1 /*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
37
38 #include "internal.h"
39
40 struct vfree_deferred {
41 struct llist_head list;
42 struct work_struct wq;
43 };
44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
45
46 static void __vunmap(const void *, int);
47
free_work(struct work_struct * w)48 static void free_work(struct work_struct *w)
49 {
50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 struct llist_node *llnode = llist_del_all(&p->list);
52 while (llnode) {
53 void *p = llnode;
54 llnode = llist_next(llnode);
55 __vunmap(p, 1);
56 }
57 }
58
59 /*** Page table manipulation functions ***/
60
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 pte_t *pte;
64
65 pte = pte_offset_kernel(pmd, addr);
66 do {
67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 } while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 pmd_t *pmd;
75 unsigned long next;
76
77 pmd = pmd_offset(pud, addr);
78 do {
79 next = pmd_addr_end(addr, end);
80 if (pmd_clear_huge(pmd))
81 continue;
82 if (pmd_none_or_clear_bad(pmd))
83 continue;
84 vunmap_pte_range(pmd, addr, next);
85 } while (pmd++, addr = next, addr != end);
86 }
87
vunmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end)88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
89 {
90 pud_t *pud;
91 unsigned long next;
92
93 pud = pud_offset(pgd, addr);
94 do {
95 next = pud_addr_end(addr, end);
96 if (pud_clear_huge(pud))
97 continue;
98 if (pud_none_or_clear_bad(pud))
99 continue;
100 vunmap_pmd_range(pud, addr, next);
101 } while (pud++, addr = next, addr != end);
102 }
103
vunmap_page_range(unsigned long addr,unsigned long end)104 static void vunmap_page_range(unsigned long addr, unsigned long end)
105 {
106 pgd_t *pgd;
107 unsigned long next;
108
109 BUG_ON(addr >= end);
110 pgd = pgd_offset_k(addr);
111 do {
112 next = pgd_addr_end(addr, end);
113 if (pgd_none_or_clear_bad(pgd))
114 continue;
115 vunmap_pud_range(pgd, addr, next);
116 } while (pgd++, addr = next, addr != end);
117 }
118
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
120 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
121 {
122 pte_t *pte;
123
124 /*
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
127 */
128
129 pte = pte_alloc_kernel(pmd, addr);
130 if (!pte)
131 return -ENOMEM;
132 do {
133 struct page *page = pages[*nr];
134
135 if (WARN_ON(!pte_none(*pte)))
136 return -EBUSY;
137 if (WARN_ON(!page))
138 return -ENOMEM;
139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
140 (*nr)++;
141 } while (pte++, addr += PAGE_SIZE, addr != end);
142 return 0;
143 }
144
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)145 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
147 {
148 pmd_t *pmd;
149 unsigned long next;
150
151 pmd = pmd_alloc(&init_mm, pud, addr);
152 if (!pmd)
153 return -ENOMEM;
154 do {
155 next = pmd_addr_end(addr, end);
156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
157 return -ENOMEM;
158 } while (pmd++, addr = next, addr != end);
159 return 0;
160 }
161
vmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 pud_t *pud;
166 unsigned long next;
167
168 pud = pud_alloc(&init_mm, pgd, addr);
169 if (!pud)
170 return -ENOMEM;
171 do {
172 next = pud_addr_end(addr, end);
173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
174 return -ENOMEM;
175 } while (pud++, addr = next, addr != end);
176 return 0;
177 }
178
179 /*
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
182 *
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
184 */
vmap_page_range_noflush(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)185 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 pgprot_t prot, struct page **pages)
187 {
188 pgd_t *pgd;
189 unsigned long next;
190 unsigned long addr = start;
191 int err = 0;
192 int nr = 0;
193
194 BUG_ON(addr >= end);
195 pgd = pgd_offset_k(addr);
196 do {
197 next = pgd_addr_end(addr, end);
198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
199 if (err)
200 return err;
201 } while (pgd++, addr = next, addr != end);
202
203 return nr;
204 }
205
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)206 static int vmap_page_range(unsigned long start, unsigned long end,
207 pgprot_t prot, struct page **pages)
208 {
209 int ret;
210
211 ret = vmap_page_range_noflush(start, end, prot, pages);
212 flush_cache_vmap(start, end);
213 return ret;
214 }
215
is_vmalloc_or_module_addr(const void * x)216 int is_vmalloc_or_module_addr(const void *x)
217 {
218 /*
219 * ARM, x86-64 and sparc64 put modules in a special place,
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
222 */
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr = (unsigned long)x;
225 if (addr >= MODULES_VADDR && addr < MODULES_END)
226 return 1;
227 #endif
228 return is_vmalloc_addr(x);
229 }
230
231 /*
232 * Walk a vmap address to the struct page it maps.
233 */
vmalloc_to_page(const void * vmalloc_addr)234 struct page *vmalloc_to_page(const void *vmalloc_addr)
235 {
236 unsigned long addr = (unsigned long) vmalloc_addr;
237 struct page *page = NULL;
238 pgd_t *pgd = pgd_offset_k(addr);
239
240 /*
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
243 */
244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
245
246 if (!pgd_none(*pgd)) {
247 pud_t *pud = pud_offset(pgd, addr);
248 if (!pud_none(*pud)) {
249 pmd_t *pmd = pmd_offset(pud, addr);
250 if (!pmd_none(*pmd)) {
251 pte_t *ptep, pte;
252
253 ptep = pte_offset_map(pmd, addr);
254 pte = *ptep;
255 if (pte_present(pte))
256 page = pte_page(pte);
257 pte_unmap(ptep);
258 }
259 }
260 }
261 return page;
262 }
263 EXPORT_SYMBOL(vmalloc_to_page);
264
265 /*
266 * Map a vmalloc()-space virtual address to the physical page frame number.
267 */
vmalloc_to_pfn(const void * vmalloc_addr)268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
269 {
270 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
271 }
272 EXPORT_SYMBOL(vmalloc_to_pfn);
273
274
275 /*** Global kva allocator ***/
276
277 #define VM_LAZY_FREE 0x01
278 #define VM_LAZY_FREEING 0x02
279 #define VM_VM_AREA 0x04
280
281 static DEFINE_SPINLOCK(vmap_area_lock);
282 /* Export for kexec only */
283 LIST_HEAD(vmap_area_list);
284 static struct rb_root vmap_area_root = RB_ROOT;
285
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node *free_vmap_cache;
288 static unsigned long cached_hole_size;
289 static unsigned long cached_vstart;
290 static unsigned long cached_align;
291
292 static unsigned long vmap_area_pcpu_hole;
293
__find_vmap_area(unsigned long addr)294 static struct vmap_area *__find_vmap_area(unsigned long addr)
295 {
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
304 else if (addr >= va->va_end)
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311 }
312
__insert_vmap_area(struct vmap_area * va)313 static void __insert_vmap_area(struct vmap_area *va)
314 {
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
320 struct vmap_area *tmp_va;
321
322 parent = *p;
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
325 p = &(*p)->rb_left;
326 else if (va->va_end > tmp_va->va_start)
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
335 /* address-sort this list */
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343 }
344
345 static void purge_vmap_area_lazy(void);
346
347 /*
348 * Allocate a region of KVA of the specified size and alignment, within the
349 * vstart and vend.
350 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)351 static struct vmap_area *alloc_vmap_area(unsigned long size,
352 unsigned long align,
353 unsigned long vstart, unsigned long vend,
354 int node, gfp_t gfp_mask)
355 {
356 struct vmap_area *va;
357 struct rb_node *n;
358 unsigned long addr;
359 int purged = 0;
360 struct vmap_area *first;
361
362 BUG_ON(!size);
363 BUG_ON(offset_in_page(size));
364 BUG_ON(!is_power_of_2(align));
365
366 va = kmalloc_node(sizeof(struct vmap_area),
367 gfp_mask & GFP_RECLAIM_MASK, node);
368 if (unlikely(!va))
369 return ERR_PTR(-ENOMEM);
370
371 /*
372 * Only scan the relevant parts containing pointers to other objects
373 * to avoid false negatives.
374 */
375 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
376
377 retry:
378 spin_lock(&vmap_area_lock);
379 /*
380 * Invalidate cache if we have more permissive parameters.
381 * cached_hole_size notes the largest hole noticed _below_
382 * the vmap_area cached in free_vmap_cache: if size fits
383 * into that hole, we want to scan from vstart to reuse
384 * the hole instead of allocating above free_vmap_cache.
385 * Note that __free_vmap_area may update free_vmap_cache
386 * without updating cached_hole_size or cached_align.
387 */
388 if (!free_vmap_cache ||
389 size < cached_hole_size ||
390 vstart < cached_vstart ||
391 align < cached_align) {
392 nocache:
393 cached_hole_size = 0;
394 free_vmap_cache = NULL;
395 }
396 /* record if we encounter less permissive parameters */
397 cached_vstart = vstart;
398 cached_align = align;
399
400 /* find starting point for our search */
401 if (free_vmap_cache) {
402 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
403 addr = ALIGN(first->va_end, align);
404 if (addr < vstart)
405 goto nocache;
406 if (addr + size < addr)
407 goto overflow;
408
409 } else {
410 addr = ALIGN(vstart, align);
411 if (addr + size < addr)
412 goto overflow;
413
414 n = vmap_area_root.rb_node;
415 first = NULL;
416
417 while (n) {
418 struct vmap_area *tmp;
419 tmp = rb_entry(n, struct vmap_area, rb_node);
420 if (tmp->va_end >= addr) {
421 first = tmp;
422 if (tmp->va_start <= addr)
423 break;
424 n = n->rb_left;
425 } else
426 n = n->rb_right;
427 }
428
429 if (!first)
430 goto found;
431 }
432
433 /* from the starting point, walk areas until a suitable hole is found */
434 while (addr + size > first->va_start && addr + size <= vend) {
435 if (addr + cached_hole_size < first->va_start)
436 cached_hole_size = first->va_start - addr;
437 addr = ALIGN(first->va_end, align);
438 if (addr + size < addr)
439 goto overflow;
440
441 if (list_is_last(&first->list, &vmap_area_list))
442 goto found;
443
444 first = list_entry(first->list.next,
445 struct vmap_area, list);
446 }
447
448 found:
449 /*
450 * Check also calculated address against the vstart,
451 * because it can be 0 because of big align request.
