• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32 
33 static struct ttm_place vram_placement_flags = {
34 	.fpfn = 0,
35 	.lpfn = 0,
36 	.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
37 };
38 
39 static struct ttm_place vram_ne_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
43 };
44 
45 static struct ttm_place sys_placement_flags = {
46 	.fpfn = 0,
47 	.lpfn = 0,
48 	.flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
49 };
50 
51 static struct ttm_place sys_ne_placement_flags = {
52 	.fpfn = 0,
53 	.lpfn = 0,
54 	.flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
55 };
56 
57 static struct ttm_place gmr_placement_flags = {
58 	.fpfn = 0,
59 	.lpfn = 0,
60 	.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
61 };
62 
63 static struct ttm_place gmr_ne_placement_flags = {
64 	.fpfn = 0,
65 	.lpfn = 0,
66 	.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
67 };
68 
69 static struct ttm_place mob_placement_flags = {
70 	.fpfn = 0,
71 	.lpfn = 0,
72 	.flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
73 };
74 
75 static struct ttm_place mob_ne_placement_flags = {
76 	.fpfn = 0,
77 	.lpfn = 0,
78 	.flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
79 };
80 
81 struct ttm_placement vmw_vram_placement = {
82 	.num_placement = 1,
83 	.placement = &vram_placement_flags,
84 	.num_busy_placement = 1,
85 	.busy_placement = &vram_placement_flags
86 };
87 
88 static struct ttm_place vram_gmr_placement_flags[] = {
89 	{
90 		.fpfn = 0,
91 		.lpfn = 0,
92 		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
93 	}, {
94 		.fpfn = 0,
95 		.lpfn = 0,
96 		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
97 	}
98 };
99 
100 static struct ttm_place gmr_vram_placement_flags[] = {
101 	{
102 		.fpfn = 0,
103 		.lpfn = 0,
104 		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
105 	}, {
106 		.fpfn = 0,
107 		.lpfn = 0,
108 		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
109 	}
110 };
111 
112 struct ttm_placement vmw_vram_gmr_placement = {
113 	.num_placement = 2,
114 	.placement = vram_gmr_placement_flags,
115 	.num_busy_placement = 1,
116 	.busy_placement = &gmr_placement_flags
117 };
118 
119 static struct ttm_place vram_gmr_ne_placement_flags[] = {
120 	{
121 		.fpfn = 0,
122 		.lpfn = 0,
123 		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
124 			 TTM_PL_FLAG_NO_EVICT
125 	}, {
126 		.fpfn = 0,
127 		.lpfn = 0,
128 		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
129 			 TTM_PL_FLAG_NO_EVICT
130 	}
131 };
132 
133 struct ttm_placement vmw_vram_gmr_ne_placement = {
134 	.num_placement = 2,
135 	.placement = vram_gmr_ne_placement_flags,
136 	.num_busy_placement = 1,
137 	.busy_placement = &gmr_ne_placement_flags
138 };
139 
140 struct ttm_placement vmw_vram_sys_placement = {
141 	.num_placement = 1,
142 	.placement = &vram_placement_flags,
143 	.num_busy_placement = 1,
144 	.busy_placement = &sys_placement_flags
145 };
146 
147 struct ttm_placement vmw_vram_ne_placement = {
148 	.num_placement = 1,
149 	.placement = &vram_ne_placement_flags,
150 	.num_busy_placement = 1,
151 	.busy_placement = &vram_ne_placement_flags
152 };
153 
154 struct ttm_placement vmw_sys_placement = {
155 	.num_placement = 1,
156 	.placement = &sys_placement_flags,
157 	.num_busy_placement = 1,
158 	.busy_placement = &sys_placement_flags
159 };
160 
161 struct ttm_placement vmw_sys_ne_placement = {
162 	.num_placement = 1,
163 	.placement = &sys_ne_placement_flags,
164 	.num_busy_placement = 1,
165 	.busy_placement = &sys_ne_placement_flags
166 };
167 
168 static struct ttm_place evictable_placement_flags[] = {
169 	{
170 		.fpfn = 0,
171 		.lpfn = 0,
172 		.flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
173 	}, {
174 		.fpfn = 0,
175 		.lpfn = 0,
176 		.flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
177 	}, {
