1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
107 };
108
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 /*
140 * From 0 .. 100. Higher means more swappy.
141 */
142 int vm_swappiness = 60;
143 /*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147 unsigned long vm_total_pages;
148
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151
152 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)153 static bool global_reclaim(struct scan_control *sc)
154 {
155 return !sc->target_mem_cgroup;
156 }
157
158 /**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
sane_reclaim(struct scan_control * sc)171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
179 return true;
180 #endif
181 return false;
182 }
183 #else
global_reclaim(struct scan_control * sc)184 static bool global_reclaim(struct scan_control *sc)
185 {
186 return true;
187 }
188
sane_reclaim(struct scan_control * sc)189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 return true;
192 }
193 #endif
194
zone_reclaimable_pages(struct zone * zone)195 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 unsigned long nr;
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207 }
208
zone_reclaimable(struct zone * zone)209 bool zone_reclaimable(struct zone *zone)
210 {
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
213 }
214
get_lru_size(struct lruvec * lruvec,enum lru_list lru)215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec, lru);
219
220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222
223 /*
224 * Add a shrinker callback to be called from the vm.
225 */
register_shrinker(struct shrinker * shrinker)226 int register_shrinker(struct shrinker *shrinker)
227 {
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
248 return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251
252 /*
253 * Remove one
254 */
unregister_shrinker(struct shrinker * shrinker)255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 if (!shrinker->nr_deferred)
258 return;
259 down_write(&shrinker_rwsem);
260 list_del(&shrinker->list);
261 up_write(&shrinker_rwsem);
262 kfree(shrinker->nr_deferred);
263 shrinker->nr_deferred = NULL;
264 }
265 EXPORT_SYMBOL(unregister_shrinker);
266
267 #define SHRINK_BATCH 128
268
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_scanned,unsigned long nr_eligible)269 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
270 struct shrinker *shrinker,
271 unsigned long nr_scanned,
272 unsigned long nr_eligible)
273 {
274 unsigned long freed = 0;
275 unsigned long long delta;
276 long total_scan;
277 long freeable;
278 long nr;
279 long new_nr;
280 int nid = shrinkctl->nid;
281 long batch_size = shrinker->batch ? shrinker->batch
282 : SHRINK_BATCH;
283 long scanned = 0, next_deferred;
284
285 freeable = shrinker->count_objects(shrinker, shrinkctl);
286 if (freeable == 0)
287 return 0;
288
289 /*
290 * copy the current shrinker scan count into a local variable
291 * and zero it so that other concurrent shrinker invocations
292 * don't also do this scanning work.
293 */
294 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
295
296 total_scan = nr;
297 delta = (4 * nr_scanned) / shrinker->seeks;
298 delta *= freeable;
299 do_div(delta, nr_eligible + 1);
300 total_scan += delta;
301 if (total_scan < 0) {
302 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
303 shrinker->scan_objects, total_scan);
304 total_scan = freeable;
305 next_deferred = nr;
306 } else
307 next_deferred = total_scan;
308
309 /*
310 * We need to avoid excessive windup on filesystem shrinkers
311 * due to large numbers of GFP_NOFS allocations causing the
312 * shrinkers to return -1 all the time. This results in a large
313 * nr being built up so when a shrink that can do some work
314 * comes along it empties the entire cache due to nr >>>
315 * freeable. This is bad for sustaining a working set in
316 * memory.
317 *
318 * Hence only allow the shrinker to scan the entire cache when
319 * a large delta change is calculated directly.
320 */
321 if (delta < freeable / 4)
322 total_scan = min(total_scan, freeable / 2);
323
324 /*
325 * Avoid risking looping forever due to too large nr value:
326 * never try to free more than twice the estimate number of
327 * freeable entries.
328 */
329 if (total_scan > freeable * 2)
330 total_scan = freeable * 2;
331
332 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
333 nr_scanned, nr_eligible,
334 freeable, delta, total_scan);
335
336 /*
337 * Normally, we should not scan less than batch_size objects in one
338 * pass to avoid too frequent shrinker calls, but if the slab has less
339 * than batch_size objects in total and we are really tight on memory,
340 * we will try to reclaim all available objects, otherwise we can end
341 * up failing allocations although there are plenty of reclaimable
342 * objects spread over several slabs with usage less than the
343 * batch_size.
344 *
345 * We detect the "tight on memory" situations by looking at the total
346 * number of objects we want to scan (total_scan). If it is greater
347 * than the total number of objects on slab (freeable), we must be
348 * scanning at high prio and therefore should try to reclaim as much as
349 * possible.
350 */
351 while (total_scan >= batch_size ||
352 total_scan >= freeable) {
353 unsigned long ret;
354 unsigned long nr_to_scan = min(batch_size, total_scan);
355
356 shrinkctl->nr_to_scan = nr_to_scan;
357 ret = shrinker->scan_objects(shrinker, shrinkctl);
358 if (ret == SHRINK_STOP)
359 break;
360 freed += ret;
361
362 count_vm_events(SLABS_SCANNED, nr_to_scan);
363 total_scan -= nr_to_scan;
364 scanned += nr_to_scan;
365
366 cond_resched();
367 }
368
369 if (next_deferred >= scanned)
370 next_deferred -= scanned;
371 else
372 next_deferred = 0;
373 /*
374 * move the unused scan count back into the shrinker in a
375 * manner that handles concurrent updates. If we exhausted the
376 * scan, there is no need to do an update.
377 */
378 if (next_deferred > 0)
379 new_nr = atomic_long_add_return(next_deferred,
380 &shrinker->nr_deferred[nid]);
381 else
382 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
383
384 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
385 return freed;
386 }
387
388 /**
389 * shrink_slab - shrink slab caches
390 * @gfp_mask: allocation context
391 * @nid: node whose slab caches to target
392 * @memcg: memory cgroup whose slab caches to target
393 * @nr_scanned: pressure numerator
394 * @nr_eligible: pressure denominator
395 *
396 * Call the shrink functions to age shrinkable caches.
397 *
398 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
399 * unaware shrinkers will receive a node id of 0 instead.
400 *
401 * @memcg specifies the memory cgroup to target. If it is not NULL,
402 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
403 * objects from the memory cgroup specified. Otherwise all shrinkers
404 * are called, and memcg aware shrinkers are supposed to scan the
405 * global list then.
406 *
407 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
408 * the available objects should be scanned. Page reclaim for example
409 * passes the number of pages scanned and the number of pages on the
410 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
411 * when it encountered mapped pages. The ratio is further biased by
412 * the ->seeks setting of the shrink function, which indicates the
413 * cost to recreate an object relative to that of an LRU page.
414 *
415 * Returns the number of reclaimed slab objects.
416 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,unsigned long nr_scanned,unsigned long nr_eligible)417 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
418 struct mem_cgroup *memcg,
419 unsigned long nr_scanned,
420 unsigned long nr_eligible)
421 {
422 struct shrinker *shrinker;
423 unsigned long freed = 0;
424
425 if (memcg && !memcg_kmem_is_active(memcg))
426 return 0;
427
428 if (nr_scanned == 0)
429 nr_scanned = SWAP_CLUSTER_MAX;
430
431 if (!down_read_trylock(&shrinker_rwsem)) {
432 /*
433 * If we would return 0, our callers would understand that we
434 * have nothing else to shrink and give up trying. By returning
435 * 1 we keep it going and assume we'll be able to shrink next
436 * time.
437 */
438 freed = 1;
439 goto out;
440 }
441
442 list_for_each_entry(shrinker, &shrinker_list, list) {
443 struct shrink_control sc = {
444 .gfp_mask = gfp_mask,
445 .nid = nid,
446 .memcg = memcg,
447 };
448
449 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
450 continue;
451
452 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
453 sc.nid = 0;
454
455 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
456 }
457
458 up_read(&shrinker_rwsem);
459 out:
460 cond_resched();
461 return freed;
462 }
463
drop_slab_node(int nid)464 void drop_slab_node(int nid)
465 {
466 unsigned long freed;
467
468 do {
469 struct mem_cgroup *memcg = NULL;
470
471 freed = 0;
472 do {
473 freed += shrink_slab(GFP_KERNEL, nid, memcg,
474 1000, 1000);
475 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
476 } while (freed > 10);
477 }
478
drop_slab(void)479 void drop_slab(void)
480 {
481 int nid;
482
483 for_each_online_node(nid)
484 drop_slab_node(nid);
485 }
486
is_page_cache_freeable(struct page * page)487 static inline int is_page_cache_freeable(struct page *page)
488 {
489 /*
490 * A freeable page cache page is referenced only by the caller
491 * that isolated the page, the page cache radix tree and
492 * optional buffer heads at page->private.
493 */
494 return page_count(page) - page_has_private(page) == 2;
495 }
496
may_write_to_inode(struct inode * inode,struct scan_control * sc)497 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
498 {
499 if (current->flags & PF_SWAPWRITE)
500 return 1;
501 if (!inode_write_congested(inode))
502 return 1;
503 if (inode_to_bdi(inode) == current->backing_dev_info)
504 return 1;
505 return 0;
506 }
507
508 /*
509 * We detected a synchronous write error writing a page out. Probably
510 * -ENOSPC. We need to propagate that into the address_space for a subsequent
511 * fsync(), msync() or close().
512 *
513 * The tricky part is that after writepage we cannot touch the mapping: nothing
514 * prevents it from being freed up. But we have a ref on the page and once
515 * that page is locked, the mapping is pinned.
516 *
517 * We're allowed to run sleeping lock_page() here because we know the caller has
518 * __GFP_FS.
519 */
handle_write_error(struct address_space * mapping,struct page * page,int error)520 static void handle_write_error(struct address_space *mapping,
521 struct page *page, int error)
522 {
523 lock_page(page);
524 if (page_mapping(page) == mapping)
525 mapping_set_error(mapping, error);
526 unlock_page(page);
527 }
528
529 /* possible outcome of pageout() */
530 typedef enum {
531 /* failed to write page out, page is locked */
532 PAGE_KEEP,
533 /* move page to the active list, page is locked */
534 PAGE_ACTIVATE,
535 /* page has been sent to the disk successfully, page is unlocked */
536 PAGE_SUCCESS,
537 /* page is clean and locked */
538 PAGE_CLEAN,
539 } pageout_t;
540
541 /*
542 * pageout is called by shrink_page_list() for each dirty page.
543 * Calls ->writepage().
544 */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)545 static pageout_t pageout(struct page *page, struct address_space *mapping,
546 struct scan_control *sc)
547 {
548 /*
549 * If the page is dirty, only perform writeback if that write
550 * will be non-blocking. To prevent this allocation from being
551 * stalled by pagecache activity. But note that there may be
552 * stalls if we need to run get_block(). We could test
553 * PagePrivate for that.
554 *
555 * If this process is currently in __generic_file_write_iter() against
556 * this page's queue, we can perform writeback even if that
557 * will block.
558 *
559 * If the page is swapcache, write it back even if that would
560 * block, for some throttling. This happens by accident, because
561 * swap_backing_dev_info is bust: it doesn't reflect the
562 * congestion state of the swapdevs. Easy to fix, if needed.
563 */
564 if (!is_page_cache_freeable(page))
565 return PAGE_KEEP;
566 if (!mapping) {
567 /*
568 * Some data journaling orphaned pages can have
569 * page->mapping == NULL while being dirty with clean buffers.
570 */
571 if (page_has_private(page)) {
572 if (try_to_free_buffers(page)) {
573 ClearPageDirty(page);
574 pr_info("%s: orphaned page\n", __func__);
575 return PAGE_CLEAN;
576 }
577 }
578 return PAGE_KEEP;
579 }
580 if (mapping->a_ops->writepage == NULL)
581 return PAGE_ACTIVATE;
582 if (!may_write_to_inode(mapping->host, sc))
583 return PAGE_KEEP;
584
585 if (clear_page_dirty_for_io(page)) {
586 int res;
587 struct writeback_control wbc = {
588 .sync_mode = WB_SYNC_NONE,
589 .nr_to_write = SWAP_CLUSTER_MAX,
590 .range_start = 0,
591 .range_end = LLONG_MAX,
592 .for_reclaim = 1,
593 };
594
595 SetPageReclaim(page);
596 res = mapping->a_ops->writepage(page, &wbc);
597 if (res < 0)
598 handle_write_error(mapping, page, res);
599 if (res == AOP_WRITEPAGE_ACTIVATE) {
600 ClearPageReclaim(page);
601 return PAGE_ACTIVATE;
602 }
603
604 if (!PageWriteback(page)) {
605 /* synchronous write or broken a_ops? */
606 ClearPageReclaim(page);
607 }
608 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
609 inc_zone_page_state(page, NR_VMSCAN_WRITE);
610 return PAGE_SUCCESS;
611 }
612
613 return PAGE_CLEAN;
614 }
615
616 /*
617 * Same as remove_mapping, but if the page is removed from the mapping, it
618 * gets returned with a refcount of 0.
619 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)620 static int __remove_mapping(struct address_space *mapping, struct page *page,
621 bool reclaimed)
622 {
623 unsigned long flags;
624 struct mem_cgroup *memcg;
625
626 BUG_ON(!PageLocked(page));
627 BUG_ON(mapping != page_mapping(page));
628
629 memcg = mem_cgroup_begin_page_stat(page);
630 spin_lock_irqsave(&mapping->tree_lock, flags);
631 /*
632 * The non racy check for a busy page.
633 *
634 * Must be careful with the order of the tests. When someone has
635 * a ref to the page, it may be possible that they dirty it then
636 * drop the reference. So if PageDirty is tested before page_count
637 * here, then the following race may occur:
638 *
639 * get_user_pages(&page);
640 * [user mapping goes away]
641 * write_to(page);
642 * !PageDirty(page) [good]
643 * SetPageDirty(page);
644 * put_page(page);
645 * !page_count(page) [good, discard it]
646 *
647 * [oops, our write_to data is lost]
648 *
649 * Reversing the order of the tests ensures such a situation cannot
650 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
651 * load is not satisfied before that of page->_count.
652 *
653 * Note that if SetPageDirty is always performed via set_page_dirty,
654 * and thus under tree_lock, then this ordering is not required.
655 */
656 if (!page_freeze_refs(page, 2))
657 goto cannot_free;
658 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
659 if (unlikely(PageDirty(page))) {
660 page_unfreeze_refs(page, 2);
661 goto cannot_free;
662 }
663
664 if (PageSwapCache(page)) {
665 swp_entry_t swap = { .val = page_private(page) };
666 mem_cgroup_swapout(page, swap);
667 __delete_from_swap_cache(page);
668 spin_unlock_irqrestore(&mapping->tree_lock, flags);
669 mem_cgroup_end_page_stat(memcg);
670 swapcache_free(swap);
671 } else {
672 void (*freepage)(struct page *);
673 void *shadow = NULL;
674
675 freepage = mapping->a_ops->freepage;
676 /*
677 * Remember a shadow entry for reclaimed file cache in
678 * order to detect refaults, thus thrashing, later on.
