• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * From i386 code copyright (C) 1995  Linus Torvalds
15  */
16 
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/tty.h>
30 #include <linux/vt_kern.h>		/* For unblank_screen() */
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 #include <linux/hugetlb.h>
35 #include <linux/syscalls.h>
36 #include <linux/uaccess.h>
37 #include <linux/kdebug.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/pgalloc.h>
41 #include <asm/sections.h>
42 #include <asm/traps.h>
43 #include <asm/syscalls.h>
44 
45 #include <arch/interrupts.h>
46 
force_sig_info_fault(const char * type,int si_signo,int si_code,unsigned long address,int fault_num,struct task_struct * tsk,struct pt_regs * regs)47 static noinline void force_sig_info_fault(const char *type, int si_signo,
48 					  int si_code, unsigned long address,
49 					  int fault_num,
50 					  struct task_struct *tsk,
51 					  struct pt_regs *regs)
52 {
53 	siginfo_t info;
54 
55 	if (unlikely(tsk->pid < 2)) {
56 		panic("Signal %d (code %d) at %#lx sent to %s!",
57 		      si_signo, si_code & 0xffff, address,
58 		      is_idle_task(tsk) ? "the idle task" : "init");
59 	}
60 
61 	info.si_signo = si_signo;
62 	info.si_errno = 0;
63 	info.si_code = si_code;
64 	info.si_addr = (void __user *)address;
65 	info.si_trapno = fault_num;
66 	trace_unhandled_signal(type, regs, address, si_signo);
67 	force_sig_info(si_signo, &info, tsk);
68 }
69 
70 #ifndef __tilegx__
71 /*
72  * Synthesize the fault a PL0 process would get by doing a word-load of
73  * an unaligned address or a high kernel address.
74  */
SYSCALL_DEFINE1(cmpxchg_badaddr,unsigned long,address)75 SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
76 {
77 	struct pt_regs *regs = current_pt_regs();
78 
79 	if (address >= PAGE_OFFSET)
80 		force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
81 				     address, INT_DTLB_MISS, current, regs);
82 	else
83 		force_sig_info_fault("atomic alignment fault", SIGBUS,
84 				     BUS_ADRALN, address,
85 				     INT_UNALIGN_DATA, current, regs);
86 
87 	/*
88 	 * Adjust pc to point at the actual instruction, which is unusual
89 	 * for syscalls normally, but is appropriate when we are claiming
90 	 * that a syscall swint1 caused a page fault or bus error.
91 	 */
92 	regs->pc -= 8;
93 
94 	/*
95 	 * Mark this as a caller-save interrupt, like a normal page fault,
96 	 * so that when we go through the signal handler path we will
97 	 * properly restore r0, r1, and r2 for the signal handler arguments.
98 	 */
99 	regs->flags |= PT_FLAGS_CALLER_SAVES;
100 
101 	return 0;
102 }
103 #endif
104 
vmalloc_sync_one(pgd_t * pgd,unsigned long address)105 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
106 {
107 	unsigned index = pgd_index(address);
108 	pgd_t *pgd_k;
109 	pud_t *pud, *pud_k;
110 	pmd_t *pmd, *pmd_k;
111 
112 	pgd += index;
113 	pgd_k = init_mm.pgd + index;
114 
115 	if (!pgd_present(*pgd_k))
116 		return NULL;
117 
118 	pud = pud_offset(pgd, address);
119 	pud_k = pud_offset(pgd_k, address);
120 	if (!pud_present(*pud_k))
121 		return NULL;
122 
123 	pmd = pmd_offset(pud, address);
124 	pmd_k = pmd_offset(pud_k, address);
125 	if (!pmd_present(*pmd_k))
126 		return NULL;
127 	if (!pmd_present(*pmd))
128 		set_pmd(pmd, *pmd_k);
129 	else
130 		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
131 	return pmd_k;
132 }
133 
134 /*
135  * Handle a fault on the vmalloc area.