178 		.fpfn = 0,
179 		.lpfn = 0,
180 		.flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
181 	}, {
182 		.fpfn = 0,
183 		.lpfn = 0,
184 		.flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
185 	}
186 };
187 
188 struct ttm_placement vmw_evictable_placement = {
189 	.num_placement = 4,
190 	.placement = evictable_placement_flags,
191 	.num_busy_placement = 1,
192 	.busy_placement = &sys_placement_flags
193 };
194 
195 struct ttm_placement vmw_srf_placement = {
196 	.num_placement = 1,
197 	.num_busy_placement = 2,
198 	.placement = &gmr_placement_flags,
199 	.busy_placement = gmr_vram_placement_flags
200 };
201 
202 struct ttm_placement vmw_mob_placement = {
203 	.num_placement = 1,
204 	.num_busy_placement = 1,
205 	.placement = &mob_placement_flags,
206 	.busy_placement = &mob_placement_flags
207 };
208 
209 struct ttm_placement vmw_mob_ne_placement = {
210 	.num_placement = 1,
211 	.num_busy_placement = 1,
212 	.placement = &mob_ne_placement_flags,
213 	.busy_placement = &mob_ne_placement_flags
214 };
215 
216 struct vmw_ttm_tt {
217 	struct ttm_dma_tt dma_ttm;
218 	struct vmw_private *dev_priv;
219 	int gmr_id;
220 	struct vmw_mob *mob;
221 	int mem_type;
222 	struct sg_table sgt;
223 	struct vmw_sg_table vsgt;
224 	uint64_t sg_alloc_size;
225 	bool mapped;
226 };
227 
228 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
229 
230 /**
231  * Helper functions to advance a struct vmw_piter iterator.
232  *
233  * @viter: Pointer to the iterator.
234  *
235  * These functions return false if past the end of the list,
236  * true otherwise. Functions are selected depending on the current
237  * DMA mapping mode.
238  */
__vmw_piter_non_sg_next(struct vmw_piter * viter)239 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
240 {
241 	return ++(viter->i) < viter->num_pages;
242 }
243 
__vmw_piter_sg_next(struct vmw_piter * viter)244 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
245 {
246 	return __sg_page_iter_next(&viter->iter);
247 }
248 
249 
250 /**
251  * Helper functions to return a pointer to the current page.
252  *
253  * @viter: Pointer to the iterator
254  *
255  * These functions return a pointer to the page currently
256  * pointed to by @viter. Functions are selected depending on the
257  * current mapping mode.
258  */
__vmw_piter_non_sg_page(struct vmw_piter * viter)259 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
260 {
261 	return viter->pages[viter->i];
262 }
263 
__vmw_piter_sg_page(struct vmw_piter * viter)264 static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
265 {
266 	return sg_page_iter_page(&viter->iter);
267 }
268 
269 
270 /**
271  * Helper functions to return the DMA address of the current page.
272  *
273  * @viter: Pointer to the iterator
274  *
275  * These functions return the DMA address of the page currently
276  * pointed to by @viter. Functions are selected depending on the
277  * current mapping mode.
278  */
__vmw_piter_phys_addr(struct vmw_piter * viter)279 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
280 {
281 	return page_to_phys(viter->pages[viter->i]);
282 }
283 
__vmw_piter_dma_addr(struct vmw_piter * viter)284 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
285 {
286 	return viter->addrs[viter->i];
287 }
288 
__vmw_piter_sg_addr(struct vmw_piter * viter)289 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
290 {
291 	return sg_page_iter_dma_address(&viter->iter);
292 }
293 
294 
295 /**
296  * vmw_piter_start - Initialize a struct vmw_piter.
297  *
298  * @viter: Pointer to the iterator to initialize
299  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
300  *
301  * Note that we're following the convention of __sg_page_iter_start, so that
302  * the iterator doesn't point to a valid page after initialization; it has
303  * to be advanced one step first.
