1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
84 */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list);
94 EXPORT_SYMBOL_GPL (usb_bus_list);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS 64
98 static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
is_root_hub(struct usb_device * udev)116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124 * Sharable chunks of root hub code.
125 */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171 };
172
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192 };
193
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor[18] = {
198 0x12, /* __u8 bLength; */
199 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
201
202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
203 0x00, /* __u8 bDeviceSubClass; */
204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
206
207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
210
211 0x03, /* __u8 iManufacturer; */
212 0x02, /* __u8 iProduct; */
213 0x01, /* __u8 iSerialNumber; */
214 0x01 /* __u8 bNumConfigurations; */
215 };
216
217
218 /*-------------------------------------------------------------------------*/
219
220 /* Configuration descriptors for our root hubs */
221
222 static const u8 fs_rh_config_descriptor[] = {
223
224 /* one configuration */
225 0x09, /* __u8 bLength; */
226 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
227 0x19, 0x00, /* __le16 wTotalLength; */
228 0x01, /* __u8 bNumInterfaces; (1) */
229 0x01, /* __u8 bConfigurationValue; */
230 0x00, /* __u8 iConfiguration; */
231 0xc0, /* __u8 bmAttributes;
232 Bit 7: must be set,
233 6: Self-powered,
234 5: Remote wakeup,
235 4..0: resvd */
236 0x00, /* __u8 MaxPower; */
237
238 /* USB 1.1:
239 * USB 2.0, single TT organization (mandatory):
240 * one interface, protocol 0
241 *
242 * USB 2.0, multiple TT organization (optional):
243 * two interfaces, protocols 1 (like single TT)
244 * and 2 (multiple TT mode) ... config is
245 * sometimes settable
246 * NOT IMPLEMENTED
247 */
248
249 /* one interface */
250 0x09, /* __u8 if_bLength; */
251 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
252 0x00, /* __u8 if_bInterfaceNumber; */
253 0x00, /* __u8 if_bAlternateSetting; */
254 0x01, /* __u8 if_bNumEndpoints; */
255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
256 0x00, /* __u8 if_bInterfaceSubClass; */
257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
258 0x00, /* __u8 if_iInterface; */
259
260 /* one endpoint (status change endpoint) */
261 0x07, /* __u8 ep_bLength; */
262 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
264 0x03, /* __u8 ep_bmAttributes; Interrupt */
265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
267 };
268
269 static const u8 hs_rh_config_descriptor[] = {
270
271 /* one configuration */
272 0x09, /* __u8 bLength; */
273 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
274 0x19, 0x00, /* __le16 wTotalLength; */
275 0x01, /* __u8 bNumInterfaces; (1) */
276 0x01, /* __u8 bConfigurationValue; */
277 0x00, /* __u8 iConfiguration; */
278 0xc0, /* __u8 bmAttributes;
279 Bit 7: must be set,
280 6: Self-powered,
281 5: Remote wakeup,
282 4..0: resvd */
283 0x00, /* __u8 MaxPower; */
284
285 /* USB 1.1:
286 * USB 2.0, single TT organization (mandatory):
287 * one interface, protocol 0
288 *
289 * USB 2.0, multiple TT organization (optional):
290 * two interfaces, protocols 1 (like single TT)
291 * and 2 (multiple TT mode) ... config is
292 * sometimes settable
293 * NOT IMPLEMENTED
294 */
295
296 /* one interface */
297 0x09, /* __u8 if_bLength; */
298 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
299 0x00, /* __u8 if_bInterfaceNumber; */
300 0x00, /* __u8 if_bAlternateSetting; */
301 0x01, /* __u8 if_bNumEndpoints; */
302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
303 0x00, /* __u8 if_bInterfaceSubClass; */
304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
305 0x00, /* __u8 if_iInterface; */
306
307 /* one endpoint (status change endpoint) */
308 0x07, /* __u8 ep_bLength; */
309 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
311 0x03, /* __u8 ep_bmAttributes; Interrupt */
312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313 * see hub.c:hub_configure() for details. */
314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
316 };
317
318 static const u8 ss_rh_config_descriptor[] = {
319 /* one configuration */
320 0x09, /* __u8 bLength; */
321 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
322 0x1f, 0x00, /* __le16 wTotalLength; */
323 0x01, /* __u8 bNumInterfaces; (1) */
324 0x01, /* __u8 bConfigurationValue; */
325 0x00, /* __u8 iConfiguration; */
326 0xc0, /* __u8 bmAttributes;
327 Bit 7: must be set,
328 6: Self-powered,
329 5: Remote wakeup,
330 4..0: resvd */
331 0x00, /* __u8 MaxPower; */
332
333 /* one interface */
334 0x09, /* __u8 if_bLength; */
335 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
336 0x00, /* __u8 if_bInterfaceNumber; */
337 0x00, /* __u8 if_bAlternateSetting; */
338 0x01, /* __u8 if_bNumEndpoints; */
339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
340 0x00, /* __u8 if_bInterfaceSubClass; */
341 0x00, /* __u8 if_bInterfaceProtocol; */
342 0x00, /* __u8 if_iInterface; */
343
344 /* one endpoint (status change endpoint) */
345 0x07, /* __u8 ep_bLength; */
346 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
348 0x03, /* __u8 ep_bmAttributes; Interrupt */
349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350 * see hub.c:hub_configure() for details. */
351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
353
354 /* one SuperSpeed endpoint companion descriptor */
355 0x06, /* __u8 ss_bLength */
356 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
357 /* Companion */
358 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
359 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
360 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
361 };
362
363 /* authorized_default behaviour:
364 * -1 is authorized for all devices except wireless (old behaviour)
365 * 0 is unauthorized for all devices
366 * 1 is authorized for all devices
367 */
368 static int authorized_default = -1;
369 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
370 MODULE_PARM_DESC(authorized_default,
371 "Default USB device authorization: 0 is not authorized, 1 is "
372 "authorized, -1 is authorized except for wireless USB (default, "
373 "old behaviour");
374 /*-------------------------------------------------------------------------*/
375
376 /**
377 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
378 * @s: Null-terminated ASCII (actually ISO-8859-1) string
379 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
380 * @len: Length (in bytes; may be odd) of descriptor buffer.
381 *
382 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
383 * whichever is less.
384 *
385 * Note:
386 * USB String descriptors can contain at most 126 characters; input
387 * strings longer than that are truncated.
388 */
389 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)390 ascii2desc(char const *s, u8 *buf, unsigned len)
391 {
392 unsigned n, t = 2 + 2*strlen(s);
393
394 if (t > 254)
395 t = 254; /* Longest possible UTF string descriptor */
396 if (len > t)
397 len = t;
398
399 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
400
401 n = len;
402 while (n--) {
403 *buf++ = t;
404 if (!n--)
405 break;
406 *buf++ = t >> 8;
407 t = (unsigned char)*s++;
408 }
409 return len;
410 }
411
412 /**
413 * rh_string() - provides string descriptors for root hub
414 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
415 * @hcd: the host controller for this root hub
416 * @data: buffer for output packet
417 * @len: length of the provided buffer
418 *
419 * Produces either a manufacturer, product or serial number string for the
420 * virtual root hub device.
421 *
422 * Return: The number of bytes filled in: the length of the descriptor or
423 * of the provided buffer, whichever is less.
424 */
425 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)426 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
427 {
428 char buf[100];
429 char const *s;
430 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
431
432 /* language ids */
433 switch (id) {
434 case 0:
435 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
436 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
437 if (len > 4)
438 len = 4;
439 memcpy(data, langids, len);
440 return len;
441 case 1:
442 /* Serial number */
443 s = hcd->self.bus_name;
444 break;
445 case 2:
446 /* Product name */
447 s = hcd->product_desc;
448 break;
449 case 3:
450 /* Manufacturer */
451 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
452 init_utsname()->release, hcd->driver->description);
453 s = buf;
454 break;
455 default:
456 /* Can't happen; caller guarantees it */
457 return 0;
458 }
459
460 return ascii2desc(s, data, len);
461 }
462
463
464 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)465 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
466 {
467 struct usb_ctrlrequest *cmd;
468 u16 typeReq, wValue, wIndex, wLength;
469 u8 *ubuf = urb->transfer_buffer;
470 unsigned len = 0;
471 int status;
472 u8 patch_wakeup = 0;
473 u8 patch_protocol = 0;
474 u16 tbuf_size;
475 u8 *tbuf = NULL;
476 const u8 *bufp;
477
478 might_sleep();
479
480 spin_lock_irq(&hcd_root_hub_lock);
481 status = usb_hcd_link_urb_to_ep(hcd, urb);
482 spin_unlock_irq(&hcd_root_hub_lock);
483 if (status)
484 return status;
485 urb->hcpriv = hcd; /* Indicate it's queued */
486
487 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
488 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
489 wValue = le16_to_cpu (cmd->wValue);
490 wIndex = le16_to_cpu (cmd->wIndex);
491 wLength = le16_to_cpu (cmd->wLength);
492
493 if (wLength > urb->transfer_buffer_length)
494 goto error;
495
496 /*
497 * tbuf should be at least as big as the
498 * USB hub descriptor.
499 */
500 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
501 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
502 if (!tbuf) {
503 status = -ENOMEM;
504 goto err_alloc;
505 }
506
507 bufp = tbuf;
508
509
510 urb->actual_length = 0;
511 switch (typeReq) {
512
513 /* DEVICE REQUESTS */
514
515 /* The root hub's remote wakeup enable bit is implemented using
516 * driver model wakeup flags. If this system supports wakeup
517 * through USB, userspace may change the default "allow wakeup"
518 * policy through sysfs or these calls.
519 *
520 * Most root hubs support wakeup from downstream devices, for
521 * runtime power management (disabling USB clocks and reducing
522 * VBUS power usage). However, not all of them do so; silicon,
523 * board, and BIOS bugs here are not uncommon, so these can't
524 * be treated quite like external hubs.
525 *
526 * Likewise, not all root hubs will pass wakeup events upstream,
527 * to wake up the whole system. So don't assume root hub and
528 * controller capabilities are identical.
