1 /*
2 * uvc_video.c -- USB Video Class driver - Video handling
3 *
4 * Copyright (C) 2005-2010
5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <linux/atomic.h>
23 #include <asm/unaligned.h>
24
25 #include <media/v4l2-common.h>
26
27 #include "uvcvideo.h"
28
29 /* ------------------------------------------------------------------------
30 * UVC Controls
31 */
32
__uvc_query_ctrl(struct uvc_device * dev,__u8 query,__u8 unit,__u8 intfnum,__u8 cs,void * data,__u16 size,int timeout)33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
34 __u8 intfnum, __u8 cs, void *data, __u16 size,
35 int timeout)
36 {
37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
38 unsigned int pipe;
39
40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
41 : usb_sndctrlpipe(dev->udev, 0);
42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
43
44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
45 unit << 8 | intfnum, data, size, timeout);
46 }
47
uvc_query_name(__u8 query)48 static const char *uvc_query_name(__u8 query)
49 {
50 switch (query) {
51 case UVC_SET_CUR:
52 return "SET_CUR";
53 case UVC_GET_CUR:
54 return "GET_CUR";
55 case UVC_GET_MIN:
56 return "GET_MIN";
57 case UVC_GET_MAX:
58 return "GET_MAX";
59 case UVC_GET_RES:
60 return "GET_RES";
61 case UVC_GET_LEN:
62 return "GET_LEN";
63 case UVC_GET_INFO:
64 return "GET_INFO";
65 case UVC_GET_DEF:
66 return "GET_DEF";
67 default:
68 return "<invalid>";
69 }
70 }
71
uvc_query_ctrl(struct uvc_device * dev,__u8 query,__u8 unit,__u8 intfnum,__u8 cs,void * data,__u16 size)72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
73 __u8 intfnum, __u8 cs, void *data, __u16 size)
74 {
75 int ret;
76
77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 UVC_CTRL_CONTROL_TIMEOUT);
79 if (ret != size) {
80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on "
81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs,
82 unit, ret, size);
83 return -EIO;
84 }
85
86 return 0;
87 }
88
uvc_fixup_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl)89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
90 struct uvc_streaming_control *ctrl)
91 {
92 static const struct usb_device_id elgato_cam_link_4k = {
93 USB_DEVICE(0x0fd9, 0x0066)
94 };
95 struct uvc_format *format = NULL;
96 struct uvc_frame *frame = NULL;
97 unsigned int i;
98
99 /*
100 * The response of the Elgato Cam Link 4K is incorrect: The second byte
101 * contains bFormatIndex (instead of being the second byte of bmHint).
102 * The first byte is always zero. The third byte is always 1.
103 *
104 * The UVC 1.5 class specification defines the first five bits in the
105 * bmHint bitfield. The remaining bits are reserved and should be zero.
106 * Therefore a valid bmHint will be less than 32.
107 *
108 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
109 * MCU: 20.02.19, FPGA: 67
110 */
111 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
112 ctrl->bmHint > 255) {
113 u8 corrected_format_index = ctrl->bmHint >> 8;
114
115 /* uvc_dbg(stream->dev, VIDEO,
116 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
117 ctrl->bmHint, ctrl->bFormatIndex,
118 1, corrected_format_index); */
119 ctrl->bmHint = 1;
120 ctrl->bFormatIndex = corrected_format_index;
121 }
122
123 for (i = 0; i < stream->nformats; ++i) {
124 if (stream->format[i].index == ctrl->bFormatIndex) {
125 format = &stream->format[i];
126 break;
127 }
128 }
129
130 if (format == NULL)
131 return;
132
133 for (i = 0; i < format->nframes; ++i) {
134 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
135 frame = &format->frame[i];
136 break;
137 }
138 }
139
140 if (frame == NULL)
141 return;
142
143 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
144 (ctrl->dwMaxVideoFrameSize == 0 &&
145 stream->dev->uvc_version < 0x0110))
146 ctrl->dwMaxVideoFrameSize =
147 frame->dwMaxVideoFrameBufferSize;
148
149 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
150 * compute the bandwidth on 16 bits and erroneously sign-extend it to
151 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
152 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
153 */
154 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
155 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
156
157 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
158 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
159 stream->intf->num_altsetting > 1) {
160 u32 interval;
161 u32 bandwidth;
162
163 interval = (ctrl->dwFrameInterval > 100000)
164 ? ctrl->dwFrameInterval
165 : frame->dwFrameInterval[0];
166
167 /* Compute a bandwidth estimation by multiplying the frame
168 * size by the number of video frames per second, divide the
169 * result by the number of USB frames (or micro-frames for
170 * high-speed devices) per second and add the UVC header size
171 * (assumed to be 12 bytes long).
172 */
173 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
174 bandwidth *= 10000000 / interval + 1;
175 bandwidth /= 1000;
176 if (stream->dev->udev->speed == USB_SPEED_HIGH)
177 bandwidth /= 8;
178 bandwidth += 12;
179
180 /* The bandwidth estimate is too low for many cameras. Don't use
181 * maximum packet sizes lower than 1024 bytes to try and work
182 * around the problem. According to measurements done on two
183 * different camera models, the value is high enough to get most
184 * resolutions working while not preventing two simultaneous
185 * VGA streams at 15 fps.
186 */
187 bandwidth = max_t(u32, bandwidth, 1024);
188
189 ctrl->dwMaxPayloadTransferSize = bandwidth;
190 }
191 }
192
uvc_video_ctrl_size(struct uvc_streaming * stream)193 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
194 {
195 /*
196 * Return the size of the video probe and commit controls, which depends
197 * on the protocol version.
198 */
199 if (stream->dev->uvc_version < 0x0110)
200 return 26;
201 else if (stream->dev->uvc_version < 0x0150)
202 return 34;
203 else
204 return 48;
205 }
206
uvc_get_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe,__u8 query)207 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
208 struct uvc_streaming_control *ctrl, int probe, __u8 query)
209 {
210 __u16 size = uvc_video_ctrl_size(stream);
211 __u8 *data;
212 int ret;
213
214 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
215 query == UVC_GET_DEF)
216 return -EIO;
217
218 data = kmalloc(size, GFP_KERNEL);
219 if (data == NULL)
220 return -ENOMEM;
221
222 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
223 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
224 size, uvc_timeout_param);
225
226 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
227 /* Some cameras, mostly based on Bison Electronics chipsets,
228 * answer a GET_MIN or GET_MAX request with the wCompQuality
229 * field only.
230 */
231 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
232 "compliance - GET_MIN/MAX(PROBE) incorrectly "
233 "supported. Enabling workaround.\n");
234 memset(ctrl, 0, sizeof *ctrl);
235 ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
236 ret = 0;
237 goto out;
238 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
239 /* Many cameras don't support the GET_DEF request on their
240 * video probe control. Warn once and return, the caller will
241 * fall back to GET_CUR.
242 */
243 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
244 "compliance - GET_DEF(PROBE) not supported. "
245 "Enabling workaround.\n");
246 ret = -EIO;
247 goto out;
248 } else if (ret != size) {
249 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
250 "%d (exp. %u).\n", query, probe ? "probe" : "commit",
251 ret, size);
252 ret = -EIO;
253 goto out;
254 }
255
256 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
257 ctrl->bFormatIndex = data[2];
258 ctrl->bFrameIndex = data[3];
259 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
260 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
261 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
262 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
263 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
264 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
265 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
266 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
267
268 if (size >= 34) {
269 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
270 ctrl->bmFramingInfo = data[30];
271 ctrl->bPreferedVersion = data[31];
272 ctrl->bMinVersion = data[32];
273 ctrl->bMaxVersion = data[33];
274 } else {
275 ctrl->dwClockFrequency = stream->dev->clock_frequency;
276 ctrl->bmFramingInfo = 0;
277 ctrl->bPreferedVersion = 0;
278 ctrl->bMinVersion = 0;
279 ctrl->bMaxVersion = 0;
280 }
281
282 /* Some broken devices return null or wrong dwMaxVideoFrameSize and
283 * dwMaxPayloadTransferSize fields. Try to get the value from the
284 * format and frame descriptors.
