• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Linux VM pressure
3  *
4  * Copyright 2012 Linaro Ltd.
5  *		  Anton Vorontsov <anton.vorontsov@linaro.org>
6  *
7  * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
8  * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License version 2 as published
12  * by the Free Software Foundation.
13  */
14 
15 #include <linux/cgroup.h>
16 #include <linux/fs.h>
17 #include <linux/log2.h>
18 #include <linux/sched.h>
19 #include <linux/mm.h>
20 #include <linux/vmstat.h>
21 #include <linux/eventfd.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/printk.h>
25 #include <linux/vmpressure.h>
26 
27 /*
28  * The window size (vmpressure_win) is the number of scanned pages before
29  * we try to analyze scanned/reclaimed ratio. So the window is used as a
30  * rate-limit tunable for the "low" level notification, and also for
31  * averaging the ratio for medium/critical levels. Using small window
32  * sizes can cause lot of false positives, but too big window size will
33  * delay the notifications.
34  *
35  * As the vmscan reclaimer logic works with chunks which are multiple of
36  * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
37  *
38  * TODO: Make the window size depend on machine size, as we do for vmstat
39  * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
40  */
41 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
42 
43 /*
44  * These thresholds are used when we account memory pressure through
45  * scanned/reclaimed ratio. The current values were chosen empirically. In
46  * essence, they are percents: the higher the value, the more number
47  * unsuccessful reclaims there were.
48  */
49 static const unsigned int vmpressure_level_med = 60;
50 static const unsigned int vmpressure_level_critical = 95;
51 
52 /*
53  * When there are too little pages left to scan, vmpressure() may miss the
54  * critical pressure as number of pages will be less than "window size".
55  * However, in that case the vmscan priority will raise fast as the
56  * reclaimer will try to scan LRUs more deeply.
57  *
58  * The vmscan logic considers these special priorities:
59  *
60  * prio == DEF_PRIORITY (12): reclaimer starts with that value
61  * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
62  * prio == 0                : close to OOM, kernel scans every page in an lru
63  *
64  * Any value in this range is acceptable for this tunable (i.e. from 12 to
65  * 0). Current value for the vmpressure_level_critical_prio is chosen
66  * empirically, but the number, in essence, means that we consider
67  * critical level when scanning depth is ~10% of the lru size (vmscan
68  * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
69  * eights).
70  */
71 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
72 
work_to_vmpressure(struct work_struct * work)73 static struct vmpressure *work_to_vmpressure(struct work_struct *work)
74 {
75 	return container_of(work, struct vmpressure, work);
76 }
77 
vmpressure_parent(struct vmpressure * vmpr)78 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
79 {
80 	struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
81 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
82 
83 	memcg = parent_mem_cgroup(memcg);
84 	if (!memcg)
85 		return NULL;
86 	return memcg_to_vmpressure(memcg);
87 }
88 
89 enum vmpressure_levels {
90 	VMPRESSURE_LOW = 0,
91 	VMPRESSURE_MEDIUM,
92 	VMPRESSURE_CRITICAL,
93 	VMPRESSURE_NUM_LEVELS,
94 };
95 
96 static const char * const vmpressure_str_levels[] = {
97 	[VMPRESSURE_LOW] = "low",
98 	[VMPRESSURE_MEDIUM] = "medium",
99 	[VMPRESSURE_CRITICAL] = "critical",
100 };
101 
vmpressure_level(unsigned long pressure)102 static enum vmpressure_levels vmpressure_level(unsigned long pressure)
103 {
104 	if (pressure >= vmpressure_level_critical)
105 		return VMPRESSURE_CRITICAL;
106 	else if (pressure >= vmpressure_level_med)
107 		return VMPRESSURE_MEDIUM;
108 	return VMPRESSURE_LOW;
109 }
110 
vmpressure_calc_level(unsigned long scanned,unsigned long reclaimed)111 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
112 						    unsigned long reclaimed)
113 {
114 	unsigned long scale = scanned + reclaimed;
115 	unsigned long pressure = 0;
116 
117 	/*
118 	 * reclaimed can be greater than scanned in cases
119 	 * like THP, where the scanned is 1 and reclaimed
120 	 * could be 512
121 	 */
122 	if (reclaimed >= scanned)
123 		goto out;
124 	/*
125 	 * We calculate the ratio (in percents) of how many pages were
126 	 * scanned vs. reclaimed in a given time frame (window). Note that
127 	 * time is in VM reclaimer's "ticks", i.e. number of pages
128 	 * scanned. This makes it possible to set desired reaction time
129 	 * and serves as a ratelimit.
