc_suspend(),
1388  * so we can't skip rtc_suspend() surely if system has 1).
1389  *
1390  * But if system has 2), 2) will definitely be used, so in this
1391  * case we don't need to call rtc_suspend(), and this is what
1392  * timekeeping_rtc_skipsuspend() means.
1393  */
timekeeping_rtc_skipsuspend(void)1394 bool timekeeping_rtc_skipsuspend(void)
1395 {
1396 	return persistent_clock_exists;
1397 }
1398 
1399 /**
1400  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1401  * @delta: pointer to a timespec64 delta value
1402  *
1403  * This hook is for architectures that cannot support read_persistent_clock64
1404  * because their RTC/persistent clock is only accessible when irqs are enabled.
1405  * and also don't have an effective nonstop clocksource.
1406  *
1407  * This function should only be called by rtc_resume(), and allows
1408  * a suspend offset to be injected into the timekeeping values.
1409  */
timekeeping_inject_sleeptime64(struct timespec64 * delta)1410 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1411 {
1412 	struct timekeeper *tk = &tk_core.timekeeper;
1413 	unsigned long flags;
1414 
1415 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1416 	write_seqcount_begin(&tk_core.seq);
1417 
1418 	timekeeping_forward_now(tk);
1419 
1420 	__timekeeping_inject_sleeptime(tk, delta);
1421 
1422 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1423 
1424 	write_seqcount_end(&tk_core.seq);
1425 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1426 
1427 	/* signal hrtimers about time change */
1428 	clock_was_set();
1429 }
1430 #endif
1431 
1432 /**
1433  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1434  */
timekeeping_resume(void)1435 void timekeeping_resume(void)
1436 {
1437 	struct timekeeper *tk = &tk_core.timekeeper;
1438 	struct clocksource *clock = tk->tkr_mono.clock;
1439 	unsigned long flags;
1440 	struct timespec64 ts_new, ts_delta;
1441 	cycle_t cycle_now, cycle_delta;
1442 
1443 	sleeptime_injected = false;
1444 	read_persistent_clock64(&ts_new);
1445 
1446 	clockevents_resume();
1447 	clocksource_resume();
1448 
1449 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1450 	write_seqcount_begin(&tk_core.seq);
1451 
1452 	/*
1453 	 * After system resumes, we need to calculate the suspended time and
1454 	 * compensate it for the OS time. There are 3 sources that could be
1455 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1456 	 * device.
1457 	 *
1458 	 * One specific platform may have 1 or 2 or all of them, and the
1459 	 * preference will be:
1460 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1461 	 * The less preferred source will only be tried if there is no better
1462 	 * usable source. The rtc part is handled separately in rtc core code.
1463 	 */
1464 	cycle_now = tk_clock_read(&tk->tkr_mono);
1465 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1466 		cycle_now > tk->tkr_mono.cycle_last) {
1467 		u64 num, max = ULLONG_MAX;
1468 		u32 mult = clock->mult;
1469 		u32 shift = clock->shift;
1470 		s64 nsec = 0;
1471 
1472 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1473 						tk->tkr_mono.mask);
1474 
1475 		/*
1476 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1477 		 * suspended time is too long. In that case we need do the
1478 		 * 64 bits math carefully
1479 		 */
1480 		do_div(max, mult);
1481 		if (cycle_delta > max) {
1482 			num = div64_u64(cycle_delta, max);
1483 			nsec = (((u64) max * mult) >> shift) * num;
1484 			cycle_delta -= num * max;
1485 		}
1486 		nsec += ((u64) cycle_delta * mult) >> shift;
1487 
1488 		ts_delta = ns_to_timespec64(nsec);
1489 		sleeptime_injected = true;
1490 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1491 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1492 		sleeptime_injected = true;
1493 	}
1494 
1495 	if (sleeptime_injected)
1496 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1497 
1498 	/* Re-base the last cycle value */
1499 	tk->tkr_mono.cycle_last = cycle_now;
1500 	tk->tkr_raw.cycle_last  = cycle_now;
1501 
1502 	tk->ntp_error = 0;
1503 	timekeeping_suspended = 0;
1504 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1505 	write_seqcount_end(&tk_core.seq);
1506 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1507 
1508 	touch_softlockup_watchdog();
1509 
1510 	tick_resume();
1511 	hrtimers_resume();
1512 }
1513 
timekeeping_suspend(void)1514 int timekeeping_suspend(void)
1515 {
1516 	struct timekeeper *tk = &tk_core.timekeeper;
1517 	unsigned long flags;
1518 	struct timespec64		delta, delta_delta;
1519 	static struct timespec64	old_delta;
1520 
1521 	read_persistent_clock64(&timekeeping_suspend_time);
1522 
1523 	/*
1524 	 * On some systems the persistent_clock can not be detected at
1525 	 * timekeeping_init by its return value, so if we see a valid
1526 	 * value returned, update the persistent_clock_exists flag.
