1 /**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static struct ttm_place vram_placement_flags = {
34 .fpfn = 0,
35 .lpfn = 0,
36 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
37 };
38
39 static struct ttm_place vram_ne_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
43 };
44
45 static struct ttm_place sys_placement_flags = {
46 .fpfn = 0,
47 .lpfn = 0,
48 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
49 };
50
51 static struct ttm_place sys_ne_placement_flags = {
52 .fpfn = 0,
53 .lpfn = 0,
54 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
55 };
56
57 static struct ttm_place gmr_placement_flags = {
58 .fpfn = 0,
59 .lpfn = 0,
60 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
61 };
62
63 static struct ttm_place gmr_ne_placement_flags = {
64 .fpfn = 0,
65 .lpfn = 0,
66 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
67 };
68
69 static struct ttm_place mob_placement_flags = {
70 .fpfn = 0,
71 .lpfn = 0,
72 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
73 };
74
75 static struct ttm_place mob_ne_placement_flags = {
76 .fpfn = 0,
77 .lpfn = 0,
78 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
79 };
80
81 struct ttm_placement vmw_vram_placement = {
82 .num_placement = 1,
83 .placement = &vram_placement_flags,
84 .num_busy_placement = 1,
85 .busy_placement = &vram_placement_flags
86 };
87
88 static struct ttm_place vram_gmr_placement_flags[] = {
89 {
90 .fpfn = 0,
91 .lpfn = 0,
92 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
93 }, {
94 .fpfn = 0,
95 .lpfn = 0,
96 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
97 }
98 };
99
100 static struct ttm_place gmr_vram_placement_flags[] = {
101 {
102 .fpfn = 0,
103 .lpfn = 0,
104 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
105 }, {
106 .fpfn = 0,
107 .lpfn = 0,
108 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
109 }
110 };
111
112 struct ttm_placement vmw_vram_gmr_placement = {
113 .num_placement = 2,
114 .placement = vram_gmr_placement_flags,
115 .num_busy_placement = 1,
116 .busy_placement = &gmr_placement_flags
117 };
118
119 static struct ttm_place vram_gmr_ne_placement_flags[] = {
120 {
121 .fpfn = 0,
122 .lpfn = 0,
123 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
124 TTM_PL_FLAG_NO_EVICT
125 }, {
126 .fpfn = 0,
127 .lpfn = 0,
128 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
129 TTM_PL_FLAG_NO_EVICT
130 }
131 };
132
133 struct ttm_placement vmw_vram_gmr_ne_placement = {
134 .num_placement = 2,
135 .placement = vram_gmr_ne_placement_flags,
136 .num_busy_placement = 1,
137 .busy_placement = &gmr_ne_placement_flags
138 };
139
140 struct ttm_placement vmw_vram_sys_placement = {
141 .num_placement = 1,
142 .placement = &vram_placement_flags,
143 .num_busy_placement = 1,
144 .busy_placement = &sys_placement_flags
145 };
146
147 struct ttm_placement vmw_vram_ne_placement = {
148 .num_placement = 1,
149 .placement = &vram_ne_placement_flags,
150 .num_busy_placement = 1,
151 .busy_placement = &vram_ne_placement_flags
152 };
153
154 struct ttm_placement vmw_sys_placement = {
155 .num_placement = 1,
156 .placement = &sys_placement_flags,
157 .num_busy_placement = 1,
158 .busy_placement = &sys_placement_flags
159 };
160
161 struct ttm_placement vmw_sys_ne_placement = {
162 .num_placement = 1,
163 .placement = &sys_ne_placement_flags,
164 .num_busy_placement = 1,
165 .busy_placement = &sys_ne_placement_flags
166 };
167
168 static struct ttm_place evictable_placement_flags[] = {
169 {
170 .fpfn = 0,
171 .lpfn = 0,
172 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
173 }, {
174 .fpfn = 0,
175 .lpfn = 0,
176 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
177 }, {
178 .fpfn = 0,
179 .lpfn = 0,
