1 /*
2 * Linux VM pressure
3 *
4 * Copyright 2012 Linaro Ltd.
5 * Anton Vorontsov <anton.vorontsov@linaro.org>
6 *
7 * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
8 * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
13 */
14
15 #include <linux/cgroup.h>
16 #include <linux/fs.h>
17 #include <linux/log2.h>
18 #include <linux/sched.h>
19 #include <linux/mm.h>
20 #include <linux/vmstat.h>
21 #include <linux/eventfd.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/printk.h>
25 #include <linux/vmpressure.h>
26
27 /*
28 * The window size (vmpressure_win) is the number of scanned pages before
29 * we try to analyze scanned/reclaimed ratio. So the window is used as a
30 * rate-limit tunable for the "low" level notification, and also for
31 * averaging the ratio for medium/critical levels. Using small window
32 * sizes can cause lot of false positives, but too big window size will
33 * delay the notifications.
34 *
35 * As the vmscan reclaimer logic works with chunks which are multiple of
36 * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
37 *
38 * TODO: Make the window size depend on machine size, as we do for vmstat
39 * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
40 */
41 static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
42
43 /*
44 * These thresholds are used when we account memory pressure through
45 * scanned/reclaimed ratio. The current values were chosen empirically. In
46 * essence, they are percents: the higher the value, the more number
47 * unsuccessful reclaims there were.
48 */
49 static const unsigned int vmpressure_level_med = 60;
50 static const unsigned int vmpressure_level_critical = 95;
51
52 /*
53 * When there are too little pages left to scan, vmpressure() may miss the
54 * critical pressure as number of pages will be less than "window size".
55 * However, in that case the vmscan priority will raise fast as the
56 * reclaimer will try to scan LRUs more deeply.
57 *
58 * The vmscan logic considers these special priorities:
59 *
60 * prio == DEF_PRIORITY (12): reclaimer starts with that value
61 * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
62 * prio == 0 : close to OOM, kernel scans every page in an lru
63 *
64 * Any value in this range is acceptable for this tunable (i.e. from 12 to
65 * 0). Current value for the vmpressure_level_critical_prio is chosen
66 * empirically, but the number, in essence, means that we consider
67 * critical level when scanning depth is ~10% of the lru size (vmscan
68 * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
69 * eights).
70 */
71 static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
72
work_to_vmpressure(struct work_struct * work)73 static struct vmpressure *work_to_vmpressure(struct work_struct *work)
74 {
75 return container_of(work, struct vmpressure, work);
76 }
77
vmpressure_parent(struct vmpressure * vmpr)78 static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
79 {
80 struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
81 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
82
83 memcg = parent_mem_cgroup(memcg);
84 if (!memcg)
85 return NULL;
86 return memcg_to_vmpressure(memcg);
87 }
88
89 enum vmpressure_levels {
90 VMPRESSURE_LOW = 0,
91 VMPRESSURE_MEDIUM,
92 VMPRESSURE_CRITICAL,
93 VMPRESSURE_NUM_LEVELS,
94 };
95
96 static const char * const vmpressure_str_levels[] = {
97 [VMPRESSURE_LOW] = "low",
98 [VMPRESSURE_MEDIUM] = "medium",
99 [VMPRESSURE_CRITICAL] = "critical",
100 };
101
vmpressure_level(unsigned long pressure)102 static enum vmpressure_levels vmpressure_level(unsigned long pressure)
103 {
104 if (pressure >= vmpressure_level_critical)
105 return VMPRESSURE_CRITICAL;
106 else if (pressure >= vmpressure_level_med)
107 return VMPRESSURE_MEDIUM;
108 return VMPRESSURE_LOW;
109 }
110
vmpressure_calc_level(unsigned long scanned,unsigned long reclaimed)111 static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
112 unsigned long reclaimed)
113 {
114 unsigned long scale = scanned + reclaimed;
115 unsigned long pressure = 0;
116
117 /*
118 * reclaimed can be greater than scanned in cases
119 * like THP, where the scanned is 1 and reclaimed
120 * could be 512
121 */
122 if (reclaimed >= scanned)
123 goto out;
124 /*
125 * We calculate the ratio (in percents) of how many pages were
126 * scanned vs. reclaimed in a given time frame (window). Note that
127 * time is in VM reclaimer's "ticks", i.e. number of pages
128 * scanned. This makes it possible to set desired reaction time
129 * and serves as a ratelimit.