1527 	 */
1528 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1529 		persistent_clock_exists = true;
1530 
1531 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1532 	write_seqcount_begin(&tk_core.seq);
1533 	timekeeping_forward_now(tk);
1534 	timekeeping_suspended = 1;
1535 
1536 	if (persistent_clock_exists) {
1537 		/*
1538 		 * To avoid drift caused by repeated suspend/resumes,
1539 		 * which each can add ~1 second drift error,
1540 		 * try to compensate so the difference in system time
1541 		 * and persistent_clock time stays close to constant.
1542 		 */
1543 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1544 		delta_delta = timespec64_sub(delta, old_delta);
1545 		if (abs(delta_delta.tv_sec) >= 2) {
1546 			/*
1547 			 * if delta_delta is too large, assume time correction
1548 			 * has occurred and set old_delta to the current delta.
1549 			 */
1550 			old_delta = delta;
1551 		} else {
1552 			/* Otherwise try to adjust old_system to compensate */
1553 			timekeeping_suspend_time =
1554 				timespec64_add(timekeeping_suspend_time, delta_delta);
1555 		}
1556 	}
1557 
1558 	timekeeping_update(tk, TK_MIRROR);
1559 	halt_fast_timekeeper(tk);
1560 	write_seqcount_end(&tk_core.seq);
1561 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1562 
1563 	tick_suspend();
1564 	clocksource_suspend();
1565 	clockevents_suspend();
1566 
1567 	return 0;
1568 }
1569 
1570 /* sysfs resume/suspend bits for timekeeping */
1571 static struct syscore_ops timekeeping_syscore_ops = {
1572 	.resume		= timekeeping_resume,
1573 	.suspend	= timekeeping_suspend,
1574 };
1575 
timekeeping_init_ops(void)1576 static int __init timekeeping_init_ops(void)
1577 {
1578 	register_syscore_ops(&timekeeping_syscore_ops);
1579 	return 0;
1580 }
1581 device_initcall(timekeeping_init_ops);
1582 
1583 /*
1584  * Apply a multiplier adjustment to the timekeeper
1585  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,bool negative,int adj_scale)1586 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1587 							 s64 offset,
1588 							 bool negative,
1589 							 int adj_scale)
1590 {
1591 	s64 interval = tk->cycle_interval;
1592 	s32 mult_adj = 1;
1593 
1594 	if (negative) {
1595 		mult_adj = -mult_adj;
1596 		interval = -interval;
1597 		offset  = -offset;
1598 	}
1599 	mult_adj <<= adj_scale;
1600 	interval <<= adj_scale;
1601 	offset <<= adj_scale;
1602 
1603 	/*
1604 	 * So the following can be confusing.
1605 	 *
1606 	 * To keep things simple, lets assume mult_adj == 1 for now.
1607 	 *
1608 	 * When mult_adj != 1, remember that the interval and offset values
1609 	 * have been appropriately scaled so the math is the same.
1610 	 *
1611 	 * The basic idea here is that we're increasing the multiplier
1612 	 * by one, this causes the xtime_interval to be incremented by
1613 	 * one cycle_interval. This is because:
1614 	 *	xtime_interval = cycle_interval * mult
1615 	 * So if mult is being incremented by one:
1616 	 *	xtime_interval = cycle_interval * (mult + 1)
1617 	 * Its the same as:
1618 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1619 	 * Which can be shortened to:
1620 	 *	xtime_interval += cycle_interval
1621 	 *
1622 	 * So offset stores the non-accumulated cycles. Thus the current
1623 	 * time (in shifted nanoseconds) is:
1624 	 *	now = (offset * adj) + xtime_nsec
1625 	 * Now, even though we're adjusting the clock frequency, we have
1626 	 * to keep time consistent. In other words, we can't jump back
1627 	 * in time, and we also want to avoid jumping forward in time.