180 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
181 }, {
182 .fpfn = 0,
183 .lpfn = 0,
184 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
185 }
186 };
187
188 struct ttm_placement vmw_evictable_placement = {
189 .num_placement = 4,
190 .placement = evictable_placement_flags,
191 .num_busy_placement = 1,
192 .busy_placement = &sys_placement_flags
193 };
194
195 struct ttm_placement vmw_srf_placement = {
196 .num_placement = 1,
197 .num_busy_placement = 2,
198 .placement = &gmr_placement_flags,
199 .busy_placement = gmr_vram_placement_flags
200 };
201
202 struct ttm_placement vmw_mob_placement = {
203 .num_placement = 1,
204 .num_busy_placement = 1,
205 .placement = &mob_placement_flags,
206 .busy_placement = &mob_placement_flags
207 };
208
209 struct ttm_placement vmw_mob_ne_placement = {
210 .num_placement = 1,
211 .num_busy_placement = 1,
212 .placement = &mob_ne_placement_flags,
213 .busy_placement = &mob_ne_placement_flags
214 };
215
216 struct vmw_ttm_tt {
217 struct ttm_dma_tt dma_ttm;
218 struct vmw_private *dev_priv;
219 int gmr_id;
220 struct vmw_mob *mob;
221 int mem_type;
222 struct sg_table sgt;
223 struct vmw_sg_table vsgt;
224 uint64_t sg_alloc_size;
225 bool mapped;
226 };
227
228 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
229
230 /**
231 * Helper functions to advance a struct vmw_piter iterator.
232 *
233 * @viter: Pointer to the iterator.
234 *
235 * These functions return false if past the end of the list,
236 * true otherwise. Functions are selected depending on the current
237 * DMA mapping mode.
238 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)239 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
240 {
241 return ++(viter->i) < viter->num_pages;
242 }
243
__vmw_piter_sg_next(struct vmw_piter * viter)244 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
245 {
246 return __sg_page_iter_next(&viter->iter);
247 }
248
249
250 /**
251 * Helper functions to return a pointer to the current page.
252 *
253 * @viter: Pointer to the iterator
254 *
255 * These functions return a pointer to the page currently
256 * pointed to by @viter. Functions are selected depending on the
257 * current mapping mode.
258 */
__vmw_piter_non_sg_page(struct vmw_piter * viter)259 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
260 {
261 return viter->pages[viter->i];
262 }
263
__vmw_piter_sg_page(struct vmw_piter * viter)264 static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
265 {
266 return sg_page_iter_page(&viter->iter);
267 }
268
269
270 /**
271 * Helper functions to return the DMA address of the current page.
272 *
273 * @viter: Pointer to the iterator
274 *
275 * These functions return the DMA address of the page currently
276 * pointed to by @viter. Functions are selected depending on the
277 * current mapping mode.
278 */
__vmw_piter_phys_addr(struct vmw_piter * viter)279 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
280 {
281 return page_to_phys(viter->pages[viter->i]);
282 }
283
__vmw_piter_dma_addr(struct vmw_piter * viter)284 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
285 {
286 return viter->addrs[viter->i];
287 }
288
__vmw_piter_sg_addr(struct vmw_piter * viter)289 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
290 {
291 return sg_page_iter_dma_address(&viter->iter);
292 }
293
294
295 /**
296 * vmw_piter_start - Initialize a struct vmw_piter.
297 *
298 * @viter: Pointer to the iterator to initialize
299 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
300 *
301 * Note that we're following the convention of __sg_page_iter_start, so that
302 * the iterator doesn't point to a valid page after initialization; it has
303 * to be advanced one step first.