679 *
680 * But don't store shadows in an address space that is
681 * already exiting. This is not just an optizimation,
682 * inode reclaim needs to empty out the radix tree or
683 * the nodes are lost. Don't plant shadows behind its
684 * back.
685 */
686 if (reclaimed && page_is_file_cache(page) &&
687 !mapping_exiting(mapping))
688 shadow = workingset_eviction(mapping, page);
689 __delete_from_page_cache(page, shadow, memcg);
690 spin_unlock_irqrestore(&mapping->tree_lock, flags);
691 mem_cgroup_end_page_stat(memcg);
692
693 if (freepage != NULL)
694 freepage(page);
695 }
696
697 return 1;
698
699 cannot_free:
700 spin_unlock_irqrestore(&mapping->tree_lock, flags);
701 mem_cgroup_end_page_stat(memcg);
702 return 0;
703 }
704
705 /*
706 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
707 * someone else has a ref on the page, abort and return 0. If it was
708 * successfully detached, return 1. Assumes the caller has a single ref on
709 * this page.
710 */
remove_mapping(struct address_space * mapping,struct page * page)711 int remove_mapping(struct address_space *mapping, struct page *page)
712 {
713 if (__remove_mapping(mapping, page, false)) {
714 /*
715 * Unfreezing the refcount with 1 rather than 2 effectively
716 * drops the pagecache ref for us without requiring another
717 * atomic operation.
718 */
719 page_unfreeze_refs(page, 1);
720 return 1;
721 }
722 return 0;
723 }
724
725 /**
726 * putback_lru_page - put previously isolated page onto appropriate LRU list
727 * @page: page to be put back to appropriate lru list
728 *
729 * Add previously isolated @page to appropriate LRU list.
730 * Page may still be unevictable for other reasons.
731 *
732 * lru_lock must not be held, interrupts must be enabled.
733 */
putback_lru_page(struct page * page)734 void putback_lru_page(struct page *page)
735 {
736 bool is_unevictable;
737 int was_unevictable = PageUnevictable(page);
738
739 VM_BUG_ON_PAGE(PageLRU(page), page);
740
741 redo:
742 ClearPageUnevictable(page);
743
744 if (page_evictable(page)) {
745 /*
746 * For evictable pages, we can use the cache.
747 * In event of a race, worst case is we end up with an
748 * unevictable page on [in]active list.
749 * We know how to handle that.
750 */
751 is_unevictable = false;
752 lru_cache_add(page);
753 } else {
754 /*
755 * Put unevictable pages directly on zone's unevictable
756 * list.
757 */
758 is_unevictable = true;
759 add_page_to_unevictable_list(page);
760 /*
761 * When racing with an mlock or AS_UNEVICTABLE clearing
762 * (page is unlocked) make sure that if the other thread
763 * does not observe our setting of PG_lru and fails
764 * isolation/check_move_unevictable_pages,
765 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
766 * the page back to the evictable list.
767 *
768 * The other side is TestClearPageMlocked() or shmem_lock().
769 */
770 smp_mb();
771 }
772
773 /*
774 * page's status can change while we move it among lru. If an evictable
775 * page is on unevictable list, it never be freed. To avoid that,
776 * check after we added it to the list, again.
777 */
778 if (is_unevictable && page_evictable(page)) {
779 if (!isolate_lru_page(page)) {
780 put_page(page);
781 goto redo;
782 }
783 /* This means someone else dropped this page from LRU
784 * So, it will be freed or putback to LRU again. There is
785 * nothing to do here.
786 */
787 }
788
789 if (was_unevictable && !is_unevictable)
790 count_vm_event(UNEVICTABLE_PGRESCUED);
791 else if (!was_unevictable && is_unevictable)
792 count_vm_event(UNEVICTABLE_PGCULLED);
793
794 put_page(page); /* drop ref from isolate */
795 }
796
797 enum page_references {
798 PAGEREF_RECLAIM,
799 PAGEREF_RECLAIM_CLEAN,
800 PAGEREF_KEEP,
801 PAGEREF_ACTIVATE,
802 };
803
page_check_references(struct page * page,struct scan_control * sc)804 static enum page_references page_check_references(struct page *page,
805 struct scan_control *sc)
806 {
807 int referenced_ptes, referenced_page;
808 unsigned long vm_flags;
809
810 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
811 &vm_flags);
812 referenced_page = TestClearPageReferenced(page);
813
814 /*
815 * Mlock lost the isolation race with us. Let try_to_unmap()
816 * move the page to the unevictable list.
817 */
818 if (vm_flags & VM_LOCKED)
819 return PAGEREF_RECLAIM;
820
821 if (referenced_ptes) {
822 if (PageSwapBacked(page))
823 return PAGEREF_ACTIVATE;
824 /*
825 * All mapped pages start out with page table
826 * references from the instantiating fault, so we need
827 * to look twice if a mapped file page is used more
828 * than once.
829 *
830 * Mark it and spare it for another trip around the
831 * inactive list. Another page table reference will
832 * lead to its activation.
833 *
834 * Note: the mark is set for activated pages as well
835 * so that recently deactivated but used pages are
836 * quickly recovered.
837 */
838 SetPageReferenced(page);
839
840 if (referenced_page || referenced_ptes > 1)
841 return PAGEREF_ACTIVATE;
842
843 /*
844 * Activate file-backed executable pages after first usage.
845 */
846 if (vm_flags & VM_EXEC)
847 return PAGEREF_ACTIVATE;
848
849 return PAGEREF_KEEP;
850 }
851
852 /* Reclaim if clean, defer dirty pages to writeback */
853 if (referenced_page && !PageSwapBacked(page))
854 return PAGEREF_RECLAIM_CLEAN;
855
856 return PAGEREF_RECLAIM;
857 }
858
859 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)860 static void page_check_dirty_writeback(struct page *page,
861 bool *dirty, bool *writeback)
862 {
863 struct address_space *mapping;
864
865 /*
866 * Anonymous pages are not handled by flushers and must be written
867 * from reclaim context. Do not stall reclaim based on them
868 */
869 if (!page_is_file_cache(page)) {
870 *dirty = false;
871 *writeback = false;
872 return;
873 }
874
875 /* By default assume that the page flags are accurate */
876 *dirty = PageDirty(page);
877 *writeback = PageWriteback(page);
878
879 /* Verify dirty/writeback state if the filesystem supports it */
880 if (!page_has_private(page))
881 return;
882
883 mapping = page_mapping(page);
884 if (mapping && mapping->a_ops->is_dirty_writeback)
885 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
886 }
887
888 /*
889 * shrink_page_list() returns the number of reclaimed pages
890 */
shrink_page_list(struct list_head * page_list,struct zone * zone,struct scan_control * sc,enum ttu_flags ttu_flags,unsigned long * ret_nr_dirty,unsigned long * ret_nr_unqueued_dirty,unsigned long * ret_nr_congested,unsigned long * ret_nr_writeback,unsigned long * ret_nr_immediate,bool force_reclaim)891 static unsigned long shrink_page_list(struct list_head *page_list,
892 struct zone *zone,
893 struct scan_control *sc,
894 enum ttu_flags ttu_flags,
895 unsigned long *ret_nr_dirty,
896 unsigned long *ret_nr_unqueued_dirty,
897 unsigned long *ret_nr_congested,
898 unsigned long *ret_nr_writeback,
899 unsigned long *ret_nr_immediate,
900 bool force_reclaim)
901 {
902 LIST_HEAD(ret_pages);
903 LIST_HEAD(free_pages);
904 int pgactivate = 0;
905 unsigned long nr_unqueued_dirty = 0;
906 unsigned long nr_dirty = 0;
907 unsigned long nr_congested = 0;
908 unsigned long nr_reclaimed = 0;
909 unsigned long nr_writeback = 0;
910 unsigned long nr_immediate = 0;
911
912 cond_resched();
913
914 while (!list_empty(page_list)) {
915 struct address_space *mapping;
916 struct page *page;
917 int may_enter_fs;
918 enum page_references references = PAGEREF_RECLAIM_CLEAN;
919 bool dirty, writeback;
920
921 cond_resched();
922
923 page = lru_to_page(page_list);
924 list_del(&page->lru);
925
926 if (!trylock_page(page))
927 goto keep;
928
929 VM_BUG_ON_PAGE(PageActive(page), page);
930 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
931
932 sc->nr_scanned++;
933
934 if (unlikely(!page_evictable(page)))
935 goto cull_mlocked;
936
937 if (!sc->may_unmap && page_mapped(page))
938 goto keep_locked;
939
940 /* Double the slab pressure for mapped and swapcache pages */
941 if (page_mapped(page) || PageSwapCache(page))
942 sc->nr_scanned++;
943
944 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
945 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
946
947 /*
948 * The number of dirty pages determines if a zone is marked
949 * reclaim_congested which affects wait_iff_congested. kswapd
950 * will stall and start writing pages if the tail of the LRU
951 * is all dirty unqueued pages.
952 */
953 page_check_dirty_writeback(page, &dirty, &writeback);
954 if (dirty || writeback)
955 nr_dirty++;
956
957 if (dirty && !writeback)
958 nr_unqueued_dirty++;
959
960 /*
961 * Treat this page as congested if the underlying BDI is or if
962 * pages are cycling through the LRU so quickly that the
963 * pages marked for immediate reclaim are making it to the
964 * end of the LRU a second time.
965 */
966 mapping = page_mapping(page);
967 if (((dirty || writeback) && mapping &&
968 inode_write_congested(mapping->host)) ||
969 (writeback && PageReclaim(page)))
970 nr_congested++;
971
972 /*
973 * If a page at the tail of the LRU is under writeback, there
974 * are three cases to consider.
975 *
976 * 1) If reclaim is encountering an excessive number of pages
977 * under writeback and this page is both under writeback and
978 * PageReclaim then it indicates that pages are being queued
979 * for IO but are being recycled through the LRU before the
980 * IO can complete. Waiting on the page itself risks an
981 * indefinite stall if it is impossible to writeback the
982 * page due to IO error or disconnected storage so instead
983 * note that the LRU is being scanned too quickly and the
984 * caller can stall after page list has been processed.
985 *
986 * 2) Global or new memcg reclaim encounters a page that is
987 * not marked for immediate reclaim, or the caller does not
988 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
989 * not to fs). In this case mark the page for immediate
990 * reclaim and continue scanning.
991 *
992 * Require may_enter_fs because we would wait on fs, which
993 * may not have submitted IO yet. And the loop driver might
994 * enter reclaim, and deadlock if it waits on a page for
995 * which it is needed to do the write (loop masks off
996 * __GFP_IO|__GFP_FS for this reason); but more thought
997 * would probably show more reasons.
998 *
999 * 3) Legacy memcg encounters a page that is already marked
1000 * PageReclaim. memcg does not have any dirty pages
1001 * throttling so we could easily OOM just because too many
1002 * pages are in writeback and there is nothing else to
1003 * reclaim. Wait for the writeback to complete.
1004 */
1005 if (PageWriteback(page)) {
1006 /* Case 1 above */
1007 if (current_is_kswapd() &&
1008 PageReclaim(page) &&
1009 test_bit(ZONE_WRITEBACK, &zone->flags)) {
1010 nr_immediate++;
1011 goto keep_locked;
1012
1013 /* Case 2 above */
1014 } else if (sane_reclaim(sc) ||
1015 !PageReclaim(page) || !may_enter_fs) {
1016 /*
1017 * This is slightly racy - end_page_writeback()
1018 * might have just cleared PageReclaim, then
1019 * setting PageReclaim here end up interpreted
1020 * as PageReadahead - but that does not matter
1021 * enough to care. What we do want is for this
1022 * page to have PageReclaim set next time memcg
1023 * reclaim reaches the tests above, so it will
1024 * then wait_on_page_writeback() to avoid OOM;
1025 * and it's also appropriate in global reclaim.
1026 */
1027 SetPageReclaim(page);
1028 nr_writeback++;
1029 goto keep_locked;
1030
1031 /* Case 3 above */
1032 } else {
1033 unlock_page(page);
1034 wait_on_page_writeback(page);
1035 /* then go back and try same page again */
1036 list_add_tail(&page->lru, page_list);
1037 continue;
1038 }
1039 }
1040
1041 if (!force_reclaim)
1042 references = page_check_references(page, sc);
1043
1044 switch (references) {
1045 case PAGEREF_ACTIVATE:
1046 goto activate_locked;
1047 case PAGEREF_KEEP:
1048 goto keep_locked;
1049 case PAGEREF_RECLAIM:
1050 case PAGEREF_RECLAIM_CLEAN:
1051 ; /* try to reclaim the page below */
1052 }
1053
1054 /*
1055 * Anonymous process memory has backing store?
1056 * Try to allocate it some swap space here.
1057 */
1058 if (PageAnon(page) && !PageSwapCache(page)) {
1059 if (!(sc->gfp_mask & __GFP_IO))
1060 goto keep_locked;
1061 if (!add_to_swap(page, page_list))
1062 goto activate_locked;
1063 may_enter_fs = 1;
1064
1065 /* Adding to swap updated mapping */
1066 mapping = page_mapping(page);
1067 }
1068
1069 /*
1070 * The page is mapped into the page tables of one or more
1071 * processes. Try to unmap it here.
1072 */
1073 if (page_mapped(page) && mapping) {
1074 switch (try_to_unmap(page,
1075 ttu_flags|TTU_BATCH_FLUSH)) {
1076 case SWAP_FAIL:
1077 goto activate_locked;
1078 case SWAP_AGAIN:
1079 goto keep_locked;
1080 case SWAP_MLOCK:
1081 goto cull_mlocked;
1082 case SWAP_SUCCESS:
1083 ; /* try to free the page below */
1084 }
1085 }
1086
1087 if (PageDirty(page)) {
1088 /*
1089 * Only kswapd can writeback filesystem pages to
1090 * avoid risk of stack overflow but only writeback
1091 * if many dirty pages have been encountered.
1092 */
1093 if (page_is_file_cache(page) &&
1094 (!current_is_kswapd() ||
1095 !test_bit(ZONE_DIRTY, &zone->flags))) {
1096 /*
1097 * Immediately reclaim when written back.
1098 * Similar in principal to deactivate_page()
1099 * except we already have the page isolated
1100 * and know it's dirty
1101 */
1102 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1103 SetPageReclaim(page);
1104
1105 goto keep_locked;
1106 }
1107
1108 if (references == PAGEREF_RECLAIM_CLEAN)
1109 goto keep_locked;
1110 if (!may_enter_fs)
1111 goto keep_locked;
1112 if (!sc->may_writepage)
1113 goto keep_locked;
1114
1115 /*
1116 * Page is dirty. Flush the TLB if a writable entry
1117 * potentially exists to avoid CPU writes after IO
1118 * starts and then write it out here.