529 */
530
531 case DeviceRequest | USB_REQ_GET_STATUS:
532 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
533 << USB_DEVICE_REMOTE_WAKEUP)
534 | (1 << USB_DEVICE_SELF_POWERED);
535 tbuf[1] = 0;
536 len = 2;
537 break;
538 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
539 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
540 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
541 else
542 goto error;
543 break;
544 case DeviceOutRequest | USB_REQ_SET_FEATURE:
545 if (device_can_wakeup(&hcd->self.root_hub->dev)
546 && wValue == USB_DEVICE_REMOTE_WAKEUP)
547 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
548 else
549 goto error;
550 break;
551 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
552 tbuf[0] = 1;
553 len = 1;
554 /* FALLTHROUGH */
555 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
556 break;
557 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
558 switch (wValue & 0xff00) {
559 case USB_DT_DEVICE << 8:
560 switch (hcd->speed) {
561 case HCD_USB31:
562 case HCD_USB3:
563 bufp = usb3_rh_dev_descriptor;
564 break;
565 case HCD_USB25:
566 bufp = usb25_rh_dev_descriptor;
567 break;
568 case HCD_USB2:
569 bufp = usb2_rh_dev_descriptor;
570 break;
571 case HCD_USB11:
572 bufp = usb11_rh_dev_descriptor;
573 break;
574 default:
575 goto error;
576 }
577 len = 18;
578 if (hcd->has_tt)
579 patch_protocol = 1;
580 break;
581 case USB_DT_CONFIG << 8:
582 switch (hcd->speed) {
583 case HCD_USB31:
584 case HCD_USB3:
585 bufp = ss_rh_config_descriptor;
586 len = sizeof ss_rh_config_descriptor;
587 break;
588 case HCD_USB25:
589 case HCD_USB2:
590 bufp = hs_rh_config_descriptor;
591 len = sizeof hs_rh_config_descriptor;
592 break;
593 case HCD_USB11:
594 bufp = fs_rh_config_descriptor;
595 len = sizeof fs_rh_config_descriptor;
596 break;
597 default:
598 goto error;
599 }
600 if (device_can_wakeup(&hcd->self.root_hub->dev))
601 patch_wakeup = 1;
602 break;
603 case USB_DT_STRING << 8:
604 if ((wValue & 0xff) < 4)
605 urb->actual_length = rh_string(wValue & 0xff,
606 hcd, ubuf, wLength);
607 else /* unsupported IDs --> "protocol stall" */
608 goto error;
609 break;
610 case USB_DT_BOS << 8:
611 goto nongeneric;
612 default:
613 goto error;
614 }
615 break;
616 case DeviceRequest | USB_REQ_GET_INTERFACE:
617 tbuf[0] = 0;
618 len = 1;
619 /* FALLTHROUGH */
620 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
621 break;
622 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
623 /* wValue == urb->dev->devaddr */
624 dev_dbg (hcd->self.controller, "root hub device address %d\n",
625 wValue);
626 break;
627
628 /* INTERFACE REQUESTS (no defined feature/status flags) */
629
630 /* ENDPOINT REQUESTS */
631
632 case EndpointRequest | USB_REQ_GET_STATUS:
633 /* ENDPOINT_HALT flag */
634 tbuf[0] = 0;
635 tbuf[1] = 0;
636 len = 2;
637 /* FALLTHROUGH */
638 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
639 case EndpointOutRequest | USB_REQ_SET_FEATURE:
640 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
641 break;
642
643 /* CLASS REQUESTS (and errors) */
644
645 default:
646 nongeneric:
647 /* non-generic request */
648 switch (typeReq) {
649 case GetHubStatus:
650 case GetPortStatus:
651 len = 4;
652 break;
653 case GetHubDescriptor:
654 len = sizeof (struct usb_hub_descriptor);
655 break;
656 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
657 /* len is returned by hub_control */
658 break;
659 }
660 status = hcd->driver->hub_control (hcd,
661 typeReq, wValue, wIndex,
662 tbuf, wLength);
663
664 if (typeReq == GetHubDescriptor)
665 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
666 (struct usb_hub_descriptor *)tbuf);
667 break;
668 error:
669 /* "protocol stall" on error */
670 status = -EPIPE;
671 }
672
673 if (status < 0) {
674 len = 0;
675 if (status != -EPIPE) {
676 dev_dbg (hcd->self.controller,
677 "CTRL: TypeReq=0x%x val=0x%x "
678 "idx=0x%x len=%d ==> %d\n",
679 typeReq, wValue, wIndex,
680 wLength, status);
681 }
682 } else if (status > 0) {
683 /* hub_control may return the length of data copied. */
684 len = status;
685 status = 0;
686 }
687 if (len) {
688 if (urb->transfer_buffer_length < len)
689 len = urb->transfer_buffer_length;
690 urb->actual_length = len;
691 /* always USB_DIR_IN, toward host */
692 memcpy (ubuf, bufp, len);
693
694 /* report whether RH hardware supports remote wakeup */
695 if (patch_wakeup &&
696 len > offsetof (struct usb_config_descriptor,
697 bmAttributes))
698 ((struct usb_config_descriptor *)ubuf)->bmAttributes
699 |= USB_CONFIG_ATT_WAKEUP;
700
701 /* report whether RH hardware has an integrated TT */
702 if (patch_protocol &&
703 len > offsetof(struct usb_device_descriptor,
704 bDeviceProtocol))
705 ((struct usb_device_descriptor *) ubuf)->
706 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
707 }
708
709 kfree(tbuf);
710 err_alloc:
711
712 /* any errors get returned through the urb completion */
713 spin_lock_irq(&hcd_root_hub_lock);
714 usb_hcd_unlink_urb_from_ep(hcd, urb);
715 usb_hcd_giveback_urb(hcd, urb, status);
716 spin_unlock_irq(&hcd_root_hub_lock);
717 return 0;
718 }
719
720 /*-------------------------------------------------------------------------*/
721
722 /*
723 * Root Hub interrupt transfers are polled using a timer if the
724 * driver requests it; otherwise the driver is responsible for
725 * calling usb_hcd_poll_rh_status() when an event occurs.
726 *
727 * Completions are called in_interrupt(), but they may or may not
728 * be in_irq().
729 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)730 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
731 {
732 struct urb *urb;
733 int length;
734 int status;
735 unsigned long flags;
736 char buffer[6]; /* Any root hubs with > 31 ports? */
737
738 if (unlikely(!hcd->rh_pollable))
739 return;
740 if (!hcd->uses_new_polling && !hcd->status_urb)
741 return;
742
743 length = hcd->driver->hub_status_data(hcd, buffer);
744 if (length > 0) {
745
746 /* try to complete the status urb */
747 spin_lock_irqsave(&hcd_root_hub_lock, flags);
748 urb = hcd->status_urb;
749 if (urb) {
750 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
751 hcd->status_urb = NULL;
752 if (urb->transfer_buffer_length >= length) {
753 status = 0;
754 } else {
755 status = -EOVERFLOW;
756 length = urb->transfer_buffer_length;
757 }
758 urb->actual_length = length;
759 memcpy(urb->transfer_buffer, buffer, length);
760
761 usb_hcd_unlink_urb_from_ep(hcd, urb);
762 usb_hcd_giveback_urb(hcd, urb, status);
763 } else {
764 length = 0;
765 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
766 }
767 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
768 }
769
770 /* The USB 2.0 spec says 256 ms. This is close enough and won't
771 * exceed that limit if HZ is 100. The math is more clunky than
772 * maybe expected, this is to make sure that all timers for USB devices
773 * fire at the same time to give the CPU a break in between */
774 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
775 (length == 0 && hcd->status_urb != NULL))
776 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
777 }
778 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
779
780 /* timer callback */
rh_timer_func(unsigned long _hcd)781 static void rh_timer_func (unsigned long _hcd)
782 {
783 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
784 }
785
786 /*-------------------------------------------------------------------------*/
787
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)788 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
789 {
790 int retval;
791 unsigned long flags;
792 unsigned len = 1 + (urb->dev->maxchild / 8);
793
794 spin_lock_irqsave (&hcd_root_hub_lock, flags);
795 if (hcd->status_urb || urb->transfer_buffer_length < len) {
796 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
797 retval = -EINVAL;
798 goto done;
799 }
800
801 retval = usb_hcd_link_urb_to_ep(hcd, urb);
802 if (retval)
803 goto done;
804
805 hcd->status_urb = urb;
806 urb->hcpriv = hcd; /* indicate it's queued */
807 if (!hcd->uses_new_polling)
808 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
809
810 /* If a status change has already occurred, report it ASAP */
811 else if (HCD_POLL_PENDING(hcd))
812 mod_timer(&hcd->rh_timer, jiffies);
813 retval = 0;
814 done:
815 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
816 return retval;
817 }
818
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)819 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
820 {
821 if (usb_endpoint_xfer_int(&urb->ep->desc))
822 return rh_queue_status (hcd, urb);
823 if (usb_endpoint_xfer_control(&urb->ep->desc))
824 return rh_call_control (hcd, urb);
825 return -EINVAL;
826 }
827
828 /*-------------------------------------------------------------------------*/
829
830 /* Unlinks of root-hub control URBs are legal, but they don't do anything
831 * since these URBs always execute synchronously.
832 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)833 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
834 {
835 unsigned long flags;
836 int rc;
837
838 spin_lock_irqsave(&hcd_root_hub_lock, flags);
839 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
840 if (rc)
841 goto done;
842
843 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
844 ; /* Do nothing */
845
846 } else { /* Status URB */
847 if (!hcd->uses_new_polling)
848 del_timer (&hcd->rh_timer);
849 if (urb == hcd->status_urb) {
850 hcd->status_urb = NULL;
851 usb_hcd_unlink_urb_from_ep(hcd, urb);
852 usb_hcd_giveback_urb(hcd, urb, status);
853 }
854 }
855 done:
856 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
857 return rc;
858 }
859
860
861
862 /*
863 * Show & store the current value of authorized_default
864 */
authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t authorized_default_show(struct device *dev,
866 struct device_attribute *attr, char *buf)
867 {
868 struct usb_device *rh_usb_dev = to_usb_device(dev);
869 struct usb_bus *usb_bus = rh_usb_dev->bus;
870 struct usb_hcd *hcd;
871
872 hcd = bus_to_hcd(usb_bus);
873 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
874 }
875
authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)876 static ssize_t authorized_default_store(struct device *dev,
877 struct device_attribute *attr,
878 const char *buf, size_t size)
879 {
880 ssize_t result;
881 unsigned val;
882 struct usb_device *rh_usb_dev = to_usb_device(dev);
883 struct usb_bus *usb_bus = rh_usb_dev->bus;
884 struct usb_hcd *hcd;
885
886 hcd = bus_to_hcd(usb_bus);
887 result = sscanf(buf, "%u\n", &val);
888 if (result == 1) {
889 if (val)
890 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
891 else
892 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
893
894 result = size;
895 } else {
896 result = -EINVAL;
897 }
898 return result;
899 }
900 static DEVICE_ATTR_RW(authorized_default);
901
902 /*
903 * interface_authorized_default_show - show default authorization status
904 * for USB interfaces
905 *
906 * note: interface_authorized_default is the default value
907 * for initializing the authorized attribute of interfaces
908 */
interface_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)909 static ssize_t interface_authorized_default_show(struct device *dev,
910 struct device_attribute *attr, char *buf)
911 {
912 struct usb_device *usb_dev = to_usb_device(dev);
913 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
914
915 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
916 }
917
918 /*
919 * interface_authorized_default_store - store default authorization status
920 * for USB interfaces
921 *
922 * note: interface_authorized_default is the default value
923 * for initializing the authorized attribute of interfaces
924 */
interface_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)925 static ssize_t interface_authorized_default_store(struct device *dev,
926 struct device_attribute *attr, const char *buf, size_t count)
927 {
928 struct usb_device *usb_dev = to_usb_device(dev);
929 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
930 int rc = count;
931 bool val;
932
933 if (strtobool(buf, &val) != 0)
934 return -EINVAL;
935
936 if (val)
937 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
938 else
939 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
940
941 return rc;
942 }
943 static DEVICE_ATTR_RW(interface_authorized_default);
944
945 /* Group all the USB bus attributes */
946 static struct attribute *usb_bus_attrs[] = {
947 &dev_attr_authorized_default.attr,
948 &dev_attr_interface_authorized_default.attr,
949 NULL,
950 };
951
952 static struct attribute_group usb_bus_attr_group = {
953 .name = NULL, /* we want them in the same directory */
954 .attrs = usb_bus_attrs,
955 };
956
957
958
959 /*-------------------------------------------------------------------------*/
960
961 /**
962 * usb_bus_init - shared initialization code
963 * @bus: the bus structure being initialized
964 *
965 * This code is used to initialize a usb_bus structure, memory for which is
966 * separately managed.