285 */
286 uvc_fixup_video_ctrl(stream, ctrl);
287 ret = 0;
288
289 out:
290 kfree(data);
291 return ret;
292 }
293
uvc_set_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe)294 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
295 struct uvc_streaming_control *ctrl, int probe)
296 {
297 __u16 size = uvc_video_ctrl_size(stream);
298 __u8 *data;
299 int ret;
300
301 data = kzalloc(size, GFP_KERNEL);
302 if (data == NULL)
303 return -ENOMEM;
304
305 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
306 data[2] = ctrl->bFormatIndex;
307 data[3] = ctrl->bFrameIndex;
308 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
309 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
310 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
311 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
312 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
313 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
314 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
315 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
316
317 if (size >= 34) {
318 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
319 data[30] = ctrl->bmFramingInfo;
320 data[31] = ctrl->bPreferedVersion;
321 data[32] = ctrl->bMinVersion;
322 data[33] = ctrl->bMaxVersion;
323 }
324
325 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
326 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
327 size, uvc_timeout_param);
328 if (ret != size) {
329 uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
330 "%d (exp. %u).\n", probe ? "probe" : "commit",
331 ret, size);
332 ret = -EIO;
333 }
334
335 kfree(data);
336 return ret;
337 }
338
uvc_probe_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)339 int uvc_probe_video(struct uvc_streaming *stream,
340 struct uvc_streaming_control *probe)
341 {
342 struct uvc_streaming_control probe_min, probe_max;
343 __u16 bandwidth;
344 unsigned int i;
345 int ret;
346
347 /* Perform probing. The device should adjust the requested values
348 * according to its capabilities. However, some devices, namely the
349 * first generation UVC Logitech webcams, don't implement the Video
350 * Probe control properly, and just return the needed bandwidth. For
351 * that reason, if the needed bandwidth exceeds the maximum available
352 * bandwidth, try to lower the quality.
353 */
354 ret = uvc_set_video_ctrl(stream, probe, 1);
355 if (ret < 0)
356 goto done;
357
358 /* Get the minimum and maximum values for compression settings. */
359 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
360 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
361 if (ret < 0)
362 goto done;
363 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
364 if (ret < 0)
365 goto done;
366
367 probe->wCompQuality = probe_max.wCompQuality;
368 }
369
370 for (i = 0; i < 2; ++i) {
371 ret = uvc_set_video_ctrl(stream, probe, 1);
372 if (ret < 0)
373 goto done;
374 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
375 if (ret < 0)
376 goto done;
377
378 if (stream->intf->num_altsetting == 1)
379 break;
380
381 bandwidth = probe->dwMaxPayloadTransferSize;
382 if (bandwidth <= stream->maxpsize)
383 break;
384
385 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
386 ret = -ENOSPC;
387 goto done;
388 }
389
390 /* TODO: negotiate compression parameters */
391 probe->wKeyFrameRate = probe_min.wKeyFrameRate;
392 probe->wPFrameRate = probe_min.wPFrameRate;
393 probe->wCompQuality = probe_max.wCompQuality;
394 probe->wCompWindowSize = probe_min.wCompWindowSize;
395 }
396
397 done:
398 return ret;
399 }
400
uvc_commit_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)401 static int uvc_commit_video(struct uvc_streaming *stream,
402 struct uvc_streaming_control *probe)
403 {
404 return uvc_set_video_ctrl(stream, probe, 0);
405 }
406
407 /* -----------------------------------------------------------------------------
408 * Clocks and timestamps
409 */
410
uvc_video_get_ts(struct timespec * ts)411 static inline void uvc_video_get_ts(struct timespec *ts)
412 {
413 if (uvc_clock_param == CLOCK_MONOTONIC)
414 ktime_get_ts(ts);
415 else
416 ktime_get_real_ts(ts);
417 }
418
419 static void
uvc_video_clock_decode(struct uvc_streaming * stream,struct uvc_buffer * buf,const __u8 * data,int len)420 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
421 const __u8 *data, int len)
422 {
423 struct uvc_clock_sample *sample;
424 unsigned int header_size;
425 bool has_pts = false;
426 bool has_scr = false;
427 unsigned long flags;
428 struct timespec ts;
429 u16 host_sof;
430 u16 dev_sof;
431
432 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
433 case UVC_STREAM_PTS | UVC_STREAM_SCR:
434 header_size = 12;
435 has_pts = true;
436 has_scr = true;
437 break;
438 case UVC_STREAM_PTS:
439 header_size = 6;
440 has_pts = true;
441 break;
442 case UVC_STREAM_SCR:
443 header_size = 8;
444 has_scr = true;
445 break;
446 default:
447 header_size = 2;
448 break;
449 }
450
451 /* Check for invalid headers. */
452 if (len < header_size)
453 return;
454
455 /* Extract the timestamps:
456 *
457 * - store the frame PTS in the buffer structure
458 * - if the SCR field is present, retrieve the host SOF counter and
459 * kernel timestamps and store them with the SCR STC and SOF fields
460 * in the ring buffer
461 */
462 if (has_pts && buf != NULL)
463 buf->pts = get_unaligned_le32(&data[2]);
464
465 if (!has_scr)
466 return;
467
468 /* To limit the amount of data, drop SCRs with an SOF identical to the
469 * previous one.
470 */
471 dev_sof = get_unaligned_le16(&data[header_size - 2]);
472 if (dev_sof == stream->clock.last_sof)
473 return;
474
475 stream->clock.last_sof = dev_sof;
476
477 host_sof = usb_get_current_frame_number(stream->dev->udev);
478 uvc_video_get_ts(&ts);
479
480 /* The UVC specification allows device implementations that can't obtain
481 * the USB frame number to keep their own frame counters as long as they
482 * match the size and frequency of the frame number associated with USB
483 * SOF tokens. The SOF values sent by such devices differ from the USB
484 * SOF tokens by a fixed offset that needs to be estimated and accounted
485 * for to make timestamp recovery as accurate as possible.
486 *
487 * The offset is estimated the first time a device SOF value is received
488 * as the difference between the host and device SOF values. As the two
489 * SOF values can differ slightly due to transmission delays, consider
490 * that the offset is null if the difference is not higher than 10 ms
491 * (negative differences can not happen and are thus considered as an
492 * offset). The video commit control wDelay field should be used to
493 * compute a dynamic threshold instead of using a fixed 10 ms value, but
494 * devices don't report reliable wDelay values.
495 *
496 * See uvc_video_clock_host_sof() for an explanation regarding why only
497 * the 8 LSBs of the delta are kept.
498 */
499 if (stream->clock.sof_offset == (u16)-1) {
500 u16 delta_sof = (host_sof - dev_sof) & 255;
501 if (delta_sof >= 10)
502 stream->clock.sof_offset = delta_sof;
503 else
504 stream->clock.sof_offset = 0;
505 }
506
507 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
508
509 spin_lock_irqsave(&stream->clock.lock, flags);
510
511 sample = &stream->clock.samples[stream->clock.head];
512 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
513 sample->dev_sof = dev_sof;
514 sample->host_sof = host_sof;
515 sample->host_ts = ts;
516
517 /* Update the sliding window head and count. */
518 stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
519
520 if (stream->clock.count < stream->clock.size)
521 stream->clock.count++;
522
523 spin_unlock_irqrestore(&stream->clock.lock, flags);
524 }
525
uvc_video_clock_reset(struct uvc_streaming * stream)526 static void uvc_video_clock_reset(struct uvc_streaming *stream)
527 {
528 struct uvc_clock *clock = &stream->clock;
529
530 clock->head = 0;
531 clock->count = 0;
532 clock->last_sof = -1;
533 clock->sof_offset = -1;
534 }
535
uvc_video_clock_init(struct uvc_streaming * stream)536 static int uvc_video_clock_init(struct uvc_streaming *stream)
537 {
538 struct uvc_clock *clock = &stream->clock;
539
540 spin_lock_init(&clock->lock);
541 clock->size = 32;
542
543 clock->samples = kmalloc(clock->size * sizeof(*clock->samples),
544 GFP_KERNEL);
545 if (clock->samples == NULL)
546 return -ENOMEM;
547
548 uvc_video_clock_reset(stream);
549
550 return 0;
551 }
552
uvc_video_clock_cleanup(struct uvc_streaming * stream)553 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
554 {
555 kfree(stream->clock.samples);
556 stream->clock.samples = NULL;
557 }
558
559 /*
560 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
561 *
562 * Host SOF counters reported by usb_get_current_frame_number() usually don't
563 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
564 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
565 * controller and its configuration.
