• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
37 
38 #include "internal.h"
39 
40 struct vfree_deferred {
41 	struct llist_head list;
42 	struct work_struct wq;
43 };
44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
45 
46 static void __vunmap(const void *, int);
47 
free_work(struct work_struct * w)48 static void free_work(struct work_struct *w)
49 {
50 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 	struct llist_node *llnode = llist_del_all(&p->list);
52 	while (llnode) {
53 		void *p = llnode;
54 		llnode = llist_next(llnode);
55 		__vunmap(p, 1);
56 	}
57 }
58 
59 /*** Page table manipulation functions ***/
60 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 	pte_t *pte;
64 
65 	pte = pte_offset_kernel(pmd, addr);
66 	do {
67 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 	} while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 	pmd_t *pmd;
75 	unsigned long next;
76 
77 	pmd = pmd_offset(pud, addr);
78 	do {
79 		next = pmd_addr_end(addr, end);
80 		if (pmd_clear_huge(pmd))
81 			continue;
82 		if (pmd_none_or_clear_bad(pmd))
83 			continue;
84 		vunmap_pte_range(pmd, addr, next);
85 	} while (pmd++, addr = next, addr != end);
86 }
87 
vunmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end)88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
89 {
90 	pud_t *pud;
91 	unsigned long next;
92 
93 	pud = pud_offset(pgd, addr);
94 	do {
95 		next = pud_addr_end(addr, end);
96 		if (pud_clear_huge(pud))
97 			continue;
98 		if (pud_none_or_clear_bad(pud))
99 			continue;
100 		vunmap_pmd_range(pud, addr, next);
101 	} while (pud++, addr = next, addr != end);
102 }
103 
vunmap_page_range(unsigned long addr,unsigned long end)104 static void vunmap_page_range(unsigned long addr, unsigned long end)
105 {
106 	pgd_t *pgd;
107 	unsigned long next;
108 
109 	BUG_ON(addr >= end);
110 	pgd = pgd_offset_k(addr);
111 	do {
112 		next = pgd_addr_end(addr, end);
113 		if (pgd_none_or_clear_bad(pgd))
114 			continue;
115 		vunmap_pud_range(pgd, addr, next);
116 	} while (pgd++, addr = next, addr != end);
117 }
118 
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
120 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
121 {
122 	pte_t *pte;
123 
124 	/*
125 	 * nr is a running index into the array which helps higher level
126 	 * callers keep track of where we're up to.
127 	 */
128 
129 	pte = pte_alloc_kernel(pmd, addr);
130 	if (!pte)
131 		return -ENOMEM;
132 	do {
133 		struct page *page = pages[*nr];
134 
135 		if (WARN_ON(!pte_none(*pte)))
136 			return -EBUSY;
137 		if (WARN_ON(!page))
138 			return -ENOMEM;
139 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
140 		(*nr)++;
141 	} while (pte++, addr += PAGE_SIZE, addr != end);
142 	return 0;
143 }
144 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)145 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
147 {
148 	pmd_t *pmd;
149 	unsigned long next;
150 
151 	pmd = pmd_alloc(&init_mm, pud, addr);
152 	if (!pmd)
153 		return -ENOMEM;
154 	do {
155 		next = pmd_addr_end(addr, end);
156 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
157 			return -ENOMEM;
158 	} while (pmd++, addr = next, addr != end);
159 	return 0;
160 }
161 
vmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 	pud_t *pud;
166 	unsigned long next;
167 
168 	pud = pud_alloc(&init_mm, pgd, addr);
169 	if (!pud)
170 		return -ENOMEM;
171 	do {
172 		next = pud_addr_end(addr, end);
173 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
174 			return -ENOMEM;
175 	} while (pud++, addr = next, addr != end);
176 	return 0;
177 }
178 
179 /*
180  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181  * will have pfns corresponding to the "pages" array.
182  *
183  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
184  */
vmap_page_range_noflush(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)185 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 				   pgprot_t prot, struct page **pages)
187 {
188 	pgd_t *pgd;
189 	unsigned long next;
190 	unsigned long addr = start;
191 	int err = 0;
192 	int nr = 0;
193 
194 	BUG_ON(addr >= end);
195 	pgd = pgd_offset_k(addr);
196 	do {
197 		next = pgd_addr_end(addr, end);
198 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
199 		if (err)
200 			return err;
201 	} while (pgd++, addr = next, addr != end);
202 
203 	return nr;
204 }
205 
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)206 static int vmap_page_range(unsigned long start, unsigned long end,
207 			   pgprot_t prot, struct page **pages)
208 {
209 	int ret;
210 
211 	ret = vmap_page_range_noflush(start, end, prot, pages);
212 	flush_cache_vmap(start, end);
213 	return ret;
214 }
215 
is_vmalloc_or_module_addr(const void * x)216 int is_vmalloc_or_module_addr(const void *x)
217 {
218 	/*
219 	 * ARM, x86-64 and sparc64 put modules in a special place,
220 	 * and fall back on vmalloc() if that fails. Others
221 	 * just put it in the vmalloc space.
222 	 */
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 	unsigned long addr = (unsigned long)x;
225 	if (addr >= MODULES_VADDR && addr < MODULES_END)
226 		return 1;
227 #endif
228 	return is_vmalloc_addr(x);
229 }
230 
231 /*
232  * Walk a vmap address to the struct page it maps.
233  */
vmalloc_to_page(const void * vmalloc_addr)234 struct page *vmalloc_to_page(const void *vmalloc_addr)
235 {
236 	unsigned long addr = (unsigned long) vmalloc_addr;
237 	struct page *page = NULL;
238 	pgd_t *pgd = pgd_offset_k(addr);
239 
240 	/*
241 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 	 * architectures that do not vmalloc module space
243 	 */
244 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
245 
246 	if (!pgd_none(*pgd)) {
247 		pud_t *pud = pud_offset(pgd, addr);
248 		if (!pud_none(*pud)) {
249 			pmd_t *pmd = pmd_offset(pud, addr);
250 			if (!pmd_none(*pmd)) {
251 				pte_t *ptep, pte;
252 
253 				ptep = pte_offset_map(pmd, addr);
254 				pte = *ptep;
255 				if (pte_present(pte))
256 					page = pte_page(pte);
257 				pte_unmap(ptep);
258 			}
259 		}
260 	}
261 	return page;
262 }
263 EXPORT_SYMBOL(vmalloc_to_page);
264 
265 /*
266  * Map a vmalloc()-space virtual address to the physical page frame number.
267  */
vmalloc_to_pfn(const void * vmalloc_addr)268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
269 {
270 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
271 }
272 EXPORT_SYMBOL(vmalloc_to_pfn);
273 
274 
275 /*** Global kva allocator ***/
276 
277 #define VM_LAZY_FREE	0x01
278 #define VM_LAZY_FREEING	0x02
279 #define VM_VM_AREA	0x04
280 
281 static DEFINE_SPINLOCK(vmap_area_lock);
282 /* Export for kexec only */
283 LIST_HEAD(vmap_area_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
285 
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
291 
292 static unsigned long vmap_area_pcpu_hole;
293 
__find_vmap_area(unsigned long addr)294 static struct vmap_area *__find_vmap_area(unsigned long addr)
295 {
296 	struct rb_node *n = vmap_area_root.rb_node;
297 
298 	while (n) {
299 		struct vmap_area *va;
300 
301 		va = rb_entry(n, struct vmap_area, rb_node);
302 		if (addr < va->va_start)
303 			n = n->rb_left;
304 		else if (addr >= va->va_end)
305 			n = n->rb_right;
306 		else
307 			return va;
308 	}
309 
310 	return NULL;
311 }
312 
__insert_vmap_area(struct vmap_area * va)313 static void __insert_vmap_area(struct vmap_area *va)
314 {
315 	struct rb_node **p = &vmap_area_root.rb_node;
316 	struct rb_node *parent = NULL;
317 	struct rb_node *tmp;
318 
319 	while (*p) {
320 		struct vmap_area *tmp_va;
321 
322 		parent = *p;
323 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 		if (va->va_start < tmp_va->va_end)
325 			p = &(*p)->rb_left;
326 		else if (va->va_end > tmp_va->va_start)
327 			p = &(*p)->rb_right;
328 		else
329 			BUG();
330 	}
331 
332 	rb_link_node(&va->rb_node, parent, p);
333 	rb_insert_color(&va->rb_node, &vmap_area_root);
334 
335 	/* address-sort this list */
336 	tmp = rb_prev(&va->rb_node);
337 	if (tmp) {
338 		struct vmap_area *prev;
339 		prev = rb_entry(tmp, struct vmap_area, rb_node);
340 		list_add_rcu(&va->list, &prev->list);
341 	} else
342 		list_add_rcu(&va->list, &vmap_area_list);
343 }
344 
345 static void purge_vmap_area_lazy(void);
346 
347 /*
348  * Allocate a region of KVA of the specified size and alignment, within the
349  * vstart and vend.
350  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)351 static struct vmap_area *alloc_vmap_area(unsigned long size,
352 				unsigned long align,
353 				unsigned long vstart, unsigned long vend,
354 				int node, gfp_t gfp_mask)
355 {
356 	struct vmap_area *va;
357 	struct rb_node *n;
358 	unsigned long addr;
359 	int purged = 0;
360 	struct vmap_area *first;
361 
362 	BUG_ON(!size);
363 	BUG_ON(offset_in_page(size));
364 	BUG_ON(!is_power_of_2(align));
365 
366 	va = kmalloc_node(sizeof(struct vmap_area),
367 			gfp_mask & GFP_RECLAIM_MASK, node);
368 	if (unlikely(!va))
369 		return ERR_PTR(-ENOMEM);
370 
371 	/*
372 	 * Only scan the relevant parts containing pointers to other objects
373 	 * to avoid false negatives.
374 	 */
375 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
376 
377 retry:
378 	spin_lock(&vmap_area_lock);
379 	/*
380 	 * Invalidate cache if we have more permissive parameters.
381 	 * cached_hole_size notes the largest hole noticed _below_
382 	 * the vmap_area cached in free_vmap_cache: if size fits
383 	 * into that hole, we want to scan from vstart to reuse
384 	 * the hole instead of allocating above free_vmap_cache.
385 	 * Note that __free_vmap_area may update free_vmap_cache
386 	 * without updating cached_hole_size or cached_align.
