1 /*
2 * VMware VMCI Driver
3 *
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47 * new-style VMX'en.
48 *
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
51 *
52 * -------------- NEW -------------
53 * | |
54 * \_/ \_/
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
56 * | | |
57 * | o-----------------------o |
58 * | | |
59 * \_/ \_/ \_/
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61 * | | |
62 * | o----------------------o |
63 * | | |
64 * \_/ \_/ \_/
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66 * | |
67 * | |
68 * -------------> gone <-------------
69 *
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
72 *
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74 *
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
77 *
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
83 *
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
89 *
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
93 *
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95 * paths:
96 *
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
99 *
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
102 *
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
105 *
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110 * will be entered.
111 *
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
120 *
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
130 */
131
132 /*
133 * VMCIMemcpy{To,From}QueueFunc() prototypes. Functions of these
134 * types are passed around to enqueue and dequeue routines. Note that
135 * often the functions passed are simply wrappers around memcpy
136 * itself.
137 *
138 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139 * there's an unused last parameter for the hosted side. In
140 * ESX, that parameter holds a buffer type.
141 */
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143 u64 queue_offset, const void *src,
144 size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146 const struct vmci_queue *queue,
147 u64 queue_offset, size_t size);
148
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151 struct mutex __mutex; /* Protects the queue. */
152 struct mutex *mutex; /* Shared by producer and consumer queues. */
153 size_t num_pages; /* Number of pages incl. header. */
154 bool host; /* Host or guest? */
155 union {
156 struct {
157 dma_addr_t *pas;
158 void **vas;
159 } g; /* Used by the guest. */
160 struct {
161 struct page **page;
162 struct page **header_page;
163 } h; /* Used by the host. */
164 } u;
165 };
166
167 /*
168 * This structure is opaque to the clients.
169 */
170 struct vmci_qp {
171 struct vmci_handle handle;
172 struct vmci_queue *produce_q;
173 struct vmci_queue *consume_q;
174 u64 produce_q_size;
175 u64 consume_q_size;
176 u32 peer;
177 u32 flags;
178 u32 priv_flags;
179 bool guest_endpoint;
180 unsigned int blocked;
181 unsigned int generation;
182 wait_queue_head_t event;
183 };
184
185 enum qp_broker_state {
186 VMCIQPB_NEW,
187 VMCIQPB_CREATED_NO_MEM,
188 VMCIQPB_CREATED_MEM,
189 VMCIQPB_ATTACHED_NO_MEM,
190 VMCIQPB_ATTACHED_MEM,
191 VMCIQPB_SHUTDOWN_NO_MEM,
192 VMCIQPB_SHUTDOWN_MEM,
193 VMCIQPB_GONE
194 };
195
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197 _qpb->state == VMCIQPB_ATTACHED_MEM || \
198 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
199
200 /*
201 * In the queue pair broker, we always use the guest point of view for
202 * the produce and consume queue values and references, e.g., the
203 * produce queue size stored is the guests produce queue size. The
204 * host endpoint will need to swap these around. The only exception is
205 * the local queue pairs on the host, in which case the host endpoint
206 * that creates the queue pair will have the right orientation, and
207 * the attaching host endpoint will need to swap.
208 */
209 struct qp_entry {
210 struct list_head list_item;
211 struct vmci_handle handle;
212 u32 peer;
213 u32 flags;
214 u64 produce_size;
215 u64 consume_size;
216 u32 ref_count;
217 };
218
219 struct qp_broker_entry {
220 struct vmci_resource resource;
221 struct qp_entry qp;
222 u32 create_id;
223 u32 attach_id;
224 enum qp_broker_state state;
225 bool require_trusted_attach;
226 bool created_by_trusted;
227 bool vmci_page_files; /* Created by VMX using VMCI page files */
228 struct vmci_queue *produce_q;
229 struct vmci_queue *consume_q;
230 struct vmci_queue_header saved_produce_q;
231 struct vmci_queue_header saved_consume_q;
232 vmci_event_release_cb wakeup_cb;
233 void *client_data;
234 void *local_mem; /* Kernel memory for local queue pair */
235 };
236
237 struct qp_guest_endpoint {
238 struct vmci_resource resource;
239 struct qp_entry qp;
240 u64 num_ppns;
241 void *produce_q;
242 void *consume_q;
243 struct ppn_set ppn_set;
244 };
245
246 struct qp_list {
247 struct list_head head;
248 struct mutex mutex; /* Protect queue list. */
249 };
250
251 static struct qp_list qp_broker_list = {
252 .head = LIST_HEAD_INIT(qp_broker_list.head),
253 .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
254 };
255
256 static struct qp_list qp_guest_endpoints = {
257 .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258 .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
259 };
260
261 #define INVALID_VMCI_GUEST_MEM_ID 0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
265
266
267 /*
268 * Frees kernel VA space for a given queue and its queue header, and
269 * frees physical data pages.
270 */
qp_free_queue(void * q,u64 size)271 static void qp_free_queue(void *q, u64 size)
272 {
273 struct vmci_queue *queue = q;
274
275 if (queue) {
276 u64 i;
277
278 /* Given size does not include header, so add in a page here. */
279 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280 dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281 queue->kernel_if->u.g.vas[i],
282 queue->kernel_if->u.g.pas[i]);
283 }
284
285 vfree(queue);
286 }
287 }
288
289 /*
290 * Allocates kernel queue pages of specified size with IOMMU mappings,
291 * plus space for the queue structure/kernel interface and the queue
292 * header.
293 */
qp_alloc_queue(u64 size,u32 flags)294 static void *qp_alloc_queue(u64 size, u32 flags)
295 {
296 u64 i;
297 struct vmci_queue *queue;
298 size_t pas_size;
299 size_t vas_size;
300 size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
301 u64 num_pages;
302
303 if (size > SIZE_MAX - PAGE_SIZE)
304 return NULL;
305 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
306 if (num_pages >
307 (SIZE_MAX - queue_size) /
308 (sizeof(*queue->kernel_if->u.g.pas) +
309 sizeof(*queue->kernel_if->u.g.vas)))
310 return NULL;
311
312 pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
313 vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
314 queue_size += pas_size + vas_size;
315
316 queue = vmalloc(queue_size);
317 if (!queue)
318 return NULL;
319
320 queue->q_header = NULL;
321 queue->saved_header = NULL;
322 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
323 queue->kernel_if->mutex = NULL;
324 queue->kernel_if->num_pages = num_pages;
325 queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
326 queue->kernel_if->u.g.vas =
327 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
328 queue->kernel_if->host = false;
329
330 for (i = 0; i < num_pages; i++) {
331 queue->kernel_if->u.g.vas[i] =
332 dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
333 &queue->kernel_if->u.g.pas[i],
334 GFP_KERNEL);
335 if (!queue->kernel_if->u.g.vas[i]) {
336 /* Size excl. the header. */
337 qp_free_queue(queue, i * PAGE_SIZE);
338 return NULL;
339 }
340 }
341
342 /* Queue header is the first page. */
343 queue->q_header = queue->kernel_if->u.g.vas[0];
344
345 return queue;
346 }
347
348 /*
349 * Copies from a given buffer or iovector to a VMCI Queue. Uses
350 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
351 * by traversing the offset -> page translation structure for the queue.
352 * Assumes that offset + size does not wrap around in the queue.
353 */
__qp_memcpy_to_queue(struct vmci_queue * queue,u64 queue_offset,const void * src,size_t size,bool is_iovec)354 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
355 u64 queue_offset,
356 const void *src,
357 size_t size,
358 bool is_iovec)
359 {
360 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
361 size_t bytes_copied = 0;
362
363 while (bytes_copied < size) {
364 const u64 page_index =
365 (queue_offset + bytes_copied) / PAGE_SIZE;
366 const size_t page_offset =
367 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
368 void *va;
369 size_t to_copy;
370
371 if (kernel_if->host)
372 va = kmap(kernel_if->u.h.page[page_index]);
373 else
374 va = kernel_if->u.g.vas[page_index + 1];
375 /* Skip header. */
376
377 if (size - bytes_copied > PAGE_SIZE - page_offset)
378 /* Enough payload to fill up from this page. */
379 to_copy = PAGE_SIZE - page_offset;
380 else
381 to_copy = size - bytes_copied;
382
383 if (is_iovec) {
384 struct msghdr *msg = (struct msghdr *)src;
385 int err;
386
387 /* The iovec will track bytes_copied internally. */
388 err = memcpy_from_msg((u8 *)va + page_offset,
389 msg, to_copy);
390 if (err != 0) {
391 if (kernel_if->host)
392 kunmap(kernel_if->u.h.page[page_index]);
393 return VMCI_ERROR_INVALID_ARGS;
394 }
395 } else {
396 memcpy((u8 *)va + page_offset,
397 (u8 *)src + bytes_copied, to_copy);
398 }
399
400 bytes_copied += to_copy;
401 if (kernel_if->host)
402 kunmap(kernel_if->u.h.page[page_index]);
403 }
404
405 return VMCI_SUCCESS;
406 }
407
408 /*
409 * Copies to a given buffer or iovector from a VMCI Queue. Uses
410 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
411 * by traversing the offset -> page translation structure for the queue.
412 * Assumes that offset + size does not wrap around in the queue.
413 */
__qp_memcpy_from_queue(void * dest,const struct vmci_queue * queue,u64 queue_offset,size_t size,bool is_iovec)414 static int __qp_memcpy_from_queue(void *dest,
415 const struct vmci_queue *queue,
416 u64 queue_offset,
417 size_t size,
418 bool is_iovec)
419 {
420 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
421 size_t bytes_copied = 0;
422
423 while (bytes_copied < size) {
424 const u64 page_index =
425 (queue_offset + bytes_copied) / PAGE_SIZE;
426 const size_t page_offset =
427 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
428 void *va;
429 size_t to_copy;
430
431 if (kernel_if->host)
432 va = kmap(kernel_if->u.h.page[page_index]);
433 else
434 va = kernel_if->u.g.vas[page_index + 1];
435 /* Skip header. */
436
437 if (size - bytes_copied > PAGE_SIZE - page_offset)
438 /* Enough payload to fill up this page. */
439 to_copy = PAGE_SIZE - page_offset;
440 else
441 to_copy = size - bytes_copied;
442
443 if (is_iovec) {
444 struct msghdr *msg = dest;
445 int err;
446
447 /* The iovec will track bytes_copied internally. */
448 err = memcpy_to_msg(msg, (u8 *)va + page_offset,
449 to_copy);
450 if (err != 0) {
451 if (kernel_if->host)
452 kunmap(kernel_if->u.h.page[page_index]);
453 return VMCI_ERROR_INVALID_ARGS;
454 }
455 } else {
456 memcpy((u8 *)dest + bytes_copied,
457 (u8 *)va + page_offset, to_copy);
458 }
459
460 bytes_copied += to_copy;
461 if (kernel_if->host)
462 kunmap(kernel_if->u.h.page[page_index]);
463 }
464
465 return VMCI_SUCCESS;
466 }
467
468 /*
469 * Allocates two list of PPNs --- one for the pages in the produce queue,
470 * and the other for the pages in the consume queue. Intializes the list
471 * of PPNs with the page frame numbers of the KVA for the two queues (and
472 * the queue headers).
473 */
qp_alloc_ppn_set(void * prod_q,u64 num_produce_pages,void * cons_q,u64 num_consume_pages,struct ppn_set * ppn_set)474 static int qp_alloc_ppn_set(void *prod_q,
475 u64 num_produce_pages,
476 void *cons_q,
477 u64 num_consume_pages, struct ppn_set *ppn_set)
478 {
479 u32 *produce_ppns;
480 u32 *consume_ppns;
481 struct vmci_queue *produce_q = prod_q;
482 struct vmci_queue *consume_q = cons_q;
483 u64 i;
484
485 if (!produce_q || !num_produce_pages || !consume_q ||
486 !num_consume_pages || !ppn_set)
487 return VMCI_ERROR_INVALID_ARGS;
488
489 if (ppn_set->initialized)
490 return VMCI_ERROR_ALREADY_EXISTS;
491
492 produce_ppns =
493 kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
494 if (!produce_ppns)
495 return VMCI_ERROR_NO_MEM;
496
497 consume_ppns =
498 kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
499 if (!consume_ppns) {
500 kfree(produce_ppns);
501 return VMCI_ERROR_NO_MEM;
502 }
503
504 for (i = 0; i < num_produce_pages; i++) {
505 unsigned long pfn;
506
507 produce_ppns[i] =
508 produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
509 pfn = produce_ppns[i];
510
511 /* Fail allocation if PFN isn't supported by hypervisor. */
512 if (sizeof(pfn) > sizeof(*produce_ppns)
513 && pfn != produce_ppns[i])
514 goto ppn_error;
515 }
516
517 for (i = 0; i < num_consume_pages; i++) {
518 unsigned long pfn;
519
520 consume_ppns[i] =
521 consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
522 pfn = consume_ppns[i];
523
524 /* Fail allocation if PFN isn't supported by hypervisor. */
525 if (sizeof(pfn) > sizeof(*consume_ppns)
526 && pfn != consume_ppns[i])
527 goto ppn_error;
528 }
529
530 ppn_set->num_produce_pages = num_produce_pages;
531 ppn_set->num_consume_pages = num_consume_pages;
532 ppn_set->produce_ppns = produce_ppns;
533 ppn_set->consume_ppns = consume_ppns;
534 ppn_set->initialized = true;
535 return VMCI_SUCCESS;
536
537 ppn_error:
538 kfree(produce_ppns);
539 kfree(consume_ppns);
540 return VMCI_ERROR_INVALID_ARGS;
541 }
542
543 /*
544 * Frees the two list of PPNs for a queue pair.