566 *
567 * We thus need to recover the SOF value corresponding to the host frame number.
568 * As the device and host frame numbers are sampled in a short interval, the
569 * difference between their values should be equal to a small delta plus an
570 * integer multiple of 256 caused by the host frame number limited precision.
571 *
572 * To obtain the recovered host SOF value, compute the small delta by masking
573 * the high bits of the host frame counter and device SOF difference and add it
574 * to the device SOF value.
575 */
uvc_video_clock_host_sof(const struct uvc_clock_sample * sample)576 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
577 {
578 /* The delta value can be negative. */
579 s8 delta_sof;
580
581 delta_sof = (sample->host_sof - sample->dev_sof) & 255;
582
583 return (sample->dev_sof + delta_sof) & 2047;
584 }
585
586 /*
587 * uvc_video_clock_update - Update the buffer timestamp
588 *
589 * This function converts the buffer PTS timestamp to the host clock domain by
590 * going through the USB SOF clock domain and stores the result in the V4L2
591 * buffer timestamp field.
592 *
593 * The relationship between the device clock and the host clock isn't known.
594 * However, the device and the host share the common USB SOF clock which can be
595 * used to recover that relationship.
596 *
597 * The relationship between the device clock and the USB SOF clock is considered
598 * to be linear over the clock samples sliding window and is given by
599 *
600 * SOF = m * PTS + p
601 *
602 * Several methods to compute the slope (m) and intercept (p) can be used. As
603 * the clock drift should be small compared to the sliding window size, we
604 * assume that the line that goes through the points at both ends of the window
605 * is a good approximation. Naming those points P1 and P2, we get
606 *
607 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
608 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
609 *
610 * or
611 *
612 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
613 *
614 * to avoid losing precision in the division. Similarly, the host timestamp is
615 * computed with
616 *
617 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
618 *
619 * SOF values are coded on 11 bits by USB. We extend their precision with 16
620 * decimal bits, leading to a 11.16 coding.
621 *
622 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
623 * be normalized using the nominal device clock frequency reported through the
624 * UVC descriptors.
625 *
626 * Both the PTS/STC and SOF counters roll over, after a fixed but device
627 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
628 * sliding window size is smaller than the rollover period, differences computed
629 * on unsigned integers will produce the correct result. However, the p term in
630 * the linear relations will be miscomputed.
631 *
632 * To fix the issue, we subtract a constant from the PTS and STC values to bring
633 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
634 * the 32 bit range without any rollover.
635 *
636 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
637 * computed by (1) will never be smaller than 0. This offset is then compensated
638 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
639 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
640 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
641 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
642 * SOF value at the end of the sliding window.
643 *
644 * Finally we subtract a constant from the host timestamps to bring the first
645 * timestamp of the sliding window to 1s.
646 */
uvc_video_clock_update(struct uvc_streaming * stream,struct vb2_v4l2_buffer * vbuf,struct uvc_buffer * buf)647 void uvc_video_clock_update(struct uvc_streaming *stream,
648 struct vb2_v4l2_buffer *vbuf,
649 struct uvc_buffer *buf)
650 {
651 struct uvc_clock *clock = &stream->clock;
652 struct uvc_clock_sample *first;
653 struct uvc_clock_sample *last;
654 unsigned long flags;
655 struct timespec ts;
656 u32 delta_stc;
657 u32 y1, y2;
658 u32 x1, x2;
659 u32 mean;
660 u32 sof;
661 u32 div;
662 u32 rem;
663 u64 y;
664
665 if (!uvc_hw_timestamps_param)
666 return;
667
668 /*
669 * We will get called from __vb2_queue_cancel() if there are buffers
670 * done but not dequeued by the user, but the sample array has already
671 * been released at that time. Just bail out in that case.
672 */
673 if (!clock->samples)
674 return;
675
676 spin_lock_irqsave(&clock->lock, flags);
677
678 if (clock->count < clock->size)
679 goto done;
680
681 first = &clock->samples[clock->head];
682 last = &clock->samples[(clock->head - 1) % clock->size];
683
684 /* First step, PTS to SOF conversion. */
685 delta_stc = buf->pts - (1UL << 31);
686 x1 = first->dev_stc - delta_stc;
687 x2 = last->dev_stc - delta_stc;
688 if (x1 == x2)
689 goto done;
690
691 y1 = (first->dev_sof + 2048) << 16;
692 y2 = (last->dev_sof + 2048) << 16;
693 if (y2 < y1)
694 y2 += 2048 << 16;
695
696 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
697 - (u64)y2 * (u64)x1;
698 y = div_u64(y, x2 - x1);
699
700 sof = y;
701
702 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
703 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
704 stream->dev->name, buf->pts,
705 y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
706 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
707 x1, x2, y1, y2, clock->sof_offset);
708
709 /* Second step, SOF to host clock conversion. */
710 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
711 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
712 if (x2 < x1)
713 x2 += 2048 << 16;
714 if (x1 == x2)
715 goto done;
716
717 ts = timespec_sub(last->host_ts, first->host_ts);
718 y1 = NSEC_PER_SEC;
719 y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec;
720
721 /* Interpolated and host SOF timestamps can wrap around at slightly
722 * different times. Handle this by adding or removing 2048 to or from
723 * the computed SOF value to keep it close to the SOF samples mean
724 * value.
725 */
726 mean = (x1 + x2) / 2;
727 if (mean - (1024 << 16) > sof)
728 sof += 2048 << 16;
729 else if (sof > mean + (1024 << 16))
730 sof -= 2048 << 16;
731
732 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
733 - (u64)y2 * (u64)x1;
734 y = div_u64(y, x2 - x1);
735
736 div = div_u64_rem(y, NSEC_PER_SEC, &rem);
737 ts.tv_sec = first->host_ts.tv_sec - 1 + div;
738 ts.tv_nsec = first->host_ts.tv_nsec + rem;
739 if (ts.tv_nsec >= NSEC_PER_SEC) {
740 ts.tv_sec++;
741 ts.tv_nsec -= NSEC_PER_SEC;
742 }
743
744 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu "
745 "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
746 stream->dev->name,
747 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
748 y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC,
749 vbuf->timestamp.tv_sec,
750 (unsigned long)vbuf->timestamp.tv_usec,
751 x1, first->host_sof, first->dev_sof,
752 x2, last->host_sof, last->dev_sof, y1, y2);
753
754 /* Update the V4L2 buffer. */
755 vbuf->timestamp.tv_sec = ts.tv_sec;
756 vbuf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
757
758 done:
759 spin_unlock_irqrestore(&stream->clock.lock, flags);
760 }
761
762 /* ------------------------------------------------------------------------
763 * Stream statistics
764 */
765
uvc_video_stats_decode(struct uvc_streaming * stream,const __u8 * data,int len)766 static void uvc_video_stats_decode(struct uvc_streaming *stream,
767 const __u8 *data, int len)
768 {
769 unsigned int header_size;
770 bool has_pts = false;
771 bool has_scr = false;
772 u16 uninitialized_var(scr_sof);
773 u32 uninitialized_var(scr_stc);
774 u32 uninitialized_var(pts);
775
776 if (stream->stats.stream.nb_frames == 0 &&
777 stream->stats.frame.nb_packets == 0)
778 ktime_get_ts(&stream->stats.stream.start_ts);
779
780 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
781 case UVC_STREAM_PTS | UVC_STREAM_SCR:
782 header_size = 12;
783 has_pts = true;
784 has_scr = true;
785 break;
786 case UVC_STREAM_PTS:
787 header_size = 6;
788 has_pts = true;
789 break;
790 case UVC_STREAM_SCR:
791 header_size = 8;
792 has_scr = true;
793 break;
794 default:
795 header_size = 2;
796 break;
797 }
798
799 /* Check for invalid headers. */
800 if (len < header_size || data[0] < header_size) {
801 stream->stats.frame.nb_invalid++;
802 return;
803 }
804
805 /* Extract the timestamps. */
806 if (has_pts)
807 pts = get_unaligned_le32(&data[2]);
808
809 if (has_scr) {
810 scr_stc = get_unaligned_le32(&data[header_size - 6]);
811 scr_sof = get_unaligned_le16(&data[header_size - 2]);
812 }
813
814 /* Is PTS constant through the whole frame ? */
815 if (has_pts && stream->stats.frame.nb_pts) {
816 if (stream->stats.frame.pts != pts) {
817 stream->stats.frame.nb_pts_diffs++;
818 stream->stats.frame.last_pts_diff =
819 stream->stats.frame.nb_packets;
820 }
821 }
822
823 if (has_pts) {
824 stream->stats.frame.nb_pts++;
825 stream->stats.frame.pts = pts;
826 }
827
828 /* Do all frames have a PTS in their first non-empty packet, or before
829 * their first empty packet ?