387 	 */
388 	if (!free_vmap_cache ||
389 			size < cached_hole_size ||
390 			vstart < cached_vstart ||
391 			align < cached_align) {
392 nocache:
393 		cached_hole_size = 0;
394 		free_vmap_cache = NULL;
395 	}
396 	/* record if we encounter less permissive parameters */
397 	cached_vstart = vstart;
398 	cached_align = align;
399 
400 	/* find starting point for our search */
401 	if (free_vmap_cache) {
402 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
403 		addr = ALIGN(first->va_end, align);
404 		if (addr < vstart)
405 			goto nocache;
406 		if (addr + size < addr)
407 			goto overflow;
408 
409 	} else {
410 		addr = ALIGN(vstart, align);
411 		if (addr + size < addr)
412 			goto overflow;
413 
414 		n = vmap_area_root.rb_node;
415 		first = NULL;
416 
417 		while (n) {
418 			struct vmap_area *tmp;
419 			tmp = rb_entry(n, struct vmap_area, rb_node);
420 			if (tmp->va_end >= addr) {
421 				first = tmp;
422 				if (tmp->va_start <= addr)
423 					break;
424 				n = n->rb_left;
425 			} else
426 				n = n->rb_right;
427 		}
428 
429 		if (!first)
430 			goto found;
431 	}
432 
433 	/* from the starting point, walk areas until a suitable hole is found */
434 	while (addr + size > first->va_start && addr + size <= vend) {
435 		if (addr + cached_hole_size < first->va_start)
436 			cached_hole_size = first->va_start - addr;
437 		addr = ALIGN(first->va_end, align);
438 		if (addr + size < addr)
439 			goto overflow;
440 
441 		if (list_is_last(&first->list, &vmap_area_list))
442 			goto found;
443 
444 		first = list_entry(first->list.next,
445 				struct vmap_area, list);
446 	}
447 
448 found:
449 	/*
450 	 * Check also calculated address against the vstart,
451 	 * because it can be 0 because of big align request.
452 	 */
453 	if (addr + size > vend || addr < vstart)
454 		goto overflow;
455 
456 	va->va_start = addr;
457 	va->va_end = addr + size;
458 	va->flags = 0;
459 	__insert_vmap_area(va);
460 	free_vmap_cache = &va->rb_node;
461 	spin_unlock(&vmap_area_lock);
462 
463 	BUG_ON(va->va_start & (align-1));
464 	BUG_ON(va->va_start < vstart);
465 	BUG_ON(va->va_end > vend);
466 
467 	return va;
468 
469 overflow:
470 	spin_unlock(&vmap_area_lock);
471 	if (!purged) {
472 		purge_vmap_area_lazy();
473 		purged = 1;
474 		goto retry;
475 	}
476 	if (printk_ratelimit())
477 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
478 			size);
479 	kfree(va);
480 	return ERR_PTR(-EBUSY);
481 }
482 
__free_vmap_area(struct vmap_area * va)483 static void __free_vmap_area(struct vmap_area *va)
484 {
485 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
486 
487 	if (free_vmap_cache) {
488 		if (va->va_end < cached_vstart) {
489 			free_vmap_cache = NULL;
490 		} else {
491 			struct vmap_area *cache;
492 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
493 			if (va->va_start <= cache->va_start) {
494 				free_vmap_cache = rb_prev(&va->rb_node);
495 				/*
496 				 * We don't try to update cached_hole_size or
497 				 * cached_align, but it won't go very wrong.
498 				 */
499 			}
500 		}
501 	}
502 	rb_erase(&va->rb_node, &vmap_area_root);
503 	RB_CLEAR_NODE(&va->rb_node);
504 	list_del_rcu(&va->list);
505 
506 	/*
507 	 * Track the highest possible candidate for pcpu area
508 	 * allocation.  Areas outside of vmalloc area can be returned
509 	 * here too, consider only end addresses which fall inside
510 	 * vmalloc area proper.
511 	 */
512 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
513 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
514 
515 	kfree_rcu(va, rcu_head);
516 }
517 
518 /*
519  * Free a region of KVA allocated by alloc_vmap_area
520  */
free_vmap_area(struct vmap_area * va)521 static void free_vmap_area(struct vmap_area *va)
522 {
523 	spin_lock(&vmap_area_lock);
524 	__free_vmap_area(va);
525 	spin_unlock(&vmap_area_lock);
526 }
527 
528 /*
529  * Clear the pagetable entries of a given vmap_area
530  */
unmap_vmap_area(struct vmap_area * va)531 static void unmap_vmap_area(struct vmap_area *va)
532 {
533 	vunmap_page_range(va->va_start, va->va_end);
534 }
535 
vmap_debug_free_range(unsigned long start,unsigned long end)536 static void vmap_debug_free_range(unsigned long start, unsigned long end)
537 {
538 	/*
539 	 * Unmap page tables and force a TLB flush immediately if
540 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
541 	 * bugs similarly to those in linear kernel virtual address
542 	 * space after a page has been freed.
543 	 *
544 	 * All the lazy freeing logic is still retained, in order to
545 	 * minimise intrusiveness of this debugging feature.
546 	 *
547 	 * This is going to be *slow* (linear kernel virtual address
548 	 * debugging doesn't do a broadcast TLB flush so it is a lot
549 	 * faster).
550 	 */
551 #ifdef CONFIG_DEBUG_PAGEALLOC
552 	vunmap_page_range(start, end);
553 	flush_tlb_kernel_range(start, end);
554 #endif
555 }
556 
557 /*
558  * lazy_max_pages is the maximum amount of virtual address space we gather up
559  * before attempting to purge with a TLB flush.
560  *
561  * There is a tradeoff here: a larger number will cover more kernel page tables
562  * and take slightly longer to purge, but it will linearly reduce the number of
563  * global TLB flushes that must be performed. It would seem natural to scale
564  * this number up linearly with the number of CPUs (because vmapping activity
565  * could also scale linearly with the number of CPUs), however it is likely
566  * that in practice, workloads might be constrained in other ways that mean
567  * vmap activity will not scale linearly with CPUs. Also, I want to be
568  * conservative and not introduce a big latency on huge systems, so go with
569  * a less aggressive log scale. It will still be an improvement over the old
570  * code, and it will be simple to change the scale factor if we find that it
571  * becomes a problem on bigger systems.
572  */
lazy_max_pages(void)573 static unsigned long lazy_max_pages(void)
574 {
575 	unsigned int log;
576 
577 	log = fls(num_online_cpus());
578 
579 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
580 }
581 
582 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
583 
584 /* for per-CPU blocks */
585 static void purge_fragmented_blocks_allcpus(void);
586 
587 /*
588  * called before a call to iounmap() if the caller wants vm_area_struct's
589  * immediately freed.
590  */
set_iounmap_nonlazy(void)591 void set_iounmap_nonlazy(void)
592 {
593 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
594 }
595 
596 /*
597  * Purges all lazily-freed vmap areas.
598  *
599  * If sync is 0 then don't purge if there is already a purge in progress.
600  * If force_flush is 1, then flush kernel TLBs between *start and *end even
601  * if we found no lazy vmap areas to unmap (callers can use this to optimise
602  * their own TLB flushing).
603  * Returns with *start = min(*start, lowest purged address)
604  *              *end = max(*end, highest purged address)
605  */
__purge_vmap_area_lazy(unsigned long * start,unsigned long * end,int sync,int force_flush)606 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
607 					int sync, int force_flush)
608 {
609 	static DEFINE_SPINLOCK(purge_lock);
610 	LIST_HEAD(valist);
611 	struct vmap_area *va;
612 	struct vmap_area *n_va;
613 	int nr = 0;
614 
615 	/*
616 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
617 	 * should not expect such behaviour. This just simplifies locking for
618 	 * the case that isn't actually used at the moment anyway.
619 	 */
620 	if (!sync && !force_flush) {
621 		if (!spin_trylock(&purge_lock))
622 			return;
623 	} else
624 		spin_lock(&purge_lock);
625 
626 	if (sync)
627 		purge_fragmented_blocks_allcpus();
628 
629 	rcu_read_lock();
630 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
631 		if (va->flags & VM_LAZY_FREE) {
632 			if (va->va_start < *start)
633 				*start = va->va_start;
634 			if (va->va_end > *end)
635 				*end = va->va_end;
636 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
637 			list_add_tail(&va->purge_list, &valist);
638 			va->flags |= VM_LAZY_FREEING;
639 			va->flags &= ~VM_LAZY_FREE;
640 		}
641 	}
642 	rcu_read_unlock();
643 
644 	if (nr)
645 		atomic_sub(nr, &vmap_lazy_nr);
646 
647 	if (nr || force_flush)
648 		flush_tlb_kernel_range(*start, *end);
649 
650 	if (nr) {
651 		spin_lock(&vmap_area_lock);
652 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
653 			__free_vmap_area(va);
654 		spin_unlock(&vmap_area_lock);
655 	}
656 	spin_unlock(&purge_lock);
657 }
658 
659 /*
660  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
661  * is already purging.
662  */
try_purge_vmap_area_lazy(void)663 static void try_purge_vmap_area_lazy(void)
664 {
665 	unsigned long start = ULONG_MAX, end = 0;
666 
667 	__purge_vmap_area_lazy(&start, &end, 0, 0);
668 }
669 
670 /*
671  * Kick off a purge of the outstanding lazy areas.
672  */
purge_vmap_area_lazy(void)673 static void purge_vmap_area_lazy(void)
674 {
675 	unsigned long start = ULONG_MAX, end = 0;
676 
677 	__purge_vmap_area_lazy(&start, &end, 1, 0);
678 }
679 
680 /*
681  * Free a vmap area, caller ensuring that the area has been unmapped
682  * and flush_cache_vunmap had been called for the correct range
683  * previously.
684  */
free_vmap_area_noflush(struct vmap_area * va)685 static void free_vmap_area_noflush(struct vmap_area *va)
686 {
687 	va->flags |= VM_LAZY_FREE;
688 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
689 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
690 		try_purge_vmap_area_lazy();
691 }
692 
693 /*
694  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
695  * called for the correct range previously.
