• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <linux/usb/hcd.h>	/* for usbcore internals */
17 #include <asm/byteorder.h>
18 
19 #include "usb.h"
20 
21 static void cancel_async_set_config(struct usb_device *udev);
22 
23 struct api_context {
24 	struct completion	done;
25 	int			status;
26 };
27 
usb_api_blocking_completion(struct urb * urb)28 static void usb_api_blocking_completion(struct urb *urb)
29 {
30 	struct api_context *ctx = urb->context;
31 
32 	ctx->status = urb->status;
33 	complete(&ctx->done);
34 }
35 
36 
37 /*
38  * Starts urb and waits for completion or timeout. Note that this call
39  * is NOT interruptible. Many device driver i/o requests should be
40  * interruptible and therefore these drivers should implement their
41  * own interruptible routines.
42  */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44 {
45 	struct api_context ctx;
46 	unsigned long expire;
47 	int retval;
48 
49 	init_completion(&ctx.done);
50 	urb->context = &ctx;
51 	urb->actual_length = 0;
52 	retval = usb_submit_urb(urb, GFP_NOIO);
53 	if (unlikely(retval))
54 		goto out;
55 
56 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 		usb_kill_urb(urb);
59 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60 
61 		dev_dbg(&urb->dev->dev,
62 			"%s timed out on ep%d%s len=%u/%u\n",
63 			current->comm,
64 			usb_endpoint_num(&urb->ep->desc),
65 			usb_urb_dir_in(urb) ? "in" : "out",
66 			urb->actual_length,
67 			urb->transfer_buffer_length);
68 	} else
69 		retval = ctx.status;
70 out:
71 	if (actual_length)
72 		*actual_length = urb->actual_length;
73 
74 	usb_free_urb(urb);
75 	return retval;
76 }
77 
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 				    unsigned int pipe,
82 				    struct usb_ctrlrequest *cmd,
83 				    void *data, int len, int timeout)
84 {
85 	struct urb *urb;
86 	int retv;
87 	int length;
88 
89 	urb = usb_alloc_urb(0, GFP_NOIO);
90 	if (!urb)
91 		return -ENOMEM;
92 
93 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 			     len, usb_api_blocking_completion, NULL);
95 
96 	retv = usb_start_wait_urb(urb, timeout, &length);
97 	if (retv < 0)
98 		return retv;
99 	else
100 		return length;
101 }
102 
103 /**
104  * usb_control_msg - Builds a control urb, sends it off and waits for completion
105  * @dev: pointer to the usb device to send the message to
106  * @pipe: endpoint "pipe" to send the message to
107  * @request: USB message request value
108  * @requesttype: USB message request type value
109  * @value: USB message value
110  * @index: USB message index value
111  * @data: pointer to the data to send
112  * @size: length in bytes of the data to send
113  * @timeout: time in msecs to wait for the message to complete before timing
114  *	out (if 0 the wait is forever)
115  *
116  * Context: !in_interrupt ()
117  *
118  * This function sends a simple control message to a specified endpoint and
119  * waits for the message to complete, or timeout.
120  *
121  * Don't use this function from within an interrupt context, like a bottom half
122  * handler.  If you need an asynchronous message, or need to send a message
123  * from within interrupt context, use usb_submit_urb().
124  * If a thread in your driver uses this call, make sure your disconnect()
125  * method can wait for it to complete.  Since you don't have a handle on the
126  * URB used, you can't cancel the request.
127  *
128  * Return: If successful, the number of bytes transferred. Otherwise, a negative
129  * error number.
130  */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 		    __u8 requesttype, __u16 value, __u16 index, void *data,
133 		    __u16 size, int timeout)
134 {
135 	struct usb_ctrlrequest *dr;
136 	int ret;
137 
138 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 	if (!dr)
140 		return -ENOMEM;
141 
142 	dr->bRequestType = requesttype;
143 	dr->bRequest = request;
144 	dr->wValue = cpu_to_le16(value);
145 	dr->wIndex = cpu_to_le16(index);
146 	dr->wLength = cpu_to_le16(size);
147 
148 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149 
150 	/* Linger a bit, prior to the next control message. */
151 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
152 		msleep(200);
153 
154 	kfree(dr);
155 
156 	return ret;
157 }
158 EXPORT_SYMBOL_GPL(usb_control_msg);
159 
160 /**
161  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
162  * @usb_dev: pointer to the usb device to send the message to
163  * @pipe: endpoint "pipe" to send the message to
164  * @data: pointer to the data to send
165  * @len: length in bytes of the data to send
166  * @actual_length: pointer to a location to put the actual length transferred
167  *	in bytes
168  * @timeout: time in msecs to wait for the message to complete before
169  *	timing out (if 0 the wait is forever)
170  *
171  * Context: !in_interrupt ()
172  *
173  * This function sends a simple interrupt message to a specified endpoint and
174  * waits for the message to complete, or timeout.
175  *
176  * Don't use this function from within an interrupt context, like a bottom half
177  * handler.  If you need an asynchronous message, or need to send a message
178  * from within interrupt context, use usb_submit_urb() If a thread in your
179  * driver uses this call, make sure your disconnect() method can wait for it to
180  * complete.  Since you don't have a handle on the URB used, you can't cancel
181  * the request.
182  *
183  * Return:
184  * If successful, 0. Otherwise a negative error number. The number of actual
185  * bytes transferred will be stored in the @actual_length parameter.
186  */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)187 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
188 		      void *data, int len, int *actual_length, int timeout)
189 {
190 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
191 }
192 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
193 
194 /**
195  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
196  * @usb_dev: pointer to the usb device to send the message to
197  * @pipe: endpoint "pipe" to send the message to
198  * @data: pointer to the data to send
199  * @len: length in bytes of the data to send
200  * @actual_length: pointer to a location to put the actual length transferred
201  *	in bytes
202  * @timeout: time in msecs to wait for the message to complete before
203  *	timing out (if 0 the wait is forever)
204  *
205  * Context: !in_interrupt ()
206  *
207  * This function sends a simple bulk message to a specified endpoint
208  * and waits for the message to complete, or timeout.
209  *
210  * Don't use this function from within an interrupt context, like a bottom half
211  * handler.  If you need an asynchronous message, or need to send a message
212  * from within interrupt context, use usb_submit_urb() If a thread in your
213  * driver uses this call, make sure your disconnect() method can wait for it to
214  * complete.  Since you don't have a handle on the URB used, you can't cancel
215  * the request.
216  *
217  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218  * users are forced to abuse this routine by using it to submit URBs for
219  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
220  * (with the default interval) if the target is an interrupt endpoint.
221  *
222  * Return:
223  * If successful, 0. Otherwise a negative error number. The number of actual
224  * bytes transferred will be stored in the @actual_length parameter.
225  *
226  */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)227 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
228 		 void *data, int len, int *actual_length, int timeout)
229 {
230 	struct urb *urb;
231 	struct usb_host_endpoint *ep;
232 
233 	ep = usb_pipe_endpoint(usb_dev, pipe);
234 	if (!ep || len < 0)
235 		return -EINVAL;
236 
237 	urb = usb_alloc_urb(0, GFP_KERNEL);
238 	if (!urb)
239 		return -ENOMEM;
240 
241 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
242 			USB_ENDPOINT_XFER_INT) {
243 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
244 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
245 				usb_api_blocking_completion, NULL,
246 				ep->desc.bInterval);
247 	} else
248 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
249 				usb_api_blocking_completion, NULL);
250 
251 	return usb_start_wait_urb(urb, timeout, actual_length);
252 }
253 EXPORT_SYMBOL_GPL(usb_bulk_msg);
254 
255 /*-------------------------------------------------------------------*/
256 
sg_clean(struct usb_sg_request * io)257 static void sg_clean(struct usb_sg_request *io)
258 {
259 	if (io->urbs) {
260 		while (io->entries--)
261 			usb_free_urb(io->urbs[io->entries]);
262 		kfree(io->urbs);
263 		io->urbs = NULL;
264 	}
265 	io->dev = NULL;
266 }
267 
sg_complete(struct urb * urb)268 static void sg_complete(struct urb *urb)
269 {
270 	struct usb_sg_request *io = urb->context;
271 	int status = urb->status;
272 
273 	spin_lock(&io->lock);
274 
275 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
276 	 * reports, until the completion callback (this!) returns.  That lets
277 	 * device driver code (like this routine) unlink queued urbs first,
278 	 * if it needs to, since the HC won't work on them at all.  So it's
279 	 * not possible for page N+1 to overwrite page N, and so on.
280 	 *
281 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 	 * complete before the HCD can get requests away from hardware,
283 	 * though never during cleanup after a hard fault.