967 */
usb_bus_init(struct usb_bus * bus)968 static void usb_bus_init (struct usb_bus *bus)
969 {
970 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
971
972 bus->devnum_next = 1;
973
974 bus->root_hub = NULL;
975 bus->busnum = -1;
976 bus->bandwidth_allocated = 0;
977 bus->bandwidth_int_reqs = 0;
978 bus->bandwidth_isoc_reqs = 0;
979 mutex_init(&bus->devnum_next_mutex);
980
981 INIT_LIST_HEAD (&bus->bus_list);
982 }
983
984 /*-------------------------------------------------------------------------*/
985
986 /**
987 * usb_register_bus - registers the USB host controller with the usb core
988 * @bus: pointer to the bus to register
989 * Context: !in_interrupt()
990 *
991 * Assigns a bus number, and links the controller into usbcore data
992 * structures so that it can be seen by scanning the bus list.
993 *
994 * Return: 0 if successful. A negative error code otherwise.
995 */
usb_register_bus(struct usb_bus * bus)996 static int usb_register_bus(struct usb_bus *bus)
997 {
998 int result = -E2BIG;
999 int busnum;
1000
1001 mutex_lock(&usb_bus_list_lock);
1002 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
1003 if (busnum >= USB_MAXBUS) {
1004 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
1005 goto error_find_busnum;
1006 }
1007 set_bit(busnum, busmap);
1008 bus->busnum = busnum;
1009
1010 /* Add it to the local list of buses */
1011 list_add (&bus->bus_list, &usb_bus_list);
1012 mutex_unlock(&usb_bus_list_lock);
1013
1014 usb_notify_add_bus(bus);
1015
1016 dev_info (bus->controller, "new USB bus registered, assigned bus "
1017 "number %d\n", bus->busnum);
1018 return 0;
1019
1020 error_find_busnum:
1021 mutex_unlock(&usb_bus_list_lock);
1022 return result;
1023 }
1024
1025 /**
1026 * usb_deregister_bus - deregisters the USB host controller
1027 * @bus: pointer to the bus to deregister
1028 * Context: !in_interrupt()
1029 *
1030 * Recycles the bus number, and unlinks the controller from usbcore data
1031 * structures so that it won't be seen by scanning the bus list.
1032 */
usb_deregister_bus(struct usb_bus * bus)1033 static void usb_deregister_bus (struct usb_bus *bus)
1034 {
1035 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1036
1037 /*
1038 * NOTE: make sure that all the devices are removed by the
1039 * controller code, as well as having it call this when cleaning
1040 * itself up
1041 */
1042 mutex_lock(&usb_bus_list_lock);
1043 list_del (&bus->bus_list);
1044 mutex_unlock(&usb_bus_list_lock);
1045
1046 usb_notify_remove_bus(bus);
1047
1048 clear_bit(bus->busnum, busmap);
1049 }
1050
1051 /**
1052 * register_root_hub - called by usb_add_hcd() to register a root hub
1053 * @hcd: host controller for this root hub
1054 *
1055 * This function registers the root hub with the USB subsystem. It sets up
1056 * the device properly in the device tree and then calls usb_new_device()
1057 * to register the usb device. It also assigns the root hub's USB address
1058 * (always 1).
1059 *
1060 * Return: 0 if successful. A negative error code otherwise.
1061 */
register_root_hub(struct usb_hcd * hcd)1062 static int register_root_hub(struct usb_hcd *hcd)
1063 {
1064 struct device *parent_dev = hcd->self.controller;
1065 struct usb_device *usb_dev = hcd->self.root_hub;
1066 const int devnum = 1;
1067 int retval;
1068
1069 usb_dev->devnum = devnum;
1070 usb_dev->bus->devnum_next = devnum + 1;
1071 memset (&usb_dev->bus->devmap.devicemap, 0,
1072 sizeof usb_dev->bus->devmap.devicemap);
1073 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1074 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1075
1076 mutex_lock(&usb_bus_list_lock);
1077
1078 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1079 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1080 if (retval != sizeof usb_dev->descriptor) {
1081 mutex_unlock(&usb_bus_list_lock);
1082 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1083 dev_name(&usb_dev->dev), retval);
1084 return (retval < 0) ? retval : -EMSGSIZE;
1085 }
1086
1087 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1088 retval = usb_get_bos_descriptor(usb_dev);
1089 if (!retval) {
1090 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1091 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1092 mutex_unlock(&usb_bus_list_lock);
1093 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1094 dev_name(&usb_dev->dev), retval);
1095 return retval;
1096 }
1097 }
1098
1099 retval = usb_new_device (usb_dev);
1100 if (retval) {
1101 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1102 dev_name(&usb_dev->dev), retval);
1103 } else {
1104 spin_lock_irq (&hcd_root_hub_lock);
1105 hcd->rh_registered = 1;
1106 spin_unlock_irq (&hcd_root_hub_lock);
1107
1108 /* Did the HC die before the root hub was registered? */
1109 if (HCD_DEAD(hcd))
1110 usb_hc_died (hcd); /* This time clean up */
1111 }
1112 mutex_unlock(&usb_bus_list_lock);
1113
1114 return retval;
1115 }
1116
1117 /*
1118 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1119 * @bus: the bus which the root hub belongs to
1120 * @portnum: the port which is being resumed
1121 *
1122 * HCDs should call this function when they know that a resume signal is
1123 * being sent to a root-hub port. The root hub will be prevented from
1124 * going into autosuspend until usb_hcd_end_port_resume() is called.
1125 *
1126 * The bus's private lock must be held by the caller.
1127 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1128 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1129 {
1130 unsigned bit = 1 << portnum;
1131
1132 if (!(bus->resuming_ports & bit)) {
1133 bus->resuming_ports |= bit;
1134 pm_runtime_get_noresume(&bus->root_hub->dev);
1135 }
1136 }
1137 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1138
1139 /*
1140 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1141 * @bus: the bus which the root hub belongs to
1142 * @portnum: the port which is being resumed
1143 *
1144 * HCDs should call this function when they know that a resume signal has
1145 * stopped being sent to a root-hub port. The root hub will be allowed to
1146 * autosuspend again.
1147 *
1148 * The bus's private lock must be held by the caller.
1149 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1150 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1151 {
1152 unsigned bit = 1 << portnum;
1153
1154 if (bus->resuming_ports & bit) {
1155 bus->resuming_ports &= ~bit;
1156 pm_runtime_put_noidle(&bus->root_hub->dev);
1157 }
1158 }
1159 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1160
1161 /*-------------------------------------------------------------------------*/
1162
1163 /**
1164 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1165 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1166 * @is_input: true iff the transaction sends data to the host
1167 * @isoc: true for isochronous transactions, false for interrupt ones
1168 * @bytecount: how many bytes in the transaction.
1169 *
1170 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1171 *
1172 * Note:
1173 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1174 * scheduled in software, this function is only used for such scheduling.
1175 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1176 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1177 {
1178 unsigned long tmp;
1179
1180 switch (speed) {
1181 case USB_SPEED_LOW: /* INTR only */
1182 if (is_input) {
1183 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1184 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1185 } else {
1186 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1187 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1188 }
1189 case USB_SPEED_FULL: /* ISOC or INTR */
1190 if (isoc) {
1191 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1192 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1193 } else {
1194 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1195 return 9107L + BW_HOST_DELAY + tmp;
1196 }
1197 case USB_SPEED_HIGH: /* ISOC or INTR */
1198 /* FIXME adjust for input vs output */
1199 if (isoc)
1200 tmp = HS_NSECS_ISO (bytecount);
1201 else
1202 tmp = HS_NSECS (bytecount);
1203 return tmp;
1204 default:
1205 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1206 return -1;
1207 }
1208 }
1209 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1210
1211
1212 /*-------------------------------------------------------------------------*/
1213
1214 /*
1215 * Generic HC operations.
1216 */
1217
1218 /*-------------------------------------------------------------------------*/
1219
1220 /**
1221 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1222 * @hcd: host controller to which @urb was submitted
1223 * @urb: URB being submitted
1224 *
1225 * Host controller drivers should call this routine in their enqueue()
1226 * method. The HCD's private spinlock must be held and interrupts must
1227 * be disabled. The actions carried out here are required for URB
1228 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1229 *
1230 * Return: 0 for no error, otherwise a negative error code (in which case
1231 * the enqueue() method must fail). If no error occurs but enqueue() fails
1232 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1233 * the private spinlock and returning.
1234 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1235 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1236 {
1237 int rc = 0;
1238
1239 spin_lock(&hcd_urb_list_lock);
1240
1241 /* Check that the URB isn't being killed */
1242 if (unlikely(atomic_read(&urb->reject))) {
1243 rc = -EPERM;
1244 goto done;
1245 }
1246
1247 if (unlikely(!urb->ep->enabled)) {
1248 rc = -ENOENT;
1249 goto done;
1250 }
1251
1252 if (unlikely(!urb->dev->can_submit)) {
1253 rc = -EHOSTUNREACH;
1254 goto done;
1255 }
1256
1257 /*
1258 * Check the host controller's state and add the URB to the
1259 * endpoint's queue.
1260 */
1261 if (HCD_RH_RUNNING(hcd)) {
1262 urb->unlinked = 0;
1263 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1264 } else {
1265 rc = -ESHUTDOWN;
1266 goto done;
1267 }
1268 done:
1269 spin_unlock(&hcd_urb_list_lock);
1270 return rc;
1271 }
1272 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1273
1274 /**
1275 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1276 * @hcd: host controller to which @urb was submitted
1277 * @urb: URB being checked for unlinkability
1278 * @status: error code to store in @urb if the unlink succeeds
1279 *
1280 * Host controller drivers should call this routine in their dequeue()
1281 * method. The HCD's private spinlock must be held and interrupts must
1282 * be disabled. The actions carried out here are required for making
1283 * sure than an unlink is valid.
1284 *
1285 * Return: 0 for no error, otherwise a negative error code (in which case
1286 * the dequeue() method must fail). The possible error codes are:
1287 *
1288 * -EIDRM: @urb was not submitted or has already completed.
1289 * The completion function may not have been called yet.
1290 *
1291 * -EBUSY: @urb has already been unlinked.
1292 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1293 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1294 int status)
1295 {
1296 struct list_head *tmp;
1297
1298 /* insist the urb is still queued */
1299 list_for_each(tmp, &urb->ep->urb_list) {
1300 if (tmp == &urb->urb_list)
1301 break;
1302 }
1303 if (tmp != &urb->urb_list)
1304 return -EIDRM;
1305
1306 /* Any status except -EINPROGRESS means something already started to
1307 * unlink this URB from the hardware. So there's no more work to do.
1308 */
1309 if (urb->unlinked)
1310 return -EBUSY;
1311 urb->unlinked = status;
1312 return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1315
1316 /**
1317 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1318 * @hcd: host controller to which @urb was submitted
1319 * @urb: URB being unlinked
1320 *
1321 * Host controller drivers should call this routine before calling
1322 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1323 * interrupts must be disabled. The actions carried out here are required
1324 * for URB completion.