304  */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)305 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
306 		     unsigned long p_offset)
307 {
308 	viter->i = p_offset - 1;
309 	viter->num_pages = vsgt->num_pages;
310 	switch (vsgt->mode) {
311 	case vmw_dma_phys:
312 		viter->next = &__vmw_piter_non_sg_next;
313 		viter->dma_address = &__vmw_piter_phys_addr;
314 		viter->page = &__vmw_piter_non_sg_page;
315 		viter->pages = vsgt->pages;
316 		break;
317 	case vmw_dma_alloc_coherent:
318 		viter->next = &__vmw_piter_non_sg_next;
319 		viter->dma_address = &__vmw_piter_dma_addr;
320 		viter->page = &__vmw_piter_non_sg_page;
321 		viter->addrs = vsgt->addrs;
322 		viter->pages = vsgt->pages;
323 		break;
324 	case vmw_dma_map_populate:
325 	case vmw_dma_map_bind:
326 		viter->next = &__vmw_piter_sg_next;
327 		viter->dma_address = &__vmw_piter_sg_addr;
328 		viter->page = &__vmw_piter_sg_page;
329 		__sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
330 				     vsgt->sgt->orig_nents, p_offset);
331 		break;
332 	default:
333 		BUG();
334 	}
335 }
336 
337 /**
338  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
339  * TTM pages
340  *
341  * @vmw_tt: Pointer to a struct vmw_ttm_backend
342  *
343  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
344  */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)345 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
346 {
347 	struct device *dev = vmw_tt->dev_priv->dev->dev;
348 
349 	dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
350 		DMA_BIDIRECTIONAL);
351 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
352 }
353 
354 /**
355  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
356  *
357  * @vmw_tt: Pointer to a struct vmw_ttm_backend
358  *
359  * This function is used to get device addresses from the kernel DMA layer.
360  * However, it's violating the DMA API in that when this operation has been
361  * performed, it's illegal for the CPU to write to the pages without first
362  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
363  * therefore only legal to call this function if we know that the function
364  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
365  * a CPU write buffer flush.
366  */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)367 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
368 {
369 	struct device *dev = vmw_tt->dev_priv->dev->dev;
370 	int ret;
371 
372 	ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
373 			 DMA_BIDIRECTIONAL);
374 	if (unlikely(ret == 0))
375 		return -ENOMEM;
376 
377 	vmw_tt->sgt.nents = ret;
378 
379 	return 0;
380 }
381 
382 /**
383  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
384  *
385  * @vmw_tt: Pointer to a struct vmw_ttm_tt
386  *
387  * Select the correct function for and make sure the TTM pages are
388  * visible to the device. Allocate storage for the device mappings.
389  * If a mapping has already been performed, indicated by the storage
390  * pointer being non NULL, the function returns success.
391  */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)392 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
393 {
394 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
395 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
396 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
397 	struct vmw_piter iter;
398 	dma_addr_t old;
399 	int ret = 0;
400 	static size_t sgl_size;
401 	static size_t sgt_size;
402 
403 	if (vmw_tt->mapped)
404 		return 0;
405 
406 	vsgt->mode = dev_priv->map_mode;
407 	vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
408 	vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
409 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
410 	vsgt->sgt = &vmw_tt->sgt;
411 
412 	switch (dev_priv->map_mode) {
413 	case vmw_dma_map_bind:
414 	case vmw_dma_map_populate:
415 		if (unlikely(!sgl_size)) {
416 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
417 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
418 		}
419 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
420 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
421 					   true);
422 		if (unlikely(ret != 0))
423 			return ret;
424 
425 		ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
426 						vsgt->num_pages, 0,
427 						(unsigned long)
428 						vsgt->num_pages << PAGE_SHIFT,
429 						GFP_KERNEL);
430 		if (unlikely(ret != 0))
431 			goto out_sg_alloc_fail;
432 
433 		if (vsgt->num_pages > vmw_tt->sgt.nents) {
434 			uint64_t over_alloc =
435 				sgl_size * (vsgt->num_pages -
436 					    vmw_tt->sgt.nents);
437 
438 			ttm_mem_global_free(glob, over_alloc);
439 			vmw_tt->sg_alloc_size -= over_alloc;
440 		}
441 
442 		ret = vmw_ttm_map_for_dma(vmw_tt);
443 		if (unlikely(ret != 0))
444 			goto out_map_fail;
445 
446 		break;
447 	default:
448 		break;
449 	}
450 
451 	old = ~((dma_addr_t) 0);
452 	vmw_tt->vsgt.num_regions = 0;
453 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
454 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
455 
456 		if (cur != old + PAGE_SIZE)
457 			vmw_tt->vsgt.num_regions++;
458 		old = cur;
459 	}
460 
461 	vmw_tt->mapped = true;
462 	return 0;
463 
464 out_map_fail:
465 	sg_free_table(vmw_tt->vsgt.sgt);
466 	vmw_tt->vsgt.sgt = NULL;
467 out_sg_alloc_fail:
468 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
469 	return ret;
470 }
471 
472 /**
473  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
474  *
475  * @vmw_tt: Pointer to a struct vmw_ttm_tt
476  *
477  * Tear down any previously set up device DMA mappings and free
478  * any storage space allocated for them. If there are no mappings set up,
479  * this function is a NOP.