545 */
qp_free_ppn_set(struct ppn_set * ppn_set)546 static void qp_free_ppn_set(struct ppn_set *ppn_set)
547 {
548 if (ppn_set->initialized) {
549 /* Do not call these functions on NULL inputs. */
550 kfree(ppn_set->produce_ppns);
551 kfree(ppn_set->consume_ppns);
552 }
553 memset(ppn_set, 0, sizeof(*ppn_set));
554 }
555
556 /*
557 * Populates the list of PPNs in the hypercall structure with the PPNS
558 * of the produce queue and the consume queue.
559 */
qp_populate_ppn_set(u8 * call_buf,const struct ppn_set * ppn_set)560 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
561 {
562 memcpy(call_buf, ppn_set->produce_ppns,
563 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
564 memcpy(call_buf +
565 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
566 ppn_set->consume_ppns,
567 ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
568
569 return VMCI_SUCCESS;
570 }
571
qp_memcpy_to_queue(struct vmci_queue * queue,u64 queue_offset,const void * src,size_t src_offset,size_t size)572 static int qp_memcpy_to_queue(struct vmci_queue *queue,
573 u64 queue_offset,
574 const void *src, size_t src_offset, size_t size)
575 {
576 return __qp_memcpy_to_queue(queue, queue_offset,
577 (u8 *)src + src_offset, size, false);
578 }
579
qp_memcpy_from_queue(void * dest,size_t dest_offset,const struct vmci_queue * queue,u64 queue_offset,size_t size)580 static int qp_memcpy_from_queue(void *dest,
581 size_t dest_offset,
582 const struct vmci_queue *queue,
583 u64 queue_offset, size_t size)
584 {
585 return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
586 queue, queue_offset, size, false);
587 }
588
589 /*
590 * Copies from a given iovec from a VMCI Queue.
591 */
qp_memcpy_to_queue_iov(struct vmci_queue * queue,u64 queue_offset,const void * msg,size_t src_offset,size_t size)592 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
593 u64 queue_offset,
594 const void *msg,
595 size_t src_offset, size_t size)
596 {
597
598 /*
599 * We ignore src_offset because src is really a struct iovec * and will
600 * maintain offset internally.
601 */
602 return __qp_memcpy_to_queue(queue, queue_offset, msg, size, true);
603 }
604
605 /*
606 * Copies to a given iovec from a VMCI Queue.
607 */
qp_memcpy_from_queue_iov(void * dest,size_t dest_offset,const struct vmci_queue * queue,u64 queue_offset,size_t size)608 static int qp_memcpy_from_queue_iov(void *dest,
609 size_t dest_offset,
610 const struct vmci_queue *queue,
611 u64 queue_offset, size_t size)
612 {
613 /*
614 * We ignore dest_offset because dest is really a struct iovec * and
615 * will maintain offset internally.
616 */
617 return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
618 }
619
620 /*
621 * Allocates kernel VA space of specified size plus space for the queue
622 * and kernel interface. This is different from the guest queue allocator,
623 * because we do not allocate our own queue header/data pages here but
624 * share those of the guest.
625 */
qp_host_alloc_queue(u64 size)626 static struct vmci_queue *qp_host_alloc_queue(u64 size)
627 {
628 struct vmci_queue *queue;
629 size_t queue_page_size;
630 u64 num_pages;
631 const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
632
633 if (size > SIZE_MAX - PAGE_SIZE)
634 return NULL;
635 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
636 if (num_pages > (SIZE_MAX - queue_size) /
637 sizeof(*queue->kernel_if->u.h.page))
638 return NULL;
639
640 queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
641
642 if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
643 return NULL;
644
645 queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
646 if (queue) {
647 queue->q_header = NULL;
648 queue->saved_header = NULL;
649 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
650 queue->kernel_if->host = true;
651 queue->kernel_if->mutex = NULL;
652 queue->kernel_if->num_pages = num_pages;
653 queue->kernel_if->u.h.header_page =
654 (struct page **)((u8 *)queue + queue_size);
655 queue->kernel_if->u.h.page =
656 &queue->kernel_if->u.h.header_page[1];
657 }
658
659 return queue;
660 }
661
662 /*
663 * Frees kernel memory for a given queue (header plus translation
664 * structure).
665 */
qp_host_free_queue(struct vmci_queue * queue,u64 queue_size)666 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
667 {
668 kfree(queue);
669 }
670
671 /*
672 * Initialize the mutex for the pair of queues. This mutex is used to
673 * protect the q_header and the buffer from changing out from under any
674 * users of either queue. Of course, it's only any good if the mutexes
675 * are actually acquired. Queue structure must lie on non-paged memory
676 * or we cannot guarantee access to the mutex.
677 */
qp_init_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)678 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
679 struct vmci_queue *consume_q)
680 {
681 /*
682 * Only the host queue has shared state - the guest queues do not
683 * need to synchronize access using a queue mutex.
684 */
685
686 if (produce_q->kernel_if->host) {
687 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
688 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
689 mutex_init(produce_q->kernel_if->mutex);
690 }
691 }
692
693 /*
694 * Cleans up the mutex for the pair of queues.
695 */
qp_cleanup_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)696 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
697 struct vmci_queue *consume_q)
698 {
699 if (produce_q->kernel_if->host) {
700 produce_q->kernel_if->mutex = NULL;
701 consume_q->kernel_if->mutex = NULL;
702 }
703 }
704
705 /*
706 * Acquire the mutex for the queue. Note that the produce_q and
707 * the consume_q share a mutex. So, only one of the two need to
708 * be passed in to this routine. Either will work just fine.
709 */
qp_acquire_queue_mutex(struct vmci_queue * queue)710 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
711 {
712 if (queue->kernel_if->host)
713 mutex_lock(queue->kernel_if->mutex);
714 }
715
716 /*
717 * Release the mutex for the queue. Note that the produce_q and
718 * the consume_q share a mutex. So, only one of the two need to
719 * be passed in to this routine. Either will work just fine.
720 */
qp_release_queue_mutex(struct vmci_queue * queue)721 static void qp_release_queue_mutex(struct vmci_queue *queue)
722 {
723 if (queue->kernel_if->host)
724 mutex_unlock(queue->kernel_if->mutex);
725 }
726
727 /*
728 * Helper function to release pages in the PageStoreAttachInfo
729 * previously obtained using get_user_pages.
730 */
qp_release_pages(struct page ** pages,u64 num_pages,bool dirty)731 static void qp_release_pages(struct page **pages,
732 u64 num_pages, bool dirty)
733 {
734 int i;
735
736 for (i = 0; i < num_pages; i++) {
737 if (dirty)
738 set_page_dirty_lock(pages[i]);
739
740 page_cache_release(pages[i]);
741 pages[i] = NULL;
742 }
743 }
744
745 /*
746 * Lock the user pages referenced by the {produce,consume}Buffer
747 * struct into memory and populate the {produce,consume}Pages
748 * arrays in the attach structure with them.
749 */
qp_host_get_user_memory(u64 produce_uva,u64 consume_uva,struct vmci_queue * produce_q,struct vmci_queue * consume_q)750 static int qp_host_get_user_memory(u64 produce_uva,
751 u64 consume_uva,
752 struct vmci_queue *produce_q,
753 struct vmci_queue *consume_q)
754 {
755 int retval;
756 int err = VMCI_SUCCESS;
757
758 retval = get_user_pages_fast((uintptr_t) produce_uva,
759 produce_q->kernel_if->num_pages, 1,
760 produce_q->kernel_if->u.h.header_page);
761 if (retval < (int)produce_q->kernel_if->num_pages) {
762 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
763 retval);
764 if (retval > 0)
765 qp_release_pages(produce_q->kernel_if->u.h.header_page,
766 retval, false);
767 err = VMCI_ERROR_NO_MEM;
768 goto out;
769 }
770
771 retval = get_user_pages_fast((uintptr_t) consume_uva,
772 consume_q->kernel_if->num_pages, 1,
773 consume_q->kernel_if->u.h.header_page);
774 if (retval < (int)consume_q->kernel_if->num_pages) {
775 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
776 retval);
777 if (retval > 0)
778 qp_release_pages(consume_q->kernel_if->u.h.header_page,
779 retval, false);
780 qp_release_pages(produce_q->kernel_if->u.h.header_page,
781 produce_q->kernel_if->num_pages, false);
782 err = VMCI_ERROR_NO_MEM;
783 }
784
785 out:
786 return err;
787 }
788
789 /*
790 * Registers the specification of the user pages used for backing a queue
791 * pair. Enough information to map in pages is stored in the OS specific
792 * part of the struct vmci_queue structure.
793 */
qp_host_register_user_memory(struct vmci_qp_page_store * page_store,struct vmci_queue * produce_q,struct vmci_queue * consume_q)794 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
795 struct vmci_queue *produce_q,
796 struct vmci_queue *consume_q)
797 {
798 u64 produce_uva;
799 u64 consume_uva;
800
801 /*
802 * The new style and the old style mapping only differs in
803 * that we either get a single or two UVAs, so we split the
804 * single UVA range at the appropriate spot.
805 */
806 produce_uva = page_store->pages;
807 consume_uva = page_store->pages +
808 produce_q->kernel_if->num_pages * PAGE_SIZE;
809 return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
810 consume_q);
811 }
812
813 /*
814 * Releases and removes the references to user pages stored in the attach
815 * struct. Pages are released from the page cache and may become
816 * swappable again.
817 */
qp_host_unregister_user_memory(struct vmci_queue * produce_q,struct vmci_queue * consume_q)818 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
819 struct vmci_queue *consume_q)
820 {
821 qp_release_pages(produce_q->kernel_if->u.h.header_page,
822 produce_q->kernel_if->num_pages, true);
823 memset(produce_q->kernel_if->u.h.header_page, 0,
824 sizeof(*produce_q->kernel_if->u.h.header_page) *
825 produce_q->kernel_if->num_pages);
826 qp_release_pages(consume_q->kernel_if->u.h.header_page,
827 consume_q->kernel_if->num_pages, true);
828 memset(consume_q->kernel_if->u.h.header_page, 0,
829 sizeof(*consume_q->kernel_if->u.h.header_page) *
830 consume_q->kernel_if->num_pages);
831 }
832
833 /*
834 * Once qp_host_register_user_memory has been performed on a
835 * queue, the queue pair headers can be mapped into the
836 * kernel. Once mapped, they must be unmapped with
837 * qp_host_unmap_queues prior to calling
838 * qp_host_unregister_user_memory.
839 * Pages are pinned.
840 */
qp_host_map_queues(struct vmci_queue * produce_q,struct vmci_queue * consume_q)841 static int qp_host_map_queues(struct vmci_queue *produce_q,
842 struct vmci_queue *consume_q)
843 {
844 int result;
845
846 if (!produce_q->q_header || !consume_q->q_header) {
847 struct page *headers[2];
848
849 if (produce_q->q_header != consume_q->q_header)
850 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
851
852 if (produce_q->kernel_if->u.h.header_page == NULL ||
853 *produce_q->kernel_if->u.h.header_page == NULL)
854 return VMCI_ERROR_UNAVAILABLE;
855
856 headers[0] = *produce_q->kernel_if->u.h.header_page;
857 headers[1] = *consume_q->kernel_if->u.h.header_page;
858
859 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
860 if (produce_q->q_header != NULL) {
861 consume_q->q_header =
862 (struct vmci_queue_header *)((u8 *)
863 produce_q->q_header +
864 PAGE_SIZE);
865 result = VMCI_SUCCESS;
866 } else {
867 pr_warn("vmap failed\n");
868 result = VMCI_ERROR_NO_MEM;
869 }
870 } else {
871 result = VMCI_SUCCESS;
872 }
873
874 return result;
875 }
876
877 /*
878 * Unmaps previously mapped queue pair headers from the kernel.
879 * Pages are unpinned.
880 */
qp_host_unmap_queues(u32 gid,struct vmci_queue * produce_q,struct vmci_queue * consume_q)881 static int qp_host_unmap_queues(u32 gid,
882 struct vmci_queue *produce_q,
883 struct vmci_queue *consume_q)
884 {
885 if (produce_q->q_header) {
886 if (produce_q->q_header < consume_q->q_header)
887 vunmap(produce_q->q_header);
888 else
889 vunmap(consume_q->q_header);
890
891 produce_q->q_header = NULL;
892 consume_q->q_header = NULL;
893 }
894
895 return VMCI_SUCCESS;
896 }
897
898 /*
899 * Finds the entry in the list corresponding to a given handle. Assumes
900 * that the list is locked.
901 */
qp_list_find(struct qp_list * qp_list,struct vmci_handle handle)902 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
903 struct vmci_handle handle)
904 {
905 struct qp_entry *entry;
906
907 if (vmci_handle_is_invalid(handle))
908 return NULL;
909
910 list_for_each_entry(entry, &qp_list->head, list_item) {
911 if (vmci_handle_is_equal(entry->handle, handle))
912 return entry;
913 }
914
915 return NULL;
916 }
917
918 /*
919 * Finds the entry in the list corresponding to a given handle.
920 */
921 static struct qp_guest_endpoint *
qp_guest_handle_to_entry(struct vmci_handle handle)922 qp_guest_handle_to_entry(struct vmci_handle handle)
923 {
924 struct qp_guest_endpoint *entry;
925 struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
926
927 entry = qp ? container_of(
928 qp, struct qp_guest_endpoint, qp) : NULL;
929 return entry;
930 }
931
932 /*
933 * Finds the entry in the list corresponding to a given handle.