1119 */
1120 try_to_unmap_flush_dirty();
1121 switch (pageout(page, mapping, sc)) {
1122 case PAGE_KEEP:
1123 goto keep_locked;
1124 case PAGE_ACTIVATE:
1125 goto activate_locked;
1126 case PAGE_SUCCESS:
1127 if (PageWriteback(page))
1128 goto keep;
1129 if (PageDirty(page))
1130 goto keep;
1131
1132 /*
1133 * A synchronous write - probably a ramdisk. Go
1134 * ahead and try to reclaim the page.
1135 */
1136 if (!trylock_page(page))
1137 goto keep;
1138 if (PageDirty(page) || PageWriteback(page))
1139 goto keep_locked;
1140 mapping = page_mapping(page);
1141 case PAGE_CLEAN:
1142 ; /* try to free the page below */
1143 }
1144 }
1145
1146 /*
1147 * If the page has buffers, try to free the buffer mappings
1148 * associated with this page. If we succeed we try to free
1149 * the page as well.
1150 *
1151 * We do this even if the page is PageDirty().
1152 * try_to_release_page() does not perform I/O, but it is
1153 * possible for a page to have PageDirty set, but it is actually
1154 * clean (all its buffers are clean). This happens if the
1155 * buffers were written out directly, with submit_bh(). ext3
1156 * will do this, as well as the blockdev mapping.
1157 * try_to_release_page() will discover that cleanness and will
1158 * drop the buffers and mark the page clean - it can be freed.
1159 *
1160 * Rarely, pages can have buffers and no ->mapping. These are
1161 * the pages which were not successfully invalidated in
1162 * truncate_complete_page(). We try to drop those buffers here
1163 * and if that worked, and the page is no longer mapped into
1164 * process address space (page_count == 1) it can be freed.
1165 * Otherwise, leave the page on the LRU so it is swappable.
1166 */
1167 if (page_has_private(page)) {
1168 if (!try_to_release_page(page, sc->gfp_mask))
1169 goto activate_locked;
1170 if (!mapping && page_count(page) == 1) {
1171 unlock_page(page);
1172 if (put_page_testzero(page))
1173 goto free_it;
1174 else {
1175 /*
1176 * rare race with speculative reference.
1177 * the speculative reference will free
1178 * this page shortly, so we may
1179 * increment nr_reclaimed here (and
1180 * leave it off the LRU).
1181 */
1182 nr_reclaimed++;
1183 continue;
1184 }
1185 }
1186 }
1187
1188 if (!mapping || !__remove_mapping(mapping, page, true))
1189 goto keep_locked;
1190
1191 /*
1192 * At this point, we have no other references and there is
1193 * no way to pick any more up (removed from LRU, removed
1194 * from pagecache). Can use non-atomic bitops now (and
1195 * we obviously don't have to worry about waking up a process
1196 * waiting on the page lock, because there are no references.
1197 */
1198 __clear_page_locked(page);
1199 free_it:
1200 nr_reclaimed++;
1201
1202 /*
1203 * Is there need to periodically free_page_list? It would
1204 * appear not as the counts should be low
1205 */
1206 list_add(&page->lru, &free_pages);
1207 continue;
1208
1209 cull_mlocked:
1210 if (PageSwapCache(page))
1211 try_to_free_swap(page);
1212 unlock_page(page);
1213 list_add(&page->lru, &ret_pages);
1214 continue;
1215
1216 activate_locked:
1217 /* Not a candidate for swapping, so reclaim swap space. */
1218 if (PageSwapCache(page) && vm_swap_full())
1219 try_to_free_swap(page);
1220 VM_BUG_ON_PAGE(PageActive(page), page);
1221 SetPageActive(page);
1222 pgactivate++;
1223 keep_locked:
1224 unlock_page(page);
1225 keep:
1226 list_add(&page->lru, &ret_pages);
1227 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1228 }
1229
1230 mem_cgroup_uncharge_list(&free_pages);
1231 try_to_unmap_flush();
1232 free_hot_cold_page_list(&free_pages, true);
1233
1234 list_splice(&ret_pages, page_list);
1235 count_vm_events(PGACTIVATE, pgactivate);
1236
1237 *ret_nr_dirty += nr_dirty;
1238 *ret_nr_congested += nr_congested;
1239 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1240 *ret_nr_writeback += nr_writeback;
1241 *ret_nr_immediate += nr_immediate;
1242 return nr_reclaimed;
1243 }
1244
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1245 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1246 struct list_head *page_list)
1247 {
1248 struct scan_control sc = {
1249 .gfp_mask = GFP_KERNEL,
1250 .priority = DEF_PRIORITY,
1251 .may_unmap = 1,
1252 };
1253 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1254 struct page *page, *next;
1255 LIST_HEAD(clean_pages);
1256
1257 list_for_each_entry_safe(page, next, page_list, lru) {
1258 if (page_is_file_cache(page) && !PageDirty(page) &&
1259 !isolated_balloon_page(page)) {
1260 ClearPageActive(page);
1261 list_move(&page->lru, &clean_pages);
1262 }
1263 }
1264
1265 ret = shrink_page_list(&clean_pages, zone, &sc,
1266 TTU_UNMAP|TTU_IGNORE_ACCESS,
1267 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1268 list_splice(&clean_pages, page_list);
1269 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1270 return ret;
1271 }
1272
1273 /*
1274 * Attempt to remove the specified page from its LRU. Only take this page
1275 * if it is of the appropriate PageActive status. Pages which are being
1276 * freed elsewhere are also ignored.
1277 *
1278 * page: page to consider
1279 * mode: one of the LRU isolation modes defined above
1280 *
1281 * returns 0 on success, -ve errno on failure.
1282 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1283 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1284 {
1285 int ret = -EINVAL;
1286
1287 /* Only take pages on the LRU. */
1288 if (!PageLRU(page))
1289 return ret;
1290
1291 /* Compaction should not handle unevictable pages but CMA can do so */
1292 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1293 return ret;
1294
1295 ret = -EBUSY;
1296
1297 /*
1298 * To minimise LRU disruption, the caller can indicate that it only
1299 * wants to isolate pages it will be able to operate on without
1300 * blocking - clean pages for the most part.
1301 *
1302 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1303 * is used by reclaim when it is cannot write to backing storage
1304 *
1305 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1306 * that it is possible to migrate without blocking
1307 */
1308 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1309 /* All the caller can do on PageWriteback is block */
1310 if (PageWriteback(page))
1311 return ret;
1312
1313 if (PageDirty(page)) {
1314 struct address_space *mapping;
1315 bool migrate_dirty;
1316
1317 /* ISOLATE_CLEAN means only clean pages */
1318 if (mode & ISOLATE_CLEAN)
1319 return ret;
1320
1321 /*
1322 * Only pages without mappings or that have a
1323 * ->migratepage callback are possible to migrate
1324 * without blocking. However, we can be racing with
1325 * truncation so it's necessary to lock the page
1326 * to stabilise the mapping as truncation holds
1327 * the page lock until after the page is removed
1328 * from the page cache.
1329 */
1330 if (!trylock_page(page))
1331 return ret;
1332
1333 mapping = page_mapping(page);
1334 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1335 unlock_page(page);
1336 if (!migrate_dirty)
1337 return ret;
1338 }
1339 }
1340
1341 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1342 return ret;
1343
1344 if (likely(get_page_unless_zero(page))) {
1345 /*
1346 * Be careful not to clear PageLRU until after we're
1347 * sure the page is not being freed elsewhere -- the
1348 * page release code relies on it.
1349 */
1350 ClearPageLRU(page);
1351 ret = 0;
1352 }
1353
1354 return ret;
1355 }
1356
1357 /*
1358 * zone->lru_lock is heavily contended. Some of the functions that
1359 * shrink the lists perform better by taking out a batch of pages
1360 * and working on them outside the LRU lock.
1361 *
1362 * For pagecache intensive workloads, this function is the hottest
1363 * spot in the kernel (apart from copy_*_user functions).
1364 *
1365 * Appropriate locks must be held before calling this function.
1366 *
1367 * @nr_to_scan: The number of pages to look through on the list.
1368 * @lruvec: The LRU vector to pull pages from.
1369 * @dst: The temp list to put pages on to.
1370 * @nr_scanned: The number of pages that were scanned.
1371 * @sc: The scan_control struct for this reclaim session
1372 * @mode: One of the LRU isolation modes
1373 * @lru: LRU list id for isolating
1374 *
1375 * returns how many pages were moved onto *@dst.
1376 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1377 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1378 struct lruvec *lruvec, struct list_head *dst,
1379 unsigned long *nr_scanned, struct scan_control *sc,
1380 isolate_mode_t mode, enum lru_list lru)
1381 {
1382 struct list_head *src = &lruvec->lists[lru];
1383 unsigned long nr_taken = 0;
1384 unsigned long scan;
1385
1386 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1387 !list_empty(src); scan++) {
1388 struct page *page;
1389 int nr_pages;
1390
1391 page = lru_to_page(src);
1392 prefetchw_prev_lru_page(page, src, flags);
1393
1394 VM_BUG_ON_PAGE(!PageLRU(page), page);
1395
1396 switch (__isolate_lru_page(page, mode)) {
1397 case 0:
1398 nr_pages = hpage_nr_pages(page);
1399 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1400 list_move(&page->lru, dst);
1401 nr_taken += nr_pages;
1402 break;
1403
1404 case -EBUSY:
1405 /* else it is being freed elsewhere */
1406 list_move(&page->lru, src);
1407 continue;
1408
1409 default:
1410 BUG();
1411 }
1412 }
1413
1414 *nr_scanned = scan;
1415 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1416 nr_taken, mode, is_file_lru(lru));
1417 return nr_taken;
1418 }
1419
1420 /**
1421 * isolate_lru_page - tries to isolate a page from its LRU list
1422 * @page: page to isolate from its LRU list
1423 *
1424 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1425 * vmstat statistic corresponding to whatever LRU list the page was on.
1426 *
1427 * Returns 0 if the page was removed from an LRU list.
1428 * Returns -EBUSY if the page was not on an LRU list.
1429 *
1430 * The returned page will have PageLRU() cleared. If it was found on
1431 * the active list, it will have PageActive set. If it was found on
1432 * the unevictable list, it will have the PageUnevictable bit set. That flag
1433 * may need to be cleared by the caller before letting the page go.
1434 *
1435 * The vmstat statistic corresponding to the list on which the page was
1436 * found will be decremented.
1437 *
1438 * Restrictions:
1439 * (1) Must be called with an elevated refcount on the page. This is a
1440 * fundamentnal difference from isolate_lru_pages (which is called
1441 * without a stable reference).
1442 * (2) the lru_lock must not be held.
1443 * (3) interrupts must be enabled.
1444 */
isolate_lru_page(struct page * page)1445 int isolate_lru_page(struct page *page)
1446 {
1447 int ret = -EBUSY;
1448
1449 VM_BUG_ON_PAGE(!page_count(page), page);
1450
1451 if (PageLRU(page)) {
1452 struct zone *zone = page_zone(page);
1453 struct lruvec *lruvec;
1454
1455 spin_lock_irq(&zone->lru_lock);
1456 lruvec = mem_cgroup_page_lruvec(page, zone);
1457 if (PageLRU(page)) {
1458 int lru = page_lru(page);
1459 get_page(page);
1460 ClearPageLRU(page);
1461 del_page_from_lru_list(page, lruvec, lru);
1462 ret = 0;
1463 }
1464 spin_unlock_irq(&zone->lru_lock);
1465 }
1466 return ret;
1467 }
1468
1469 /*
1470 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1471 * then get resheduled. When there are massive number of tasks doing page
1472 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1473 * the LRU list will go small and be scanned faster than necessary, leading to
1474 * unnecessary swapping, thrashing and OOM.
1475 */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1476 static int too_many_isolated(struct zone *zone, int file,
1477 struct scan_control *sc)
1478 {
1479 unsigned long inactive, isolated;
1480
1481 if (current_is_kswapd())
1482 return 0;
1483
1484 if (!sane_reclaim(sc))
1485 return 0;
1486
1487 if (file) {
1488 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1489 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1490 } else {
1491 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1492 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1493 }
1494
1495 /*
1496 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1497 * won't get blocked by normal direct-reclaimers, forming a circular
1498 * deadlock.
1499 */
1500 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1501 inactive >>= 3;
1502
1503 return isolated > inactive;
1504 }
1505
1506 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1507 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1508 {
1509 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1510 struct zone *zone = lruvec_zone(lruvec);
1511 LIST_HEAD(pages_to_free);
1512
1513 /*
1514 * Put back any unfreeable pages.
1515 */
1516 while (!list_empty(page_list)) {
1517 struct page *page = lru_to_page(page_list);
1518 int lru;
1519
1520 VM_BUG_ON_PAGE(PageLRU(page), page);
1521 list_del(&page->lru);
1522 if (unlikely(!page_evictable(page))) {
1523 spin_unlock_irq(&zone->lru_lock);
1524 putback_lru_page(page);
1525 spin_lock_irq(&zone->lru_lock);
1526 continue;
1527 }
1528
1529 lruvec = mem_cgroup_page_lruvec(page, zone);
1530
1531 SetPageLRU(page);
1532 lru = page_lru(page);
1533 add_page_to_lru_list(page, lruvec, lru);
1534
1535 if (is_active_lru(lru)) {
1536 int file = is_file_lru(lru);
1537 int numpages = hpage_nr_pages(page);
1538 reclaim_stat->recent_rotated[file] += numpages;
1539 }
1540 if (put_page_testzero(page)) {
1541 __ClearPageLRU(page);
1542 __ClearPageActive(page);
1543 del_page_from_lru_list(page, lruvec, lru);
1544
1545 if (unlikely(PageCompound(page))) {
1546 spin_unlock_irq(&zone->lru_lock);
1547 mem_cgroup_uncharge(page);
1548 (*get_compound_page_dtor(page))(page);
1549 spin_lock_irq(&zone->lru_lock);
1550 } else
1551 list_add(&page->lru, &pages_to_free);
1552 }
1553 }
1554
1555 /*
1556 * To save our caller's stack, now use input list for pages to free.
1557 */
1558 list_splice(&pages_to_free, page_list);
1559 }
1560
1561 /*
1562 * If a kernel thread (such as nfsd for loop-back mounts) services
1563 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1564 * In that case we should only throttle if the backing device it is
1565 * writing to is congested. In other cases it is safe to throttle.