452 */
453 if (addr + size > vend || addr < vstart)
454 goto overflow;
455
456 va->va_start = addr;
457 va->va_end = addr + size;
458 va->flags = 0;
459 __insert_vmap_area(va);
460 free_vmap_cache = &va->rb_node;
461 spin_unlock(&vmap_area_lock);
462
463 BUG_ON(va->va_start & (align-1));
464 BUG_ON(va->va_start < vstart);
465 BUG_ON(va->va_end > vend);
466
467 return va;
468
469 overflow:
470 spin_unlock(&vmap_area_lock);
471 if (!purged) {
472 purge_vmap_area_lazy();
473 purged = 1;
474 goto retry;
475 }
476 if (printk_ratelimit())
477 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
478 size);
479 kfree(va);
480 return ERR_PTR(-EBUSY);
481 }
482
__free_vmap_area(struct vmap_area * va)483 static void __free_vmap_area(struct vmap_area *va)
484 {
485 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
486
487 if (free_vmap_cache) {
488 if (va->va_end < cached_vstart) {
489 free_vmap_cache = NULL;
490 } else {
491 struct vmap_area *cache;
492 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
493 if (va->va_start <= cache->va_start) {
494 free_vmap_cache = rb_prev(&va->rb_node);
495 /*
496 * We don't try to update cached_hole_size or
497 * cached_align, but it won't go very wrong.
498 */
499 }
500 }
501 }
502 rb_erase(&va->rb_node, &vmap_area_root);
503 RB_CLEAR_NODE(&va->rb_node);
504 list_del_rcu(&va->list);
505
506 /*
507 * Track the highest possible candidate for pcpu area
508 * allocation. Areas outside of vmalloc area can be returned
509 * here too, consider only end addresses which fall inside
510 * vmalloc area proper.
511 */
512 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
513 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
514
515 kfree_rcu(va, rcu_head);
516 }
517
518 /*
519 * Free a region of KVA allocated by alloc_vmap_area
520 */
free_vmap_area(struct vmap_area * va)521 static void free_vmap_area(struct vmap_area *va)
522 {
523 spin_lock(&vmap_area_lock);
524 __free_vmap_area(va);
525 spin_unlock(&vmap_area_lock);
526 }
527
528 /*
529 * Clear the pagetable entries of a given vmap_area
530 */
unmap_vmap_area(struct vmap_area * va)531 static void unmap_vmap_area(struct vmap_area *va)
532 {
533 vunmap_page_range(va->va_start, va->va_end);
534 }
535
vmap_debug_free_range(unsigned long start,unsigned long end)536 static void vmap_debug_free_range(unsigned long start, unsigned long end)
537 {
538 /*
539 * Unmap page tables and force a TLB flush immediately if
540 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
541 * bugs similarly to those in linear kernel virtual address
542 * space after a page has been freed.
543 *
544 * All the lazy freeing logic is still retained, in order to
545 * minimise intrusiveness of this debugging feature.
546 *
547 * This is going to be *slow* (linear kernel virtual address
548 * debugging doesn't do a broadcast TLB flush so it is a lot
549 * faster).
550 */
551 #ifdef CONFIG_DEBUG_PAGEALLOC
552 vunmap_page_range(start, end);
553 flush_tlb_kernel_range(start, end);
554 #endif
555 }
556
557 /*
558 * lazy_max_pages is the maximum amount of virtual address space we gather up
559 * before attempting to purge with a TLB flush.
560 *
561 * There is a tradeoff here: a larger number will cover more kernel page tables
562 * and take slightly longer to purge, but it will linearly reduce the number of
563 * global TLB flushes that must be performed. It would seem natural to scale
564 * this number up linearly with the number of CPUs (because vmapping activity
565 * could also scale linearly with the number of CPUs), however it is likely
566 * that in practice, workloads might be constrained in other ways that mean
567 * vmap activity will not scale linearly with CPUs. Also, I want to be
568 * conservative and not introduce a big latency on huge systems, so go with
569 * a less aggressive log scale. It will still be an improvement over the old
570 * code, and it will be simple to change the scale factor if we find that it
571 * becomes a problem on bigger systems.
572 */
lazy_max_pages(void)573 static unsigned long lazy_max_pages(void)
574 {
575 unsigned int log;
576
577 log = fls(num_online_cpus());
578
579 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
580 }
581
582 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
583
584 /* for per-CPU blocks */
585 static void purge_fragmented_blocks_allcpus(void);
586
587 /*
588 * called before a call to iounmap() if the caller wants vm_area_struct's
589 * immediately freed.
590 */
set_iounmap_nonlazy(void)591 void set_iounmap_nonlazy(void)
592 {
593 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
594 }
595
596 /*
597 * Purges all lazily-freed vmap areas.
598 *
599 * If sync is 0 then don't purge if there is already a purge in progress.
600 * If force_flush is 1, then flush kernel TLBs between *start and *end even
601 * if we found no lazy vmap areas to unmap (callers can use this to optimise
602 * their own TLB flushing).
603 * Returns with *start = min(*start, lowest purged address)
604 * *end = max(*end, highest purged address)
605 */
__purge_vmap_area_lazy(unsigned long * start,unsigned long * end,int sync,int force_flush)606 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
607 int sync, int force_flush)
608 {
609 static DEFINE_SPINLOCK(purge_lock);
610 LIST_HEAD(valist);
611 struct vmap_area *va;
612 struct vmap_area *n_va;
613 int nr = 0;
614
615 /*
616 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
617 * should not expect such behaviour. This just simplifies locking for
618 * the case that isn't actually used at the moment anyway.
619 */
620 if (!sync && !force_flush) {
621 if (!spin_trylock(&purge_lock))
622 return;
623 } else
624 spin_lock(&purge_lock);
625
626 if (sync)
627 purge_fragmented_blocks_allcpus();
628
629 rcu_read_lock();
630 list_for_each_entry_rcu(va, &vmap_area_list, list) {
631 if (va->flags & VM_LAZY_FREE) {
632 if (va->va_start < *start)
633 *start = va->va_start;
634 if (va->va_end > *end)
635 *end = va->va_end;
636 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
637 list_add_tail(&va->purge_list, &valist);
638 va->flags |= VM_LAZY_FREEING;
639 va->flags &= ~VM_LAZY_FREE;
640 }
641 }
642 rcu_read_unlock();
643
644 if (nr)
645 atomic_sub(nr, &vmap_lazy_nr);
646
647 if (nr || force_flush)
648 flush_tlb_kernel_range(*start, *end);
649
650 if (nr) {
651 spin_lock(&vmap_area_lock);
652 list_for_each_entry_safe(va, n_va, &valist, purge_list)
653 __free_vmap_area(va);
654 spin_unlock(&vmap_area_lock);
655 }
656 spin_unlock(&purge_lock);
657 }
658
659 /*
660 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
661 * is already purging.
662 */
try_purge_vmap_area_lazy(void)663 static void try_purge_vmap_area_lazy(void)
664 {
665 unsigned long start = ULONG_MAX, end = 0;
666
667 __purge_vmap_area_lazy(&start, &end, 0, 0);
668 }
669
670 /*
671 * Kick off a purge of the outstanding lazy areas.
672 */
purge_vmap_area_lazy(void)673 static void purge_vmap_area_lazy(void)
674 {
675 unsigned long start = ULONG_MAX, end = 0;
676
677 __purge_vmap_area_lazy(&start, &end, 1, 0);
678 }
679
680 /*
681 * Free a vmap area, caller ensuring that the area has been unmapped
682 * and flush_cache_vunmap had been called for the correct range
683 * previously.
684 */
free_vmap_area_noflush(struct vmap_area * va)685 static void free_vmap_area_noflush(struct vmap_area *va)
686 {
687 va->flags |= VM_LAZY_FREE;
688 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
689 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
690 try_purge_vmap_area_lazy();
691 }
692
693 /*
694 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
695 * called for the correct range previously.
696 */
free_unmap_vmap_area_noflush(struct vmap_area * va)697 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
698 {
699 unmap_vmap_area(va);
700 free_vmap_area_noflush(va);
701 }
702
703 /*
704 * Free and unmap a vmap area
705 */
free_unmap_vmap_area(struct vmap_area * va)706 static void free_unmap_vmap_area(struct vmap_area *va)
707 {
708 flush_cache_vunmap(va->va_start, va->va_end);
709 free_unmap_vmap_area_noflush(va);
710 }
711
find_vmap_area(unsigned long addr)712 static struct vmap_area *find_vmap_area(unsigned long addr)
713 {
714 struct vmap_area *va;
715
716 spin_lock(&vmap_area_lock);
717 va = __find_vmap_area(addr);
718 spin_unlock(&vmap_area_lock);
719
720 return va;
721 }
722
free_unmap_vmap_area_addr(unsigned long addr)723 static void free_unmap_vmap_area_addr(unsigned long addr)
724 {
725 struct vmap_area *va;
726
727 va = find_vmap_area(addr);
728 BUG_ON(!va);
729 free_unmap_vmap_area(va);
730 }
731
732
733 /*** Per cpu kva allocator ***/
734
735 /*
736 * vmap space is limited especially on 32 bit architectures. Ensure there is
737 * room for at least 16 percpu vmap blocks per CPU.