304 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)305 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
306 unsigned long p_offset)
307 {
308 viter->i = p_offset - 1;
309 viter->num_pages = vsgt->num_pages;
310 switch (vsgt->mode) {
311 case vmw_dma_phys:
312 viter->next = &__vmw_piter_non_sg_next;
313 viter->dma_address = &__vmw_piter_phys_addr;
314 viter->page = &__vmw_piter_non_sg_page;
315 viter->pages = vsgt->pages;
316 break;
317 case vmw_dma_alloc_coherent:
318 viter->next = &__vmw_piter_non_sg_next;
319 viter->dma_address = &__vmw_piter_dma_addr;
320 viter->page = &__vmw_piter_non_sg_page;
321 viter->addrs = vsgt->addrs;
322 viter->pages = vsgt->pages;
323 break;
324 case vmw_dma_map_populate:
325 case vmw_dma_map_bind:
326 viter->next = &__vmw_piter_sg_next;
327 viter->dma_address = &__vmw_piter_sg_addr;
328 viter->page = &__vmw_piter_sg_page;
329 __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
330 vsgt->sgt->orig_nents, p_offset);
331 break;
332 default:
333 BUG();
334 }
335 }
336
337 /**
338 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
339 * TTM pages
340 *
341 * @vmw_tt: Pointer to a struct vmw_ttm_backend
342 *
343 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
344 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)345 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
346 {
347 struct device *dev = vmw_tt->dev_priv->dev->dev;
348
349 dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
350 DMA_BIDIRECTIONAL);
351 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
352 }
353
354 /**
355 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
356 *
357 * @vmw_tt: Pointer to a struct vmw_ttm_backend
358 *
359 * This function is used to get device addresses from the kernel DMA layer.
360 * However, it's violating the DMA API in that when this operation has been
361 * performed, it's illegal for the CPU to write to the pages without first
362 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
363 * therefore only legal to call this function if we know that the function
364 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
365 * a CPU write buffer flush.
366 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)367 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
368 {
369 struct device *dev = vmw_tt->dev_priv->dev->dev;
370 int ret;
371
372 ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
373 DMA_BIDIRECTIONAL);
374 if (unlikely(ret == 0))
375 return -ENOMEM;
376
377 vmw_tt->sgt.nents = ret;
378
379 return 0;
380 }
381
382 /**
383 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
384 *
385 * @vmw_tt: Pointer to a struct vmw_ttm_tt
386 *
387 * Select the correct function for and make sure the TTM pages are
388 * visible to the device. Allocate storage for the device mappings.
389 * If a mapping has already been performed, indicated by the storage
390 * pointer being non NULL, the function returns success.
391 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)392 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
393 {
394 struct vmw_private *dev_priv = vmw_tt->dev_priv;
395 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
396 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
397 struct vmw_piter iter;
398 dma_addr_t old;
399 int ret = 0;
400 static size_t sgl_size;
401 static size_t sgt_size;
402
403 if (vmw_tt->mapped)
404 return 0;
405
406 vsgt->mode = dev_priv->map_mode;
407 vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
408 vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
409 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
410 vsgt->sgt = &vmw_tt->sgt;
411
412 switch (dev_priv->map_mode) {
413 case vmw_dma_map_bind:
414 case vmw_dma_map_populate:
415 if (unlikely(!sgl_size)) {
416 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
417 sgt_size = ttm_round_pot(sizeof(struct sg_table));
418 }
419 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
420 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
421 true);
422 if (unlikely(ret != 0))
423 return ret;
424
425 ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
426 vsgt->num_pages, 0,
427 (unsigned long)
428 vsgt->num_pages << PAGE_SHIFT,
429 GFP_KERNEL);
430 if (unlikely(ret != 0))
431 goto out_sg_alloc_fail;
432
433 if (vsgt->num_pages > vmw_tt->sgt.nents) {
434 uint64_t over_alloc =
435 sgl_size * (vsgt->num_pages -
436 vmw_tt->sgt.nents);
437
438 ttm_mem_global_free(glob, over_alloc);
439 vmw_tt->sg_alloc_size -= over_alloc;
440 }
441
442 ret = vmw_ttm_map_for_dma(vmw_tt);
443 if (unlikely(ret != 0))
444 goto out_map_fail;
445
446 break;
447 default:
448 break;
449 }
450
451 old = ~((dma_addr_t) 0);
452 vmw_tt->vsgt.num_regions = 0;
453 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
454 dma_addr_t cur = vmw_piter_dma_addr(&iter);
455
456 if (cur != old + PAGE_SIZE)
457 vmw_tt->vsgt.num_regions++;
458 old = cur;
459 }
460
461 vmw_tt->mapped = true;
462 return 0;
463
464 out_map_fail:
465 sg_free_table(vmw_tt->vsgt.sgt);
466 vmw_tt->vsgt.sgt = NULL;
467 out_sg_alloc_fail:
468 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
469 return ret;
470 }
471
472 /**
473 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
474 *
475 * @vmw_tt: Pointer to a struct vmw_ttm_tt
476 *
477 * Tear down any previously set up device DMA mappings and free
478 * any storage space allocated for them. If there are no mappings set up,
479 * this function is a NOP.