480  */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)481 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
482 {
483 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
484 
485 	if (!vmw_tt->vsgt.sgt)
486 		return;
487 
488 	switch (dev_priv->map_mode) {
489 	case vmw_dma_map_bind:
490 	case vmw_dma_map_populate:
491 		vmw_ttm_unmap_from_dma(vmw_tt);
492 		sg_free_table(vmw_tt->vsgt.sgt);
493 		vmw_tt->vsgt.sgt = NULL;
494 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
495 				    vmw_tt->sg_alloc_size);
496 		break;
497 	default:
498 		break;
499 	}
500 	vmw_tt->mapped = false;
501 }
502 
503 
504 /**
505  * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
506  *
507  * @bo: Pointer to a struct ttm_buffer_object
508  *
509  * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
510  * instead of a pointer to a struct vmw_ttm_backend as argument.
511  * Note that the buffer object must be either pinned or reserved before
512  * calling this function.
513  */
vmw_bo_map_dma(struct ttm_buffer_object * bo)514 int vmw_bo_map_dma(struct ttm_buffer_object *bo)
515 {
516 	struct vmw_ttm_tt *vmw_tt =
517 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
518 
519 	return vmw_ttm_map_dma(vmw_tt);
520 }
521 
522 
523 /**
524  * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
525  *
526  * @bo: Pointer to a struct ttm_buffer_object
527  *
528  * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
529  * instead of a pointer to a struct vmw_ttm_backend as argument.
530  */
vmw_bo_unmap_dma(struct ttm_buffer_object * bo)531 void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
532 {
533 	struct vmw_ttm_tt *vmw_tt =
534 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
535 
536 	vmw_ttm_unmap_dma(vmw_tt);
537 }
538 
539 
540 /**
541  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
542  * TTM buffer object
543  *
544  * @bo: Pointer to a struct ttm_buffer_object
545  *
546  * Returns a pointer to a struct vmw_sg_table object. The object should
547  * not be freed after use.
548  * Note that for the device addresses to be valid, the buffer object must
549  * either be reserved or pinned.
550  */
vmw_bo_sg_table(struct ttm_buffer_object * bo)551 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
552 {
553 	struct vmw_ttm_tt *vmw_tt =
554 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
555 
556 	return &vmw_tt->vsgt;
557 }
558 
559 
vmw_ttm_bind(struct ttm_tt * ttm,struct ttm_mem_reg * bo_mem)560 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
561 {
562 	struct vmw_ttm_tt *vmw_be =
563 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
564 	int ret;
565 
566 	ret = vmw_ttm_map_dma(vmw_be);
567 	if (unlikely(ret != 0))
568 		return ret;
569 
570 	vmw_be->gmr_id = bo_mem->start;
571 	vmw_be->mem_type = bo_mem->mem_type;
572 
573 	switch (bo_mem->mem_type) {
574 	case VMW_PL_GMR:
575 		return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
576 				    ttm->num_pages, vmw_be->gmr_id);
577 	case VMW_PL_MOB:
578 		if (unlikely(vmw_be->mob == NULL)) {
579 			vmw_be->mob =
580 				vmw_mob_create(ttm->num_pages);
581 			if (unlikely(vmw_be->mob == NULL))
582 				return -ENOMEM;
583 		}
584 
585 		return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
586 				    &vmw_be->vsgt, ttm->num_pages,
587 				    vmw_be->gmr_id);
588 	default:
589 		BUG();
590 	}
591 	return 0;
592 }
593 
vmw_ttm_unbind(struct ttm_tt * ttm)594 static int vmw_ttm_unbind(struct ttm_tt *ttm)
595 {
596 	struct vmw_ttm_tt *vmw_be =
597 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
598 
599 	switch (vmw_be->mem_type) {
600 	case VMW_PL_GMR:
601 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
602 		break;
603 	case VMW_PL_MOB:
604 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
605 		break;
606 	default:
607 		BUG();
608 	}
609 
610 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
611 		vmw_ttm_unmap_dma(vmw_be);
612 
613 	return 0;
614 }
615 
616 
vmw_ttm_destroy(struct ttm_tt * ttm)617 static void vmw_ttm_destroy(struct ttm_tt *ttm)
618 {
619 	struct vmw_ttm_tt *vmw_be =
620 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