1566 */
current_may_throttle(void)1567 static int current_may_throttle(void)
1568 {
1569 return !(current->flags & PF_LESS_THROTTLE) ||
1570 current->backing_dev_info == NULL ||
1571 bdi_write_congested(current->backing_dev_info);
1572 }
1573
1574 /*
1575 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1576 * of reclaimed pages
1577 */
1578 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1579 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1580 struct scan_control *sc, enum lru_list lru)
1581 {
1582 LIST_HEAD(page_list);
1583 unsigned long nr_scanned;
1584 unsigned long nr_reclaimed = 0;
1585 unsigned long nr_taken;
1586 unsigned long nr_dirty = 0;
1587 unsigned long nr_congested = 0;
1588 unsigned long nr_unqueued_dirty = 0;
1589 unsigned long nr_writeback = 0;
1590 unsigned long nr_immediate = 0;
1591 isolate_mode_t isolate_mode = 0;
1592 int file = is_file_lru(lru);
1593 struct zone *zone = lruvec_zone(lruvec);
1594 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1595
1596 while (unlikely(too_many_isolated(zone, file, sc))) {
1597 congestion_wait(BLK_RW_ASYNC, HZ/10);
1598
1599 /* We are about to die and free our memory. Return now. */
1600 if (fatal_signal_pending(current))
1601 return SWAP_CLUSTER_MAX;
1602 }
1603
1604 lru_add_drain();
1605
1606 if (!sc->may_unmap)
1607 isolate_mode |= ISOLATE_UNMAPPED;
1608 if (!sc->may_writepage)
1609 isolate_mode |= ISOLATE_CLEAN;
1610
1611 spin_lock_irq(&zone->lru_lock);
1612
1613 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1614 &nr_scanned, sc, isolate_mode, lru);
1615
1616 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1617 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1618
1619 if (global_reclaim(sc)) {
1620 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1621 if (current_is_kswapd())
1622 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1623 else
1624 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1625 }
1626 spin_unlock_irq(&zone->lru_lock);
1627
1628 if (nr_taken == 0)
1629 return 0;
1630
1631 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1632 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1633 &nr_writeback, &nr_immediate,
1634 false);
1635
1636 spin_lock_irq(&zone->lru_lock);
1637
1638 reclaim_stat->recent_scanned[file] += nr_taken;
1639
1640 if (global_reclaim(sc)) {
1641 if (current_is_kswapd())
1642 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1643 nr_reclaimed);
1644 else
1645 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1646 nr_reclaimed);
1647 }
1648
1649 putback_inactive_pages(lruvec, &page_list);
1650
1651 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1652
1653 spin_unlock_irq(&zone->lru_lock);
1654
1655 mem_cgroup_uncharge_list(&page_list);
1656 free_hot_cold_page_list(&page_list, true);
1657
1658 /*
1659 * If reclaim is isolating dirty pages under writeback, it implies
1660 * that the long-lived page allocation rate is exceeding the page
1661 * laundering rate. Either the global limits are not being effective
1662 * at throttling processes due to the page distribution throughout
1663 * zones or there is heavy usage of a slow backing device. The
1664 * only option is to throttle from reclaim context which is not ideal
1665 * as there is no guarantee the dirtying process is throttled in the
1666 * same way balance_dirty_pages() manages.
1667 *
1668 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1669 * of pages under pages flagged for immediate reclaim and stall if any
1670 * are encountered in the nr_immediate check below.
1671 */
1672 if (nr_writeback && nr_writeback == nr_taken)
1673 set_bit(ZONE_WRITEBACK, &zone->flags);
1674
1675 /*
1676 * Legacy memcg will stall in page writeback so avoid forcibly
1677 * stalling here.
1678 */
1679 if (sane_reclaim(sc)) {
1680 /*
1681 * Tag a zone as congested if all the dirty pages scanned were
1682 * backed by a congested BDI and wait_iff_congested will stall.
1683 */
1684 if (nr_dirty && nr_dirty == nr_congested)
1685 set_bit(ZONE_CONGESTED, &zone->flags);
1686
1687 /*
1688 * If dirty pages are scanned that are not queued for IO, it
1689 * implies that flushers are not keeping up. In this case, flag
1690 * the zone ZONE_DIRTY and kswapd will start writing pages from
1691 * reclaim context.
1692 */
1693 if (nr_unqueued_dirty == nr_taken)
1694 set_bit(ZONE_DIRTY, &zone->flags);
1695
1696 /*
1697 * If kswapd scans pages marked marked for immediate
1698 * reclaim and under writeback (nr_immediate), it implies
1699 * that pages are cycling through the LRU faster than
1700 * they are written so also forcibly stall.
1701 */
1702 if (nr_immediate && current_may_throttle())
1703 congestion_wait(BLK_RW_ASYNC, HZ/10);
1704 }
1705
1706 /*
1707 * Stall direct reclaim for IO completions if underlying BDIs or zone
1708 * is congested. Allow kswapd to continue until it starts encountering
1709 * unqueued dirty pages or cycling through the LRU too quickly.
1710 */
1711 if (!sc->hibernation_mode && !current_is_kswapd() &&
1712 current_may_throttle())
1713 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1714
1715 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1716 zone_idx(zone),
1717 nr_scanned, nr_reclaimed,
1718 sc->priority,
1719 trace_shrink_flags(file));
1720 return nr_reclaimed;
1721 }
1722
1723 /*
1724 * This moves pages from the active list to the inactive list.
1725 *
1726 * We move them the other way if the page is referenced by one or more
1727 * processes, from rmap.
1728 *
1729 * If the pages are mostly unmapped, the processing is fast and it is
1730 * appropriate to hold zone->lru_lock across the whole operation. But if
1731 * the pages are mapped, the processing is slow (page_referenced()) so we
1732 * should drop zone->lru_lock around each page. It's impossible to balance
1733 * this, so instead we remove the pages from the LRU while processing them.
1734 * It is safe to rely on PG_active against the non-LRU pages in here because
1735 * nobody will play with that bit on a non-LRU page.
1736 *
1737 * The downside is that we have to touch page->_count against each page.
1738 * But we had to alter page->flags anyway.
1739 */
1740
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1741 static void move_active_pages_to_lru(struct lruvec *lruvec,
1742 struct list_head *list,
1743 struct list_head *pages_to_free,
1744 enum lru_list lru)
1745 {
1746 struct zone *zone = lruvec_zone(lruvec);
1747 unsigned long pgmoved = 0;
1748 struct page *page;
1749 int nr_pages;
1750
1751 while (!list_empty(list)) {
1752 page = lru_to_page(list);
1753 lruvec = mem_cgroup_page_lruvec(page, zone);
1754
1755 VM_BUG_ON_PAGE(PageLRU(page), page);
1756 SetPageLRU(page);
1757
1758 nr_pages = hpage_nr_pages(page);
1759 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1760 list_move(&page->lru, &lruvec->lists[lru]);
1761 pgmoved += nr_pages;
1762
1763 if (put_page_testzero(page)) {
1764 __ClearPageLRU(page);
1765 __ClearPageActive(page);
1766 del_page_from_lru_list(page, lruvec, lru);
1767
1768 if (unlikely(PageCompound(page))) {
1769 spin_unlock_irq(&zone->lru_lock);
1770 mem_cgroup_uncharge(page);
1771 (*get_compound_page_dtor(page))(page);
1772 spin_lock_irq(&zone->lru_lock);
1773 } else
1774 list_add(&page->lru, pages_to_free);
1775 }
1776 }
1777 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1778 if (!is_active_lru(lru))
1779 __count_vm_events(PGDEACTIVATE, pgmoved);
1780 }
1781
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1782 static void shrink_active_list(unsigned long nr_to_scan,
1783 struct lruvec *lruvec,
1784 struct scan_control *sc,
1785 enum lru_list lru)
1786 {
1787 unsigned long nr_taken;
1788 unsigned long nr_scanned;
1789 unsigned long vm_flags;
1790 LIST_HEAD(l_hold); /* The pages which were snipped off */
1791 LIST_HEAD(l_active);
1792 LIST_HEAD(l_inactive);
1793 struct page *page;
1794 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1795 unsigned long nr_rotated = 0;
1796 isolate_mode_t isolate_mode = 0;
1797 int file = is_file_lru(lru);
1798 struct zone *zone = lruvec_zone(lruvec);
1799
1800 lru_add_drain();
1801
1802 if (!sc->may_unmap)
1803 isolate_mode |= ISOLATE_UNMAPPED;
1804 if (!sc->may_writepage)
1805 isolate_mode |= ISOLATE_CLEAN;
1806
1807 spin_lock_irq(&zone->lru_lock);
1808
1809 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1810 &nr_scanned, sc, isolate_mode, lru);
1811 if (global_reclaim(sc))
1812 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1813
1814 reclaim_stat->recent_scanned[file] += nr_taken;
1815
1816 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1817 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1818 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1819 spin_unlock_irq(&zone->lru_lock);
1820
1821 while (!list_empty(&l_hold)) {
1822 cond_resched();
1823 page = lru_to_page(&l_hold);
1824 list_del(&page->lru);
1825
1826 if (unlikely(!page_evictable(page))) {
1827 putback_lru_page(page);
1828 continue;
1829 }
1830
1831 if (unlikely(buffer_heads_over_limit)) {
1832 if (page_has_private(page) && trylock_page(page)) {
1833 if (page_has_private(page))
1834 try_to_release_page(page, 0);
1835 unlock_page(page);
1836 }
1837 }
1838
1839 if (page_referenced(page, 0, sc->target_mem_cgroup,
1840 &vm_flags)) {
1841 nr_rotated += hpage_nr_pages(page);
1842 /*
1843 * Identify referenced, file-backed active pages and
1844 * give them one more trip around the active list. So
1845 * that executable code get better chances to stay in
1846 * memory under moderate memory pressure. Anon pages
1847 * are not likely to be evicted by use-once streaming
1848 * IO, plus JVM can create lots of anon VM_EXEC pages,
1849 * so we ignore them here.
1850 */
1851 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1852 list_add(&page->lru, &l_active);
1853 continue;
1854 }
1855 }
1856
1857 ClearPageActive(page); /* we are de-activating */
1858 list_add(&page->lru, &l_inactive);
1859 }
1860
1861 /*
1862 * Move pages back to the lru list.
1863 */
1864 spin_lock_irq(&zone->lru_lock);
1865 /*
1866 * Count referenced pages from currently used mappings as rotated,
1867 * even though only some of them are actually re-activated. This
1868 * helps balance scan pressure between file and anonymous pages in
1869 * get_scan_count.
1870 */
1871 reclaim_stat->recent_rotated[file] += nr_rotated;
1872
1873 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1874 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1875 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1876 spin_unlock_irq(&zone->lru_lock);
1877
1878 mem_cgroup_uncharge_list(&l_hold);
1879 free_hot_cold_page_list(&l_hold, true);
1880 }
1881
1882 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1883 static bool inactive_anon_is_low_global(struct zone *zone)
1884 {
1885 unsigned long active, inactive;
1886
1887 active = zone_page_state(zone, NR_ACTIVE_ANON);
1888 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1889
1890 return inactive * zone->inactive_ratio < active;
1891 }
1892
1893 /**
1894 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1895 * @lruvec: LRU vector to check
1896 *
1897 * Returns true if the zone does not have enough inactive anon pages,
1898 * meaning some active anon pages need to be deactivated.
1899 */
inactive_anon_is_low(struct lruvec * lruvec)1900 static bool inactive_anon_is_low(struct lruvec *lruvec)
1901 {
1902 /*
1903 * If we don't have swap space, anonymous page deactivation
1904 * is pointless.
1905 */
1906 if (!total_swap_pages)
1907 return false;
1908
1909 if (!mem_cgroup_disabled())
1910 return mem_cgroup_inactive_anon_is_low(lruvec);
1911
1912 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1913 }
1914 #else
inactive_anon_is_low(struct lruvec * lruvec)1915 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1916 {
1917 return false;
1918 }
1919 #endif
1920
1921 /**
1922 * inactive_file_is_low - check if file pages need to be deactivated
1923 * @lruvec: LRU vector to check
1924 *
1925 * When the system is doing streaming IO, memory pressure here
1926 * ensures that active file pages get deactivated, until more
1927 * than half of the file pages are on the inactive list.
1928 *
1929 * Once we get to that situation, protect the system's working
1930 * set from being evicted by disabling active file page aging.
1931 *
1932 * This uses a different ratio than the anonymous pages, because
1933 * the page cache uses a use-once replacement algorithm.
1934 */
inactive_file_is_low(struct lruvec * lruvec)1935 static bool inactive_file_is_low(struct lruvec *lruvec)
1936 {
1937 unsigned long inactive;
1938 unsigned long active;
1939
1940 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1941 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1942
1943 return active > inactive;
1944 }
1945
inactive_list_is_low(struct lruvec * lruvec,enum lru_list lru)1946 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1947 {
1948 if (is_file_lru(lru))
1949 return inactive_file_is_low(lruvec);
1950 else
1951 return inactive_anon_is_low(lruvec);
1952 }
1953
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)1954 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1955 struct lruvec *lruvec, struct scan_control *sc)
1956 {
1957 if (is_active_lru(lru)) {
1958 if (inactive_list_is_low(lruvec, lru))
1959 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1960 return 0;
1961 }
1962
1963 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1964 }
1965
1966 enum scan_balance {
1967 SCAN_EQUAL,
1968 SCAN_FRACT,
1969 SCAN_ANON,
1970 SCAN_FILE,
1971 };
1972
1973 /*
1974 * Determine how aggressively the anon and file LRU lists should be
1975 * scanned. The relative value of each set of LRU lists is determined
1976 * by looking at the fraction of the pages scanned we did rotate back
1977 * onto the active list instead of evict.
1978 *
1979 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1980 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1981 */
get_scan_count(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)1982 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1983 struct scan_control *sc, unsigned long *nr,
1984 unsigned long *lru_pages)
1985 {
1986 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1987 u64 fraction[2];
1988 u64 denominator = 0; /* gcc */
1989 struct zone *zone = lruvec_zone(lruvec);
1990 unsigned long anon_prio, file_prio;
1991 enum scan_balance scan_balance;
1992 unsigned long anon, file;
1993 bool force_scan = false;
1994 unsigned long ap, fp;
1995 enum lru_list lru;
1996 bool some_scanned;
1997 int pass;
1998
1999 /*
2000 * If the zone or memcg is small, nr[l] can be 0. This
2001 * results in no scanning on this priority and a potential
2002 * priority drop. Global direct reclaim can go to the next
2003 * zone and tends to have no problems. Global kswapd is for
2004 * zone balancing and it needs to scan a minimum amount. When
2005 * reclaiming for a memcg, a priority drop can cause high
2006 * latencies, so it's better to scan a minimum amount there as
2007 * well.
2008 */
2009 if (current_is_kswapd()) {
2010 if (!zone_reclaimable(zone))
2011 force_scan = true;
2012 if (!mem_cgroup_lruvec_online(lruvec))
2013 force_scan = true;
2014 }
2015 if (!global_reclaim(sc))
2016 force_scan = true;
2017
2018 /* If we have no swap space, do not bother scanning anon pages. */
2019 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
2020 scan_balance = SCAN_FILE;
2021 goto out;
2022 }
2023
2024 /*
2025 * Global reclaim will swap to prevent OOM even with no
2026 * swappiness, but memcg users want to use this knob to
2027 * disable swapping for individual groups completely when
2028 * using the memory controller's swap limit feature would be
2029 * too expensive.