696  */
free_unmap_vmap_area_noflush(struct vmap_area * va)697 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
698 {
699 	unmap_vmap_area(va);
700 	free_vmap_area_noflush(va);
701 }
702 
703 /*
704  * Free and unmap a vmap area
705  */
free_unmap_vmap_area(struct vmap_area * va)706 static void free_unmap_vmap_area(struct vmap_area *va)
707 {
708 	flush_cache_vunmap(va->va_start, va->va_end);
709 	free_unmap_vmap_area_noflush(va);
710 }
711 
find_vmap_area(unsigned long addr)712 static struct vmap_area *find_vmap_area(unsigned long addr)
713 {
714 	struct vmap_area *va;
715 
716 	spin_lock(&vmap_area_lock);
717 	va = __find_vmap_area(addr);
718 	spin_unlock(&vmap_area_lock);
719 
720 	return va;
721 }
722 
free_unmap_vmap_area_addr(unsigned long addr)723 static void free_unmap_vmap_area_addr(unsigned long addr)
724 {
725 	struct vmap_area *va;
726 
727 	va = find_vmap_area(addr);
728 	BUG_ON(!va);
729 	free_unmap_vmap_area(va);
730 }
731 
732 
733 /*** Per cpu kva allocator ***/
734 
735 /*
736  * vmap space is limited especially on 32 bit architectures. Ensure there is
737  * room for at least 16 percpu vmap blocks per CPU.
738  */
739 /*
740  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
741  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
742  * instead (we just need a rough idea)
743  */
744 #if BITS_PER_LONG == 32
745 #define VMALLOC_SPACE		(128UL*1024*1024)
746 #else
747 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
748 #endif
749 
750 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
751 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
752 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
753 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
754 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
755 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
756 #define VMAP_BBMAP_BITS		\
757 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
758 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
759 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
760 
761 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
762 
763 static bool vmap_initialized __read_mostly = false;
764 
765 struct vmap_block_queue {
766 	spinlock_t lock;
767 	struct list_head free;
768 };
769 
770 struct vmap_block {
771 	spinlock_t lock;
772 	struct vmap_area *va;
773 	unsigned long free, dirty;
774 	unsigned long dirty_min, dirty_max; /*< dirty range */
775 	struct list_head free_list;
776 	struct rcu_head rcu_head;
777 	struct list_head purge;
778 };
779 
780 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
781 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
782 
783 /*
784  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
785  * in the free path. Could get rid of this if we change the API to return a
786  * "cookie" from alloc, to be passed to free. But no big deal yet.
787  */
788 static DEFINE_SPINLOCK(vmap_block_tree_lock);
789 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
790 
791 /*
792  * We should probably have a fallback mechanism to allocate virtual memory
793  * out of partially filled vmap blocks. However vmap block sizing should be
794  * fairly reasonable according to the vmalloc size, so it shouldn't be a
795  * big problem.
796  */
797 
addr_to_vb_idx(unsigned long addr)798 static unsigned long addr_to_vb_idx(unsigned long addr)
799 {
800 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
801 	addr /= VMAP_BLOCK_SIZE;
802 	return addr;
803 }
804 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)805 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
806 {
807 	unsigned long addr;
808 
809 	addr = va_start + (pages_off << PAGE_SHIFT);
810 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
811 	return (void *)addr;
812 }
813 
814 /**
815  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
816  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
817  * @order:    how many 2^order pages should be occupied in newly allocated block
818  * @gfp_mask: flags for the page level allocator
819  *
820  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
821  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)822 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
823 {
824 	struct vmap_block_queue *vbq;
825 	struct vmap_block *vb;
826 	struct vmap_area *va;
827 	unsigned long vb_idx;
828 	int node, err;
829 	void *vaddr;
830 
831 	node = numa_node_id();
832 
833 	vb = kmalloc_node(sizeof(struct vmap_block),
834 			gfp_mask & GFP_RECLAIM_MASK, node);
835 	if (unlikely(!vb))
836 		return ERR_PTR(-ENOMEM);
837 
838 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
839 					VMALLOC_START, VMALLOC_END,
840 					node, gfp_mask);
841 	if (IS_ERR(va)) {
842 		kfree(vb);
843 		return ERR_CAST(va);
844 	}
845 
846 	err = radix_tree_preload(gfp_mask);
847 	if (unlikely(err)) {
848 		kfree(vb);
849 		free_vmap_area(va);
850 		return ERR_PTR(err);
851 	}
852 
853 	vaddr = vmap_block_vaddr(va->va_start, 0);
854 	spin_lock_init(&vb->lock);
855 	vb->va = va;
856 	/* At least something should be left free */
857 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
858 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
859 	vb->dirty = 0;
860 	vb->dirty_min = VMAP_BBMAP_BITS;
861 	vb->dirty_max = 0;
862 	INIT_LIST_HEAD(&vb->free_list);
863 
864 	vb_idx = addr_to_vb_idx(va->va_start);
865 	spin_lock(&vmap_block_tree_lock);
866 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
867 	spin_unlock(&vmap_block_tree_lock);
868 	BUG_ON(err);
869 	radix_tree_preload_end();
870 
871 	vbq = &get_cpu_var(vmap_block_queue);
872 	spin_lock(&vbq->lock);
873 	list_add_tail_rcu(&vb->free_list, &vbq->free);
874 	spin_unlock(&vbq->lock);
875 	put_cpu_var(vmap_block_queue);
876 
877 	return vaddr;
878 }
879 
free_vmap_block(struct vmap_block * vb)880 static void free_vmap_block(struct vmap_block *vb)
881 {
882 	struct vmap_block *tmp;
883 	unsigned long vb_idx;
884 
885 	vb_idx = addr_to_vb_idx(vb->va->va_start);
886 	spin_lock(&vmap_block_tree_lock);
887 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
888 	spin_unlock(&vmap_block_tree_lock);
889 	BUG_ON(tmp != vb);
890 
891 	free_vmap_area_noflush(vb->va);
892 	kfree_rcu(vb, rcu_head);
893 }
894 
purge_fragmented_blocks(int cpu)895 static void purge_fragmented_blocks(int cpu)
896 {
897 	LIST_HEAD(purge);
898 	struct vmap_block *vb;
899 	struct vmap_block *n_vb;
900 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
901 
902 	rcu_read_lock();
903 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
904 
905 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
906 			continue;
907 
908 		spin_lock(&vb->lock);
909 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
910 			vb->free = 0; /* prevent further allocs after releasing lock */
911 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
912 			vb->dirty_min = 0;
913 			vb->dirty_max = VMAP_BBMAP_BITS;
914 			spin_lock(&vbq->lock);
915 			list_del_rcu(&vb->free_list);
916 			spin_unlock(&vbq->lock);
917 			spin_unlock(&vb->lock);
918 			list_add_tail(&vb->purge, &purge);
919 		} else
920 			spin_unlock(&vb->lock);
921 	}
922 	rcu_read_unlock();
923 
924 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
925 		list_del(&vb->purge);
926 		free_vmap_block(vb);
927 	}
928 }
929 
purge_fragmented_blocks_allcpus(void)930 static void purge_fragmented_blocks_allcpus(void)
931 {
932 	int cpu;
933 
934 	for_each_possible_cpu(cpu)
935 		purge_fragmented_blocks(cpu);
936 }
937 
vb_alloc(unsigned long size,gfp_t gfp_mask)938 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
939 {
940 	struct vmap_block_queue *vbq;
941 	struct vmap_block *vb;
942 	void *vaddr = NULL;
943 	unsigned int order;
944 
945 	BUG_ON(offset_in_page(size));
946 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
947 	if (WARN_ON(size == 0)) {
948 		/*
949 		 * Allocating 0 bytes isn't what caller wants since
950 		 * get_order(0) returns funny result. Just warn and terminate
951 		 * early.
952 		 */
953 		return NULL;
954 	}
955 	order = get_order(size);
956 
957 	rcu_read_lock();
958 	vbq = &get_cpu_var(vmap_block_queue);
959 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
960 		unsigned long pages_off;
961 
962 		spin_lock(&vb->lock);
963 		if (vb->free < (1UL << order)) {
964 			spin_unlock(&vb->lock);
965 			continue;
966 		}
967 
968 		pages_off = VMAP_BBMAP_BITS - vb->free;
969 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
970 		vb->free -= 1UL << order;
971 		if (vb->free == 0) {
972 			spin_lock(&vbq->lock);
973 			list_del_rcu(&vb->free_list);
974 			spin_unlock(&vbq->lock);
975 		}
976 
977 		spin_unlock(&vb->lock);
978 		break;
979 	}
980 
981 	put_cpu_var(vmap_block_queue);
982 	rcu_read_unlock();
983 
984 	/* Allocate new block if nothing was found */
985 	if (!vaddr)
986 		vaddr = new_vmap_block(order, gfp_mask);
987 
988 	return vaddr;
989 }
990 
vb_free(const void * addr,unsigned long size)991 static void vb_free(const void *addr, unsigned long size)
992 {
993 	unsigned long offset;
994 	unsigned long vb_idx;
995 	unsigned int order;
996 	struct vmap_block *vb;
997 
998 	BUG_ON(offset_in_page(size));
999 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1000 
1001 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1002 
1003 	order = get_order(size);
1004 
1005 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1006 	offset >>= PAGE_SHIFT;
1007 
1008 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1009 	rcu_read_lock();
1010 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1011 	rcu_read_unlock();
1012 	BUG_ON(!vb);
1013 
1014 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1015 
1016 	spin_lock(&vb->lock);
1017 
1018 	/* Expand dirty range */
1019 	vb->dirty_min = min(vb->dirty_min, offset);
1020 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1021 
1022 	vb->dirty += 1UL << order;
1023 	if (vb->dirty == VMAP_BBMAP_BITS) {
1024 		BUG_ON(vb->free);
1025 		spin_unlock(&vb->lock);
1026 		free_vmap_block(vb);
1027 	} else
1028 		spin_unlock(&vb->lock);
1029 }
1030 
1031 /**
1032  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1033  *
1034  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1035  * to amortize TLB flushing overheads. What this means is that any page you
1036  * have now, may, in a former life, have been mapped into kernel virtual
1037  * address by the vmap layer and so there might be some CPUs with TLB entries
1038  * still referencing that page (additional to the regular 1:1 kernel mapping).
1039  *
1040  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1041  * be sure that none of the pages we have control over will have any aliases
1042  * from the vmap layer.