130 */
131 pressure = scale - (reclaimed * scale / scanned);
132 pressure = pressure * 100 / scale;
133
134 out:
135 pr_debug("%s: %3lu (s: %lu r: %lu)\n", __func__, pressure,
136 scanned, reclaimed);
137
138 return vmpressure_level(pressure);
139 }
140
141 struct vmpressure_event {
142 struct eventfd_ctx *efd;
143 enum vmpressure_levels level;
144 struct list_head node;
145 };
146
vmpressure_event(struct vmpressure * vmpr,unsigned long scanned,unsigned long reclaimed)147 static bool vmpressure_event(struct vmpressure *vmpr,
148 unsigned long scanned, unsigned long reclaimed)
149 {
150 struct vmpressure_event *ev;
151 enum vmpressure_levels level;
152 bool signalled = false;
153
154 level = vmpressure_calc_level(scanned, reclaimed);
155
156 mutex_lock(&vmpr->events_lock);
157
158 list_for_each_entry(ev, &vmpr->events, node) {
159 if (level >= ev->level) {
160 eventfd_signal(ev->efd, 1);
161 signalled = true;
162 }
163 }
164
165 mutex_unlock(&vmpr->events_lock);
166
167 return signalled;
168 }
169
vmpressure_work_fn(struct work_struct * work)170 static void vmpressure_work_fn(struct work_struct *work)
171 {
172 struct vmpressure *vmpr = work_to_vmpressure(work);
173 unsigned long scanned;
174 unsigned long reclaimed;
175
176 spin_lock(&vmpr->sr_lock);
177 /*
178 * Several contexts might be calling vmpressure(), so it is
179 * possible that the work was rescheduled again before the old
180 * work context cleared the counters. In that case we will run
181 * just after the old work returns, but then scanned might be zero
182 * here. No need for any locks here since we don't care if
183 * vmpr->reclaimed is in sync.
184 */
185 scanned = vmpr->scanned;
186 if (!scanned) {
187 spin_unlock(&vmpr->sr_lock);
188 return;
189 }
190
191 reclaimed = vmpr->reclaimed;
192 vmpr->scanned = 0;
193 vmpr->reclaimed = 0;
194 spin_unlock(&vmpr->sr_lock);
195
196 do {
197 if (vmpressure_event(vmpr, scanned, reclaimed))
198 break;
199 /*
200 * If not handled, propagate the event upward into the
201 * hierarchy.
202 */
203 } while ((vmpr = vmpressure_parent(vmpr)));
204 }
205
206 /**
207 * vmpressure() - Account memory pressure through scanned/reclaimed ratio
208 * @gfp: reclaimer's gfp mask
209 * @memcg: cgroup memory controller handle
210 * @scanned: number of pages scanned
211 * @reclaimed: number of pages reclaimed
212 *
213 * This function should be called from the vmscan reclaim path to account
214 * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
215 * pressure index is then further refined and averaged over time.
216 *
217 * This function does not return any value.
218 */
vmpressure(gfp_t gfp,struct mem_cgroup * memcg,unsigned long scanned,unsigned long reclaimed)219 void vmpressure(gfp_t gfp, struct mem_cgroup *memcg,
220 unsigned long scanned, unsigned long reclaimed)
221 {
222 struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
223
224 /*
225 * Here we only want to account pressure that userland is able to
226 * help us with. For example, suppose that DMA zone is under
227 * pressure; if we notify userland about that kind of pressure,
228 * then it will be mostly a waste as it will trigger unnecessary
229 * freeing of memory by userland (since userland is more likely to
230 * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
231 * is why we include only movable, highmem and FS/IO pages.
232 * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
233 * we account it too.
234 */
235 if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
236 return;
237
238 /*
239 * If we got here with no pages scanned, then that is an indicator
240 * that reclaimer was unable to find any shrinkable LRUs at the
241 * current scanning depth. But it does not mean that we should
242 * report the critical pressure, yet. If the scanning priority
243 * (scanning depth) goes too high (deep), we will be notified
244 * through vmpressure_prio(). But so far, keep calm.
245 */
246 if (!scanned)
247 return;
248
249 spin_lock(&vmpr->sr_lock);
250 vmpr->scanned += scanned;
251 vmpr->reclaimed += reclaimed;
252 scanned = vmpr->scanned;
253 spin_unlock(&vmpr->sr_lock);
254
255 if (scanned < vmpressure_win)
256 return;
257 schedule_work(&vmpr->work);
258 }
259
260 /**
261 * vmpressure_prio() - Account memory pressure through reclaimer priority level
262 * @gfp: reclaimer's gfp mask
263 * @memcg: cgroup memory controller handle
264 * @prio: reclaimer's priority
265 *
266 * This function should be called from the reclaim path every time when
267 * the vmscan's reclaiming priority (scanning depth) changes.