284 	 */
285 	if (io->status
286 			&& (io->status != -ECONNRESET
287 				|| status != -ECONNRESET)
288 			&& urb->actual_length) {
289 		dev_err(io->dev->bus->controller,
290 			"dev %s ep%d%s scatterlist error %d/%d\n",
291 			io->dev->devpath,
292 			usb_endpoint_num(&urb->ep->desc),
293 			usb_urb_dir_in(urb) ? "in" : "out",
294 			status, io->status);
295 		/* BUG (); */
296 	}
297 
298 	if (io->status == 0 && status && status != -ECONNRESET) {
299 		int i, found, retval;
300 
301 		io->status = status;
302 
303 		/* the previous urbs, and this one, completed already.
304 		 * unlink pending urbs so they won't rx/tx bad data.
305 		 * careful: unlink can sometimes be synchronous...
306 		 */
307 		spin_unlock(&io->lock);
308 		for (i = 0, found = 0; i < io->entries; i++) {
309 			if (!io->urbs[i])
310 				continue;
311 			if (found) {
312 				usb_block_urb(io->urbs[i]);
313 				retval = usb_unlink_urb(io->urbs[i]);
314 				if (retval != -EINPROGRESS &&
315 				    retval != -ENODEV &&
316 				    retval != -EBUSY &&
317 				    retval != -EIDRM)
318 					dev_err(&io->dev->dev,
319 						"%s, unlink --> %d\n",
320 						__func__, retval);
321 			} else if (urb == io->urbs[i])
322 				found = 1;
323 		}
324 		spin_lock(&io->lock);
325 	}
326 
327 	/* on the last completion, signal usb_sg_wait() */
328 	io->bytes += urb->actual_length;
329 	io->count--;
330 	if (!io->count)
331 		complete(&io->complete);
332 
333 	spin_unlock(&io->lock);
334 }
335 
336 
337 /**
338  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
339  * @io: request block being initialized.  until usb_sg_wait() returns,
340  *	treat this as a pointer to an opaque block of memory,
341  * @dev: the usb device that will send or receive the data
342  * @pipe: endpoint "pipe" used to transfer the data
343  * @period: polling rate for interrupt endpoints, in frames or
344  * 	(for high speed endpoints) microframes; ignored for bulk
345  * @sg: scatterlist entries
346  * @nents: how many entries in the scatterlist
347  * @length: how many bytes to send from the scatterlist, or zero to
348  * 	send every byte identified in the list.
349  * @mem_flags: SLAB_* flags affecting memory allocations in this call
350  *
351  * This initializes a scatter/gather request, allocating resources such as
352  * I/O mappings and urb memory (except maybe memory used by USB controller
353  * drivers).
354  *
355  * The request must be issued using usb_sg_wait(), which waits for the I/O to
356  * complete (or to be canceled) and then cleans up all resources allocated by
357  * usb_sg_init().
358  *
359  * The request may be canceled with usb_sg_cancel(), either before or after
360  * usb_sg_wait() is called.
361  *
362  * Return: Zero for success, else a negative errno value.
363  */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)364 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
365 		unsigned pipe, unsigned	period, struct scatterlist *sg,
366 		int nents, size_t length, gfp_t mem_flags)
367 {
368 	int i;
369 	int urb_flags;
370 	int use_sg;
371 
372 	if (!io || !dev || !sg
373 			|| usb_pipecontrol(pipe)
374 			|| usb_pipeisoc(pipe)
375 			|| nents <= 0)
376 		return -EINVAL;
377 
378 	spin_lock_init(&io->lock);
379 	io->dev = dev;
380 	io->pipe = pipe;
381 
382 	if (dev->bus->sg_tablesize > 0) {
383 		use_sg = true;
384 		io->entries = 1;
385 	} else {
386 		use_sg = false;
387 		io->entries = nents;
388 	}
389 
390 	/* initialize all the urbs we'll use */
391 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
392 	if (!io->urbs)
393 		goto nomem;
394 
395 	urb_flags = URB_NO_INTERRUPT;
396 	if (usb_pipein(pipe))
397 		urb_flags |= URB_SHORT_NOT_OK;
398 
399 	for_each_sg(sg, sg, io->entries, i) {
400 		struct urb *urb;
401 		unsigned len;
402 
403 		urb = usb_alloc_urb(0, mem_flags);
404 		if (!urb) {
405 			io->entries = i;
406 			goto nomem;
407 		}
408 		io->urbs[i] = urb;
409 
410 		urb->dev = NULL;
411 		urb->pipe = pipe;
412 		urb->interval = period;
413 		urb->transfer_flags = urb_flags;
414 		urb->complete = sg_complete;
415 		urb->context = io;
416 		urb->sg = sg;
417 
418 		if (use_sg) {
419 			/* There is no single transfer buffer */
420 			urb->transfer_buffer = NULL;
421 			urb->num_sgs = nents;
422 
423 			/* A length of zero means transfer the whole sg list */
424 			len = length;
425 			if (len == 0) {
426 				struct scatterlist	*sg2;
427 				int			j;
428 
429 				for_each_sg(sg, sg2, nents, j)
430 					len += sg2->length;
431 			}
432 		} else {
433 			/*
434 			 * Some systems can't use DMA; they use PIO instead.
435 			 * For their sakes, transfer_buffer is set whenever
436 			 * possible.
437 			 */
438 			if (!PageHighMem(sg_page(sg)))
439 				urb->transfer_buffer = sg_virt(sg);
440 			else
441 				urb->transfer_buffer = NULL;
442 
443 			len = sg->length;
444 			if (length) {
445 				len = min_t(size_t, len, length);
446 				length -= len;
447 				if (length == 0)
448 					io->entries = i + 1;
449 			}
450 		}
451 		urb->transfer_buffer_length = len;
452 	}
453 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
454 
455 	/* transaction state */
456 	io->count = io->entries;
457 	io->status = 0;
458 	io->bytes = 0;
459 	init_completion(&io->complete);
460 	return 0;
461 
462 nomem:
463 	sg_clean(io);
464 	return -ENOMEM;
465 }
466 EXPORT_SYMBOL_GPL(usb_sg_init);
467 
468 /**
469  * usb_sg_wait - synchronously execute scatter/gather request
470  * @io: request block handle, as initialized with usb_sg_init().
471  * 	some fields become accessible when this call returns.
472  * Context: !in_interrupt ()
473  *
474  * This function blocks until the specified I/O operation completes.  It
475  * leverages the grouping of the related I/O requests to get good transfer
476  * rates, by queueing the requests.  At higher speeds, such queuing can
477  * significantly improve USB throughput.
478  *
479  * There are three kinds of completion for this function.
480  * (1) success, where io->status is zero.  The number of io->bytes
481  *     transferred is as requested.
482  * (2) error, where io->status is a negative errno value.  The number
483  *     of io->bytes transferred before the error is usually less
484  *     than requested, and can be nonzero.
485  * (3) cancellation, a type of error with status -ECONNRESET that
486  *     is initiated by usb_sg_cancel().
487  *
488  * When this function returns, all memory allocated through usb_sg_init() or
489  * this call will have been freed.  The request block parameter may still be
490  * passed to usb_sg_cancel(), or it may be freed.  It could also be
491  * reinitialized and then reused.
492  *
493  * Data Transfer Rates:
494  *
495  * Bulk transfers are valid for full or high speed endpoints.
496  * The best full speed data rate is 19 packets of 64 bytes each
497  * per frame, or 1216 bytes per millisecond.
498  * The best high speed data rate is 13 packets of 512 bytes each
499  * per microframe, or 52 KBytes per millisecond.
500  *
501  * The reason to use interrupt transfers through this API would most likely
502  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
503  * could be transferred.  That capability is less useful for low or full
504  * speed interrupt endpoints, which allow at most one packet per millisecond,
505  * of at most 8 or 64 bytes (respectively).
506  *
507  * It is not necessary to call this function to reserve bandwidth for devices
508  * under an xHCI host controller, as the bandwidth is reserved when the
509  * configuration or interface alt setting is selected.
510  */
usb_sg_wait(struct usb_sg_request * io)511 void usb_sg_wait(struct usb_sg_request *io)
512 {
513 	int i;
514 	int entries = io->entries;
515 
516 	/* queue the urbs.  */
517 	spin_lock_irq(&io->lock);
518 	i = 0;
519 	while (i < entries && !io->status) {
520 		int retval;
521 
522 		io->urbs[i]->dev = io->dev;
523 		spin_unlock_irq(&io->lock);
524 
525 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
526 
527 		switch (retval) {
528 			/* maybe we retrying will recover */
529 		case -ENXIO:	/* hc didn't queue this one */
530 		case -EAGAIN:
531 		case -ENOMEM:
532 			retval = 0;
533 			yield();
534 			break;
535 
536 			/* no error? continue immediately.