1628 	 *
1629 	 * So given the same offset value, we need the time to be the same
1630 	 * both before and after the freq adjustment.
1631 	 *	now = (offset * adj_1) + xtime_nsec_1
1632 	 *	now = (offset * adj_2) + xtime_nsec_2
1633 	 * So:
1634 	 *	(offset * adj_1) + xtime_nsec_1 =
1635 	 *		(offset * adj_2) + xtime_nsec_2
1636 	 * And we know:
1637 	 *	adj_2 = adj_1 + 1
1638 	 * So:
1639 	 *	(offset * adj_1) + xtime_nsec_1 =
1640 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1641 	 *	(offset * adj_1) + xtime_nsec_1 =
1642 	 *		(offset * adj_1) + offset + xtime_nsec_2
1643 	 * Canceling the sides:
1644 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1645 	 * Which gives us:
1646 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1647 	 * Which simplfies to:
1648 	 *	xtime_nsec -= offset
1649 	 *
1650 	 * XXX - TODO: Doc ntp_error calculation.
1651 	 */
1652 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1653 		/* NTP adjustment caused clocksource mult overflow */
1654 		WARN_ON_ONCE(1);
1655 		return;
1656 	}
1657 
1658 	tk->tkr_mono.mult += mult_adj;
1659 	tk->xtime_interval += interval;
1660 	tk->tkr_mono.xtime_nsec -= offset;
1661 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1662 }
1663 
1664 /*
1665  * Calculate the multiplier adjustment needed to match the frequency
1666  * specified by NTP
1667  */
timekeeping_freqadjust(struct timekeeper * tk,s64 offset)1668 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1669 							s64 offset)
1670 {
1671 	s64 interval = tk->cycle_interval;
1672 	s64 xinterval = tk->xtime_interval;
1673 	s64 tick_error;
1674 	bool negative;
1675 	u32 adj;
1676 
1677 	/* Remove any current error adj from freq calculation */
1678 	if (tk->ntp_err_mult)
1679 		xinterval -= tk->cycle_interval;
1680 
1681 	tk->ntp_tick = ntp_tick_length();
1682 
1683 	/* Calculate current error per tick */
1684 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1685 	tick_error -= (xinterval + tk->xtime_remainder);
1686 
1687 	/* Don't worry about correcting it if its small */
1688 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1689 		return;
1690 
1691 	/* preserve the direction of correction */
1692 	negative = (tick_error < 0);
1693 
1694 	/* Sort out the magnitude of the correction */
1695 	tick_error = abs(tick_error);
1696 	for (adj = 0; tick_error > interval; adj++)
1697 		tick_error >>= 1;
1698 
1699 	/* scale the corrections */
1700 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1701 }
1702 
1703 /*
1704  * Adjust the timekeeper's multiplier to the correct frequency
1705  * and also to reduce the accumulated error value.
1706  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1707 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1708 {
1709 	/* Correct for the current frequency error */
1710 	timekeeping_freqadjust(tk, offset);
1711 
1712 	/* Next make a small adjustment to fix any cumulative error */
1713 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1714 		tk->ntp_err_mult = 1;
1715 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1716 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1717 		/* Undo any existing error adjustment */
1718 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1719 		tk->ntp_err_mult = 0;
1720 	}
1721 
1722 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1723 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1724 			> tk->tkr_mono.clock->maxadj))) {
1725 		printk_once(KERN_WARNING
1726 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1727 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1728 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1729 	}
1730 
1731 	/*
1732 	 * It may be possible that when we entered this function, xtime_nsec
1733 	 * was very small.  Further, if we're slightly speeding the clocksource
1734 	 * in the code above, its possible the required corrective factor to
1735 	 * xtime_nsec could cause it to underflow.
1736 	 *
1737 	 * Now, since we already accumulated the second, cannot simply roll
1738 	 * the accumulated second back, since the NTP subsystem has been
1739 	 * notified via second_overflow. So instead we push xtime_nsec forward
1740 	 * by the amount we underflowed, and add that amount into the error.
1741 	 *
1742 	 * We'll correct this error next time through this function, when
1743 	 * xtime_nsec is not as small.