830 */
831 if (stream->stats.frame.size == 0) {
832 if (len > header_size)
833 stream->stats.frame.has_initial_pts = has_pts;
834 if (len == header_size && has_pts)
835 stream->stats.frame.has_early_pts = true;
836 }
837
838 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
839 if (has_scr && stream->stats.frame.nb_scr) {
840 if (stream->stats.frame.scr_stc != scr_stc)
841 stream->stats.frame.nb_scr_diffs++;
842 }
843
844 if (has_scr) {
845 /* Expand the SOF counter to 32 bits and store its value. */
846 if (stream->stats.stream.nb_frames > 0 ||
847 stream->stats.frame.nb_scr > 0)
848 stream->stats.stream.scr_sof_count +=
849 (scr_sof - stream->stats.stream.scr_sof) % 2048;
850 stream->stats.stream.scr_sof = scr_sof;
851
852 stream->stats.frame.nb_scr++;
853 stream->stats.frame.scr_stc = scr_stc;
854 stream->stats.frame.scr_sof = scr_sof;
855
856 if (scr_sof < stream->stats.stream.min_sof)
857 stream->stats.stream.min_sof = scr_sof;
858 if (scr_sof > stream->stats.stream.max_sof)
859 stream->stats.stream.max_sof = scr_sof;
860 }
861
862 /* Record the first non-empty packet number. */
863 if (stream->stats.frame.size == 0 && len > header_size)
864 stream->stats.frame.first_data = stream->stats.frame.nb_packets;
865
866 /* Update the frame size. */
867 stream->stats.frame.size += len - header_size;
868
869 /* Update the packets counters. */
870 stream->stats.frame.nb_packets++;
871 if (len > header_size)
872 stream->stats.frame.nb_empty++;
873
874 if (data[1] & UVC_STREAM_ERR)
875 stream->stats.frame.nb_errors++;
876 }
877
uvc_video_stats_update(struct uvc_streaming * stream)878 static void uvc_video_stats_update(struct uvc_streaming *stream)
879 {
880 struct uvc_stats_frame *frame = &stream->stats.frame;
881
882 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
883 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
884 "last pts/stc/sof %u/%u/%u\n",
885 stream->sequence, frame->first_data,
886 frame->nb_packets - frame->nb_empty, frame->nb_packets,
887 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
888 frame->has_early_pts ? "" : "!",
889 frame->has_initial_pts ? "" : "!",
890 frame->nb_scr_diffs, frame->nb_scr,
891 frame->pts, frame->scr_stc, frame->scr_sof);
892
893 stream->stats.stream.nb_frames++;
894 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
895 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
896 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
897 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
898
899 if (frame->has_early_pts)
900 stream->stats.stream.nb_pts_early++;
901 if (frame->has_initial_pts)
902 stream->stats.stream.nb_pts_initial++;
903 if (frame->last_pts_diff <= frame->first_data)
904 stream->stats.stream.nb_pts_constant++;
905 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
906 stream->stats.stream.nb_scr_count_ok++;
907 if (frame->nb_scr_diffs + 1 == frame->nb_scr)
908 stream->stats.stream.nb_scr_diffs_ok++;
909
910 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
911 }
912
uvc_video_stats_dump(struct uvc_streaming * stream,char * buf,size_t size)913 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
914 size_t size)
915 {
916 unsigned int scr_sof_freq;
917 unsigned int duration;
918 struct timespec ts;
919 size_t count = 0;
920
921 ts.tv_sec = stream->stats.stream.stop_ts.tv_sec
922 - stream->stats.stream.start_ts.tv_sec;
923 ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec
924 - stream->stats.stream.start_ts.tv_nsec;
925 if (ts.tv_nsec < 0) {
926 ts.tv_sec--;
927 ts.tv_nsec += 1000000000;
928 }
929
930 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
931 * frequency this will not overflow before more than 1h.
932 */
933 duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000;
934 if (duration != 0)
935 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
936 / duration;
937 else
938 scr_sof_freq = 0;
939
940 count += scnprintf(buf + count, size - count,
941 "frames: %u\npackets: %u\nempty: %u\n"
942 "errors: %u\ninvalid: %u\n",
943 stream->stats.stream.nb_frames,
944 stream->stats.stream.nb_packets,
945 stream->stats.stream.nb_empty,
946 stream->stats.stream.nb_errors,
947 stream->stats.stream.nb_invalid);
948 count += scnprintf(buf + count, size - count,
949 "pts: %u early, %u initial, %u ok\n",
950 stream->stats.stream.nb_pts_early,
951 stream->stats.stream.nb_pts_initial,
952 stream->stats.stream.nb_pts_constant);
953 count += scnprintf(buf + count, size - count,
954 "scr: %u count ok, %u diff ok\n",
955 stream->stats.stream.nb_scr_count_ok,
956 stream->stats.stream.nb_scr_diffs_ok);
957 count += scnprintf(buf + count, size - count,
958 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
959 stream->stats.stream.min_sof,
960 stream->stats.stream.max_sof,
961 scr_sof_freq / 1000, scr_sof_freq % 1000);
962
963 return count;
964 }
965
uvc_video_stats_start(struct uvc_streaming * stream)966 static void uvc_video_stats_start(struct uvc_streaming *stream)
967 {
968 memset(&stream->stats, 0, sizeof(stream->stats));
969 stream->stats.stream.min_sof = 2048;
970 }
971
uvc_video_stats_stop(struct uvc_streaming * stream)972 static void uvc_video_stats_stop(struct uvc_streaming *stream)
973 {
974 ktime_get_ts(&stream->stats.stream.stop_ts);
975 }
976
977 /* ------------------------------------------------------------------------
978 * Video codecs
979 */
980
981 /* Video payload decoding is handled by uvc_video_decode_start(),
982 * uvc_video_decode_data() and uvc_video_decode_end().
983 *
984 * uvc_video_decode_start is called with URB data at the start of a bulk or
985 * isochronous payload. It processes header data and returns the header size
986 * in bytes if successful. If an error occurs, it returns a negative error
987 * code. The following error codes have special meanings.
988 *
989 * - EAGAIN informs the caller that the current video buffer should be marked
990 * as done, and that the function should be called again with the same data
991 * and a new video buffer. This is used when end of frame conditions can be
992 * reliably detected at the beginning of the next frame only.
993 *
994 * If an error other than -EAGAIN is returned, the caller will drop the current
995 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
996 * made until the next payload. -ENODATA can be used to drop the current
997 * payload if no other error code is appropriate.
998 *
999 * uvc_video_decode_data is called for every URB with URB data. It copies the
1000 * data to the video buffer.
1001 *
1002 * uvc_video_decode_end is called with header data at the end of a bulk or
1003 * isochronous payload. It performs any additional header data processing and
1004 * returns 0 or a negative error code if an error occurred. As header data have
1005 * already been processed by uvc_video_decode_start, this functions isn't
1006 * required to perform sanity checks a second time.
1007 *
1008 * For isochronous transfers where a payload is always transferred in a single
1009 * URB, the three functions will be called in a row.
1010 *
1011 * To let the decoder process header data and update its internal state even
1012 * when no video buffer is available, uvc_video_decode_start must be prepared
1013 * to be called with a NULL buf parameter. uvc_video_decode_data and
1014 * uvc_video_decode_end will never be called with a NULL buffer.