2030 */
2031 if (!global_reclaim(sc) && !swappiness) {
2032 scan_balance = SCAN_FILE;
2033 goto out;
2034 }
2035
2036 /*
2037 * Do not apply any pressure balancing cleverness when the
2038 * system is close to OOM, scan both anon and file equally
2039 * (unless the swappiness setting disagrees with swapping).
2040 */
2041 if (!sc->priority && swappiness) {
2042 scan_balance = SCAN_EQUAL;
2043 goto out;
2044 }
2045
2046 /*
2047 * Prevent the reclaimer from falling into the cache trap: as
2048 * cache pages start out inactive, every cache fault will tip
2049 * the scan balance towards the file LRU. And as the file LRU
2050 * shrinks, so does the window for rotation from references.
2051 * This means we have a runaway feedback loop where a tiny
2052 * thrashing file LRU becomes infinitely more attractive than
2053 * anon pages. Try to detect this based on file LRU size.
2054 */
2055 if (global_reclaim(sc)) {
2056 unsigned long zonefile;
2057 unsigned long zonefree;
2058
2059 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2060 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2061 zone_page_state(zone, NR_INACTIVE_FILE);
2062
2063 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2064 scan_balance = SCAN_ANON;
2065 goto out;
2066 }
2067 }
2068
2069 /*
2070 * If there is enough inactive page cache, i.e. if the size of the
2071 * inactive list is greater than that of the active list *and* the
2072 * inactive list actually has some pages to scan on this priority, we
2073 * do not reclaim anything from the anonymous working set right now.
2074 * Without the second condition we could end up never scanning an
2075 * lruvec even if it has plenty of old anonymous pages unless the
2076 * system is under heavy pressure.
2077 */
2078 if (!inactive_file_is_low(lruvec) &&
2079 get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2080 scan_balance = SCAN_FILE;
2081 goto out;
2082 }
2083
2084 scan_balance = SCAN_FRACT;
2085
2086 /*
2087 * With swappiness at 100, anonymous and file have the same priority.
2088 * This scanning priority is essentially the inverse of IO cost.
2089 */
2090 anon_prio = swappiness;
2091 file_prio = 200 - anon_prio;
2092
2093 /*
2094 * OK, so we have swap space and a fair amount of page cache
2095 * pages. We use the recently rotated / recently scanned
2096 * ratios to determine how valuable each cache is.
2097 *
2098 * Because workloads change over time (and to avoid overflow)
2099 * we keep these statistics as a floating average, which ends
2100 * up weighing recent references more than old ones.
2101 *
2102 * anon in [0], file in [1]
2103 */
2104
2105 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2106 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2107 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2108 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2109
2110 spin_lock_irq(&zone->lru_lock);
2111 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2112 reclaim_stat->recent_scanned[0] /= 2;
2113 reclaim_stat->recent_rotated[0] /= 2;
2114 }
2115
2116 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2117 reclaim_stat->recent_scanned[1] /= 2;
2118 reclaim_stat->recent_rotated[1] /= 2;
2119 }
2120
2121 /*
2122 * The amount of pressure on anon vs file pages is inversely
2123 * proportional to the fraction of recently scanned pages on
2124 * each list that were recently referenced and in active use.
2125 */
2126 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2127 ap /= reclaim_stat->recent_rotated[0] + 1;
2128
2129 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2130 fp /= reclaim_stat->recent_rotated[1] + 1;
2131 spin_unlock_irq(&zone->lru_lock);
2132
2133 fraction[0] = ap;
2134 fraction[1] = fp;
2135 denominator = ap + fp + 1;
2136 out:
2137 some_scanned = false;
2138 /* Only use force_scan on second pass. */
2139 for (pass = 0; !some_scanned && pass < 2; pass++) {
2140 *lru_pages = 0;
2141 for_each_evictable_lru(lru) {
2142 int file = is_file_lru(lru);
2143 unsigned long size;
2144 unsigned long scan;
2145
2146 size = get_lru_size(lruvec, lru);
2147 scan = size >> sc->priority;
2148
2149 if (!scan && pass && force_scan)
2150 scan = min(size, SWAP_CLUSTER_MAX);
2151
2152 switch (scan_balance) {
2153 case SCAN_EQUAL:
2154 /* Scan lists relative to size */
2155 break;
2156 case SCAN_FRACT:
2157 /*
2158 * Scan types proportional to swappiness and
2159 * their relative recent reclaim efficiency.
2160 */
2161 scan = div64_u64(scan * fraction[file],
2162 denominator);
2163 break;
2164 case SCAN_FILE:
2165 case SCAN_ANON:
2166 /* Scan one type exclusively */
2167 if ((scan_balance == SCAN_FILE) != file) {
2168 size = 0;
2169 scan = 0;
2170 }
2171 break;
2172 default:
2173 /* Look ma, no brain */
2174 BUG();
2175 }
2176
2177 *lru_pages += size;
2178 nr[lru] = scan;
2179
2180 /*
2181 * Skip the second pass and don't force_scan,
2182 * if we found something to scan.
2183 */
2184 some_scanned |= !!scan;
2185 }
2186 }
2187 }
2188
2189 /*
2190 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2191 */
shrink_lruvec(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * lru_pages)2192 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2193 struct scan_control *sc, unsigned long *lru_pages)
2194 {
2195 unsigned long nr[NR_LRU_LISTS];
2196 unsigned long targets[NR_LRU_LISTS];
2197 unsigned long nr_to_scan;
2198 enum lru_list lru;
2199 unsigned long nr_reclaimed = 0;
2200 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2201 struct blk_plug plug;
2202 bool scan_adjusted;
2203
2204 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2205
2206 /* Record the original scan target for proportional adjustments later */
2207 memcpy(targets, nr, sizeof(nr));
2208
2209 /*
2210 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2211 * event that can occur when there is little memory pressure e.g.
2212 * multiple streaming readers/writers. Hence, we do not abort scanning
2213 * when the requested number of pages are reclaimed when scanning at
2214 * DEF_PRIORITY on the assumption that the fact we are direct
2215 * reclaiming implies that kswapd is not keeping up and it is best to
2216 * do a batch of work at once. For memcg reclaim one check is made to
2217 * abort proportional reclaim if either the file or anon lru has already
2218 * dropped to zero at the first pass.
2219 */
2220 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2221 sc->priority == DEF_PRIORITY);
2222
2223 blk_start_plug(&plug);
2224 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2225 nr[LRU_INACTIVE_FILE]) {
2226 unsigned long nr_anon, nr_file, percentage;
2227 unsigned long nr_scanned;
2228
2229 for_each_evictable_lru(lru) {
2230 if (nr[lru]) {
2231 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2232 nr[lru] -= nr_to_scan;
2233
2234 nr_reclaimed += shrink_list(lru, nr_to_scan,
2235 lruvec, sc);
2236 }
2237 }
2238
2239 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2240 continue;
2241
2242 /*
2243 * For kswapd and memcg, reclaim at least the number of pages
2244 * requested. Ensure that the anon and file LRUs are scanned
2245 * proportionally what was requested by get_scan_count(). We
2246 * stop reclaiming one LRU and reduce the amount scanning
2247 * proportional to the original scan target.
2248 */
2249 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2250 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2251
2252 /*
2253 * It's just vindictive to attack the larger once the smaller
2254 * has gone to zero. And given the way we stop scanning the
2255 * smaller below, this makes sure that we only make one nudge
2256 * towards proportionality once we've got nr_to_reclaim.
2257 */
2258 if (!nr_file || !nr_anon)
2259 break;
2260
2261 if (nr_file > nr_anon) {
2262 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2263 targets[LRU_ACTIVE_ANON] + 1;
2264 lru = LRU_BASE;
2265 percentage = nr_anon * 100 / scan_target;
2266 } else {
2267 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2268 targets[LRU_ACTIVE_FILE] + 1;
2269 lru = LRU_FILE;
2270 percentage = nr_file * 100 / scan_target;
2271 }
2272
2273 /* Stop scanning the smaller of the LRU */
2274 nr[lru] = 0;
2275 nr[lru + LRU_ACTIVE] = 0;
2276
2277 /*
2278 * Recalculate the other LRU scan count based on its original
2279 * scan target and the percentage scanning already complete
2280 */
2281 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2282 nr_scanned = targets[lru] - nr[lru];
2283 nr[lru] = targets[lru] * (100 - percentage) / 100;
2284 nr[lru] -= min(nr[lru], nr_scanned);
2285
2286 lru += LRU_ACTIVE;
2287 nr_scanned = targets[lru] - nr[lru];
2288 nr[lru] = targets[lru] * (100 - percentage) / 100;
2289 nr[lru] -= min(nr[lru], nr_scanned);
2290
2291 scan_adjusted = true;
2292 }
2293 blk_finish_plug(&plug);
2294 sc->nr_reclaimed += nr_reclaimed;
2295
2296 /*
2297 * Even if we did not try to evict anon pages at all, we want to
2298 * rebalance the anon lru active/inactive ratio.
2299 */
2300 if (inactive_anon_is_low(lruvec))
2301 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2302 sc, LRU_ACTIVE_ANON);
2303
2304 throttle_vm_writeout(sc->gfp_mask);
2305 }
2306
2307 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2308 static bool in_reclaim_compaction(struct scan_control *sc)
2309 {
2310 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2311 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2312 sc->priority < DEF_PRIORITY - 2))
2313 return true;
2314
2315 return false;
2316 }
2317
2318 /*
2319 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2320 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2321 * true if more pages should be reclaimed such that when the page allocator
2322 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2323 * It will give up earlier than that if there is difficulty reclaiming pages.
2324 */
should_continue_reclaim(struct zone * zone,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2325 static inline bool should_continue_reclaim(struct zone *zone,
2326 unsigned long nr_reclaimed,
2327 unsigned long nr_scanned,
2328 struct scan_control *sc)
2329 {
2330 unsigned long pages_for_compaction;
2331 unsigned long inactive_lru_pages;
2332
2333 /* If not in reclaim/compaction mode, stop */
2334 if (!in_reclaim_compaction(sc))
2335 return false;
2336
2337 /* Consider stopping depending on scan and reclaim activity */
2338 if (sc->gfp_mask & __GFP_REPEAT) {
2339 /*
2340 * For __GFP_REPEAT allocations, stop reclaiming if the
2341 * full LRU list has been scanned and we are still failing
2342 * to reclaim pages. This full LRU scan is potentially
2343 * expensive but a __GFP_REPEAT caller really wants to succeed
2344 */
2345 if (!nr_reclaimed && !nr_scanned)
2346 return false;
2347 } else {
2348 /*
2349 * For non-__GFP_REPEAT allocations which can presumably
2350 * fail without consequence, stop if we failed to reclaim
2351 * any pages from the last SWAP_CLUSTER_MAX number of
2352 * pages that were scanned. This will return to the
2353 * caller faster at the risk reclaim/compaction and
2354 * the resulting allocation attempt fails
2355 */
2356 if (!nr_reclaimed)
2357 return false;
2358 }
2359
2360 /*
2361 * If we have not reclaimed enough pages for compaction and the
2362 * inactive lists are large enough, continue reclaiming
2363 */
2364 pages_for_compaction = (2UL << sc->order);
2365 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2366 if (get_nr_swap_pages() > 0)
2367 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2368 if (sc->nr_reclaimed < pages_for_compaction &&
2369 inactive_lru_pages > pages_for_compaction)
2370 return true;
2371
2372 /* If compaction would go ahead or the allocation would succeed, stop */
2373 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2374 case COMPACT_PARTIAL:
2375 case COMPACT_CONTINUE:
2376 return false;
2377 default:
2378 return true;
2379 }
2380 }
2381
shrink_zone(struct zone * zone,struct scan_control * sc,bool is_classzone)2382 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2383 bool is_classzone)
2384 {
2385 struct reclaim_state *reclaim_state = current->reclaim_state;
2386 unsigned long nr_reclaimed, nr_scanned;
2387 bool reclaimable = false;
2388
2389 do {
2390 struct mem_cgroup *root = sc->target_mem_cgroup;
2391 struct mem_cgroup_reclaim_cookie reclaim = {
2392 .zone = zone,
2393 .priority = sc->priority,
2394 };
2395 unsigned long zone_lru_pages = 0;
2396 struct mem_cgroup *memcg;
2397
2398 nr_reclaimed = sc->nr_reclaimed;
2399 nr_scanned = sc->nr_scanned;
2400
2401 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2402 do {
2403 unsigned long lru_pages;
2404 unsigned long scanned;
2405 struct lruvec *lruvec;
2406 int swappiness;
2407
2408 if (mem_cgroup_low(root, memcg)) {
2409 if (!sc->may_thrash)
2410 continue;
2411 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2412 }
2413
2414 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2415 swappiness = mem_cgroup_swappiness(memcg);
2416 scanned = sc->nr_scanned;
2417
2418 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2419 zone_lru_pages += lru_pages;
2420
2421 if (memcg && is_classzone)
2422 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2423 memcg, sc->nr_scanned - scanned,
2424 lru_pages);
2425
2426 /*
2427 * Direct reclaim and kswapd have to scan all memory
2428 * cgroups to fulfill the overall scan target for the
2429 * zone.
2430 *
2431 * Limit reclaim, on the other hand, only cares about
2432 * nr_to_reclaim pages to be reclaimed and it will
2433 * retry with decreasing priority if one round over the
2434 * whole hierarchy is not sufficient.
2435 */
2436 if (!global_reclaim(sc) &&
2437 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2438 mem_cgroup_iter_break(root, memcg);
2439 break;
2440 }
2441 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2442
2443 /*
2444 * Shrink the slab caches in the same proportion that
2445 * the eligible LRU pages were scanned.
2446 */
2447 if (global_reclaim(sc) && is_classzone)
2448 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2449 sc->nr_scanned - nr_scanned,
2450 zone_lru_pages);
2451
2452 if (reclaim_state) {
2453 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2454 reclaim_state->reclaimed_slab = 0;
2455 }
2456
2457 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2458 sc->nr_scanned - nr_scanned,
2459 sc->nr_reclaimed - nr_reclaimed);
2460
2461 if (sc->nr_reclaimed - nr_reclaimed)
2462 reclaimable = true;
2463
2464 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2465 sc->nr_scanned - nr_scanned, sc));
2466
2467 return reclaimable;
2468 }
2469
2470 /*
2471 * Returns true if compaction should go ahead for a high-order request, or
2472 * the high-order allocation would succeed without compaction.