934 */
935 static struct qp_broker_entry *
qp_broker_handle_to_entry(struct vmci_handle handle)936 qp_broker_handle_to_entry(struct vmci_handle handle)
937 {
938 struct qp_broker_entry *entry;
939 struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
940
941 entry = qp ? container_of(
942 qp, struct qp_broker_entry, qp) : NULL;
943 return entry;
944 }
945
946 /*
947 * Dispatches a queue pair event message directly into the local event
948 * queue.
949 */
qp_notify_peer_local(bool attach,struct vmci_handle handle)950 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
951 {
952 u32 context_id = vmci_get_context_id();
953 struct vmci_event_qp ev;
954
955 ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
956 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
957 VMCI_CONTEXT_RESOURCE_ID);
958 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
959 ev.msg.event_data.event =
960 attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
961 ev.payload.peer_id = context_id;
962 ev.payload.handle = handle;
963
964 return vmci_event_dispatch(&ev.msg.hdr);
965 }
966
967 /*
968 * Allocates and initializes a qp_guest_endpoint structure.
969 * Allocates a queue_pair rid (and handle) iff the given entry has
970 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
971 * are reserved handles. Assumes that the QP list mutex is held
972 * by the caller.
973 */
974 static struct qp_guest_endpoint *
qp_guest_endpoint_create(struct vmci_handle handle,u32 peer,u32 flags,u64 produce_size,u64 consume_size,void * produce_q,void * consume_q)975 qp_guest_endpoint_create(struct vmci_handle handle,
976 u32 peer,
977 u32 flags,
978 u64 produce_size,
979 u64 consume_size,
980 void *produce_q,
981 void *consume_q)
982 {
983 int result;
984 struct qp_guest_endpoint *entry;
985 /* One page each for the queue headers. */
986 const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
987 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
988
989 if (vmci_handle_is_invalid(handle)) {
990 u32 context_id = vmci_get_context_id();
991
992 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
993 }
994
995 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
996 if (entry) {
997 entry->qp.peer = peer;
998 entry->qp.flags = flags;
999 entry->qp.produce_size = produce_size;
1000 entry->qp.consume_size = consume_size;
1001 entry->qp.ref_count = 0;
1002 entry->num_ppns = num_ppns;
1003 entry->produce_q = produce_q;
1004 entry->consume_q = consume_q;
1005 INIT_LIST_HEAD(&entry->qp.list_item);
1006
1007 /* Add resource obj */
1008 result = vmci_resource_add(&entry->resource,
1009 VMCI_RESOURCE_TYPE_QPAIR_GUEST,
1010 handle);
1011 entry->qp.handle = vmci_resource_handle(&entry->resource);
1012 if ((result != VMCI_SUCCESS) ||
1013 qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
1014 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1015 handle.context, handle.resource, result);
1016 kfree(entry);
1017 entry = NULL;
1018 }
1019 }
1020 return entry;
1021 }
1022
1023 /*
1024 * Frees a qp_guest_endpoint structure.
1025 */
qp_guest_endpoint_destroy(struct qp_guest_endpoint * entry)1026 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1027 {
1028 qp_free_ppn_set(&entry->ppn_set);
1029 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1030 qp_free_queue(entry->produce_q, entry->qp.produce_size);
1031 qp_free_queue(entry->consume_q, entry->qp.consume_size);
1032 /* Unlink from resource hash table and free callback */
1033 vmci_resource_remove(&entry->resource);
1034
1035 kfree(entry);
1036 }
1037
1038 /*
1039 * Helper to make a queue_pairAlloc hypercall when the driver is
1040 * supporting a guest device.
1041 */
qp_alloc_hypercall(const struct qp_guest_endpoint * entry)1042 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1043 {
1044 struct vmci_qp_alloc_msg *alloc_msg;
1045 size_t msg_size;
1046 int result;
1047
1048 if (!entry || entry->num_ppns <= 2)
1049 return VMCI_ERROR_INVALID_ARGS;
1050
1051 msg_size = sizeof(*alloc_msg) +
1052 (size_t) entry->num_ppns * sizeof(u32);
1053 alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1054 if (!alloc_msg)
1055 return VMCI_ERROR_NO_MEM;
1056
1057 alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1058 VMCI_QUEUEPAIR_ALLOC);
1059 alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1060 alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1061 alloc_msg->handle = entry->qp.handle;
1062 alloc_msg->peer = entry->qp.peer;
1063 alloc_msg->flags = entry->qp.flags;
1064 alloc_msg->produce_size = entry->qp.produce_size;
1065 alloc_msg->consume_size = entry->qp.consume_size;
1066 alloc_msg->num_ppns = entry->num_ppns;
1067
1068 result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1069 &entry->ppn_set);
1070 if (result == VMCI_SUCCESS)
1071 result = vmci_send_datagram(&alloc_msg->hdr);
1072
1073 kfree(alloc_msg);
1074
1075 return result;
1076 }
1077
1078 /*
1079 * Helper to make a queue_pairDetach hypercall when the driver is
1080 * supporting a guest device.
1081 */
qp_detatch_hypercall(struct vmci_handle handle)1082 static int qp_detatch_hypercall(struct vmci_handle handle)
1083 {
1084 struct vmci_qp_detach_msg detach_msg;
1085
1086 detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1087 VMCI_QUEUEPAIR_DETACH);
1088 detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1089 detach_msg.hdr.payload_size = sizeof(handle);
1090 detach_msg.handle = handle;
1091
1092 return vmci_send_datagram(&detach_msg.hdr);
1093 }
1094
1095 /*
1096 * Adds the given entry to the list. Assumes that the list is locked.
1097 */
qp_list_add_entry(struct qp_list * qp_list,struct qp_entry * entry)1098 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1099 {
1100 if (entry)
1101 list_add(&entry->list_item, &qp_list->head);
1102 }
1103
1104 /*
1105 * Removes the given entry from the list. Assumes that the list is locked.
1106 */
qp_list_remove_entry(struct qp_list * qp_list,struct qp_entry * entry)1107 static void qp_list_remove_entry(struct qp_list *qp_list,
1108 struct qp_entry *entry)
1109 {
1110 if (entry)
1111 list_del(&entry->list_item);
1112 }
1113
1114 /*
1115 * Helper for VMCI queue_pair detach interface. Frees the physical
1116 * pages for the queue pair.
1117 */
qp_detatch_guest_work(struct vmci_handle handle)1118 static int qp_detatch_guest_work(struct vmci_handle handle)
1119 {
1120 int result;
1121 struct qp_guest_endpoint *entry;
1122 u32 ref_count = ~0; /* To avoid compiler warning below */
1123
1124 mutex_lock(&qp_guest_endpoints.mutex);
1125
1126 entry = qp_guest_handle_to_entry(handle);
1127 if (!entry) {
1128 mutex_unlock(&qp_guest_endpoints.mutex);
1129 return VMCI_ERROR_NOT_FOUND;
1130 }
1131
1132 if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1133 result = VMCI_SUCCESS;
1134
1135 if (entry->qp.ref_count > 1) {
1136 result = qp_notify_peer_local(false, handle);
1137 /*
1138 * We can fail to notify a local queuepair
1139 * because we can't allocate. We still want
1140 * to release the entry if that happens, so
1141 * don't bail out yet.
1142 */
1143 }
1144 } else {
1145 result = qp_detatch_hypercall(handle);
1146 if (result < VMCI_SUCCESS) {
1147 /*
1148 * We failed to notify a non-local queuepair.
1149 * That other queuepair might still be
1150 * accessing the shared memory, so don't
1151 * release the entry yet. It will get cleaned
1152 * up by VMCIqueue_pair_Exit() if necessary
1153 * (assuming we are going away, otherwise why
1154 * did this fail?).
1155 */
1156
1157 mutex_unlock(&qp_guest_endpoints.mutex);
1158 return result;
1159 }
1160 }
1161
1162 /*
1163 * If we get here then we either failed to notify a local queuepair, or
1164 * we succeeded in all cases. Release the entry if required.
1165 */
1166
1167 entry->qp.ref_count--;
1168 if (entry->qp.ref_count == 0)
1169 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1170
1171 /* If we didn't remove the entry, this could change once we unlock. */
1172 if (entry)
1173 ref_count = entry->qp.ref_count;
1174
1175 mutex_unlock(&qp_guest_endpoints.mutex);
1176
1177 if (ref_count == 0)
1178 qp_guest_endpoint_destroy(entry);
1179
1180 return result;
1181 }
1182
1183 /*
1184 * This functions handles the actual allocation of a VMCI queue
1185 * pair guest endpoint. Allocates physical pages for the queue
1186 * pair. It makes OS dependent calls through generic wrappers.
1187 */
qp_alloc_guest_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags)1188 static int qp_alloc_guest_work(struct vmci_handle *handle,
1189 struct vmci_queue **produce_q,
1190 u64 produce_size,
1191 struct vmci_queue **consume_q,
1192 u64 consume_size,
1193 u32 peer,
1194 u32 flags,
1195 u32 priv_flags)
1196 {
1197 const u64 num_produce_pages =
1198 DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1199 const u64 num_consume_pages =
1200 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1201 void *my_produce_q = NULL;
1202 void *my_consume_q = NULL;
1203 int result;
1204 struct qp_guest_endpoint *queue_pair_entry = NULL;
1205
1206 if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1207 return VMCI_ERROR_NO_ACCESS;
1208
1209 mutex_lock(&qp_guest_endpoints.mutex);
1210
1211 queue_pair_entry = qp_guest_handle_to_entry(*handle);
1212 if (queue_pair_entry) {
1213 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1214 /* Local attach case. */
1215 if (queue_pair_entry->qp.ref_count > 1) {
1216 pr_devel("Error attempting to attach more than once\n");
1217 result = VMCI_ERROR_UNAVAILABLE;
1218 goto error_keep_entry;
1219 }
1220
1221 if (queue_pair_entry->qp.produce_size != consume_size ||
1222 queue_pair_entry->qp.consume_size !=
1223 produce_size ||
1224 queue_pair_entry->qp.flags !=
1225 (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1226 pr_devel("Error mismatched queue pair in local attach\n");
1227 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1228 goto error_keep_entry;
1229 }
1230
1231 /*
1232 * Do a local attach. We swap the consume and
1233 * produce queues for the attacher and deliver
1234 * an attach event.
1235 */
1236 result = qp_notify_peer_local(true, *handle);
1237 if (result < VMCI_SUCCESS)
1238 goto error_keep_entry;
1239
1240 my_produce_q = queue_pair_entry->consume_q;
1241 my_consume_q = queue_pair_entry->produce_q;
1242 goto out;
1243 }
1244
1245 result = VMCI_ERROR_ALREADY_EXISTS;
1246 goto error_keep_entry;
1247 }
1248
1249 my_produce_q = qp_alloc_queue(produce_size, flags);
1250 if (!my_produce_q) {
1251 pr_warn("Error allocating pages for produce queue\n");
1252 result = VMCI_ERROR_NO_MEM;
1253 goto error;
1254 }
1255
1256 my_consume_q = qp_alloc_queue(consume_size, flags);
1257 if (!my_consume_q) {
1258 pr_warn("Error allocating pages for consume queue\n");
1259 result = VMCI_ERROR_NO_MEM;
1260 goto error;
1261 }
1262
1263 queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1264 produce_size, consume_size,
1265 my_produce_q, my_consume_q);
1266 if (!queue_pair_entry) {
1267 pr_warn("Error allocating memory in %s\n", __func__);
1268 result = VMCI_ERROR_NO_MEM;
1269 goto error;
1270 }
1271
1272 result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1273 num_consume_pages,
1274 &queue_pair_entry->ppn_set);
1275 if (result < VMCI_SUCCESS) {
1276 pr_warn("qp_alloc_ppn_set failed\n");
1277 goto error;
1278 }
1279
1280 /*
1281 * It's only necessary to notify the host if this queue pair will be
1282 * attached to from another context.
1283 */
1284 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1285 /* Local create case. */
1286 u32 context_id = vmci_get_context_id();
1287
1288 /*
1289 * Enforce similar checks on local queue pairs as we
1290 * do for regular ones. The handle's context must
1291 * match the creator or attacher context id (here they
1292 * are both the current context id) and the
1293 * attach-only flag cannot exist during create. We
1294 * also ensure specified peer is this context or an
1295 * invalid one.
1296 */
1297 if (queue_pair_entry->qp.handle.context != context_id ||
1298 (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1299 queue_pair_entry->qp.peer != context_id)) {
1300 result = VMCI_ERROR_NO_ACCESS;
1301 goto error;
1302 }
1303
1304 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1305 result = VMCI_ERROR_NOT_FOUND;
1306 goto error;
1307 }
1308 } else {
1309 result = qp_alloc_hypercall(queue_pair_entry);
1310 if (result < VMCI_SUCCESS) {
1311 pr_warn("qp_alloc_hypercall result = %d\n", result);
1312 goto error;
1313 }
1314 }
1315
1316 qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1317 (struct vmci_queue *)my_consume_q);
1318
1319 qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1320
1321 out:
1322 queue_pair_entry->qp.ref_count++;
1323 *handle = queue_pair_entry->qp.handle;
1324 *produce_q = (struct vmci_queue *)my_produce_q;
1325 *consume_q = (struct vmci_queue *)my_consume_q;
1326
1327 /*
1328 * We should initialize the queue pair header pages on a local
1329 * queue pair create. For non-local queue pairs, the
1330 * hypervisor initializes the header pages in the create step.