1325 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1326 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1327 {
1328 /* clear all state linking urb to this dev (and hcd) */
1329 spin_lock(&hcd_urb_list_lock);
1330 list_del_init(&urb->urb_list);
1331 spin_unlock(&hcd_urb_list_lock);
1332 }
1333 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1334
1335 /*
1336 * Some usb host controllers can only perform dma using a small SRAM area.
1337 * The usb core itself is however optimized for host controllers that can dma
1338 * using regular system memory - like pci devices doing bus mastering.
1339 *
1340 * To support host controllers with limited dma capabilities we provide dma
1341 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1342 * For this to work properly the host controller code must first use the
1343 * function dma_declare_coherent_memory() to point out which memory area
1344 * that should be used for dma allocations.
1345 *
1346 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1347 * dma using dma_alloc_coherent() which in turn allocates from the memory
1348 * area pointed out with dma_declare_coherent_memory().
1349 *
1350 * So, to summarize...
1351 *
1352 * - We need "local" memory, canonical example being
1353 * a small SRAM on a discrete controller being the
1354 * only memory that the controller can read ...
1355 * (a) "normal" kernel memory is no good, and
1356 * (b) there's not enough to share
1357 *
1358 * - The only *portable* hook for such stuff in the
1359 * DMA framework is dma_declare_coherent_memory()
1360 *
1361 * - So we use that, even though the primary requirement
1362 * is that the memory be "local" (hence addressable
1363 * by that device), not "coherent".
1364 *
1365 */
1366
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1367 static int hcd_alloc_coherent(struct usb_bus *bus,
1368 gfp_t mem_flags, dma_addr_t *dma_handle,
1369 void **vaddr_handle, size_t size,
1370 enum dma_data_direction dir)
1371 {
1372 unsigned char *vaddr;
1373
1374 if (*vaddr_handle == NULL) {
1375 WARN_ON_ONCE(1);
1376 return -EFAULT;
1377 }
1378
1379 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1380 mem_flags, dma_handle);
1381 if (!vaddr)
1382 return -ENOMEM;
1383
1384 /*
1385 * Store the virtual address of the buffer at the end
1386 * of the allocated dma buffer. The size of the buffer
1387 * may be uneven so use unaligned functions instead
1388 * of just rounding up. It makes sense to optimize for
1389 * memory footprint over access speed since the amount
1390 * of memory available for dma may be limited.
1391 */
1392 put_unaligned((unsigned long)*vaddr_handle,
1393 (unsigned long *)(vaddr + size));
1394
1395 if (dir == DMA_TO_DEVICE)
1396 memcpy(vaddr, *vaddr_handle, size);
1397
1398 *vaddr_handle = vaddr;
1399 return 0;
1400 }
1401
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1402 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1403 void **vaddr_handle, size_t size,
1404 enum dma_data_direction dir)
1405 {
1406 unsigned char *vaddr = *vaddr_handle;
1407
1408 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1409
1410 if (dir == DMA_FROM_DEVICE)
1411 memcpy(vaddr, *vaddr_handle, size);
1412
1413 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1414
1415 *vaddr_handle = vaddr;
1416 *dma_handle = 0;
1417 }
1418
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1419 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1420 {
1421 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1422 dma_unmap_single(hcd->self.controller,
1423 urb->setup_dma,
1424 sizeof(struct usb_ctrlrequest),
1425 DMA_TO_DEVICE);
1426 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1427 hcd_free_coherent(urb->dev->bus,
1428 &urb->setup_dma,
1429 (void **) &urb->setup_packet,
1430 sizeof(struct usb_ctrlrequest),
1431 DMA_TO_DEVICE);
1432
1433 /* Make it safe to call this routine more than once */
1434 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1435 }
1436 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1437
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1438 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1439 {
1440 if (hcd->driver->unmap_urb_for_dma)
1441 hcd->driver->unmap_urb_for_dma(hcd, urb);
1442 else
1443 usb_hcd_unmap_urb_for_dma(hcd, urb);
1444 }
1445
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1446 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1447 {
1448 enum dma_data_direction dir;
1449
1450 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1451
1452 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1453 if (urb->transfer_flags & URB_DMA_MAP_SG)
1454 dma_unmap_sg(hcd->self.controller,
1455 urb->sg,
1456 urb->num_sgs,
1457 dir);
1458 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1459 dma_unmap_page(hcd->self.controller,
1460 urb->transfer_dma,
1461 urb->transfer_buffer_length,
1462 dir);
1463 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1464 dma_unmap_single(hcd->self.controller,
1465 urb->transfer_dma,
1466 urb->transfer_buffer_length,
1467 dir);
1468 else if (urb->transfer_flags & URB_MAP_LOCAL)
1469 hcd_free_coherent(urb->dev->bus,
1470 &urb->transfer_dma,
1471 &urb->transfer_buffer,
1472 urb->transfer_buffer_length,
1473 dir);
1474
1475 /* Make it safe to call this routine more than once */
1476 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1477 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1478 }
1479 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1480
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1481 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1482 gfp_t mem_flags)
1483 {
1484 if (hcd->driver->map_urb_for_dma)
1485 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1486 else
1487 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1488 }
1489
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1490 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1491 gfp_t mem_flags)
1492 {
1493 enum dma_data_direction dir;
1494 int ret = 0;
1495
1496 /* Map the URB's buffers for DMA access.
1497 * Lower level HCD code should use *_dma exclusively,
1498 * unless it uses pio or talks to another transport,
1499 * or uses the provided scatter gather list for bulk.
1500 */
1501
1502 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1503 if (hcd->self.uses_pio_for_control)
1504 return ret;
1505 if (hcd->self.uses_dma) {
1506 urb->setup_dma = dma_map_single(
1507 hcd->self.controller,
1508 urb->setup_packet,
1509 sizeof(struct usb_ctrlrequest),
1510 DMA_TO_DEVICE);
1511 if (dma_mapping_error(hcd->self.controller,
1512 urb->setup_dma))
1513 return -EAGAIN;
1514 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1515 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1516 ret = hcd_alloc_coherent(
1517 urb->dev->bus, mem_flags,
1518 &urb->setup_dma,
1519 (void **)&urb->setup_packet,
1520 sizeof(struct usb_ctrlrequest),
1521 DMA_TO_DEVICE);
1522 if (ret)
1523 return ret;
1524 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1525 }
1526 }
1527
1528 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1529 if (urb->transfer_buffer_length != 0
1530 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1531 if (hcd->self.uses_dma) {
1532 if (urb->num_sgs) {
1533 int n;
1534
1535 /* We don't support sg for isoc transfers ! */
1536 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1537 WARN_ON(1);
1538 return -EINVAL;
1539 }
1540
1541 n = dma_map_sg(
1542 hcd->self.controller,
1543 urb->sg,
1544 urb->num_sgs,
1545 dir);
1546 if (n <= 0)
1547 ret = -EAGAIN;
1548 else
1549 urb->transfer_flags |= URB_DMA_MAP_SG;
1550 urb->num_mapped_sgs = n;
1551 if (n != urb->num_sgs)
1552 urb->transfer_flags |=
1553 URB_DMA_SG_COMBINED;
1554 } else if (urb->sg) {
1555 struct scatterlist *sg = urb->sg;
1556 urb->transfer_dma = dma_map_page(
1557 hcd->self.controller,
1558 sg_page(sg),
1559 sg->offset,
1560 urb->transfer_buffer_length,
1561 dir);
1562 if (dma_mapping_error(hcd->self.controller,
1563 urb->transfer_dma))
1564 ret = -EAGAIN;
1565 else
1566 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1567 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1568 WARN_ONCE(1, "transfer buffer not dma capable\n");
1569 ret = -EAGAIN;
1570 } else {
1571 urb->transfer_dma = dma_map_single(
1572 hcd->self.controller,
1573 urb->transfer_buffer,
1574 urb->transfer_buffer_length,
1575 dir);
1576 if (dma_mapping_error(hcd->self.controller,
1577 urb->transfer_dma))
1578 ret = -EAGAIN;
1579 else
1580 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1581 }
1582 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1583 ret = hcd_alloc_coherent(
1584 urb->dev->bus, mem_flags,
1585 &urb->transfer_dma,
1586 &urb->transfer_buffer,
1587 urb->transfer_buffer_length,
1588 dir);
1589 if (ret == 0)
1590 urb->transfer_flags |= URB_MAP_LOCAL;
1591 }
1592 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1593 URB_SETUP_MAP_LOCAL)))
1594 usb_hcd_unmap_urb_for_dma(hcd, urb);
1595 }
1596 return ret;
1597 }
1598 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1599
1600 /*-------------------------------------------------------------------------*/
1601
1602 /* may be called in any context with a valid urb->dev usecount
1603 * caller surrenders "ownership" of urb
1604 * expects usb_submit_urb() to have sanity checked and conditioned all
1605 * inputs in the urb
1606 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1607 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1608 {
1609 int status;
1610 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1611
1612 /* increment urb's reference count as part of giving it to the HCD
1613 * (which will control it). HCD guarantees that it either returns
1614 * an error or calls giveback(), but not both.
1615 */
1616 usb_get_urb(urb);
1617 atomic_inc(&urb->use_count);
1618 atomic_inc(&urb->dev->urbnum);
1619 usbmon_urb_submit(&hcd->self, urb);
1620
1621 /* NOTE requirements on root-hub callers (usbfs and the hub
1622 * driver, for now): URBs' urb->transfer_buffer must be
1623 * valid and usb_buffer_{sync,unmap}() not be needed, since
1624 * they could clobber root hub response data. Also, control
1625 * URBs must be submitted in process context with interrupts
1626 * enabled.
1627 */
1628
1629 if (is_root_hub(urb->dev)) {
1630 status = rh_urb_enqueue(hcd, urb);
1631 } else {
1632 status = map_urb_for_dma(hcd, urb, mem_flags);
1633 if (likely(status == 0)) {
1634 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1635 if (unlikely(status))
1636 unmap_urb_for_dma(hcd, urb);
1637 }
1638 }
1639
1640 if (unlikely(status)) {
1641 usbmon_urb_submit_error(&hcd->self, urb, status);
1642 urb->hcpriv = NULL;
1643 INIT_LIST_HEAD(&urb->urb_list);
1644 atomic_dec(&urb->use_count);
1645 /*
1646 * Order the write of urb->use_count above before the read
1647 * of urb->reject below. Pairs with the memory barriers in
1648 * usb_kill_urb() and usb_poison_urb().
1649 */
1650 smp_mb__after_atomic();
1651
1652 atomic_dec(&urb->dev->urbnum);
1653 if (atomic_read(&urb->reject))
1654 wake_up(&usb_kill_urb_queue);
1655 usb_put_urb(urb);
1656 }
1657 return status;
1658 }
1659
1660 /*-------------------------------------------------------------------------*/
1661
1662 /* this makes the hcd giveback() the urb more quickly, by kicking it
1663 * off hardware queues (which may take a while) and returning it as
1664 * soon as practical. we've already set up the urb's return status,
1665 * but we can't know if the callback completed already.
1666 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1667 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1668 {
1669 int value;
1670
1671 if (is_root_hub(urb->dev))
1672 value = usb_rh_urb_dequeue(hcd, urb, status);
1673 else {
1674
1675 /* The only reason an HCD might fail this call is if
1676 * it has not yet fully queued the urb to begin with.
