1 /*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/leds.h>
37
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/input.h>
42 #include <linux/reboot.h>
43 #include <linux/notifier.h>
44 #include <linux/jiffies.h>
45 #include <linux/uaccess.h>
46
47 #include <asm/irq_regs.h>
48
49 extern void ctrl_alt_del(void);
50
51 /*
52 * Exported functions/variables
53 */
54
55 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
56
57 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
58 #include <asm/kbdleds.h>
59 #else
kbd_defleds(void)60 static inline int kbd_defleds(void)
61 {
62 return 0;
63 }
64 #endif
65
66 #define KBD_DEFLOCK 0
67
68 /*
69 * Handler Tables.
70 */
71
72 #define K_HANDLERS\
73 k_self, k_fn, k_spec, k_pad,\
74 k_dead, k_cons, k_cur, k_shift,\
75 k_meta, k_ascii, k_lock, k_lowercase,\
76 k_slock, k_dead2, k_brl, k_ignore
77
78 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
79 char up_flag);
80 static k_handler_fn K_HANDLERS;
81 static k_handler_fn *k_handler[16] = { K_HANDLERS };
82
83 #define FN_HANDLERS\
84 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
85 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
86 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
87 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
88 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
89
90 typedef void (fn_handler_fn)(struct vc_data *vc);
91 static fn_handler_fn FN_HANDLERS;
92 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
93
94 /*
95 * Variables exported for vt_ioctl.c
96 */
97
98 struct vt_spawn_console vt_spawn_con = {
99 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
100 .pid = NULL,
101 .sig = 0,
102 };
103
104
105 /*
106 * Internal Data.
107 */
108
109 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
110 static struct kbd_struct *kbd = kbd_table;
111
112 /* maximum values each key_handler can handle */
113 static const int max_vals[] = {
114 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
115 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
116 255, NR_LOCK - 1, 255, NR_BRL - 1
117 };
118
119 static const int NR_TYPES = ARRAY_SIZE(max_vals);
120
121 static struct input_handler kbd_handler;
122 static DEFINE_SPINLOCK(kbd_event_lock);
123 static DEFINE_SPINLOCK(led_lock);
124 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
125 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
126 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
127 static bool dead_key_next;
128
129 /* Handles a number being assembled on the number pad */
130 static bool npadch_active;
131 static unsigned int npadch_value;
132
133 static unsigned int diacr;
134 static char rep; /* flag telling character repeat */
135
136 static int shift_state = 0;
137
138 static unsigned int ledstate = -1U; /* undefined */
139 static unsigned char ledioctl;
140
141 /*
142 * Notifier list for console keyboard events
143 */
144 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
145
register_keyboard_notifier(struct notifier_block * nb)146 int register_keyboard_notifier(struct notifier_block *nb)
147 {
148 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
149 }
150 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
151
unregister_keyboard_notifier(struct notifier_block * nb)152 int unregister_keyboard_notifier(struct notifier_block *nb)
153 {
154 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
155 }
156 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
157
158 /*
159 * Translation of scancodes to keycodes. We set them on only the first
160 * keyboard in the list that accepts the scancode and keycode.
161 * Explanation for not choosing the first attached keyboard anymore:
162 * USB keyboards for example have two event devices: one for all "normal"
163 * keys and one for extra function keys (like "volume up", "make coffee",
164 * etc.). So this means that scancodes for the extra function keys won't
165 * be valid for the first event device, but will be for the second.
166 */
167
168 struct getset_keycode_data {
169 struct input_keymap_entry ke;
170 int error;
171 };
172
getkeycode_helper(struct input_handle * handle,void * data)173 static int getkeycode_helper(struct input_handle *handle, void *data)
174 {
175 struct getset_keycode_data *d = data;
176
177 d->error = input_get_keycode(handle->dev, &d->ke);
178
179 return d->error == 0; /* stop as soon as we successfully get one */
180 }
181
getkeycode(unsigned int scancode)182 static int getkeycode(unsigned int scancode)
183 {
184 struct getset_keycode_data d = {
185 .ke = {
186 .flags = 0,
187 .len = sizeof(scancode),
188 .keycode = 0,
189 },
190 .error = -ENODEV,
191 };
192
193 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
194
195 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
196
197 return d.error ?: d.ke.keycode;
198 }
199
setkeycode_helper(struct input_handle * handle,void * data)200 static int setkeycode_helper(struct input_handle *handle, void *data)
201 {
202 struct getset_keycode_data *d = data;
203
204 d->error = input_set_keycode(handle->dev, &d->ke);
205
206 return d->error == 0; /* stop as soon as we successfully set one */
207 }
208
setkeycode(unsigned int scancode,unsigned int keycode)209 static int setkeycode(unsigned int scancode, unsigned int keycode)
210 {
211 struct getset_keycode_data d = {
212 .ke = {
213 .flags = 0,
214 .len = sizeof(scancode),
215 .keycode = keycode,
216 },
217 .error = -ENODEV,
218 };
219
220 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
221
222 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
223
224 return d.error;
225 }
226
227 /*
228 * Making beeps and bells. Note that we prefer beeps to bells, but when
229 * shutting the sound off we do both.
230 */
231
kd_sound_helper(struct input_handle * handle,void * data)232 static int kd_sound_helper(struct input_handle *handle, void *data)
233 {
234 unsigned int *hz = data;
235 struct input_dev *dev = handle->dev;
236
237 if (test_bit(EV_SND, dev->evbit)) {
238 if (test_bit(SND_TONE, dev->sndbit)) {
239 input_inject_event(handle, EV_SND, SND_TONE, *hz);
240 if (*hz)
241 return 0;
242 }
243 if (test_bit(SND_BELL, dev->sndbit))
244 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
245 }
246
247 return 0;
248 }
249
kd_nosound(unsigned long ignored)250 static void kd_nosound(unsigned long ignored)
251 {
252 static unsigned int zero;
253
254 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
255 }
256
257 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
258
kd_mksound(unsigned int hz,unsigned int ticks)259 void kd_mksound(unsigned int hz, unsigned int ticks)
260 {
261 del_timer_sync(&kd_mksound_timer);
262
263 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
264
265 if (hz && ticks)
266 mod_timer(&kd_mksound_timer, jiffies + ticks);
267 }
268 EXPORT_SYMBOL(kd_mksound);
269
270 /*
271 * Setting the keyboard rate.