136  */
vmalloc_fault(pgd_t * pgd,unsigned long address)137 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
138 {
139 	pmd_t *pmd_k;
140 	pte_t *pte_k;
141 
142 	/* Make sure we are in vmalloc area */
143 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
144 		return -1;
145 
146 	/*
147 	 * Synchronize this task's top level page-table
148 	 * with the 'reference' page table.
149 	 */
150 	pmd_k = vmalloc_sync_one(pgd, address);
151 	if (!pmd_k)
152 		return -1;
153 	pte_k = pte_offset_kernel(pmd_k, address);
154 	if (!pte_present(*pte_k))
155 		return -1;
156 	return 0;
157 }
158 
159 /* Wait until this PTE has completed migration. */
wait_for_migration(pte_t * pte)160 static void wait_for_migration(pte_t *pte)
161 {
162 	if (pte_migrating(*pte)) {
163 		/*
164 		 * Wait until the migrater fixes up this pte.
165 		 * We scale the loop count by the clock rate so we'll wait for
166 		 * a few seconds here.
167 		 */
168 		int retries = 0;
169 		int bound = get_clock_rate();
170 		while (pte_migrating(*pte)) {
171 			barrier();
172 			if (++retries > bound)
173 				panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
174 				      pte->val, pte_pfn(*pte));
175 		}
176 	}
177 }
178 
179 /*
180  * It's not generally safe to use "current" to get the page table pointer,
181  * since we might be running an oprofile interrupt in the middle of a
182  * task switch.
183  */
get_current_pgd(void)184 static pgd_t *get_current_pgd(void)
185 {
186 	HV_Context ctx = hv_inquire_context();
187 	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
188 	struct page *pgd_page = pfn_to_page(pgd_pfn);
189 	BUG_ON(PageHighMem(pgd_page));
190 	return (pgd_t *) __va(ctx.page_table);
191 }
192 
193 /*
194  * We can receive a page fault from a migrating PTE at any time.
195  * Handle it by just waiting until the fault resolves.
196  *
197  * It's also possible to get a migrating kernel PTE that resolves
198  * itself during the downcall from hypervisor to Linux.  We just check
199  * here to see if the PTE seems valid, and if so we retry it.
200  *
201  * NOTE! We MUST NOT take any locks for this case.  We may be in an
202  * interrupt or a critical region, and must do as little as possible.
203  * Similarly, we can't use atomic ops here, since we may be handling a
204  * fault caused by an atomic op access.
205  *
206  * If we find a migrating PTE while we're in an NMI context, and we're
207  * at a PC that has a registered exception handler, we don't wait,
208  * since this thread may (e.g.) have been interrupted while migrating
209  * its own stack, which would then cause us to self-deadlock.
210  */
handle_migrating_pte(pgd_t * pgd,int fault_num,unsigned long address,unsigned long pc,int is_kernel_mode,int write)211 static int handle_migrating_pte(pgd_t *pgd, int fault_num,
212 				unsigned long address, unsigned long pc,
213 				int is_kernel_mode, int write)
214 {
215 	pud_t *pud;
216 	pmd_t *pmd;
217 	pte_t *pte;
218 	pte_t pteval;
219 
220 	if (pgd_addr_invalid(address))
221 		return 0;
222 
223 	pgd += pgd_index(address);
224 	pud = pud_offset(pgd, address);
225 	if (!pud || !pud_present(*pud))
226 		return 0;
227 	pmd = pmd_offset(pud, address);
228 	if (!pmd || !pmd_present(*pmd))
229 		return 0;
230 	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
231 		pte_offset_kernel(pmd, address);
232 	pteval = *pte;
233 	if (pte_migrating(pteval)) {
234 		if (in_nmi() && search_exception_tables(pc))
235 			return 0;
236 		wait_for_migration(pte);
237 		return 1;
238 	}
239 
240 	if (!is_kernel_mode || !pte_present(pteval))
241 		return 0;
242 	if (fault_num == INT_ITLB_MISS) {
243 		if (pte_exec(pteval))
244 			return 1;
245 	} else if (write) {
246 		if (pte_write(pteval))
247 			return 1;
248 	} else {
249 		if (pte_read(pteval))
250 			return 1;
251 	}
252 
253 	return 0;
254 }
255 
256 /*
257  * This routine is responsible for faulting in user pages.