1677 * Such failures should be harmless. */
1678 value = hcd->driver->urb_dequeue(hcd, urb, status);
1679 }
1680 return value;
1681 }
1682
1683 /*
1684 * called in any context
1685 *
1686 * caller guarantees urb won't be recycled till both unlink()
1687 * and the urb's completion function return
1688 */
usb_hcd_unlink_urb(struct urb * urb,int status)1689 int usb_hcd_unlink_urb (struct urb *urb, int status)
1690 {
1691 struct usb_hcd *hcd;
1692 struct usb_device *udev = urb->dev;
1693 int retval = -EIDRM;
1694 unsigned long flags;
1695
1696 /* Prevent the device and bus from going away while
1697 * the unlink is carried out. If they are already gone
1698 * then urb->use_count must be 0, since disconnected
1699 * devices can't have any active URBs.
1700 */
1701 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1702 if (atomic_read(&urb->use_count) > 0) {
1703 retval = 0;
1704 usb_get_dev(udev);
1705 }
1706 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1707 if (retval == 0) {
1708 hcd = bus_to_hcd(urb->dev->bus);
1709 retval = unlink1(hcd, urb, status);
1710 if (retval == 0)
1711 retval = -EINPROGRESS;
1712 else if (retval != -EIDRM && retval != -EBUSY)
1713 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1714 urb, retval);
1715 usb_put_dev(udev);
1716 }
1717 return retval;
1718 }
1719
1720 /*-------------------------------------------------------------------------*/
1721
__usb_hcd_giveback_urb(struct urb * urb)1722 static void __usb_hcd_giveback_urb(struct urb *urb)
1723 {
1724 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1725 struct usb_anchor *anchor = urb->anchor;
1726 int status = urb->unlinked;
1727 unsigned long flags;
1728
1729 urb->hcpriv = NULL;
1730 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1731 urb->actual_length < urb->transfer_buffer_length &&
1732 !status))
1733 status = -EREMOTEIO;
1734
1735 unmap_urb_for_dma(hcd, urb);
1736 usbmon_urb_complete(&hcd->self, urb, status);
1737 usb_anchor_suspend_wakeups(anchor);
1738 usb_unanchor_urb(urb);
1739 if (likely(status == 0))
1740 usb_led_activity(USB_LED_EVENT_HOST);
1741
1742 /* pass ownership to the completion handler */
1743 urb->status = status;
1744
1745 /*
1746 * We disable local IRQs here avoid possible deadlock because
1747 * drivers may call spin_lock() to hold lock which might be
1748 * acquired in one hard interrupt handler.
1749 *
1750 * The local_irq_save()/local_irq_restore() around complete()
1751 * will be removed if current USB drivers have been cleaned up
1752 * and no one may trigger the above deadlock situation when
1753 * running complete() in tasklet.
1754 */
1755 local_irq_save(flags);
1756 urb->complete(urb);
1757 local_irq_restore(flags);
1758
1759 usb_anchor_resume_wakeups(anchor);
1760 atomic_dec(&urb->use_count);
1761 /*
1762 * Order the write of urb->use_count above before the read
1763 * of urb->reject below. Pairs with the memory barriers in
1764 * usb_kill_urb() and usb_poison_urb().
1765 */
1766 smp_mb__after_atomic();
1767
1768 if (unlikely(atomic_read(&urb->reject)))
1769 wake_up(&usb_kill_urb_queue);
1770 usb_put_urb(urb);
1771 }
1772
usb_giveback_urb_bh(unsigned long param)1773 static void usb_giveback_urb_bh(unsigned long param)
1774 {
1775 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1776 struct list_head local_list;
1777
1778 spin_lock_irq(&bh->lock);
1779 bh->running = true;
1780 restart:
1781 list_replace_init(&bh->head, &local_list);
1782 spin_unlock_irq(&bh->lock);
1783
1784 while (!list_empty(&local_list)) {
1785 struct urb *urb;
1786
1787 urb = list_entry(local_list.next, struct urb, urb_list);
1788 list_del_init(&urb->urb_list);
1789 bh->completing_ep = urb->ep;
1790 __usb_hcd_giveback_urb(urb);
1791 bh->completing_ep = NULL;
1792 }
1793
1794 /* check if there are new URBs to giveback */
1795 spin_lock_irq(&bh->lock);
1796 if (!list_empty(&bh->head))
1797 goto restart;
1798 bh->running = false;
1799 spin_unlock_irq(&bh->lock);
1800 }
1801
1802 /**
1803 * usb_hcd_giveback_urb - return URB from HCD to device driver
1804 * @hcd: host controller returning the URB
1805 * @urb: urb being returned to the USB device driver.
1806 * @status: completion status code for the URB.
1807 * Context: in_interrupt()
1808 *
1809 * This hands the URB from HCD to its USB device driver, using its
1810 * completion function. The HCD has freed all per-urb resources
1811 * (and is done using urb->hcpriv). It also released all HCD locks;
1812 * the device driver won't cause problems if it frees, modifies,
1813 * or resubmits this URB.
1814 *
1815 * If @urb was unlinked, the value of @status will be overridden by
1816 * @urb->unlinked. Erroneous short transfers are detected in case
1817 * the HCD hasn't checked for them.
1818 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1819 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1820 {
1821 struct giveback_urb_bh *bh;
1822 bool running, high_prio_bh;
1823
1824 /* pass status to tasklet via unlinked */
1825 if (likely(!urb->unlinked))
1826 urb->unlinked = status;
1827
1828 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1829 __usb_hcd_giveback_urb(urb);
1830 return;
1831 }
1832
1833 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1834 bh = &hcd->high_prio_bh;
1835 high_prio_bh = true;
1836 } else {
1837 bh = &hcd->low_prio_bh;
1838 high_prio_bh = false;
1839 }
1840
1841 spin_lock(&bh->lock);
1842 list_add_tail(&urb->urb_list, &bh->head);
1843 running = bh->running;
1844 spin_unlock(&bh->lock);
1845
1846 if (running)
1847 ;
1848 else if (high_prio_bh)
1849 tasklet_hi_schedule(&bh->bh);
1850 else
1851 tasklet_schedule(&bh->bh);
1852 }
1853 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1854
1855 /*-------------------------------------------------------------------------*/
1856
1857 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1858 * queue to drain completely. The caller must first insure that no more
1859 * URBs can be submitted for this endpoint.
1860 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1861 void usb_hcd_flush_endpoint(struct usb_device *udev,
1862 struct usb_host_endpoint *ep)
1863 {
1864 struct usb_hcd *hcd;
1865 struct urb *urb;
1866
1867 if (!ep)
1868 return;
1869 might_sleep();
1870 hcd = bus_to_hcd(udev->bus);
1871
1872 /* No more submits can occur */
1873 spin_lock_irq(&hcd_urb_list_lock);
1874 rescan:
1875 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1876 int is_in;
1877
1878 if (urb->unlinked)
1879 continue;
1880 usb_get_urb (urb);
1881 is_in = usb_urb_dir_in(urb);
1882 spin_unlock(&hcd_urb_list_lock);
1883
1884 /* kick hcd */
1885 unlink1(hcd, urb, -ESHUTDOWN);
1886 dev_dbg (hcd->self.controller,
1887 "shutdown urb %pK ep%d%s%s\n",
1888 urb, usb_endpoint_num(&ep->desc),
1889 is_in ? "in" : "out",
1890 ({ char *s;
1891
1892 switch (usb_endpoint_type(&ep->desc)) {
1893 case USB_ENDPOINT_XFER_CONTROL:
1894 s = ""; break;
1895 case USB_ENDPOINT_XFER_BULK:
1896 s = "-bulk"; break;
1897 case USB_ENDPOINT_XFER_INT:
1898 s = "-intr"; break;
1899 default:
1900 s = "-iso"; break;
1901 };
1902 s;
1903 }));
1904 usb_put_urb (urb);
1905
1906 /* list contents may have changed */
1907 spin_lock(&hcd_urb_list_lock);
1908 goto rescan;
1909 }
1910 spin_unlock_irq(&hcd_urb_list_lock);
1911
1912 /* Wait until the endpoint queue is completely empty */
1913 while (!list_empty (&ep->urb_list)) {
1914 spin_lock_irq(&hcd_urb_list_lock);
1915
1916 /* The list may have changed while we acquired the spinlock */
1917 urb = NULL;
1918 if (!list_empty (&ep->urb_list)) {
1919 urb = list_entry (ep->urb_list.prev, struct urb,
1920 urb_list);
1921 usb_get_urb (urb);
1922 }
1923 spin_unlock_irq(&hcd_urb_list_lock);
1924
1925 if (urb) {
1926 usb_kill_urb (urb);
1927 usb_put_urb (urb);
1928 }
1929 }
1930 }
1931
1932 /**
1933 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1934 * the bus bandwidth
1935 * @udev: target &usb_device
1936 * @new_config: new configuration to install
1937 * @cur_alt: the current alternate interface setting
1938 * @new_alt: alternate interface setting that is being installed
1939 *
1940 * To change configurations, pass in the new configuration in new_config,
1941 * and pass NULL for cur_alt and new_alt.
1942 *
1943 * To reset a device's configuration (put the device in the ADDRESSED state),
1944 * pass in NULL for new_config, cur_alt, and new_alt.
1945 *
1946 * To change alternate interface settings, pass in NULL for new_config,
1947 * pass in the current alternate interface setting in cur_alt,
1948 * and pass in the new alternate interface setting in new_alt.
1949 *
1950 * Return: An error if the requested bandwidth change exceeds the
1951 * bus bandwidth or host controller internal resources.
1952 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1953 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1954 struct usb_host_config *new_config,
1955 struct usb_host_interface *cur_alt,
1956 struct usb_host_interface *new_alt)
1957 {
1958 int num_intfs, i, j;
1959 struct usb_host_interface *alt = NULL;
1960 int ret = 0;
1961 struct usb_hcd *hcd;
1962 struct usb_host_endpoint *ep;
1963
1964 hcd = bus_to_hcd(udev->bus);
1965 if (!hcd->driver->check_bandwidth)
1966 return 0;
1967
1968 /* Configuration is being removed - set configuration 0 */
1969 if (!new_config && !cur_alt) {
1970 for (i = 1; i < 16; ++i) {
1971 ep = udev->ep_out[i];
1972 if (ep)
1973 hcd->driver->drop_endpoint(hcd, udev, ep);
1974 ep = udev->ep_in[i];
1975 if (ep)
1976 hcd->driver->drop_endpoint(hcd, udev, ep);
1977 }
1978 hcd->driver->check_bandwidth(hcd, udev);
1979 return 0;
1980 }
1981 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1982 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1983 * of the bus. There will always be bandwidth for endpoint 0, so it's
1984 * ok to exclude it.
1985 */
1986 if (new_config) {
1987 num_intfs = new_config->desc.bNumInterfaces;
1988 /* Remove endpoints (except endpoint 0, which is always on the
1989 * schedule) from the old config from the schedule
1990 */
1991 for (i = 1; i < 16; ++i) {
1992 ep = udev->ep_out[i];
1993 if (ep) {
1994 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1995 if (ret < 0)
1996 goto reset;
1997 }
1998 ep = udev->ep_in[i];
1999 if (ep) {
2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 if (ret < 0)
2002 goto reset;
2003 }
2004 }
2005 for (i = 0; i < num_intfs; ++i) {
2006 struct usb_host_interface *first_alt;
2007 int iface_num;
2008
2009 first_alt = &new_config->intf_cache[i]->altsetting[0];
2010 iface_num = first_alt->desc.bInterfaceNumber;
2011 /* Set up endpoints for alternate interface setting 0 */
2012 alt = usb_find_alt_setting(new_config, iface_num, 0);
2013 if (!alt)
2014 /* No alt setting 0? Pick the first setting. */
2015 alt = first_alt;
2016
2017 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2018 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2019 if (ret < 0)
2020 goto reset;
2021 }
2022 }
2023 }
2024 if (cur_alt && new_alt) {
2025 struct usb_interface *iface = usb_ifnum_to_if(udev,
2026 cur_alt->desc.bInterfaceNumber);
2027
2028 if (!iface)
2029 return -EINVAL;
2030 if (iface->resetting_device) {
2031 /*
2032 * The USB core just reset the device, so the xHCI host
2033 * and the device will think alt setting 0 is installed.