272 */
273
kbd_rate_helper(struct input_handle * handle,void * data)274 static int kbd_rate_helper(struct input_handle *handle, void *data)
275 {
276 struct input_dev *dev = handle->dev;
277 struct kbd_repeat *rpt = data;
278
279 if (test_bit(EV_REP, dev->evbit)) {
280
281 if (rpt[0].delay > 0)
282 input_inject_event(handle,
283 EV_REP, REP_DELAY, rpt[0].delay);
284 if (rpt[0].period > 0)
285 input_inject_event(handle,
286 EV_REP, REP_PERIOD, rpt[0].period);
287
288 rpt[1].delay = dev->rep[REP_DELAY];
289 rpt[1].period = dev->rep[REP_PERIOD];
290 }
291
292 return 0;
293 }
294
kbd_rate(struct kbd_repeat * rpt)295 int kbd_rate(struct kbd_repeat *rpt)
296 {
297 struct kbd_repeat data[2] = { *rpt };
298
299 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
300 *rpt = data[1]; /* Copy currently used settings */
301
302 return 0;
303 }
304
305 /*
306 * Helper Functions.
307 */
put_queue(struct vc_data * vc,int ch)308 static void put_queue(struct vc_data *vc, int ch)
309 {
310 tty_insert_flip_char(&vc->port, ch, 0);
311 tty_schedule_flip(&vc->port);
312 }
313
puts_queue(struct vc_data * vc,char * cp)314 static void puts_queue(struct vc_data *vc, char *cp)
315 {
316 while (*cp) {
317 tty_insert_flip_char(&vc->port, *cp, 0);
318 cp++;
319 }
320 tty_schedule_flip(&vc->port);
321 }
322
applkey(struct vc_data * vc,int key,char mode)323 static void applkey(struct vc_data *vc, int key, char mode)
324 {
325 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
326
327 buf[1] = (mode ? 'O' : '[');
328 buf[2] = key;
329 puts_queue(vc, buf);
330 }
331
332 /*
333 * Many other routines do put_queue, but I think either
334 * they produce ASCII, or they produce some user-assigned
335 * string, and in both cases we might assume that it is
336 * in utf-8 already.
337 */
to_utf8(struct vc_data * vc,uint c)338 static void to_utf8(struct vc_data *vc, uint c)
339 {
340 if (c < 0x80)
341 /* 0******* */
342 put_queue(vc, c);
343 else if (c < 0x800) {
344 /* 110***** 10****** */
345 put_queue(vc, 0xc0 | (c >> 6));
346 put_queue(vc, 0x80 | (c & 0x3f));
347 } else if (c < 0x10000) {
348 if (c >= 0xD800 && c < 0xE000)
349 return;
350 if (c == 0xFFFF)
351 return;
352 /* 1110**** 10****** 10****** */
353 put_queue(vc, 0xe0 | (c >> 12));
354 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
355 put_queue(vc, 0x80 | (c & 0x3f));
356 } else if (c < 0x110000) {
357 /* 11110*** 10****** 10****** 10****** */
358 put_queue(vc, 0xf0 | (c >> 18));
359 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
360 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
361 put_queue(vc, 0x80 | (c & 0x3f));
362 }
363 }
364
365 /*
366 * Called after returning from RAW mode or when changing consoles - recompute
367 * shift_down[] and shift_state from key_down[] maybe called when keymap is
368 * undefined, so that shiftkey release is seen. The caller must hold the
369 * kbd_event_lock.
370 */
371
do_compute_shiftstate(void)372 static void do_compute_shiftstate(void)
373 {
374 unsigned int k, sym, val;
375
376 shift_state = 0;
377 memset(shift_down, 0, sizeof(shift_down));
378
379 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
380 sym = U(key_maps[0][k]);
381 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
382 continue;
383
384 val = KVAL(sym);
385 if (val == KVAL(K_CAPSSHIFT))
386 val = KVAL(K_SHIFT);
387
388 shift_down[val]++;
389 shift_state |= BIT(val);
390 }
391 }
392
393 /* We still have to export this method to vt.c */
compute_shiftstate(void)394 void compute_shiftstate(void)
395 {
396 unsigned long flags;
397 spin_lock_irqsave(&kbd_event_lock, flags);
398 do_compute_shiftstate();
399 spin_unlock_irqrestore(&kbd_event_lock, flags);
400 }
401
402 /*
403 * We have a combining character DIACR here, followed by the character CH.
404 * If the combination occurs in the table, return the corresponding value.
405 * Otherwise, if CH is a space or equals DIACR, return DIACR.
406 * Otherwise, conclude that DIACR was not combining after all,
407 * queue it and return CH.
408 */
handle_diacr(struct vc_data * vc,unsigned int ch)409 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
410 {
411 unsigned int d = diacr;
412 unsigned int i;
413
414 diacr = 0;
415
416 if ((d & ~0xff) == BRL_UC_ROW) {
417 if ((ch & ~0xff) == BRL_UC_ROW)
418 return d | ch;
419 } else {
420 for (i = 0; i < accent_table_size; i++)
421 if (accent_table[i].diacr == d && accent_table[i].base == ch)
422 return accent_table[i].result;
423 }
424
425 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
426 return d;
427
428 if (kbd->kbdmode == VC_UNICODE)
429 to_utf8(vc, d);
430 else {
431 int c = conv_uni_to_8bit(d);
432 if (c != -1)
433 put_queue(vc, c);
434 }
435
436 return ch;
437 }
438
439 /*
440 * Special function handlers
441 */
fn_enter(struct vc_data * vc)442 static void fn_enter(struct vc_data *vc)
443 {
444 if (diacr) {
445 if (kbd->kbdmode == VC_UNICODE)
446 to_utf8(vc, diacr);
447 else {
448 int c = conv_uni_to_8bit(diacr);
449 if (c != -1)
450 put_queue(vc, c);
451 }
452 diacr = 0;
453 }
454
455 put_queue(vc, 13);
456 if (vc_kbd_mode(kbd, VC_CRLF))
457 put_queue(vc, 10);
458 }
459
fn_caps_toggle(struct vc_data * vc)460 static void fn_caps_toggle(struct vc_data *vc)
461 {
462 if (rep)
463 return;
464
465 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
466 }
467
fn_caps_on(struct vc_data * vc)468 static void fn_caps_on(struct vc_data *vc)
469 {
470 if (rep)
471 return;
472
473 set_vc_kbd_led(kbd, VC_CAPSLOCK);
474 }
475
fn_show_ptregs(struct vc_data * vc)476 static void fn_show_ptregs(struct vc_data *vc)
477 {
478 struct pt_regs *regs = get_irq_regs();
479
480 if (regs)
481 show_regs(regs);
482 }
483
fn_hold(struct vc_data * vc)484 static void fn_hold(struct vc_data *vc)
485 {
486 struct tty_struct *tty = vc->port.tty;
487
488 if (rep || !tty)
489 return;
490
491 /*
492 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
493 * these routines are also activated by ^S/^Q.