738 */
739 /*
740 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
741 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
742 * instead (we just need a rough idea)
743 */
744 #if BITS_PER_LONG == 32
745 #define VMALLOC_SPACE (128UL*1024*1024)
746 #else
747 #define VMALLOC_SPACE (128UL*1024*1024*1024)
748 #endif
749
750 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
751 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
752 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
753 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
754 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
755 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
756 #define VMAP_BBMAP_BITS \
757 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
758 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
759 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
760
761 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
762
763 static bool vmap_initialized __read_mostly = false;
764
765 struct vmap_block_queue {
766 spinlock_t lock;
767 struct list_head free;
768 };
769
770 struct vmap_block {
771 spinlock_t lock;
772 struct vmap_area *va;
773 unsigned long free, dirty;
774 unsigned long dirty_min, dirty_max; /*< dirty range */
775 struct list_head free_list;
776 struct rcu_head rcu_head;
777 struct list_head purge;
778 };
779
780 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
781 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
782
783 /*
784 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
785 * in the free path. Could get rid of this if we change the API to return a
786 * "cookie" from alloc, to be passed to free. But no big deal yet.
787 */
788 static DEFINE_SPINLOCK(vmap_block_tree_lock);
789 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
790
791 /*
792 * We should probably have a fallback mechanism to allocate virtual memory
793 * out of partially filled vmap blocks. However vmap block sizing should be
794 * fairly reasonable according to the vmalloc size, so it shouldn't be a
795 * big problem.
796 */
797
addr_to_vb_idx(unsigned long addr)798 static unsigned long addr_to_vb_idx(unsigned long addr)
799 {
800 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
801 addr /= VMAP_BLOCK_SIZE;
802 return addr;
803 }
804
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)805 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
806 {
807 unsigned long addr;
808
809 addr = va_start + (pages_off << PAGE_SHIFT);
810 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
811 return (void *)addr;
812 }
813
814 /**
815 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
816 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
817 * @order: how many 2^order pages should be occupied in newly allocated block
818 * @gfp_mask: flags for the page level allocator
819 *
820 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
821 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)822 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
823 {
824 struct vmap_block_queue *vbq;
825 struct vmap_block *vb;
826 struct vmap_area *va;
827 unsigned long vb_idx;
828 int node, err;
829 void *vaddr;
830
831 node = numa_node_id();
832
833 vb = kmalloc_node(sizeof(struct vmap_block),
834 gfp_mask & GFP_RECLAIM_MASK, node);
835 if (unlikely(!vb))
836 return ERR_PTR(-ENOMEM);
837
838 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
839 VMALLOC_START, VMALLOC_END,
840 node, gfp_mask);
841 if (IS_ERR(va)) {
842 kfree(vb);
843 return ERR_CAST(va);
844 }
845
846 err = radix_tree_preload(gfp_mask);
847 if (unlikely(err)) {
848 kfree(vb);
849 free_vmap_area(va);
850 return ERR_PTR(err);
851 }
852
853 vaddr = vmap_block_vaddr(va->va_start, 0);
854 spin_lock_init(&vb->lock);
855 vb->va = va;
856 /* At least something should be left free */
857 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
858 vb->free = VMAP_BBMAP_BITS - (1UL << order);
859 vb->dirty = 0;
860 vb->dirty_min = VMAP_BBMAP_BITS;
861 vb->dirty_max = 0;
862 INIT_LIST_HEAD(&vb->free_list);
863
864 vb_idx = addr_to_vb_idx(va->va_start);
865 spin_lock(&vmap_block_tree_lock);
866 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
867 spin_unlock(&vmap_block_tree_lock);
868 BUG_ON(err);
869 radix_tree_preload_end();
870
871 vbq = &get_cpu_var(vmap_block_queue);
872 spin_lock(&vbq->lock);
873 list_add_tail_rcu(&vb->free_list, &vbq->free);
874 spin_unlock(&vbq->lock);
875 put_cpu_var(vmap_block_queue);
876
877 return vaddr;
878 }
879
free_vmap_block(struct vmap_block * vb)880 static void free_vmap_block(struct vmap_block *vb)
881 {
882 struct vmap_block *tmp;
883 unsigned long vb_idx;
884
885 vb_idx = addr_to_vb_idx(vb->va->va_start);
886 spin_lock(&vmap_block_tree_lock);
887 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
888 spin_unlock(&vmap_block_tree_lock);
889 BUG_ON(tmp != vb);
890
891 free_vmap_area_noflush(vb->va);
892 kfree_rcu(vb, rcu_head);
893 }
894
purge_fragmented_blocks(int cpu)895 static void purge_fragmented_blocks(int cpu)
896 {
897 LIST_HEAD(purge);
898 struct vmap_block *vb;
899 struct vmap_block *n_vb;
900 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
901
902 rcu_read_lock();
903 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
904
905 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
906 continue;
907
908 spin_lock(&vb->lock);
909 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
910 vb->free = 0; /* prevent further allocs after releasing lock */
911 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
912 vb->dirty_min = 0;
913 vb->dirty_max = VMAP_BBMAP_BITS;
914 spin_lock(&vbq->lock);
915 list_del_rcu(&vb->free_list);
916 spin_unlock(&vbq->lock);
917 spin_unlock(&vb->lock);
918 list_add_tail(&vb->purge, &purge);
919 } else
920 spin_unlock(&vb->lock);
921 }
922 rcu_read_unlock();
923
924 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
925 list_del(&vb->purge);
926 free_vmap_block(vb);
927 }
928 }
929
purge_fragmented_blocks_allcpus(void)930 static void purge_fragmented_blocks_allcpus(void)
931 {
932 int cpu;
933
934 for_each_possible_cpu(cpu)
935 purge_fragmented_blocks(cpu);
936 }
937
vb_alloc(unsigned long size,gfp_t gfp_mask)938 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
939 {
940 struct vmap_block_queue *vbq;
941 struct vmap_block *vb;
942 void *vaddr = NULL;
943 unsigned int order;
944
945 BUG_ON(offset_in_page(size));
946 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
947 if (WARN_ON(size == 0)) {
948 /*
949 * Allocating 0 bytes isn't what caller wants since
950 * get_order(0) returns funny result. Just warn and terminate
951 * early.
952 */
953 return NULL;
954 }
955 order = get_order(size);
956
957 rcu_read_lock();
958 vbq = &get_cpu_var(vmap_block_queue);
959 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
960 unsigned long pages_off;
961
962 spin_lock(&vb->lock);
963 if (vb->free < (1UL << order)) {
964 spin_unlock(&vb->lock);
965 continue;
966 }
967
968 pages_off = VMAP_BBMAP_BITS - vb->free;
969 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
970 vb->free -= 1UL << order;
971 if (vb->free == 0) {
972 spin_lock(&vbq->lock);
973 list_del_rcu(&vb->free_list);
974 spin_unlock(&vbq->lock);
975 }
976
977 spin_unlock(&vb->lock);
978 break;
979 }
980
981 put_cpu_var(vmap_block_queue);
982 rcu_read_unlock();
983
984 /* Allocate new block if nothing was found */
985 if (!vaddr)
986 vaddr = new_vmap_block(order, gfp_mask);
987
988 return vaddr;
989 }
990
vb_free(const void * addr,unsigned long size)991 static void vb_free(const void *addr, unsigned long size)
992 {
993 unsigned long offset;
994 unsigned long vb_idx;
995 unsigned int order;
996 struct vmap_block *vb;
997
998 BUG_ON(offset_in_page(size));
999 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1000
1001 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1002
1003 order = get_order(size);
1004
1005 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1006 offset >>= PAGE_SHIFT;
1007
1008 vb_idx = addr_to_vb_idx((unsigned long)addr);
1009 rcu_read_lock();
1010 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1011 rcu_read_unlock();
1012 BUG_ON(!vb);
1013
1014 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1015
1016 spin_lock(&vb->lock);
1017
1018 /* Expand dirty range */
1019 vb->dirty_min = min(vb->dirty_min, offset);
1020 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1021
1022 vb->dirty += 1UL << order;
1023 if (vb->dirty == VMAP_BBMAP_BITS) {
1024 BUG_ON(vb->free);
1025 spin_unlock(&vb->lock);
1026 free_vmap_block(vb);
1027 } else
1028 spin_unlock(&vb->lock);
1029 }
1030
1031 /**
1032 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1033 *
1034 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1035 * to amortize TLB flushing overheads. What this means is that any page you
1036 * have now, may, in a former life, have been mapped into kernel virtual
1037 * address by the vmap layer and so there might be some CPUs with TLB entries
1038 * still referencing that page (additional to the regular 1:1 kernel mapping).
1039 *
1040 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1041 * be sure that none of the pages we have control over will have any aliases
1042 * from the vmap layer.
1043 */
vm_unmap_aliases(void)1044 void vm_unmap_aliases(void)
1045 {
1046 unsigned long start = ULONG_MAX, end = 0;
1047 int cpu;
1048 int flush = 0;
1049
1050 if (unlikely(!vmap_initialized))
1051 return;
1052
1053 for_each_possible_cpu(cpu) {
1054 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1055 struct vmap_block *vb;
1056
1057 rcu_read_lock();
1058 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1059 spin_lock(&vb->lock);
1060 if (vb->dirty) {
1061 unsigned long va_start = vb->va->va_start;
1062 unsigned long s, e;
1063
1064 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1065 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1066
1067 start = min(s, start);
1068 end = max(e, end);
1069
1070 flush = 1;
1071 }
1072 spin_unlock(&vb->lock);
1073 }
1074 rcu_read_unlock();
1075 }
1076
1077 __purge_vmap_area_lazy(&start, &end, 1, flush);
1078 }
1079 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1080
1081 /**
1082 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1083 * @mem: the pointer returned by vm_map_ram
1084 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1085 */
vm_unmap_ram(const void * mem,unsigned int count)1086 void vm_unmap_ram(const void *mem, unsigned int count)
1087 {
1088 unsigned long size = count << PAGE_SHIFT;
1089 unsigned long addr = (unsigned long)mem;
1090
1091 BUG_ON(!addr);
1092 BUG_ON(addr < VMALLOC_START);
1093 BUG_ON(addr > VMALLOC_END);
1094 BUG_ON(addr & (PAGE_SIZE-1));
1095
1096 debug_check_no_locks_freed(mem, size);
1097 vmap_debug_free_range(addr, addr+size);
1098
1099 if (likely(count <= VMAP_MAX_ALLOC))
1100 vb_free(mem, size);
1101 else
1102 free_unmap_vmap_area_addr(addr);
1103 }
1104 EXPORT_SYMBOL(vm_unmap_ram);
1105
1106 /**
1107 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1108 * @pages: an array of pointers to the pages to be mapped
1109 * @count: number of pages
1110 * @node: prefer to allocate data structures on this node
1111 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1112 *
1113 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1114 * faster than vmap so it's good. But if you mix long-life and short-life
1115 * objects with vm_map_ram(), it could consume lots of address space through
1116 * fragmentation (especially on a 32bit machine). You could see failures in
1117 * the end. Please use this function for short-lived objects.