2034 * However, the USB core will pass in the alternate
2035 * setting installed before the reset as cur_alt. Dig
2036 * out the alternate setting 0 structure, or the first
2037 * alternate setting if a broken device doesn't have alt
2038 * setting 0.
2039 */
2040 cur_alt = usb_altnum_to_altsetting(iface, 0);
2041 if (!cur_alt)
2042 cur_alt = &iface->altsetting[0];
2043 }
2044
2045 /* Drop all the endpoints in the current alt setting */
2046 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2047 ret = hcd->driver->drop_endpoint(hcd, udev,
2048 &cur_alt->endpoint[i]);
2049 if (ret < 0)
2050 goto reset;
2051 }
2052 /* Add all the endpoints in the new alt setting */
2053 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2054 ret = hcd->driver->add_endpoint(hcd, udev,
2055 &new_alt->endpoint[i]);
2056 if (ret < 0)
2057 goto reset;
2058 }
2059 }
2060 ret = hcd->driver->check_bandwidth(hcd, udev);
2061 reset:
2062 if (ret < 0)
2063 hcd->driver->reset_bandwidth(hcd, udev);
2064 return ret;
2065 }
2066
2067 /* Disables the endpoint: synchronizes with the hcd to make sure all
2068 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2069 * have been called previously. Use for set_configuration, set_interface,
2070 * driver removal, physical disconnect.
2071 *
2072 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2073 * type, maxpacket size, toggle, halt status, and scheduling.
2074 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2075 void usb_hcd_disable_endpoint(struct usb_device *udev,
2076 struct usb_host_endpoint *ep)
2077 {
2078 struct usb_hcd *hcd;
2079
2080 might_sleep();
2081 hcd = bus_to_hcd(udev->bus);
2082 if (hcd->driver->endpoint_disable)
2083 hcd->driver->endpoint_disable(hcd, ep);
2084 }
2085
2086 /**
2087 * usb_hcd_reset_endpoint - reset host endpoint state
2088 * @udev: USB device.
2089 * @ep: the endpoint to reset.
2090 *
2091 * Resets any host endpoint state such as the toggle bit, sequence
2092 * number and current window.
2093 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2094 void usb_hcd_reset_endpoint(struct usb_device *udev,
2095 struct usb_host_endpoint *ep)
2096 {
2097 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2098
2099 if (hcd->driver->endpoint_reset)
2100 hcd->driver->endpoint_reset(hcd, ep);
2101 else {
2102 int epnum = usb_endpoint_num(&ep->desc);
2103 int is_out = usb_endpoint_dir_out(&ep->desc);
2104 int is_control = usb_endpoint_xfer_control(&ep->desc);
2105
2106 usb_settoggle(udev, epnum, is_out, 0);
2107 if (is_control)
2108 usb_settoggle(udev, epnum, !is_out, 0);
2109 }
2110 }
2111
2112 /**
2113 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2114 * @interface: alternate setting that includes all endpoints.
2115 * @eps: array of endpoints that need streams.
2116 * @num_eps: number of endpoints in the array.
2117 * @num_streams: number of streams to allocate.
2118 * @mem_flags: flags hcd should use to allocate memory.
2119 *
2120 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2121 * Drivers may queue multiple transfers to different stream IDs, which may
2122 * complete in a different order than they were queued.
2123 *
2124 * Return: On success, the number of allocated streams. On failure, a negative
2125 * error code.
2126 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2127 int usb_alloc_streams(struct usb_interface *interface,
2128 struct usb_host_endpoint **eps, unsigned int num_eps,
2129 unsigned int num_streams, gfp_t mem_flags)
2130 {
2131 struct usb_hcd *hcd;
2132 struct usb_device *dev;
2133 int i, ret;
2134
2135 dev = interface_to_usbdev(interface);
2136 hcd = bus_to_hcd(dev->bus);
2137 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2138 return -EINVAL;
2139 if (dev->speed < USB_SPEED_SUPER)
2140 return -EINVAL;
2141 if (dev->state < USB_STATE_CONFIGURED)
2142 return -ENODEV;
2143
2144 for (i = 0; i < num_eps; i++) {
2145 /* Streams only apply to bulk endpoints. */
2146 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2147 return -EINVAL;
2148 /* Re-alloc is not allowed */
2149 if (eps[i]->streams)
2150 return -EINVAL;
2151 }
2152
2153 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2154 num_streams, mem_flags);
2155 if (ret < 0)
2156 return ret;
2157
2158 for (i = 0; i < num_eps; i++)
2159 eps[i]->streams = ret;
2160
2161 return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2164
2165 /**
2166 * usb_free_streams - free bulk endpoint stream IDs.
2167 * @interface: alternate setting that includes all endpoints.
2168 * @eps: array of endpoints to remove streams from.
2169 * @num_eps: number of endpoints in the array.
2170 * @mem_flags: flags hcd should use to allocate memory.
2171 *
2172 * Reverts a group of bulk endpoints back to not using stream IDs.
2173 * Can fail if we are given bad arguments, or HCD is broken.
2174 *
2175 * Return: 0 on success. On failure, a negative error code.
2176 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2177 int usb_free_streams(struct usb_interface *interface,
2178 struct usb_host_endpoint **eps, unsigned int num_eps,
2179 gfp_t mem_flags)
2180 {
2181 struct usb_hcd *hcd;
2182 struct usb_device *dev;
2183 int i, ret;
2184
2185 dev = interface_to_usbdev(interface);
2186 hcd = bus_to_hcd(dev->bus);
2187 if (dev->speed < USB_SPEED_SUPER)
2188 return -EINVAL;
2189
2190 /* Double-free is not allowed */
2191 for (i = 0; i < num_eps; i++)
2192 if (!eps[i] || !eps[i]->streams)
2193 return -EINVAL;
2194
2195 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2196 if (ret < 0)
2197 return ret;
2198
2199 for (i = 0; i < num_eps; i++)
2200 eps[i]->streams = 0;
2201
2202 return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(usb_free_streams);
2205
2206 /* Protect against drivers that try to unlink URBs after the device
2207 * is gone, by waiting until all unlinks for @udev are finished.
2208 * Since we don't currently track URBs by device, simply wait until
2209 * nothing is running in the locked region of usb_hcd_unlink_urb().
2210 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2211 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2212 {
2213 spin_lock_irq(&hcd_urb_unlink_lock);
2214 spin_unlock_irq(&hcd_urb_unlink_lock);
2215 }
2216
2217 /*-------------------------------------------------------------------------*/
2218
2219 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2220 int usb_hcd_get_frame_number (struct usb_device *udev)
2221 {
2222 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2223
2224 if (!HCD_RH_RUNNING(hcd))
2225 return -ESHUTDOWN;
2226 return hcd->driver->get_frame_number (hcd);
2227 }
2228
2229 /*-------------------------------------------------------------------------*/
2230
2231 #ifdef CONFIG_PM
2232
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2233 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2234 {
2235 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2236 int status;
2237 int old_state = hcd->state;
2238
2239 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2240 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2241 rhdev->do_remote_wakeup);
2242 if (HCD_DEAD(hcd)) {
2243 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2244 return 0;
2245 }
2246
2247 if (!hcd->driver->bus_suspend) {
2248 status = -ENOENT;
2249 } else {
2250 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2251 hcd->state = HC_STATE_QUIESCING;
2252 status = hcd->driver->bus_suspend(hcd);
2253 }
2254 if (status == 0) {
2255 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2256 hcd->state = HC_STATE_SUSPENDED;
2257
2258 /* Did we race with a root-hub wakeup event? */
2259 if (rhdev->do_remote_wakeup) {
2260 char buffer[6];
2261
2262 status = hcd->driver->hub_status_data(hcd, buffer);
2263 if (status != 0) {
2264 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2265 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2266 status = -EBUSY;
2267 }
2268 }
2269 } else {
2270 spin_lock_irq(&hcd_root_hub_lock);
2271 if (!HCD_DEAD(hcd)) {
2272 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2273 hcd->state = old_state;
2274 }
2275 spin_unlock_irq(&hcd_root_hub_lock);
2276 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2277 "suspend", status);
2278 }
2279 return status;
2280 }
2281
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2282 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2283 {
2284 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2285 int status;
2286 int old_state = hcd->state;
2287
2288 dev_dbg(&rhdev->dev, "usb %sresume\n",
2289 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2290 if (HCD_DEAD(hcd)) {
2291 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2292 return 0;
2293 }
2294 if (!hcd->driver->bus_resume)
2295 return -ENOENT;
2296 if (HCD_RH_RUNNING(hcd))
2297 return 0;
2298
2299 hcd->state = HC_STATE_RESUMING;
2300 status = hcd->driver->bus_resume(hcd);
2301 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2302 if (status == 0) {
2303 struct usb_device *udev;
2304 int port1;
2305
2306 spin_lock_irq(&hcd_root_hub_lock);
2307 if (!HCD_DEAD(hcd)) {
2308 usb_set_device_state(rhdev, rhdev->actconfig
2309 ? USB_STATE_CONFIGURED
2310 : USB_STATE_ADDRESS);
2311 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2312 hcd->state = HC_STATE_RUNNING;
2313 }
2314 spin_unlock_irq(&hcd_root_hub_lock);
2315
2316 /*
2317 * Check whether any of the enabled ports on the root hub are
2318 * unsuspended. If they are then a TRSMRCY delay is needed
2319 * (this is what the USB-2 spec calls a "global resume").
2320 * Otherwise we can skip the delay.
2321 */
2322 usb_hub_for_each_child(rhdev, port1, udev) {
2323 if (udev->state != USB_STATE_NOTATTACHED &&
2324 !udev->port_is_suspended) {
2325 usleep_range(10000, 11000); /* TRSMRCY */
2326 break;
2327 }
2328 }
2329 } else {
2330 hcd->state = old_state;
2331 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2332 "resume", status);
2333 if (status != -ESHUTDOWN)
2334 usb_hc_died(hcd);
2335 }
2336 return status;
2337 }
2338
2339 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2340 static void hcd_resume_work(struct work_struct *work)
2341 {
2342 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2343 struct usb_device *udev = hcd->self.root_hub;
2344
2345 usb_remote_wakeup(udev);
2346 }
2347
2348 /**
2349 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2350 * @hcd: host controller for this root hub
2351 *
2352 * The USB host controller calls this function when its root hub is
2353 * suspended (with the remote wakeup feature enabled) and a remote
2354 * wakeup request is received. The routine submits a workqueue request
2355 * to resume the root hub (that is, manage its downstream ports again).