1015 */
uvc_video_decode_start(struct uvc_streaming * stream,struct uvc_buffer * buf,const __u8 * data,int len)1016 static int uvc_video_decode_start(struct uvc_streaming *stream,
1017 struct uvc_buffer *buf, const __u8 *data, int len)
1018 {
1019 __u8 fid;
1020
1021 /* Sanity checks:
1022 * - packet must be at least 2 bytes long
1023 * - bHeaderLength value must be at least 2 bytes (see above)
1024 * - bHeaderLength value can't be larger than the packet size.
1025 */
1026 if (len < 2 || data[0] < 2 || data[0] > len) {
1027 stream->stats.frame.nb_invalid++;
1028 return -EINVAL;
1029 }
1030
1031 fid = data[1] & UVC_STREAM_FID;
1032
1033 /* Increase the sequence number regardless of any buffer states, so
1034 * that discontinuous sequence numbers always indicate lost frames.
1035 */
1036 if (stream->last_fid != fid) {
1037 stream->sequence++;
1038 if (stream->sequence)
1039 uvc_video_stats_update(stream);
1040 }
1041
1042 uvc_video_clock_decode(stream, buf, data, len);
1043 uvc_video_stats_decode(stream, data, len);
1044
1045 /* Store the payload FID bit and return immediately when the buffer is
1046 * NULL.
1047 */
1048 if (buf == NULL) {
1049 stream->last_fid = fid;
1050 return -ENODATA;
1051 }
1052
1053 /* Mark the buffer as bad if the error bit is set. */
1054 if (data[1] & UVC_STREAM_ERR) {
1055 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
1056 "set).\n");
1057 buf->error = 1;
1058 }
1059
1060 /* Synchronize to the input stream by waiting for the FID bit to be
1061 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
1062 * stream->last_fid is initialized to -1, so the first isochronous
1063 * frame will always be in sync.
1064 *
1065 * If the device doesn't toggle the FID bit, invert stream->last_fid
1066 * when the EOF bit is set to force synchronisation on the next packet.
1067 */
1068 if (buf->state != UVC_BUF_STATE_ACTIVE) {
1069 struct timespec ts;
1070
1071 if (fid == stream->last_fid) {
1072 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
1073 "sync).\n");
1074 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1075 (data[1] & UVC_STREAM_EOF))
1076 stream->last_fid ^= UVC_STREAM_FID;
1077 return -ENODATA;
1078 }
1079
1080 uvc_video_get_ts(&ts);
1081
1082 buf->buf.field = V4L2_FIELD_NONE;
1083 buf->buf.sequence = stream->sequence;
1084 buf->buf.timestamp.tv_sec = ts.tv_sec;
1085 buf->buf.timestamp.tv_usec =
1086 ts.tv_nsec / NSEC_PER_USEC;
1087
1088 /* TODO: Handle PTS and SCR. */
1089 buf->state = UVC_BUF_STATE_ACTIVE;
1090 }
1091
1092 /* Mark the buffer as done if we're at the beginning of a new frame.
1093 * End of frame detection is better implemented by checking the EOF
1094 * bit (FID bit toggling is delayed by one frame compared to the EOF
1095 * bit), but some devices don't set the bit at end of frame (and the
1096 * last payload can be lost anyway). We thus must check if the FID has
1097 * been toggled.
1098 *
1099 * stream->last_fid is initialized to -1, so the first isochronous
1100 * frame will never trigger an end of frame detection.
1101 *
1102 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1103 * as it doesn't make sense to return an empty buffer. This also
1104 * avoids detecting end of frame conditions at FID toggling if the
1105 * previous payload had the EOF bit set.
1106 */
1107 if (fid != stream->last_fid && buf->bytesused != 0) {
1108 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
1109 "toggled).\n");
1110 buf->state = UVC_BUF_STATE_READY;
1111 return -EAGAIN;
1112 }
1113
1114 stream->last_fid = fid;
1115
1116 return data[0];
1117 }
1118
uvc_video_decode_data(struct uvc_streaming * stream,struct uvc_buffer * buf,const __u8 * data,int len)1119 static void uvc_video_decode_data(struct uvc_streaming *stream,
1120 struct uvc_buffer *buf, const __u8 *data, int len)
1121 {
1122 unsigned int maxlen, nbytes;
1123 void *mem;
1124
1125 if (len <= 0)
1126 return;
1127
1128 /* Copy the video data to the buffer. */
1129 maxlen = buf->length - buf->bytesused;
1130 mem = buf->mem + buf->bytesused;
1131 nbytes = min((unsigned int)len, maxlen);
1132 memcpy(mem, data, nbytes);
1133 buf->bytesused += nbytes;
1134
1135 /* Complete the current frame if the buffer size was exceeded. */
1136 if (len > maxlen) {
1137 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
1138 buf->state = UVC_BUF_STATE_READY;
1139 }
1140 }
1141
uvc_video_decode_end(struct uvc_streaming * stream,struct uvc_buffer * buf,const __u8 * data,int len)1142 static void uvc_video_decode_end(struct uvc_streaming *stream,
1143 struct uvc_buffer *buf, const __u8 *data, int len)
1144 {
1145 /* Mark the buffer as done if the EOF marker is set. */
1146 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1147 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
1148 if (data[0] == len)
1149 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
1150 buf->state = UVC_BUF_STATE_READY;
1151 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1152 stream->last_fid ^= UVC_STREAM_FID;
1153 }
1154 }
1155
1156 /* Video payload encoding is handled by uvc_video_encode_header() and
1157 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1158 *
1159 * uvc_video_encode_header is called at the start of a payload. It adds header
1160 * data to the transfer buffer and returns the header size. As the only known
1161 * UVC output device transfers a whole frame in a single payload, the EOF bit
1162 * is always set in the header.
1163 *
1164 * uvc_video_encode_data is called for every URB and copies the data from the
1165 * video buffer to the transfer buffer.
1166 */
uvc_video_encode_header(struct uvc_streaming * stream,struct uvc_buffer * buf,__u8 * data,int len)1167 static int uvc_video_encode_header(struct uvc_streaming *stream,
1168 struct uvc_buffer *buf, __u8 *data, int len)
1169 {
1170 data[0] = 2; /* Header length */
1171 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1172 | (stream->last_fid & UVC_STREAM_FID);
1173 return 2;
1174 }
1175
uvc_video_encode_data(struct uvc_streaming * stream,struct uvc_buffer * buf,__u8 * data,int len)1176 static int uvc_video_encode_data(struct uvc_streaming *stream,
1177 struct uvc_buffer *buf, __u8 *data, int len)
1178 {
1179 struct uvc_video_queue *queue = &stream->queue;
1180 unsigned int nbytes;
1181 void *mem;
1182
1183 /* Copy video data to the URB buffer. */
1184 mem = buf->mem + queue->buf_used;
1185 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1186 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1187 nbytes);
1188 memcpy(data, mem, nbytes);
1189
1190 queue->buf_used += nbytes;
1191
1192 return nbytes;
1193 }
1194
1195 /* ------------------------------------------------------------------------
1196 * URB handling
1197 */
1198
1199 /*
1200 * Set error flag for incomplete buffer.
1201 */
uvc_video_validate_buffer(const struct uvc_streaming * stream,struct uvc_buffer * buf)1202 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1203 struct uvc_buffer *buf)
1204 {
1205 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1206 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1207 buf->error = 1;
1208 }
1209
1210 /*
1211 * Completion handler for video URBs.