1118 *
1119 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1120 */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)1121 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1122 {
1123 unsigned long size = count << PAGE_SHIFT;
1124 unsigned long addr;
1125 void *mem;
1126
1127 if (likely(count <= VMAP_MAX_ALLOC)) {
1128 mem = vb_alloc(size, GFP_KERNEL);
1129 if (IS_ERR(mem))
1130 return NULL;
1131 addr = (unsigned long)mem;
1132 } else {
1133 struct vmap_area *va;
1134 va = alloc_vmap_area(size, PAGE_SIZE,
1135 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1136 if (IS_ERR(va))
1137 return NULL;
1138
1139 addr = va->va_start;
1140 mem = (void *)addr;
1141 }
1142 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1143 vm_unmap_ram(mem, count);
1144 return NULL;
1145 }
1146 return mem;
1147 }
1148 EXPORT_SYMBOL(vm_map_ram);
1149
1150 static struct vm_struct *vmlist __initdata;
1151 /**
1152 * vm_area_add_early - add vmap area early during boot
1153 * @vm: vm_struct to add
1154 *
1155 * This function is used to add fixed kernel vm area to vmlist before
1156 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1157 * should contain proper values and the other fields should be zero.
1158 *
1159 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1160 */
vm_area_add_early(struct vm_struct * vm)1161 void __init vm_area_add_early(struct vm_struct *vm)
1162 {
1163 struct vm_struct *tmp, **p;
1164
1165 BUG_ON(vmap_initialized);
1166 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1167 if (tmp->addr >= vm->addr) {
1168 BUG_ON(tmp->addr < vm->addr + vm->size);
1169 break;
1170 } else
1171 BUG_ON(tmp->addr + tmp->size > vm->addr);
1172 }
1173 vm->next = *p;
1174 *p = vm;
1175 }
1176
1177 /**
1178 * vm_area_register_early - register vmap area early during boot
1179 * @vm: vm_struct to register
1180 * @align: requested alignment
1181 *
1182 * This function is used to register kernel vm area before
1183 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1184 * proper values on entry and other fields should be zero. On return,
1185 * vm->addr contains the allocated address.
1186 *
1187 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1188 */
vm_area_register_early(struct vm_struct * vm,size_t align)1189 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1190 {
1191 static size_t vm_init_off __initdata;
1192 unsigned long addr;
1193
1194 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1195 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1196
1197 vm->addr = (void *)addr;
1198
1199 vm_area_add_early(vm);
1200 }
1201
vmalloc_init(void)1202 void __init vmalloc_init(void)
1203 {
1204 struct vmap_area *va;
1205 struct vm_struct *tmp;
1206 int i;
1207
1208 for_each_possible_cpu(i) {
1209 struct vmap_block_queue *vbq;
1210 struct vfree_deferred *p;
1211
1212 vbq = &per_cpu(vmap_block_queue, i);
1213 spin_lock_init(&vbq->lock);
1214 INIT_LIST_HEAD(&vbq->free);
1215 p = &per_cpu(vfree_deferred, i);
1216 init_llist_head(&p->list);
1217 INIT_WORK(&p->wq, free_work);
1218 }
1219
1220 /* Import existing vmlist entries. */
1221 for (tmp = vmlist; tmp; tmp = tmp->next) {
1222 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1223 va->flags = VM_VM_AREA;
1224 va->va_start = (unsigned long)tmp->addr;
1225 va->va_end = va->va_start + tmp->size;
1226 va->vm = tmp;
1227 __insert_vmap_area(va);
1228 }
1229
1230 vmap_area_pcpu_hole = VMALLOC_END;
1231
1232 vmap_initialized = true;
1233 }
1234
1235 /**
1236 * map_kernel_range_noflush - map kernel VM area with the specified pages
1237 * @addr: start of the VM area to map
1238 * @size: size of the VM area to map
1239 * @prot: page protection flags to use
1240 * @pages: pages to map
1241 *
1242 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1243 * specify should have been allocated using get_vm_area() and its
1244 * friends.
1245 *
1246 * NOTE:
1247 * This function does NOT do any cache flushing. The caller is
1248 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1249 * before calling this function.
1250 *
1251 * RETURNS:
1252 * The number of pages mapped on success, -errno on failure.
1253 */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)1254 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1255 pgprot_t prot, struct page **pages)
1256 {
1257 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1258 }
1259
1260 /**
1261 * unmap_kernel_range_noflush - unmap kernel VM area
1262 * @addr: start of the VM area to unmap
1263 * @size: size of the VM area to unmap
1264 *
1265 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1266 * specify should have been allocated using get_vm_area() and its
1267 * friends.
1268 *
1269 * NOTE:
1270 * This function does NOT do any cache flushing. The caller is
1271 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1272 * before calling this function and flush_tlb_kernel_range() after.
1273 */
unmap_kernel_range_noflush(unsigned long addr,unsigned long size)1274 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1275 {
1276 vunmap_page_range(addr, addr + size);
1277 }
1278 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1279
1280 /**
1281 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1282 * @addr: start of the VM area to unmap
1283 * @size: size of the VM area to unmap
1284 *
1285 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1286 * the unmapping and tlb after.
1287 */
unmap_kernel_range(unsigned long addr,unsigned long size)1288 void unmap_kernel_range(unsigned long addr, unsigned long size)
1289 {
1290 unsigned long end = addr + size;
1291
1292 flush_cache_vunmap(addr, end);
1293 vunmap_page_range(addr, end);
1294 flush_tlb_kernel_range(addr, end);
1295 }
1296 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1297
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page ** pages)1298 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1299 {
1300 unsigned long addr = (unsigned long)area->addr;
1301 unsigned long end = addr + get_vm_area_size(area);
1302 int err;
1303
1304 err = vmap_page_range(addr, end, prot, pages);
1305
1306 return err > 0 ? 0 : err;
1307 }
1308 EXPORT_SYMBOL_GPL(map_vm_area);
1309
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1310 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1311 unsigned long flags, const void *caller)
1312 {
1313 spin_lock(&vmap_area_lock);
1314 vm->flags = flags;
1315 vm->addr = (void *)va->va_start;
1316 vm->size = va->va_end - va->va_start;
1317 vm->caller = caller;
1318 va->vm = vm;
1319 va->flags |= VM_VM_AREA;
1320 spin_unlock(&vmap_area_lock);
1321 }
1322
clear_vm_uninitialized_flag(struct vm_struct * vm)1323 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1324 {
1325 /*
1326 * Before removing VM_UNINITIALIZED,
1327 * we should make sure that vm has proper values.
1328 * Pair with smp_rmb() in show_numa_info().
1329 */
1330 smp_wmb();
1331 vm->flags &= ~VM_UNINITIALIZED;
1332 }
1333
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)1334 static struct vm_struct *__get_vm_area_node(unsigned long size,
1335 unsigned long align, unsigned long flags, unsigned long start,
1336 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1337 {
1338 struct vmap_area *va;
1339 struct vm_struct *area;
1340
1341 BUG_ON(in_interrupt());
1342 if (flags & VM_IOREMAP)
1343 align = 1ul << clamp_t(int, fls_long(size),
1344 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1345
1346 size = PAGE_ALIGN(size);
1347 if (unlikely(!size))
1348 return NULL;
1349
1350 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1351 if (unlikely(!area))
1352 return NULL;
1353
1354 if (!(flags & VM_NO_GUARD))
1355 size += PAGE_SIZE;
1356
1357 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1358 if (IS_ERR(va)) {
1359 kfree(area);
1360 return NULL;
1361 }
1362
1363 setup_vmalloc_vm(area, va, flags, caller);
1364
1365 return area;
1366 }
1367
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)1368 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1369 unsigned long start, unsigned long end)
1370 {
1371 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1372 GFP_KERNEL, __builtin_return_address(0));
1373 }
1374 EXPORT_SYMBOL_GPL(__get_vm_area);
1375
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)1376 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1377 unsigned long start, unsigned long end,
1378 const void *caller)
1379 {
1380 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1381 GFP_KERNEL, caller);
1382 }
1383
1384 /**
1385 * get_vm_area - reserve a contiguous kernel virtual area
1386 * @size: size of the area
1387 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1388 *
1389 * Search an area of @size in the kernel virtual mapping area,
1390 * and reserved it for out purposes. Returns the area descriptor
1391 * on success or %NULL on failure.
1392 */
get_vm_area(unsigned long size,unsigned long flags)1393 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1394 {
1395 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1396 NUMA_NO_NODE, GFP_KERNEL,
1397 __builtin_return_address(0));
1398 }
1399
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)1400 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1401 const void *caller)
1402 {
1403 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1404 NUMA_NO_NODE, GFP_KERNEL, caller);
1405 }
1406
1407 /**
1408 * find_vm_area - find a continuous kernel virtual area
1409 * @addr: base address
1410 *
1411 * Search for the kernel VM area starting at @addr, and return it.
1412 * It is up to the caller to do all required locking to keep the returned
1413 * pointer valid.
1414 */
find_vm_area(const void * addr)1415 struct vm_struct *find_vm_area(const void *addr)
1416 {
1417 struct vmap_area *va;
1418
1419 va = find_vmap_area((unsigned long)addr);
1420 if (va && va->flags & VM_VM_AREA)
1421 return va->vm;
1422
1423 return NULL;
1424 }
1425
1426 /**
1427 * remove_vm_area - find and remove a continuous kernel virtual area
1428 * @addr: base address
1429 *
1430 * Search for the kernel VM area starting at @addr, and remove it.