2356 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2357 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2358 {
2359 unsigned long flags;
2360
2361 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2362 if (hcd->rh_registered) {
2363 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2364 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2365 queue_work(pm_wq, &hcd->wakeup_work);
2366 }
2367 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2368 }
2369 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2370
2371 #endif /* CONFIG_PM */
2372
2373 /*-------------------------------------------------------------------------*/
2374
2375 #ifdef CONFIG_USB_OTG
2376
2377 /**
2378 * usb_bus_start_enum - start immediate enumeration (for OTG)
2379 * @bus: the bus (must use hcd framework)
2380 * @port_num: 1-based number of port; usually bus->otg_port
2381 * Context: in_interrupt()
2382 *
2383 * Starts enumeration, with an immediate reset followed later by
2384 * hub_wq identifying and possibly configuring the device.
2385 * This is needed by OTG controller drivers, where it helps meet
2386 * HNP protocol timing requirements for starting a port reset.
2387 *
2388 * Return: 0 if successful.
2389 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2390 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2391 {
2392 struct usb_hcd *hcd;
2393 int status = -EOPNOTSUPP;
2394
2395 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2396 * boards with root hubs hooked up to internal devices (instead of
2397 * just the OTG port) may need more attention to resetting...
2398 */
2399 hcd = container_of (bus, struct usb_hcd, self);
2400 if (port_num && hcd->driver->start_port_reset)
2401 status = hcd->driver->start_port_reset(hcd, port_num);
2402
2403 /* allocate hub_wq shortly after (first) root port reset finishes;
2404 * it may issue others, until at least 50 msecs have passed.
2405 */
2406 if (status == 0)
2407 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2408 return status;
2409 }
2410 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2411
2412 #endif
2413
2414 /*-------------------------------------------------------------------------*/
2415
2416 /**
2417 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2418 * @irq: the IRQ being raised
2419 * @__hcd: pointer to the HCD whose IRQ is being signaled
2420 *
2421 * If the controller isn't HALTed, calls the driver's irq handler.
2422 * Checks whether the controller is now dead.
2423 *
2424 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2425 */
usb_hcd_irq(int irq,void * __hcd)2426 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2427 {
2428 struct usb_hcd *hcd = __hcd;
2429 irqreturn_t rc;
2430
2431 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2432 rc = IRQ_NONE;
2433 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2434 rc = IRQ_NONE;
2435 else
2436 rc = IRQ_HANDLED;
2437
2438 return rc;
2439 }
2440 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2441
2442 /*-------------------------------------------------------------------------*/
2443
2444 /**
2445 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2446 * @hcd: pointer to the HCD representing the controller
2447 *
2448 * This is called by bus glue to report a USB host controller that died
2449 * while operations may still have been pending. It's called automatically
2450 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2451 *
2452 * Only call this function with the primary HCD.
2453 */
usb_hc_died(struct usb_hcd * hcd)2454 void usb_hc_died (struct usb_hcd *hcd)
2455 {
2456 unsigned long flags;
2457
2458 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2459
2460 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2461 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2462 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2463 if (hcd->rh_registered) {
2464 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2465
2466 /* make hub_wq clean up old urbs and devices */
2467 usb_set_device_state (hcd->self.root_hub,
2468 USB_STATE_NOTATTACHED);
2469 usb_kick_hub_wq(hcd->self.root_hub);
2470 }
2471 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2472 hcd = hcd->shared_hcd;
2473 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2474 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2475 if (hcd->rh_registered) {
2476 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2477
2478 /* make hub_wq clean up old urbs and devices */
2479 usb_set_device_state(hcd->self.root_hub,
2480 USB_STATE_NOTATTACHED);
2481 usb_kick_hub_wq(hcd->self.root_hub);
2482 }
2483 }
2484 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2485 /* Make sure that the other roothub is also deallocated. */
2486 }
2487 EXPORT_SYMBOL_GPL (usb_hc_died);
2488
2489 /*-------------------------------------------------------------------------*/
2490
init_giveback_urb_bh(struct giveback_urb_bh * bh)2491 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2492 {
2493
2494 spin_lock_init(&bh->lock);
2495 INIT_LIST_HEAD(&bh->head);
2496 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2497 }
2498
2499 /**
2500 * usb_create_shared_hcd - create and initialize an HCD structure
2501 * @driver: HC driver that will use this hcd
2502 * @dev: device for this HC, stored in hcd->self.controller
2503 * @bus_name: value to store in hcd->self.bus_name
2504 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2505 * PCI device. Only allocate certain resources for the primary HCD
2506 * Context: !in_interrupt()
2507 *
2508 * Allocate a struct usb_hcd, with extra space at the end for the
2509 * HC driver's private data. Initialize the generic members of the
2510 * hcd structure.
2511 *
2512 * Return: On success, a pointer to the created and initialized HCD structure.
2513 * On failure (e.g. if memory is unavailable), %NULL.
2514 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2515 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2516 struct device *dev, const char *bus_name,
2517 struct usb_hcd *primary_hcd)
2518 {
2519 struct usb_hcd *hcd;
2520
2521 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2522 if (!hcd) {
2523 dev_dbg (dev, "hcd alloc failed\n");
2524 return NULL;
2525 }
2526 if (primary_hcd == NULL) {
2527 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2528 GFP_KERNEL);
2529 if (!hcd->address0_mutex) {
2530 kfree(hcd);
2531 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2532 return NULL;
2533 }
2534 mutex_init(hcd->address0_mutex);
2535 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2536 GFP_KERNEL);
2537 if (!hcd->bandwidth_mutex) {
2538 kfree(hcd->address0_mutex);
2539 kfree(hcd);
2540 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2541 return NULL;
2542 }
2543 mutex_init(hcd->bandwidth_mutex);
2544 dev_set_drvdata(dev, hcd);
2545 } else {
2546 mutex_lock(&usb_port_peer_mutex);
2547 hcd->address0_mutex = primary_hcd->address0_mutex;
2548 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2549 hcd->primary_hcd = primary_hcd;
2550 primary_hcd->primary_hcd = primary_hcd;
2551 hcd->shared_hcd = primary_hcd;
2552 primary_hcd->shared_hcd = hcd;
2553 mutex_unlock(&usb_port_peer_mutex);
2554 }
2555
2556 kref_init(&hcd->kref);
2557
2558 usb_bus_init(&hcd->self);
2559 hcd->self.controller = dev;
2560 hcd->self.bus_name = bus_name;
2561 hcd->self.uses_dma = (dev->dma_mask != NULL);
2562
2563 init_timer(&hcd->rh_timer);
2564 hcd->rh_timer.function = rh_timer_func;
2565 hcd->rh_timer.data = (unsigned long) hcd;
2566 #ifdef CONFIG_PM
2567 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2568 #endif
2569
2570 hcd->driver = driver;
2571 hcd->speed = driver->flags & HCD_MASK;
2572 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2573 "USB Host Controller";
2574 return hcd;
2575 }
2576 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2577
2578 /**
2579 * usb_create_hcd - create and initialize an HCD structure
2580 * @driver: HC driver that will use this hcd
2581 * @dev: device for this HC, stored in hcd->self.controller
2582 * @bus_name: value to store in hcd->self.bus_name
2583 * Context: !in_interrupt()
2584 *
2585 * Allocate a struct usb_hcd, with extra space at the end for the
2586 * HC driver's private data. Initialize the generic members of the
2587 * hcd structure.
2588 *
2589 * Return: On success, a pointer to the created and initialized HCD
2590 * structure. On failure (e.g. if memory is unavailable), %NULL.
2591 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2592 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2593 struct device *dev, const char *bus_name)
2594 {
2595 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2596 }
2597 EXPORT_SYMBOL_GPL(usb_create_hcd);
2598
2599 /*
2600 * Roothubs that share one PCI device must also share the bandwidth mutex.
2601 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2602 * deallocated.
2603 *
2604 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2605 * freed. When hcd_release() is called for either hcd in a peer set,
2606 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2607 */
hcd_release(struct kref * kref)2608 static void hcd_release(struct kref *kref)
2609 {
2610 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2611
2612 mutex_lock(&usb_port_peer_mutex);
2613 if (hcd->shared_hcd) {
2614 struct usb_hcd *peer = hcd->shared_hcd;
2615
2616 peer->shared_hcd = NULL;
2617 peer->primary_hcd = NULL;
2618 } else {
2619 kfree(hcd->address0_mutex);
2620 kfree(hcd->bandwidth_mutex);
2621 }
2622 mutex_unlock(&usb_port_peer_mutex);
2623 kfree(hcd);
2624 }
2625
usb_get_hcd(struct usb_hcd * hcd)2626 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2627 {
2628 if (hcd)
2629 kref_get (&hcd->kref);
2630 return hcd;
2631 }
2632 EXPORT_SYMBOL_GPL(usb_get_hcd);
2633
usb_put_hcd(struct usb_hcd * hcd)2634 void usb_put_hcd (struct usb_hcd *hcd)
2635 {
2636 if (hcd)
2637 kref_put (&hcd->kref, hcd_release);
2638 }
2639 EXPORT_SYMBOL_GPL(usb_put_hcd);
2640
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2641 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2642 {
2643 if (!hcd->primary_hcd)
2644 return 1;
2645 return hcd == hcd->primary_hcd;
2646 }
2647 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2648
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2649 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2650 {
2651 if (!hcd->driver->find_raw_port_number)
2652 return port1;
2653
2654 return hcd->driver->find_raw_port_number(hcd, port1);
2655 }
2656
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2657 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2658 unsigned int irqnum, unsigned long irqflags)
2659 {
2660 int retval;
2661
2662 if (hcd->driver->irq) {
2663
2664 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2665 hcd->driver->description, hcd->self.busnum);
2666 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2667 hcd->irq_descr, hcd);
2668 if (retval != 0) {
2669 dev_err(hcd->self.controller,
2670 "request interrupt %d failed\n",
2671 irqnum);
2672 return retval;
2673 }
2674 hcd->irq = irqnum;
2675 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2676 (hcd->driver->flags & HCD_MEMORY) ?
2677 "io mem" : "io base",
2678 (unsigned long long)hcd->rsrc_start);
2679 } else {
2680 hcd->irq = 0;
2681 if (hcd->rsrc_start)
2682 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2683 (hcd->driver->flags & HCD_MEMORY) ?
2684 "io mem" : "io base",
2685 (unsigned long long)hcd->rsrc_start);
2686 }
2687 return 0;
2688 }
2689
2690 /*
2691 * Before we free this root hub, flush in-flight peering attempts
2692 * and disable peer lookups
2693 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2694 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2695 {
2696 struct usb_device *rhdev;
2697
2698 mutex_lock(&usb_port_peer_mutex);
2699 rhdev = hcd->self.root_hub;
2700 hcd->self.root_hub = NULL;
2701 mutex_unlock(&usb_port_peer_mutex);
2702 usb_put_dev(rhdev);
2703 }
2704
2705 /**
2706 * usb_add_hcd - finish generic HCD structure initialization and register
2707 * @hcd: the usb_hcd structure to initialize
2708 * @irqnum: Interrupt line to allocate
2709 * @irqflags: Interrupt type flags
2710 *
2711 * Finish the remaining parts of generic HCD initialization: allocate the
2712 * buffers of consistent memory, register the bus, request the IRQ line,
2713 * and call the driver's reset() and start() routines.