1043  */
vm_unmap_aliases(void)1044 void vm_unmap_aliases(void)
1045 {
1046 	unsigned long start = ULONG_MAX, end = 0;
1047 	int cpu;
1048 	int flush = 0;
1049 
1050 	if (unlikely(!vmap_initialized))
1051 		return;
1052 
1053 	for_each_possible_cpu(cpu) {
1054 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1055 		struct vmap_block *vb;
1056 
1057 		rcu_read_lock();
1058 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1059 			spin_lock(&vb->lock);
1060 			if (vb->dirty) {
1061 				unsigned long va_start = vb->va->va_start;
1062 				unsigned long s, e;
1063 
1064 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1065 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1066 
1067 				start = min(s, start);
1068 				end   = max(e, end);
1069 
1070 				flush = 1;
1071 			}
1072 			spin_unlock(&vb->lock);
1073 		}
1074 		rcu_read_unlock();
1075 	}
1076 
1077 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1078 }
1079 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1080 
1081 /**
1082  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1083  * @mem: the pointer returned by vm_map_ram
1084  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1085  */
vm_unmap_ram(const void * mem,unsigned int count)1086 void vm_unmap_ram(const void *mem, unsigned int count)
1087 {
1088 	unsigned long size = count << PAGE_SHIFT;
1089 	unsigned long addr = (unsigned long)mem;
1090 
1091 	BUG_ON(!addr);
1092 	BUG_ON(addr < VMALLOC_START);
1093 	BUG_ON(addr > VMALLOC_END);
1094 	BUG_ON(addr & (PAGE_SIZE-1));
1095 
1096 	debug_check_no_locks_freed(mem, size);
1097 	vmap_debug_free_range(addr, addr+size);
1098 
1099 	if (likely(count <= VMAP_MAX_ALLOC))
1100 		vb_free(mem, size);
1101 	else
1102 		free_unmap_vmap_area_addr(addr);
1103 }
1104 EXPORT_SYMBOL(vm_unmap_ram);
1105 
1106 /**
1107  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1108  * @pages: an array of pointers to the pages to be mapped
1109  * @count: number of pages
1110  * @node: prefer to allocate data structures on this node
1111  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1112  *
1113  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1114  * faster than vmap so it's good.  But if you mix long-life and short-life
1115  * objects with vm_map_ram(), it could consume lots of address space through
1116  * fragmentation (especially on a 32bit machine).  You could see failures in
1117  * the end.  Please use this function for short-lived objects.
1118  *
1119  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1120  */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)1121 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1122 {
1123 	unsigned long size = count << PAGE_SHIFT;
1124 	unsigned long addr;
1125 	void *mem;
1126 
1127 	if (likely(count <= VMAP_MAX_ALLOC)) {
1128 		mem = vb_alloc(size, GFP_KERNEL);
1129 		if (IS_ERR(mem))
1130 			return NULL;
1131 		addr = (unsigned long)mem;
1132 	} else {
1133 		struct vmap_area *va;
1134 		va = alloc_vmap_area(size, PAGE_SIZE,
1135 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1136 		if (IS_ERR(va))
1137 			return NULL;
1138 
1139 		addr = va->va_start;
1140 		mem = (void *)addr;
1141 	}
1142 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1143 		vm_unmap_ram(mem, count);
1144 		return NULL;
1145 	}
1146 	return mem;
1147 }
1148 EXPORT_SYMBOL(vm_map_ram);
1149 
1150 static struct vm_struct *vmlist __initdata;
1151 /**
1152  * vm_area_add_early - add vmap area early during boot
1153  * @vm: vm_struct to add
1154  *
1155  * This function is used to add fixed kernel vm area to vmlist before
1156  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1157  * should contain proper values and the other fields should be zero.
1158  *
1159  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1160  */
vm_area_add_early(struct vm_struct * vm)1161 void __init vm_area_add_early(struct vm_struct *vm)
1162 {
1163 	struct vm_struct *tmp, **p;
1164 
1165 	BUG_ON(vmap_initialized);
1166 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1167 		if (tmp->addr >= vm->addr) {
1168 			BUG_ON(tmp->addr < vm->addr + vm->size);
1169 			break;
1170 		} else
1171 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1172 	}
1173 	vm->next = *p;
1174 	*p = vm;
1175 }
1176 
1177 /**
1178  * vm_area_register_early - register vmap area early during boot
1179  * @vm: vm_struct to register
1180  * @align: requested alignment
1181  *
1182  * This function is used to register kernel vm area before
1183  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1184  * proper values on entry and other fields should be zero.  On return,
1185  * vm->addr contains the allocated address.
1186  *
1187  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1188  */
vm_area_register_early(struct vm_struct * vm,size_t align)1189 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1190 {
1191 	static size_t vm_init_off __initdata;
1192 	unsigned long addr;
1193 
1194 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1195 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1196 
1197 	vm->addr = (void *)addr;
1198 
1199 	vm_area_add_early(vm);
1200 }
1201 
vmalloc_init(void)1202 void __init vmalloc_init(void)
1203 {
1204 	struct vmap_area *va;
1205 	struct vm_struct *tmp;
1206 	int i;
1207 
1208 	for_each_possible_cpu(i) {
1209 		struct vmap_block_queue *vbq;
1210 		struct vfree_deferred *p;
1211 
1212 		vbq = &per_cpu(vmap_block_queue, i);
1213 		spin_lock_init(&vbq->lock);
1214 		INIT_LIST_HEAD(&vbq->free);
1215 		p = &per_cpu(vfree_deferred, i);
1216 		init_llist_head(&p->list);
1217 		INIT_WORK(&p->wq, free_work);
1218 	}
1219 
1220 	/* Import existing vmlist entries. */
1221 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1222 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1223 		va->flags = VM_VM_AREA;
1224 		va->va_start = (unsigned long)tmp->addr;
1225 		va->va_end = va->va_start + tmp->size;
1226 		va->vm = tmp;
1227 		__insert_vmap_area(va);
1228 	}
1229 
1230 	vmap_area_pcpu_hole = VMALLOC_END;
1231 
1232 	vmap_initialized = true;
1233 }
1234 
1235 /**
1236  * map_kernel_range_noflush - map kernel VM area with the specified pages
1237  * @addr: start of the VM area to map
1238  * @size: size of the VM area to map
1239  * @prot: page protection flags to use
1240  * @pages: pages to map
1241  *
1242  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1243  * specify should have been allocated using get_vm_area() and its
1244  * friends.
1245  *
1246  * NOTE:
1247  * This function does NOT do any cache flushing.  The caller is
1248  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1249  * before calling this function.
1250  *
1251  * RETURNS:
1252  * The number of pages mapped on success, -errno on failure.
1253  */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)1254 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1255 			     pgprot_t prot, struct page **pages)
1256 {
1257 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1258 }
1259 
1260 /**
1261  * unmap_kernel_range_noflush - unmap kernel VM area
1262  * @addr: start of the VM area to unmap
1263  * @size: size of the VM area to unmap
1264  *
1265  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1266  * specify should have been allocated using get_vm_area() and its
1267  * friends.
1268  *
1269  * NOTE:
1270  * This function does NOT do any cache flushing.  The caller is
1271  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1272  * before calling this function and flush_tlb_kernel_range() after.
1273  */
unmap_kernel_range_noflush(unsigned long addr,unsigned long size)1274 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1275 {
1276 	vunmap_page_range(addr, addr + size);
1277 }
1278 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1279 
1280 /**
1281  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1282  * @addr: start of the VM area to unmap
1283  * @size: size of the VM area to unmap
1284  *
1285  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1286  * the unmapping and tlb after.
1287  */
unmap_kernel_range(unsigned long addr,unsigned long size)1288 void unmap_kernel_range(unsigned long addr, unsigned long size)
1289 {
1290 	unsigned long end = addr + size;
1291 
1292 	flush_cache_vunmap(addr, end);
1293 	vunmap_page_range(addr, end);
1294 	flush_tlb_kernel_range(addr, end);
1295 }
1296 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1297 
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page ** pages)1298 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1299 {
1300 	unsigned long addr = (unsigned long)area->addr;
1301 	unsigned long end = addr + get_vm_area_size(area);
1302 	int err;
1303 
1304 	err = vmap_page_range(addr, end, prot, pages);
1305 
1306 	return err > 0 ? 0 : err;
1307 }
1308 EXPORT_SYMBOL_GPL(map_vm_area);
1309 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1310 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1311 			      unsigned long flags, const void *caller)
1312 {
1313 	spin_lock(&vmap_area_lock);
1314 	vm->flags = flags;
1315 	vm->addr = (void *)va->va_start;
1316 	vm->size = va->va_end - va->va_start;
1317 	vm->caller = caller;
1318 	va->vm = vm;
1319 	va->flags |= VM_VM_AREA;
1320 	spin_unlock(&vmap_area_lock);
1321 }
1322 
clear_vm_uninitialized_flag(struct vm_struct * vm)1323 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1324 {
1325 	/*
1326 	 * Before removing VM_UNINITIALIZED,
1327 	 * we should make sure that vm has proper values.
1328 	 * Pair with smp_rmb() in show_numa_info().
1329 	 */
1330 	smp_wmb();
1331 	vm->flags &= ~VM_UNINITIALIZED;
1332 }
1333 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)1334 static struct vm_struct *__get_vm_area_node(unsigned long size,
1335 		unsigned long align, unsigned long flags, unsigned long start,
1336 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1337 {
1338 	struct vmap_area *va;
1339 	struct vm_struct *area;
1340 
1341 	BUG_ON(in_interrupt());
1342 	if (flags & VM_IOREMAP)
1343 		align = 1ul << clamp_t(int, fls_long(size),
1344 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1345 
1346 	size = PAGE_ALIGN(size);
1347 	if (unlikely(!size))
1348 		return NULL;
1349 
1350 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1351 	if (unlikely(!area))
1352 		return NULL;
1353 
1354 	if (!(flags & VM_NO_GUARD))
1355 		size += PAGE_SIZE;
1356 
1357 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1358 	if (IS_ERR(va)) {
1359 		kfree(area);
1360 		return NULL;
1361 	}
1362 
1363 	setup_vmalloc_vm(area, va, flags, caller);
1364 
1365 	return area;
1366 }
1367 
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)1368 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1369 				unsigned long start, unsigned long end)
1370 {
1371 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1372 				  GFP_KERNEL, __builtin_return_address(0));
1373 }
1374 EXPORT_SYMBOL_GPL(__get_vm_area);
1375 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)1376 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1377 				       unsigned long start, unsigned long end,
1378 				       const void *caller)
1379 {
1380 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1381 				  GFP_KERNEL, caller);
1382 }
1383 
1384 /**
1385  *	get_vm_area  -  reserve a contiguous kernel virtual area
1386  *	@size:		size of the area
1387  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1388  *
1389  *	Search an area of @size in the kernel virtual mapping area,
1390  *	and reserved it for out purposes.  Returns the area descriptor
1391  *	on success or %NULL on failure.
1392  */
get_vm_area(unsigned long size,unsigned long flags)1393 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1394 {
1395 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1396 				  NUMA_NO_NODE, GFP_KERNEL,
1397 				  __builtin_return_address(0));
1398 }
1399 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)1400 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1401 				const void *caller)
1402 {
1403 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1404 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1405 }
1406 
1407 /**
1408  *	find_vm_area  -  find a continuous kernel virtual area
1409  *	@addr:		base address
1410  *
1411  *	Search for the kernel VM area starting at @addr, and return it.