1212 */
uvc_video_decode_isoc(struct urb * urb,struct uvc_streaming * stream,struct uvc_buffer * buf)1213 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream,
1214 struct uvc_buffer *buf)
1215 {
1216 u8 *mem;
1217 int ret, i;
1218
1219 for (i = 0; i < urb->number_of_packets; ++i) {
1220 if (urb->iso_frame_desc[i].status < 0) {
1221 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
1222 "lost (%d).\n", urb->iso_frame_desc[i].status);
1223 /* Mark the buffer as faulty. */
1224 if (buf != NULL)
1225 buf->error = 1;
1226 continue;
1227 }
1228
1229 /* Decode the payload header. */
1230 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1231 do {
1232 ret = uvc_video_decode_start(stream, buf, mem,
1233 urb->iso_frame_desc[i].actual_length);
1234 if (ret == -EAGAIN) {
1235 uvc_video_validate_buffer(stream, buf);
1236 buf = uvc_queue_next_buffer(&stream->queue,
1237 buf);
1238 }
1239 } while (ret == -EAGAIN);
1240
1241 if (ret < 0)
1242 continue;
1243
1244 /* Decode the payload data. */
1245 uvc_video_decode_data(stream, buf, mem + ret,
1246 urb->iso_frame_desc[i].actual_length - ret);
1247
1248 /* Process the header again. */
1249 uvc_video_decode_end(stream, buf, mem,
1250 urb->iso_frame_desc[i].actual_length);
1251
1252 if (buf->state == UVC_BUF_STATE_READY) {
1253 uvc_video_validate_buffer(stream, buf);
1254 buf = uvc_queue_next_buffer(&stream->queue, buf);
1255 }
1256 }
1257 }
1258
uvc_video_decode_bulk(struct urb * urb,struct uvc_streaming * stream,struct uvc_buffer * buf)1259 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream,
1260 struct uvc_buffer *buf)
1261 {
1262 u8 *mem;
1263 int len, ret;
1264
1265 /*
1266 * Ignore ZLPs if they're not part of a frame, otherwise process them
1267 * to trigger the end of payload detection.
1268 */
1269 if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1270 return;
1271
1272 mem = urb->transfer_buffer;
1273 len = urb->actual_length;
1274 stream->bulk.payload_size += len;
1275
1276 /* If the URB is the first of its payload, decode and save the
1277 * header.
1278 */
1279 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1280 do {
1281 ret = uvc_video_decode_start(stream, buf, mem, len);
1282 if (ret == -EAGAIN)
1283 buf = uvc_queue_next_buffer(&stream->queue,
1284 buf);
1285 } while (ret == -EAGAIN);
1286
1287 /* If an error occurred skip the rest of the payload. */
1288 if (ret < 0 || buf == NULL) {
1289 stream->bulk.skip_payload = 1;
1290 } else {
1291 memcpy(stream->bulk.header, mem, ret);
1292 stream->bulk.header_size = ret;
1293
1294 mem += ret;
1295 len -= ret;
1296 }
1297 }
1298
1299 /* The buffer queue might have been cancelled while a bulk transfer
1300 * was in progress, so we can reach here with buf equal to NULL. Make
1301 * sure buf is never dereferenced if NULL.
1302 */
1303
1304 /* Process video data. */
1305 if (!stream->bulk.skip_payload && buf != NULL)
1306 uvc_video_decode_data(stream, buf, mem, len);
1307
1308 /* Detect the payload end by a URB smaller than the maximum size (or
1309 * a payload size equal to the maximum) and process the header again.
1310 */
1311 if (urb->actual_length < urb->transfer_buffer_length ||
1312 stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1313 if (!stream->bulk.skip_payload && buf != NULL) {
1314 uvc_video_decode_end(stream, buf, stream->bulk.header,
1315 stream->bulk.payload_size);
1316 if (buf->state == UVC_BUF_STATE_READY)
1317 buf = uvc_queue_next_buffer(&stream->queue,
1318 buf);
1319 }
1320
1321 stream->bulk.header_size = 0;
1322 stream->bulk.skip_payload = 0;
1323 stream->bulk.payload_size = 0;
1324 }
1325 }
1326
uvc_video_encode_bulk(struct urb * urb,struct uvc_streaming * stream,struct uvc_buffer * buf)1327 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream,
1328 struct uvc_buffer *buf)
1329 {
1330 u8 *mem = urb->transfer_buffer;
1331 int len = stream->urb_size, ret;
1332
1333 if (buf == NULL) {
1334 urb->transfer_buffer_length = 0;
1335 return;
1336 }
1337
1338 /* If the URB is the first of its payload, add the header. */
1339 if (stream->bulk.header_size == 0) {
1340 ret = uvc_video_encode_header(stream, buf, mem, len);
1341 stream->bulk.header_size = ret;
1342 stream->bulk.payload_size += ret;
1343 mem += ret;
1344 len -= ret;
1345 }
1346
1347 /* Process video data. */
1348 ret = uvc_video_encode_data(stream, buf, mem, len);
1349
1350 stream->bulk.payload_size += ret;
1351 len -= ret;
1352
1353 if (buf->bytesused == stream->queue.buf_used ||
1354 stream->bulk.payload_size == stream->bulk.max_payload_size) {
1355 if (buf->bytesused == stream->queue.buf_used) {
1356 stream->queue.buf_used = 0;
1357 buf->state = UVC_BUF_STATE_READY;
1358 buf->buf.sequence = ++stream->sequence;
1359 uvc_queue_next_buffer(&stream->queue, buf);
1360 stream->last_fid ^= UVC_STREAM_FID;
1361 }
1362
1363 stream->bulk.header_size = 0;
1364 stream->bulk.payload_size = 0;
1365 }
1366
1367 urb->transfer_buffer_length = stream->urb_size - len;
1368 }
1369
uvc_video_complete(struct urb * urb)1370 static void uvc_video_complete(struct urb *urb)
1371 {
1372 struct uvc_streaming *stream = urb->context;
1373 struct uvc_video_queue *queue = &stream->queue;
1374 struct uvc_buffer *buf = NULL;
1375 unsigned long flags;
1376 int ret;
1377
1378 switch (urb->status) {
1379 case 0:
1380 break;
1381
1382 default:
1383 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
1384 "completion handler.\n", urb->status);
1385
1386 case -ENOENT: /* usb_kill_urb() called. */
1387 if (stream->frozen)
1388 return;
1389
1390 case -ECONNRESET: /* usb_unlink_urb() called. */
1391 case -ESHUTDOWN: /* The endpoint is being disabled. */
1392 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1393 return;
1394 }
1395
1396 spin_lock_irqsave(&queue->irqlock, flags);
1397 if (!list_empty(&queue->irqqueue))
1398 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
1399 queue);
1400 spin_unlock_irqrestore(&queue->irqlock, flags);
1401
1402 stream->decode(urb, stream, buf);
1403
1404 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
1405 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
1406 ret);
1407 }
1408 }
1409
1410 /*
1411 * Free transfer buffers.
1412 */
uvc_free_urb_buffers(struct uvc_streaming * stream)1413 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1414 {
1415 unsigned int i;
1416
1417 for (i = 0; i < UVC_URBS; ++i) {
1418 if (stream->urb_buffer[i]) {
1419 #ifndef CONFIG_DMA_NONCOHERENT
1420 usb_free_coherent(stream->dev->udev, stream->urb_size,
1421 stream->urb_buffer[i], stream->urb_dma[i]);
1422 #else
1423 kfree(stream->urb_buffer[i]);
1424 #endif
1425 stream->urb_buffer[i] = NULL;
1426 }
1427 }
1428
1429 stream->urb_size = 0;
1430 }
1431
1432 /*
1433 * Allocate transfer buffers. This function can be called with buffers
1434 * already allocated when resuming from suspend, in which case it will
1435 * return without touching the buffers.
1436 *
1437 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1438 * system is too low on memory try successively smaller numbers of packets
1439 * until allocation succeeds.
1440 *
1441 * Return the number of allocated packets on success or 0 when out of memory.
1442 */
uvc_alloc_urb_buffers(struct uvc_streaming * stream,unsigned int size,unsigned int psize,gfp_t gfp_flags)1443 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1444 unsigned int size, unsigned int psize, gfp_t gfp_flags)
1445 {
1446 unsigned int npackets;
1447 unsigned int i;
1448
1449 /* Buffers are already allocated, bail out. */
1450 if (stream->urb_size)
1451 return stream->urb_size / psize;
1452
1453 /* Compute the number of packets. Bulk endpoints might transfer UVC
1454 * payloads across multiple URBs.