1431 * This function returns the found VM area, but using it is NOT safe
1432 * on SMP machines, except for its size or flags.
1433 */
remove_vm_area(const void * addr)1434 struct vm_struct *remove_vm_area(const void *addr)
1435 {
1436 struct vmap_area *va;
1437
1438 va = find_vmap_area((unsigned long)addr);
1439 if (va && va->flags & VM_VM_AREA) {
1440 struct vm_struct *vm = va->vm;
1441
1442 spin_lock(&vmap_area_lock);
1443 va->vm = NULL;
1444 va->flags &= ~VM_VM_AREA;
1445 spin_unlock(&vmap_area_lock);
1446
1447 vmap_debug_free_range(va->va_start, va->va_end);
1448 kasan_free_shadow(vm);
1449 free_unmap_vmap_area(va);
1450
1451 return vm;
1452 }
1453 return NULL;
1454 }
1455
__vunmap(const void * addr,int deallocate_pages)1456 static void __vunmap(const void *addr, int deallocate_pages)
1457 {
1458 struct vm_struct *area;
1459
1460 if (!addr)
1461 return;
1462
1463 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1464 addr))
1465 return;
1466
1467 area = find_vm_area(addr);
1468 if (unlikely(!area)) {
1469 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1470 addr);
1471 return;
1472 }
1473
1474 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1475 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1476
1477 remove_vm_area(addr);
1478 if (deallocate_pages) {
1479 int i;
1480
1481 for (i = 0; i < area->nr_pages; i++) {
1482 struct page *page = area->pages[i];
1483
1484 BUG_ON(!page);
1485 __free_page(page);
1486 }
1487
1488 if (area->flags & VM_VPAGES)
1489 vfree(area->pages);
1490 else
1491 kfree(area->pages);
1492 }
1493
1494 kfree(area);
1495 return;
1496 }
1497
1498 /**
1499 * vfree - release memory allocated by vmalloc()
1500 * @addr: memory base address
1501 *
1502 * Free the virtually continuous memory area starting at @addr, as
1503 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1504 * NULL, no operation is performed.
1505 *
1506 * Must not be called in NMI context (strictly speaking, only if we don't
1507 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1508 * conventions for vfree() arch-depenedent would be a really bad idea)
1509 *
1510 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1511 */
vfree(const void * addr)1512 void vfree(const void *addr)
1513 {
1514 BUG_ON(in_nmi());
1515
1516 kmemleak_free(addr);
1517
1518 if (!addr)
1519 return;
1520 if (unlikely(in_interrupt())) {
1521 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1522 if (llist_add((struct llist_node *)addr, &p->list))
1523 schedule_work(&p->wq);
1524 } else
1525 __vunmap(addr, 1);
1526 }
1527 EXPORT_SYMBOL(vfree);
1528
1529 /**
1530 * vunmap - release virtual mapping obtained by vmap()
1531 * @addr: memory base address
1532 *
1533 * Free the virtually contiguous memory area starting at @addr,
1534 * which was created from the page array passed to vmap().
1535 *
1536 * Must not be called in interrupt context.
1537 */
vunmap(const void * addr)1538 void vunmap(const void *addr)
1539 {
1540 BUG_ON(in_interrupt());
1541 might_sleep();
1542 if (addr)
1543 __vunmap(addr, 0);
1544 }
1545 EXPORT_SYMBOL(vunmap);
1546
1547 /**
1548 * vmap - map an array of pages into virtually contiguous space
1549 * @pages: array of page pointers
1550 * @count: number of pages to map
1551 * @flags: vm_area->flags
1552 * @prot: page protection for the mapping
1553 *
1554 * Maps @count pages from @pages into contiguous kernel virtual
1555 * space.
1556 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)1557 void *vmap(struct page **pages, unsigned int count,
1558 unsigned long flags, pgprot_t prot)
1559 {
1560 struct vm_struct *area;
1561
1562 might_sleep();
1563
1564 if (count > totalram_pages)
1565 return NULL;
1566
1567 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1568 __builtin_return_address(0));
1569 if (!area)
1570 return NULL;
1571
1572 if (map_vm_area(area, prot, pages)) {
1573 vunmap(area->addr);
1574 return NULL;
1575 }
1576
1577 return area->addr;
1578 }
1579 EXPORT_SYMBOL(vmap);
1580
1581 static void *__vmalloc_node(unsigned long size, unsigned long align,
1582 gfp_t gfp_mask, pgprot_t prot,
1583 int node, const void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)1584 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1585 pgprot_t prot, int node)
1586 {
1587 const int order = 0;
1588 struct page **pages;
1589 unsigned int nr_pages, array_size, i;
1590 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1591 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1592
1593 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1594 array_size = (nr_pages * sizeof(struct page *));
1595
1596 area->nr_pages = nr_pages;
1597 /* Please note that the recursion is strictly bounded. */
1598 if (array_size > PAGE_SIZE) {
1599 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1600 PAGE_KERNEL, node, area->caller);
1601 area->flags |= VM_VPAGES;
1602 } else {
1603 pages = kmalloc_node(array_size, nested_gfp, node);
1604 }
1605 area->pages = pages;
1606 if (!area->pages) {
1607 remove_vm_area(area->addr);
1608 kfree(area);
1609 return NULL;
1610 }
1611
1612 for (i = 0; i < area->nr_pages; i++) {
1613 struct page *page;
1614
1615 if (node == NUMA_NO_NODE)
1616 page = alloc_page(alloc_mask);
1617 else
1618 page = alloc_pages_node(node, alloc_mask, order);
1619
1620 if (unlikely(!page)) {
1621 /* Successfully allocated i pages, free them in __vunmap() */
1622 area->nr_pages = i;
1623 goto fail;
1624 }
1625 area->pages[i] = page;
1626 if (gfpflags_allow_blocking(gfp_mask))
1627 cond_resched();
1628 }
1629
1630 if (map_vm_area(area, prot, pages))
1631 goto fail;
1632 return area->addr;
1633
1634 fail:
1635 warn_alloc_failed(gfp_mask, order,
1636 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1637 (area->nr_pages*PAGE_SIZE), area->size);
1638 vfree(area->addr);
1639 return NULL;
1640 }
1641
1642 /**
1643 * __vmalloc_node_range - allocate virtually contiguous memory
1644 * @size: allocation size
1645 * @align: desired alignment
1646 * @start: vm area range start
1647 * @end: vm area range end
1648 * @gfp_mask: flags for the page level allocator
1649 * @prot: protection mask for the allocated pages
1650 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1651 * @node: node to use for allocation or NUMA_NO_NODE
1652 * @caller: caller's return address
1653 *
1654 * Allocate enough pages to cover @size from the page level
1655 * allocator with @gfp_mask flags. Map them into contiguous
1656 * kernel virtual space, using a pagetable protection of @prot.
1657 */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)1658 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1659 unsigned long start, unsigned long end, gfp_t gfp_mask,
1660 pgprot_t prot, unsigned long vm_flags, int node,
1661 const void *caller)
1662 {
1663 struct vm_struct *area;
1664 void *addr;
1665 unsigned long real_size = size;
1666
1667 size = PAGE_ALIGN(size);
1668 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1669 goto fail;
1670
1671 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1672 vm_flags, start, end, node, gfp_mask, caller);
1673 if (!area)
1674 goto fail;
1675
1676 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1677 if (!addr)
1678 return NULL;
1679
1680 /*
1681 * First make sure the mappings are removed from all page-tables
1682 * before they are freed.
1683 */
1684 vmalloc_sync_unmappings();
1685
1686 /*
1687 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1688 * flag. It means that vm_struct is not fully initialized.
1689 * Now, it is fully initialized, so remove this flag here.
1690 */
1691 clear_vm_uninitialized_flag(area);
1692
1693 /*
1694 * A ref_count = 2 is needed because vm_struct allocated in
1695 * __get_vm_area_node() contains a reference to the virtual address of
1696 * the vmalloc'ed block.
1697 */
1698 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1699
1700 return addr;
1701
1702 fail:
1703 warn_alloc_failed(gfp_mask, 0,
1704 "vmalloc: allocation failure: %lu bytes\n",
1705 real_size);
1706 return NULL;
1707 }
1708
1709 /**
1710 * __vmalloc_node - allocate virtually contiguous memory
1711 * @size: allocation size
1712 * @align: desired alignment
1713 * @gfp_mask: flags for the page level allocator
1714 * @prot: protection mask for the allocated pages
1715 * @node: node to use for allocation or NUMA_NO_NODE
1716 * @caller: caller's return address
1717 *
1718 * Allocate enough pages to cover @size from the page level
1719 * allocator with @gfp_mask flags. Map them into contiguous
1720 * kernel virtual space, using a pagetable protection of @prot.
1721 */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,pgprot_t prot,int node,const void * caller)1722 static void *__vmalloc_node(unsigned long size, unsigned long align,
1723 gfp_t gfp_mask, pgprot_t prot,
1724 int node, const void *caller)
1725 {
1726 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1727 gfp_mask, prot, 0, node, caller);
1728 }
1729
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)1730 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1731 {
1732 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1733 __builtin_return_address(0));
1734 }
1735 EXPORT_SYMBOL(__vmalloc);
1736
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)1737 static inline void *__vmalloc_node_flags(unsigned long size,
1738 int node, gfp_t flags)
1739 {
1740 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1741 node, __builtin_return_address(0));
1742 }
1743
1744 /**
1745 * vmalloc - allocate virtually contiguous memory
1746 * @size: allocation size
1747 * Allocate enough pages to cover @size from the page level
1748 * allocator and map them into contiguous kernel virtual space.
1749 *
1750 * For tight control over page level allocator and protection flags
1751 * use __vmalloc() instead.