621 
622 	vmw_ttm_unmap_dma(vmw_be);
623 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
624 		ttm_dma_tt_fini(&vmw_be->dma_ttm);
625 	else
626 		ttm_tt_fini(ttm);
627 
628 	if (vmw_be->mob)
629 		vmw_mob_destroy(vmw_be->mob);
630 
631 	kfree(vmw_be);
632 }
633 
634 
vmw_ttm_populate(struct ttm_tt * ttm)635 static int vmw_ttm_populate(struct ttm_tt *ttm)
636 {
637 	struct vmw_ttm_tt *vmw_tt =
638 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
639 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
640 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
641 	int ret;
642 
643 	if (ttm->state != tt_unpopulated)
644 		return 0;
645 
646 	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
647 		size_t size =
648 			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
649 		ret = ttm_mem_global_alloc(glob, size, false, true);
650 		if (unlikely(ret != 0))
651 			return ret;
652 
653 		ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
654 		if (unlikely(ret != 0))
655 			ttm_mem_global_free(glob, size);
656 	} else
657 		ret = ttm_pool_populate(ttm);
658 
659 	return ret;
660 }
661 
vmw_ttm_unpopulate(struct ttm_tt * ttm)662 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
663 {
664 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
665 						 dma_ttm.ttm);
666 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
667 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
668 
669 
670 	if (vmw_tt->mob) {
671 		vmw_mob_destroy(vmw_tt->mob);
672 		vmw_tt->mob = NULL;
673 	}
674 
675 	vmw_ttm_unmap_dma(vmw_tt);
676 	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
677 		size_t size =
678 			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
679 
680 		ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
681 		ttm_mem_global_free(glob, size);
682 	} else
683 		ttm_pool_unpopulate(ttm);
684 }
685 
686 static struct ttm_backend_func vmw_ttm_func = {
687 	.bind = vmw_ttm_bind,
688 	.unbind = vmw_ttm_unbind,
689 	.destroy = vmw_ttm_destroy,
690 };
691 
vmw_ttm_tt_create(struct ttm_bo_device * bdev,unsigned long size,uint32_t page_flags,struct page * dummy_read_page)692 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
693 				 unsigned long size, uint32_t page_flags,
694 				 struct page *dummy_read_page)
695 {
696 	struct vmw_ttm_tt *vmw_be;
697 	int ret;
698 
699 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
700 	if (!vmw_be)
701 		return NULL;
702 
703 	vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
704 	vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
705 	vmw_be->mob = NULL;
706 
707 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
708 		ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
709 				      dummy_read_page);
710 	else
711 		ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
712 				  dummy_read_page);
713 	if (unlikely(ret != 0))
714 		goto out_no_init;
715 
716 	return &vmw_be->dma_ttm.ttm;
717 out_no_init:
718 	kfree(vmw_be);
719 	return NULL;
720 }
721 
vmw_invalidate_caches(struct ttm_bo_device * bdev,uint32_t flags)722 static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
723 {
724 	return 0;
725 }
726 
vmw_init_mem_type(struct ttm_bo_device * bdev,uint32_t type,struct ttm_mem_type_manager * man)727 static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
728 		      struct ttm_mem_type_manager *man)
729 {
730 	switch (type) {
731 	case TTM_PL_SYSTEM:
732 		/* System memory */
733 
734 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
735 		man->available_caching = TTM_PL_FLAG_CACHED;
736 		man->default_caching = TTM_PL_FLAG_CACHED;
737 		break;
738 	case TTM_PL_VRAM:
739 		/* "On-card" video ram */
740 		man->func = &ttm_bo_manager_func;
741 		man->gpu_offset = 0;
742 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
743 		man->available_caching = TTM_PL_FLAG_CACHED;
744 		man->default_caching = TTM_PL_FLAG_CACHED;
745 		break;
746 	case VMW_PL_GMR:
747 	case VMW_PL_MOB:
748 		/*
749 		 * "Guest Memory Regions" is an aperture like feature with
750 		 *  one slot per bo. There is an upper limit of the number of
751 		 *  slots as well as the bo size.