258  * It passes the work off to one of the appropriate routines.
259  * It returns true if the fault was successfully handled.
260  */
handle_page_fault(struct pt_regs * regs,int fault_num,int is_page_fault,unsigned long address,int write)261 static int handle_page_fault(struct pt_regs *regs,
262 			     int fault_num,
263 			     int is_page_fault,
264 			     unsigned long address,
265 			     int write)
266 {
267 	struct task_struct *tsk;
268 	struct mm_struct *mm;
269 	struct vm_area_struct *vma;
270 	unsigned long stack_offset;
271 	int fault;
272 	int si_code;
273 	int is_kernel_mode;
274 	pgd_t *pgd;
275 	unsigned int flags;
276 
277 	/* on TILE, protection faults are always writes */
278 	if (!is_page_fault)
279 		write = 1;
280 
281 	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
282 
283 	is_kernel_mode = !user_mode(regs);
284 
285 	tsk = validate_current();
286 
287 	/*
288 	 * Check to see if we might be overwriting the stack, and bail
289 	 * out if so.  The page fault code is a relatively likely
290 	 * place to get trapped in an infinite regress, and once we
291 	 * overwrite the whole stack, it becomes very hard to recover.
292 	 */
293 	stack_offset = stack_pointer & (THREAD_SIZE-1);
294 	if (stack_offset < THREAD_SIZE / 8) {
295 		pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer);
296 		show_regs(regs);
297 		pr_alert("Killing current process %d/%s\n",
298 			 tsk->pid, tsk->comm);
299 		do_group_exit(SIGKILL);
300 	}
301 
302 	/*
303 	 * Early on, we need to check for migrating PTE entries;
304 	 * see homecache.c.  If we find a migrating PTE, we wait until
305 	 * the backing page claims to be done migrating, then we proceed.
306 	 * For kernel PTEs, we rewrite the PTE and return and retry.
307 	 * Otherwise, we treat the fault like a normal "no PTE" fault,
308 	 * rather than trying to patch up the existing PTE.
309 	 */
310 	pgd = get_current_pgd();
311 	if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
312 				 is_kernel_mode, write))
313 		return 1;
314 
315 	si_code = SEGV_MAPERR;
316 
317 	/*
318 	 * We fault-in kernel-space virtual memory on-demand. The
319 	 * 'reference' page table is init_mm.pgd.
320 	 *
321 	 * NOTE! We MUST NOT take any locks for this case. We may
322 	 * be in an interrupt or a critical region, and should
323 	 * only copy the information from the master page table,
324 	 * nothing more.
325 	 *
326 	 * This verifies that the fault happens in kernel space
327 	 * and that the fault was not a protection fault.
328 	 */
329 	if (unlikely(address >= TASK_SIZE &&
330 		     !is_arch_mappable_range(address, 0))) {
331 		if (is_kernel_mode && is_page_fault &&
332 		    vmalloc_fault(pgd, address) >= 0)
333 			return 1;
334 		/*
335 		 * Don't take the mm semaphore here. If we fixup a prefetch
336 		 * fault we could otherwise deadlock.
337 		 */
338 		mm = NULL;  /* happy compiler */
339 		vma = NULL;
340 		goto bad_area_nosemaphore;
341 	}
342 
343 	/*
344 	 * If we're trying to touch user-space addresses, we must
345 	 * be either at PL0, or else with interrupts enabled in the
346 	 * kernel, so either way we can re-enable interrupts here
347 	 * unless we are doing atomic access to user space with
348 	 * interrupts disabled.
349 	 */
350 	if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
351 		local_irq_enable();
352 
353 	mm = tsk->mm;
354 
355 	/*
356 	 * If we're in an interrupt, have no user context or are running in an
357 	 * region with pagefaults disabled then we must not take the fault.