1331 */
1332 if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1333 queue_pair_entry->qp.ref_count == 1) {
1334 vmci_q_header_init((*produce_q)->q_header, *handle);
1335 vmci_q_header_init((*consume_q)->q_header, *handle);
1336 }
1337
1338 mutex_unlock(&qp_guest_endpoints.mutex);
1339
1340 return VMCI_SUCCESS;
1341
1342 error:
1343 mutex_unlock(&qp_guest_endpoints.mutex);
1344 if (queue_pair_entry) {
1345 /* The queues will be freed inside the destroy routine. */
1346 qp_guest_endpoint_destroy(queue_pair_entry);
1347 } else {
1348 qp_free_queue(my_produce_q, produce_size);
1349 qp_free_queue(my_consume_q, consume_size);
1350 }
1351 return result;
1352
1353 error_keep_entry:
1354 /* This path should only be used when an existing entry was found. */
1355 mutex_unlock(&qp_guest_endpoints.mutex);
1356 return result;
1357 }
1358
1359 /*
1360 * The first endpoint issuing a queue pair allocation will create the state
1361 * of the queue pair in the queue pair broker.
1362 *
1363 * If the creator is a guest, it will associate a VMX virtual address range
1364 * with the queue pair as specified by the page_store. For compatibility with
1365 * older VMX'en, that would use a separate step to set the VMX virtual
1366 * address range, the virtual address range can be registered later using
1367 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1368 * used.
1369 *
1370 * If the creator is the host, a page_store of NULL should be used as well,
1371 * since the host is not able to supply a page store for the queue pair.
1372 *
1373 * For older VMX and host callers, the queue pair will be created in the
1374 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1375 * created in VMCOQPB_CREATED_MEM state.
1376 */
qp_broker_create(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1377 static int qp_broker_create(struct vmci_handle handle,
1378 u32 peer,
1379 u32 flags,
1380 u32 priv_flags,
1381 u64 produce_size,
1382 u64 consume_size,
1383 struct vmci_qp_page_store *page_store,
1384 struct vmci_ctx *context,
1385 vmci_event_release_cb wakeup_cb,
1386 void *client_data, struct qp_broker_entry **ent)
1387 {
1388 struct qp_broker_entry *entry = NULL;
1389 const u32 context_id = vmci_ctx_get_id(context);
1390 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1391 int result;
1392 u64 guest_produce_size;
1393 u64 guest_consume_size;
1394
1395 /* Do not create if the caller asked not to. */
1396 if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1397 return VMCI_ERROR_NOT_FOUND;
1398
1399 /*
1400 * Creator's context ID should match handle's context ID or the creator
1401 * must allow the context in handle's context ID as the "peer".
1402 */
1403 if (handle.context != context_id && handle.context != peer)
1404 return VMCI_ERROR_NO_ACCESS;
1405
1406 if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1407 return VMCI_ERROR_DST_UNREACHABLE;
1408
1409 /*
1410 * Creator's context ID for local queue pairs should match the
1411 * peer, if a peer is specified.
1412 */
1413 if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1414 return VMCI_ERROR_NO_ACCESS;
1415
1416 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1417 if (!entry)
1418 return VMCI_ERROR_NO_MEM;
1419
1420 if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1421 /*
1422 * The queue pair broker entry stores values from the guest
1423 * point of view, so a creating host side endpoint should swap
1424 * produce and consume values -- unless it is a local queue
1425 * pair, in which case no swapping is necessary, since the local
1426 * attacher will swap queues.
1427 */
1428
1429 guest_produce_size = consume_size;
1430 guest_consume_size = produce_size;
1431 } else {
1432 guest_produce_size = produce_size;
1433 guest_consume_size = consume_size;
1434 }
1435
1436 entry->qp.handle = handle;
1437 entry->qp.peer = peer;
1438 entry->qp.flags = flags;
1439 entry->qp.produce_size = guest_produce_size;
1440 entry->qp.consume_size = guest_consume_size;
1441 entry->qp.ref_count = 1;
1442 entry->create_id = context_id;
1443 entry->attach_id = VMCI_INVALID_ID;
1444 entry->state = VMCIQPB_NEW;
1445 entry->require_trusted_attach =
1446 !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1447 entry->created_by_trusted =
1448 !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1449 entry->vmci_page_files = false;
1450 entry->wakeup_cb = wakeup_cb;
1451 entry->client_data = client_data;
1452 entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1453 if (entry->produce_q == NULL) {
1454 result = VMCI_ERROR_NO_MEM;
1455 goto error;
1456 }
1457 entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1458 if (entry->consume_q == NULL) {
1459 result = VMCI_ERROR_NO_MEM;
1460 goto error;
1461 }
1462
1463 qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1464
1465 INIT_LIST_HEAD(&entry->qp.list_item);
1466
1467 if (is_local) {
1468 u8 *tmp;
1469
1470 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1471 PAGE_SIZE, GFP_KERNEL);
1472 if (entry->local_mem == NULL) {
1473 result = VMCI_ERROR_NO_MEM;
1474 goto error;
1475 }
1476 entry->state = VMCIQPB_CREATED_MEM;
1477 entry->produce_q->q_header = entry->local_mem;
1478 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1479 (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1480 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1481 } else if (page_store) {
1482 /*
1483 * The VMX already initialized the queue pair headers, so no
1484 * need for the kernel side to do that.
1485 */
1486 result = qp_host_register_user_memory(page_store,
1487 entry->produce_q,
1488 entry->consume_q);
1489 if (result < VMCI_SUCCESS)
1490 goto error;
1491
1492 entry->state = VMCIQPB_CREATED_MEM;
1493 } else {
1494 /*
1495 * A create without a page_store may be either a host
1496 * side create (in which case we are waiting for the
1497 * guest side to supply the memory) or an old style
1498 * queue pair create (in which case we will expect a
1499 * set page store call as the next step).
1500 */
1501 entry->state = VMCIQPB_CREATED_NO_MEM;
1502 }
1503
1504 qp_list_add_entry(&qp_broker_list, &entry->qp);
1505 if (ent != NULL)
1506 *ent = entry;
1507
1508 /* Add to resource obj */
1509 result = vmci_resource_add(&entry->resource,
1510 VMCI_RESOURCE_TYPE_QPAIR_HOST,
1511 handle);
1512 if (result != VMCI_SUCCESS) {
1513 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1514 handle.context, handle.resource, result);
1515 goto error;
1516 }
1517
1518 entry->qp.handle = vmci_resource_handle(&entry->resource);
1519 if (is_local) {
1520 vmci_q_header_init(entry->produce_q->q_header,
1521 entry->qp.handle);
1522 vmci_q_header_init(entry->consume_q->q_header,
1523 entry->qp.handle);
1524 }
1525
1526 vmci_ctx_qp_create(context, entry->qp.handle);
1527
1528 return VMCI_SUCCESS;
1529
1530 error:
1531 if (entry != NULL) {
1532 qp_host_free_queue(entry->produce_q, guest_produce_size);
1533 qp_host_free_queue(entry->consume_q, guest_consume_size);
1534 kfree(entry);
1535 }
1536
1537 return result;
1538 }
1539
1540 /*
1541 * Enqueues an event datagram to notify the peer VM attached to
1542 * the given queue pair handle about attach/detach event by the
1543 * given VM. Returns Payload size of datagram enqueued on
1544 * success, error code otherwise.
1545 */
qp_notify_peer(bool attach,struct vmci_handle handle,u32 my_id,u32 peer_id)1546 static int qp_notify_peer(bool attach,
1547 struct vmci_handle handle,
1548 u32 my_id,
1549 u32 peer_id)
1550 {
1551 int rv;
1552 struct vmci_event_qp ev;
1553
1554 if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1555 peer_id == VMCI_INVALID_ID)
1556 return VMCI_ERROR_INVALID_ARGS;
1557
1558 /*
1559 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1560 * number of pending events from the hypervisor to a given VM
1561 * otherwise a rogue VM could do an arbitrary number of attach
1562 * and detach operations causing memory pressure in the host
1563 * kernel.
1564 */
1565
1566 ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1567 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1568 VMCI_CONTEXT_RESOURCE_ID);
1569 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1570 ev.msg.event_data.event = attach ?
1571 VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1572 ev.payload.handle = handle;
1573 ev.payload.peer_id = my_id;
1574
1575 rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1576 &ev.msg.hdr, false);
1577 if (rv < VMCI_SUCCESS)
1578 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1579 attach ? "ATTACH" : "DETACH", peer_id);
1580
1581 return rv;
1582 }
1583
1584 /*
1585 * The second endpoint issuing a queue pair allocation will attach to
1586 * the queue pair registered with the queue pair broker.
1587 *
1588 * If the attacher is a guest, it will associate a VMX virtual address
1589 * range with the queue pair as specified by the page_store. At this
1590 * point, the already attach host endpoint may start using the queue
1591 * pair, and an attach event is sent to it. For compatibility with
1592 * older VMX'en, that used a separate step to set the VMX virtual
1593 * address range, the virtual address range can be registered later
1594 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1595 * NULL should be used, and the attach event will be generated once
1596 * the actual page store has been set.
1597 *
1598 * If the attacher is the host, a page_store of NULL should be used as
1599 * well, since the page store information is already set by the guest.
1600 *
1601 * For new VMX and host callers, the queue pair will be moved to the
1602 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1603 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1604 */
qp_broker_attach(struct qp_broker_entry * entry,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1605 static int qp_broker_attach(struct qp_broker_entry *entry,
1606 u32 peer,
1607 u32 flags,
1608 u32 priv_flags,
1609 u64 produce_size,
1610 u64 consume_size,
1611 struct vmci_qp_page_store *page_store,
1612 struct vmci_ctx *context,
1613 vmci_event_release_cb wakeup_cb,
1614 void *client_data,
1615 struct qp_broker_entry **ent)
1616 {
1617 const u32 context_id = vmci_ctx_get_id(context);
1618 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1619 int result;
1620
1621 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1622 entry->state != VMCIQPB_CREATED_MEM)
1623 return VMCI_ERROR_UNAVAILABLE;
1624
1625 if (is_local) {
1626 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1627 context_id != entry->create_id) {
1628 return VMCI_ERROR_INVALID_ARGS;
1629 }
1630 } else if (context_id == entry->create_id ||
1631 context_id == entry->attach_id) {
1632 return VMCI_ERROR_ALREADY_EXISTS;
1633 }
1634
1635 if (VMCI_CONTEXT_IS_VM(context_id) &&
1636 VMCI_CONTEXT_IS_VM(entry->create_id))
1637 return VMCI_ERROR_DST_UNREACHABLE;
1638
1639 /*
1640 * If we are attaching from a restricted context then the queuepair
1641 * must have been created by a trusted endpoint.
1642 */
1643 if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1644 !entry->created_by_trusted)
1645 return VMCI_ERROR_NO_ACCESS;
1646
1647 /*
1648 * If we are attaching to a queuepair that was created by a restricted
1649 * context then we must be trusted.
1650 */
1651 if (entry->require_trusted_attach &&
1652 (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1653 return VMCI_ERROR_NO_ACCESS;
1654
1655 /*
1656 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1657 * control check is not performed.
1658 */
1659 if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1660 return VMCI_ERROR_NO_ACCESS;
1661
1662 if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1663 /*
1664 * Do not attach if the caller doesn't support Host Queue Pairs
1665 * and a host created this queue pair.
1666 */
1667
1668 if (!vmci_ctx_supports_host_qp(context))
1669 return VMCI_ERROR_INVALID_RESOURCE;
1670
1671 } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1672 struct vmci_ctx *create_context;
1673 bool supports_host_qp;
1674
1675 /*
1676 * Do not attach a host to a user created queue pair if that
1677 * user doesn't support host queue pair end points.
1678 */
1679
1680 create_context = vmci_ctx_get(entry->create_id);
1681 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1682 vmci_ctx_put(create_context);
1683
1684 if (!supports_host_qp)
1685 return VMCI_ERROR_INVALID_RESOURCE;
1686 }
1687
1688 if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1689 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1690
1691 if (context_id != VMCI_HOST_CONTEXT_ID) {
1692 /*
1693 * The queue pair broker entry stores values from the guest
1694 * point of view, so an attaching guest should match the values
1695 * stored in the entry.
1696 */
1697
1698 if (entry->qp.produce_size != produce_size ||
1699 entry->qp.consume_size != consume_size) {
1700 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1701 }
1702 } else if (entry->qp.produce_size != consume_size ||
1703 entry->qp.consume_size != produce_size) {
1704 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1705 }
1706
1707 if (context_id != VMCI_HOST_CONTEXT_ID) {
1708 /*
1709 * If a guest attached to a queue pair, it will supply
1710 * the backing memory. If this is a pre NOVMVM vmx,
1711 * the backing memory will be supplied by calling
1712 * vmci_qp_broker_set_page_store() following the
1713 * return of the vmci_qp_broker_alloc() call. If it is
1714 * a vmx of version NOVMVM or later, the page store
1715 * must be supplied as part of the
1716 * vmci_qp_broker_alloc call. Under all circumstances
1717 * must the initially created queue pair not have any
1718 * memory associated with it already.
1719 */
1720
1721 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1722 return VMCI_ERROR_INVALID_ARGS;
1723
1724 if (page_store != NULL) {
1725 /*
1726 * Patch up host state to point to guest
1727 * supplied memory. The VMX already
1728 * initialized the queue pair headers, so no
1729 * need for the kernel side to do that.