752 		 */
753 		man->func = &vmw_gmrid_manager_func;
754 		man->gpu_offset = 0;
755 		man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
756 		man->available_caching = TTM_PL_FLAG_CACHED;
757 		man->default_caching = TTM_PL_FLAG_CACHED;
758 		break;
759 	default:
760 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
761 		return -EINVAL;
762 	}
763 	return 0;
764 }
765 
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)766 static void vmw_evict_flags(struct ttm_buffer_object *bo,
767 		     struct ttm_placement *placement)
768 {
769 	*placement = vmw_sys_placement;
770 }
771 
vmw_verify_access(struct ttm_buffer_object * bo,struct file * filp)772 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
773 {
774 	struct ttm_object_file *tfile =
775 		vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
776 
777 	return vmw_user_dmabuf_verify_access(bo, tfile);
778 }
779 
vmw_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)780 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
781 {
782 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
783 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
784 
785 	mem->bus.addr = NULL;
786 	mem->bus.is_iomem = false;
787 	mem->bus.offset = 0;
788 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
789 	mem->bus.base = 0;
790 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
791 		return -EINVAL;
792 	switch (mem->mem_type) {
793 	case TTM_PL_SYSTEM:
794 	case VMW_PL_GMR:
795 	case VMW_PL_MOB:
796 		return 0;
797 	case TTM_PL_VRAM:
798 		mem->bus.offset = mem->start << PAGE_SHIFT;
799 		mem->bus.base = dev_priv->vram_start;
800 		mem->bus.is_iomem = true;
801 		break;
802 	default:
803 		return -EINVAL;
804 	}
805 	return 0;
806 }
807 
vmw_ttm_io_mem_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)808 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
809 {
810 }
811 
vmw_ttm_fault_reserve_notify(struct ttm_buffer_object * bo)812 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
813 {
814 	return 0;
815 }
816 
817 /**
818  * vmw_move_notify - TTM move_notify_callback
819  *
820  * @bo: The TTM buffer object about to move.
821  * @mem: The struct ttm_mem_reg indicating to what memory
822  *       region the move is taking place.
823  *
824  * Calls move_notify for all subsystems needing it.
825  * (currently only resources).
826  */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)827 static void vmw_move_notify(struct ttm_buffer_object *bo,
828 			    struct ttm_mem_reg *mem)
829 {
830 	vmw_resource_move_notify(bo, mem);
831 	vmw_query_move_notify(bo, mem);
832 }
833 
834 
835 /**
836  * vmw_swap_notify - TTM move_notify_callback
837  *
838  * @bo: The TTM buffer object about to be swapped out.
839  */
vmw_swap_notify(struct ttm_buffer_object * bo)840 static void vmw_swap_notify(struct ttm_buffer_object *bo)
841 {
842 	ttm_bo_wait(bo, false, false, false);
843 }
844 
845 
846 struct ttm_bo_driver vmw_bo_driver = {
847 	.ttm_tt_create = &vmw_ttm_tt_create,
848 	.ttm_tt_populate = &vmw_ttm_populate,
849 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
850 	.invalidate_caches = vmw_invalidate_caches,
851 	.init_mem_type = vmw_init_mem_type,
852 	.evict_flags = vmw_evict_flags,
853 	.move = NULL,
854 	.verify_access = vmw_verify_access,
855 	.move_notify = vmw_move_notify,
856 	.swap_notify = vmw_swap_notify,
857 	.fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
858 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
859 	.io_mem_free = &vmw_ttm_io_mem_free,
860 };
861