494 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
495 */
496 if (tty->stopped)
497 start_tty(tty);
498 else
499 stop_tty(tty);
500 }
501
fn_num(struct vc_data * vc)502 static void fn_num(struct vc_data *vc)
503 {
504 if (vc_kbd_mode(kbd, VC_APPLIC))
505 applkey(vc, 'P', 1);
506 else
507 fn_bare_num(vc);
508 }
509
510 /*
511 * Bind this to Shift-NumLock if you work in application keypad mode
512 * but want to be able to change the NumLock flag.
513 * Bind this to NumLock if you prefer that the NumLock key always
514 * changes the NumLock flag.
515 */
fn_bare_num(struct vc_data * vc)516 static void fn_bare_num(struct vc_data *vc)
517 {
518 if (!rep)
519 chg_vc_kbd_led(kbd, VC_NUMLOCK);
520 }
521
fn_lastcons(struct vc_data * vc)522 static void fn_lastcons(struct vc_data *vc)
523 {
524 /* switch to the last used console, ChN */
525 set_console(last_console);
526 }
527
fn_dec_console(struct vc_data * vc)528 static void fn_dec_console(struct vc_data *vc)
529 {
530 int i, cur = fg_console;
531
532 /* Currently switching? Queue this next switch relative to that. */
533 if (want_console != -1)
534 cur = want_console;
535
536 for (i = cur - 1; i != cur; i--) {
537 if (i == -1)
538 i = MAX_NR_CONSOLES - 1;
539 if (vc_cons_allocated(i))
540 break;
541 }
542 set_console(i);
543 }
544
fn_inc_console(struct vc_data * vc)545 static void fn_inc_console(struct vc_data *vc)
546 {
547 int i, cur = fg_console;
548
549 /* Currently switching? Queue this next switch relative to that. */
550 if (want_console != -1)
551 cur = want_console;
552
553 for (i = cur+1; i != cur; i++) {
554 if (i == MAX_NR_CONSOLES)
555 i = 0;
556 if (vc_cons_allocated(i))
557 break;
558 }
559 set_console(i);
560 }
561
fn_send_intr(struct vc_data * vc)562 static void fn_send_intr(struct vc_data *vc)
563 {
564 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
565 tty_schedule_flip(&vc->port);
566 }
567
fn_scroll_forw(struct vc_data * vc)568 static void fn_scroll_forw(struct vc_data *vc)
569 {
570 scrollfront(vc, 0);
571 }
572
fn_scroll_back(struct vc_data * vc)573 static void fn_scroll_back(struct vc_data *vc)
574 {
575 scrollback(vc, 0);
576 }
577
fn_show_mem(struct vc_data * vc)578 static void fn_show_mem(struct vc_data *vc)
579 {
580 show_mem(0);
581 }
582
fn_show_state(struct vc_data * vc)583 static void fn_show_state(struct vc_data *vc)
584 {
585 show_state();
586 }
587
fn_boot_it(struct vc_data * vc)588 static void fn_boot_it(struct vc_data *vc)
589 {
590 ctrl_alt_del();
591 }
592
fn_compose(struct vc_data * vc)593 static void fn_compose(struct vc_data *vc)
594 {
595 dead_key_next = true;
596 }
597
fn_spawn_con(struct vc_data * vc)598 static void fn_spawn_con(struct vc_data *vc)
599 {
600 spin_lock(&vt_spawn_con.lock);
601 if (vt_spawn_con.pid)
602 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
603 put_pid(vt_spawn_con.pid);
604 vt_spawn_con.pid = NULL;
605 }
606 spin_unlock(&vt_spawn_con.lock);
607 }
608
fn_SAK(struct vc_data * vc)609 static void fn_SAK(struct vc_data *vc)
610 {
611 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
612 schedule_work(SAK_work);
613 }
614
fn_null(struct vc_data * vc)615 static void fn_null(struct vc_data *vc)
616 {
617 do_compute_shiftstate();
618 }
619
620 /*
621 * Special key handlers
622 */
k_ignore(struct vc_data * vc,unsigned char value,char up_flag)623 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
624 {
625 }
626
k_spec(struct vc_data * vc,unsigned char value,char up_flag)627 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
628 {
629 if (up_flag)
630 return;
631 if (value >= ARRAY_SIZE(fn_handler))
632 return;
633 if ((kbd->kbdmode == VC_RAW ||
634 kbd->kbdmode == VC_MEDIUMRAW ||
635 kbd->kbdmode == VC_OFF) &&
636 value != KVAL(K_SAK))
637 return; /* SAK is allowed even in raw mode */
638 fn_handler[value](vc);
639 }
640
k_lowercase(struct vc_data * vc,unsigned char value,char up_flag)641 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
642 {
643 pr_err("k_lowercase was called - impossible\n");
644 }
645
k_unicode(struct vc_data * vc,unsigned int value,char up_flag)646 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
647 {
648 if (up_flag)
649 return; /* no action, if this is a key release */
650
651 if (diacr)
652 value = handle_diacr(vc, value);
653
654 if (dead_key_next) {
655 dead_key_next = false;
656 diacr = value;
657 return;
658 }
659 if (kbd->kbdmode == VC_UNICODE)
660 to_utf8(vc, value);
661 else {
662 int c = conv_uni_to_8bit(value);
663 if (c != -1)
664 put_queue(vc, c);
665 }
666 }
667
668 /*
669 * Handle dead key. Note that we now may have several
670 * dead keys modifying the same character. Very useful
671 * for Vietnamese.