1730 */
1731
1732 result = qp_host_register_user_memory(page_store,
1733 entry->produce_q,
1734 entry->consume_q);
1735 if (result < VMCI_SUCCESS)
1736 return result;
1737
1738 entry->state = VMCIQPB_ATTACHED_MEM;
1739 } else {
1740 entry->state = VMCIQPB_ATTACHED_NO_MEM;
1741 }
1742 } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1743 /*
1744 * The host side is attempting to attach to a queue
1745 * pair that doesn't have any memory associated with
1746 * it. This must be a pre NOVMVM vmx that hasn't set
1747 * the page store information yet, or a quiesced VM.
1748 */
1749
1750 return VMCI_ERROR_UNAVAILABLE;
1751 } else {
1752 /* The host side has successfully attached to a queue pair. */
1753 entry->state = VMCIQPB_ATTACHED_MEM;
1754 }
1755
1756 if (entry->state == VMCIQPB_ATTACHED_MEM) {
1757 result =
1758 qp_notify_peer(true, entry->qp.handle, context_id,
1759 entry->create_id);
1760 if (result < VMCI_SUCCESS)
1761 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1762 entry->create_id, entry->qp.handle.context,
1763 entry->qp.handle.resource);
1764 }
1765
1766 entry->attach_id = context_id;
1767 entry->qp.ref_count++;
1768 if (wakeup_cb) {
1769 entry->wakeup_cb = wakeup_cb;
1770 entry->client_data = client_data;
1771 }
1772
1773 /*
1774 * When attaching to local queue pairs, the context already has
1775 * an entry tracking the queue pair, so don't add another one.
1776 */
1777 if (!is_local)
1778 vmci_ctx_qp_create(context, entry->qp.handle);
1779
1780 if (ent != NULL)
1781 *ent = entry;
1782
1783 return VMCI_SUCCESS;
1784 }
1785
1786 /*
1787 * queue_pair_Alloc for use when setting up queue pair endpoints
1788 * on the host.
1789 */
qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent,bool * swap)1790 static int qp_broker_alloc(struct vmci_handle handle,
1791 u32 peer,
1792 u32 flags,
1793 u32 priv_flags,
1794 u64 produce_size,
1795 u64 consume_size,
1796 struct vmci_qp_page_store *page_store,
1797 struct vmci_ctx *context,
1798 vmci_event_release_cb wakeup_cb,
1799 void *client_data,
1800 struct qp_broker_entry **ent,
1801 bool *swap)
1802 {
1803 const u32 context_id = vmci_ctx_get_id(context);
1804 bool create;
1805 struct qp_broker_entry *entry = NULL;
1806 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1807 int result;
1808
1809 if (vmci_handle_is_invalid(handle) ||
1810 (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1811 !(produce_size || consume_size) ||
1812 !context || context_id == VMCI_INVALID_ID ||
1813 handle.context == VMCI_INVALID_ID) {
1814 return VMCI_ERROR_INVALID_ARGS;
1815 }
1816
1817 if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1818 return VMCI_ERROR_INVALID_ARGS;
1819
1820 /*
1821 * In the initial argument check, we ensure that non-vmkernel hosts
1822 * are not allowed to create local queue pairs.
1823 */
1824
1825 mutex_lock(&qp_broker_list.mutex);
1826
1827 if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1828 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1829 context_id, handle.context, handle.resource);
1830 mutex_unlock(&qp_broker_list.mutex);
1831 return VMCI_ERROR_ALREADY_EXISTS;
1832 }
1833
1834 if (handle.resource != VMCI_INVALID_ID)
1835 entry = qp_broker_handle_to_entry(handle);
1836
1837 if (!entry) {
1838 create = true;
1839 result =
1840 qp_broker_create(handle, peer, flags, priv_flags,
1841 produce_size, consume_size, page_store,
1842 context, wakeup_cb, client_data, ent);
1843 } else {
1844 create = false;
1845 result =
1846 qp_broker_attach(entry, peer, flags, priv_flags,
1847 produce_size, consume_size, page_store,
1848 context, wakeup_cb, client_data, ent);
1849 }
1850
1851 mutex_unlock(&qp_broker_list.mutex);
1852
1853 if (swap)
1854 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1855 !(create && is_local);
1856
1857 return result;
1858 }
1859
1860 /*
1861 * This function implements the kernel API for allocating a queue
1862 * pair.
1863 */
qp_alloc_host_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,vmci_event_release_cb wakeup_cb,void * client_data)1864 static int qp_alloc_host_work(struct vmci_handle *handle,
1865 struct vmci_queue **produce_q,
1866 u64 produce_size,
1867 struct vmci_queue **consume_q,
1868 u64 consume_size,
1869 u32 peer,
1870 u32 flags,
1871 u32 priv_flags,
1872 vmci_event_release_cb wakeup_cb,
1873 void *client_data)
1874 {
1875 struct vmci_handle new_handle;
1876 struct vmci_ctx *context;
1877 struct qp_broker_entry *entry;
1878 int result;
1879 bool swap;
1880
1881 if (vmci_handle_is_invalid(*handle)) {
1882 new_handle = vmci_make_handle(
1883 VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1884 } else
1885 new_handle = *handle;
1886
1887 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1888 entry = NULL;
1889 result =
1890 qp_broker_alloc(new_handle, peer, flags, priv_flags,
1891 produce_size, consume_size, NULL, context,
1892 wakeup_cb, client_data, &entry, &swap);
1893 if (result == VMCI_SUCCESS) {
1894 if (swap) {
1895 /*
1896 * If this is a local queue pair, the attacher
1897 * will swap around produce and consume
1898 * queues.
1899 */
1900
1901 *produce_q = entry->consume_q;
1902 *consume_q = entry->produce_q;
1903 } else {
1904 *produce_q = entry->produce_q;
1905 *consume_q = entry->consume_q;
1906 }
1907
1908 *handle = vmci_resource_handle(&entry->resource);
1909 } else {
1910 *handle = VMCI_INVALID_HANDLE;
1911 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1912 result);
1913 }
1914 vmci_ctx_put(context);
1915 return result;
1916 }
1917
1918 /*
1919 * Allocates a VMCI queue_pair. Only checks validity of input
1920 * arguments. The real work is done in the host or guest
1921 * specific function.
1922 */
vmci_qp_alloc(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,bool guest_endpoint,vmci_event_release_cb wakeup_cb,void * client_data)1923 int vmci_qp_alloc(struct vmci_handle *handle,
1924 struct vmci_queue **produce_q,
1925 u64 produce_size,
1926 struct vmci_queue **consume_q,
1927 u64 consume_size,
1928 u32 peer,
1929 u32 flags,
1930 u32 priv_flags,
1931 bool guest_endpoint,
1932 vmci_event_release_cb wakeup_cb,
1933 void *client_data)
1934 {
1935 if (!handle || !produce_q || !consume_q ||
1936 (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1937 return VMCI_ERROR_INVALID_ARGS;
1938
1939 if (guest_endpoint) {
1940 return qp_alloc_guest_work(handle, produce_q,
1941 produce_size, consume_q,
1942 consume_size, peer,
1943 flags, priv_flags);
1944 } else {
1945 return qp_alloc_host_work(handle, produce_q,
1946 produce_size, consume_q,
1947 consume_size, peer, flags,
1948 priv_flags, wakeup_cb, client_data);
1949 }
1950 }
1951
1952 /*
1953 * This function implements the host kernel API for detaching from
1954 * a queue pair.
1955 */
qp_detatch_host_work(struct vmci_handle handle)1956 static int qp_detatch_host_work(struct vmci_handle handle)
1957 {
1958 int result;
1959 struct vmci_ctx *context;
1960
1961 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1962
1963 result = vmci_qp_broker_detach(handle, context);
1964
1965 vmci_ctx_put(context);
1966 return result;
1967 }
1968
1969 /*
1970 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1971 * Real work is done in the host or guest specific function.
1972 */
qp_detatch(struct vmci_handle handle,bool guest_endpoint)1973 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1974 {
1975 if (vmci_handle_is_invalid(handle))
1976 return VMCI_ERROR_INVALID_ARGS;
1977
1978 if (guest_endpoint)
1979 return qp_detatch_guest_work(handle);
1980 else
1981 return qp_detatch_host_work(handle);
1982 }
1983
1984 /*
1985 * Returns the entry from the head of the list. Assumes that the list is
1986 * locked.
1987 */
qp_list_get_head(struct qp_list * qp_list)1988 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1989 {
1990 if (!list_empty(&qp_list->head)) {
1991 struct qp_entry *entry =
1992 list_first_entry(&qp_list->head, struct qp_entry,
1993 list_item);
1994 return entry;
1995 }
1996
1997 return NULL;
1998 }
1999
vmci_qp_broker_exit(void)2000 void vmci_qp_broker_exit(void)
2001 {
2002 struct qp_entry *entry;
2003 struct qp_broker_entry *be;
2004
2005 mutex_lock(&qp_broker_list.mutex);
2006
2007 while ((entry = qp_list_get_head(&qp_broker_list))) {
2008 be = (struct qp_broker_entry *)entry;
2009
2010 qp_list_remove_entry(&qp_broker_list, entry);
2011 kfree(be);
2012 }
2013
2014 mutex_unlock(&qp_broker_list.mutex);
2015 }
2016
2017 /*
2018 * Requests that a queue pair be allocated with the VMCI queue
2019 * pair broker. Allocates a queue pair entry if one does not
2020 * exist. Attaches to one if it exists, and retrieves the page
2021 * files backing that queue_pair. Assumes that the queue pair
2022 * broker lock is held.
2023 */
vmci_qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context)2024 int vmci_qp_broker_alloc(struct vmci_handle handle,
2025 u32 peer,
2026 u32 flags,
2027 u32 priv_flags,
2028 u64 produce_size,
2029 u64 consume_size,
2030 struct vmci_qp_page_store *page_store,
2031 struct vmci_ctx *context)
2032 {
2033 return qp_broker_alloc(handle, peer, flags, priv_flags,
2034 produce_size, consume_size,
2035 page_store, context, NULL, NULL, NULL, NULL);
2036 }
2037
2038 /*
2039 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2040 * step to add the UVAs of the VMX mapping of the queue pair. This function
2041 * provides backwards compatibility with such VMX'en, and takes care of
2042 * registering the page store for a queue pair previously allocated by the
2043 * VMX during create or attach. This function will move the queue pair state
2044 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2045 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2046 * attached state with memory, the queue pair is ready to be used by the
2047 * host peer, and an attached event will be generated.
2048 *
2049 * Assumes that the queue pair broker lock is held.
2050 *
2051 * This function is only used by the hosted platform, since there is no
2052 * issue with backwards compatibility for vmkernel.
2053 */
vmci_qp_broker_set_page_store(struct vmci_handle handle,u64 produce_uva,u64 consume_uva,struct vmci_ctx * context)2054 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2055 u64 produce_uva,
2056 u64 consume_uva,
2057 struct vmci_ctx *context)
2058 {
2059 struct qp_broker_entry *entry;
2060 int result;
2061 const u32 context_id = vmci_ctx_get_id(context);
2062
2063 if (vmci_handle_is_invalid(handle) || !context ||
2064 context_id == VMCI_INVALID_ID)
2065 return VMCI_ERROR_INVALID_ARGS;
2066
2067 /*
2068 * We only support guest to host queue pairs, so the VMX must
2069 * supply UVAs for the mapped page files.
2070 */
2071
2072 if (produce_uva == 0 || consume_uva == 0)
2073 return VMCI_ERROR_INVALID_ARGS;
2074
2075 mutex_lock(&qp_broker_list.mutex);
2076
2077 if (!vmci_ctx_qp_exists(context, handle)) {
2078 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2079 context_id, handle.context, handle.resource);
2080 result = VMCI_ERROR_NOT_FOUND;
2081 goto out;
2082 }
2083
2084 entry = qp_broker_handle_to_entry(handle);
2085 if (!entry) {
2086 result = VMCI_ERROR_NOT_FOUND;
2087 goto out;
2088 }
2089
2090 /*
2091 * If I'm the owner then I can set the page store.
2092 *
2093 * Or, if a host created the queue_pair and I'm the attached peer
2094 * then I can set the page store.
2095 */
2096 if (entry->create_id != context_id &&
2097 (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2098 entry->attach_id != context_id)) {
2099 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2100 goto out;
2101 }
2102
2103 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2104 entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2105 result = VMCI_ERROR_UNAVAILABLE;
2106 goto out;
2107 }
2108
2109 result = qp_host_get_user_memory(produce_uva, consume_uva,
2110 entry->produce_q, entry->consume_q);
2111 if (result < VMCI_SUCCESS)
2112 goto out;
2113
2114 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2115 if (result < VMCI_SUCCESS) {
2116 qp_host_unregister_user_memory(entry->produce_q,
2117 entry->consume_q);
2118 goto out;
2119 }
2120
2121 if (entry->state == VMCIQPB_CREATED_NO_MEM)
2122 entry->state = VMCIQPB_CREATED_MEM;
2123 else
2124 entry->state = VMCIQPB_ATTACHED_MEM;
2125
2126 entry->vmci_page_files = true;
2127
2128 if (entry->state == VMCIQPB_ATTACHED_MEM) {
2129 result =
2130 qp_notify_peer(true, handle, context_id, entry->create_id);
2131 if (result < VMCI_SUCCESS) {
2132 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2133 entry->create_id, entry->qp.handle.context,
2134 entry->qp.handle.resource);
2135 }
2136 }
2137
2138 result = VMCI_SUCCESS;
2139 out:
2140 mutex_unlock(&qp_broker_list.mutex);
2141 return result;
2142 }
2143
2144 /*
2145 * Resets saved queue headers for the given QP broker
2146 * entry. Should be used when guest memory becomes available
2147 * again, or the guest detaches.