130 	 */
131 	pressure = scale - (reclaimed * scale / scanned);
132 	pressure = pressure * 100 / scale;
133 
134 out:
135 	pr_debug("%s: %3lu  (s: %lu  r: %lu)\n", __func__, pressure,
136 		 scanned, reclaimed);
137 
138 	return vmpressure_level(pressure);
139 }
140 
141 struct vmpressure_event {
142 	struct eventfd_ctx *efd;
143 	enum vmpressure_levels level;
144 	struct list_head node;
145 };
146 
vmpressure_event(struct vmpressure * vmpr,unsigned long scanned,unsigned long reclaimed)147 static bool vmpressure_event(struct vmpressure *vmpr,
148 			     unsigned long scanned, unsigned long reclaimed)
149 {
150 	struct vmpressure_event *ev;
151 	enum vmpressure_levels level;
152 	bool signalled = false;
153 
154 	level = vmpressure_calc_level(scanned, reclaimed);
155 
156 	mutex_lock(&vmpr->events_lock);
157 
158 	list_for_each_entry(ev, &vmpr->events, node) {
159 		if (level >= ev->level) {
160 			eventfd_signal(ev->efd, 1);
161 			signalled = true;
162 		}
163 	}
164 
165 	mutex_unlock(&vmpr->events_lock);
166 
167 	return signalled;
168 }
169 
vmpressure_work_fn(struct work_struct * work)170 static void vmpressure_work_fn(struct work_struct *work)
171 {
172 	struct vmpressure *vmpr = work_to_vmpressure(work);
173 	unsigned long scanned;
174 	unsigned long reclaimed;
175 
176 	spin_lock(&vmpr->sr_lock);
177 	/*
178 	 * Several contexts might be calling vmpressure(), so it is
179 	 * possible that the work was rescheduled again before the old
180 	 * work context cleared the counters. In that case we will run
181 	 * just after the old work returns, but then scanned might be zero
182 	 * here. No need for any locks here since we don't care if
183 	 * vmpr->reclaimed is in sync.
184 	 */
185 	scanned = vmpr->scanned;
186 	if (!scanned) {
187 		spin_unlock(&vmpr->sr_lock);
188 		return;
189 	}
190 
191 	reclaimed = vmpr->reclaimed;
192 	vmpr->scanned = 0;
193 	vmpr->reclaimed = 0;
194 	spin_unlock(&vmpr->sr_lock);
195 
196 	do {
197 		if (vmpressure_event(vmpr, scanned, reclaimed))
198 			break;
199 		/*
200 		 * If not handled, propagate the event upward into the
201 		 * hierarchy.
202 		 */
203 	} while ((vmpr = vmpressure_parent(vmpr)));
204 }
205 
206 /**
207  * vmpressure() - Account memory pressure through scanned/reclaimed ratio
208  * @gfp:	reclaimer's gfp mask
209  * @memcg:	cgroup memory controller handle
210  * @scanned:	number of pages scanned
211  * @reclaimed:	number of pages reclaimed
212  *
213  * This function should be called from the vmscan reclaim path to account
214  * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
215  * pressure index is then further refined and averaged over time.
216  *
217  * This function does not return any value.
218  */
vmpressure(gfp_t gfp,struct mem_cgroup * memcg,unsigned long scanned,unsigned long reclaimed)219 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg,
220 		unsigned long scanned, unsigned long reclaimed)
221 {
222 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
223 
224 	/*
225 	 * Here we only want to account pressure that userland is able to
226 	 * help us with. For example, suppose that DMA zone is under
227 	 * pressure; if we notify userland about that kind of pressure,
228 	 * then it will be mostly a waste as it will trigger unnecessary
229 	 * freeing of memory by userland (since userland is more likely to
230 	 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
231 	 * is why we include only movable, highmem and FS/IO pages.
232 	 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
233 	 * we account it too.
234 	 */
235 	if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
236 		return;
237 
238 	/*
239 	 * If we got here with no pages scanned, then that is an indicator
240 	 * that reclaimer was unable to find any shrinkable LRUs at the
241 	 * current scanning depth. But it does not mean that we should
242 	 * report the critical pressure, yet. If the scanning priority
243 	 * (scanning depth) goes too high (deep), we will be notified
244 	 * through vmpressure_prio(). But so far, keep calm.
245 	 */
246 	if (!scanned)
247 		return;
248 
249 	spin_lock(&vmpr->sr_lock);
250 	vmpr->scanned += scanned;
251 	vmpr->reclaimed += reclaimed;
252 	scanned = vmpr->scanned;
253 	spin_unlock(&vmpr->sr_lock);
254 
255 	if (scanned < vmpressure_win)
256 		return;
257 	schedule_work(&vmpr->work);
258 }
259 
260 /**
261  * vmpressure_prio() - Account memory pressure through reclaimer priority level
262  * @gfp:	reclaimer's gfp mask
263  * @memcg:	cgroup memory controller handle
264  * @prio:	reclaimer's priority
265  *
266  * This function should be called from the reclaim path every time when
267  * the vmscan's reclaiming priority (scanning depth) changes.