672 */
k_deadunicode(struct vc_data * vc,unsigned int value,char up_flag)673 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
674 {
675 if (up_flag)
676 return;
677
678 diacr = (diacr ? handle_diacr(vc, value) : value);
679 }
680
k_self(struct vc_data * vc,unsigned char value,char up_flag)681 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
682 {
683 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
684 }
685
k_dead2(struct vc_data * vc,unsigned char value,char up_flag)686 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
687 {
688 k_deadunicode(vc, value, up_flag);
689 }
690
691 /*
692 * Obsolete - for backwards compatibility only
693 */
k_dead(struct vc_data * vc,unsigned char value,char up_flag)694 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
695 {
696 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
697
698 k_deadunicode(vc, ret_diacr[value], up_flag);
699 }
700
k_cons(struct vc_data * vc,unsigned char value,char up_flag)701 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
702 {
703 if (up_flag)
704 return;
705
706 set_console(value);
707 }
708
k_fn(struct vc_data * vc,unsigned char value,char up_flag)709 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
710 {
711 if (up_flag)
712 return;
713
714 if ((unsigned)value < ARRAY_SIZE(func_table)) {
715 unsigned long flags;
716
717 spin_lock_irqsave(&func_buf_lock, flags);
718 if (func_table[value])
719 puts_queue(vc, func_table[value]);
720 spin_unlock_irqrestore(&func_buf_lock, flags);
721
722 } else
723 pr_err("k_fn called with value=%d\n", value);
724 }
725
k_cur(struct vc_data * vc,unsigned char value,char up_flag)726 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
727 {
728 static const char cur_chars[] = "BDCA";
729
730 if (up_flag)
731 return;
732
733 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
734 }
735
k_pad(struct vc_data * vc,unsigned char value,char up_flag)736 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
737 {
738 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
739 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
740
741 if (up_flag)
742 return; /* no action, if this is a key release */
743
744 /* kludge... shift forces cursor/number keys */
745 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
746 applkey(vc, app_map[value], 1);
747 return;
748 }
749
750 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
751
752 switch (value) {
753 case KVAL(K_PCOMMA):
754 case KVAL(K_PDOT):
755 k_fn(vc, KVAL(K_REMOVE), 0);
756 return;
757 case KVAL(K_P0):
758 k_fn(vc, KVAL(K_INSERT), 0);
759 return;
760 case KVAL(K_P1):
761 k_fn(vc, KVAL(K_SELECT), 0);
762 return;
763 case KVAL(K_P2):
764 k_cur(vc, KVAL(K_DOWN), 0);
765 return;
766 case KVAL(K_P3):
767 k_fn(vc, KVAL(K_PGDN), 0);
768 return;
769 case KVAL(K_P4):
770 k_cur(vc, KVAL(K_LEFT), 0);
771 return;
772 case KVAL(K_P6):
773 k_cur(vc, KVAL(K_RIGHT), 0);
774 return;
775 case KVAL(K_P7):
776 k_fn(vc, KVAL(K_FIND), 0);
777 return;
778 case KVAL(K_P8):
779 k_cur(vc, KVAL(K_UP), 0);
780 return;
781 case KVAL(K_P9):
782 k_fn(vc, KVAL(K_PGUP), 0);
783 return;
784 case KVAL(K_P5):
785 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
786 return;
787 }
788 }
789
790 put_queue(vc, pad_chars[value]);
791 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
792 put_queue(vc, 10);
793 }
794
k_shift(struct vc_data * vc,unsigned char value,char up_flag)795 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
796 {
797 int old_state = shift_state;
798
799 if (rep)
800 return;
801 /*
802 * Mimic typewriter:
803 * a CapsShift key acts like Shift but undoes CapsLock
804 */
805 if (value == KVAL(K_CAPSSHIFT)) {
806 value = KVAL(K_SHIFT);
807 if (!up_flag)
808 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
809 }
810
811 if (up_flag) {
812 /*
813 * handle the case that two shift or control
814 * keys are depressed simultaneously
815 */
816 if (shift_down[value])
817 shift_down[value]--;
818 } else
819 shift_down[value]++;
820
821 if (shift_down[value])
822 shift_state |= (1 << value);
823 else
824 shift_state &= ~(1 << value);
825
826 /* kludge */
827 if (up_flag && shift_state != old_state && npadch_active) {
828 if (kbd->kbdmode == VC_UNICODE)
829 to_utf8(vc, npadch_value);
830 else
831 put_queue(vc, npadch_value & 0xff);
832 npadch_active = false;
833 }
834 }
835
k_meta(struct vc_data * vc,unsigned char value,char up_flag)836 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
837 {
838 if (up_flag)
839 return;
840
841 if (vc_kbd_mode(kbd, VC_META)) {
842 put_queue(vc, '\033');
843 put_queue(vc, value);
844 } else
845 put_queue(vc, value | 0x80);
846 }
847
k_ascii(struct vc_data * vc,unsigned char value,char up_flag)848 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
849 {
850 unsigned int base;
851
852 if (up_flag)
853 return;
854
855 if (value < 10) {
856 /* decimal input of code, while Alt depressed */
857 base = 10;
858 } else {
859 /* hexadecimal input of code, while AltGr depressed */
860 value -= 10;
861 base = 16;
862 }
863
864 if (!npadch_active) {
865 npadch_value = 0;
866 npadch_active = true;
867 }
868
869 npadch_value = npadch_value * base + value;
870 }
871
k_lock(struct vc_data * vc,unsigned char value,char up_flag)872 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
873 {
874 if (up_flag || rep)
875 return;
876
877 chg_vc_kbd_lock(kbd, value);
878 }
879
k_slock(struct vc_data * vc,unsigned char value,char up_flag)880 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
881 {
882 k_shift(vc, value, up_flag);
883 if (up_flag || rep)
884 return;
885
886 chg_vc_kbd_slock(kbd, value);
887 /* try to make Alt, oops, AltGr and such work */
888 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
889 kbd->slockstate = 0;
890 chg_vc_kbd_slock(kbd, value);
891 }
892 }
893
894 /* by default, 300ms interval for combination release */
895 static unsigned brl_timeout = 300;
896 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
897 module_param(brl_timeout, uint, 0644);
898
899 static unsigned brl_nbchords = 1;
900 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
901 module_param(brl_nbchords, uint, 0644);
902
k_brlcommit(struct vc_data * vc,unsigned int pattern,char up_flag)903 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
904 {
905 static unsigned long chords;
906 static unsigned committed;
907
908 if (!brl_nbchords)
909 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
910 else {
911 committed |= pattern;
912 chords++;
913 if (chords == brl_nbchords) {
914 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
915 chords = 0;
916 committed = 0;
917 }
918 }
919 }
920
k_brl(struct vc_data * vc,unsigned char value,char up_flag)921 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
922 {
923 static unsigned pressed, committing;
924 static unsigned long releasestart;
925
926 if (kbd->kbdmode != VC_UNICODE) {
927 if (!up_flag)
928 pr_warn("keyboard mode must be unicode for braille patterns\n");
929 return;
930 }
931
932 if (!value) {
933 k_unicode(vc, BRL_UC_ROW, up_flag);
934 return;
935 }
936
937 if (value > 8)
938 return;
939
940 if (!up_flag) {
941 pressed |= 1 << (value - 1);
942 if (!brl_timeout)
943 committing = pressed;
944 } else if (brl_timeout) {
945 if (!committing ||
946 time_after(jiffies,
947 releasestart + msecs_to_jiffies(brl_timeout))) {
948 committing = pressed;
949 releasestart = jiffies;
950 }
951 pressed &= ~(1 << (value - 1));
952 if (!pressed && committing) {
953 k_brlcommit(vc, committing, 0);
954 committing = 0;
955 }
956 } else {
957 if (committing) {
958 k_brlcommit(vc, committing, 0);
959 committing = 0;
960 }
961 pressed &= ~(1 << (value - 1));
962 }
963 }
964
965 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
966
967 struct kbd_led_trigger {
968 struct led_trigger trigger;
969 unsigned int mask;
970 };
971
kbd_led_trigger_activate(struct led_classdev * cdev)972 static void kbd_led_trigger_activate(struct led_classdev *cdev)
973 {
974 struct kbd_led_trigger *trigger =
975 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
976
977 tasklet_disable(&keyboard_tasklet);
978 if (ledstate != -1U)
979 led_trigger_event(&trigger->trigger,
980 ledstate & trigger->mask ?