358 	 */
359 	if (pagefault_disabled() || !mm) {
360 		vma = NULL;  /* happy compiler */
361 		goto bad_area_nosemaphore;
362 	}
363 
364 	if (!is_kernel_mode)
365 		flags |= FAULT_FLAG_USER;
366 
367 	/*
368 	 * When running in the kernel we expect faults to occur only to
369 	 * addresses in user space.  All other faults represent errors in the
370 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
371 	 * erroneous fault occurring in a code path which already holds mmap_sem
372 	 * we will deadlock attempting to validate the fault against the
373 	 * address space.  Luckily the kernel only validly references user
374 	 * space from well defined areas of code, which are listed in the
375 	 * exceptions table.
376 	 *
377 	 * As the vast majority of faults will be valid we will only perform
378 	 * the source reference check when there is a possibility of a deadlock.
379 	 * Attempt to lock the address space, if we cannot we then validate the
380 	 * source.  If this is invalid we can skip the address space check,
381 	 * thus avoiding the deadlock.
382 	 */
383 	if (!down_read_trylock(&mm->mmap_sem)) {
384 		if (is_kernel_mode &&
385 		    !search_exception_tables(regs->pc)) {
386 			vma = NULL;  /* happy compiler */
387 			goto bad_area_nosemaphore;
388 		}
389 
390 retry:
391 		down_read(&mm->mmap_sem);
392 	}
393 
394 	vma = find_vma(mm, address);
395 	if (!vma)
396 		goto bad_area;
397 	if (vma->vm_start <= address)
398 		goto good_area;
399 	if (!(vma->vm_flags & VM_GROWSDOWN))
400 		goto bad_area;
401 	if (regs->sp < PAGE_OFFSET) {
402 		/*
403 		 * accessing the stack below sp is always a bug.
404 		 */
405 		if (address < regs->sp)
406 			goto bad_area;
407 	}
408 	if (expand_stack(vma, address))
409 		goto bad_area;
410 
411 /*
412  * Ok, we have a good vm_area for this memory access, so
413  * we can handle it..
414  */
415 good_area:
416 	si_code = SEGV_ACCERR;
417 	if (fault_num == INT_ITLB_MISS) {
418 		if (!(vma->vm_flags & VM_EXEC))
419 			goto bad_area;
420 	} else if (write) {
421 #ifdef TEST_VERIFY_AREA
422 		if (!is_page_fault && regs->cs == KERNEL_CS)
423 			pr_err("WP fault at " REGFMT "\n", regs->eip);
424 #endif
425 		if (!(vma->vm_flags & VM_WRITE))
426 			goto bad_area;
427 		flags |= FAULT_FLAG_WRITE;
428 	} else {
429 		if (!is_page_fault || !(vma->vm_flags & VM_READ))
430 			goto bad_area;
431 	}
432 
433 	/*
434 	 * If for any reason at all we couldn't handle the fault,
435 	 * make sure we exit gracefully rather than endlessly redo
436 	 * the fault.
437 	 */
438 	fault = handle_mm_fault(mm, vma, address, flags);
439 
440 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
441 		return 0;
442 
443 	if (unlikely(fault & VM_FAULT_ERROR)) {
444 		if (fault & VM_FAULT_OOM)
445 			goto out_of_memory;
446 		else if (fault & VM_FAULT_SIGSEGV)
447 			goto bad_area;
448 		else if (fault & VM_FAULT_SIGBUS)
449 			goto do_sigbus;
450 		BUG();
451 	}
452 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
453 		if (fault & VM_FAULT_MAJOR)
454 			tsk->maj_flt++;
455 		else
456 			tsk->min_flt++;
457 		if (fault & VM_FAULT_RETRY) {
458 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
459 			flags |= FAULT_FLAG_TRIED;
460 
461 			 /*
462 			  * No need to up_read(&mm->mmap_sem) as we would
463 			  * have already released it in __lock_page_or_retry
464 			  * in mm/filemap.c.
465 			  */
466 			goto retry;
467 		}
468 	}
469 
470 #if CHIP_HAS_TILE_DMA()
471 	/* If this was a DMA TLB fault, restart the DMA engine. */
472 	switch (fault_num) {
473 	case INT_DMATLB_MISS:
474 	case INT_DMATLB_MISS_DWNCL:
475 	case INT_DMATLB_ACCESS:
476 	case INT_DMATLB_ACCESS_DWNCL:
477 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
478 		break;
479 	}
480 #endif
481 
482 	up_read(&mm->mmap_sem);
483 	return 1;
484 
485 /*
486  * Something tried to access memory that isn't in our memory map..