1744 	 */
1745 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1746 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1747 		tk->tkr_mono.xtime_nsec = 0;
1748 		tk->ntp_error += neg << tk->ntp_error_shift;
1749 	}
1750 }
1751 
1752 /**
1753  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1754  *
1755  * Helper function that accumulates the nsecs greater than a second
1756  * from the xtime_nsec field to the xtime_secs field.
1757  * It also calls into the NTP code to handle leapsecond processing.
1758  *
1759  */
accumulate_nsecs_to_secs(struct timekeeper * tk)1760 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1761 {
1762 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1763 	unsigned int clock_set = 0;
1764 
1765 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1766 		int leap;
1767 
1768 		tk->tkr_mono.xtime_nsec -= nsecps;
1769 		tk->xtime_sec++;
1770 
1771 		/* Figure out if its a leap sec and apply if needed */
1772 		leap = second_overflow(tk->xtime_sec);
1773 		if (unlikely(leap)) {
1774 			struct timespec64 ts;
1775 
1776 			tk->xtime_sec += leap;
1777 
1778 			ts.tv_sec = leap;
1779 			ts.tv_nsec = 0;
1780 			tk_set_wall_to_mono(tk,
1781 				timespec64_sub(tk->wall_to_monotonic, ts));
1782 
1783 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1784 
1785 			clock_set = TK_CLOCK_WAS_SET;
1786 		}
1787 	}
1788 	return clock_set;
1789 }
1790 
1791 /**
1792  * logarithmic_accumulation - shifted accumulation of cycles
1793  *
1794  * This functions accumulates a shifted interval of cycles into
1795  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1796  * loop.
1797  *
1798  * Returns the unconsumed cycles.
1799  */
logarithmic_accumulation(struct timekeeper * tk,cycle_t offset,u32 shift,unsigned int * clock_set)1800 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1801 						u32 shift,
1802 						unsigned int *clock_set)
1803 {
1804 	cycle_t interval = tk->cycle_interval << shift;
1805 	u64 snsec_per_sec;
1806 
1807 	/* If the offset is smaller than a shifted interval, do nothing */
1808 	if (offset < interval)
1809 		return offset;
1810 
1811 	/* Accumulate one shifted interval */
1812 	offset -= interval;
1813 	tk->tkr_mono.cycle_last += interval;
1814 	tk->tkr_raw.cycle_last  += interval;
1815 
1816 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1817 	*clock_set |= accumulate_nsecs_to_secs(tk);
1818 
1819 	/* Accumulate raw time */
1820 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
1821 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
1822 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
1823 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
1824 		tk->raw_sec++;
1825 	}
1826 
1827 	/* Accumulate error between NTP and clock interval */
1828 	tk->ntp_error += tk->ntp_tick << shift;
1829 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1830 						(tk->ntp_error_shift + shift);
1831 
1832 	return offset;
1833 }
1834 
1835 /**
1836  * update_wall_time - Uses the current clocksource to increment the wall time
1837  *
1838  */
update_wall_time(void)1839 void update_wall_time(void)
1840 {
1841 	struct timekeeper *real_tk = &tk_core.timekeeper;
1842 	struct timekeeper *tk = &shadow_timekeeper;
1843 	cycle_t offset;
1844 	int shift = 0, maxshift;
1845 	unsigned int clock_set = 0;
1846 	unsigned long flags;
1847 
1848 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1849 
1850 	/* Make sure we're fully resumed: */
1851 	if (unlikely(timekeeping_suspended))
1852 		goto out;
1853 
1854 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1855 	offset = real_tk->cycle_interval;
1856 #else
1857 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
1858 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1859 #endif
1860 
1861 	/* Check if there's really nothing to do */
1862 	if (offset < real_tk->cycle_interval)
1863 		goto out;
1864 
1865 	/* Do some additional sanity checking */
1866 	timekeeping_check_update(real_tk, offset);
1867 
1868 	/*
1869 	 * With NO_HZ we may have to accumulate many cycle_intervals
1870 	 * (think "ticks") worth of time at once. To do this efficiently,
1871 	 * we calculate the largest doubling multiple of cycle_intervals
1872 	 * that is smaller than the offset.  We then accumulate that
1873 	 * chunk in one go, and then try to consume the next smaller
1874 	 * doubled multiple.