2148 */
qp_reset_saved_headers(struct qp_broker_entry * entry)2149 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2150 {
2151 entry->produce_q->saved_header = NULL;
2152 entry->consume_q->saved_header = NULL;
2153 }
2154
2155 /*
2156 * The main entry point for detaching from a queue pair registered with the
2157 * queue pair broker. If more than one endpoint is attached to the queue
2158 * pair, the first endpoint will mainly decrement a reference count and
2159 * generate a notification to its peer. The last endpoint will clean up
2160 * the queue pair state registered with the broker.
2161 *
2162 * When a guest endpoint detaches, it will unmap and unregister the guest
2163 * memory backing the queue pair. If the host is still attached, it will
2164 * no longer be able to access the queue pair content.
2165 *
2166 * If the queue pair is already in a state where there is no memory
2167 * registered for the queue pair (any *_NO_MEM state), it will transition to
2168 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2169 * endpoint is the first of two endpoints to detach. If the host endpoint is
2170 * the first out of two to detach, the queue pair will move to the
2171 * VMCIQPB_SHUTDOWN_MEM state.
2172 */
vmci_qp_broker_detach(struct vmci_handle handle,struct vmci_ctx * context)2173 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2174 {
2175 struct qp_broker_entry *entry;
2176 const u32 context_id = vmci_ctx_get_id(context);
2177 u32 peer_id;
2178 bool is_local = false;
2179 int result;
2180
2181 if (vmci_handle_is_invalid(handle) || !context ||
2182 context_id == VMCI_INVALID_ID) {
2183 return VMCI_ERROR_INVALID_ARGS;
2184 }
2185
2186 mutex_lock(&qp_broker_list.mutex);
2187
2188 if (!vmci_ctx_qp_exists(context, handle)) {
2189 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2190 context_id, handle.context, handle.resource);
2191 result = VMCI_ERROR_NOT_FOUND;
2192 goto out;
2193 }
2194
2195 entry = qp_broker_handle_to_entry(handle);
2196 if (!entry) {
2197 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2198 context_id, handle.context, handle.resource);
2199 result = VMCI_ERROR_NOT_FOUND;
2200 goto out;
2201 }
2202
2203 if (context_id != entry->create_id && context_id != entry->attach_id) {
2204 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2205 goto out;
2206 }
2207
2208 if (context_id == entry->create_id) {
2209 peer_id = entry->attach_id;
2210 entry->create_id = VMCI_INVALID_ID;
2211 } else {
2212 peer_id = entry->create_id;
2213 entry->attach_id = VMCI_INVALID_ID;
2214 }
2215 entry->qp.ref_count--;
2216
2217 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2218
2219 if (context_id != VMCI_HOST_CONTEXT_ID) {
2220 bool headers_mapped;
2221
2222 /*
2223 * Pre NOVMVM vmx'en may detach from a queue pair
2224 * before setting the page store, and in that case
2225 * there is no user memory to detach from. Also, more
2226 * recent VMX'en may detach from a queue pair in the
2227 * quiesced state.
2228 */
2229
2230 qp_acquire_queue_mutex(entry->produce_q);
2231 headers_mapped = entry->produce_q->q_header ||
2232 entry->consume_q->q_header;
2233 if (QPBROKERSTATE_HAS_MEM(entry)) {
2234 result =
2235 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2236 entry->produce_q,
2237 entry->consume_q);
2238 if (result < VMCI_SUCCESS)
2239 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2240 handle.context, handle.resource,
2241 result);
2242
2243 if (entry->vmci_page_files)
2244 qp_host_unregister_user_memory(entry->produce_q,
2245 entry->
2246 consume_q);
2247 else
2248 qp_host_unregister_user_memory(entry->produce_q,
2249 entry->
2250 consume_q);
2251
2252 }
2253
2254 if (!headers_mapped)
2255 qp_reset_saved_headers(entry);
2256
2257 qp_release_queue_mutex(entry->produce_q);
2258
2259 if (!headers_mapped && entry->wakeup_cb)
2260 entry->wakeup_cb(entry->client_data);
2261
2262 } else {
2263 if (entry->wakeup_cb) {
2264 entry->wakeup_cb = NULL;
2265 entry->client_data = NULL;
2266 }
2267 }
2268
2269 if (entry->qp.ref_count == 0) {
2270 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2271
2272 if (is_local)
2273 kfree(entry->local_mem);
2274
2275 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2276 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2277 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2278 /* Unlink from resource hash table and free callback */
2279 vmci_resource_remove(&entry->resource);
2280
2281 kfree(entry);
2282
2283 vmci_ctx_qp_destroy(context, handle);
2284 } else {
2285 qp_notify_peer(false, handle, context_id, peer_id);
2286 if (context_id == VMCI_HOST_CONTEXT_ID &&
2287 QPBROKERSTATE_HAS_MEM(entry)) {
2288 entry->state = VMCIQPB_SHUTDOWN_MEM;
2289 } else {
2290 entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2291 }
2292
2293 if (!is_local)
2294 vmci_ctx_qp_destroy(context, handle);
2295
2296 }
2297 result = VMCI_SUCCESS;
2298 out:
2299 mutex_unlock(&qp_broker_list.mutex);
2300 return result;
2301 }
2302
2303 /*
2304 * Establishes the necessary mappings for a queue pair given a
2305 * reference to the queue pair guest memory. This is usually
2306 * called when a guest is unquiesced and the VMX is allowed to
2307 * map guest memory once again.
2308 */
vmci_qp_broker_map(struct vmci_handle handle,struct vmci_ctx * context,u64 guest_mem)2309 int vmci_qp_broker_map(struct vmci_handle handle,
2310 struct vmci_ctx *context,
2311 u64 guest_mem)
2312 {
2313 struct qp_broker_entry *entry;
2314 const u32 context_id = vmci_ctx_get_id(context);
2315 bool is_local = false;
2316 int result;
2317
2318 if (vmci_handle_is_invalid(handle) || !context ||
2319 context_id == VMCI_INVALID_ID)
2320 return VMCI_ERROR_INVALID_ARGS;
2321
2322 mutex_lock(&qp_broker_list.mutex);
2323
2324 if (!vmci_ctx_qp_exists(context, handle)) {
2325 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2326 context_id, handle.context, handle.resource);
2327 result = VMCI_ERROR_NOT_FOUND;
2328 goto out;
2329 }
2330
2331 entry = qp_broker_handle_to_entry(handle);
2332 if (!entry) {
2333 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2334 context_id, handle.context, handle.resource);
2335 result = VMCI_ERROR_NOT_FOUND;
2336 goto out;
2337 }
2338
2339 if (context_id != entry->create_id && context_id != entry->attach_id) {
2340 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2341 goto out;
2342 }
2343
2344 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2345 result = VMCI_SUCCESS;
2346
2347 if (context_id != VMCI_HOST_CONTEXT_ID &&
2348 !QPBROKERSTATE_HAS_MEM(entry)) {
2349 struct vmci_qp_page_store page_store;
2350
2351 page_store.pages = guest_mem;
2352 page_store.len = QPE_NUM_PAGES(entry->qp);
2353
2354 qp_acquire_queue_mutex(entry->produce_q);
2355 qp_reset_saved_headers(entry);
2356 result =
2357 qp_host_register_user_memory(&page_store,
2358 entry->produce_q,
2359 entry->consume_q);
2360 qp_release_queue_mutex(entry->produce_q);
2361 if (result == VMCI_SUCCESS) {
2362 /* Move state from *_NO_MEM to *_MEM */
2363
2364 entry->state++;
2365
2366 if (entry->wakeup_cb)
2367 entry->wakeup_cb(entry->client_data);
2368 }
2369 }
2370
2371 out:
2372 mutex_unlock(&qp_broker_list.mutex);
2373 return result;
2374 }
2375
2376 /*
2377 * Saves a snapshot of the queue headers for the given QP broker
2378 * entry. Should be used when guest memory is unmapped.
2379 * Results:
2380 * VMCI_SUCCESS on success, appropriate error code if guest memory
2381 * can't be accessed..
2382 */
qp_save_headers(struct qp_broker_entry * entry)2383 static int qp_save_headers(struct qp_broker_entry *entry)
2384 {
2385 int result;
2386
2387 if (entry->produce_q->saved_header != NULL &&
2388 entry->consume_q->saved_header != NULL) {
2389 /*
2390 * If the headers have already been saved, we don't need to do
2391 * it again, and we don't want to map in the headers
2392 * unnecessarily.
2393 */
2394
2395 return VMCI_SUCCESS;
2396 }
2397
2398 if (NULL == entry->produce_q->q_header ||
2399 NULL == entry->consume_q->q_header) {
2400 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2401 if (result < VMCI_SUCCESS)
2402 return result;
2403 }
2404
2405 memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2406 sizeof(entry->saved_produce_q));
2407 entry->produce_q->saved_header = &entry->saved_produce_q;
2408 memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2409 sizeof(entry->saved_consume_q));
2410 entry->consume_q->saved_header = &entry->saved_consume_q;
2411
2412 return VMCI_SUCCESS;
2413 }
2414
2415 /*
2416 * Removes all references to the guest memory of a given queue pair, and
2417 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2418 * called when a VM is being quiesced where access to guest memory should
2419 * avoided.
2420 */
vmci_qp_broker_unmap(struct vmci_handle handle,struct vmci_ctx * context,u32 gid)2421 int vmci_qp_broker_unmap(struct vmci_handle handle,
2422 struct vmci_ctx *context,
2423 u32 gid)
2424 {
2425 struct qp_broker_entry *entry;
2426 const u32 context_id = vmci_ctx_get_id(context);
2427 bool is_local = false;
2428 int result;
2429
2430 if (vmci_handle_is_invalid(handle) || !context ||
2431 context_id == VMCI_INVALID_ID)
2432 return VMCI_ERROR_INVALID_ARGS;
2433
2434 mutex_lock(&qp_broker_list.mutex);
2435
2436 if (!vmci_ctx_qp_exists(context, handle)) {
2437 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2438 context_id, handle.context, handle.resource);
2439 result = VMCI_ERROR_NOT_FOUND;
2440 goto out;
2441 }
2442
2443 entry = qp_broker_handle_to_entry(handle);
2444 if (!entry) {
2445 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2446 context_id, handle.context, handle.resource);
2447 result = VMCI_ERROR_NOT_FOUND;
2448 goto out;
2449 }
2450
2451 if (context_id != entry->create_id && context_id != entry->attach_id) {
2452 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2453 goto out;
2454 }
2455
2456 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2457
2458 if (context_id != VMCI_HOST_CONTEXT_ID &&
2459 QPBROKERSTATE_HAS_MEM(entry)) {
2460 qp_acquire_queue_mutex(entry->produce_q);
2461 result = qp_save_headers(entry);
2462 if (result < VMCI_SUCCESS)
2463 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2464 handle.context, handle.resource, result);
2465
2466 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2467
2468 /*
2469 * On hosted, when we unmap queue pairs, the VMX will also
2470 * unmap the guest memory, so we invalidate the previously
2471 * registered memory. If the queue pair is mapped again at a
2472 * later point in time, we will need to reregister the user
2473 * memory with a possibly new user VA.
2474 */
2475 qp_host_unregister_user_memory(entry->produce_q,
2476 entry->consume_q);
2477
2478 /*
2479 * Move state from *_MEM to *_NO_MEM.
2480 */
2481 entry->state--;
2482
2483 qp_release_queue_mutex(entry->produce_q);
2484 }
2485
2486 result = VMCI_SUCCESS;
2487
2488 out:
2489 mutex_unlock(&qp_broker_list.mutex);
2490 return result;
2491 }
2492
2493 /*
2494 * Destroys all guest queue pair endpoints. If active guest queue
2495 * pairs still exist, hypercalls to attempt detach from these
2496 * queue pairs will be made. Any failure to detach is silently
2497 * ignored.
2498 */
vmci_qp_guest_endpoints_exit(void)2499 void vmci_qp_guest_endpoints_exit(void)
2500 {
2501 struct qp_entry *entry;
2502 struct qp_guest_endpoint *ep;
2503
2504 mutex_lock(&qp_guest_endpoints.mutex);
2505
2506 while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2507 ep = (struct qp_guest_endpoint *)entry;
2508
2509 /* Don't make a hypercall for local queue_pairs. */
2510 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2511 qp_detatch_hypercall(entry->handle);
2512
2513 /* We cannot fail the exit, so let's reset ref_count. */
2514 entry->ref_count = 0;
2515 qp_list_remove_entry(&qp_guest_endpoints, entry);
2516
2517 qp_guest_endpoint_destroy(ep);
2518 }
2519
2520 mutex_unlock(&qp_guest_endpoints.mutex);
2521 }
2522
2523 /*
2524 * Helper routine that will lock the queue pair before subsequent
2525 * operations.
2526 * Note: Non-blocking on the host side is currently only implemented in ESX.
2527 * Since non-blocking isn't yet implemented on the host personality we
2528 * have no reason to acquire a spin lock. So to avoid the use of an
2529 * unnecessary lock only acquire the mutex if we can block.
2530 */
qp_lock(const struct vmci_qp * qpair)2531 static void qp_lock(const struct vmci_qp *qpair)
2532 {
2533 qp_acquire_queue_mutex(qpair->produce_q);
2534 }
2535
2536 /*
2537 * Helper routine that unlocks the queue pair after calling
2538 * qp_lock.