2473 */
compaction_ready(struct zone * zone,int order)2474 static inline bool compaction_ready(struct zone *zone, int order)
2475 {
2476 unsigned long balance_gap, watermark;
2477 bool watermark_ok;
2478
2479 /*
2480 * Compaction takes time to run and there are potentially other
2481 * callers using the pages just freed. Continue reclaiming until
2482 * there is a buffer of free pages available to give compaction
2483 * a reasonable chance of completing and allocating the page
2484 */
2485 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2486 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2487 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2488 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2489
2490 /*
2491 * If compaction is deferred, reclaim up to a point where
2492 * compaction will have a chance of success when re-enabled
2493 */
2494 if (compaction_deferred(zone, order))
2495 return watermark_ok;
2496
2497 /*
2498 * If compaction is not ready to start and allocation is not likely
2499 * to succeed without it, then keep reclaiming.
2500 */
2501 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2502 return false;
2503
2504 return watermark_ok;
2505 }
2506
2507 /*
2508 * This is the direct reclaim path, for page-allocating processes. We only
2509 * try to reclaim pages from zones which will satisfy the caller's allocation
2510 * request.
2511 *
2512 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2513 * Because:
2514 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2515 * allocation or
2516 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2517 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2518 * zone defense algorithm.
2519 *
2520 * If a zone is deemed to be full of pinned pages then just give it a light
2521 * scan then give up on it.
2522 *
2523 * Returns true if a zone was reclaimable.
2524 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2525 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2526 {
2527 struct zoneref *z;
2528 struct zone *zone;
2529 unsigned long nr_soft_reclaimed;
2530 unsigned long nr_soft_scanned;
2531 gfp_t orig_mask;
2532 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2533 bool reclaimable = false;
2534
2535 /*
2536 * If the number of buffer_heads in the machine exceeds the maximum
2537 * allowed level, force direct reclaim to scan the highmem zone as
2538 * highmem pages could be pinning lowmem pages storing buffer_heads
2539 */
2540 orig_mask = sc->gfp_mask;
2541 if (buffer_heads_over_limit)
2542 sc->gfp_mask |= __GFP_HIGHMEM;
2543
2544 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2545 gfp_zone(sc->gfp_mask), sc->nodemask) {
2546 enum zone_type classzone_idx;
2547
2548 if (!populated_zone(zone))
2549 continue;
2550
2551 classzone_idx = gfp_zone(sc->gfp_mask);
2552 while (!populated_zone(zone->zone_pgdat->node_zones +
2553 classzone_idx))
2554 classzone_idx--;
2555
2556 /*
2557 * Take care memory controller reclaiming has small influence
2558 * to global LRU.
2559 */
2560 if (global_reclaim(sc)) {
2561 if (!cpuset_zone_allowed(zone,
2562 GFP_KERNEL | __GFP_HARDWALL))
2563 continue;
2564
2565 if (sc->priority != DEF_PRIORITY &&
2566 !zone_reclaimable(zone))
2567 continue; /* Let kswapd poll it */
2568
2569 /*
2570 * If we already have plenty of memory free for
2571 * compaction in this zone, don't free any more.
2572 * Even though compaction is invoked for any
2573 * non-zero order, only frequent costly order
2574 * reclamation is disruptive enough to become a
2575 * noticeable problem, like transparent huge
2576 * page allocations.
2577 */
2578 if (IS_ENABLED(CONFIG_COMPACTION) &&
2579 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2580 zonelist_zone_idx(z) <= requested_highidx &&
2581 compaction_ready(zone, sc->order)) {
2582 sc->compaction_ready = true;
2583 continue;
2584 }
2585
2586 /*
2587 * This steals pages from memory cgroups over softlimit
2588 * and returns the number of reclaimed pages and
2589 * scanned pages. This works for global memory pressure
2590 * and balancing, not for a memcg's limit.
2591 */
2592 nr_soft_scanned = 0;
2593 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2594 sc->order, sc->gfp_mask,
2595 &nr_soft_scanned);
2596 sc->nr_reclaimed += nr_soft_reclaimed;
2597 sc->nr_scanned += nr_soft_scanned;
2598 if (nr_soft_reclaimed)
2599 reclaimable = true;
2600 /* need some check for avoid more shrink_zone() */
2601 }
2602
2603 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2604 reclaimable = true;
2605
2606 if (global_reclaim(sc) &&
2607 !reclaimable && zone_reclaimable(zone))
2608 reclaimable = true;
2609 }
2610
2611 /*
2612 * Restore to original mask to avoid the impact on the caller if we
2613 * promoted it to __GFP_HIGHMEM.
2614 */
2615 sc->gfp_mask = orig_mask;
2616
2617 return reclaimable;
2618 }
2619
2620 /*
2621 * This is the main entry point to direct page reclaim.
2622 *
2623 * If a full scan of the inactive list fails to free enough memory then we
2624 * are "out of memory" and something needs to be killed.
2625 *
2626 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2627 * high - the zone may be full of dirty or under-writeback pages, which this
2628 * caller can't do much about. We kick the writeback threads and take explicit
2629 * naps in the hope that some of these pages can be written. But if the
2630 * allocating task holds filesystem locks which prevent writeout this might not
2631 * work, and the allocation attempt will fail.
2632 *
2633 * returns: 0, if no pages reclaimed
2634 * else, the number of pages reclaimed
2635 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2636 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2637 struct scan_control *sc)
2638 {
2639 int initial_priority = sc->priority;
2640 unsigned long total_scanned = 0;
2641 unsigned long writeback_threshold;
2642 bool zones_reclaimable;
2643 retry:
2644 delayacct_freepages_start();
2645
2646 if (global_reclaim(sc))
2647 count_vm_event(ALLOCSTALL);
2648
2649 do {
2650 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2651 sc->priority);
2652 sc->nr_scanned = 0;
2653 zones_reclaimable = shrink_zones(zonelist, sc);
2654
2655 total_scanned += sc->nr_scanned;
2656 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2657 break;
2658
2659 if (sc->compaction_ready)
2660 break;
2661
2662 /*
2663 * If we're getting trouble reclaiming, start doing
2664 * writepage even in laptop mode.
2665 */
2666 if (sc->priority < DEF_PRIORITY - 2)
2667 sc->may_writepage = 1;
2668
2669 /*
2670 * Try to write back as many pages as we just scanned. This
2671 * tends to cause slow streaming writers to write data to the
2672 * disk smoothly, at the dirtying rate, which is nice. But
2673 * that's undesirable in laptop mode, where we *want* lumpy
2674 * writeout. So in laptop mode, write out the whole world.
2675 */
2676 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2677 if (total_scanned > writeback_threshold) {
2678 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2679 WB_REASON_TRY_TO_FREE_PAGES);
2680 sc->may_writepage = 1;
2681 }
2682 } while (--sc->priority >= 0);
2683
2684 delayacct_freepages_end();
2685
2686 if (sc->nr_reclaimed)
2687 return sc->nr_reclaimed;
2688
2689 /* Aborted reclaim to try compaction? don't OOM, then */
2690 if (sc->compaction_ready)
2691 return 1;
2692
2693 /* Untapped cgroup reserves? Don't OOM, retry. */
2694 if (!sc->may_thrash) {
2695 sc->priority = initial_priority;
2696 sc->may_thrash = 1;
2697 goto retry;
2698 }
2699
2700 /* Any of the zones still reclaimable? Don't OOM. */
2701 if (zones_reclaimable)
2702 return 1;
2703
2704 return 0;
2705 }
2706
pfmemalloc_watermark_ok(pg_data_t * pgdat)2707 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2708 {
2709 struct zone *zone;
2710 unsigned long pfmemalloc_reserve = 0;
2711 unsigned long free_pages = 0;
2712 int i;
2713 bool wmark_ok;
2714
2715 for (i = 0; i <= ZONE_NORMAL; i++) {
2716 zone = &pgdat->node_zones[i];
2717 if (!populated_zone(zone) ||
2718 zone_reclaimable_pages(zone) == 0)
2719 continue;
2720
2721 pfmemalloc_reserve += min_wmark_pages(zone);
2722 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2723 }
2724
2725 /* If there are no reserves (unexpected config) then do not throttle */
2726 if (!pfmemalloc_reserve)
2727 return true;
2728
2729 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2730
2731 /* kswapd must be awake if processes are being throttled */
2732 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2733 pgdat->classzone_idx = min(pgdat->classzone_idx,
2734 (enum zone_type)ZONE_NORMAL);
2735 wake_up_interruptible(&pgdat->kswapd_wait);
2736 }
2737
2738 return wmark_ok;
2739 }
2740
2741 /*
2742 * Throttle direct reclaimers if backing storage is backed by the network
2743 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2744 * depleted. kswapd will continue to make progress and wake the processes
2745 * when the low watermark is reached.
2746 *
2747 * Returns true if a fatal signal was delivered during throttling. If this
2748 * happens, the page allocator should not consider triggering the OOM killer.
2749 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2750 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2751 nodemask_t *nodemask)
2752 {
2753 struct zoneref *z;
2754 struct zone *zone;
2755 pg_data_t *pgdat = NULL;
2756
2757 /*
2758 * Kernel threads should not be throttled as they may be indirectly
2759 * responsible for cleaning pages necessary for reclaim to make forward
2760 * progress. kjournald for example may enter direct reclaim while
2761 * committing a transaction where throttling it could forcing other
2762 * processes to block on log_wait_commit().
2763 */
2764 if (current->flags & PF_KTHREAD)
2765 goto out;
2766
2767 /*
2768 * If a fatal signal is pending, this process should not throttle.
2769 * It should return quickly so it can exit and free its memory
2770 */
2771 if (fatal_signal_pending(current))
2772 goto out;
2773
2774 /*
2775 * Check if the pfmemalloc reserves are ok by finding the first node
2776 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2777 * GFP_KERNEL will be required for allocating network buffers when
2778 * swapping over the network so ZONE_HIGHMEM is unusable.
2779 *
2780 * Throttling is based on the first usable node and throttled processes
2781 * wait on a queue until kswapd makes progress and wakes them. There
2782 * is an affinity then between processes waking up and where reclaim
2783 * progress has been made assuming the process wakes on the same node.
2784 * More importantly, processes running on remote nodes will not compete
2785 * for remote pfmemalloc reserves and processes on different nodes
2786 * should make reasonable progress.
2787 */
2788 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2789 gfp_zone(gfp_mask), nodemask) {
2790 if (zone_idx(zone) > ZONE_NORMAL)
2791 continue;
2792
2793 /* Throttle based on the first usable node */
2794 pgdat = zone->zone_pgdat;
2795 if (pfmemalloc_watermark_ok(pgdat))
2796 goto out;
2797 break;
2798 }
2799
2800 /* If no zone was usable by the allocation flags then do not throttle */
2801 if (!pgdat)
2802 goto out;
2803
2804 /* Account for the throttling */
2805 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2806
2807 /*
2808 * If the caller cannot enter the filesystem, it's possible that it
2809 * is due to the caller holding an FS lock or performing a journal
2810 * transaction in the case of a filesystem like ext[3|4]. In this case,
2811 * it is not safe to block on pfmemalloc_wait as kswapd could be
2812 * blocked waiting on the same lock. Instead, throttle for up to a
2813 * second before continuing.
2814 */
2815 if (!(gfp_mask & __GFP_FS)) {
2816 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2817 pfmemalloc_watermark_ok(pgdat), HZ);
2818
2819 goto check_pending;
2820 }
2821
2822 /* Throttle until kswapd wakes the process */
2823 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2824 pfmemalloc_watermark_ok(pgdat));
2825
2826 check_pending:
2827 if (fatal_signal_pending(current))
2828 return true;
2829
2830 out:
2831 return false;
2832 }
2833
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2834 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2835 gfp_t gfp_mask, nodemask_t *nodemask)
2836 {
2837 unsigned long nr_reclaimed;
2838 struct scan_control sc = {
2839 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2840 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2841 .order = order,
2842 .nodemask = nodemask,
2843 .priority = DEF_PRIORITY,
2844 .may_writepage = !laptop_mode,
2845 .may_unmap = 1,
2846 .may_swap = 1,
2847 };
2848
2849 /*
2850 * Do not enter reclaim if fatal signal was delivered while throttled.
2851 * 1 is returned so that the page allocator does not OOM kill at this
2852 * point.
2853 */
2854 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2855 return 1;
2856
2857 trace_mm_vmscan_direct_reclaim_begin(order,
2858 sc.may_writepage,
2859 gfp_mask);
2860
2861 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2862
2863 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2864
2865 return nr_reclaimed;
2866 }
2867
2868 #ifdef CONFIG_MEMCG
2869
mem_cgroup_shrink_node_zone(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,struct zone * zone,unsigned long * nr_scanned)2870 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2871 gfp_t gfp_mask, bool noswap,
2872 struct zone *zone,
2873 unsigned long *nr_scanned)
2874 {
2875 struct scan_control sc = {
2876 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2877 .target_mem_cgroup = memcg,
2878 .may_writepage = !laptop_mode,
2879 .may_unmap = 1,
2880 .may_swap = !noswap,
2881 };
2882 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2883 int swappiness = mem_cgroup_swappiness(memcg);
2884 unsigned long lru_pages;
2885
2886 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2887 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2888
2889 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2890 sc.may_writepage,
2891 sc.gfp_mask);
2892
2893 /*
2894 * NOTE: Although we can get the priority field, using it
2895 * here is not a good idea, since it limits the pages we can scan.
2896 * if we don't reclaim here, the shrink_zone from balance_pgdat
2897 * will pick up pages from other mem cgroup's as well. We hack
2898 * the priority and make it zero.
2899 */
2900 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2901
2902 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2903
2904 *nr_scanned = sc.nr_scanned;
2905 return sc.nr_reclaimed;
2906 }
2907
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)2908 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2909 unsigned long nr_pages,
2910 gfp_t gfp_mask,
2911 bool may_swap)
2912 {
2913 struct zonelist *zonelist;
2914 unsigned long nr_reclaimed;
2915 int nid;
2916 struct scan_control sc = {
2917 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2918 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2919 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2920 .target_mem_cgroup = memcg,
2921 .priority = DEF_PRIORITY,
2922 .may_writepage = !laptop_mode,
2923 .may_unmap = 1,
2924 .may_swap = may_swap,
2925 };
2926
2927 /*
2928 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2929 * take care of from where we get pages. So the node where we start the
2930 * scan does not need to be the current node.
2931 */
2932 nid = mem_cgroup_select_victim_node(memcg);
2933
2934 zonelist = NODE_DATA(nid)->node_zonelists;
2935
2936 trace_mm_vmscan_memcg_reclaim_begin(0,
2937 sc.may_writepage,
2938 sc.gfp_mask);
2939
2940 current->flags |= PF_MEMALLOC;
2941 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2942 current->flags &= ~PF_MEMALLOC;
2943
2944 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2945
2946 return nr_reclaimed;
2947 }
2948 #endif
2949
age_active_anon(struct zone * zone,struct scan_control * sc)2950 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2951 {
2952 struct mem_cgroup *memcg;
2953
2954 if (!total_swap_pages)
2955 return;
2956
2957 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2958 do {
2959 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2960
2961 if (inactive_anon_is_low(lruvec))
2962 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2963 sc, LRU_ACTIVE_ANON);
2964
2965 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2966 } while (memcg);
2967 }
2968
zone_balanced(struct zone * zone,int order,unsigned long balance_gap,int classzone_idx)2969 static bool zone_balanced(struct zone *zone, int order,
2970 unsigned long balance_gap, int classzone_idx)
2971 {
2972 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2973 balance_gap, classzone_idx))
2974 return false;
2975
2976 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2977 order, 0, classzone_idx) == COMPACT_SKIPPED)
2978 return false;
2979
2980 return true;
2981 }
2982
2983 /*
2984 * pgdat_balanced() is used when checking if a node is balanced.