1875 	 */
1876 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1877 	shift = max(0, shift);
1878 	/* Bound shift to one less than what overflows tick_length */
1879 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1880 	shift = min(shift, maxshift);
1881 	while (offset >= tk->cycle_interval) {
1882 		offset = logarithmic_accumulation(tk, offset, shift,
1883 							&clock_set);
1884 		if (offset < tk->cycle_interval<<shift)
1885 			shift--;
1886 	}
1887 
1888 	/* correct the clock when NTP error is too big */
1889 	timekeeping_adjust(tk, offset);
1890 
1891 	/*
1892 	 * XXX This can be killed once everyone converts
1893 	 * to the new update_vsyscall.
1894 	 */
1895 	old_vsyscall_fixup(tk);
1896 
1897 	/*
1898 	 * Finally, make sure that after the rounding
1899 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1900 	 */
1901 	clock_set |= accumulate_nsecs_to_secs(tk);
1902 
1903 	write_seqcount_begin(&tk_core.seq);
1904 	/*
1905 	 * Update the real timekeeper.
1906 	 *
1907 	 * We could avoid this memcpy by switching pointers, but that
1908 	 * requires changes to all other timekeeper usage sites as
1909 	 * well, i.e. move the timekeeper pointer getter into the
1910 	 * spinlocked/seqcount protected sections. And we trade this
1911 	 * memcpy under the tk_core.seq against one before we start
1912 	 * updating.
1913 	 */
1914 	timekeeping_update(tk, clock_set);
1915 	memcpy(real_tk, tk, sizeof(*tk));
1916 	/* The memcpy must come last. Do not put anything here! */
1917 	write_seqcount_end(&tk_core.seq);
1918 out:
1919 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1920 	if (clock_set)
1921 		/* Have to call _delayed version, since in irq context*/
1922 		clock_was_set_delayed();
1923 }
1924 
1925 /**
1926  * getboottime64 - Return the real time of system boot.
1927  * @ts:		pointer to the timespec64 to be set
1928  *
1929  * Returns the wall-time of boot in a timespec64.
1930  *
1931  * This is based on the wall_to_monotonic offset and the total suspend
1932  * time. Calls to settimeofday will affect the value returned (which
1933  * basically means that however wrong your real time clock is at boot time,
1934  * you get the right time here).
1935  */
getboottime64(struct timespec64 * ts)1936 void getboottime64(struct timespec64 *ts)
1937 {
1938 	struct timekeeper *tk = &tk_core.timekeeper;
1939 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1940 
1941 	*ts = ktime_to_timespec64(t);
1942 }
1943 EXPORT_SYMBOL_GPL(getboottime64);
1944 
get_seconds(void)1945 unsigned long get_seconds(void)
1946 {
1947 	struct timekeeper *tk = &tk_core.timekeeper;
1948 
1949 	return tk->xtime_sec;
1950 }
1951 EXPORT_SYMBOL(get_seconds);
1952 
__current_kernel_time(void)1953 struct timespec __current_kernel_time(void)
1954 {
1955 	struct timekeeper *tk = &tk_core.timekeeper;
1956 
1957 	return timespec64_to_timespec(tk_xtime(tk));
1958 }
1959 
current_kernel_time64(void)1960 struct timespec64 current_kernel_time64(void)
1961 {
1962 	struct timekeeper *tk = &tk_core.timekeeper;
1963 	struct timespec64 now;
1964 	unsigned long seq;
1965 
1966 	do {
1967 		seq = read_seqcount_begin(&tk_core.seq);
1968 
1969 		now = tk_xtime(tk);
1970 	} while (read_seqcount_retry(&tk_core.seq, seq));
1971 
1972 	return now;
1973 }
1974 EXPORT_SYMBOL(current_kernel_time64);
1975 
get_monotonic_coarse64(void)1976 struct timespec64 get_monotonic_coarse64(void)
1977 {
1978 	struct timekeeper *tk = &tk_core.timekeeper;
1979 	struct timespec64 now, mono;
1980 	unsigned long seq;
1981 
1982 	do {
1983 		seq = read_seqcount_begin(&tk_core.seq);
1984 
1985 		now = tk_xtime(tk);
1986 		mono = tk->wall_to_monotonic;
1987 	} while (read_seqcount_retry(&tk_core.seq, seq));
1988 
1989 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1990 				now.tv_nsec + mono.tv_nsec);
1991 
1992 	return now;
1993 }
1994 
1995 /*
1996  * Must hold jiffies_lock
1997  */
do_timer(unsigned long ticks)1998 void do_timer(unsigned long ticks)
1999 {
2000 	jiffies_64 += ticks;
2001 	calc_global_load(ticks);
2002 }
2003 
2004 /**
2005  * ktime_get_update_offsets_now - hrtimer helper
2006  * @cwsseq:	pointer to check and store the clock was set sequence number
2007  * @offs_real:	pointer to storage for monotonic -> realtime offset
2008  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2009  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2010  *
2011  * Returns current monotonic time and updates the offsets if the
2012  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2013  * different.