1412  *	It is up to the caller to do all required locking to keep the returned
1413  *	pointer valid.
1414  */
find_vm_area(const void * addr)1415 struct vm_struct *find_vm_area(const void *addr)
1416 {
1417 	struct vmap_area *va;
1418 
1419 	va = find_vmap_area((unsigned long)addr);
1420 	if (va && va->flags & VM_VM_AREA)
1421 		return va->vm;
1422 
1423 	return NULL;
1424 }
1425 
1426 /**
1427  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1428  *	@addr:		base address
1429  *
1430  *	Search for the kernel VM area starting at @addr, and remove it.
1431  *	This function returns the found VM area, but using it is NOT safe
1432  *	on SMP machines, except for its size or flags.
1433  */
remove_vm_area(const void * addr)1434 struct vm_struct *remove_vm_area(const void *addr)
1435 {
1436 	struct vmap_area *va;
1437 
1438 	va = find_vmap_area((unsigned long)addr);
1439 	if (va && va->flags & VM_VM_AREA) {
1440 		struct vm_struct *vm = va->vm;
1441 
1442 		spin_lock(&vmap_area_lock);
1443 		va->vm = NULL;
1444 		va->flags &= ~VM_VM_AREA;
1445 		spin_unlock(&vmap_area_lock);
1446 
1447 		vmap_debug_free_range(va->va_start, va->va_end);
1448 		kasan_free_shadow(vm);
1449 		free_unmap_vmap_area(va);
1450 
1451 		return vm;
1452 	}
1453 	return NULL;
1454 }
1455 
__vunmap(const void * addr,int deallocate_pages)1456 static void __vunmap(const void *addr, int deallocate_pages)
1457 {
1458 	struct vm_struct *area;
1459 
1460 	if (!addr)
1461 		return;
1462 
1463 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1464 			addr))
1465 		return;
1466 
1467 	area = find_vm_area(addr);
1468 	if (unlikely(!area)) {
1469 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1470 				addr);
1471 		return;
1472 	}
1473 
1474 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1475 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1476 
1477 	remove_vm_area(addr);
1478 	if (deallocate_pages) {
1479 		int i;
1480 
1481 		for (i = 0; i < area->nr_pages; i++) {
1482 			struct page *page = area->pages[i];
1483 
1484 			BUG_ON(!page);
1485 			__free_page(page);
1486 		}
1487 
1488 		if (area->flags & VM_VPAGES)
1489 			vfree(area->pages);
1490 		else
1491 			kfree(area->pages);
1492 	}
1493 
1494 	kfree(area);
1495 	return;
1496 }
1497 
1498 /**
1499  *	vfree  -  release memory allocated by vmalloc()
1500  *	@addr:		memory base address
1501  *
1502  *	Free the virtually continuous memory area starting at @addr, as
1503  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1504  *	NULL, no operation is performed.
1505  *
1506  *	Must not be called in NMI context (strictly speaking, only if we don't
1507  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1508  *	conventions for vfree() arch-depenedent would be a really bad idea)
1509  *
1510  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1511  */
vfree(const void * addr)1512 void vfree(const void *addr)
1513 {
1514 	BUG_ON(in_nmi());
1515 
1516 	kmemleak_free(addr);
1517 
1518 	if (!addr)
1519 		return;
1520 	if (unlikely(in_interrupt())) {
1521 		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1522 		if (llist_add((struct llist_node *)addr, &p->list))
1523 			schedule_work(&p->wq);
1524 	} else
1525 		__vunmap(addr, 1);
1526 }
1527 EXPORT_SYMBOL(vfree);
1528 
1529 /**
1530  *	vunmap  -  release virtual mapping obtained by vmap()
1531  *	@addr:		memory base address
1532  *
1533  *	Free the virtually contiguous memory area starting at @addr,
1534  *	which was created from the page array passed to vmap().
1535  *
1536  *	Must not be called in interrupt context.
1537  */
vunmap(const void * addr)1538 void vunmap(const void *addr)
1539 {
1540 	BUG_ON(in_interrupt());
1541 	might_sleep();
1542 	if (addr)
1543 		__vunmap(addr, 0);
1544 }
1545 EXPORT_SYMBOL(vunmap);
1546 
1547 /**
1548  *	vmap  -  map an array of pages into virtually contiguous space
1549  *	@pages:		array of page pointers
1550  *	@count:		number of pages to map
1551  *	@flags:		vm_area->flags
1552  *	@prot:		page protection for the mapping
1553  *
1554  *	Maps @count pages from @pages into contiguous kernel virtual
1555  *	space.
1556  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)1557 void *vmap(struct page **pages, unsigned int count,
1558 		unsigned long flags, pgprot_t prot)
1559 {
1560 	struct vm_struct *area;
1561 
1562 	might_sleep();
1563 
1564 	if (count > totalram_pages)
1565 		return NULL;
1566 
1567 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1568 					__builtin_return_address(0));
1569 	if (!area)
1570 		return NULL;
1571 
1572 	if (map_vm_area(area, prot, pages)) {
1573 		vunmap(area->addr);
1574 		return NULL;
1575 	}
1576 
1577 	return area->addr;
1578 }
1579 EXPORT_SYMBOL(vmap);
1580 
1581 static void *__vmalloc_node(unsigned long size, unsigned long align,
1582 			    gfp_t gfp_mask, pgprot_t prot,
1583 			    int node, const void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)1584 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1585 				 pgprot_t prot, int node)
1586 {
1587 	const int order = 0;
1588 	struct page **pages;
1589 	unsigned int nr_pages, array_size, i;
1590 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1591 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1592 
1593 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1594 	array_size = (nr_pages * sizeof(struct page *));
1595 
1596 	area->nr_pages = nr_pages;
1597 	/* Please note that the recursion is strictly bounded. */
1598 	if (array_size > PAGE_SIZE) {
1599 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1600 				PAGE_KERNEL, node, area->caller);
1601 		area->flags |= VM_VPAGES;
1602 	} else {
1603 		pages = kmalloc_node(array_size, nested_gfp, node);
1604 	}
1605 	area->pages = pages;
1606 	if (!area->pages) {
1607 		remove_vm_area(area->addr);
1608 		kfree(area);
1609 		return NULL;
1610 	}
1611 
1612 	for (i = 0; i < area->nr_pages; i++) {
1613 		struct page *page;
1614 
1615 		if (node == NUMA_NO_NODE)
1616 			page = alloc_page(alloc_mask);
1617 		else
1618 			page = alloc_pages_node(node, alloc_mask, order);
1619 
1620 		if (unlikely(!page)) {
1621 			/* Successfully allocated i pages, free them in __vunmap() */
1622 			area->nr_pages = i;
1623 			goto fail;
1624 		}
1625 		area->pages[i] = page;
1626 		if (gfpflags_allow_blocking(gfp_mask))
1627 			cond_resched();
1628 	}
1629 
1630 	if (map_vm_area(area, prot, pages))
1631 		goto fail;
1632 	return area->addr;
1633 
1634 fail:
1635 	warn_alloc_failed(gfp_mask, order,
1636 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1637 			  (area->nr_pages*PAGE_SIZE), area->size);
1638 	vfree(area->addr);
1639 	return NULL;
1640 }
1641 
1642 /**
1643  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1644  *	@size:		allocation size
1645  *	@align:		desired alignment
1646  *	@start:		vm area range start
1647  *	@end:		vm area range end
1648  *	@gfp_mask:	flags for the page level allocator
1649  *	@prot:		protection mask for the allocated pages
1650  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1651  *	@node:		node to use for allocation or NUMA_NO_NODE
1652  *	@caller:	caller's return address
1653  *
1654  *	Allocate enough pages to cover @size from the page level
1655  *	allocator with @gfp_mask flags.  Map them into contiguous
1656  *	kernel virtual space, using a pagetable protection of @prot.
1657  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)1658 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1659 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1660 			pgprot_t prot, unsigned long vm_flags, int node,
1661 			const void *caller)
1662 {
1663 	struct vm_struct *area;
1664 	void *addr;
1665 	unsigned long real_size = size;
1666 
1667 	size = PAGE_ALIGN(size);
1668 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1669 		goto fail;
1670 
1671 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1672 				vm_flags, start, end, node, gfp_mask, caller);
1673 	if (!area)
1674 		goto fail;
1675 
1676 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1677 	if (!addr)
1678 		return NULL;
1679 
1680 	/*
1681 	 * First make sure the mappings are removed from all page-tables
1682 	 * before they are freed.
1683 	 */
1684 	vmalloc_sync_unmappings();
1685 
1686 	/*
1687 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1688 	 * flag. It means that vm_struct is not fully initialized.
1689 	 * Now, it is fully initialized, so remove this flag here.
1690 	 */
1691 	clear_vm_uninitialized_flag(area);
1692 
1693 	/*
1694 	 * A ref_count = 2 is needed because vm_struct allocated in
1695 	 * __get_vm_area_node() contains a reference to the virtual address of
1696 	 * the vmalloc'ed block.
1697 	 */
1698 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1699 
1700 	return addr;
1701 
1702 fail:
1703 	warn_alloc_failed(gfp_mask, 0,
1704 			  "vmalloc: allocation failure: %lu bytes\n",
1705 			  real_size);
1706 	return NULL;
1707 }
1708 
1709 /**
1710  *	__vmalloc_node  -  allocate virtually contiguous memory
1711  *	@size:		allocation size
1712  *	@align:		desired alignment
1713  *	@gfp_mask:	flags for the page level allocator
1714  *	@prot:		protection mask for the allocated pages
1715  *	@node:		node to use for allocation or NUMA_NO_NODE
1716  *	@caller:	caller's return address
1717  *
1718  *	Allocate enough pages to cover @size from the page level
1719  *	allocator with @gfp_mask flags.  Map them into contiguous
1720  *	kernel virtual space, using a pagetable protection of @prot.
1721  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,pgprot_t prot,int node,const void * caller)1722 static void *__vmalloc_node(unsigned long size, unsigned long align,
1723 			    gfp_t gfp_mask, pgprot_t prot,
1724 			    int node, const void *caller)
1725 {
1726 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1727 				gfp_mask, prot, 0, node, caller);
1728 }
1729 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)1730 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1731 {
1732 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1733 				__builtin_return_address(0));
1734 }
1735 EXPORT_SYMBOL(__vmalloc);
1736 
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)1737 static inline void *__vmalloc_node_flags(unsigned long size,
1738 					int node, gfp_t flags)
1739 {
1740 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1741 					node, __builtin_return_address(0));
1742 }
1743 
1744 /**
1745  *	vmalloc  -  allocate virtually contiguous memory
1746  *	@size:		allocation size
1747  *	Allocate enough pages to cover @size from the page level
1748  *	allocator and map them into contiguous kernel virtual space.