2714 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2715 int usb_add_hcd(struct usb_hcd *hcd,
2716 unsigned int irqnum, unsigned long irqflags)
2717 {
2718 int retval;
2719 struct usb_device *rhdev;
2720
2721 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2722 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2723
2724 if (IS_ERR(phy)) {
2725 retval = PTR_ERR(phy);
2726 if (retval == -EPROBE_DEFER)
2727 return retval;
2728 } else {
2729 retval = usb_phy_init(phy);
2730 if (retval) {
2731 usb_put_phy(phy);
2732 return retval;
2733 }
2734 hcd->usb_phy = phy;
2735 hcd->remove_phy = 1;
2736 }
2737 }
2738
2739 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2740 struct phy *phy = phy_get(hcd->self.controller, "usb");
2741
2742 if (IS_ERR(phy)) {
2743 retval = PTR_ERR(phy);
2744 if (retval == -EPROBE_DEFER)
2745 goto err_phy;
2746 } else {
2747 retval = phy_init(phy);
2748 if (retval) {
2749 phy_put(phy);
2750 goto err_phy;
2751 }
2752 retval = phy_power_on(phy);
2753 if (retval) {
2754 phy_exit(phy);
2755 phy_put(phy);
2756 goto err_phy;
2757 }
2758 hcd->phy = phy;
2759 hcd->remove_phy = 1;
2760 }
2761 }
2762
2763 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2764
2765 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2766 if (authorized_default < 0 || authorized_default > 1) {
2767 if (hcd->wireless)
2768 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2769 else
2770 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2771 } else {
2772 if (authorized_default)
2773 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2774 else
2775 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2776 }
2777 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2778
2779 /* per default all interfaces are authorized */
2780 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2781
2782 /* HC is in reset state, but accessible. Now do the one-time init,
2783 * bottom up so that hcds can customize the root hubs before hub_wq
2784 * starts talking to them. (Note, bus id is assigned early too.)
2785 */
2786 retval = hcd_buffer_create(hcd);
2787 if (retval != 0) {
2788 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2789 goto err_create_buf;
2790 }
2791
2792 retval = usb_register_bus(&hcd->self);
2793 if (retval < 0)
2794 goto err_register_bus;
2795
2796 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2797 if (rhdev == NULL) {
2798 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2799 retval = -ENOMEM;
2800 goto err_allocate_root_hub;
2801 }
2802 mutex_lock(&usb_port_peer_mutex);
2803 hcd->self.root_hub = rhdev;
2804 mutex_unlock(&usb_port_peer_mutex);
2805
2806 switch (hcd->speed) {
2807 case HCD_USB11:
2808 rhdev->speed = USB_SPEED_FULL;
2809 break;
2810 case HCD_USB2:
2811 rhdev->speed = USB_SPEED_HIGH;
2812 break;
2813 case HCD_USB25:
2814 rhdev->speed = USB_SPEED_WIRELESS;
2815 break;
2816 case HCD_USB3:
2817 case HCD_USB31:
2818 rhdev->speed = USB_SPEED_SUPER;
2819 break;
2820 default:
2821 retval = -EINVAL;
2822 goto err_set_rh_speed;
2823 }
2824
2825 /* wakeup flag init defaults to "everything works" for root hubs,
2826 * but drivers can override it in reset() if needed, along with
2827 * recording the overall controller's system wakeup capability.
2828 */
2829 device_set_wakeup_capable(&rhdev->dev, 1);
2830
2831 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2832 * registered. But since the controller can die at any time,
2833 * let's initialize the flag before touching the hardware.
2834 */
2835 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2836
2837 /* "reset" is misnamed; its role is now one-time init. the controller
2838 * should already have been reset (and boot firmware kicked off etc).
2839 */
2840 if (hcd->driver->reset) {
2841 retval = hcd->driver->reset(hcd);
2842 if (retval < 0) {
2843 dev_err(hcd->self.controller, "can't setup: %d\n",
2844 retval);
2845 goto err_hcd_driver_setup;
2846 }
2847 }
2848 hcd->rh_pollable = 1;
2849
2850 /* NOTE: root hub and controller capabilities may not be the same */
2851 if (device_can_wakeup(hcd->self.controller)
2852 && device_can_wakeup(&hcd->self.root_hub->dev))
2853 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2854
2855 /* initialize tasklets */
2856 init_giveback_urb_bh(&hcd->high_prio_bh);
2857 init_giveback_urb_bh(&hcd->low_prio_bh);
2858
2859 /* enable irqs just before we start the controller,
2860 * if the BIOS provides legacy PCI irqs.
2861 */
2862 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2863 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2864 if (retval)
2865 goto err_request_irq;
2866 }
2867
2868 hcd->state = HC_STATE_RUNNING;
2869 retval = hcd->driver->start(hcd);
2870 if (retval < 0) {
2871 dev_err(hcd->self.controller, "startup error %d\n", retval);
2872 goto err_hcd_driver_start;
2873 }
2874
2875 /* starting here, usbcore will pay attention to this root hub */
2876 retval = register_root_hub(hcd);
2877 if (retval != 0)
2878 goto err_register_root_hub;
2879
2880 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2881 if (retval < 0) {
2882 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2883 retval);
2884 goto error_create_attr_group;
2885 }
2886 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2887 usb_hcd_poll_rh_status(hcd);
2888
2889 return retval;
2890
2891 error_create_attr_group:
2892 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2893 if (HC_IS_RUNNING(hcd->state))
2894 hcd->state = HC_STATE_QUIESCING;
2895 spin_lock_irq(&hcd_root_hub_lock);
2896 hcd->rh_registered = 0;
2897 spin_unlock_irq(&hcd_root_hub_lock);
2898
2899 #ifdef CONFIG_PM
2900 cancel_work_sync(&hcd->wakeup_work);
2901 #endif
2902 mutex_lock(&usb_bus_list_lock);
2903 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2904 mutex_unlock(&usb_bus_list_lock);
2905 err_register_root_hub:
2906 hcd->rh_pollable = 0;
2907 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2908 del_timer_sync(&hcd->rh_timer);
2909 hcd->driver->stop(hcd);
2910 hcd->state = HC_STATE_HALT;
2911 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2912 del_timer_sync(&hcd->rh_timer);
2913 err_hcd_driver_start:
2914 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2915 free_irq(irqnum, hcd);
2916 err_request_irq:
2917 err_hcd_driver_setup:
2918 err_set_rh_speed:
2919 usb_put_invalidate_rhdev(hcd);
2920 err_allocate_root_hub:
2921 usb_deregister_bus(&hcd->self);
2922 err_register_bus:
2923 hcd_buffer_destroy(hcd);
2924 err_create_buf:
2925 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2926 phy_power_off(hcd->phy);
2927 phy_exit(hcd->phy);
2928 phy_put(hcd->phy);
2929 hcd->phy = NULL;
2930 }
2931 err_phy:
2932 if (hcd->remove_phy && hcd->usb_phy) {
2933 usb_phy_shutdown(hcd->usb_phy);
2934 usb_put_phy(hcd->usb_phy);
2935 hcd->usb_phy = NULL;
2936 }
2937 return retval;
2938 }
2939 EXPORT_SYMBOL_GPL(usb_add_hcd);
2940
2941 /**
2942 * usb_remove_hcd - shutdown processing for generic HCDs
2943 * @hcd: the usb_hcd structure to remove
2944 * Context: !in_interrupt()
2945 *
2946 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2947 * invoking the HCD's stop() method.
2948 */
usb_remove_hcd(struct usb_hcd * hcd)2949 void usb_remove_hcd(struct usb_hcd *hcd)
2950 {
2951 struct usb_device *rhdev = hcd->self.root_hub;
2952
2953 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2954
2955 usb_get_dev(rhdev);
2956 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2957
2958 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2959 if (HC_IS_RUNNING (hcd->state))
2960 hcd->state = HC_STATE_QUIESCING;
2961
2962 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2963 spin_lock_irq (&hcd_root_hub_lock);
2964 hcd->rh_registered = 0;
2965 spin_unlock_irq (&hcd_root_hub_lock);
2966
2967 #ifdef CONFIG_PM
2968 cancel_work_sync(&hcd->wakeup_work);
2969 #endif
2970
2971 mutex_lock(&usb_bus_list_lock);
2972 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2973 mutex_unlock(&usb_bus_list_lock);
2974
2975 /*
2976 * tasklet_kill() isn't needed here because:
2977 * - driver's disconnect() called from usb_disconnect() should
2978 * make sure its URBs are completed during the disconnect()
2979 * callback
2980 *
2981 * - it is too late to run complete() here since driver may have
2982 * been removed already now
2983 */
2984
2985 /* Prevent any more root-hub status calls from the timer.
2986 * The HCD might still restart the timer (if a port status change
2987 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2988 * the hub_status_data() callback.
2989 */
2990 hcd->rh_pollable = 0;
2991 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2992 del_timer_sync(&hcd->rh_timer);
2993
2994 hcd->driver->stop(hcd);
2995 hcd->state = HC_STATE_HALT;
2996
2997 /* In case the HCD restarted the timer, stop it again. */
2998 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2999 del_timer_sync(&hcd->rh_timer);
3000
3001 if (usb_hcd_is_primary_hcd(hcd)) {
3002 if (hcd->irq > 0)
3003 free_irq(hcd->irq, hcd);
3004 }
3005
3006 usb_deregister_bus(&hcd->self);
3007 hcd_buffer_destroy(hcd);
3008
3009 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3010 phy_power_off(hcd->phy);
3011 phy_exit(hcd->phy);
3012 phy_put(hcd->phy);
3013 hcd->phy = NULL;
3014 }
3015 if (hcd->remove_phy && hcd->usb_phy) {
3016 usb_phy_shutdown(hcd->usb_phy);
3017 usb_put_phy(hcd->usb_phy);
3018 hcd->usb_phy = NULL;
3019 }
3020
3021 usb_put_invalidate_rhdev(hcd);
3022 hcd->flags = 0;
3023 }
3024 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3025
3026 void
usb_hcd_platform_shutdown(struct platform_device * dev)3027 usb_hcd_platform_shutdown(struct platform_device *dev)
3028 {
3029 struct usb_hcd *hcd = platform_get_drvdata(dev);
3030
3031 /* No need for pm_runtime_put(), we're shutting down */
3032 pm_runtime_get_sync(&dev->dev);
3033
3034 if (hcd->driver->shutdown)
3035 hcd->driver->shutdown(hcd);
3036 }
3037 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3038
3039 /*-------------------------------------------------------------------------*/
3040
3041 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3042
3043 struct usb_mon_operations *mon_ops;
3044
3045 /*
3046 * The registration is unlocked.
3047 * We do it this way because we do not want to lock in hot paths.
3048 *
3049 * Notice that the code is minimally error-proof. Because usbmon needs
3050 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3051 */
3052
usb_mon_register(struct usb_mon_operations * ops)3053 int usb_mon_register (struct usb_mon_operations *ops)
3054 {
3055
3056 if (mon_ops)
3057 return -EBUSY;
3058
3059 mon_ops = ops;
3060 mb();
3061 return 0;
3062 }
3063 EXPORT_SYMBOL_GPL (usb_mon_register);
3064
usb_mon_deregister(void)3065 void usb_mon_deregister (void)
3066 {
3067
3068 if (mon_ops == NULL) {
3069 printk(KERN_ERR "USB: monitor was not registered\n");
3070 return;
3071 }
3072 mon_ops = NULL;
3073 mb();
3074 }
3075 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3076
3077 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3078