537 			 *
538 			 * NOTE: to work better with UHCI (4K I/O buffer may
539 			 * need 3K of TDs) it may be good to limit how many
540 			 * URBs are queued at once; N milliseconds?
541 			 */
542 		case 0:
543 			++i;
544 			cpu_relax();
545 			break;
546 
547 			/* fail any uncompleted urbs */
548 		default:
549 			io->urbs[i]->status = retval;
550 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
551 				__func__, retval);
552 			usb_sg_cancel(io);
553 		}
554 		spin_lock_irq(&io->lock);
555 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
556 			io->status = retval;
557 	}
558 	io->count -= entries - i;
559 	if (io->count == 0)
560 		complete(&io->complete);
561 	spin_unlock_irq(&io->lock);
562 
563 	/* OK, yes, this could be packaged as non-blocking.
564 	 * So could the submit loop above ... but it's easier to
565 	 * solve neither problem than to solve both!
566 	 */
567 	wait_for_completion(&io->complete);
568 
569 	sg_clean(io);
570 }
571 EXPORT_SYMBOL_GPL(usb_sg_wait);
572 
573 /**
574  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
575  * @io: request block, initialized with usb_sg_init()
576  *
577  * This stops a request after it has been started by usb_sg_wait().
578  * It can also prevents one initialized by usb_sg_init() from starting,
579  * so that call just frees resources allocated to the request.
580  */
usb_sg_cancel(struct usb_sg_request * io)581 void usb_sg_cancel(struct usb_sg_request *io)
582 {
583 	unsigned long flags;
584 	int i, retval;
585 
586 	spin_lock_irqsave(&io->lock, flags);
587 	if (io->status || io->count == 0) {
588 		spin_unlock_irqrestore(&io->lock, flags);
589 		return;
590 	}
591 	/* shut everything down */
592 	io->status = -ECONNRESET;
593 	io->count++;		/* Keep the request alive until we're done */
594 	spin_unlock_irqrestore(&io->lock, flags);
595 
596 	for (i = io->entries - 1; i >= 0; --i) {
597 		usb_block_urb(io->urbs[i]);
598 
599 		retval = usb_unlink_urb(io->urbs[i]);
600 		if (retval != -EINPROGRESS
601 		    && retval != -ENODEV
602 		    && retval != -EBUSY
603 		    && retval != -EIDRM)
604 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
605 				 __func__, retval);
606 	}
607 
608 	spin_lock_irqsave(&io->lock, flags);
609 	io->count--;
610 	if (!io->count)
611 		complete(&io->complete);
612 	spin_unlock_irqrestore(&io->lock, flags);
613 }
614 EXPORT_SYMBOL_GPL(usb_sg_cancel);
615 
616 /*-------------------------------------------------------------------*/
617 
618 /**
619  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
620  * @dev: the device whose descriptor is being retrieved
621  * @type: the descriptor type (USB_DT_*)
622  * @index: the number of the descriptor
623  * @buf: where to put the descriptor
624  * @size: how big is "buf"?
625  * Context: !in_interrupt ()
626  *
627  * Gets a USB descriptor.  Convenience functions exist to simplify
628  * getting some types of descriptors.  Use
629  * usb_get_string() or usb_string() for USB_DT_STRING.
630  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
631  * are part of the device structure.
632  * In addition to a number of USB-standard descriptors, some
633  * devices also use class-specific or vendor-specific descriptors.
634  *
635  * This call is synchronous, and may not be used in an interrupt context.
636  *
637  * Return: The number of bytes received on success, or else the status code
638  * returned by the underlying usb_control_msg() call.
639  */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)640 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
641 		       unsigned char index, void *buf, int size)
642 {
643 	int i;
644 	int result;
645 
646 	memset(buf, 0, size);	/* Make sure we parse really received data */
647 
648 	for (i = 0; i < 3; ++i) {
649 		/* retry on length 0 or error; some devices are flakey */
650 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
651 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
652 				(type << 8) + index, 0, buf, size,
653 				USB_CTRL_GET_TIMEOUT);
654 		if (result <= 0 && result != -ETIMEDOUT)
655 			continue;
656 		if (result > 1 && ((u8 *)buf)[1] != type) {
657 			result = -ENODATA;
658 			continue;
659 		}
660 		break;
661 	}
662 	return result;
663 }
664 EXPORT_SYMBOL_GPL(usb_get_descriptor);
665 
666 /**
667  * usb_get_string - gets a string descriptor
668  * @dev: the device whose string descriptor is being retrieved
669  * @langid: code for language chosen (from string descriptor zero)
670  * @index: the number of the descriptor
671  * @buf: where to put the string
672  * @size: how big is "buf"?
673  * Context: !in_interrupt ()
674  *
675  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
676  * in little-endian byte order).
677  * The usb_string() function will often be a convenient way to turn
678  * these strings into kernel-printable form.
679  *
680  * Strings may be referenced in device, configuration, interface, or other
681  * descriptors, and could also be used in vendor-specific ways.
682  *
683  * This call is synchronous, and may not be used in an interrupt context.
684  *
685  * Return: The number of bytes received on success, or else the status code
686  * returned by the underlying usb_control_msg() call.
687  */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)688 static int usb_get_string(struct usb_device *dev, unsigned short langid,
689 			  unsigned char index, void *buf, int size)
690 {
691 	int i;
692 	int result;
693 
694 	for (i = 0; i < 3; ++i) {
695 		/* retry on length 0 or stall; some devices are flakey */
696 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
697 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
698 			(USB_DT_STRING << 8) + index, langid, buf, size,
699 			USB_CTRL_GET_TIMEOUT);
700 		if (result == 0 || result == -EPIPE)
701 			continue;
702 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
703 			result = -ENODATA;
704 			continue;
705 		}
706 		break;
707 	}
708 	return result;
709 }
710 
usb_try_string_workarounds(unsigned char * buf,int * length)711 static void usb_try_string_workarounds(unsigned char *buf, int *length)
712 {
713 	int newlength, oldlength = *length;
714 
715 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
716 		if (!isprint(buf[newlength]) || buf[newlength + 1])
717 			break;
718 
719 	if (newlength > 2) {
720 		buf[0] = newlength;
721 		*length = newlength;
722 	}
723 }
724 
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)725 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
726 			  unsigned int index, unsigned char *buf)
727 {
728 	int rc;
729 
730 	/* Try to read the string descriptor by asking for the maximum
731 	 * possible number of bytes */
732 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
733 		rc = -EIO;
734 	else
735 		rc = usb_get_string(dev, langid, index, buf, 255);
736 
737 	/* If that failed try to read the descriptor length, then
738 	 * ask for just that many bytes */
739 	if (rc < 2) {
740 		rc = usb_get_string(dev, langid, index, buf, 2);
741 		if (rc == 2)
742 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
743 	}
744 
745 	if (rc >= 2) {
746 		if (!buf[0] && !buf[1])
747 			usb_try_string_workarounds(buf, &rc);
748 
749 		/* There might be extra junk at the end of the descriptor */
750 		if (buf[0] < rc)
751 			rc = buf[0];
752 
753 		rc = rc - (rc & 1); /* force a multiple of two */
754 	}
755 
756 	if (rc < 2)
757 		rc = (rc < 0 ? rc : -EINVAL);
758 
759 	return rc;
760 }
761 
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)762 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
763 {
764 	int err;
765 
766 	if (dev->have_langid)
767 		return 0;
768 
769 	if (dev->string_langid < 0)
770 		return -EPIPE;
771 
772 	err = usb_string_sub(dev, 0, 0, tbuf);
773 
774 	/* If the string was reported but is malformed, default to english
775 	 * (0x0409) */
776 	if (err == -ENODATA || (err > 0 && err < 4)) {
777 		dev->string_langid = 0x0409;
778 		dev->have_langid = 1;
779 		dev_err(&dev->dev,
780 			"language id specifier not provided by device, defaulting to English\n");
781 		return 0;
782 	}
783 
784 	/* In case of all other errors, we assume the device is not able to
785 	 * deal with strings at all. Set string_langid to -1 in order to
786 	 * prevent any string to be retrieved from the device */
787 	if (err < 0) {
788 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
789 					err);
790 		dev->string_langid = -1;
791 		return -EPIPE;
792 	}
793 
794 	/* always use the first langid listed */
795 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
796 	dev->have_langid = 1;
797 	dev_dbg(&dev->dev, "default language 0x%04x\n",
798 				dev->string_langid);
799 	return 0;
800 }
801 
802 /**
803  * usb_string - returns UTF-8 version of a string descriptor
804  * @dev: the device whose string descriptor is being retrieved
805  * @index: the number of the descriptor
806  * @buf: where to put the string
807  * @size: how big is "buf"?