1749  *
1750  *	For tight control over page level allocator and protection flags
1751  *	use __vmalloc() instead.
1752  */
vmalloc(unsigned long size)1753 void *vmalloc(unsigned long size)
1754 {
1755 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1756 				    GFP_KERNEL | __GFP_HIGHMEM);
1757 }
1758 EXPORT_SYMBOL(vmalloc);
1759 
1760 /**
1761  *	vzalloc - allocate virtually contiguous memory with zero fill
1762  *	@size:	allocation size
1763  *	Allocate enough pages to cover @size from the page level
1764  *	allocator and map them into contiguous kernel virtual space.
1765  *	The memory allocated is set to zero.
1766  *
1767  *	For tight control over page level allocator and protection flags
1768  *	use __vmalloc() instead.
1769  */
vzalloc(unsigned long size)1770 void *vzalloc(unsigned long size)
1771 {
1772 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1773 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1774 }
1775 EXPORT_SYMBOL(vzalloc);
1776 
1777 /**
1778  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1779  * @size: allocation size
1780  *
1781  * The resulting memory area is zeroed so it can be mapped to userspace
1782  * without leaking data.
1783  */
vmalloc_user(unsigned long size)1784 void *vmalloc_user(unsigned long size)
1785 {
1786 	struct vm_struct *area;
1787 	void *ret;
1788 
1789 	ret = __vmalloc_node(size, SHMLBA,
1790 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1791 			     PAGE_KERNEL, NUMA_NO_NODE,
1792 			     __builtin_return_address(0));
1793 	if (ret) {
1794 		area = find_vm_area(ret);
1795 		area->flags |= VM_USERMAP;
1796 	}
1797 	return ret;
1798 }
1799 EXPORT_SYMBOL(vmalloc_user);
1800 
1801 /**
1802  *	vmalloc_node  -  allocate memory on a specific node
1803  *	@size:		allocation size
1804  *	@node:		numa node
1805  *
1806  *	Allocate enough pages to cover @size from the page level
1807  *	allocator and map them into contiguous kernel virtual space.
1808  *
1809  *	For tight control over page level allocator and protection flags
1810  *	use __vmalloc() instead.
1811  */
vmalloc_node(unsigned long size,int node)1812 void *vmalloc_node(unsigned long size, int node)
1813 {
1814 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1815 					node, __builtin_return_address(0));
1816 }
1817 EXPORT_SYMBOL(vmalloc_node);
1818 
1819 /**
1820  * vzalloc_node - allocate memory on a specific node with zero fill
1821  * @size:	allocation size
1822  * @node:	numa node
1823  *
1824  * Allocate enough pages to cover @size from the page level
1825  * allocator and map them into contiguous kernel virtual space.
1826  * The memory allocated is set to zero.
1827  *
1828  * For tight control over page level allocator and protection flags
1829  * use __vmalloc_node() instead.
1830  */
vzalloc_node(unsigned long size,int node)1831 void *vzalloc_node(unsigned long size, int node)
1832 {
1833 	return __vmalloc_node_flags(size, node,
1834 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1835 }
1836 EXPORT_SYMBOL(vzalloc_node);
1837 
1838 #ifndef PAGE_KERNEL_EXEC
1839 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1840 #endif
1841 
1842 /**
1843  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1844  *	@size:		allocation size
1845  *
1846  *	Kernel-internal function to allocate enough pages to cover @size
1847  *	the page level allocator and map them into contiguous and
1848  *	executable kernel virtual space.
1849  *
1850  *	For tight control over page level allocator and protection flags
1851  *	use __vmalloc() instead.
1852  */
1853 
vmalloc_exec(unsigned long size)1854 void *vmalloc_exec(unsigned long size)
1855 {
1856 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1857 			      NUMA_NO_NODE, __builtin_return_address(0));
1858 }
1859 
1860 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1861 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1862 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1863 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1864 #else
1865 #define GFP_VMALLOC32 GFP_KERNEL
1866 #endif
1867 
1868 /**
1869  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1870  *	@size:		allocation size
1871  *
1872  *	Allocate enough 32bit PA addressable pages to cover @size from the
1873  *	page level allocator and map them into contiguous kernel virtual space.
1874  */
vmalloc_32(unsigned long size)1875 void *vmalloc_32(unsigned long size)
1876 {
1877 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1878 			      NUMA_NO_NODE, __builtin_return_address(0));
1879 }
1880 EXPORT_SYMBOL(vmalloc_32);
1881 
1882 /**
1883  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1884  *	@size:		allocation size
1885  *
1886  * The resulting memory area is 32bit addressable and zeroed so it can be
1887  * mapped to userspace without leaking data.
1888  */
vmalloc_32_user(unsigned long size)1889 void *vmalloc_32_user(unsigned long size)
1890 {
1891 	struct vm_struct *area;
1892 	void *ret;
1893 
1894 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1895 			     NUMA_NO_NODE, __builtin_return_address(0));
1896 	if (ret) {
1897 		area = find_vm_area(ret);
1898 		area->flags |= VM_USERMAP;
1899 	}
1900 	return ret;
1901 }
1902 EXPORT_SYMBOL(vmalloc_32_user);
1903 
1904 /*
1905  * small helper routine , copy contents to buf from addr.
1906  * If the page is not present, fill zero.
1907  */
1908 
aligned_vread(char * buf,char * addr,unsigned long count)1909 static int aligned_vread(char *buf, char *addr, unsigned long count)
1910 {
1911 	struct page *p;
1912 	int copied = 0;
1913 
1914 	while (count) {
1915 		unsigned long offset, length;
1916 
1917 		offset = offset_in_page(addr);
1918 		length = PAGE_SIZE - offset;
1919 		if (length > count)
1920 			length = count;
1921 		p = vmalloc_to_page(addr);
1922 		/*
1923 		 * To do safe access to this _mapped_ area, we need
1924 		 * lock. But adding lock here means that we need to add
1925 		 * overhead of vmalloc()/vfree() calles for this _debug_
1926 		 * interface, rarely used. Instead of that, we'll use
1927 		 * kmap() and get small overhead in this access function.
1928 		 */
1929 		if (p) {
1930 			/*
1931 			 * we can expect USER0 is not used (see vread/vwrite's
1932 			 * function description)
1933 			 */
1934 			void *map = kmap_atomic(p);
1935 			memcpy(buf, map + offset, length);
1936 			kunmap_atomic(map);
1937 		} else
1938 			memset(buf, 0, length);
1939 
1940 		addr += length;
1941 		buf += length;
1942 		copied += length;
1943 		count -= length;
1944 	}
1945 	return copied;
1946 }
1947 
aligned_vwrite(char * buf,char * addr,unsigned long count)1948 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1949 {
1950 	struct page *p;
1951 	int copied = 0;
1952 
1953 	while (count) {
1954 		unsigned long offset, length;
1955 
1956 		offset = offset_in_page(addr);
1957 		length = PAGE_SIZE - offset;
1958 		if (length > count)
1959 			length = count;
1960 		p = vmalloc_to_page(addr);
1961 		/*
1962 		 * To do safe access to this _mapped_ area, we need
1963 		 * lock. But adding lock here means that we need to add
1964 		 * overhead of vmalloc()/vfree() calles for this _debug_
1965 		 * interface, rarely used. Instead of that, we'll use
1966 		 * kmap() and get small overhead in this access function.
1967 		 */
1968 		if (p) {
1969 			/*
1970 			 * we can expect USER0 is not used (see vread/vwrite's
1971 			 * function description)
1972 			 */
1973 			void *map = kmap_atomic(p);
1974 			memcpy(map + offset, buf, length);
1975 			kunmap_atomic(map);
1976 		}
1977 		addr += length;
1978 		buf += length;
1979 		copied += length;
1980 		count -= length;
1981 	}
1982 	return copied;
1983 }
1984 
1985 /**
1986  *	vread() -  read vmalloc area in a safe way.
1987  *	@buf:		buffer for reading data
1988  *	@addr:		vm address.
1989  *	@count:		number of bytes to be read.
1990  *
1991  *	Returns # of bytes which addr and buf should be increased.
1992  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1993  *	includes any intersect with alive vmalloc area.
1994  *
1995  *	This function checks that addr is a valid vmalloc'ed area, and
1996  *	copy data from that area to a given buffer. If the given memory range
1997  *	of [addr...addr+count) includes some valid address, data is copied to
1998  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1999  *	IOREMAP area is treated as memory hole and no copy is done.
2000  *
2001  *	If [addr...addr+count) doesn't includes any intersects with alive
2002  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2003  *
2004  *	Note: In usual ops, vread() is never necessary because the caller
2005  *	should know vmalloc() area is valid and can use memcpy().
2006  *	This is for routines which have to access vmalloc area without
2007  *	any informaion, as /dev/kmem.
2008  *
2009  */
2010 
vread(char * buf,char * addr,unsigned long count)2011 long vread(char *buf, char *addr, unsigned long count)
2012 {
2013 	struct vmap_area *va;
2014 	struct vm_struct *vm;
2015 	char *vaddr, *buf_start = buf;
2016 	unsigned long buflen = count;
2017 	unsigned long n;
2018 
2019 	/* Don't allow overflow */
2020 	if ((unsigned long) addr + count < count)
2021 		count = -(unsigned long) addr;
2022 
2023 	spin_lock(&vmap_area_lock);
2024 	list_for_each_entry(va, &vmap_area_list, list) {
2025 		if (!count)
2026 			break;
2027 
2028 		if (!(va->flags & VM_VM_AREA))
2029 			continue;
2030 
2031 		vm = va->vm;
2032 		vaddr = (char *) vm->addr;
2033 		if (addr >= vaddr + get_vm_area_size(vm))
2034 			continue;
2035 		while (addr < vaddr) {
2036 			if (count == 0)
2037 				goto finished;
2038 			*buf = '\0';
2039 			buf++;
2040 			addr++;
2041 			count--;
2042 		}
2043 		n = vaddr + get_vm_area_size(vm) - addr;
2044 		if (n > count)
2045 			n = count;
2046 		if (!(vm->flags & VM_IOREMAP))
2047 			aligned_vread(buf, addr, n);
2048 		else /* IOREMAP area is treated as memory hole */
2049 			memset(buf, 0, n);
2050 		buf += n;
2051 		addr += n;
2052 		count -= n;
2053 	}
2054 finished:
2055 	spin_unlock(&vmap_area_lock);
2056 
2057 	if (buf == buf_start)
2058 		return 0;
2059 	/* zero-fill memory holes */
2060 	if (buf != buf_start + buflen)
2061 		memset(buf, 0, buflen - (buf - buf_start));
2062 
2063 	return buflen;
2064 }
2065 
2066 /**
2067  *	vwrite() -  write vmalloc area in a safe way.