480 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)481 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
482 {
483 struct vmw_private *dev_priv = vmw_tt->dev_priv;
484
485 if (!vmw_tt->vsgt.sgt)
486 return;
487
488 switch (dev_priv->map_mode) {
489 case vmw_dma_map_bind:
490 case vmw_dma_map_populate:
491 vmw_ttm_unmap_from_dma(vmw_tt);
492 sg_free_table(vmw_tt->vsgt.sgt);
493 vmw_tt->vsgt.sgt = NULL;
494 ttm_mem_global_free(vmw_mem_glob(dev_priv),
495 vmw_tt->sg_alloc_size);
496 break;
497 default:
498 break;
499 }
500 vmw_tt->mapped = false;
501 }
502
503
504 /**
505 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
506 *
507 * @bo: Pointer to a struct ttm_buffer_object
508 *
509 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
510 * instead of a pointer to a struct vmw_ttm_backend as argument.
511 * Note that the buffer object must be either pinned or reserved before
512 * calling this function.
513 */
vmw_bo_map_dma(struct ttm_buffer_object * bo)514 int vmw_bo_map_dma(struct ttm_buffer_object *bo)
515 {
516 struct vmw_ttm_tt *vmw_tt =
517 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
518
519 return vmw_ttm_map_dma(vmw_tt);
520 }
521
522
523 /**
524 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
525 *
526 * @bo: Pointer to a struct ttm_buffer_object
527 *
528 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
529 * instead of a pointer to a struct vmw_ttm_backend as argument.
530 */
vmw_bo_unmap_dma(struct ttm_buffer_object * bo)531 void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
532 {
533 struct vmw_ttm_tt *vmw_tt =
534 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
535
536 vmw_ttm_unmap_dma(vmw_tt);
537 }
538
539
540 /**
541 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
542 * TTM buffer object
543 *
544 * @bo: Pointer to a struct ttm_buffer_object
545 *
546 * Returns a pointer to a struct vmw_sg_table object. The object should
547 * not be freed after use.
548 * Note that for the device addresses to be valid, the buffer object must
549 * either be reserved or pinned.
550 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)551 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
552 {
553 struct vmw_ttm_tt *vmw_tt =
554 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
555
556 return &vmw_tt->vsgt;
557 }
558
559
vmw_ttm_bind(struct ttm_tt * ttm,struct ttm_mem_reg * bo_mem)560 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
561 {
562 struct vmw_ttm_tt *vmw_be =
563 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
564 int ret;
565
566 ret = vmw_ttm_map_dma(vmw_be);
567 if (unlikely(ret != 0))
568 return ret;
569
570 vmw_be->gmr_id = bo_mem->start;
571 vmw_be->mem_type = bo_mem->mem_type;
572
573 switch (bo_mem->mem_type) {
574 case VMW_PL_GMR:
575 return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
576 ttm->num_pages, vmw_be->gmr_id);
577 case VMW_PL_MOB:
578 if (unlikely(vmw_be->mob == NULL)) {
579 vmw_be->mob =
580 vmw_mob_create(ttm->num_pages);
581 if (unlikely(vmw_be->mob == NULL))
582 return -ENOMEM;
583 }
584
585 return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
586 &vmw_be->vsgt, ttm->num_pages,
587 vmw_be->gmr_id);
588 default:
589 BUG();
590 }
591 return 0;
592 }
593
vmw_ttm_unbind(struct ttm_tt * ttm)594 static int vmw_ttm_unbind(struct ttm_tt *ttm)
595 {
596 struct vmw_ttm_tt *vmw_be =
597 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
598
599 switch (vmw_be->mem_type) {
600 case VMW_PL_GMR:
601 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
602 break;
603 case VMW_PL_MOB:
604 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
605 break;
606 default:
607 BUG();
608 }
609
610 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
611 vmw_ttm_unmap_dma(vmw_be);
612
613 return 0;
614 }
615
616
vmw_ttm_destroy(struct ttm_tt * ttm)617 static void vmw_ttm_destroy(struct ttm_tt *ttm)
618 {
619 struct vmw_ttm_tt *vmw_be =
620 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