808  * Context: !in_interrupt ()
809  *
810  * This converts the UTF-16LE encoded strings returned by devices, from
811  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
812  * that are more usable in most kernel contexts.  Note that this function
813  * chooses strings in the first language supported by the device.
814  *
815  * This call is synchronous, and may not be used in an interrupt context.
816  *
817  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
818  */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)819 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
820 {
821 	unsigned char *tbuf;
822 	int err;
823 
824 	if (dev->state == USB_STATE_SUSPENDED)
825 		return -EHOSTUNREACH;
826 	if (size <= 0 || !buf)
827 		return -EINVAL;
828 	buf[0] = 0;
829 	if (index <= 0 || index >= 256)
830 		return -EINVAL;
831 	tbuf = kmalloc(256, GFP_NOIO);
832 	if (!tbuf)
833 		return -ENOMEM;
834 
835 	err = usb_get_langid(dev, tbuf);
836 	if (err < 0)
837 		goto errout;
838 
839 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
840 	if (err < 0)
841 		goto errout;
842 
843 	size--;		/* leave room for trailing NULL char in output buffer */
844 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
845 			UTF16_LITTLE_ENDIAN, buf, size);
846 	buf[err] = 0;
847 
848 	if (tbuf[1] != USB_DT_STRING)
849 		dev_dbg(&dev->dev,
850 			"wrong descriptor type %02x for string %d (\"%s\")\n",
851 			tbuf[1], index, buf);
852 
853  errout:
854 	kfree(tbuf);
855 	return err;
856 }
857 EXPORT_SYMBOL_GPL(usb_string);
858 
859 /* one UTF-8-encoded 16-bit character has at most three bytes */
860 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
861 
862 /**
863  * usb_cache_string - read a string descriptor and cache it for later use
864  * @udev: the device whose string descriptor is being read
865  * @index: the descriptor index
866  *
867  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
868  * or %NULL if the index is 0 or the string could not be read.
869  */
usb_cache_string(struct usb_device * udev,int index)870 char *usb_cache_string(struct usb_device *udev, int index)
871 {
872 	char *buf;
873 	char *smallbuf = NULL;
874 	int len;
875 
876 	if (index <= 0)
877 		return NULL;
878 
879 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
880 	if (buf) {
881 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
882 		if (len > 0) {
883 			smallbuf = kmalloc(++len, GFP_NOIO);
884 			if (!smallbuf)
885 				return buf;
886 			memcpy(smallbuf, buf, len);
887 		}
888 		kfree(buf);
889 	}
890 	return smallbuf;
891 }
892 
893 /*
894  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
895  * @dev: the device whose device descriptor is being updated
896  * @size: how much of the descriptor to read
897  * Context: !in_interrupt ()
898  *
899  * Updates the copy of the device descriptor stored in the device structure,
900  * which dedicates space for this purpose.
901  *
902  * Not exported, only for use by the core.  If drivers really want to read
903  * the device descriptor directly, they can call usb_get_descriptor() with
904  * type = USB_DT_DEVICE and index = 0.
905  *
906  * This call is synchronous, and may not be used in an interrupt context.
907  *
908  * Return: The number of bytes received on success, or else the status code
909  * returned by the underlying usb_control_msg() call.
910  */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)911 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
912 {
913 	struct usb_device_descriptor *desc;
914 	int ret;
915 
916 	if (size > sizeof(*desc))
917 		return -EINVAL;
918 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
919 	if (!desc)
920 		return -ENOMEM;
921 
922 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
923 	if (ret >= 0)
924 		memcpy(&dev->descriptor, desc, size);
925 	kfree(desc);
926 	return ret;
927 }
928 
929 /**
930  * usb_get_status - issues a GET_STATUS call
931  * @dev: the device whose status is being checked
932  * @type: USB_RECIP_*; for device, interface, or endpoint
933  * @target: zero (for device), else interface or endpoint number
934  * @data: pointer to two bytes of bitmap data
935  * Context: !in_interrupt ()
936  *
937  * Returns device, interface, or endpoint status.  Normally only of
938  * interest to see if the device is self powered, or has enabled the
939  * remote wakeup facility; or whether a bulk or interrupt endpoint
940  * is halted ("stalled").
941  *
942  * Bits in these status bitmaps are set using the SET_FEATURE request,
943  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
944  * function should be used to clear halt ("stall") status.
945  *
946  * This call is synchronous, and may not be used in an interrupt context.
947  *
948  * Returns 0 and the status value in *@data (in host byte order) on success,
949  * or else the status code from the underlying usb_control_msg() call.
950  */
usb_get_status(struct usb_device * dev,int type,int target,void * data)951 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
952 {
953 	int ret;
954 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
955 
956 	if (!status)
957 		return -ENOMEM;
958 
959 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
960 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
961 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
962 
963 	if (ret == 2) {
964 		*(u16 *) data = le16_to_cpu(*status);
965 		ret = 0;
966 	} else if (ret >= 0) {
967 		ret = -EIO;
968 	}
969 	kfree(status);
970 	return ret;
971 }
972 EXPORT_SYMBOL_GPL(usb_get_status);
973 
974 /**
975  * usb_clear_halt - tells device to clear endpoint halt/stall condition
976  * @dev: device whose endpoint is halted
977  * @pipe: endpoint "pipe" being cleared
978  * Context: !in_interrupt ()
979  *
980  * This is used to clear halt conditions for bulk and interrupt endpoints,
981  * as reported by URB completion status.  Endpoints that are halted are
982  * sometimes referred to as being "stalled".  Such endpoints are unable
983  * to transmit or receive data until the halt status is cleared.  Any URBs
984  * queued for such an endpoint should normally be unlinked by the driver
985  * before clearing the halt condition, as described in sections 5.7.5
986  * and 5.8.5 of the USB 2.0 spec.
987  *
988  * Note that control and isochronous endpoints don't halt, although control
989  * endpoints report "protocol stall" (for unsupported requests) using the
990  * same status code used to report a true stall.
991  *
992  * This call is synchronous, and may not be used in an interrupt context.
993  *
994  * Return: Zero on success, or else the status code returned by the
995  * underlying usb_control_msg() call.
996  */
usb_clear_halt(struct usb_device * dev,int pipe)997 int usb_clear_halt(struct usb_device *dev, int pipe)
998 {
999 	int result;
1000 	int endp = usb_pipeendpoint(pipe);
1001 
1002 	if (usb_pipein(pipe))
1003 		endp |= USB_DIR_IN;
1004 
1005 	/* we don't care if it wasn't halted first. in fact some devices
1006 	 * (like some ibmcam model 1 units) seem to expect hosts to make
1007 	 * this request for iso endpoints, which can't halt!
1008 	 */
1009 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1010 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1011 		USB_ENDPOINT_HALT, endp, NULL, 0,
1012 		USB_CTRL_SET_TIMEOUT);
1013 
1014 	/* don't un-halt or force to DATA0 except on success */
1015 	if (result < 0)
1016 		return result;
1017 
1018 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1019 	 * the clear "took", so some devices could lock up if you check...
1020 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1021 	 *
1022 	 * NOTE:  make sure the logic here doesn't diverge much from
1023 	 * the copy in usb-storage, for as long as we need two copies.
1024 	 */
1025 
1026 	usb_reset_endpoint(dev, endp);
1027 
1028 	return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(usb_clear_halt);
1031 
create_intf_ep_devs(struct usb_interface * intf)1032 static int create_intf_ep_devs(struct usb_interface *intf)
1033 {
1034 	struct usb_device *udev = interface_to_usbdev(intf);
1035 	struct usb_host_interface *alt = intf->cur_altsetting;
1036 	int i;
1037 
1038 	if (intf->ep_devs_created || intf->unregistering)
1039 		return 0;
1040 
1041 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1042 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1043 	intf->ep_devs_created = 1;
1044 	return 0;
1045 }
1046 
remove_intf_ep_devs(struct usb_interface * intf)1047 static void remove_intf_ep_devs(struct usb_interface *intf)
1048 {
1049 	struct usb_host_interface *alt = intf->cur_altsetting;
1050 	int i;
1051 
1052 	if (!intf->ep_devs_created)
1053 		return;
1054 
1055 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1056 		usb_remove_ep_devs(&alt->endpoint[i]);
1057 	intf->ep_devs_created = 0;
1058 }
1059 
1060 /**
1061  * usb_disable_endpoint -- Disable an endpoint by address
1062  * @dev: the device whose endpoint is being disabled
1063  * @epaddr: the endpoint's address.  Endpoint number for output,
1064  *	endpoint number + USB_DIR_IN for input
1065  * @reset_hardware: flag to erase any endpoint state stored in the
1066  *	controller hardware
1067  *
1068  * Disables the endpoint for URB submission and nukes all pending URBs.
1069  * If @reset_hardware is set then also deallocates hcd/hardware state
1070  * for the endpoint.