2068  *	@buf:		buffer for source data
2069  *	@addr:		vm address.
2070  *	@count:		number of bytes to be read.
2071  *
2072  *	Returns # of bytes which addr and buf should be incresed.
2073  *	(same number to @count).
2074  *	If [addr...addr+count) doesn't includes any intersect with valid
2075  *	vmalloc area, returns 0.
2076  *
2077  *	This function checks that addr is a valid vmalloc'ed area, and
2078  *	copy data from a buffer to the given addr. If specified range of
2079  *	[addr...addr+count) includes some valid address, data is copied from
2080  *	proper area of @buf. If there are memory holes, no copy to hole.
2081  *	IOREMAP area is treated as memory hole and no copy is done.
2082  *
2083  *	If [addr...addr+count) doesn't includes any intersects with alive
2084  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2085  *
2086  *	Note: In usual ops, vwrite() is never necessary because the caller
2087  *	should know vmalloc() area is valid and can use memcpy().
2088  *	This is for routines which have to access vmalloc area without
2089  *	any informaion, as /dev/kmem.
2090  */
2091 
vwrite(char * buf,char * addr,unsigned long count)2092 long vwrite(char *buf, char *addr, unsigned long count)
2093 {
2094 	struct vmap_area *va;
2095 	struct vm_struct *vm;
2096 	char *vaddr;
2097 	unsigned long n, buflen;
2098 	int copied = 0;
2099 
2100 	/* Don't allow overflow */
2101 	if ((unsigned long) addr + count < count)
2102 		count = -(unsigned long) addr;
2103 	buflen = count;
2104 
2105 	spin_lock(&vmap_area_lock);
2106 	list_for_each_entry(va, &vmap_area_list, list) {
2107 		if (!count)
2108 			break;
2109 
2110 		if (!(va->flags & VM_VM_AREA))
2111 			continue;
2112 
2113 		vm = va->vm;
2114 		vaddr = (char *) vm->addr;
2115 		if (addr >= vaddr + get_vm_area_size(vm))
2116 			continue;
2117 		while (addr < vaddr) {
2118 			if (count == 0)
2119 				goto finished;
2120 			buf++;
2121 			addr++;
2122 			count--;
2123 		}
2124 		n = vaddr + get_vm_area_size(vm) - addr;
2125 		if (n > count)
2126 			n = count;
2127 		if (!(vm->flags & VM_IOREMAP)) {
2128 			aligned_vwrite(buf, addr, n);
2129 			copied++;
2130 		}
2131 		buf += n;
2132 		addr += n;
2133 		count -= n;
2134 	}
2135 finished:
2136 	spin_unlock(&vmap_area_lock);
2137 	if (!copied)
2138 		return 0;
2139 	return buflen;
2140 }
2141 
2142 /**
2143  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2144  *	@vma:		vma to cover
2145  *	@uaddr:		target user address to start at
2146  *	@kaddr:		virtual address of vmalloc kernel memory
2147  *	@size:		size of map area
2148  *
2149  *	Returns:	0 for success, -Exxx on failure
2150  *
2151  *	This function checks that @kaddr is a valid vmalloc'ed area,
2152  *	and that it is big enough to cover the range starting at
2153  *	@uaddr in @vma. Will return failure if that criteria isn't
2154  *	met.
2155  *
2156  *	Similar to remap_pfn_range() (see mm/memory.c)
2157  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long size)2158 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2159 				void *kaddr, unsigned long size)
2160 {
2161 	struct vm_struct *area;
2162 
2163 	size = PAGE_ALIGN(size);
2164 
2165 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2166 		return -EINVAL;
2167 
2168 	area = find_vm_area(kaddr);
2169 	if (!area)
2170 		return -EINVAL;
2171 
2172 	if (!(area->flags & VM_USERMAP))
2173 		return -EINVAL;
2174 
2175 	if (kaddr + size > area->addr + get_vm_area_size(area))
2176 		return -EINVAL;
2177 
2178 	do {
2179 		struct page *page = vmalloc_to_page(kaddr);
2180 		int ret;
2181 
2182 		ret = vm_insert_page(vma, uaddr, page);
2183 		if (ret)
2184 			return ret;
2185 
2186 		uaddr += PAGE_SIZE;
2187 		kaddr += PAGE_SIZE;
2188 		size -= PAGE_SIZE;
2189 	} while (size > 0);
2190 
2191 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2192 
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2196 
2197 /**
2198  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2199  *	@vma:		vma to cover (map full range of vma)
2200  *	@addr:		vmalloc memory
2201  *	@pgoff:		number of pages into addr before first page to map
2202  *
2203  *	Returns:	0 for success, -Exxx on failure
2204  *
2205  *	This function checks that addr is a valid vmalloc'ed area, and
2206  *	that it is big enough to cover the vma. Will return failure if
2207  *	that criteria isn't met.
2208  *
2209  *	Similar to remap_pfn_range() (see mm/memory.c)
2210  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)2211 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2212 						unsigned long pgoff)
2213 {
2214 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2215 					   addr + (pgoff << PAGE_SHIFT),
2216 					   vma->vm_end - vma->vm_start);
2217 }
2218 EXPORT_SYMBOL(remap_vmalloc_range);
2219 
2220 /*
2221  * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2222  * not to have one.
2223  *
2224  * The purpose of this function is to make sure the vmalloc area
2225  * mappings are identical in all page-tables in the system.
2226  */
vmalloc_sync_mappings(void)2227 void __weak vmalloc_sync_mappings(void)
2228 {
2229 }
2230 
vmalloc_sync_unmappings(void)2231 void __weak vmalloc_sync_unmappings(void)
2232 {
2233 }
2234 
f(pte_t * pte,pgtable_t table,unsigned long addr,void * data)2235 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2236 {
2237 	pte_t ***p = data;
2238 
2239 	if (p) {
2240 		*(*p) = pte;
2241 		(*p)++;
2242 	}
2243 	return 0;
2244 }
2245 
2246 /**
2247  *	alloc_vm_area - allocate a range of kernel address space
2248  *	@size:		size of the area
2249  *	@ptes:		returns the PTEs for the address space
2250  *
2251  *	Returns:	NULL on failure, vm_struct on success
2252  *
2253  *	This function reserves a range of kernel address space, and
2254  *	allocates pagetables to map that range.  No actual mappings
2255  *	are created.
2256  *
2257  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2258  *	allocated for the VM area are returned.
2259  */
alloc_vm_area(size_t size,pte_t ** ptes)2260 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2261 {
2262 	struct vm_struct *area;
2263 
2264 	area = get_vm_area_caller(size, VM_IOREMAP,
2265 				__builtin_return_address(0));
2266 	if (area == NULL)
2267 		return NULL;
2268 
2269 	/*
2270 	 * This ensures that page tables are constructed for this region
2271 	 * of kernel virtual address space and mapped into init_mm.
2272 	 */
2273 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2274 				size, f, ptes ? &ptes : NULL)) {
2275 		free_vm_area(area);
2276 		return NULL;
2277 	}
2278 
2279 	return area;
2280 }
2281 EXPORT_SYMBOL_GPL(alloc_vm_area);
2282 
free_vm_area(struct vm_struct * area)2283 void free_vm_area(struct vm_struct *area)
2284 {
2285 	struct vm_struct *ret;
2286 	ret = remove_vm_area(area->addr);
2287 	BUG_ON(ret != area);
2288 	kfree(area);
2289 }
2290 EXPORT_SYMBOL_GPL(free_vm_area);
2291 
2292 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)2293 static struct vmap_area *node_to_va(struct rb_node *n)
2294 {
2295 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2296 }
2297 
2298 /**
2299  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2300  * @end: target address
2301  * @pnext: out arg for the next vmap_area
2302  * @pprev: out arg for the previous vmap_area
2303  *
2304  * Returns: %true if either or both of next and prev are found,
2305  *	    %false if no vmap_area exists
2306  *
2307  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2308  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2309  */
pvm_find_next_prev(unsigned long end,struct vmap_area ** pnext,struct vmap_area ** pprev)2310 static bool pvm_find_next_prev(unsigned long end,
2311 			       struct vmap_area **pnext,
2312 			       struct vmap_area **pprev)
2313 {
2314 	struct rb_node *n = vmap_area_root.rb_node;
2315 	struct vmap_area *va = NULL;
2316 
2317 	while (n) {
2318 		va = rb_entry(n, struct vmap_area, rb_node);
2319 		if (end < va->va_end)
2320 			n = n->rb_left;
2321 		else if (end > va->va_end)
2322 			n = n->rb_right;
2323 		else
2324 			break;
2325 	}
2326 
2327 	if (!va)
2328 		return false;
2329 
2330 	if (va->va_end > end) {
2331 		*pnext = va;
2332 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2333 	} else {
2334 		*pprev = va;
2335 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2336 	}
2337 	return true;
2338 }
2339 
2340 /**
2341  * pvm_determine_end - find the highest aligned address between two vmap_areas
2342  * @pnext: in/out arg for the next vmap_area
2343  * @pprev: in/out arg for the previous vmap_area
2344  * @align: alignment
2345  *
2346  * Returns: determined end address
2347  *
2348  * Find the highest aligned address between *@pnext and *@pprev below
2349  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2350  * down address is between the end addresses of the two vmap_areas.
2351  *
2352  * Please note that the address returned by this function may fall
2353  * inside *@pnext vmap_area.  The caller is responsible for checking
2354  * that.
2355  */
pvm_determine_end(struct vmap_area ** pnext,struct vmap_area ** pprev,unsigned long align)2356 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2357 				       struct vmap_area **pprev,
2358 				       unsigned long align)
2359 {
2360 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2361 	unsigned long addr;
2362 
2363 	if (*pnext)
2364 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2365 	else
2366 		addr = vmalloc_end;
2367 
2368 	while (*pprev && (*pprev)->va_end > addr) {
2369 		*pnext = *pprev;
2370 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2371 	}
2372 
2373 	return addr;
2374 }
2375 
2376 /**
2377  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2378  * @offsets: array containing offset of each area
2379  * @sizes: array containing size of each area
2380  * @nr_vms: the number of areas to allocate
2381  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2382  *
2383  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2384  *	    vm_structs on success, %NULL on failure
2385  *
2386  * Percpu allocator wants to use congruent vm areas so that it can
2387  * maintain the offsets among percpu areas.  This function allocates
2388  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2389  * be scattered pretty far, distance between two areas easily going up
2390  * to gigabytes.  To avoid interacting with regular vmallocs, these
2391  * areas are allocated from top.