1752 */
vmalloc(unsigned long size)1753 void *vmalloc(unsigned long size)
1754 {
1755 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1756 GFP_KERNEL | __GFP_HIGHMEM);
1757 }
1758 EXPORT_SYMBOL(vmalloc);
1759
1760 /**
1761 * vzalloc - allocate virtually contiguous memory with zero fill
1762 * @size: allocation size
1763 * Allocate enough pages to cover @size from the page level
1764 * allocator and map them into contiguous kernel virtual space.
1765 * The memory allocated is set to zero.
1766 *
1767 * For tight control over page level allocator and protection flags
1768 * use __vmalloc() instead.
1769 */
vzalloc(unsigned long size)1770 void *vzalloc(unsigned long size)
1771 {
1772 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1773 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1774 }
1775 EXPORT_SYMBOL(vzalloc);
1776
1777 /**
1778 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1779 * @size: allocation size
1780 *
1781 * The resulting memory area is zeroed so it can be mapped to userspace
1782 * without leaking data.
1783 */
vmalloc_user(unsigned long size)1784 void *vmalloc_user(unsigned long size)
1785 {
1786 struct vm_struct *area;
1787 void *ret;
1788
1789 ret = __vmalloc_node(size, SHMLBA,
1790 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1791 PAGE_KERNEL, NUMA_NO_NODE,
1792 __builtin_return_address(0));
1793 if (ret) {
1794 area = find_vm_area(ret);
1795 area->flags |= VM_USERMAP;
1796 }
1797 return ret;
1798 }
1799 EXPORT_SYMBOL(vmalloc_user);
1800
1801 /**
1802 * vmalloc_node - allocate memory on a specific node
1803 * @size: allocation size
1804 * @node: numa node
1805 *
1806 * Allocate enough pages to cover @size from the page level
1807 * allocator and map them into contiguous kernel virtual space.
1808 *
1809 * For tight control over page level allocator and protection flags
1810 * use __vmalloc() instead.
1811 */
vmalloc_node(unsigned long size,int node)1812 void *vmalloc_node(unsigned long size, int node)
1813 {
1814 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1815 node, __builtin_return_address(0));
1816 }
1817 EXPORT_SYMBOL(vmalloc_node);
1818
1819 /**
1820 * vzalloc_node - allocate memory on a specific node with zero fill
1821 * @size: allocation size
1822 * @node: numa node
1823 *
1824 * Allocate enough pages to cover @size from the page level
1825 * allocator and map them into contiguous kernel virtual space.
1826 * The memory allocated is set to zero.
1827 *
1828 * For tight control over page level allocator and protection flags
1829 * use __vmalloc_node() instead.
1830 */
vzalloc_node(unsigned long size,int node)1831 void *vzalloc_node(unsigned long size, int node)
1832 {
1833 return __vmalloc_node_flags(size, node,
1834 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1835 }
1836 EXPORT_SYMBOL(vzalloc_node);
1837
1838 #ifndef PAGE_KERNEL_EXEC
1839 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1840 #endif
1841
1842 /**
1843 * vmalloc_exec - allocate virtually contiguous, executable memory
1844 * @size: allocation size
1845 *
1846 * Kernel-internal function to allocate enough pages to cover @size
1847 * the page level allocator and map them into contiguous and
1848 * executable kernel virtual space.
1849 *
1850 * For tight control over page level allocator and protection flags
1851 * use __vmalloc() instead.
1852 */
1853
vmalloc_exec(unsigned long size)1854 void *vmalloc_exec(unsigned long size)
1855 {
1856 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1857 NUMA_NO_NODE, __builtin_return_address(0));
1858 }
1859
1860 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1861 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1862 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1863 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1864 #else
1865 #define GFP_VMALLOC32 GFP_KERNEL
1866 #endif
1867
1868 /**
1869 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1870 * @size: allocation size
1871 *
1872 * Allocate enough 32bit PA addressable pages to cover @size from the
1873 * page level allocator and map them into contiguous kernel virtual space.
1874 */
vmalloc_32(unsigned long size)1875 void *vmalloc_32(unsigned long size)
1876 {
1877 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1878 NUMA_NO_NODE, __builtin_return_address(0));
1879 }
1880 EXPORT_SYMBOL(vmalloc_32);
1881
1882 /**
1883 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1884 * @size: allocation size
1885 *
1886 * The resulting memory area is 32bit addressable and zeroed so it can be
1887 * mapped to userspace without leaking data.
1888 */
vmalloc_32_user(unsigned long size)1889 void *vmalloc_32_user(unsigned long size)
1890 {
1891 struct vm_struct *area;
1892 void *ret;
1893
1894 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1895 NUMA_NO_NODE, __builtin_return_address(0));
1896 if (ret) {
1897 area = find_vm_area(ret);
1898 area->flags |= VM_USERMAP;
1899 }
1900 return ret;
1901 }
1902 EXPORT_SYMBOL(vmalloc_32_user);
1903
1904 /*
1905 * small helper routine , copy contents to buf from addr.
1906 * If the page is not present, fill zero.
1907 */
1908
aligned_vread(char * buf,char * addr,unsigned long count)1909 static int aligned_vread(char *buf, char *addr, unsigned long count)
1910 {
1911 struct page *p;
1912 int copied = 0;
1913
1914 while (count) {
1915 unsigned long offset, length;
1916
1917 offset = offset_in_page(addr);
1918 length = PAGE_SIZE - offset;
1919 if (length > count)
1920 length = count;
1921 p = vmalloc_to_page(addr);
1922 /*
1923 * To do safe access to this _mapped_ area, we need
1924 * lock. But adding lock here means that we need to add
1925 * overhead of vmalloc()/vfree() calles for this _debug_
1926 * interface, rarely used. Instead of that, we'll use
1927 * kmap() and get small overhead in this access function.
1928 */
1929 if (p) {
1930 /*
1931 * we can expect USER0 is not used (see vread/vwrite's
1932 * function description)
1933 */
1934 void *map = kmap_atomic(p);
1935 memcpy(buf, map + offset, length);
1936 kunmap_atomic(map);
1937 } else
1938 memset(buf, 0, length);
1939
1940 addr += length;
1941 buf += length;
1942 copied += length;
1943 count -= length;
1944 }
1945 return copied;
1946 }
1947
aligned_vwrite(char * buf,char * addr,unsigned long count)1948 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1949 {
1950 struct page *p;
1951 int copied = 0;
1952
1953 while (count) {
1954 unsigned long offset, length;
1955
1956 offset = offset_in_page(addr);
1957 length = PAGE_SIZE - offset;
1958 if (length > count)
1959 length = count;
1960 p = vmalloc_to_page(addr);
1961 /*
1962 * To do safe access to this _mapped_ area, we need
1963 * lock. But adding lock here means that we need to add
1964 * overhead of vmalloc()/vfree() calles for this _debug_
1965 * interface, rarely used. Instead of that, we'll use
1966 * kmap() and get small overhead in this access function.
1967 */
1968 if (p) {
1969 /*
1970 * we can expect USER0 is not used (see vread/vwrite's
1971 * function description)
1972 */
1973 void *map = kmap_atomic(p);
1974 memcpy(map + offset, buf, length);
1975 kunmap_atomic(map);
1976 }
1977 addr += length;
1978 buf += length;
1979 copied += length;
1980 count -= length;
1981 }
1982 return copied;
1983 }
1984
1985 /**
1986 * vread() - read vmalloc area in a safe way.
1987 * @buf: buffer for reading data
1988 * @addr: vm address.
1989 * @count: number of bytes to be read.
1990 *
1991 * Returns # of bytes which addr and buf should be increased.
1992 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1993 * includes any intersect with alive vmalloc area.
1994 *
1995 * This function checks that addr is a valid vmalloc'ed area, and
1996 * copy data from that area to a given buffer. If the given memory range
1997 * of [addr...addr+count) includes some valid address, data is copied to
1998 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1999 * IOREMAP area is treated as memory hole and no copy is done.
2000 *
2001 * If [addr...addr+count) doesn't includes any intersects with alive
2002 * vm_struct area, returns 0. @buf should be kernel's buffer.
2003 *
2004 * Note: In usual ops, vread() is never necessary because the caller
2005 * should know vmalloc() area is valid and can use memcpy().
2006 * This is for routines which have to access vmalloc area without
2007 * any informaion, as /dev/kmem.
2008 *
2009 */
2010
vread(char * buf,char * addr,unsigned long count)2011 long vread(char *buf, char *addr, unsigned long count)
2012 {
2013 struct vmap_area *va;
2014 struct vm_struct *vm;
2015 char *vaddr, *buf_start = buf;
2016 unsigned long buflen = count;
2017 unsigned long n;
2018
2019 /* Don't allow overflow */
2020 if ((unsigned long) addr + count < count)
2021 count = -(unsigned long) addr;
2022
2023 spin_lock(&vmap_area_lock);
2024 list_for_each_entry(va, &vmap_area_list, list) {
2025 if (!count)
2026 break;
2027
2028 if (!(va->flags & VM_VM_AREA))
2029 continue;
2030
2031 vm = va->vm;
2032 vaddr = (char *) vm->addr;
2033 if (addr >= vaddr + get_vm_area_size(vm))
2034 continue;
2035 while (addr < vaddr) {
2036 if (count == 0)
2037 goto finished;
2038 *buf = '\0';
2039 buf++;
2040 addr++;
2041 count--;
2042 }
2043 n = vaddr + get_vm_area_size(vm) - addr;
2044 if (n > count)
2045 n = count;
2046 if (!(vm->flags & VM_IOREMAP))
2047 aligned_vread(buf, addr, n);
2048 else /* IOREMAP area is treated as memory hole */
2049 memset(buf, 0, n);
2050 buf += n;
2051 addr += n;
2052 count -= n;
2053 }
2054 finished:
2055 spin_unlock(&vmap_area_lock);
2056
2057 if (buf == buf_start)
2058 return 0;
2059 /* zero-fill memory holes */
2060 if (buf != buf_start + buflen)
2061 memset(buf, 0, buflen - (buf - buf_start));
2062
2063 return buflen;
2064 }
2065
2066 /**
2067 * vwrite() - write vmalloc area in a safe way.