1071  */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1072 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1073 		bool reset_hardware)
1074 {
1075 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1076 	struct usb_host_endpoint *ep;
1077 
1078 	if (!dev)
1079 		return;
1080 
1081 	if (usb_endpoint_out(epaddr)) {
1082 		ep = dev->ep_out[epnum];
1083 		if (reset_hardware && epnum != 0)
1084 			dev->ep_out[epnum] = NULL;
1085 	} else {
1086 		ep = dev->ep_in[epnum];
1087 		if (reset_hardware && epnum != 0)
1088 			dev->ep_in[epnum] = NULL;
1089 	}
1090 	if (ep) {
1091 		ep->enabled = 0;
1092 		usb_hcd_flush_endpoint(dev, ep);
1093 		if (reset_hardware)
1094 			usb_hcd_disable_endpoint(dev, ep);
1095 	}
1096 }
1097 
1098 /**
1099  * usb_reset_endpoint - Reset an endpoint's state.
1100  * @dev: the device whose endpoint is to be reset
1101  * @epaddr: the endpoint's address.  Endpoint number for output,
1102  *	endpoint number + USB_DIR_IN for input
1103  *
1104  * Resets any host-side endpoint state such as the toggle bit,
1105  * sequence number or current window.
1106  */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1107 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1108 {
1109 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1110 	struct usb_host_endpoint *ep;
1111 
1112 	if (usb_endpoint_out(epaddr))
1113 		ep = dev->ep_out[epnum];
1114 	else
1115 		ep = dev->ep_in[epnum];
1116 	if (ep)
1117 		usb_hcd_reset_endpoint(dev, ep);
1118 }
1119 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1120 
1121 
1122 /**
1123  * usb_disable_interface -- Disable all endpoints for an interface
1124  * @dev: the device whose interface is being disabled
1125  * @intf: pointer to the interface descriptor
1126  * @reset_hardware: flag to erase any endpoint state stored in the
1127  *	controller hardware
1128  *
1129  * Disables all the endpoints for the interface's current altsetting.
1130  */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1131 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1132 		bool reset_hardware)
1133 {
1134 	struct usb_host_interface *alt = intf->cur_altsetting;
1135 	int i;
1136 
1137 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1138 		usb_disable_endpoint(dev,
1139 				alt->endpoint[i].desc.bEndpointAddress,
1140 				reset_hardware);
1141 	}
1142 }
1143 
1144 /*
1145  * usb_disable_device_endpoints -- Disable all endpoints for a device
1146  * @dev: the device whose endpoints are being disabled
1147  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1148  */
usb_disable_device_endpoints(struct usb_device * dev,int skip_ep0)1149 static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1150 {
1151 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1152 	int i;
1153 
1154 	if (hcd->driver->check_bandwidth) {
1155 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1156 		for (i = skip_ep0; i < 16; ++i) {
1157 			usb_disable_endpoint(dev, i, false);
1158 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1159 		}
1160 		/* Remove endpoints from the host controller internal state */
1161 		mutex_lock(hcd->bandwidth_mutex);
1162 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1163 		mutex_unlock(hcd->bandwidth_mutex);
1164 	}
1165 	/* Second pass: remove endpoint pointers */
1166 	for (i = skip_ep0; i < 16; ++i) {
1167 		usb_disable_endpoint(dev, i, true);
1168 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1169 	}
1170 }
1171 
1172 /**
1173  * usb_disable_device - Disable all the endpoints for a USB device
1174  * @dev: the device whose endpoints are being disabled
1175  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1176  *
1177  * Disables all the device's endpoints, potentially including endpoint 0.
1178  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1179  * pending urbs) and usbcore state for the interfaces, so that usbcore
1180  * must usb_set_configuration() before any interfaces could be used.
1181  */
usb_disable_device(struct usb_device * dev,int skip_ep0)1182 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1183 {
1184 	int i;
1185 
1186 	/* getting rid of interfaces will disconnect
1187 	 * any drivers bound to them (a key side effect)
1188 	 */
1189 	if (dev->actconfig) {
1190 		/*
1191 		 * FIXME: In order to avoid self-deadlock involving the
1192 		 * bandwidth_mutex, we have to mark all the interfaces
1193 		 * before unregistering any of them.
1194 		 */
1195 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1196 			dev->actconfig->interface[i]->unregistering = 1;
1197 
1198 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1199 			struct usb_interface	*interface;
1200 
1201 			/* remove this interface if it has been registered */
1202 			interface = dev->actconfig->interface[i];
1203 			if (!device_is_registered(&interface->dev))
1204 				continue;
1205 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1206 				dev_name(&interface->dev));
1207 			remove_intf_ep_devs(interface);
1208 			device_del(&interface->dev);
1209 		}
1210 
1211 		/* Now that the interfaces are unbound, nobody should
1212 		 * try to access them.
1213 		 */
1214 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1215 			put_device(&dev->actconfig->interface[i]->dev);
1216 			dev->actconfig->interface[i] = NULL;
1217 		}
1218 
1219 		usb_disable_usb2_hardware_lpm(dev);
1220 		usb_unlocked_disable_lpm(dev);
1221 		usb_disable_ltm(dev);
1222 
1223 		dev->actconfig = NULL;
1224 		if (dev->state == USB_STATE_CONFIGURED)
1225 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1226 	}
1227 
1228 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1229 		skip_ep0 ? "non-ep0" : "all");
1230 
1231 	usb_disable_device_endpoints(dev, skip_ep0);
1232 }
1233 
1234 /**
1235  * usb_enable_endpoint - Enable an endpoint for USB communications
1236  * @dev: the device whose interface is being enabled
1237  * @ep: the endpoint
1238  * @reset_ep: flag to reset the endpoint state
1239  *
1240  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1241  * For control endpoints, both the input and output sides are handled.
1242  */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1243 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1244 		bool reset_ep)
1245 {
1246 	int epnum = usb_endpoint_num(&ep->desc);
1247 	int is_out = usb_endpoint_dir_out(&ep->desc);
1248 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1249 
1250 	if (reset_ep)
1251 		usb_hcd_reset_endpoint(dev, ep);
1252 	if (is_out || is_control)
1253 		dev->ep_out[epnum] = ep;
1254 	if (!is_out || is_control)
1255 		dev->ep_in[epnum] = ep;
1256 	ep->enabled = 1;
1257 }
1258 
1259 /**
1260  * usb_enable_interface - Enable all the endpoints for an interface
1261  * @dev: the device whose interface is being enabled
1262  * @intf: pointer to the interface descriptor
1263  * @reset_eps: flag to reset the endpoints' state
1264  *
1265  * Enables all the endpoints for the interface's current altsetting.
1266  */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1267 void usb_enable_interface(struct usb_device *dev,
1268 		struct usb_interface *intf, bool reset_eps)
1269 {
1270 	struct usb_host_interface *alt = intf->cur_altsetting;
1271 	int i;
1272 
1273 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1274 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1275 }
1276 
1277 /**
1278  * usb_set_interface - Makes a particular alternate setting be current
1279  * @dev: the device whose interface is being updated
1280  * @interface: the interface being updated
1281  * @alternate: the setting being chosen.
1282  * Context: !in_interrupt ()
1283  *
1284  * This is used to enable data transfers on interfaces that may not
1285  * be enabled by default.  Not all devices support such configurability.
1286  * Only the driver bound to an interface may change its setting.
1287  *
1288  * Within any given configuration, each interface may have several
1289  * alternative settings.  These are often used to control levels of
1290  * bandwidth consumption.  For example, the default setting for a high
1291  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1292  * while interrupt transfers of up to 3KBytes per microframe are legal.
1293  * Also, isochronous endpoints may never be part of an
1294  * interface's default setting.  To access such bandwidth, alternate
1295  * interface settings must be made current.
1296  *
1297  * Note that in the Linux USB subsystem, bandwidth associated with
1298  * an endpoint in a given alternate setting is not reserved until an URB
1299  * is submitted that needs that bandwidth.  Some other operating systems
1300  * allocate bandwidth early, when a configuration is chosen.
1301  *
1302  * xHCI reserves bandwidth and configures the alternate setting in
1303  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1304  * may be disabled. Drivers cannot rely on any particular alternate
1305  * setting being in effect after a failure.
1306  *
1307  * This call is synchronous, and may not be used in an interrupt context.
1308  * Also, drivers must not change altsettings while urbs are scheduled for
1309  * endpoints in that interface; all such urbs must first be completed
1310  * (perhaps forced by unlinking).
1311  *
1312  * Return: Zero on success, or else the status code returned by the
1313  * underlying usb_control_msg() call.