2392  *
2393  * Despite its complicated look, this allocator is rather simple.  It
2394  * does everything top-down and scans areas from the end looking for
2395  * matching slot.  While scanning, if any of the areas overlaps with
2396  * existing vmap_area, the base address is pulled down to fit the
2397  * area.  Scanning is repeated till all the areas fit and then all
2398  * necessary data structres are inserted and the result is returned.
2399  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)2400 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2401 				     const size_t *sizes, int nr_vms,
2402 				     size_t align)
2403 {
2404 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2405 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2406 	struct vmap_area **vas, *prev, *next;
2407 	struct vm_struct **vms;
2408 	int area, area2, last_area, term_area;
2409 	unsigned long base, start, end, last_end;
2410 	bool purged = false;
2411 
2412 	/* verify parameters and allocate data structures */
2413 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2414 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2415 		start = offsets[area];
2416 		end = start + sizes[area];
2417 
2418 		/* is everything aligned properly? */
2419 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2420 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2421 
2422 		/* detect the area with the highest address */
2423 		if (start > offsets[last_area])
2424 			last_area = area;
2425 
2426 		for (area2 = 0; area2 < nr_vms; area2++) {
2427 			unsigned long start2 = offsets[area2];
2428 			unsigned long end2 = start2 + sizes[area2];
2429 
2430 			if (area2 == area)
2431 				continue;
2432 
2433 			BUG_ON(start2 >= start && start2 < end);
2434 			BUG_ON(end2 <= end && end2 > start);
2435 		}
2436 	}
2437 	last_end = offsets[last_area] + sizes[last_area];
2438 
2439 	if (vmalloc_end - vmalloc_start < last_end) {
2440 		WARN_ON(true);
2441 		return NULL;
2442 	}
2443 
2444 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2445 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2446 	if (!vas || !vms)
2447 		goto err_free2;
2448 
2449 	for (area = 0; area < nr_vms; area++) {
2450 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2451 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2452 		if (!vas[area] || !vms[area])
2453 			goto err_free;
2454 	}
2455 retry:
2456 	spin_lock(&vmap_area_lock);
2457 
2458 	/* start scanning - we scan from the top, begin with the last area */
2459 	area = term_area = last_area;
2460 	start = offsets[area];
2461 	end = start + sizes[area];
2462 
2463 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2464 		base = vmalloc_end - last_end;
2465 		goto found;
2466 	}
2467 	base = pvm_determine_end(&next, &prev, align) - end;
2468 
2469 	while (true) {
2470 		BUG_ON(next && next->va_end <= base + end);
2471 		BUG_ON(prev && prev->va_end > base + end);
2472 
2473 		/*
2474 		 * base might have underflowed, add last_end before
2475 		 * comparing.
2476 		 */
2477 		if (base + last_end < vmalloc_start + last_end) {
2478 			spin_unlock(&vmap_area_lock);
2479 			if (!purged) {
2480 				purge_vmap_area_lazy();
2481 				purged = true;
2482 				goto retry;
2483 			}
2484 			goto err_free;
2485 		}
2486 
2487 		/*
2488 		 * If next overlaps, move base downwards so that it's
2489 		 * right below next and then recheck.
2490 		 */
2491 		if (next && next->va_start < base + end) {
2492 			base = pvm_determine_end(&next, &prev, align) - end;
2493 			term_area = area;
2494 			continue;
2495 		}
2496 
2497 		/*
2498 		 * If prev overlaps, shift down next and prev and move
2499 		 * base so that it's right below new next and then
2500 		 * recheck.
2501 		 */
2502 		if (prev && prev->va_end > base + start)  {
2503 			next = prev;
2504 			prev = node_to_va(rb_prev(&next->rb_node));
2505 			base = pvm_determine_end(&next, &prev, align) - end;
2506 			term_area = area;
2507 			continue;
2508 		}
2509 
2510 		/*
2511 		 * This area fits, move on to the previous one.  If
2512 		 * the previous one is the terminal one, we're done.
2513 		 */
2514 		area = (area + nr_vms - 1) % nr_vms;
2515 		if (area == term_area)
2516 			break;
2517 		start = offsets[area];
2518 		end = start + sizes[area];
2519 		pvm_find_next_prev(base + end, &next, &prev);
2520 	}
2521 found:
2522 	/* we've found a fitting base, insert all va's */
2523 	for (area = 0; area < nr_vms; area++) {
2524 		struct vmap_area *va = vas[area];
2525 
2526 		va->va_start = base + offsets[area];
2527 		va->va_end = va->va_start + sizes[area];
2528 		__insert_vmap_area(va);
2529 	}
2530 
2531 	vmap_area_pcpu_hole = base + offsets[last_area];
2532 
2533 	spin_unlock(&vmap_area_lock);
2534 
2535 	/* insert all vm's */
2536 	for (area = 0; area < nr_vms; area++)
2537 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2538 				 pcpu_get_vm_areas);
2539 
2540 	kfree(vas);
2541 	return vms;
2542 
2543 err_free:
2544 	for (area = 0; area < nr_vms; area++) {
2545 		kfree(vas[area]);
2546 		kfree(vms[area]);
2547 	}
2548 err_free2:
2549 	kfree(vas);
2550 	kfree(vms);
2551 	return NULL;
2552 }
2553 
2554 /**
2555  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2556  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2557  * @nr_vms: the number of allocated areas
2558  *
2559  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2560  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)2561 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2562 {
2563 	int i;
2564 
2565 	for (i = 0; i < nr_vms; i++)
2566 		free_vm_area(vms[i]);
2567 	kfree(vms);
2568 }
2569 #endif	/* CONFIG_SMP */
2570 
2571 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)2572 static void *s_start(struct seq_file *m, loff_t *pos)
2573 	__acquires(&vmap_area_lock)
2574 {
2575 	loff_t n = *pos;
2576 	struct vmap_area *va;
2577 
2578 	spin_lock(&vmap_area_lock);
2579 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2580 	while (n > 0 && &va->list != &vmap_area_list) {
2581 		n--;
2582 		va = list_entry(va->list.next, typeof(*va), list);
2583 	}
2584 	if (!n && &va->list != &vmap_area_list)
2585 		return va;
2586 
2587 	return NULL;
2588 
2589 }
2590 
s_next(struct seq_file * m,void * p,loff_t * pos)2591 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2592 {
2593 	struct vmap_area *va = p, *next;
2594 
2595 	++*pos;
2596 	next = list_entry(va->list.next, typeof(*va), list);
2597 	if (&next->list != &vmap_area_list)
2598 		return next;
2599 
2600 	return NULL;
2601 }
2602 
s_stop(struct seq_file * m,void * p)2603 static void s_stop(struct seq_file *m, void *p)
2604 	__releases(&vmap_area_lock)
2605 {
2606 	spin_unlock(&vmap_area_lock);
2607 }
2608 
show_numa_info(struct seq_file * m,struct vm_struct * v)2609 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2610 {
2611 	if (IS_ENABLED(CONFIG_NUMA)) {
2612 		unsigned int nr, *counters = m->private;
2613 
2614 		if (!counters)
2615 			return;
2616 
2617 		if (v->flags & VM_UNINITIALIZED)
2618 			return;
2619 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2620 		smp_rmb();
2621 
2622 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2623 
2624 		for (nr = 0; nr < v->nr_pages; nr++)
2625 			counters[page_to_nid(v->pages[nr])]++;
2626 
2627 		for_each_node_state(nr, N_HIGH_MEMORY)
2628 			if (counters[nr])
2629 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2630 	}
2631 }
2632 
s_show(struct seq_file * m,void * p)2633 static int s_show(struct seq_file *m, void *p)
2634 {
2635 	struct vmap_area *va = p;
2636 	struct vm_struct *v;
2637 
2638 	/*
2639 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2640 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2641 	 */
2642 	if (!(va->flags & VM_VM_AREA))
2643 		return 0;
2644 
2645 	v = va->vm;
2646 
2647 	seq_printf(m, "0x%pK-0x%pK %7ld",
2648 		v->addr, v->addr + v->size, v->size);
2649 
2650 	if (v->caller)
2651 		seq_printf(m, " %pS", v->caller);
2652 
2653 	if (v->nr_pages)
2654 		seq_printf(m, " pages=%d", v->nr_pages);
2655 
2656 	if (v->phys_addr)
2657 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2658 
2659 	if (v->flags & VM_IOREMAP)
2660 		seq_puts(m, " ioremap");
2661 
2662 	if (v->flags & VM_ALLOC)
2663 		seq_puts(m, " vmalloc");
2664 
2665 	if (v->flags & VM_MAP)
2666 		seq_puts(m, " vmap");
2667 
2668 	if (v->flags & VM_USERMAP)
2669 		seq_puts(m, " user");
2670 
2671 	if (v->flags & VM_VPAGES)
2672 		seq_puts(m, " vpages");
2673 
2674 	show_numa_info(m, v);
2675 	seq_putc(m, '\n');
2676 	return 0;
2677 }
2678 
2679 static const struct seq_operations vmalloc_op = {
2680 	.start = s_start,
2681 	.next = s_next,
2682 	.stop = s_stop,
2683 	.show = s_show,
2684 };
2685 
vmalloc_open(struct inode * inode,struct file * file)2686 static int vmalloc_open(struct inode *inode, struct file *file)
2687 {
2688 	if (IS_ENABLED(CONFIG_NUMA))
2689 		return seq_open_private(file, &vmalloc_op,
2690 					nr_node_ids * sizeof(unsigned int));
2691 	else
2692 		return seq_open(file, &vmalloc_op);
2693 }
2694 
2695 static const struct file_operations proc_vmalloc_operations = {
2696 	.open		= vmalloc_open,
2697 	.read		= seq_read,
2698 	.llseek		= seq_lseek,
2699 	.release	= seq_release_private,
2700 };
2701 
proc_vmalloc_init(void)2702 static int __init proc_vmalloc_init(void)
2703 {
2704 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2705 	return 0;
2706 }
2707 module_init(proc_vmalloc_init);
2708 
2709 #endif
2710 
2711