2068 * @buf: buffer for source data
2069 * @addr: vm address.
2070 * @count: number of bytes to be read.
2071 *
2072 * Returns # of bytes which addr and buf should be incresed.
2073 * (same number to @count).
2074 * If [addr...addr+count) doesn't includes any intersect with valid
2075 * vmalloc area, returns 0.
2076 *
2077 * This function checks that addr is a valid vmalloc'ed area, and
2078 * copy data from a buffer to the given addr. If specified range of
2079 * [addr...addr+count) includes some valid address, data is copied from
2080 * proper area of @buf. If there are memory holes, no copy to hole.
2081 * IOREMAP area is treated as memory hole and no copy is done.
2082 *
2083 * If [addr...addr+count) doesn't includes any intersects with alive
2084 * vm_struct area, returns 0. @buf should be kernel's buffer.
2085 *
2086 * Note: In usual ops, vwrite() is never necessary because the caller
2087 * should know vmalloc() area is valid and can use memcpy().
2088 * This is for routines which have to access vmalloc area without
2089 * any informaion, as /dev/kmem.
2090 */
2091
vwrite(char * buf,char * addr,unsigned long count)2092 long vwrite(char *buf, char *addr, unsigned long count)
2093 {
2094 struct vmap_area *va;
2095 struct vm_struct *vm;
2096 char *vaddr;
2097 unsigned long n, buflen;
2098 int copied = 0;
2099
2100 /* Don't allow overflow */
2101 if ((unsigned long) addr + count < count)
2102 count = -(unsigned long) addr;
2103 buflen = count;
2104
2105 spin_lock(&vmap_area_lock);
2106 list_for_each_entry(va, &vmap_area_list, list) {
2107 if (!count)
2108 break;
2109
2110 if (!(va->flags & VM_VM_AREA))
2111 continue;
2112
2113 vm = va->vm;
2114 vaddr = (char *) vm->addr;
2115 if (addr >= vaddr + get_vm_area_size(vm))
2116 continue;
2117 while (addr < vaddr) {
2118 if (count == 0)
2119 goto finished;
2120 buf++;
2121 addr++;
2122 count--;
2123 }
2124 n = vaddr + get_vm_area_size(vm) - addr;
2125 if (n > count)
2126 n = count;
2127 if (!(vm->flags & VM_IOREMAP)) {
2128 aligned_vwrite(buf, addr, n);
2129 copied++;
2130 }
2131 buf += n;
2132 addr += n;
2133 count -= n;
2134 }
2135 finished:
2136 spin_unlock(&vmap_area_lock);
2137 if (!copied)
2138 return 0;
2139 return buflen;
2140 }
2141
2142 /**
2143 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2144 * @vma: vma to cover
2145 * @uaddr: target user address to start at
2146 * @kaddr: virtual address of vmalloc kernel memory
2147 * @size: size of map area
2148 *
2149 * Returns: 0 for success, -Exxx on failure
2150 *
2151 * This function checks that @kaddr is a valid vmalloc'ed area,
2152 * and that it is big enough to cover the range starting at
2153 * @uaddr in @vma. Will return failure if that criteria isn't
2154 * met.
2155 *
2156 * Similar to remap_pfn_range() (see mm/memory.c)
2157 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long size)2158 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2159 void *kaddr, unsigned long size)
2160 {
2161 struct vm_struct *area;
2162
2163 size = PAGE_ALIGN(size);
2164
2165 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2166 return -EINVAL;
2167
2168 area = find_vm_area(kaddr);
2169 if (!area)
2170 return -EINVAL;
2171
2172 if (!(area->flags & VM_USERMAP))
2173 return -EINVAL;
2174
2175 if (kaddr + size > area->addr + get_vm_area_size(area))
2176 return -EINVAL;
2177
2178 do {
2179 struct page *page = vmalloc_to_page(kaddr);
2180 int ret;
2181
2182 ret = vm_insert_page(vma, uaddr, page);
2183 if (ret)
2184 return ret;
2185
2186 uaddr += PAGE_SIZE;
2187 kaddr += PAGE_SIZE;
2188 size -= PAGE_SIZE;
2189 } while (size > 0);
2190
2191 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2192
2193 return 0;
2194 }
2195 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2196
2197 /**
2198 * remap_vmalloc_range - map vmalloc pages to userspace
2199 * @vma: vma to cover (map full range of vma)
2200 * @addr: vmalloc memory
2201 * @pgoff: number of pages into addr before first page to map
2202 *
2203 * Returns: 0 for success, -Exxx on failure
2204 *
2205 * This function checks that addr is a valid vmalloc'ed area, and
2206 * that it is big enough to cover the vma. Will return failure if
2207 * that criteria isn't met.
2208 *
2209 * Similar to remap_pfn_range() (see mm/memory.c)
2210 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)2211 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2212 unsigned long pgoff)
2213 {
2214 return remap_vmalloc_range_partial(vma, vma->vm_start,
2215 addr + (pgoff << PAGE_SHIFT),
2216 vma->vm_end - vma->vm_start);
2217 }
2218 EXPORT_SYMBOL(remap_vmalloc_range);
2219
2220 /*
2221 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2222 * not to have one.
2223 *
2224 * The purpose of this function is to make sure the vmalloc area
2225 * mappings are identical in all page-tables in the system.
2226 */
vmalloc_sync_mappings(void)2227 void __weak vmalloc_sync_mappings(void)
2228 {
2229 }
2230
vmalloc_sync_unmappings(void)2231 void __weak vmalloc_sync_unmappings(void)
2232 {
2233 }
2234
f(pte_t * pte,pgtable_t table,unsigned long addr,void * data)2235 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2236 {
2237 pte_t ***p = data;
2238
2239 if (p) {
2240 *(*p) = pte;
2241 (*p)++;
2242 }
2243 return 0;
2244 }
2245
2246 /**
2247 * alloc_vm_area - allocate a range of kernel address space
2248 * @size: size of the area
2249 * @ptes: returns the PTEs for the address space
2250 *
2251 * Returns: NULL on failure, vm_struct on success
2252 *
2253 * This function reserves a range of kernel address space, and
2254 * allocates pagetables to map that range. No actual mappings
2255 * are created.
2256 *
2257 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2258 * allocated for the VM area are returned.
2259 */
alloc_vm_area(size_t size,pte_t ** ptes)2260 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2261 {
2262 struct vm_struct *area;
2263
2264 area = get_vm_area_caller(size, VM_IOREMAP,
2265 __builtin_return_address(0));
2266 if (area == NULL)
2267 return NULL;
2268
2269 /*
2270 * This ensures that page tables are constructed for this region
2271 * of kernel virtual address space and mapped into init_mm.
2272 */
2273 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2274 size, f, ptes ? &ptes : NULL)) {
2275 free_vm_area(area);
2276 return NULL;
2277 }
2278
2279 return area;
2280 }
2281 EXPORT_SYMBOL_GPL(alloc_vm_area);
2282
free_vm_area(struct vm_struct * area)2283 void free_vm_area(struct vm_struct *area)
2284 {
2285 struct vm_struct *ret;
2286 ret = remove_vm_area(area->addr);
2287 BUG_ON(ret != area);
2288 kfree(area);
2289 }
2290 EXPORT_SYMBOL_GPL(free_vm_area);
2291
2292 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)2293 static struct vmap_area *node_to_va(struct rb_node *n)
2294 {
2295 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2296 }
2297
2298 /**
2299 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2300 * @end: target address
2301 * @pnext: out arg for the next vmap_area
2302 * @pprev: out arg for the previous vmap_area
2303 *
2304 * Returns: %true if either or both of next and prev are found,
2305 * %false if no vmap_area exists
2306 *
2307 * Find vmap_areas end addresses of which enclose @end. ie. if not
2308 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2309 */
pvm_find_next_prev(unsigned long end,struct vmap_area ** pnext,struct vmap_area ** pprev)2310 static bool pvm_find_next_prev(unsigned long end,
2311 struct vmap_area **pnext,
2312 struct vmap_area **pprev)
2313 {
2314 struct rb_node *n = vmap_area_root.rb_node;
2315 struct vmap_area *va = NULL;
2316
2317 while (n) {
2318 va = rb_entry(n, struct vmap_area, rb_node);
2319 if (end < va->va_end)
2320 n = n->rb_left;
2321 else if (end > va->va_end)
2322 n = n->rb_right;
2323 else
2324 break;
2325 }
2326
2327 if (!va)
2328 return false;
2329
2330 if (va->va_end > end) {
2331 *pnext = va;
2332 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2333 } else {
2334 *pprev = va;
2335 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2336 }
2337 return true;
2338 }
2339
2340 /**
2341 * pvm_determine_end - find the highest aligned address between two vmap_areas
2342 * @pnext: in/out arg for the next vmap_area
2343 * @pprev: in/out arg for the previous vmap_area
2344 * @align: alignment
2345 *
2346 * Returns: determined end address
2347 *
2348 * Find the highest aligned address between *@pnext and *@pprev below
2349 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2350 * down address is between the end addresses of the two vmap_areas.
2351 *
2352 * Please note that the address returned by this function may fall
2353 * inside *@pnext vmap_area. The caller is responsible for checking
2354 * that.
2355 */
pvm_determine_end(struct vmap_area ** pnext,struct vmap_area ** pprev,unsigned long align)2356 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2357 struct vmap_area **pprev,
2358 unsigned long align)
2359 {
2360 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2361 unsigned long addr;
2362
2363 if (*pnext)
2364 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2365 else
2366 addr = vmalloc_end;
2367
2368 while (*pprev && (*pprev)->va_end > addr) {
2369 *pnext = *pprev;
2370 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2371 }
2372
2373 return addr;
2374 }
2375
2376 /**
2377 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2378 * @offsets: array containing offset of each area
2379 * @sizes: array containing size of each area
2380 * @nr_vms: the number of areas to allocate
2381 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2382 *
2383 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2384 * vm_structs on success, %NULL on failure
2385 *
2386 * Percpu allocator wants to use congruent vm areas so that it can
2387 * maintain the offsets among percpu areas. This function allocates
2388 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2389 * be scattered pretty far, distance between two areas easily going up
2390 * to gigabytes. To avoid interacting with regular vmallocs, these
2391 * areas are allocated from top.