1314  */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1315 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1316 {
1317 	struct usb_interface *iface;
1318 	struct usb_host_interface *alt;
1319 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1320 	int i, ret, manual = 0;
1321 	unsigned int epaddr;
1322 	unsigned int pipe;
1323 
1324 	if (dev->state == USB_STATE_SUSPENDED)
1325 		return -EHOSTUNREACH;
1326 
1327 	iface = usb_ifnum_to_if(dev, interface);
1328 	if (!iface) {
1329 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1330 			interface);
1331 		return -EINVAL;
1332 	}
1333 	if (iface->unregistering)
1334 		return -ENODEV;
1335 
1336 	alt = usb_altnum_to_altsetting(iface, alternate);
1337 	if (!alt) {
1338 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1339 			 alternate);
1340 		return -EINVAL;
1341 	}
1342 	/*
1343 	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1344 	 * including freeing dropped endpoint ring buffers.
1345 	 * Make sure the interface endpoints are flushed before that
1346 	 */
1347 	usb_disable_interface(dev, iface, false);
1348 
1349 	/* Make sure we have enough bandwidth for this alternate interface.
1350 	 * Remove the current alt setting and add the new alt setting.
1351 	 */
1352 	mutex_lock(hcd->bandwidth_mutex);
1353 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1354 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1355 	 */
1356 	if (usb_disable_lpm(dev)) {
1357 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1358 		mutex_unlock(hcd->bandwidth_mutex);
1359 		return -ENOMEM;
1360 	}
1361 	/* Changing alt-setting also frees any allocated streams */
1362 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1363 		iface->cur_altsetting->endpoint[i].streams = 0;
1364 
1365 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1366 	if (ret < 0) {
1367 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1368 				alternate);
1369 		usb_enable_lpm(dev);
1370 		mutex_unlock(hcd->bandwidth_mutex);
1371 		return ret;
1372 	}
1373 
1374 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1375 		ret = -EPIPE;
1376 	else
1377 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1378 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1379 				   alternate, interface, NULL, 0, 5000);
1380 
1381 	/* 9.4.10 says devices don't need this and are free to STALL the
1382 	 * request if the interface only has one alternate setting.
1383 	 */
1384 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1385 		dev_dbg(&dev->dev,
1386 			"manual set_interface for iface %d, alt %d\n",
1387 			interface, alternate);
1388 		manual = 1;
1389 	} else if (ret < 0) {
1390 		/* Re-instate the old alt setting */
1391 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1392 		usb_enable_lpm(dev);
1393 		mutex_unlock(hcd->bandwidth_mutex);
1394 		return ret;
1395 	}
1396 	mutex_unlock(hcd->bandwidth_mutex);
1397 
1398 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1399 	 * when they implement async or easily-killable versions of this or
1400 	 * other "should-be-internal" functions (like clear_halt).
1401 	 * should hcd+usbcore postprocess control requests?
1402 	 */
1403 
1404 	/* prevent submissions using previous endpoint settings */
1405 	if (iface->cur_altsetting != alt) {
1406 		remove_intf_ep_devs(iface);
1407 		usb_remove_sysfs_intf_files(iface);
1408 	}
1409 	usb_disable_interface(dev, iface, true);
1410 
1411 	iface->cur_altsetting = alt;
1412 
1413 	/* Now that the interface is installed, re-enable LPM. */
1414 	usb_unlocked_enable_lpm(dev);
1415 
1416 	/* If the interface only has one altsetting and the device didn't
1417 	 * accept the request, we attempt to carry out the equivalent action
1418 	 * by manually clearing the HALT feature for each endpoint in the
1419 	 * new altsetting.
1420 	 */
1421 	if (manual) {
1422 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1423 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1424 			pipe = __create_pipe(dev,
1425 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1426 					(usb_endpoint_out(epaddr) ?
1427 					USB_DIR_OUT : USB_DIR_IN);
1428 
1429 			usb_clear_halt(dev, pipe);
1430 		}
1431 	}
1432 
1433 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1434 	 *
1435 	 * Note:
1436 	 * Despite EP0 is always present in all interfaces/AS, the list of
1437 	 * endpoints from the descriptor does not contain EP0. Due to its
1438 	 * omnipresence one might expect EP0 being considered "affected" by
1439 	 * any SetInterface request and hence assume toggles need to be reset.
1440 	 * However, EP0 toggles are re-synced for every individual transfer
1441 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1442 	 * (Likewise, EP0 never "halts" on well designed devices.)
1443 	 */
1444 	usb_enable_interface(dev, iface, true);
1445 	if (device_is_registered(&iface->dev)) {
1446 		usb_create_sysfs_intf_files(iface);
1447 		create_intf_ep_devs(iface);
1448 	}
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(usb_set_interface);
1452 
1453 /**
1454  * usb_reset_configuration - lightweight device reset
1455  * @dev: the device whose configuration is being reset
1456  *
1457  * This issues a standard SET_CONFIGURATION request to the device using
1458  * the current configuration.  The effect is to reset most USB-related
1459  * state in the device, including interface altsettings (reset to zero),
1460  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1461  * endpoints).  Other usbcore state is unchanged, including bindings of
1462  * usb device drivers to interfaces.
1463  *
1464  * Because this affects multiple interfaces, avoid using this with composite
1465  * (multi-interface) devices.  Instead, the driver for each interface may
1466  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1467  * some devices don't support the SET_INTERFACE request, and others won't
1468  * reset all the interface state (notably endpoint state).  Resetting the whole
1469  * configuration would affect other drivers' interfaces.
1470  *
1471  * The caller must own the device lock.
1472  *
1473  * Return: Zero on success, else a negative error code.
1474  *
1475  * If this routine fails the device will probably be in an unusable state
1476  * with endpoints disabled, and interfaces only partially enabled.
1477  */
usb_reset_configuration(struct usb_device * dev)1478 int usb_reset_configuration(struct usb_device *dev)
1479 {
1480 	int			i, retval;
1481 	struct usb_host_config	*config;
1482 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1483 
1484 	if (dev->state == USB_STATE_SUSPENDED)
1485 		return -EHOSTUNREACH;
1486 
1487 	/* caller must have locked the device and must own
1488 	 * the usb bus readlock (so driver bindings are stable);
1489 	 * calls during probe() are fine
1490 	 */
1491 
1492 	usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1493 
1494 	config = dev->actconfig;
1495 	retval = 0;
1496 	mutex_lock(hcd->bandwidth_mutex);
1497 	/* Disable LPM, and re-enable it once the configuration is reset, so
1498 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1499 	 */
1500 	if (usb_disable_lpm(dev)) {
1501 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1502 		mutex_unlock(hcd->bandwidth_mutex);
1503 		return -ENOMEM;
1504 	}
1505 
1506 	/* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1507 	retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1508 	if (retval < 0) {
1509 		usb_enable_lpm(dev);
1510 		mutex_unlock(hcd->bandwidth_mutex);
1511 		return retval;
1512 	}
1513 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1514 			USB_REQ_SET_CONFIGURATION, 0,
1515 			config->desc.bConfigurationValue, 0,
1516 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1517 	if (retval < 0) {
1518 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1519 		usb_enable_lpm(dev);
1520 		mutex_unlock(hcd->bandwidth_mutex);
1521 		return retval;
1522 	}
1523 	mutex_unlock(hcd->bandwidth_mutex);
1524 
1525 	/* re-init hc/hcd interface/endpoint state */
1526 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1527 		struct usb_interface *intf = config->interface[i];
1528 		struct usb_host_interface *alt;
1529 
1530 		alt = usb_altnum_to_altsetting(intf, 0);
1531 
1532 		/* No altsetting 0?  We'll assume the first altsetting.
1533 		 * We could use a GetInterface call, but if a device is
1534 		 * so non-compliant that it doesn't have altsetting 0
1535 		 * then I wouldn't trust its reply anyway.