487  * Fix it, but check if it's kernel or user first..
488  */
489 bad_area:
490 	up_read(&mm->mmap_sem);
491 
492 bad_area_nosemaphore:
493 	/* User mode accesses just cause a SIGSEGV */
494 	if (!is_kernel_mode) {
495 		/*
496 		 * It's possible to have interrupts off here.
497 		 */
498 		local_irq_enable();
499 
500 		force_sig_info_fault("segfault", SIGSEGV, si_code, address,
501 				     fault_num, tsk, regs);
502 		return 0;
503 	}
504 
505 no_context:
506 	/* Are we prepared to handle this kernel fault?  */
507 	if (fixup_exception(regs))
508 		return 0;
509 
510 /*
511  * Oops. The kernel tried to access some bad page. We'll have to
512  * terminate things with extreme prejudice.
513  */
514 
515 	bust_spinlocks(1);
516 
517 	/* FIXME: no lookup_address() yet */
518 #ifdef SUPPORT_LOOKUP_ADDRESS
519 	if (fault_num == INT_ITLB_MISS) {
520 		pte_t *pte = lookup_address(address);
521 
522 		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
523 			pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
524 				current->uid);
525 	}
526 #endif
527 	if (address < PAGE_SIZE)
528 		pr_alert("Unable to handle kernel NULL pointer dereference\n");
529 	else
530 		pr_alert("Unable to handle kernel paging request\n");
531 	pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n",
532 		 address, regs->pc);
533 
534 	show_regs(regs);
535 
536 	if (unlikely(tsk->pid < 2)) {
537 		panic("Kernel page fault running %s!",
538 		      is_idle_task(tsk) ? "the idle task" : "init");
539 	}
540 
541 	/*
542 	 * More FIXME: we should probably copy the i386 here and
543 	 * implement a generic die() routine.  Not today.
544 	 */
545 #ifdef SUPPORT_DIE
546 	die("Oops", regs);
547 #endif
548 	bust_spinlocks(1);
549 
550 	do_group_exit(SIGKILL);
551 
552 /*
553  * We ran out of memory, or some other thing happened to us that made
554  * us unable to handle the page fault gracefully.
555  */
556 out_of_memory:
557 	up_read(&mm->mmap_sem);
558 	if (is_kernel_mode)
559 		goto no_context;
560 	pagefault_out_of_memory();
561 	return 0;
562 
563 do_sigbus:
564 	up_read(&mm->mmap_sem);
565 
566 	/* Kernel mode? Handle exceptions or die */
567 	if (is_kernel_mode)
568 		goto no_context;
569 
570 	force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
571 			     fault_num, tsk, regs);
572 	return 0;
573 }
574 
575 #ifndef __tilegx__
576 
577 /* We must release ICS before panicking or we won't get anywhere. */
578 #define ics_panic(fmt, ...)					\
579 do {								\
580 	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0);	\
581 	panic(fmt, ##__VA_ARGS__);				\
582 } while (0)
583 
584 /*
585  * When we take an ITLB or DTLB fault or access violation in the
586  * supervisor while the critical section bit is set, the hypervisor is
587  * reluctant to write new values into the EX_CONTEXT_K_x registers,
588  * since that might indicate we have not yet squirreled the SPR
589  * contents away and can thus safely take a recursive interrupt.
590  * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
591  *
592  * Note that this routine is called before homecache_tlb_defer_enter(),
593  * which means that we can properly unlock any atomics that might
594  * be used there (good), but also means we must be very sensitive
595  * to not touch any data structures that might be located in memory
596  * that could migrate, as we could be entering the kernel on a dataplane
597  * cpu that has been deferring kernel TLB updates.  This means, for
598  * example, that we can't migrate init_mm or its pgd.