981 LED_FULL : LED_OFF);
982 tasklet_enable(&keyboard_tasklet);
983 }
984
985 #define KBD_LED_TRIGGER(_led_bit, _name) { \
986 .trigger = { \
987 .name = _name, \
988 .activate = kbd_led_trigger_activate, \
989 }, \
990 .mask = BIT(_led_bit), \
991 }
992
993 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
994 KBD_LED_TRIGGER((_led_bit) + 8, _name)
995
996 static struct kbd_led_trigger kbd_led_triggers[] = {
997 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
998 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
999 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1000 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1001
1002 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1003 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1004 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1005 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1006 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1007 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1008 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1009 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1010 };
1011
kbd_propagate_led_state(unsigned int old_state,unsigned int new_state)1012 static void kbd_propagate_led_state(unsigned int old_state,
1013 unsigned int new_state)
1014 {
1015 struct kbd_led_trigger *trigger;
1016 unsigned int changed = old_state ^ new_state;
1017 int i;
1018
1019 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1020 trigger = &kbd_led_triggers[i];
1021
1022 if (changed & trigger->mask)
1023 led_trigger_event(&trigger->trigger,
1024 new_state & trigger->mask ?
1025 LED_FULL : LED_OFF);
1026 }
1027 }
1028
kbd_update_leds_helper(struct input_handle * handle,void * data)1029 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030 {
1031 unsigned int led_state = *(unsigned int *)data;
1032
1033 if (test_bit(EV_LED, handle->dev->evbit))
1034 kbd_propagate_led_state(~led_state, led_state);
1035
1036 return 0;
1037 }
1038
kbd_init_leds(void)1039 static void kbd_init_leds(void)
1040 {
1041 int error;
1042 int i;
1043
1044 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1045 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1046 if (error)
1047 pr_err("error %d while registering trigger %s\n",
1048 error, kbd_led_triggers[i].trigger.name);
1049 }
1050 }
1051
1052 #else
1053
kbd_update_leds_helper(struct input_handle * handle,void * data)1054 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1055 {
1056 unsigned int leds = *(unsigned int *)data;
1057
1058 if (test_bit(EV_LED, handle->dev->evbit)) {
1059 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1060 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1061 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1062 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1063 }
1064
1065 return 0;
1066 }
1067
kbd_propagate_led_state(unsigned int old_state,unsigned int new_state)1068 static void kbd_propagate_led_state(unsigned int old_state,
1069 unsigned int new_state)
1070 {
1071 input_handler_for_each_handle(&kbd_handler, &new_state,
1072 kbd_update_leds_helper);
1073 }
1074
kbd_init_leds(void)1075 static void kbd_init_leds(void)
1076 {
1077 }
1078
1079 #endif
1080
1081 /*
1082 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1083 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1084 * or (iii) specified bits of specified words in kernel memory.
1085 */
getledstate(void)1086 static unsigned char getledstate(void)
1087 {
1088 return ledstate & 0xff;
1089 }
1090
setledstate(struct kbd_struct * kb,unsigned int led)1091 void setledstate(struct kbd_struct *kb, unsigned int led)
1092 {
1093 unsigned long flags;
1094 spin_lock_irqsave(&led_lock, flags);
1095 if (!(led & ~7)) {
1096 ledioctl = led;
1097 kb->ledmode = LED_SHOW_IOCTL;
1098 } else
1099 kb->ledmode = LED_SHOW_FLAGS;
1100
1101 set_leds();
1102 spin_unlock_irqrestore(&led_lock, flags);
1103 }
1104
getleds(void)1105 static inline unsigned char getleds(void)
1106 {
1107 struct kbd_struct *kb = kbd_table + fg_console;
1108
1109 if (kb->ledmode == LED_SHOW_IOCTL)
1110 return ledioctl;
1111
1112 return kb->ledflagstate;
1113 }
1114
1115 /**
1116 * vt_get_leds - helper for braille console
1117 * @console: console to read
1118 * @flag: flag we want to check
1119 *
1120 * Check the status of a keyboard led flag and report it back
1121 */
vt_get_leds(int console,int flag)1122 int vt_get_leds(int console, int flag)
1123 {
1124 struct kbd_struct *kb = kbd_table + console;
1125 int ret;
1126 unsigned long flags;
1127
1128 spin_lock_irqsave(&led_lock, flags);
1129 ret = vc_kbd_led(kb, flag);
1130 spin_unlock_irqrestore(&led_lock, flags);
1131
1132 return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(vt_get_leds);
1135
1136 /**
1137 * vt_set_led_state - set LED state of a console
1138 * @console: console to set
1139 * @leds: LED bits
1140 *
1141 * Set the LEDs on a console. This is a wrapper for the VT layer
1142 * so that we can keep kbd knowledge internal
1143 */
vt_set_led_state(int console,int leds)1144 void vt_set_led_state(int console, int leds)
1145 {
1146 struct kbd_struct *kb = kbd_table + console;
1147 setledstate(kb, leds);
1148 }
1149
1150 /**
1151 * vt_kbd_con_start - Keyboard side of console start
1152 * @console: console
1153 *
1154 * Handle console start. This is a wrapper for the VT layer
1155 * so that we can keep kbd knowledge internal
1156 *
1157 * FIXME: We eventually need to hold the kbd lock here to protect
1158 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1159 * and start_tty under the kbd_event_lock, while normal tty paths
1160 * don't hold the lock. We probably need to split out an LED lock
1161 * but not during an -rc release!