2014  *
2015  * Called from hrtimer_interrupt() or retrigger_next_event()
2016  */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2017 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2018 				     ktime_t *offs_boot, ktime_t *offs_tai)
2019 {
2020 	struct timekeeper *tk = &tk_core.timekeeper;
2021 	unsigned int seq;
2022 	ktime_t base;
2023 	u64 nsecs;
2024 
2025 	do {
2026 		seq = read_seqcount_begin(&tk_core.seq);
2027 
2028 		base = tk->tkr_mono.base;
2029 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2030 		base = ktime_add_ns(base, nsecs);
2031 
2032 		if (*cwsseq != tk->clock_was_set_seq) {
2033 			*cwsseq = tk->clock_was_set_seq;
2034 			*offs_real = tk->offs_real;
2035 			*offs_boot = tk->offs_boot;
2036 			*offs_tai = tk->offs_tai;
2037 		}
2038 
2039 		/* Handle leapsecond insertion adjustments */
2040 		if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2041 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2042 
2043 	} while (read_seqcount_retry(&tk_core.seq, seq));
2044 
2045 	return base;
2046 }
2047 
2048 /**
2049  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2050  */
do_adjtimex(struct timex * txc)2051 int do_adjtimex(struct timex *txc)
2052 {
2053 	struct timekeeper *tk = &tk_core.timekeeper;
2054 	unsigned long flags;
2055 	struct timespec64 ts;
2056 	s32 orig_tai, tai;
2057 	int ret;
2058 
2059 	/* Validate the data before disabling interrupts */
2060 	ret = ntp_validate_timex(txc);
2061 	if (ret)
2062 		return ret;
2063 
2064 	if (txc->modes & ADJ_SETOFFSET) {
2065 		struct timespec delta;
2066 		delta.tv_sec  = txc->time.tv_sec;
2067 		delta.tv_nsec = txc->time.tv_usec;
2068 		if (!(txc->modes & ADJ_NANO))
2069 			delta.tv_nsec *= 1000;
2070 		ret = timekeeping_inject_offset(&delta);
2071 		if (ret)
2072 			return ret;
2073 	}
2074 
2075 	getnstimeofday64(&ts);
2076 
2077 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2078 	write_seqcount_begin(&tk_core.seq);
2079 
2080 	orig_tai = tai = tk->tai_offset;
2081 	ret = __do_adjtimex(txc, &ts, &tai);
2082 
2083 	if (tai != orig_tai) {
2084 		__timekeeping_set_tai_offset(tk, tai);
2085 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2086 	}
2087 	tk_update_leap_state(tk);
2088 
2089 	write_seqcount_end(&tk_core.seq);
2090 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2091 
2092 	if (tai != orig_tai)
2093 		clock_was_set();
2094 
2095 	ntp_notify_cmos_timer();
2096 
2097 	return ret;
2098 }
2099 
2100 #ifdef CONFIG_NTP_PPS
2101 /**
2102  * hardpps() - Accessor function to NTP __hardpps function
2103  */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2104 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2105 {
2106 	unsigned long flags;
2107 
2108 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2109 	write_seqcount_begin(&tk_core.seq);
2110 
2111 	__hardpps(phase_ts, raw_ts);
2112 
2113 	write_seqcount_end(&tk_core.seq);
2114 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2115 }
2116 EXPORT_SYMBOL(hardpps);
2117 #endif
2118 
2119 /**
2120  * xtime_update() - advances the timekeeping infrastructure
2121  * @ticks:	number of ticks, that have elapsed since the last call.
2122  *
2123  * Must be called with interrupts disabled.
2124  */
xtime_update(unsigned long ticks)2125 void xtime_update(unsigned long ticks)
2126 {
2127 	write_seqlock(&jiffies_lock);
2128 	do_timer(ticks);
2129 	write_sequnlock(&jiffies_lock);
2130 	update_wall_time();
2131 }
2132