599  */
do_page_fault_ics(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long info)600 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
601 				      unsigned long address,
602 				      unsigned long info)
603 {
604 	unsigned long pc = info & ~1;
605 	int write = info & 1;
606 	pgd_t *pgd = get_current_pgd();
607 
608 	/* Retval is 1 at first since we will handle the fault fully. */
609 	struct intvec_state state = {
610 		do_page_fault, fault_num, address, write, 1
611 	};
612 
613 	/* Validate that we are plausibly in the right routine. */
614 	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
615 	    (fault_num != INT_DTLB_MISS &&
616 	     fault_num != INT_DTLB_ACCESS)) {
617 		unsigned long old_pc = regs->pc;
618 		regs->pc = pc;
619 		ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
620 			  old_pc, fault_num, write, address);
621 	}
622 
623 	/* We might be faulting on a vmalloc page, so check that first. */
624 	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
625 		return state;
626 
627 	/*
628 	 * If we faulted with ICS set in sys_cmpxchg, we are providing
629 	 * a user syscall service that should generate a signal on
630 	 * fault.  We didn't set up a kernel stack on initial entry to
631 	 * sys_cmpxchg, but instead had one set up by the fault, which
632 	 * (because sys_cmpxchg never releases ICS) came to us via the
633 	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
634 	 * still referencing the original user code.  We release the
635 	 * atomic lock and rewrite pt_regs so that it appears that we
636 	 * came from user-space directly, and after we finish the
637 	 * fault we'll go back to user space and re-issue the swint.
638 	 * This way the backtrace information is correct if we need to
639 	 * emit a stack dump at any point while handling this.
640 	 *
641 	 * Must match register use in sys_cmpxchg().
642 	 */
643 	if (pc >= (unsigned long) sys_cmpxchg &&
644 	    pc < (unsigned long) __sys_cmpxchg_end) {
645 #ifdef CONFIG_SMP
646 		/* Don't unlock before we could have locked. */
647 		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
648 			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
649 			__atomic_fault_unlock(lock_ptr);
650 		}
651 #endif
652 		regs->sp = regs->regs[27];
653 	}
654 
655 	/*
656 	 * We can also fault in the atomic assembly, in which
657 	 * case we use the exception table to do the first-level fixup.
658 	 * We may re-fixup again in the real fault handler if it
659 	 * turns out the faulting address is just bad, and not,
660 	 * for example, migrating.
661 	 */
662 	else if (pc >= (unsigned long) __start_atomic_asm_code &&
663 		   pc < (unsigned long) __end_atomic_asm_code) {
664 		const struct exception_table_entry *fixup;
665 #ifdef CONFIG_SMP
666 		/* Unlock the atomic lock. */
667 		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
668 		__atomic_fault_unlock(lock_ptr);
669 #endif
670 		fixup = search_exception_tables(pc);
671 		if (!fixup)
672 			ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
673 				  pc, fault_num);
674 		regs->pc = fixup->fixup;
675 		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
676 	}
677 
678 	/*
679 	 * Now that we have released the atomic lock (if necessary),
680 	 * it's safe to spin if the PTE that caused the fault was migrating.
681 	 */
682 	if (fault_num == INT_DTLB_ACCESS)
683 		write = 1;
684 	if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
685 		return state;
686 
687 	/* Return zero so that we continue on with normal fault handling. */
688 	state.retval = 0;
689 	return state;
690 }
691 
692 #endif /* !__tilegx__ */
693 
694 /*
695  * This routine handles page faults.  It determines the address, and the
696  * problem, and then passes it handle_page_fault() for normal DTLB and
697  * ITLB issues, and for DMA or SN processor faults when we are in user
698  * space.  For the latter, if we're in kernel mode, we just save the
699  * interrupt away appropriately and return immediately.  We can't do
700  * page faults for user code while in kernel mode.
701  */
__do_page_fault(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long write)702 static inline void __do_page_fault(struct pt_regs *regs, int fault_num,
703 				   unsigned long address, unsigned long write)
704 {
705 	int is_page_fault;
706 
707 #ifdef CONFIG_KPROBES
708 	/*
709 	 * This is to notify the fault handler of the kprobes.  The
710 	 * exception code is redundant as it is also carried in REGS,
711 	 * but we pass it anyhow.