1162 */
vt_kbd_con_start(int console)1163 void vt_kbd_con_start(int console)
1164 {
1165 struct kbd_struct *kb = kbd_table + console;
1166 unsigned long flags;
1167 spin_lock_irqsave(&led_lock, flags);
1168 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1169 set_leds();
1170 spin_unlock_irqrestore(&led_lock, flags);
1171 }
1172
1173 /**
1174 * vt_kbd_con_stop - Keyboard side of console stop
1175 * @console: console
1176 *
1177 * Handle console stop. This is a wrapper for the VT layer
1178 * so that we can keep kbd knowledge internal
1179 */
vt_kbd_con_stop(int console)1180 void vt_kbd_con_stop(int console)
1181 {
1182 struct kbd_struct *kb = kbd_table + console;
1183 unsigned long flags;
1184 spin_lock_irqsave(&led_lock, flags);
1185 set_vc_kbd_led(kb, VC_SCROLLOCK);
1186 set_leds();
1187 spin_unlock_irqrestore(&led_lock, flags);
1188 }
1189
1190 /*
1191 * This is the tasklet that updates LED state of LEDs using standard
1192 * keyboard triggers. The reason we use tasklet is that we need to
1193 * handle the scenario when keyboard handler is not registered yet
1194 * but we already getting updates from the VT to update led state.
1195 */
kbd_bh(unsigned long dummy)1196 static void kbd_bh(unsigned long dummy)
1197 {
1198 unsigned int leds;
1199 unsigned long flags;
1200
1201 spin_lock_irqsave(&led_lock, flags);
1202 leds = getleds();
1203 leds |= (unsigned int)kbd->lockstate << 8;
1204 spin_unlock_irqrestore(&led_lock, flags);
1205
1206 if (leds != ledstate) {
1207 kbd_propagate_led_state(ledstate, leds);
1208 ledstate = leds;
1209 }
1210 }
1211
1212 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1213
1214 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1215 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1216 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1217 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1218 defined(CONFIG_AVR32)
1219
1220 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1221 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1222
1223 static const unsigned short x86_keycodes[256] =
1224 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1225 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1226 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1227 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1228 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1229 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1230 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1231 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1232 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1233 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1234 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1235 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1236 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1237 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1238 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1239
1240 #ifdef CONFIG_SPARC
1241 static int sparc_l1_a_state;
1242 extern void sun_do_break(void);
1243 #endif
1244
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1245 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1246 unsigned char up_flag)
1247 {
1248 int code;
1249
1250 switch (keycode) {
1251
1252 case KEY_PAUSE:
1253 put_queue(vc, 0xe1);
1254 put_queue(vc, 0x1d | up_flag);
1255 put_queue(vc, 0x45 | up_flag);
1256 break;
1257
1258 case KEY_HANGEUL:
1259 if (!up_flag)
1260 put_queue(vc, 0xf2);
1261 break;
1262
1263 case KEY_HANJA:
1264 if (!up_flag)
1265 put_queue(vc, 0xf1);
1266 break;
1267
1268 case KEY_SYSRQ:
1269 /*
1270 * Real AT keyboards (that's what we're trying
1271 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1272 * pressing PrtSc/SysRq alone, but simply 0x54
1273 * when pressing Alt+PrtSc/SysRq.
1274 */
1275 if (test_bit(KEY_LEFTALT, key_down) ||
1276 test_bit(KEY_RIGHTALT, key_down)) {
1277 put_queue(vc, 0x54 | up_flag);
1278 } else {
1279 put_queue(vc, 0xe0);
1280 put_queue(vc, 0x2a | up_flag);
1281 put_queue(vc, 0xe0);
1282 put_queue(vc, 0x37 | up_flag);
1283 }
1284 break;
1285
1286 default:
1287 if (keycode > 255)
1288 return -1;
1289
1290 code = x86_keycodes[keycode];
1291 if (!code)
1292 return -1;
1293
1294 if (code & 0x100)
1295 put_queue(vc, 0xe0);
1296 put_queue(vc, (code & 0x7f) | up_flag);
1297
1298 break;
1299 }
1300
1301 return 0;
1302 }
1303
1304 #else
1305
1306 #define HW_RAW(dev) 0
1307
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1308 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1309 {
1310 if (keycode > 127)
1311 return -1;
1312
1313 put_queue(vc, keycode | up_flag);
1314 return 0;
1315 }
1316 #endif
1317
kbd_rawcode(unsigned char data)1318 static void kbd_rawcode(unsigned char data)
1319 {
1320 struct vc_data *vc = vc_cons[fg_console].d;
1321
1322 kbd = kbd_table + vc->vc_num;
1323 if (kbd->kbdmode == VC_RAW)
1324 put_queue(vc, data);
1325 }
1326
kbd_keycode(unsigned int keycode,int down,int hw_raw)1327 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1328 {
1329 struct vc_data *vc = vc_cons[fg_console].d;
1330 unsigned short keysym, *key_map;
1331 unsigned char type;
1332 bool raw_mode;
1333 struct tty_struct *tty;
1334 int shift_final;
1335 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1336 int rc;
1337
1338 tty = vc->port.tty;
1339
1340 if (tty && (!tty->driver_data)) {
1341 /* No driver data? Strange. Okay we fix it then. */
1342 tty->driver_data = vc;
1343 }
1344
1345 kbd = kbd_table + vc->vc_num;
1346
1347 #ifdef CONFIG_SPARC
1348 if (keycode == KEY_STOP)
1349 sparc_l1_a_state = down;
1350 #endif
1351
1352 rep = (down == 2);
1353
1354 raw_mode = (kbd->kbdmode == VC_RAW);
1355 if (raw_mode && !hw_raw)
1356 if (emulate_raw(vc, keycode, !down << 7))
1357 if (keycode < BTN_MISC && printk_ratelimit())
1358 pr_warn("can't emulate rawmode for keycode %d\n",
1359 keycode);
1360
1361 #ifdef CONFIG_SPARC
1362 if (keycode == KEY_A && sparc_l1_a_state) {
1363 sparc_l1_a_state = false;
1364 sun_do_break();
1365 }
1366 #endif
1367
1368 if (kbd->kbdmode == VC_MEDIUMRAW) {
1369 /*
1370 * This is extended medium raw mode, with keys above 127
1371 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1372 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1373 * interfere with anything else. The two bytes after 0 will
1374 * always have the up flag set not to interfere with older
1375 * applications. This allows for 16384 different keycodes,
1376 * which should be enough.