2539 */
qp_unlock(const struct vmci_qp * qpair)2540 static void qp_unlock(const struct vmci_qp *qpair)
2541 {
2542 qp_release_queue_mutex(qpair->produce_q);
2543 }
2544
2545 /*
2546 * The queue headers may not be mapped at all times. If a queue is
2547 * currently not mapped, it will be attempted to do so.
2548 */
qp_map_queue_headers(struct vmci_queue * produce_q,struct vmci_queue * consume_q)2549 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2550 struct vmci_queue *consume_q)
2551 {
2552 int result;
2553
2554 if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2555 result = qp_host_map_queues(produce_q, consume_q);
2556 if (result < VMCI_SUCCESS)
2557 return (produce_q->saved_header &&
2558 consume_q->saved_header) ?
2559 VMCI_ERROR_QUEUEPAIR_NOT_READY :
2560 VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2561 }
2562
2563 return VMCI_SUCCESS;
2564 }
2565
2566 /*
2567 * Helper routine that will retrieve the produce and consume
2568 * headers of a given queue pair. If the guest memory of the
2569 * queue pair is currently not available, the saved queue headers
2570 * will be returned, if these are available.
2571 */
qp_get_queue_headers(const struct vmci_qp * qpair,struct vmci_queue_header ** produce_q_header,struct vmci_queue_header ** consume_q_header)2572 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2573 struct vmci_queue_header **produce_q_header,
2574 struct vmci_queue_header **consume_q_header)
2575 {
2576 int result;
2577
2578 result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2579 if (result == VMCI_SUCCESS) {
2580 *produce_q_header = qpair->produce_q->q_header;
2581 *consume_q_header = qpair->consume_q->q_header;
2582 } else if (qpair->produce_q->saved_header &&
2583 qpair->consume_q->saved_header) {
2584 *produce_q_header = qpair->produce_q->saved_header;
2585 *consume_q_header = qpair->consume_q->saved_header;
2586 result = VMCI_SUCCESS;
2587 }
2588
2589 return result;
2590 }
2591
2592 /*
2593 * Callback from VMCI queue pair broker indicating that a queue
2594 * pair that was previously not ready, now either is ready or
2595 * gone forever.
2596 */
qp_wakeup_cb(void * client_data)2597 static int qp_wakeup_cb(void *client_data)
2598 {
2599 struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2600
2601 qp_lock(qpair);
2602 while (qpair->blocked > 0) {
2603 qpair->blocked--;
2604 qpair->generation++;
2605 wake_up(&qpair->event);
2606 }
2607 qp_unlock(qpair);
2608
2609 return VMCI_SUCCESS;
2610 }
2611
2612 /*
2613 * Makes the calling thread wait for the queue pair to become
2614 * ready for host side access. Returns true when thread is
2615 * woken up after queue pair state change, false otherwise.
2616 */
qp_wait_for_ready_queue(struct vmci_qp * qpair)2617 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2618 {
2619 unsigned int generation;
2620
2621 qpair->blocked++;
2622 generation = qpair->generation;
2623 qp_unlock(qpair);
2624 wait_event(qpair->event, generation != qpair->generation);
2625 qp_lock(qpair);
2626
2627 return true;
2628 }
2629
2630 /*
2631 * Enqueues a given buffer to the produce queue using the provided
2632 * function. As many bytes as possible (space available in the queue)
2633 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2634 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2635 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2636 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2637 * an error occured when accessing the buffer,
2638 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2639 * available. Otherwise, the number of bytes written to the queue is
2640 * returned. Updates the tail pointer of the produce queue.
2641 */
qp_enqueue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 produce_q_size,const void * buf,size_t buf_size,vmci_memcpy_to_queue_func memcpy_to_queue)2642 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2643 struct vmci_queue *consume_q,
2644 const u64 produce_q_size,
2645 const void *buf,
2646 size_t buf_size,
2647 vmci_memcpy_to_queue_func memcpy_to_queue)
2648 {
2649 s64 free_space;
2650 u64 tail;
2651 size_t written;
2652 ssize_t result;
2653
2654 result = qp_map_queue_headers(produce_q, consume_q);
2655 if (unlikely(result != VMCI_SUCCESS))
2656 return result;
2657
2658 free_space = vmci_q_header_free_space(produce_q->q_header,
2659 consume_q->q_header,
2660 produce_q_size);
2661 if (free_space == 0)
2662 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2663
2664 if (free_space < VMCI_SUCCESS)
2665 return (ssize_t) free_space;
2666
2667 written = (size_t) (free_space > buf_size ? buf_size : free_space);
2668 tail = vmci_q_header_producer_tail(produce_q->q_header);
2669 if (likely(tail + written < produce_q_size)) {
2670 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2671 } else {
2672 /* Tail pointer wraps around. */
2673
2674 const size_t tmp = (size_t) (produce_q_size - tail);
2675
2676 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2677 if (result >= VMCI_SUCCESS)
2678 result = memcpy_to_queue(produce_q, 0, buf, tmp,
2679 written - tmp);
2680 }
2681
2682 if (result < VMCI_SUCCESS)
2683 return result;
2684
2685 vmci_q_header_add_producer_tail(produce_q->q_header, written,
2686 produce_q_size);
2687 return written;
2688 }
2689
2690 /*
2691 * Dequeues data (if available) from the given consume queue. Writes data
2692 * to the user provided buffer using the provided function.
2693 * Assumes the queue->mutex has been acquired.
2694 * Results:
2695 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2696 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2697 * (as defined by the queue size).
2698 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2699 * Otherwise the number of bytes dequeued is returned.
2700 * Side effects:
2701 * Updates the head pointer of the consume queue.
2702 */
qp_dequeue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 consume_q_size,void * buf,size_t buf_size,vmci_memcpy_from_queue_func memcpy_from_queue,bool update_consumer)2703 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2704 struct vmci_queue *consume_q,
2705 const u64 consume_q_size,
2706 void *buf,
2707 size_t buf_size,
2708 vmci_memcpy_from_queue_func memcpy_from_queue,
2709 bool update_consumer)
2710 {
2711 s64 buf_ready;
2712 u64 head;
2713 size_t read;
2714 ssize_t result;
2715
2716 result = qp_map_queue_headers(produce_q, consume_q);
2717 if (unlikely(result != VMCI_SUCCESS))
2718 return result;
2719
2720 buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2721 produce_q->q_header,
2722 consume_q_size);
2723 if (buf_ready == 0)
2724 return VMCI_ERROR_QUEUEPAIR_NODATA;
2725
2726 if (buf_ready < VMCI_SUCCESS)
2727 return (ssize_t) buf_ready;
2728
2729 read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2730 head = vmci_q_header_consumer_head(produce_q->q_header);
2731 if (likely(head + read < consume_q_size)) {
2732 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2733 } else {
2734 /* Head pointer wraps around. */
2735
2736 const size_t tmp = (size_t) (consume_q_size - head);
2737
2738 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2739 if (result >= VMCI_SUCCESS)
2740 result = memcpy_from_queue(buf, tmp, consume_q, 0,
2741 read - tmp);
2742
2743 }
2744
2745 if (result < VMCI_SUCCESS)
2746 return result;
2747
2748 if (update_consumer)
2749 vmci_q_header_add_consumer_head(produce_q->q_header,
2750 read, consume_q_size);
2751
2752 return read;
2753 }
2754
2755 /*
2756 * vmci_qpair_alloc() - Allocates a queue pair.
2757 * @qpair: Pointer for the new vmci_qp struct.
2758 * @handle: Handle to track the resource.
2759 * @produce_qsize: Desired size of the producer queue.
2760 * @consume_qsize: Desired size of the consumer queue.
2761 * @peer: ContextID of the peer.
2762 * @flags: VMCI flags.
2763 * @priv_flags: VMCI priviledge flags.
2764 *
2765 * This is the client interface for allocating the memory for a
2766 * vmci_qp structure and then attaching to the underlying
2767 * queue. If an error occurs allocating the memory for the
2768 * vmci_qp structure no attempt is made to attach. If an
2769 * error occurs attaching, then the structure is freed.
2770 */
vmci_qpair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_qsize,u64 consume_qsize,u32 peer,u32 flags,u32 priv_flags)2771 int vmci_qpair_alloc(struct vmci_qp **qpair,
2772 struct vmci_handle *handle,
2773 u64 produce_qsize,
2774 u64 consume_qsize,
2775 u32 peer,
2776 u32 flags,
2777 u32 priv_flags)
2778 {
2779 struct vmci_qp *my_qpair;
2780 int retval;
2781 struct vmci_handle src = VMCI_INVALID_HANDLE;
2782 struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2783 enum vmci_route route;
2784 vmci_event_release_cb wakeup_cb;
2785 void *client_data;
2786
2787 /*
2788 * Restrict the size of a queuepair. The device already
2789 * enforces a limit on the total amount of memory that can be
2790 * allocated to queuepairs for a guest. However, we try to
2791 * allocate this memory before we make the queuepair
2792 * allocation hypercall. On Linux, we allocate each page
2793 * separately, which means rather than fail, the guest will
2794 * thrash while it tries to allocate, and will become
2795 * increasingly unresponsive to the point where it appears to
2796 * be hung. So we place a limit on the size of an individual
2797 * queuepair here, and leave the device to enforce the
2798 * restriction on total queuepair memory. (Note that this
2799 * doesn't prevent all cases; a user with only this much
2800 * physical memory could still get into trouble.) The error
2801 * used by the device is NO_RESOURCES, so use that here too.
2802 */
2803
2804 if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2805 produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2806 return VMCI_ERROR_NO_RESOURCES;
2807
2808 retval = vmci_route(&src, &dst, false, &route);
2809 if (retval < VMCI_SUCCESS)
2810 route = vmci_guest_code_active() ?
2811 VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2812
2813 if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2814 pr_devel("NONBLOCK OR PINNED set");
2815 return VMCI_ERROR_INVALID_ARGS;
2816 }
2817
2818 my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2819 if (!my_qpair)
2820 return VMCI_ERROR_NO_MEM;
2821
2822 my_qpair->produce_q_size = produce_qsize;
2823 my_qpair->consume_q_size = consume_qsize;
2824 my_qpair->peer = peer;
2825 my_qpair->flags = flags;
2826 my_qpair->priv_flags = priv_flags;
2827
2828 wakeup_cb = NULL;
2829 client_data = NULL;
2830
2831 if (VMCI_ROUTE_AS_HOST == route) {
2832 my_qpair->guest_endpoint = false;
2833 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2834 my_qpair->blocked = 0;
2835 my_qpair->generation = 0;
2836 init_waitqueue_head(&my_qpair->event);
2837 wakeup_cb = qp_wakeup_cb;
2838 client_data = (void *)my_qpair;
2839 }
2840 } else {
2841 my_qpair->guest_endpoint = true;
2842 }
2843
2844 retval = vmci_qp_alloc(handle,
2845 &my_qpair->produce_q,
2846 my_qpair->produce_q_size,
2847 &my_qpair->consume_q,
2848 my_qpair->consume_q_size,
2849 my_qpair->peer,
2850 my_qpair->flags,
2851 my_qpair->priv_flags,
2852 my_qpair->guest_endpoint,
2853 wakeup_cb, client_data);
2854
2855 if (retval < VMCI_SUCCESS) {
2856 kfree(my_qpair);
2857 return retval;
2858 }
2859
2860 *qpair = my_qpair;
2861 my_qpair->handle = *handle;
2862
2863 return retval;
2864 }
2865 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2866
2867 /*
2868 * vmci_qpair_detach() - Detatches the client from a queue pair.
2869 * @qpair: Reference of a pointer to the qpair struct.
2870 *
2871 * This is the client interface for detaching from a VMCIQPair.
2872 * Note that this routine will free the memory allocated for the
2873 * vmci_qp structure too.
2874 */
vmci_qpair_detach(struct vmci_qp ** qpair)2875 int vmci_qpair_detach(struct vmci_qp **qpair)
2876 {
2877 int result;
2878 struct vmci_qp *old_qpair;
2879
2880 if (!qpair || !(*qpair))
2881 return VMCI_ERROR_INVALID_ARGS;
2882
2883 old_qpair = *qpair;
2884 result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2885
2886 /*
2887 * The guest can fail to detach for a number of reasons, and
2888 * if it does so, it will cleanup the entry (if there is one).
2889 * The host can fail too, but it won't cleanup the entry
2890 * immediately, it will do that later when the context is
2891 * freed. Either way, we need to release the qpair struct
2892 * here; there isn't much the caller can do, and we don't want
2893 * to leak.
2894 */
2895
2896 memset(old_qpair, 0, sizeof(*old_qpair));
2897 old_qpair->handle = VMCI_INVALID_HANDLE;
2898 old_qpair->peer = VMCI_INVALID_ID;
2899 kfree(old_qpair);
2900 *qpair = NULL;
2901
2902 return result;
2903 }
2904 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2905
2906 /*
2907 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2908 * @qpair: Pointer to the queue pair struct.
2909 * @producer_tail: Reference used for storing producer tail index.
2910 * @consumer_head: Reference used for storing the consumer head index.
2911 *
2912 * This is the client interface for getting the current indexes of the
2913 * QPair from the point of the view of the caller as the producer.