712 	 */
713 	if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
714 		       regs->faultnum, SIGSEGV) == NOTIFY_STOP)
715 		return;
716 #endif
717 
718 #ifdef __tilegx__
719 	/*
720 	 * We don't need early do_page_fault_ics() support, since unlike
721 	 * Pro we don't need to worry about unlocking the atomic locks.
722 	 * There is only one current case in GX where we touch any memory
723 	 * under ICS other than our own kernel stack, and we handle that
724 	 * here.  (If we crash due to trying to touch our own stack,
725 	 * we're in too much trouble for C code to help out anyway.)
726 	 */
727 	if (write & ~1) {
728 		unsigned long pc = write & ~1;
729 		if (pc >= (unsigned long) __start_unalign_asm_code &&
730 		    pc < (unsigned long) __end_unalign_asm_code) {
731 			struct thread_info *ti = current_thread_info();
732 			/*
733 			 * Our EX_CONTEXT is still what it was from the
734 			 * initial unalign exception, but now we've faulted
735 			 * on the JIT page.  We would like to complete the
736 			 * page fault however is appropriate, and then retry
737 			 * the instruction that caused the unalign exception.
738 			 * Our state has been "corrupted" by setting the low
739 			 * bit in "sp", and stashing r0..r3 in the
740 			 * thread_info area, so we revert all of that, then
741 			 * continue as if this were a normal page fault.
742 			 */
743 			regs->sp &= ~1UL;
744 			regs->regs[0] = ti->unalign_jit_tmp[0];
745 			regs->regs[1] = ti->unalign_jit_tmp[1];
746 			regs->regs[2] = ti->unalign_jit_tmp[2];
747 			regs->regs[3] = ti->unalign_jit_tmp[3];
748 			write &= 1;
749 		} else {
750 			pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
751 				 current->comm, current->pid, pc, address);
752 			show_regs(regs);
753 			do_group_exit(SIGKILL);
754 		}
755 	}
756 #else
757 	/* This case should have been handled by do_page_fault_ics(). */
758 	BUG_ON(write & ~1);
759 #endif
760 
761 #if CHIP_HAS_TILE_DMA()
762 	/*
763 	 * If it's a DMA fault, suspend the transfer while we're
764 	 * handling the miss; we'll restart after it's handled.  If we
765 	 * don't suspend, it's possible that this process could swap
766 	 * out and back in, and restart the engine since the DMA is
767 	 * still 'running'.
768 	 */
769 	if (fault_num == INT_DMATLB_MISS ||
770 	    fault_num == INT_DMATLB_ACCESS ||
771 	    fault_num == INT_DMATLB_MISS_DWNCL ||
772 	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
773 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
774 		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
775 		       SPR_DMA_STATUS__BUSY_MASK)
776 			;
777 	}
778 #endif
779 
780 	/* Validate fault num and decide if this is a first-time page fault. */
781 	switch (fault_num) {
782 	case INT_ITLB_MISS:
783 	case INT_DTLB_MISS:
784 #if CHIP_HAS_TILE_DMA()
785 	case INT_DMATLB_MISS:
786 	case INT_DMATLB_MISS_DWNCL:
787 #endif
788 		is_page_fault = 1;
789 		break;
790 
791 	case INT_DTLB_ACCESS:
792 #if CHIP_HAS_TILE_DMA()
793 	case INT_DMATLB_ACCESS:
794 	case INT_DMATLB_ACCESS_DWNCL:
795 #endif
796 		is_page_fault = 0;
797 		break;
798 
799 	default:
800 		panic("Bad fault number %d in do_page_fault", fault_num);
801 	}
802 
803 #if CHIP_HAS_TILE_DMA()
804 	if (!user_mode(regs)) {
805 		struct async_tlb *async;
806 		switch (fault_num) {
807 #if CHIP_HAS_TILE_DMA()
808 		case INT_DMATLB_MISS:
809 		case INT_DMATLB_ACCESS:
810 		case INT_DMATLB_MISS_DWNCL:
811 		case INT_DMATLB_ACCESS_DWNCL:
812 			async = &current->thread.dma_async_tlb;
813 			break;
814 #endif
815 		default:
816 			async = NULL;
817 		}
818 		if (async) {
819 
820 			/*
821 			 * No vmalloc check required, so we can allow
822 			 * interrupts immediately at this point.