1455 */
1456 npackets = DIV_ROUND_UP(size, psize);
1457 if (npackets > UVC_MAX_PACKETS)
1458 npackets = UVC_MAX_PACKETS;
1459
1460 /* Retry allocations until one succeed. */
1461 for (; npackets > 1; npackets /= 2) {
1462 for (i = 0; i < UVC_URBS; ++i) {
1463 stream->urb_size = psize * npackets;
1464 #ifndef CONFIG_DMA_NONCOHERENT
1465 stream->urb_buffer[i] = usb_alloc_coherent(
1466 stream->dev->udev, stream->urb_size,
1467 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]);
1468 #else
1469 stream->urb_buffer[i] =
1470 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
1471 #endif
1472 if (!stream->urb_buffer[i]) {
1473 uvc_free_urb_buffers(stream);
1474 break;
1475 }
1476 }
1477
1478 if (i == UVC_URBS) {
1479 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
1480 "of %ux%u bytes each.\n", UVC_URBS, npackets,
1481 psize);
1482 return npackets;
1483 }
1484 }
1485
1486 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
1487 "per packet).\n", psize);
1488 return 0;
1489 }
1490
1491 /*
1492 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1493 */
uvc_uninit_video(struct uvc_streaming * stream,int free_buffers)1494 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers)
1495 {
1496 struct urb *urb;
1497 unsigned int i;
1498
1499 uvc_video_stats_stop(stream);
1500
1501 for (i = 0; i < UVC_URBS; ++i) {
1502 urb = stream->urb[i];
1503 if (urb == NULL)
1504 continue;
1505
1506 usb_kill_urb(urb);
1507 usb_free_urb(urb);
1508 stream->urb[i] = NULL;
1509 }
1510
1511 if (free_buffers)
1512 uvc_free_urb_buffers(stream);
1513 }
1514
1515 /*
1516 * Compute the maximum number of bytes per interval for an endpoint.
1517 */
uvc_endpoint_max_bpi(struct usb_device * dev,struct usb_host_endpoint * ep)1518 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1519 struct usb_host_endpoint *ep)
1520 {
1521 u16 psize;
1522
1523 switch (dev->speed) {
1524 case USB_SPEED_SUPER:
1525 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1526 case USB_SPEED_HIGH:
1527 psize = usb_endpoint_maxp(&ep->desc);
1528 return (psize & 0x07ff) * (1 + ((psize >> 11) & 3));
1529 case USB_SPEED_WIRELESS:
1530 psize = usb_endpoint_maxp(&ep->desc);
1531 return psize;
1532 default:
1533 psize = usb_endpoint_maxp(&ep->desc);
1534 return psize & 0x07ff;
1535 }
1536 }
1537
1538 /*
1539 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1540 * is given by the endpoint.
1541 */
uvc_init_video_isoc(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1542 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1543 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1544 {
1545 struct urb *urb;
1546 unsigned int npackets, i, j;
1547 u16 psize;
1548 u32 size;
1549
1550 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1551 size = stream->ctrl.dwMaxVideoFrameSize;
1552
1553 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1554 if (npackets == 0)
1555 return -ENOMEM;
1556
1557 size = npackets * psize;
1558
1559 for (i = 0; i < UVC_URBS; ++i) {
1560 urb = usb_alloc_urb(npackets, gfp_flags);
1561 if (urb == NULL) {
1562 uvc_uninit_video(stream, 1);
1563 return -ENOMEM;
1564 }
1565
1566 urb->dev = stream->dev->udev;
1567 urb->context = stream;
1568 urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1569 ep->desc.bEndpointAddress);
1570 #ifndef CONFIG_DMA_NONCOHERENT
1571 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1572 urb->transfer_dma = stream->urb_dma[i];
1573 #else
1574 urb->transfer_flags = URB_ISO_ASAP;
1575 #endif
1576 urb->interval = ep->desc.bInterval;
1577 urb->transfer_buffer = stream->urb_buffer[i];
1578 urb->complete = uvc_video_complete;
1579 urb->number_of_packets = npackets;
1580 urb->transfer_buffer_length = size;
1581
1582 for (j = 0; j < npackets; ++j) {
1583 urb->iso_frame_desc[j].offset = j * psize;
1584 urb->iso_frame_desc[j].length = psize;
1585 }
1586
1587 stream->urb[i] = urb;
1588 }
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1595 * given by the endpoint.
1596 */
uvc_init_video_bulk(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1597 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1598 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1599 {
1600 struct urb *urb;
1601 unsigned int npackets, pipe, i;
1602 u16 psize;
1603 u32 size;
1604
1605 psize = usb_endpoint_maxp(&ep->desc) & 0x7ff;
1606 size = stream->ctrl.dwMaxPayloadTransferSize;
1607 stream->bulk.max_payload_size = size;
1608
1609 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1610 if (npackets == 0)
1611 return -ENOMEM;
1612
1613 size = npackets * psize;
1614
1615 if (usb_endpoint_dir_in(&ep->desc))
1616 pipe = usb_rcvbulkpipe(stream->dev->udev,
1617 ep->desc.bEndpointAddress);
1618 else
1619 pipe = usb_sndbulkpipe(stream->dev->udev,
1620 ep->desc.bEndpointAddress);
1621
1622 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1623 size = 0;
1624
1625 for (i = 0; i < UVC_URBS; ++i) {
1626 urb = usb_alloc_urb(0, gfp_flags);
1627 if (urb == NULL) {
1628 uvc_uninit_video(stream, 1);
1629 return -ENOMEM;
1630 }
1631
1632 usb_fill_bulk_urb(urb, stream->dev->udev, pipe,
1633 stream->urb_buffer[i], size, uvc_video_complete,
1634 stream);
1635 #ifndef CONFIG_DMA_NONCOHERENT
1636 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1637 urb->transfer_dma = stream->urb_dma[i];
1638 #endif
1639
1640 stream->urb[i] = urb;
1641 }
1642
1643 return 0;
1644 }
1645
1646 /*
1647 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1648 */
uvc_init_video(struct uvc_streaming * stream,gfp_t gfp_flags)1649 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags)
1650 {
1651 struct usb_interface *intf = stream->intf;
1652 struct usb_host_endpoint *ep;
1653 unsigned int i;
1654 int ret;
1655
1656 stream->sequence = -1;
1657 stream->last_fid = -1;
1658 stream->bulk.header_size = 0;
1659 stream->bulk.skip_payload = 0;
1660 stream->bulk.payload_size = 0;
1661
1662 uvc_video_stats_start(stream);
1663
1664 if (intf->num_altsetting > 1) {
1665 struct usb_host_endpoint *best_ep = NULL;
1666 unsigned int best_psize = UINT_MAX;
1667 unsigned int bandwidth;
1668 unsigned int uninitialized_var(altsetting);
1669 int intfnum = stream->intfnum;
1670
1671 /* Isochronous endpoint, select the alternate setting. */
1672 bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1673
1674 if (bandwidth == 0) {
1675 uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
1676 "bandwidth, defaulting to lowest.\n");
1677 bandwidth = 1;
1678 } else {
1679 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
1680 "B/frame bandwidth.\n", bandwidth);
1681 }
1682
1683 for (i = 0; i < intf->num_altsetting; ++i) {
1684 struct usb_host_interface *alts;
1685 unsigned int psize;
1686
1687 alts = &intf->altsetting[i];
1688 ep = uvc_find_endpoint(alts,
1689 stream->header.bEndpointAddress);
1690 if (ep == NULL)
1691 continue;
1692
1693 /* Check if the bandwidth is high enough. */
1694 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1695 if (psize >= bandwidth && psize <= best_psize) {
1696 altsetting = alts->desc.bAlternateSetting;
1697 best_psize = psize;
1698 best_ep = ep;
1699 }
1700 }
1701
1702 if (best_ep == NULL) {
1703 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
1704 "for requested bandwidth.\n");
1705 return -EIO;
1706 }
1707
1708 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
1709 "(%u B/frame bandwidth).\n", altsetting, best_psize);
1710
1711 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1712 if (ret < 0)
1713 return ret;
1714
1715 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1716 } else {
1717 /* Bulk endpoint, proceed to URB initialization. */
1718 ep = uvc_find_endpoint(&intf->altsetting[0],
1719 stream->header.bEndpointAddress);
1720 if (ep == NULL)
1721 return -EIO;
1722
1723 /* Reject broken descriptors. */
1724 if (usb_endpoint_maxp(&ep->desc) == 0)
1725 return -EIO;
1726
1727 ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1728 }
1729
1730 if (ret < 0)
1731 return ret;
1732
1733 /* Submit the URBs. */
1734 for (i = 0; i < UVC_URBS; ++i) {
1735 ret = usb_submit_urb(stream->urb[i], gfp_flags);
1736 if (ret < 0) {
1737 uvc_printk(KERN_ERR, "Failed to submit URB %u "
1738 "(%d).\n", i, ret);
1739 uvc_uninit_video(stream, 1);
1740 return ret;
1741 }
1742 }
1743
1744 /* The Logitech C920 temporarily forgets that it should not be adjusting
1745 * Exposure Absolute during init so restore controls to stored values.