268  *
269  * This function does not return any value.
270  */
vmpressure_prio(gfp_t gfp,struct mem_cgroup * memcg,int prio)271 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
272 {
273 	/*
274 	 * We only use prio for accounting critical level. For more info
275 	 * see comment for vmpressure_level_critical_prio variable above.
276 	 */
277 	if (prio > vmpressure_level_critical_prio)
278 		return;
279 
280 	/*
281 	 * OK, the prio is below the threshold, updating vmpressure
282 	 * information before shrinker dives into long shrinking of long
283 	 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
284 	 * to the vmpressure() basically means that we signal 'critical'
285 	 * level.
286 	 */
287 	vmpressure(gfp, memcg, vmpressure_win, 0);
288 }
289 
290 /**
291  * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
292  * @memcg:	memcg that is interested in vmpressure notifications
293  * @eventfd:	eventfd context to link notifications with
294  * @args:	event arguments (used to set up a pressure level threshold)
295  *
296  * This function associates eventfd context with the vmpressure
297  * infrastructure, so that the notifications will be delivered to the
298  * @eventfd. The @args parameter is a string that denotes pressure level
299  * threshold (one of vmpressure_str_levels, i.e. "low", "medium", or
300  * "critical").
301  *
302  * To be used as memcg event method.
303  */
vmpressure_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)304 int vmpressure_register_event(struct mem_cgroup *memcg,
305 			      struct eventfd_ctx *eventfd, const char *args)
306 {
307 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
308 	struct vmpressure_event *ev;
309 	int level;
310 
311 	for (level = 0; level < VMPRESSURE_NUM_LEVELS; level++) {
312 		if (!strcmp(vmpressure_str_levels[level], args))
313 			break;
314 	}
315 
316 	if (level >= VMPRESSURE_NUM_LEVELS)
317 		return -EINVAL;
318 
319 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
320 	if (!ev)
321 		return -ENOMEM;
322 
323 	ev->efd = eventfd;
324 	ev->level = level;
325 
326 	mutex_lock(&vmpr->events_lock);
327 	list_add(&ev->node, &vmpr->events);
328 	mutex_unlock(&vmpr->events_lock);
329 
330 	return 0;
331 }
332 
333 /**
334  * vmpressure_unregister_event() - Unbind eventfd from vmpressure
335  * @memcg:	memcg handle
336  * @eventfd:	eventfd context that was used to link vmpressure with the @cg
337  *
338  * This function does internal manipulations to detach the @eventfd from
339  * the vmpressure notifications, and then frees internal resources
340  * associated with the @eventfd (but the @eventfd itself is not freed).
341  *
342  * To be used as memcg event method.
343  */
vmpressure_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)344 void vmpressure_unregister_event(struct mem_cgroup *memcg,
345 				 struct eventfd_ctx *eventfd)
346 {
347 	struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
348 	struct vmpressure_event *ev;
349 
350 	mutex_lock(&vmpr->events_lock);
351 	list_for_each_entry(ev, &vmpr->events, node) {
352 		if (ev->efd != eventfd)
353 			continue;
354 		list_del(&ev->node);
355 		kfree(ev);
356 		break;
357 	}
358 	mutex_unlock(&vmpr->events_lock);
359 }
360 
361 /**
362  * vmpressure_init() - Initialize vmpressure control structure
363  * @vmpr:	Structure to be initialized
364  *
365  * This function should be called on every allocated vmpressure structure
366  * before any usage.
367  */
vmpressure_init(struct vmpressure * vmpr)368 void vmpressure_init(struct vmpressure *vmpr)
369 {
370 	spin_lock_init(&vmpr->sr_lock);
371 	mutex_init(&vmpr->events_lock);
372 	INIT_LIST_HEAD(&vmpr->events);
373 	INIT_WORK(&vmpr->work, vmpressure_work_fn);
374 }
375 
376 /**
377  * vmpressure_cleanup() - shuts down vmpressure control structure
378  * @vmpr:	Structure to be cleaned up
379  *
380  * This function should be called before the structure in which it is
381  * embedded is cleaned up.
382  */
vmpressure_cleanup(struct vmpressure * vmpr)383 void vmpressure_cleanup(struct vmpressure *vmpr)
384 {
385 	/*
386 	 * Make sure there is no pending work before eventfd infrastructure
387 	 * goes away.
388 	 */
389 	flush_work(&vmpr->work);
390 }
391