823 			 */
824 			local_irq_enable();
825 
826 			set_thread_flag(TIF_ASYNC_TLB);
827 			if (async->fault_num != 0) {
828 				panic("Second async fault %d; old fault was %d (%#lx/%ld)",
829 				      fault_num, async->fault_num,
830 				      address, write);
831 			}
832 			BUG_ON(fault_num == 0);
833 			async->fault_num = fault_num;
834 			async->is_fault = is_page_fault;
835 			async->is_write = write;
836 			async->address = address;
837 			return;
838 		}
839 	}
840 #endif
841 
842 	handle_page_fault(regs, fault_num, is_page_fault, address, write);
843 }
844 
do_page_fault(struct pt_regs * regs,int fault_num,unsigned long address,unsigned long write)845 void do_page_fault(struct pt_regs *regs, int fault_num,
846 		   unsigned long address, unsigned long write)
847 {
848 	enum ctx_state prev_state = exception_enter();
849 	__do_page_fault(regs, fault_num, address, write);
850 	exception_exit(prev_state);
851 }
852 
853 #if CHIP_HAS_TILE_DMA()
854 /*
855  * This routine effectively re-issues asynchronous page faults
856  * when we are returning to user space.
857  */
do_async_page_fault(struct pt_regs * regs)858 void do_async_page_fault(struct pt_regs *regs)
859 {
860 	struct async_tlb *async = &current->thread.dma_async_tlb;
861 
862 	/*
863 	 * Clear thread flag early.  If we re-interrupt while processing
864 	 * code here, we will reset it and recall this routine before
865 	 * returning to user space.
866 	 */
867 	clear_thread_flag(TIF_ASYNC_TLB);
868 
869 	if (async->fault_num) {
870 		/*
871 		 * Clear async->fault_num before calling the page-fault
872 		 * handler so that if we re-interrupt before returning
873 		 * from the function we have somewhere to put the
874 		 * information from the new interrupt.
875 		 */
876 		int fault_num = async->fault_num;
877 		async->fault_num = 0;
878 		handle_page_fault(regs, fault_num, async->is_fault,
879 				  async->address, async->is_write);
880 	}
881 }
882 #endif /* CHIP_HAS_TILE_DMA() */
883 
884 
vmalloc_sync_all(void)885 void vmalloc_sync_all(void)
886 {
887 #ifdef __tilegx__
888 	/* Currently all L1 kernel pmd's are static and shared. */
889 	BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
890 		     pgd_index(VMALLOC_START));
891 #else
892 	/*
893 	 * Note that races in the updates of insync and start aren't
894 	 * problematic: insync can only get set bits added, and updates to
895 	 * start are only improving performance (without affecting correctness
896 	 * if undone).
897 	 */
898 	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
899 	static unsigned long start = PAGE_OFFSET;
900 	unsigned long address;
901 
902 	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
903 	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
904 		if (!test_bit(pgd_index(address), insync)) {
905 			unsigned long flags;
906 			struct list_head *pos;
907 
908 			spin_lock_irqsave(&pgd_lock, flags);
909 			list_for_each(pos, &pgd_list)
910 				if (!vmalloc_sync_one(list_to_pgd(pos),
911 								address)) {
912 					/* Must be at first entry in list. */
913 					BUG_ON(pos != pgd_list.next);
914 					break;
915 				}
916 			spin_unlock_irqrestore(&pgd_lock, flags);
917 			if (pos != pgd_list.next)
918 				set_bit(pgd_index(address), insync);
919 		}
920 		if (address == start && test_bit(pgd_index(address), insync))
921 			start = address + PGDIR_SIZE;
922 	}
923 #endif
924 }
925