2985 *
2986 * For order-0, all zones must be balanced!
2987 *
2988 * For high-order allocations only zones that meet watermarks and are in a
2989 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2990 * total of balanced pages must be at least 25% of the zones allowed by
2991 * classzone_idx for the node to be considered balanced. Forcing all zones to
2992 * be balanced for high orders can cause excessive reclaim when there are
2993 * imbalanced zones.
2994 * The choice of 25% is due to
2995 * o a 16M DMA zone that is balanced will not balance a zone on any
2996 * reasonable sized machine
2997 * o On all other machines, the top zone must be at least a reasonable
2998 * percentage of the middle zones. For example, on 32-bit x86, highmem
2999 * would need to be at least 256M for it to be balance a whole node.
3000 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3001 * to balance a node on its own. These seemed like reasonable ratios.
3002 */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3003 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3004 {
3005 unsigned long managed_pages = 0;
3006 unsigned long balanced_pages = 0;
3007 int i;
3008
3009 /* Check the watermark levels */
3010 for (i = 0; i <= classzone_idx; i++) {
3011 struct zone *zone = pgdat->node_zones + i;
3012
3013 if (!populated_zone(zone))
3014 continue;
3015
3016 managed_pages += zone->managed_pages;
3017
3018 /*
3019 * A special case here:
3020 *
3021 * balance_pgdat() skips over all_unreclaimable after
3022 * DEF_PRIORITY. Effectively, it considers them balanced so
3023 * they must be considered balanced here as well!
3024 */
3025 if (!zone_reclaimable(zone)) {
3026 balanced_pages += zone->managed_pages;
3027 continue;
3028 }
3029
3030 if (zone_balanced(zone, order, 0, i))
3031 balanced_pages += zone->managed_pages;
3032 else if (!order)
3033 return false;
3034 }
3035
3036 if (order)
3037 return balanced_pages >= (managed_pages >> 2);
3038 else
3039 return true;
3040 }
3041
3042 /*
3043 * Prepare kswapd for sleeping. This verifies that there are no processes
3044 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3045 *
3046 * Returns true if kswapd is ready to sleep
3047 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,long remaining,int classzone_idx)3048 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3049 int classzone_idx)
3050 {
3051 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3052 if (remaining)
3053 return false;
3054
3055 /*
3056 * The throttled processes are normally woken up in balance_pgdat() as
3057 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3058 * race between when kswapd checks the watermarks and a process gets
3059 * throttled. There is also a potential race if processes get
3060 * throttled, kswapd wakes, a large process exits thereby balancing the
3061 * zones, which causes kswapd to exit balance_pgdat() before reaching
3062 * the wake up checks. If kswapd is going to sleep, no process should
3063 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3064 * the wake up is premature, processes will wake kswapd and get
3065 * throttled again. The difference from wake ups in balance_pgdat() is
3066 * that here we are under prepare_to_wait().
3067 */
3068 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3069 wake_up_all(&pgdat->pfmemalloc_wait);
3070
3071 return pgdat_balanced(pgdat, order, classzone_idx);
3072 }
3073
3074 /*
3075 * kswapd shrinks the zone by the number of pages required to reach
3076 * the high watermark.
3077 *
3078 * Returns true if kswapd scanned at least the requested number of pages to
3079 * reclaim or if the lack of progress was due to pages under writeback.
3080 * This is used to determine if the scanning priority needs to be raised.
3081 */
kswapd_shrink_zone(struct zone * zone,int classzone_idx,struct scan_control * sc,unsigned long * nr_attempted)3082 static bool kswapd_shrink_zone(struct zone *zone,
3083 int classzone_idx,
3084 struct scan_control *sc,
3085 unsigned long *nr_attempted)
3086 {
3087 int testorder = sc->order;
3088 unsigned long balance_gap;
3089 bool lowmem_pressure;
3090
3091 /* Reclaim above the high watermark. */
3092 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3093
3094 /*
3095 * Kswapd reclaims only single pages with compaction enabled. Trying
3096 * too hard to reclaim until contiguous free pages have become
3097 * available can hurt performance by evicting too much useful data
3098 * from memory. Do not reclaim more than needed for compaction.
3099 */
3100 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3101 compaction_suitable(zone, sc->order, 0, classzone_idx)
3102 != COMPACT_SKIPPED)
3103 testorder = 0;
3104
3105 /*
3106 * We put equal pressure on every zone, unless one zone has way too
3107 * many pages free already. The "too many pages" is defined as the
3108 * high wmark plus a "gap" where the gap is either the low
3109 * watermark or 1% of the zone, whichever is smaller.
3110 */
3111 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3112 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3113
3114 /*
3115 * If there is no low memory pressure or the zone is balanced then no
3116 * reclaim is necessary
3117 */
3118 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3119 if (!lowmem_pressure && zone_balanced(zone, testorder,
3120 balance_gap, classzone_idx))
3121 return true;
3122
3123 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3124
3125 /* Account for the number of pages attempted to reclaim */
3126 *nr_attempted += sc->nr_to_reclaim;
3127
3128 clear_bit(ZONE_WRITEBACK, &zone->flags);
3129
3130 /*
3131 * If a zone reaches its high watermark, consider it to be no longer
3132 * congested. It's possible there are dirty pages backed by congested
3133 * BDIs but as pressure is relieved, speculatively avoid congestion
3134 * waits.
3135 */
3136 if (zone_reclaimable(zone) &&
3137 zone_balanced(zone, testorder, 0, classzone_idx)) {
3138 clear_bit(ZONE_CONGESTED, &zone->flags);
3139 clear_bit(ZONE_DIRTY, &zone->flags);
3140 }
3141
3142 return sc->nr_scanned >= sc->nr_to_reclaim;
3143 }
3144
3145 /*
3146 * For kswapd, balance_pgdat() will work across all this node's zones until
3147 * they are all at high_wmark_pages(zone).
3148 *
3149 * Returns the final order kswapd was reclaiming at
3150 *
3151 * There is special handling here for zones which are full of pinned pages.
3152 * This can happen if the pages are all mlocked, or if they are all used by
3153 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3154 * What we do is to detect the case where all pages in the zone have been
3155 * scanned twice and there has been zero successful reclaim. Mark the zone as
3156 * dead and from now on, only perform a short scan. Basically we're polling
3157 * the zone for when the problem goes away.
3158 *
3159 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3160 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3161 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3162 * lower zones regardless of the number of free pages in the lower zones. This
3163 * interoperates with the page allocator fallback scheme to ensure that aging
3164 * of pages is balanced across the zones.
3165 */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)3166 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3167 int *classzone_idx)
3168 {
3169 int i;
3170 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3171 unsigned long nr_soft_reclaimed;
3172 unsigned long nr_soft_scanned;
3173 struct scan_control sc = {
3174 .gfp_mask = GFP_KERNEL,
3175 .order = order,
3176 .priority = DEF_PRIORITY,
3177 .may_writepage = !laptop_mode,
3178 .may_unmap = 1,
3179 .may_swap = 1,
3180 };
3181 count_vm_event(PAGEOUTRUN);
3182
3183 do {
3184 unsigned long nr_attempted = 0;
3185 bool raise_priority = true;
3186 bool pgdat_needs_compaction = (order > 0);
3187
3188 sc.nr_reclaimed = 0;
3189
3190 /*
3191 * Scan in the highmem->dma direction for the highest
3192 * zone which needs scanning
3193 */
3194 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3195 struct zone *zone = pgdat->node_zones + i;
3196
3197 if (!populated_zone(zone))
3198 continue;
3199
3200 if (sc.priority != DEF_PRIORITY &&
3201 !zone_reclaimable(zone))
3202 continue;
3203
3204 /*
3205 * Do some background aging of the anon list, to give
3206 * pages a chance to be referenced before reclaiming.
3207 */
3208 age_active_anon(zone, &sc);
3209
3210 /*
3211 * If the number of buffer_heads in the machine
3212 * exceeds the maximum allowed level and this node
3213 * has a highmem zone, force kswapd to reclaim from
3214 * it to relieve lowmem pressure.
3215 */
3216 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3217 end_zone = i;
3218 break;
3219 }
3220
3221 if (!zone_balanced(zone, order, 0, 0)) {
3222 end_zone = i;
3223 break;
3224 } else {
3225 /*
3226 * If balanced, clear the dirty and congested
3227 * flags
3228 */
3229 clear_bit(ZONE_CONGESTED, &zone->flags);
3230 clear_bit(ZONE_DIRTY, &zone->flags);
3231 }
3232 }
3233
3234 if (i < 0)
3235 goto out;
3236
3237 for (i = 0; i <= end_zone; i++) {
3238 struct zone *zone = pgdat->node_zones + i;
3239
3240 if (!populated_zone(zone))
3241 continue;
3242
3243 /*
3244 * If any zone is currently balanced then kswapd will
3245 * not call compaction as it is expected that the
3246 * necessary pages are already available.
3247 */
3248 if (pgdat_needs_compaction &&
3249 zone_watermark_ok(zone, order,
3250 low_wmark_pages(zone),
3251 *classzone_idx, 0))
3252 pgdat_needs_compaction = false;
3253 }
3254
3255 /*
3256 * If we're getting trouble reclaiming, start doing writepage
3257 * even in laptop mode.
3258 */
3259 if (sc.priority < DEF_PRIORITY - 2)
3260 sc.may_writepage = 1;
3261
3262 /*
3263 * Now scan the zone in the dma->highmem direction, stopping
3264 * at the last zone which needs scanning.
3265 *
3266 * We do this because the page allocator works in the opposite
3267 * direction. This prevents the page allocator from allocating
3268 * pages behind kswapd's direction of progress, which would
3269 * cause too much scanning of the lower zones.
3270 */
3271 for (i = 0; i <= end_zone; i++) {
3272 struct zone *zone = pgdat->node_zones + i;
3273
3274 if (!populated_zone(zone))
3275 continue;
3276
3277 if (sc.priority != DEF_PRIORITY &&
3278 !zone_reclaimable(zone))
3279 continue;
3280
3281 sc.nr_scanned = 0;
3282
3283 nr_soft_scanned = 0;
3284 /*
3285 * Call soft limit reclaim before calling shrink_zone.
3286 */
3287 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3288 order, sc.gfp_mask,
3289 &nr_soft_scanned);
3290 sc.nr_reclaimed += nr_soft_reclaimed;
3291
3292 /*
3293 * There should be no need to raise the scanning
3294 * priority if enough pages are already being scanned
3295 * that that high watermark would be met at 100%
3296 * efficiency.
3297 */
3298 if (kswapd_shrink_zone(zone, end_zone,
3299 &sc, &nr_attempted))
3300 raise_priority = false;
3301 }
3302
3303 /*
3304 * If the low watermark is met there is no need for processes
3305 * to be throttled on pfmemalloc_wait as they should not be
3306 * able to safely make forward progress. Wake them
3307 */
3308 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3309 pfmemalloc_watermark_ok(pgdat))
3310 wake_up_all(&pgdat->pfmemalloc_wait);
3311
3312 /*
3313 * Fragmentation may mean that the system cannot be rebalanced
3314 * for high-order allocations in all zones. If twice the
3315 * allocation size has been reclaimed and the zones are still
3316 * not balanced then recheck the watermarks at order-0 to
3317 * prevent kswapd reclaiming excessively. Assume that a
3318 * process requested a high-order can direct reclaim/compact.
3319 */
3320 if (order && sc.nr_reclaimed >= 2UL << order)
3321 order = sc.order = 0;
3322
3323 /* Check if kswapd should be suspending */
3324 if (try_to_freeze() || kthread_should_stop())
3325 break;
3326
3327 /*
3328 * Compact if necessary and kswapd is reclaiming at least the
3329 * high watermark number of pages as requsted
3330 */
3331 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3332 compact_pgdat(pgdat, order);
3333
3334 /*
3335 * Raise priority if scanning rate is too low or there was no
3336 * progress in reclaiming pages
3337 */
3338 if (raise_priority || !sc.nr_reclaimed)
3339 sc.priority--;
3340 } while (sc.priority >= 1 &&
3341 !pgdat_balanced(pgdat, order, *classzone_idx));
3342
3343 out:
3344 /*
3345 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3346 * makes a decision on the order we were last reclaiming at. However,
3347 * if another caller entered the allocator slow path while kswapd
3348 * was awake, order will remain at the higher level
3349 */
3350 *classzone_idx = end_zone;
3351 return order;
3352 }
3353
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)3354 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3355 {
3356 long remaining = 0;
3357 DEFINE_WAIT(wait);
3358
3359 if (freezing(current) || kthread_should_stop())
3360 return;
3361
3362 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3363
3364 /* Try to sleep for a short interval */
3365 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3366 remaining = schedule_timeout(HZ/10);
3367 finish_wait(&pgdat->kswapd_wait, &wait);
3368 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3369 }
3370
3371 /*
3372 * After a short sleep, check if it was a premature sleep. If not, then
3373 * go fully to sleep until explicitly woken up.
3374 */
3375 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3376 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3377
3378 /*
3379 * vmstat counters are not perfectly accurate and the estimated
3380 * value for counters such as NR_FREE_PAGES can deviate from the
3381 * true value by nr_online_cpus * threshold. To avoid the zone
3382 * watermarks being breached while under pressure, we reduce the
3383 * per-cpu vmstat threshold while kswapd is awake and restore
3384 * them before going back to sleep.
3385 */
3386 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3387
3388 /*
3389 * Compaction records what page blocks it recently failed to
3390 * isolate pages from and skips them in the future scanning.
3391 * When kswapd is going to sleep, it is reasonable to assume
3392 * that pages and compaction may succeed so reset the cache.
3393 */
3394 reset_isolation_suitable(pgdat);
3395
3396 if (!kthread_should_stop())
3397 schedule();
3398
3399 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3400 } else {
3401 if (remaining)
3402 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3403 else
3404 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3405 }
3406 finish_wait(&pgdat->kswapd_wait, &wait);
3407 }
3408
3409 /*
3410 * The background pageout daemon, started as a kernel thread
3411 * from the init process.
3412 *
3413 * This basically trickles out pages so that we have _some_
3414 * free memory available even if there is no other activity
3415 * that frees anything up. This is needed for things like routing
3416 * etc, where we otherwise might have all activity going on in
3417 * asynchronous contexts that cannot page things out.