2914 */
vmci_qpair_get_produce_indexes(const struct vmci_qp * qpair,u64 * producer_tail,u64 * consumer_head)2915 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2916 u64 *producer_tail,
2917 u64 *consumer_head)
2918 {
2919 struct vmci_queue_header *produce_q_header;
2920 struct vmci_queue_header *consume_q_header;
2921 int result;
2922
2923 if (!qpair)
2924 return VMCI_ERROR_INVALID_ARGS;
2925
2926 qp_lock(qpair);
2927 result =
2928 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2929 if (result == VMCI_SUCCESS)
2930 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2931 producer_tail, consumer_head);
2932 qp_unlock(qpair);
2933
2934 if (result == VMCI_SUCCESS &&
2935 ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2936 (consumer_head && *consumer_head >= qpair->produce_q_size)))
2937 return VMCI_ERROR_INVALID_SIZE;
2938
2939 return result;
2940 }
2941 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2942
2943 /*
2944 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2945 * @qpair: Pointer to the queue pair struct.
2946 * @consumer_tail: Reference used for storing consumer tail index.
2947 * @producer_head: Reference used for storing the producer head index.
2948 *
2949 * This is the client interface for getting the current indexes of the
2950 * QPair from the point of the view of the caller as the consumer.
2951 */
vmci_qpair_get_consume_indexes(const struct vmci_qp * qpair,u64 * consumer_tail,u64 * producer_head)2952 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2953 u64 *consumer_tail,
2954 u64 *producer_head)
2955 {
2956 struct vmci_queue_header *produce_q_header;
2957 struct vmci_queue_header *consume_q_header;
2958 int result;
2959
2960 if (!qpair)
2961 return VMCI_ERROR_INVALID_ARGS;
2962
2963 qp_lock(qpair);
2964 result =
2965 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2966 if (result == VMCI_SUCCESS)
2967 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2968 consumer_tail, producer_head);
2969 qp_unlock(qpair);
2970
2971 if (result == VMCI_SUCCESS &&
2972 ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2973 (producer_head && *producer_head >= qpair->consume_q_size)))
2974 return VMCI_ERROR_INVALID_SIZE;
2975
2976 return result;
2977 }
2978 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2979
2980 /*
2981 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2982 * @qpair: Pointer to the queue pair struct.
2983 *
2984 * This is the client interface for getting the amount of free
2985 * space in the QPair from the point of the view of the caller as
2986 * the producer which is the common case. Returns < 0 if err, else
2987 * available bytes into which data can be enqueued if > 0.
2988 */
vmci_qpair_produce_free_space(const struct vmci_qp * qpair)2989 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2990 {
2991 struct vmci_queue_header *produce_q_header;
2992 struct vmci_queue_header *consume_q_header;
2993 s64 result;
2994
2995 if (!qpair)
2996 return VMCI_ERROR_INVALID_ARGS;
2997
2998 qp_lock(qpair);
2999 result =
3000 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3001 if (result == VMCI_SUCCESS)
3002 result = vmci_q_header_free_space(produce_q_header,
3003 consume_q_header,
3004 qpair->produce_q_size);
3005 else
3006 result = 0;
3007
3008 qp_unlock(qpair);
3009
3010 return result;
3011 }
3012 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
3013
3014 /*
3015 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
3016 * @qpair: Pointer to the queue pair struct.
3017 *
3018 * This is the client interface for getting the amount of free
3019 * space in the QPair from the point of the view of the caller as
3020 * the consumer which is not the common case. Returns < 0 if err, else
3021 * available bytes into which data can be enqueued if > 0.
3022 */
vmci_qpair_consume_free_space(const struct vmci_qp * qpair)3023 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
3024 {
3025 struct vmci_queue_header *produce_q_header;
3026 struct vmci_queue_header *consume_q_header;
3027 s64 result;
3028
3029 if (!qpair)
3030 return VMCI_ERROR_INVALID_ARGS;
3031
3032 qp_lock(qpair);
3033 result =
3034 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3035 if (result == VMCI_SUCCESS)
3036 result = vmci_q_header_free_space(consume_q_header,
3037 produce_q_header,
3038 qpair->consume_q_size);
3039 else
3040 result = 0;
3041
3042 qp_unlock(qpair);
3043
3044 return result;
3045 }
3046 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3047
3048 /*
3049 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3050 * producer queue.
3051 * @qpair: Pointer to the queue pair struct.
3052 *
3053 * This is the client interface for getting the amount of
3054 * enqueued data in the QPair from the point of the view of the
3055 * caller as the producer which is not the common case. Returns < 0 if err,
3056 * else available bytes that may be read.
3057 */
vmci_qpair_produce_buf_ready(const struct vmci_qp * qpair)3058 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3059 {
3060 struct vmci_queue_header *produce_q_header;
3061 struct vmci_queue_header *consume_q_header;
3062 s64 result;
3063
3064 if (!qpair)
3065 return VMCI_ERROR_INVALID_ARGS;
3066
3067 qp_lock(qpair);
3068 result =
3069 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3070 if (result == VMCI_SUCCESS)
3071 result = vmci_q_header_buf_ready(produce_q_header,
3072 consume_q_header,
3073 qpair->produce_q_size);
3074 else
3075 result = 0;
3076
3077 qp_unlock(qpair);
3078
3079 return result;
3080 }
3081 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3082
3083 /*
3084 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3085 * consumer queue.
3086 * @qpair: Pointer to the queue pair struct.
3087 *
3088 * This is the client interface for getting the amount of
3089 * enqueued data in the QPair from the point of the view of the
3090 * caller as the consumer which is the normal case. Returns < 0 if err,
3091 * else available bytes that may be read.
3092 */
vmci_qpair_consume_buf_ready(const struct vmci_qp * qpair)3093 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3094 {
3095 struct vmci_queue_header *produce_q_header;
3096 struct vmci_queue_header *consume_q_header;
3097 s64 result;
3098
3099 if (!qpair)
3100 return VMCI_ERROR_INVALID_ARGS;
3101
3102 qp_lock(qpair);
3103 result =
3104 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3105 if (result == VMCI_SUCCESS)
3106 result = vmci_q_header_buf_ready(consume_q_header,
3107 produce_q_header,
3108 qpair->consume_q_size);
3109 else
3110 result = 0;
3111
3112 qp_unlock(qpair);
3113
3114 return result;
3115 }
3116 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3117
3118 /*
3119 * vmci_qpair_enqueue() - Throw data on the queue.
3120 * @qpair: Pointer to the queue pair struct.
3121 * @buf: Pointer to buffer containing data
3122 * @buf_size: Length of buffer.
3123 * @buf_type: Buffer type (Unused).
3124 *
3125 * This is the client interface for enqueueing data into the queue.
3126 * Returns number of bytes enqueued or < 0 on error.
3127 */
vmci_qpair_enqueue(struct vmci_qp * qpair,const void * buf,size_t buf_size,int buf_type)3128 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3129 const void *buf,
3130 size_t buf_size,
3131 int buf_type)
3132 {
3133 ssize_t result;
3134
3135 if (!qpair || !buf)
3136 return VMCI_ERROR_INVALID_ARGS;
3137
3138 qp_lock(qpair);
3139
3140 do {
3141 result = qp_enqueue_locked(qpair->produce_q,
3142 qpair->consume_q,
3143 qpair->produce_q_size,
3144 buf, buf_size,
3145 qp_memcpy_to_queue);
3146
3147 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3148 !qp_wait_for_ready_queue(qpair))
3149 result = VMCI_ERROR_WOULD_BLOCK;
3150
3151 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3152
3153 qp_unlock(qpair);
3154
3155 return result;
3156 }
3157 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3158
3159 /*
3160 * vmci_qpair_dequeue() - Get data from the queue.
3161 * @qpair: Pointer to the queue pair struct.
3162 * @buf: Pointer to buffer for the data
3163 * @buf_size: Length of buffer.
3164 * @buf_type: Buffer type (Unused).
3165 *
3166 * This is the client interface for dequeueing data from the queue.
3167 * Returns number of bytes dequeued or < 0 on error.
3168 */
vmci_qpair_dequeue(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3169 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3170 void *buf,
3171 size_t buf_size,
3172 int buf_type)
3173 {
3174 ssize_t result;
3175
3176 if (!qpair || !buf)
3177 return VMCI_ERROR_INVALID_ARGS;
3178
3179 qp_lock(qpair);
3180
3181 do {
3182 result = qp_dequeue_locked(qpair->produce_q,
3183 qpair->consume_q,
3184 qpair->consume_q_size,
3185 buf, buf_size,
3186 qp_memcpy_from_queue, true);
3187
3188 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3189 !qp_wait_for_ready_queue(qpair))
3190 result = VMCI_ERROR_WOULD_BLOCK;
3191
3192 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3193
3194 qp_unlock(qpair);
3195
3196 return result;
3197 }
3198 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3199
3200 /*
3201 * vmci_qpair_peek() - Peek at the data in the queue.
3202 * @qpair: Pointer to the queue pair struct.
3203 * @buf: Pointer to buffer for the data
3204 * @buf_size: Length of buffer.
3205 * @buf_type: Buffer type (Unused on Linux).
3206 *
3207 * This is the client interface for peeking into a queue. (I.e.,
3208 * copy data from the queue without updating the head pointer.)
3209 * Returns number of bytes dequeued or < 0 on error.
3210 */
vmci_qpair_peek(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3211 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3212 void *buf,
3213 size_t buf_size,
3214 int buf_type)
3215 {
3216 ssize_t result;
3217
3218 if (!qpair || !buf)
3219 return VMCI_ERROR_INVALID_ARGS;
3220
3221 qp_lock(qpair);
3222
3223 do {
3224 result = qp_dequeue_locked(qpair->produce_q,
3225 qpair->consume_q,
3226 qpair->consume_q_size,
3227 buf, buf_size,
3228 qp_memcpy_from_queue, false);
3229
3230 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3231 !qp_wait_for_ready_queue(qpair))
3232 result = VMCI_ERROR_WOULD_BLOCK;
3233
3234 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3235
3236 qp_unlock(qpair);
3237
3238 return result;
3239 }
3240 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3241
3242 /*
3243 * vmci_qpair_enquev() - Throw data on the queue using iov.
3244 * @qpair: Pointer to the queue pair struct.
3245 * @iov: Pointer to buffer containing data
3246 * @iov_size: Length of buffer.
3247 * @buf_type: Buffer type (Unused).
3248 *
3249 * This is the client interface for enqueueing data into the queue.
3250 * This function uses IO vectors to handle the work. Returns number
3251 * of bytes enqueued or < 0 on error.
3252 */
vmci_qpair_enquev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3253 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3254 struct msghdr *msg,
3255 size_t iov_size,
3256 int buf_type)
3257 {
3258 ssize_t result;
3259
3260 if (!qpair)
3261 return VMCI_ERROR_INVALID_ARGS;
3262
3263 qp_lock(qpair);
3264
3265 do {
3266 result = qp_enqueue_locked(qpair->produce_q,
3267 qpair->consume_q,
3268 qpair->produce_q_size,
3269 msg, iov_size,
3270 qp_memcpy_to_queue_iov);
3271
3272 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3273 !qp_wait_for_ready_queue(qpair))
3274 result = VMCI_ERROR_WOULD_BLOCK;
3275
3276 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3277
3278 qp_unlock(qpair);
3279
3280 return result;
3281 }
3282 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3283
3284 /*
3285 * vmci_qpair_dequev() - Get data from the queue using iov.
3286 * @qpair: Pointer to the queue pair struct.
3287 * @iov: Pointer to buffer for the data
3288 * @iov_size: Length of buffer.
3289 * @buf_type: Buffer type (Unused).
3290 *
3291 * This is the client interface for dequeueing data from the queue.
3292 * This function uses IO vectors to handle the work. Returns number
3293 * of bytes dequeued or < 0 on error.
3294 */
vmci_qpair_dequev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3295 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3296 struct msghdr *msg,
3297 size_t iov_size,
3298 int buf_type)
3299 {
3300 ssize_t result;
3301
3302 if (!qpair)
3303 return VMCI_ERROR_INVALID_ARGS;
3304
3305 qp_lock(qpair);
3306
3307 do {
3308 result = qp_dequeue_locked(qpair->produce_q,
3309 qpair->consume_q,
3310 qpair->consume_q_size,
3311 msg, iov_size,
3312 qp_memcpy_from_queue_iov,
3313 true);
3314
3315 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3316 !qp_wait_for_ready_queue(qpair))
3317 result = VMCI_ERROR_WOULD_BLOCK;
3318
3319 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3320
3321 qp_unlock(qpair);
3322
3323 return result;
3324 }
3325 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3326
3327 /*
3328 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3329 * @qpair: Pointer to the queue pair struct.
3330 * @iov: Pointer to buffer for the data
3331 * @iov_size: Length of buffer.
3332 * @buf_type: Buffer type (Unused on Linux).
3333 *
3334 * This is the client interface for peeking into a queue. (I.e.,
3335 * copy data from the queue without updating the head pointer.)
3336 * This function uses IO vectors to handle the work. Returns number
3337 * of bytes peeked or < 0 on error.
3338 */
vmci_qpair_peekv(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3339 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3340 struct msghdr *msg,
3341 size_t iov_size,
3342 int buf_type)
3343 {
3344 ssize_t result;
3345
3346 if (!qpair)
3347 return VMCI_ERROR_INVALID_ARGS;
3348
3349 qp_lock(qpair);
3350
3351 do {
3352 result = qp_dequeue_locked(qpair->produce_q,
3353 qpair->consume_q,
3354 qpair->consume_q_size,
3355 msg, iov_size,
3356 qp_memcpy_from_queue_iov,
3357 false);
3358
3359 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3360 !qp_wait_for_ready_queue(qpair))
3361 result = VMCI_ERROR_WOULD_BLOCK;
3362
3363 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3364
3365 qp_unlock(qpair);
3366 return result;
3367 }
3368 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3369