1377 */
1378 if (keycode < 128) {
1379 put_queue(vc, keycode | (!down << 7));
1380 } else {
1381 put_queue(vc, !down << 7);
1382 put_queue(vc, (keycode >> 7) | 0x80);
1383 put_queue(vc, keycode | 0x80);
1384 }
1385 raw_mode = true;
1386 }
1387
1388 if (down)
1389 set_bit(keycode, key_down);
1390 else
1391 clear_bit(keycode, key_down);
1392
1393 if (rep &&
1394 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1395 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1396 /*
1397 * Don't repeat a key if the input buffers are not empty and the
1398 * characters get aren't echoed locally. This makes key repeat
1399 * usable with slow applications and under heavy loads.
1400 */
1401 return;
1402 }
1403
1404 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1405 param.ledstate = kbd->ledflagstate;
1406 key_map = key_maps[shift_final];
1407
1408 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1409 KBD_KEYCODE, ¶m);
1410 if (rc == NOTIFY_STOP || !key_map) {
1411 atomic_notifier_call_chain(&keyboard_notifier_list,
1412 KBD_UNBOUND_KEYCODE, ¶m);
1413 do_compute_shiftstate();
1414 kbd->slockstate = 0;
1415 return;
1416 }
1417
1418 if (keycode < NR_KEYS)
1419 keysym = key_map[keycode];
1420 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1421 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1422 else
1423 return;
1424
1425 type = KTYP(keysym);
1426
1427 if (type < 0xf0) {
1428 param.value = keysym;
1429 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1430 KBD_UNICODE, ¶m);
1431 if (rc != NOTIFY_STOP)
1432 if (down && !raw_mode)
1433 to_utf8(vc, keysym);
1434 return;
1435 }
1436
1437 type -= 0xf0;
1438
1439 if (type == KT_LETTER) {
1440 type = KT_LATIN;
1441 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1442 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1443 if (key_map)
1444 keysym = key_map[keycode];
1445 }
1446 }
1447
1448 param.value = keysym;
1449 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1450 KBD_KEYSYM, ¶m);
1451 if (rc == NOTIFY_STOP)
1452 return;
1453
1454 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1455 return;
1456
1457 (*k_handler[type])(vc, keysym & 0xff, !down);
1458
1459 param.ledstate = kbd->ledflagstate;
1460 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1461
1462 if (type != KT_SLOCK)
1463 kbd->slockstate = 0;
1464 }
1465
kbd_event(struct input_handle * handle,unsigned int event_type,unsigned int event_code,int value)1466 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1467 unsigned int event_code, int value)
1468 {
1469 /* We are called with interrupts disabled, just take the lock */
1470 spin_lock(&kbd_event_lock);
1471
1472 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1473 kbd_rawcode(value);
1474 if (event_type == EV_KEY && event_code <= KEY_MAX)
1475 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1476
1477 spin_unlock(&kbd_event_lock);
1478
1479 tasklet_schedule(&keyboard_tasklet);
1480 do_poke_blanked_console = 1;
1481 schedule_console_callback();
1482 }
1483
kbd_match(struct input_handler * handler,struct input_dev * dev)1484 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1485 {
1486 int i;
1487
1488 if (test_bit(EV_SND, dev->evbit))
1489 return true;
1490
1491 if (test_bit(EV_KEY, dev->evbit)) {
1492 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1493 if (test_bit(i, dev->keybit))
1494 return true;
1495 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1496 if (test_bit(i, dev->keybit))
1497 return true;
1498 }
1499
1500 return false;
1501 }
1502
1503 /*
1504 * When a keyboard (or other input device) is found, the kbd_connect
1505 * function is called. The function then looks at the device, and if it
1506 * likes it, it can open it and get events from it. In this (kbd_connect)
1507 * function, we should decide which VT to bind that keyboard to initially.
1508 */
kbd_connect(struct input_handler * handler,struct input_dev * dev,const struct input_device_id * id)1509 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1510 const struct input_device_id *id)
1511 {
1512 struct input_handle *handle;
1513 int error;
1514
1515 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1516 if (!handle)
1517 return -ENOMEM;
1518
1519 handle->dev = dev;
1520 handle->handler = handler;
1521 handle->name = "kbd";
1522
1523 error = input_register_handle(handle);
1524 if (error)
1525 goto err_free_handle;
1526
1527 error = input_open_device(handle);
1528 if (error)
1529 goto err_unregister_handle;
1530
1531 return 0;
1532
1533 err_unregister_handle:
1534 input_unregister_handle(handle);
1535 err_free_handle:
1536 kfree(handle);
1537 return error;
1538 }
1539
kbd_disconnect(struct input_handle * handle)1540 static void kbd_disconnect(struct input_handle *handle)
1541 {
1542 input_close_device(handle);
1543 input_unregister_handle(handle);
1544 kfree(handle);
1545 }
1546
1547 /*
1548 * Start keyboard handler on the new keyboard by refreshing LED state to
1549 * match the rest of the system.