3418 *
3419 * If there are applications that are active memory-allocators
3420 * (most normal use), this basically shouldn't matter.
3421 */
kswapd(void * p)3422 static int kswapd(void *p)
3423 {
3424 unsigned long order, new_order;
3425 unsigned balanced_order;
3426 int classzone_idx, new_classzone_idx;
3427 int balanced_classzone_idx;
3428 pg_data_t *pgdat = (pg_data_t*)p;
3429 struct task_struct *tsk = current;
3430
3431 struct reclaim_state reclaim_state = {
3432 .reclaimed_slab = 0,
3433 };
3434 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3435
3436 lockdep_set_current_reclaim_state(GFP_KERNEL);
3437
3438 if (!cpumask_empty(cpumask))
3439 set_cpus_allowed_ptr(tsk, cpumask);
3440 current->reclaim_state = &reclaim_state;
3441
3442 /*
3443 * Tell the memory management that we're a "memory allocator",
3444 * and that if we need more memory we should get access to it
3445 * regardless (see "__alloc_pages()"). "kswapd" should
3446 * never get caught in the normal page freeing logic.
3447 *
3448 * (Kswapd normally doesn't need memory anyway, but sometimes
3449 * you need a small amount of memory in order to be able to
3450 * page out something else, and this flag essentially protects
3451 * us from recursively trying to free more memory as we're
3452 * trying to free the first piece of memory in the first place).
3453 */
3454 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3455 set_freezable();
3456
3457 order = new_order = 0;
3458 balanced_order = 0;
3459 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3460 balanced_classzone_idx = classzone_idx;
3461 for ( ; ; ) {
3462 bool ret;
3463
3464 /*
3465 * If the last balance_pgdat was unsuccessful it's unlikely a
3466 * new request of a similar or harder type will succeed soon
3467 * so consider going to sleep on the basis we reclaimed at
3468 */
3469 if (balanced_classzone_idx >= new_classzone_idx &&
3470 balanced_order == new_order) {
3471 new_order = pgdat->kswapd_max_order;
3472 new_classzone_idx = pgdat->classzone_idx;
3473 pgdat->kswapd_max_order = 0;
3474 pgdat->classzone_idx = pgdat->nr_zones - 1;
3475 }
3476
3477 if (order < new_order || classzone_idx > new_classzone_idx) {
3478 /*
3479 * Don't sleep if someone wants a larger 'order'
3480 * allocation or has tigher zone constraints
3481 */
3482 order = new_order;
3483 classzone_idx = new_classzone_idx;
3484 } else {
3485 kswapd_try_to_sleep(pgdat, balanced_order,
3486 balanced_classzone_idx);
3487 order = pgdat->kswapd_max_order;
3488 classzone_idx = pgdat->classzone_idx;
3489 new_order = order;
3490 new_classzone_idx = classzone_idx;
3491 pgdat->kswapd_max_order = 0;
3492 pgdat->classzone_idx = pgdat->nr_zones - 1;
3493 }
3494
3495 ret = try_to_freeze();
3496 if (kthread_should_stop())
3497 break;
3498
3499 /*
3500 * We can speed up thawing tasks if we don't call balance_pgdat
3501 * after returning from the refrigerator
3502 */
3503 if (!ret) {
3504 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3505 balanced_classzone_idx = classzone_idx;
3506 balanced_order = balance_pgdat(pgdat, order,
3507 &balanced_classzone_idx);
3508 }
3509 }
3510
3511 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3512 current->reclaim_state = NULL;
3513 lockdep_clear_current_reclaim_state();
3514
3515 return 0;
3516 }
3517
3518 /*
3519 * A zone is low on free memory, so wake its kswapd task to service it.
3520 */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3521 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3522 {
3523 pg_data_t *pgdat;
3524
3525 if (!populated_zone(zone))
3526 return;
3527
3528 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3529 return;
3530 pgdat = zone->zone_pgdat;
3531 if (pgdat->kswapd_max_order < order) {
3532 pgdat->kswapd_max_order = order;
3533 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3534 }
3535 if (!waitqueue_active(&pgdat->kswapd_wait))
3536 return;
3537 if (zone_balanced(zone, order, 0, 0))
3538 return;
3539
3540 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3541 wake_up_interruptible(&pgdat->kswapd_wait);
3542 }
3543
3544 #ifdef CONFIG_HIBERNATION
3545 /*
3546 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3547 * freed pages.
3548 *
3549 * Rather than trying to age LRUs the aim is to preserve the overall
3550 * LRU order by reclaiming preferentially
3551 * inactive > active > active referenced > active mapped
3552 */
shrink_all_memory(unsigned long nr_to_reclaim)3553 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3554 {
3555 struct reclaim_state reclaim_state;
3556 struct scan_control sc = {
3557 .nr_to_reclaim = nr_to_reclaim,
3558 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3559 .priority = DEF_PRIORITY,
3560 .may_writepage = 1,
3561 .may_unmap = 1,
3562 .may_swap = 1,
3563 .hibernation_mode = 1,
3564 };
3565 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3566 struct task_struct *p = current;
3567 unsigned long nr_reclaimed;
3568
3569 p->flags |= PF_MEMALLOC;
3570 lockdep_set_current_reclaim_state(sc.gfp_mask);
3571 reclaim_state.reclaimed_slab = 0;
3572 p->reclaim_state = &reclaim_state;
3573
3574 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3575
3576 p->reclaim_state = NULL;
3577 lockdep_clear_current_reclaim_state();
3578 p->flags &= ~PF_MEMALLOC;
3579
3580 return nr_reclaimed;
3581 }
3582 #endif /* CONFIG_HIBERNATION */
3583
3584 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3585 not required for correctness. So if the last cpu in a node goes
3586 away, we get changed to run anywhere: as the first one comes back,
3587 restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3588 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3589 void *hcpu)
3590 {
3591 int nid;
3592
3593 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3594 for_each_node_state(nid, N_MEMORY) {
3595 pg_data_t *pgdat = NODE_DATA(nid);
3596 const struct cpumask *mask;
3597
3598 mask = cpumask_of_node(pgdat->node_id);
3599
3600 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3601 /* One of our CPUs online: restore mask */
3602 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3603 }
3604 }
3605 return NOTIFY_OK;
3606 }
3607
3608 /*
3609 * This kswapd start function will be called by init and node-hot-add.
3610 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3611 */
kswapd_run(int nid)3612 int kswapd_run(int nid)
3613 {
3614 pg_data_t *pgdat = NODE_DATA(nid);
3615 int ret = 0;
3616
3617 if (pgdat->kswapd)
3618 return 0;
3619
3620 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3621 if (IS_ERR(pgdat->kswapd)) {
3622 /* failure at boot is fatal */
3623 BUG_ON(system_state == SYSTEM_BOOTING);
3624 pr_err("Failed to start kswapd on node %d\n", nid);
3625 ret = PTR_ERR(pgdat->kswapd);
3626 pgdat->kswapd = NULL;
3627 }
3628 return ret;
3629 }
3630
3631 /*
3632 * Called by memory hotplug when all memory in a node is offlined. Caller must
3633 * hold mem_hotplug_begin/end().
3634 */
kswapd_stop(int nid)3635 void kswapd_stop(int nid)
3636 {
3637 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3638
3639 if (kswapd) {
3640 kthread_stop(kswapd);
3641 NODE_DATA(nid)->kswapd = NULL;
3642 }
3643 }
3644
kswapd_init(void)3645 static int __init kswapd_init(void)
3646 {
3647 int nid;
3648
3649 swap_setup();
3650 for_each_node_state(nid, N_MEMORY)
3651 kswapd_run(nid);
3652 hotcpu_notifier(cpu_callback, 0);
3653 return 0;
3654 }
3655
3656 module_init(kswapd_init)
3657
3658 #ifdef CONFIG_NUMA
3659 /*
3660 * Zone reclaim mode
3661 *
3662 * If non-zero call zone_reclaim when the number of free pages falls below
3663 * the watermarks.
3664 */
3665 int zone_reclaim_mode __read_mostly;
3666
3667 #define RECLAIM_OFF 0
3668 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3669 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3670 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3671
3672 /*
3673 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3674 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3675 * a zone.
3676 */
3677 #define ZONE_RECLAIM_PRIORITY 4
3678
3679 /*
3680 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3681 * occur.
3682 */
3683 int sysctl_min_unmapped_ratio = 1;
3684
3685 /*
3686 * If the number of slab pages in a zone grows beyond this percentage then
3687 * slab reclaim needs to occur.
3688 */
3689 int sysctl_min_slab_ratio = 5;
3690
zone_unmapped_file_pages(struct zone * zone)3691 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3692 {
3693 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3694 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3695 zone_page_state(zone, NR_ACTIVE_FILE);
3696
3697 /*
3698 * It's possible for there to be more file mapped pages than
3699 * accounted for by the pages on the file LRU lists because
3700 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3701 */
3702 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3703 }
3704
3705 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)3706 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3707 {
3708 unsigned long nr_pagecache_reclaimable;
3709 unsigned long delta = 0;
3710
3711 /*
3712 * If RECLAIM_UNMAP is set, then all file pages are considered
3713 * potentially reclaimable. Otherwise, we have to worry about
3714 * pages like swapcache and zone_unmapped_file_pages() provides
3715 * a better estimate
3716 */
3717 if (zone_reclaim_mode & RECLAIM_UNMAP)
3718 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3719 else
3720 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3721
3722 /* If we can't clean pages, remove dirty pages from consideration */
3723 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3724 delta += zone_page_state(zone, NR_FILE_DIRTY);
3725
3726 /* Watch for any possible underflows due to delta */
3727 if (unlikely(delta > nr_pagecache_reclaimable))
3728 delta = nr_pagecache_reclaimable;
3729
3730 return nr_pagecache_reclaimable - delta;
3731 }
3732
3733 /*
3734 * Try to free up some pages from this zone through reclaim.
3735 */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3736 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3737 {
3738 /* Minimum pages needed in order to stay on node */
3739 const unsigned long nr_pages = 1 << order;
3740 struct task_struct *p = current;
3741 struct reclaim_state reclaim_state;
3742 struct scan_control sc = {
3743 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3744 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3745 .order = order,
3746 .priority = ZONE_RECLAIM_PRIORITY,
3747 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3748 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3749 .may_swap = 1,
3750 };
3751
3752 cond_resched();
3753 /*
3754 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3755 * and we also need to be able to write out pages for RECLAIM_WRITE
3756 * and RECLAIM_UNMAP.
3757 */
3758 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3759 lockdep_set_current_reclaim_state(gfp_mask);
3760 reclaim_state.reclaimed_slab = 0;
3761 p->reclaim_state = &reclaim_state;
3762
3763 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3764 /*
3765 * Free memory by calling shrink zone with increasing
3766 * priorities until we have enough memory freed.
3767 */
3768 do {
3769 shrink_zone(zone, &sc, true);
3770 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3771 }
3772
3773 p->reclaim_state = NULL;
3774 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3775 lockdep_clear_current_reclaim_state();
3776 return sc.nr_reclaimed >= nr_pages;
3777 }
3778
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3779 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3780 {
3781 int node_id;
3782 int ret;
3783
3784 /*
3785 * Zone reclaim reclaims unmapped file backed pages and
3786 * slab pages if we are over the defined limits.
3787 *
3788 * A small portion of unmapped file backed pages is needed for
3789 * file I/O otherwise pages read by file I/O will be immediately
3790 * thrown out if the zone is overallocated. So we do not reclaim
3791 * if less than a specified percentage of the zone is used by
3792 * unmapped file backed pages.
3793 */
3794 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3795 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3796 return ZONE_RECLAIM_FULL;
3797
3798 if (!zone_reclaimable(zone))
3799 return ZONE_RECLAIM_FULL;
3800
3801 /*
3802 * Do not scan if the allocation should not be delayed.
3803 */
3804 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3805 return ZONE_RECLAIM_NOSCAN;
3806
3807 /*
3808 * Only run zone reclaim on the local zone or on zones that do not
3809 * have associated processors. This will favor the local processor
3810 * over remote processors and spread off node memory allocations
3811 * as wide as possible.
3812 */
3813 node_id = zone_to_nid(zone);
3814 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3815 return ZONE_RECLAIM_NOSCAN;
3816
3817 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3818 return ZONE_RECLAIM_NOSCAN;
3819
3820 ret = __zone_reclaim(zone, gfp_mask, order);
3821 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3822
3823 if (!ret)
3824 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3825
3826 return ret;
3827 }
3828 #endif
3829
3830 /*
3831 * page_evictable - test whether a page is evictable
3832 * @page: the page to test
3833 *
3834 * Test whether page is evictable--i.e., should be placed on active/inactive
3835 * lists vs unevictable list.
3836 *
3837 * Reasons page might not be evictable:
3838 * (1) page's mapping marked unevictable
3839 * (2) page is part of an mlocked VMA
3840 *
3841 */
page_evictable(struct page * page)3842 int page_evictable(struct page *page)
3843 {
3844 int ret;
3845
3846 /* Prevent address_space of inode and swap cache from being freed */
3847 rcu_read_lock();
3848 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3849 rcu_read_unlock();
3850 return ret;
3851 }
3852
3853 #ifdef CONFIG_SHMEM
3854 /**
3855 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3856 * @pages: array of pages to check
3857 * @nr_pages: number of pages to check
3858 *
3859 * Checks pages for evictability and moves them to the appropriate lru list.
3860 *
3861 * This function is only used for SysV IPC SHM_UNLOCK.
3862 */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3863 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3864 {
3865 struct lruvec *lruvec;
3866 struct zone *zone = NULL;
3867 int pgscanned = 0;
3868 int pgrescued = 0;
3869 int i;
3870
3871 for (i = 0; i < nr_pages; i++) {
3872 struct page *page = pages[i];
3873 struct zone *pagezone;
3874
3875 pgscanned++;
3876 pagezone = page_zone(page);
3877 if (pagezone != zone) {
3878 if (zone)
3879 spin_unlock_irq(&zone->lru_lock);
3880 zone = pagezone;
3881 spin_lock_irq(&zone->lru_lock);
3882 }
3883 lruvec = mem_cgroup_page_lruvec(page, zone);
3884
3885 if (!PageLRU(page) || !PageUnevictable(page))
3886 continue;
3887
3888 if (page_evictable(page)) {
3889 enum lru_list lru = page_lru_base_type(page);
3890
3891 VM_BUG_ON_PAGE(PageActive(page), page);
3892 ClearPageUnevictable(page);
3893 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3894 add_page_to_lru_list(page, lruvec, lru);
3895 pgrescued++;
3896 }
3897 }
3898
3899 if (zone) {
3900 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3901 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3902 spin_unlock_irq(&zone->lru_lock);
3903 }
3904 }
3905 #endif /* CONFIG_SHMEM */
3906