1746 */
1747 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
1748 uvc_ctrl_restore_values(stream->dev);
1749
1750 return 0;
1751 }
1752
1753 /* --------------------------------------------------------------------------
1754 * Suspend/resume
1755 */
1756
1757 /*
1758 * Stop streaming without disabling the video queue.
1759 *
1760 * To let userspace applications resume without trouble, we must not touch the
1761 * video buffers in any way. We mark the device as frozen to make sure the URB
1762 * completion handler won't try to cancel the queue when we kill the URBs.
1763 */
uvc_video_suspend(struct uvc_streaming * stream)1764 int uvc_video_suspend(struct uvc_streaming *stream)
1765 {
1766 if (!uvc_queue_streaming(&stream->queue))
1767 return 0;
1768
1769 stream->frozen = 1;
1770 uvc_uninit_video(stream, 0);
1771 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1772 return 0;
1773 }
1774
1775 /*
1776 * Reconfigure the video interface and restart streaming if it was enabled
1777 * before suspend.
1778 *
1779 * If an error occurs, disable the video queue. This will wake all pending
1780 * buffers, making sure userspace applications are notified of the problem
1781 * instead of waiting forever.
1782 */
uvc_video_resume(struct uvc_streaming * stream,int reset)1783 int uvc_video_resume(struct uvc_streaming *stream, int reset)
1784 {
1785 int ret;
1786
1787 /* If the bus has been reset on resume, set the alternate setting to 0.
1788 * This should be the default value, but some devices crash or otherwise
1789 * misbehave if they don't receive a SET_INTERFACE request before any
1790 * other video control request.
1791 */
1792 if (reset)
1793 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1794
1795 stream->frozen = 0;
1796
1797 uvc_video_clock_reset(stream);
1798
1799 if (!uvc_queue_streaming(&stream->queue))
1800 return 0;
1801
1802 ret = uvc_commit_video(stream, &stream->ctrl);
1803 if (ret < 0)
1804 return ret;
1805
1806 return uvc_init_video(stream, GFP_NOIO);
1807 }
1808
1809 /* ------------------------------------------------------------------------
1810 * Video device
1811 */
1812
1813 /*
1814 * Initialize the UVC video device by switching to alternate setting 0 and
1815 * retrieve the default format.
1816 *
1817 * Some cameras (namely the Fuji Finepix) set the format and frame
1818 * indexes to zero. The UVC standard doesn't clearly make this a spec
1819 * violation, so try to silently fix the values if possible.
1820 *
1821 * This function is called before registering the device with V4L.
1822 */
uvc_video_init(struct uvc_streaming * stream)1823 int uvc_video_init(struct uvc_streaming *stream)
1824 {
1825 struct uvc_streaming_control *probe = &stream->ctrl;
1826 struct uvc_format *format = NULL;
1827 struct uvc_frame *frame = NULL;
1828 unsigned int i;
1829 int ret;
1830
1831 if (stream->nformats == 0) {
1832 uvc_printk(KERN_INFO, "No supported video formats found.\n");
1833 return -EINVAL;
1834 }
1835
1836 atomic_set(&stream->active, 0);
1837
1838 /* Alternate setting 0 should be the default, yet the XBox Live Vision
1839 * Cam (and possibly other devices) crash or otherwise misbehave if
1840 * they don't receive a SET_INTERFACE request before any other video
1841 * control request.
1842 */
1843 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1844
1845 /* Set the streaming probe control with default streaming parameters
1846 * retrieved from the device. Webcams that don't suport GET_DEF
1847 * requests on the probe control will just keep their current streaming
1848 * parameters.
1849 */
1850 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
1851 uvc_set_video_ctrl(stream, probe, 1);
1852
1853 /* Initialize the streaming parameters with the probe control current
1854 * value. This makes sure SET_CUR requests on the streaming commit
1855 * control will always use values retrieved from a successful GET_CUR
1856 * request on the probe control, as required by the UVC specification.
1857 */
1858 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
1859 if (ret < 0)
1860 return ret;
1861
1862 /* Check if the default format descriptor exists. Use the first
1863 * available format otherwise.
1864 */
1865 for (i = stream->nformats; i > 0; --i) {
1866 format = &stream->format[i-1];
1867 if (format->index == probe->bFormatIndex)
1868 break;
1869 }
1870
1871 if (format->nframes == 0) {
1872 uvc_printk(KERN_INFO, "No frame descriptor found for the "
1873 "default format.\n");
1874 return -EINVAL;
1875 }
1876
1877 /* Zero bFrameIndex might be correct. Stream-based formats (including
1878 * MPEG-2 TS and DV) do not support frames but have a dummy frame
1879 * descriptor with bFrameIndex set to zero. If the default frame
1880 * descriptor is not found, use the first available frame.
1881 */
1882 for (i = format->nframes; i > 0; --i) {
1883 frame = &format->frame[i-1];
1884 if (frame->bFrameIndex == probe->bFrameIndex)
1885 break;
1886 }
1887
1888 probe->bFormatIndex = format->index;
1889 probe->bFrameIndex = frame->bFrameIndex;
1890
1891 stream->def_format = format;
1892 stream->cur_format = format;
1893 stream->cur_frame = frame;
1894
1895 /* Select the video decoding function */
1896 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
1897 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
1898 stream->decode = uvc_video_decode_isight;
1899 else if (stream->intf->num_altsetting > 1)
1900 stream->decode = uvc_video_decode_isoc;
1901 else
1902 stream->decode = uvc_video_decode_bulk;
1903 } else {
1904 if (stream->intf->num_altsetting == 1)
1905 stream->decode = uvc_video_encode_bulk;
1906 else {
1907 uvc_printk(KERN_INFO, "Isochronous endpoints are not "
1908 "supported for video output devices.\n");
1909 return -EINVAL;
1910 }
1911 }
1912
1913 return 0;
1914 }
1915
1916 /*
1917 * Enable or disable the video stream.
1918 */
uvc_video_enable(struct uvc_streaming * stream,int enable)1919 int uvc_video_enable(struct uvc_streaming *stream, int enable)
1920 {
1921 int ret;
1922
1923 if (!enable) {
1924 uvc_uninit_video(stream, 1);
1925 if (stream->intf->num_altsetting > 1) {
1926 usb_set_interface(stream->dev->udev,
1927 stream->intfnum, 0);
1928 } else {
1929 /* UVC doesn't specify how to inform a bulk-based device
1930 * when the video stream is stopped. Windows sends a
1931 * CLEAR_FEATURE(HALT) request to the video streaming
1932 * bulk endpoint, mimic the same behaviour.
1933 */
1934 unsigned int epnum = stream->header.bEndpointAddress
1935 & USB_ENDPOINT_NUMBER_MASK;
1936 unsigned int dir = stream->header.bEndpointAddress
1937 & USB_ENDPOINT_DIR_MASK;
1938 unsigned int pipe;
1939
1940 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
1941 usb_clear_halt(stream->dev->udev, pipe);
1942 }
1943
1944 uvc_video_clock_cleanup(stream);
1945 return 0;
1946 }
1947
1948 ret = uvc_video_clock_init(stream);
1949 if (ret < 0)
1950 return ret;
1951
1952 /* Commit the streaming parameters. */
1953 ret = uvc_commit_video(stream, &stream->ctrl);
1954 if (ret < 0)
1955 goto error_commit;
1956
1957 ret = uvc_init_video(stream, GFP_KERNEL);
1958 if (ret < 0)
1959 goto error_video;
1960
1961 return 0;
1962
1963 error_video:
1964 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1965 error_commit:
1966 uvc_video_clock_cleanup(stream);
1967
1968 return ret;
1969 }
1970