1536 		 */
1537 		if (!alt)
1538 			alt = &intf->altsetting[0];
1539 
1540 		if (alt != intf->cur_altsetting) {
1541 			remove_intf_ep_devs(intf);
1542 			usb_remove_sysfs_intf_files(intf);
1543 		}
1544 		intf->cur_altsetting = alt;
1545 		usb_enable_interface(dev, intf, true);
1546 		if (device_is_registered(&intf->dev)) {
1547 			usb_create_sysfs_intf_files(intf);
1548 			create_intf_ep_devs(intf);
1549 		}
1550 	}
1551 	/* Now that the interfaces are installed, re-enable LPM. */
1552 	usb_unlocked_enable_lpm(dev);
1553 	return 0;
1554 }
1555 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1556 
usb_release_interface(struct device * dev)1557 static void usb_release_interface(struct device *dev)
1558 {
1559 	struct usb_interface *intf = to_usb_interface(dev);
1560 	struct usb_interface_cache *intfc =
1561 			altsetting_to_usb_interface_cache(intf->altsetting);
1562 
1563 	kref_put(&intfc->ref, usb_release_interface_cache);
1564 	usb_put_dev(interface_to_usbdev(intf));
1565 	kfree(intf);
1566 }
1567 
1568 /*
1569  * usb_deauthorize_interface - deauthorize an USB interface
1570  *
1571  * @intf: USB interface structure
1572  */
usb_deauthorize_interface(struct usb_interface * intf)1573 void usb_deauthorize_interface(struct usb_interface *intf)
1574 {
1575 	struct device *dev = &intf->dev;
1576 
1577 	device_lock(dev->parent);
1578 
1579 	if (intf->authorized) {
1580 		device_lock(dev);
1581 		intf->authorized = 0;
1582 		device_unlock(dev);
1583 
1584 		usb_forced_unbind_intf(intf);
1585 	}
1586 
1587 	device_unlock(dev->parent);
1588 }
1589 
1590 /*
1591  * usb_authorize_interface - authorize an USB interface
1592  *
1593  * @intf: USB interface structure
1594  */
usb_authorize_interface(struct usb_interface * intf)1595 void usb_authorize_interface(struct usb_interface *intf)
1596 {
1597 	struct device *dev = &intf->dev;
1598 
1599 	if (!intf->authorized) {
1600 		device_lock(dev);
1601 		intf->authorized = 1; /* authorize interface */
1602 		device_unlock(dev);
1603 	}
1604 }
1605 
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1606 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1607 {
1608 	struct usb_device *usb_dev;
1609 	struct usb_interface *intf;
1610 	struct usb_host_interface *alt;
1611 
1612 	intf = to_usb_interface(dev);
1613 	usb_dev = interface_to_usbdev(intf);
1614 	alt = intf->cur_altsetting;
1615 
1616 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1617 		   alt->desc.bInterfaceClass,
1618 		   alt->desc.bInterfaceSubClass,
1619 		   alt->desc.bInterfaceProtocol))
1620 		return -ENOMEM;
1621 
1622 	if (add_uevent_var(env,
1623 		   "MODALIAS=usb:"
1624 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1625 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1626 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1627 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1628 		   usb_dev->descriptor.bDeviceClass,
1629 		   usb_dev->descriptor.bDeviceSubClass,
1630 		   usb_dev->descriptor.bDeviceProtocol,
1631 		   alt->desc.bInterfaceClass,
1632 		   alt->desc.bInterfaceSubClass,
1633 		   alt->desc.bInterfaceProtocol,
1634 		   alt->desc.bInterfaceNumber))
1635 		return -ENOMEM;
1636 
1637 	return 0;
1638 }
1639 
1640 struct device_type usb_if_device_type = {
1641 	.name =		"usb_interface",
1642 	.release =	usb_release_interface,
1643 	.uevent =	usb_if_uevent,
1644 };
1645 
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1646 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1647 						struct usb_host_config *config,
1648 						u8 inum)
1649 {
1650 	struct usb_interface_assoc_descriptor *retval = NULL;
1651 	struct usb_interface_assoc_descriptor *intf_assoc;
1652 	int first_intf;
1653 	int last_intf;
1654 	int i;
1655 
1656 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1657 		intf_assoc = config->intf_assoc[i];
1658 		if (intf_assoc->bInterfaceCount == 0)
1659 			continue;
1660 
1661 		first_intf = intf_assoc->bFirstInterface;
1662 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1663 		if (inum >= first_intf && inum <= last_intf) {
1664 			if (!retval)
1665 				retval = intf_assoc;
1666 			else
1667 				dev_err(&dev->dev, "Interface #%d referenced"
1668 					" by multiple IADs\n", inum);
1669 		}
1670 	}
1671 
1672 	return retval;
1673 }
1674 
1675 
1676 /*
1677  * Internal function to queue a device reset
1678  * See usb_queue_reset_device() for more details
1679  */
__usb_queue_reset_device(struct work_struct * ws)1680 static void __usb_queue_reset_device(struct work_struct *ws)
1681 {
1682 	int rc;
1683 	struct usb_interface *iface =
1684 		container_of(ws, struct usb_interface, reset_ws);
1685 	struct usb_device *udev = interface_to_usbdev(iface);
1686 
1687 	rc = usb_lock_device_for_reset(udev, iface);
1688 	if (rc >= 0) {
1689 		usb_reset_device(udev);
1690 		usb_unlock_device(udev);
1691 	}
1692 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1693 }
1694 
1695 
1696 /*
1697  * usb_set_configuration - Makes a particular device setting be current
1698  * @dev: the device whose configuration is being updated
1699  * @configuration: the configuration being chosen.
1700  * Context: !in_interrupt(), caller owns the device lock
1701  *
1702  * This is used to enable non-default device modes.  Not all devices
1703  * use this kind of configurability; many devices only have one
1704  * configuration.
1705  *
1706  * @configuration is the value of the configuration to be installed.
1707  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1708  * must be non-zero; a value of zero indicates that the device in
1709  * unconfigured.  However some devices erroneously use 0 as one of their
1710  * configuration values.  To help manage such devices, this routine will
1711  * accept @configuration = -1 as indicating the device should be put in
1712  * an unconfigured state.
1713  *
1714  * USB device configurations may affect Linux interoperability,
1715  * power consumption and the functionality available.  For example,
1716  * the default configuration is limited to using 100mA of bus power,
1717  * so that when certain device functionality requires more power,
1718  * and the device is bus powered, that functionality should be in some
1719  * non-default device configuration.  Other device modes may also be
1720  * reflected as configuration options, such as whether two ISDN
1721  * channels are available independently; and choosing between open
1722  * standard device protocols (like CDC) or proprietary ones.
1723  *
1724  * Note that a non-authorized device (dev->authorized == 0) will only
1725  * be put in unconfigured mode.
1726  *
1727  * Note that USB has an additional level of device configurability,
1728  * associated with interfaces.  That configurability is accessed using
1729  * usb_set_interface().
1730  *
1731  * This call is synchronous. The calling context must be able to sleep,
1732  * must own the device lock, and must not hold the driver model's USB
1733  * bus mutex; usb interface driver probe() methods cannot use this routine.
1734  *
1735  * Returns zero on success, or else the status code returned by the
1736  * underlying call that failed.  On successful completion, each interface
1737  * in the original device configuration has been destroyed, and each one
1738  * in the new configuration has been probed by all relevant usb device
1739  * drivers currently known to the kernel.
1740  */
usb_set_configuration(struct usb_device * dev,int configuration)1741 int usb_set_configuration(struct usb_device *dev, int configuration)
1742 {
1743 	int i, ret;
1744 	struct usb_host_config *cp = NULL;
1745 	struct usb_interface **new_interfaces = NULL;
1746 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1747 	int n, nintf;
1748 
1749 	if (dev->authorized == 0 || configuration == -1)
1750 		configuration = 0;
1751 	else {
1752 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1753 			if (dev->config[i].desc.bConfigurationValue ==
1754 					configuration) {
1755 				cp = &dev->config[i];
1756 				break;
1757 			}
1758 		}
1759 	}
1760 	if ((!cp && configuration != 0))
1761 		return -EINVAL;
1762 
1763 	/* The USB spec says configuration 0 means unconfigured.
1764 	 * But if a device includes a configuration numbered 0,
1765 	 * we will accept it as a correctly configured state.
1766 	 * Use -1 if you really want to unconfigure the device.
1767 	 */
1768 	if (cp && configuration == 0)
1769 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1770 
1771 	/* Allocate memory for new interfaces before doing anything else,
1772 	 * so that if we run out then nothing will have changed. */
1773 	n = nintf = 0;
1774 	if (cp) {
1775 		nintf = cp->desc.bNumInterfaces;
1776 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1777 				GFP_NOIO);
1778 		if (!new_interfaces) {
1779 			dev_err(&dev->dev, "Out of memory\n");
1780 			return -ENOMEM;
1781 		}
1782 
1783 		for (; n < nintf; ++n) {
1784 			new_interfaces[n] = kzalloc(
1785 					sizeof(struct usb_interface),
1786 					GFP_NOIO);
1787 			if (!new_interfaces[n]) {
1788 				dev_err(&dev->dev, "Out of memory\n");
1789 				ret = -ENOMEM;
1790 free_interfaces:
1791 				while (--n >= 0)
1792 					kfree(new_interfaces[n]);
1793 				kfree(new_interfaces);
1794 				return ret;
1795 			}
1796 		}
1797 
1798 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1799 		if (i < 0)
1800 			dev_warn(&dev->dev, "new config #%d exceeds power "
1801 					"limit by %dmA\n",
1802 					configuration, -i);
1803 	}
1804 
1805 	/* Wake up the device so we can send it the Set-Config request */
1806 	ret = usb_autoresume_device(dev);
1807 	if (ret)
1808 		goto free_interfaces;
1809 
1810 	/* if it's already configured, clear out old state first.