621
622 vmw_ttm_unmap_dma(vmw_be);
623 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
624 ttm_dma_tt_fini(&vmw_be->dma_ttm);
625 else
626 ttm_tt_fini(ttm);
627
628 if (vmw_be->mob)
629 vmw_mob_destroy(vmw_be->mob);
630
631 kfree(vmw_be);
632 }
633
634
vmw_ttm_populate(struct ttm_tt * ttm)635 static int vmw_ttm_populate(struct ttm_tt *ttm)
636 {
637 struct vmw_ttm_tt *vmw_tt =
638 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
639 struct vmw_private *dev_priv = vmw_tt->dev_priv;
640 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
641 int ret;
642
643 if (ttm->state != tt_unpopulated)
644 return 0;
645
646 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
647 size_t size =
648 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
649 ret = ttm_mem_global_alloc(glob, size, false, true);
650 if (unlikely(ret != 0))
651 return ret;
652
653 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
654 if (unlikely(ret != 0))
655 ttm_mem_global_free(glob, size);
656 } else
657 ret = ttm_pool_populate(ttm);
658
659 return ret;
660 }
661
vmw_ttm_unpopulate(struct ttm_tt * ttm)662 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
663 {
664 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
665 dma_ttm.ttm);
666 struct vmw_private *dev_priv = vmw_tt->dev_priv;
667 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
668
669
670 if (vmw_tt->mob) {
671 vmw_mob_destroy(vmw_tt->mob);
672 vmw_tt->mob = NULL;
673 }
674
675 vmw_ttm_unmap_dma(vmw_tt);
676 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
677 size_t size =
678 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
679
680 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
681 ttm_mem_global_free(glob, size);
682 } else
683 ttm_pool_unpopulate(ttm);
684 }
685
686 static struct ttm_backend_func vmw_ttm_func = {
687 .bind = vmw_ttm_bind,
688 .unbind = vmw_ttm_unbind,
689 .destroy = vmw_ttm_destroy,
690 };
691
vmw_ttm_tt_create(struct ttm_bo_device * bdev,unsigned long size,uint32_t page_flags,struct page * dummy_read_page)692 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
693 unsigned long size, uint32_t page_flags,
694 struct page *dummy_read_page)
695 {
696 struct vmw_ttm_tt *vmw_be;
697 int ret;
698
699 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
700 if (!vmw_be)
701 return NULL;
702
703 vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
704 vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
705 vmw_be->mob = NULL;
706
707 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
708 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
709 dummy_read_page);
710 else
711 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
712 dummy_read_page);
713 if (unlikely(ret != 0))
714 goto out_no_init;
715
716 return &vmw_be->dma_ttm.ttm;
717 out_no_init:
718 kfree(vmw_be);
719 return NULL;
720 }
721
vmw_invalidate_caches(struct ttm_bo_device * bdev,uint32_t flags)722 static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
723 {
724 return 0;
725 }
726
vmw_init_mem_type(struct ttm_bo_device * bdev,uint32_t type,struct ttm_mem_type_manager * man)727 static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
728 struct ttm_mem_type_manager *man)
729 {
730 switch (type) {
731 case TTM_PL_SYSTEM:
732 /* System memory */
733
734 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
735 man->available_caching = TTM_PL_FLAG_CACHED;
736 man->default_caching = TTM_PL_FLAG_CACHED;
737 break;
738 case TTM_PL_VRAM:
739 /* "On-card" video ram */
740 man->func = &ttm_bo_manager_func;
741 man->gpu_offset = 0;
742 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
743 man->available_caching = TTM_PL_FLAG_CACHED;
744 man->default_caching = TTM_PL_FLAG_CACHED;
745 break;
746 case VMW_PL_GMR:
747 case VMW_PL_MOB:
748 /*
749 * "Guest Memory Regions" is an aperture like feature with
750 * one slot per bo. There is an upper limit of the number of
751 * slots as well as the bo size.