268 *
269 * This function does not return any value.
270 */
vmpressure_prio(gfp_t gfp,struct mem_cgroup * memcg,int prio)271 void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
272 {
273 /*
274 * We only use prio for accounting critical level. For more info
275 * see comment for vmpressure_level_critical_prio variable above.
276 */
277 if (prio > vmpressure_level_critical_prio)
278 return;
279
280 /*
281 * OK, the prio is below the threshold, updating vmpressure
282 * information before shrinker dives into long shrinking of long
283 * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
284 * to the vmpressure() basically means that we signal 'critical'
285 * level.
286 */
287 vmpressure(gfp, memcg, vmpressure_win, 0);
288 }
289
290 /**
291 * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
292 * @memcg: memcg that is interested in vmpressure notifications
293 * @eventfd: eventfd context to link notifications with
294 * @args: event arguments (used to set up a pressure level threshold)
295 *
296 * This function associates eventfd context with the vmpressure
297 * infrastructure, so that the notifications will be delivered to the
298 * @eventfd. The @args parameter is a string that denotes pressure level
299 * threshold (one of vmpressure_str_levels, i.e. "low", "medium", or
300 * "critical").
301 *
302 * To be used as memcg event method.
303 */
vmpressure_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)304 int vmpressure_register_event(struct mem_cgroup *memcg,
305 struct eventfd_ctx *eventfd, const char *args)
306 {
307 struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
308 struct vmpressure_event *ev;
309 int level;
310
311 for (level = 0; level < VMPRESSURE_NUM_LEVELS; level++) {
312 if (!strcmp(vmpressure_str_levels[level], args))
313 break;
314 }
315
316 if (level >= VMPRESSURE_NUM_LEVELS)
317 return -EINVAL;
318
319 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
320 if (!ev)
321 return -ENOMEM;
322
323 ev->efd = eventfd;
324 ev->level = level;
325
326 mutex_lock(&vmpr->events_lock);
327 list_add(&ev->node, &vmpr->events);
328 mutex_unlock(&vmpr->events_lock);
329
330 return 0;
331 }
332
333 /**
334 * vmpressure_unregister_event() - Unbind eventfd from vmpressure
335 * @memcg: memcg handle
336 * @eventfd: eventfd context that was used to link vmpressure with the @cg
337 *
338 * This function does internal manipulations to detach the @eventfd from
339 * the vmpressure notifications, and then frees internal resources
340 * associated with the @eventfd (but the @eventfd itself is not freed).
341 *
342 * To be used as memcg event method.
343 */
vmpressure_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)344 void vmpressure_unregister_event(struct mem_cgroup *memcg,
345 struct eventfd_ctx *eventfd)
346 {
347 struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
348 struct vmpressure_event *ev;
349
350 mutex_lock(&vmpr->events_lock);
351 list_for_each_entry(ev, &vmpr->events, node) {
352 if (ev->efd != eventfd)
353 continue;
354 list_del(&ev->node);
355 kfree(ev);
356 break;
357 }
358 mutex_unlock(&vmpr->events_lock);
359 }
360
361 /**
362 * vmpressure_init() - Initialize vmpressure control structure
363 * @vmpr: Structure to be initialized
364 *
365 * This function should be called on every allocated vmpressure structure
366 * before any usage.
367 */
vmpressure_init(struct vmpressure * vmpr)368 void vmpressure_init(struct vmpressure *vmpr)
369 {
370 spin_lock_init(&vmpr->sr_lock);
371 mutex_init(&vmpr->events_lock);
372 INIT_LIST_HEAD(&vmpr->events);
373 INIT_WORK(&vmpr->work, vmpressure_work_fn);
374 }
375
376 /**
377 * vmpressure_cleanup() - shuts down vmpressure control structure
378 * @vmpr: Structure to be cleaned up
379 *
380 * This function should be called before the structure in which it is
381 * embedded is cleaned up.
382 */
vmpressure_cleanup(struct vmpressure * vmpr)383 void vmpressure_cleanup(struct vmpressure *vmpr)
384 {
385 /*
386 * Make sure there is no pending work before eventfd infrastructure
387 * goes away.
388 */
389 flush_work(&vmpr->work);
390 }
391