1811 	 * getting rid of old interfaces means unbinding their drivers.
1812 	 */
1813 	if (dev->state != USB_STATE_ADDRESS)
1814 		usb_disable_device(dev, 1);	/* Skip ep0 */
1815 
1816 	/* Get rid of pending async Set-Config requests for this device */
1817 	cancel_async_set_config(dev);
1818 
1819 	/* Make sure we have bandwidth (and available HCD resources) for this
1820 	 * configuration.  Remove endpoints from the schedule if we're dropping
1821 	 * this configuration to set configuration 0.  After this point, the
1822 	 * host controller will not allow submissions to dropped endpoints.  If
1823 	 * this call fails, the device state is unchanged.
1824 	 */
1825 	mutex_lock(hcd->bandwidth_mutex);
1826 	/* Disable LPM, and re-enable it once the new configuration is
1827 	 * installed, so that the xHCI driver can recalculate the U1/U2
1828 	 * timeouts.
1829 	 */
1830 	if (dev->actconfig && usb_disable_lpm(dev)) {
1831 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1832 		mutex_unlock(hcd->bandwidth_mutex);
1833 		ret = -ENOMEM;
1834 		goto free_interfaces;
1835 	}
1836 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1837 	if (ret < 0) {
1838 		if (dev->actconfig)
1839 			usb_enable_lpm(dev);
1840 		mutex_unlock(hcd->bandwidth_mutex);
1841 		usb_autosuspend_device(dev);
1842 		goto free_interfaces;
1843 	}
1844 
1845 	/*
1846 	 * Initialize the new interface structures and the
1847 	 * hc/hcd/usbcore interface/endpoint state.
1848 	 */
1849 	for (i = 0; i < nintf; ++i) {
1850 		struct usb_interface_cache *intfc;
1851 		struct usb_interface *intf;
1852 		struct usb_host_interface *alt;
1853 
1854 		cp->interface[i] = intf = new_interfaces[i];
1855 		intfc = cp->intf_cache[i];
1856 		intf->altsetting = intfc->altsetting;
1857 		intf->num_altsetting = intfc->num_altsetting;
1858 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1859 		kref_get(&intfc->ref);
1860 
1861 		alt = usb_altnum_to_altsetting(intf, 0);
1862 
1863 		/* No altsetting 0?  We'll assume the first altsetting.
1864 		 * We could use a GetInterface call, but if a device is
1865 		 * so non-compliant that it doesn't have altsetting 0
1866 		 * then I wouldn't trust its reply anyway.
1867 		 */
1868 		if (!alt)
1869 			alt = &intf->altsetting[0];
1870 
1871 		intf->intf_assoc =
1872 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1873 		intf->cur_altsetting = alt;
1874 		usb_enable_interface(dev, intf, true);
1875 		intf->dev.parent = &dev->dev;
1876 		intf->dev.driver = NULL;
1877 		intf->dev.bus = &usb_bus_type;
1878 		intf->dev.type = &usb_if_device_type;
1879 		intf->dev.groups = usb_interface_groups;
1880 		intf->dev.dma_mask = dev->dev.dma_mask;
1881 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1882 		intf->minor = -1;
1883 		device_initialize(&intf->dev);
1884 		pm_runtime_no_callbacks(&intf->dev);
1885 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1886 			dev->bus->busnum, dev->devpath,
1887 			configuration, alt->desc.bInterfaceNumber);
1888 		usb_get_dev(dev);
1889 	}
1890 	kfree(new_interfaces);
1891 
1892 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1893 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1894 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1895 	if (ret < 0 && cp) {
1896 		/*
1897 		 * All the old state is gone, so what else can we do?
1898 		 * The device is probably useless now anyway.
1899 		 */
1900 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1901 		for (i = 0; i < nintf; ++i) {
1902 			usb_disable_interface(dev, cp->interface[i], true);
1903 			put_device(&cp->interface[i]->dev);
1904 			cp->interface[i] = NULL;
1905 		}
1906 		cp = NULL;
1907 	}
1908 
1909 	dev->actconfig = cp;
1910 	mutex_unlock(hcd->bandwidth_mutex);
1911 
1912 	if (!cp) {
1913 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1914 
1915 		/* Leave LPM disabled while the device is unconfigured. */
1916 		usb_autosuspend_device(dev);
1917 		return ret;
1918 	}
1919 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1920 
1921 	if (cp->string == NULL &&
1922 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1923 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1924 
1925 	/* Now that the interfaces are installed, re-enable LPM. */
1926 	usb_unlocked_enable_lpm(dev);
1927 	/* Enable LTM if it was turned off by usb_disable_device. */
1928 	usb_enable_ltm(dev);
1929 
1930 	/* Now that all the interfaces are set up, register them
1931 	 * to trigger binding of drivers to interfaces.  probe()
1932 	 * routines may install different altsettings and may
1933 	 * claim() any interfaces not yet bound.  Many class drivers
1934 	 * need that: CDC, audio, video, etc.
1935 	 */
1936 	for (i = 0; i < nintf; ++i) {
1937 		struct usb_interface *intf = cp->interface[i];
1938 
1939 		dev_dbg(&dev->dev,
1940 			"adding %s (config #%d, interface %d)\n",
1941 			dev_name(&intf->dev), configuration,
1942 			intf->cur_altsetting->desc.bInterfaceNumber);
1943 		device_enable_async_suspend(&intf->dev);
1944 		ret = device_add(&intf->dev);
1945 		if (ret != 0) {
1946 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1947 				dev_name(&intf->dev), ret);
1948 			continue;
1949 		}
1950 		create_intf_ep_devs(intf);
1951 	}
1952 
1953 	usb_autosuspend_device(dev);
1954 	return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(usb_set_configuration);
1957 
1958 static LIST_HEAD(set_config_list);
1959 static DEFINE_SPINLOCK(set_config_lock);
1960 
1961 struct set_config_request {
1962 	struct usb_device	*udev;
1963 	int			config;
1964 	struct work_struct	work;
1965 	struct list_head	node;
1966 };
1967 
1968 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)1969 static void driver_set_config_work(struct work_struct *work)
1970 {
1971 	struct set_config_request *req =
1972 		container_of(work, struct set_config_request, work);
1973 	struct usb_device *udev = req->udev;
1974 
1975 	usb_lock_device(udev);
1976 	spin_lock(&set_config_lock);
1977 	list_del(&req->node);
1978 	spin_unlock(&set_config_lock);
1979 
1980 	if (req->config >= -1)		/* Is req still valid? */
1981 		usb_set_configuration(udev, req->config);
1982 	usb_unlock_device(udev);
1983 	usb_put_dev(udev);
1984 	kfree(req);
1985 }
1986 
1987 /* Cancel pending Set-Config requests for a device whose configuration
1988  * was just changed
1989  */
cancel_async_set_config(struct usb_device * udev)1990 static void cancel_async_set_config(struct usb_device *udev)
1991 {
1992 	struct set_config_request *req;
1993 
1994 	spin_lock(&set_config_lock);
1995 	list_for_each_entry(req, &set_config_list, node) {
1996 		if (req->udev == udev)
1997 			req->config = -999;	/* Mark as cancelled */
1998 	}
1999 	spin_unlock(&set_config_lock);
2000 }
2001 
2002 /**
2003  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2004  * @udev: the device whose configuration is being updated
2005  * @config: the configuration being chosen.
2006  * Context: In process context, must be able to sleep
2007  *
2008  * Device interface drivers are not allowed to change device configurations.
2009  * This is because changing configurations will destroy the interface the
2010  * driver is bound to and create new ones; it would be like a floppy-disk
2011  * driver telling the computer to replace the floppy-disk drive with a
2012  * tape drive!
2013  *
2014  * Still, in certain specialized circumstances the need may arise.  This
2015  * routine gets around the normal restrictions by using a work thread to
2016  * submit the change-config request.
2017  *
2018  * Return: 0 if the request was successfully queued, error code otherwise.
2019  * The caller has no way to know whether the queued request will eventually
2020  * succeed.
2021  */
usb_driver_set_configuration(struct usb_device * udev,int config)2022 int usb_driver_set_configuration(struct usb_device *udev, int config)
2023 {
2024 	struct set_config_request *req;
2025 
2026 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2027 	if (!req)
2028 		return -ENOMEM;
2029 	req->udev = udev;
2030 	req->config = config;
2031 	INIT_WORK(&req->work, driver_set_config_work);
2032 
2033 	spin_lock(&set_config_lock);
2034 	list_add(&req->node, &set_config_list);
2035 	spin_unlock(&set_config_lock);
2036 
2037 	usb_get_dev(udev);
2038 	schedule_work(&req->work);
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2042