2392 *
2393 * Despite its complicated look, this allocator is rather simple. It
2394 * does everything top-down and scans areas from the end looking for
2395 * matching slot. While scanning, if any of the areas overlaps with
2396 * existing vmap_area, the base address is pulled down to fit the
2397 * area. Scanning is repeated till all the areas fit and then all
2398 * necessary data structres are inserted and the result is returned.
2399 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)2400 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2401 const size_t *sizes, int nr_vms,
2402 size_t align)
2403 {
2404 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2405 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2406 struct vmap_area **vas, *prev, *next;
2407 struct vm_struct **vms;
2408 int area, area2, last_area, term_area;
2409 unsigned long base, start, end, last_end;
2410 bool purged = false;
2411
2412 /* verify parameters and allocate data structures */
2413 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2414 for (last_area = 0, area = 0; area < nr_vms; area++) {
2415 start = offsets[area];
2416 end = start + sizes[area];
2417
2418 /* is everything aligned properly? */
2419 BUG_ON(!IS_ALIGNED(offsets[area], align));
2420 BUG_ON(!IS_ALIGNED(sizes[area], align));
2421
2422 /* detect the area with the highest address */
2423 if (start > offsets[last_area])
2424 last_area = area;
2425
2426 for (area2 = 0; area2 < nr_vms; area2++) {
2427 unsigned long start2 = offsets[area2];
2428 unsigned long end2 = start2 + sizes[area2];
2429
2430 if (area2 == area)
2431 continue;
2432
2433 BUG_ON(start2 >= start && start2 < end);
2434 BUG_ON(end2 <= end && end2 > start);
2435 }
2436 }
2437 last_end = offsets[last_area] + sizes[last_area];
2438
2439 if (vmalloc_end - vmalloc_start < last_end) {
2440 WARN_ON(true);
2441 return NULL;
2442 }
2443
2444 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2445 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2446 if (!vas || !vms)
2447 goto err_free2;
2448
2449 for (area = 0; area < nr_vms; area++) {
2450 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2451 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2452 if (!vas[area] || !vms[area])
2453 goto err_free;
2454 }
2455 retry:
2456 spin_lock(&vmap_area_lock);
2457
2458 /* start scanning - we scan from the top, begin with the last area */
2459 area = term_area = last_area;
2460 start = offsets[area];
2461 end = start + sizes[area];
2462
2463 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2464 base = vmalloc_end - last_end;
2465 goto found;
2466 }
2467 base = pvm_determine_end(&next, &prev, align) - end;
2468
2469 while (true) {
2470 BUG_ON(next && next->va_end <= base + end);
2471 BUG_ON(prev && prev->va_end > base + end);
2472
2473 /*
2474 * base might have underflowed, add last_end before
2475 * comparing.
2476 */
2477 if (base + last_end < vmalloc_start + last_end) {
2478 spin_unlock(&vmap_area_lock);
2479 if (!purged) {
2480 purge_vmap_area_lazy();
2481 purged = true;
2482 goto retry;
2483 }
2484 goto err_free;
2485 }
2486
2487 /*
2488 * If next overlaps, move base downwards so that it's
2489 * right below next and then recheck.
2490 */
2491 if (next && next->va_start < base + end) {
2492 base = pvm_determine_end(&next, &prev, align) - end;
2493 term_area = area;
2494 continue;
2495 }
2496
2497 /*
2498 * If prev overlaps, shift down next and prev and move
2499 * base so that it's right below new next and then
2500 * recheck.
2501 */
2502 if (prev && prev->va_end > base + start) {
2503 next = prev;
2504 prev = node_to_va(rb_prev(&next->rb_node));
2505 base = pvm_determine_end(&next, &prev, align) - end;
2506 term_area = area;
2507 continue;
2508 }
2509
2510 /*
2511 * This area fits, move on to the previous one. If
2512 * the previous one is the terminal one, we're done.
2513 */
2514 area = (area + nr_vms - 1) % nr_vms;
2515 if (area == term_area)
2516 break;
2517 start = offsets[area];
2518 end = start + sizes[area];
2519 pvm_find_next_prev(base + end, &next, &prev);
2520 }
2521 found:
2522 /* we've found a fitting base, insert all va's */
2523 for (area = 0; area < nr_vms; area++) {
2524 struct vmap_area *va = vas[area];
2525
2526 va->va_start = base + offsets[area];
2527 va->va_end = va->va_start + sizes[area];
2528 __insert_vmap_area(va);
2529 }
2530
2531 vmap_area_pcpu_hole = base + offsets[last_area];
2532
2533 spin_unlock(&vmap_area_lock);
2534
2535 /* insert all vm's */
2536 for (area = 0; area < nr_vms; area++)
2537 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2538 pcpu_get_vm_areas);
2539
2540 kfree(vas);
2541 return vms;
2542
2543 err_free:
2544 for (area = 0; area < nr_vms; area++) {
2545 kfree(vas[area]);
2546 kfree(vms[area]);
2547 }
2548 err_free2:
2549 kfree(vas);
2550 kfree(vms);
2551 return NULL;
2552 }
2553
2554 /**
2555 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2556 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2557 * @nr_vms: the number of allocated areas
2558 *
2559 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2560 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)2561 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2562 {
2563 int i;
2564
2565 for (i = 0; i < nr_vms; i++)
2566 free_vm_area(vms[i]);
2567 kfree(vms);
2568 }
2569 #endif /* CONFIG_SMP */
2570
2571 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)2572 static void *s_start(struct seq_file *m, loff_t *pos)
2573 __acquires(&vmap_area_lock)
2574 {
2575 loff_t n = *pos;
2576 struct vmap_area *va;
2577
2578 spin_lock(&vmap_area_lock);
2579 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2580 while (n > 0 && &va->list != &vmap_area_list) {
2581 n--;
2582 va = list_entry(va->list.next, typeof(*va), list);
2583 }
2584 if (!n && &va->list != &vmap_area_list)
2585 return va;
2586
2587 return NULL;
2588
2589 }
2590
s_next(struct seq_file * m,void * p,loff_t * pos)2591 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2592 {
2593 struct vmap_area *va = p, *next;
2594
2595 ++*pos;
2596 next = list_entry(va->list.next, typeof(*va), list);
2597 if (&next->list != &vmap_area_list)
2598 return next;
2599
2600 return NULL;
2601 }
2602
s_stop(struct seq_file * m,void * p)2603 static void s_stop(struct seq_file *m, void *p)
2604 __releases(&vmap_area_lock)
2605 {
2606 spin_unlock(&vmap_area_lock);
2607 }
2608
show_numa_info(struct seq_file * m,struct vm_struct * v)2609 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2610 {
2611 if (IS_ENABLED(CONFIG_NUMA)) {
2612 unsigned int nr, *counters = m->private;
2613
2614 if (!counters)
2615 return;
2616
2617 if (v->flags & VM_UNINITIALIZED)
2618 return;
2619 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2620 smp_rmb();
2621
2622 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2623
2624 for (nr = 0; nr < v->nr_pages; nr++)
2625 counters[page_to_nid(v->pages[nr])]++;
2626
2627 for_each_node_state(nr, N_HIGH_MEMORY)
2628 if (counters[nr])
2629 seq_printf(m, " N%u=%u", nr, counters[nr]);
2630 }
2631 }
2632
s_show(struct seq_file * m,void * p)2633 static int s_show(struct seq_file *m, void *p)
2634 {
2635 struct vmap_area *va = p;
2636 struct vm_struct *v;
2637
2638 /*
2639 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2640 * behalf of vmap area is being tear down or vm_map_ram allocation.
2641 */
2642 if (!(va->flags & VM_VM_AREA))
2643 return 0;
2644
2645 v = va->vm;
2646
2647 seq_printf(m, "0x%pK-0x%pK %7ld",
2648 v->addr, v->addr + v->size, v->size);
2649
2650 if (v->caller)
2651 seq_printf(m, " %pS", v->caller);
2652
2653 if (v->nr_pages)
2654 seq_printf(m, " pages=%d", v->nr_pages);
2655
2656 if (v->phys_addr)
2657 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2658
2659 if (v->flags & VM_IOREMAP)
2660 seq_puts(m, " ioremap");
2661
2662 if (v->flags & VM_ALLOC)
2663 seq_puts(m, " vmalloc");
2664
2665 if (v->flags & VM_MAP)
2666 seq_puts(m, " vmap");
2667
2668 if (v->flags & VM_USERMAP)
2669 seq_puts(m, " user");
2670
2671 if (v->flags & VM_VPAGES)
2672 seq_puts(m, " vpages");
2673
2674 show_numa_info(m, v);
2675 seq_putc(m, '\n');
2676 return 0;
2677 }
2678
2679 static const struct seq_operations vmalloc_op = {
2680 .start = s_start,
2681 .next = s_next,
2682 .stop = s_stop,
2683 .show = s_show,
2684 };
2685
vmalloc_open(struct inode * inode,struct file * file)2686 static int vmalloc_open(struct inode *inode, struct file *file)
2687 {
2688 if (IS_ENABLED(CONFIG_NUMA))
2689 return seq_open_private(file, &vmalloc_op,
2690 nr_node_ids * sizeof(unsigned int));
2691 else
2692 return seq_open(file, &vmalloc_op);
2693 }
2694
2695 static const struct file_operations proc_vmalloc_operations = {
2696 .open = vmalloc_open,
2697 .read = seq_read,
2698 .llseek = seq_lseek,
2699 .release = seq_release_private,
2700 };
2701
proc_vmalloc_init(void)2702 static int __init proc_vmalloc_init(void)
2703 {
2704 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2705 return 0;
2706 }
2707 module_init(proc_vmalloc_init);
2708
2709 #endif
2710
2711