752 */
753 man->func = &vmw_gmrid_manager_func;
754 man->gpu_offset = 0;
755 man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
756 man->available_caching = TTM_PL_FLAG_CACHED;
757 man->default_caching = TTM_PL_FLAG_CACHED;
758 break;
759 default:
760 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
761 return -EINVAL;
762 }
763 return 0;
764 }
765
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)766 static void vmw_evict_flags(struct ttm_buffer_object *bo,
767 struct ttm_placement *placement)
768 {
769 *placement = vmw_sys_placement;
770 }
771
vmw_verify_access(struct ttm_buffer_object * bo,struct file * filp)772 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
773 {
774 struct ttm_object_file *tfile =
775 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
776
777 return vmw_user_dmabuf_verify_access(bo, tfile);
778 }
779
vmw_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)780 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
781 {
782 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
783 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
784
785 mem->bus.addr = NULL;
786 mem->bus.is_iomem = false;
787 mem->bus.offset = 0;
788 mem->bus.size = mem->num_pages << PAGE_SHIFT;
789 mem->bus.base = 0;
790 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
791 return -EINVAL;
792 switch (mem->mem_type) {
793 case TTM_PL_SYSTEM:
794 case VMW_PL_GMR:
795 case VMW_PL_MOB:
796 return 0;
797 case TTM_PL_VRAM:
798 mem->bus.offset = mem->start << PAGE_SHIFT;
799 mem->bus.base = dev_priv->vram_start;
800 mem->bus.is_iomem = true;
801 break;
802 default:
803 return -EINVAL;
804 }
805 return 0;
806 }
807
vmw_ttm_io_mem_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)808 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
809 {
810 }
811
vmw_ttm_fault_reserve_notify(struct ttm_buffer_object * bo)812 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
813 {
814 return 0;
815 }
816
817 /**
818 * vmw_move_notify - TTM move_notify_callback
819 *
820 * @bo: The TTM buffer object about to move.
821 * @mem: The struct ttm_mem_reg indicating to what memory
822 * region the move is taking place.
823 *
824 * Calls move_notify for all subsystems needing it.
825 * (currently only resources).
826 */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)827 static void vmw_move_notify(struct ttm_buffer_object *bo,
828 struct ttm_mem_reg *mem)
829 {
830 vmw_resource_move_notify(bo, mem);
831 vmw_query_move_notify(bo, mem);
832 }
833
834
835 /**
836 * vmw_swap_notify - TTM move_notify_callback
837 *
838 * @bo: The TTM buffer object about to be swapped out.
839 */
vmw_swap_notify(struct ttm_buffer_object * bo)840 static void vmw_swap_notify(struct ttm_buffer_object *bo)
841 {
842 ttm_bo_wait(bo, false, false, false);
843 }
844
845
846 struct ttm_bo_driver vmw_bo_driver = {
847 .ttm_tt_create = &vmw_ttm_tt_create,
848 .ttm_tt_populate = &vmw_ttm_populate,
849 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
850 .invalidate_caches = vmw_invalidate_caches,
851 .init_mem_type = vmw_init_mem_type,
852 .evict_flags = vmw_evict_flags,
853 .move = NULL,
854 .verify_access = vmw_verify_access,
855 .move_notify = vmw_move_notify,
856 .swap_notify = vmw_swap_notify,
857 .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
858 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
859 .io_mem_free = &vmw_ttm_io_mem_free,
860 };
861