1550 */
kbd_start(struct input_handle * handle)1551 static void kbd_start(struct input_handle *handle)
1552 {
1553 tasklet_disable(&keyboard_tasklet);
1554
1555 if (ledstate != -1U)
1556 kbd_update_leds_helper(handle, &ledstate);
1557
1558 tasklet_enable(&keyboard_tasklet);
1559 }
1560
1561 static const struct input_device_id kbd_ids[] = {
1562 {
1563 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1564 .evbit = { BIT_MASK(EV_KEY) },
1565 },
1566
1567 {
1568 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1569 .evbit = { BIT_MASK(EV_SND) },
1570 },
1571
1572 { }, /* Terminating entry */
1573 };
1574
1575 MODULE_DEVICE_TABLE(input, kbd_ids);
1576
1577 static struct input_handler kbd_handler = {
1578 .event = kbd_event,
1579 .match = kbd_match,
1580 .connect = kbd_connect,
1581 .disconnect = kbd_disconnect,
1582 .start = kbd_start,
1583 .name = "kbd",
1584 .id_table = kbd_ids,
1585 };
1586
kbd_init(void)1587 int __init kbd_init(void)
1588 {
1589 int i;
1590 int error;
1591
1592 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1593 kbd_table[i].ledflagstate = kbd_defleds();
1594 kbd_table[i].default_ledflagstate = kbd_defleds();
1595 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1596 kbd_table[i].lockstate = KBD_DEFLOCK;
1597 kbd_table[i].slockstate = 0;
1598 kbd_table[i].modeflags = KBD_DEFMODE;
1599 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1600 }
1601
1602 kbd_init_leds();
1603
1604 error = input_register_handler(&kbd_handler);
1605 if (error)
1606 return error;
1607
1608 tasklet_enable(&keyboard_tasklet);
1609 tasklet_schedule(&keyboard_tasklet);
1610
1611 return 0;
1612 }
1613
1614 /* Ioctl support code */
1615
1616 /**
1617 * vt_do_diacrit - diacritical table updates
1618 * @cmd: ioctl request
1619 * @udp: pointer to user data for ioctl
1620 * @perm: permissions check computed by caller
1621 *
1622 * Update the diacritical tables atomically and safely. Lock them
1623 * against simultaneous keypresses
1624 */
vt_do_diacrit(unsigned int cmd,void __user * udp,int perm)1625 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1626 {
1627 unsigned long flags;
1628 int asize;
1629 int ret = 0;
1630
1631 switch (cmd) {
1632 case KDGKBDIACR:
1633 {
1634 struct kbdiacrs __user *a = udp;
1635 struct kbdiacr *dia;
1636 int i;
1637
1638 dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1639 GFP_KERNEL);
1640 if (!dia)
1641 return -ENOMEM;
1642
1643 /* Lock the diacriticals table, make a copy and then
1644 copy it after we unlock */
1645 spin_lock_irqsave(&kbd_event_lock, flags);
1646
1647 asize = accent_table_size;
1648 for (i = 0; i < asize; i++) {
1649 dia[i].diacr = conv_uni_to_8bit(
1650 accent_table[i].diacr);
1651 dia[i].base = conv_uni_to_8bit(
1652 accent_table[i].base);
1653 dia[i].result = conv_uni_to_8bit(
1654 accent_table[i].result);
1655 }
1656 spin_unlock_irqrestore(&kbd_event_lock, flags);
1657
1658 if (put_user(asize, &a->kb_cnt))
1659 ret = -EFAULT;
1660 else if (copy_to_user(a->kbdiacr, dia,
1661 asize * sizeof(struct kbdiacr)))
1662 ret = -EFAULT;
1663 kfree(dia);
1664 return ret;
1665 }
1666 case KDGKBDIACRUC:
1667 {
1668 struct kbdiacrsuc __user *a = udp;
1669 void *buf;
1670
1671 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1672 GFP_KERNEL);
1673 if (buf == NULL)
1674 return -ENOMEM;
1675
1676 /* Lock the diacriticals table, make a copy and then
1677 copy it after we unlock */
1678 spin_lock_irqsave(&kbd_event_lock, flags);
1679
1680 asize = accent_table_size;
1681 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1682
1683 spin_unlock_irqrestore(&kbd_event_lock, flags);
1684
1685 if (put_user(asize, &a->kb_cnt))
1686 ret = -EFAULT;
1687 else if (copy_to_user(a->kbdiacruc, buf,
1688 asize*sizeof(struct kbdiacruc)))
1689 ret = -EFAULT;
1690 kfree(buf);
1691 return ret;
1692 }
1693
1694 case KDSKBDIACR:
1695 {
1696 struct kbdiacrs __user *a = udp;
1697 struct kbdiacr *dia = NULL;
1698 unsigned int ct;
1699 int i;
1700
1701 if (!perm)
1702 return -EPERM;
1703 if (get_user(ct, &a->kb_cnt))
1704 return -EFAULT;
1705 if (ct >= MAX_DIACR)
1706 return -EINVAL;
1707
1708 if (ct) {
1709 dia = kmalloc(sizeof(struct kbdiacr) * ct,
1710 GFP_KERNEL);
1711 if (!dia)
1712 return -ENOMEM;
1713
1714 if (copy_from_user(dia, a->kbdiacr,
1715 sizeof(struct kbdiacr) * ct)) {
1716 kfree(dia);
1717 return -EFAULT;
1718 }
1719 }
1720
1721 spin_lock_irqsave(&kbd_event_lock, flags);
1722 accent_table_size = ct;
1723 for (i = 0; i < ct; i++) {
1724 accent_table[i].diacr =
1725 conv_8bit_to_uni(dia[i].diacr);
1726 accent_table[i].base =
1727 conv_8bit_to_uni(dia[i].base);
1728 accent_table[i].result =
1729 conv_8bit_to_uni(dia[i].result);
1730 }
1731 spin_unlock_irqrestore(&kbd_event_lock, flags);
1732 kfree(dia);
1733 return 0;
1734 }
1735
1736 case KDSKBDIACRUC:
1737 {
1738 struct kbdiacrsuc __user *a = udp;
1739 unsigned int ct;
1740 void *buf = NULL;
1741
1742 if (!perm)
1743 return -EPERM;
1744
1745 if (get_user(ct, &a->kb_cnt))
1746 return -EFAULT;
1747
1748 if (ct >= MAX_DIACR)
1749 return -EINVAL;
1750
1751 if (ct) {
1752 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1753 GFP_KERNEL);
1754 if (buf == NULL)
1755 return -ENOMEM;
1756
1757 if (copy_from_user(buf, a->kbdiacruc,
1758 ct * sizeof(struct kbdiacruc))) {
1759 kfree(buf);
1760 return -EFAULT;
1761 }
1762 }
1763 spin_lock_irqsave(&kbd_event_lock, flags);
1764 if (ct)
1765 memcpy(accent_table, buf,
1766 ct * sizeof(struct kbdiacruc));
1767 accent_table_size = ct;
1768 spin_unlock_irqrestore(&kbd_event_lock, flags);
1769 kfree(buf);
1770 return 0;
1771 }
1772 }
1773 return ret;
1774 }
1775
1776 /**
1777 * vt_do_kdskbmode - set keyboard mode ioctl
1778 * @console: the console to use
1779 * @arg: the requested mode
1780 *
1781 * Update the keyboard mode bits while holding the correct locks.
1782 * Return 0 for success or an error code.
1783 */
vt_do_kdskbmode(int console,unsigned int arg)1784 int vt_do_kdskbmode(int console, unsigned int arg)
1785 {
1786 struct kbd_struct *kb = kbd_table + console;
1787 int ret = 0;
1788 unsigned long flags;
1789
1790 spin_lock_irqsave(&kbd_event_lock, flags);
1791 switch(arg) {
1792 case K_RAW:
1793 kb->kbdmode = VC_RAW;
1794 break;
1795 case K_MEDIUMRAW:
1796 kb->kbdmode = VC_MEDIUMRAW;
1797 break;
1798 case K_XLATE:
1799 kb->kbdmode = VC_XLATE;
1800 do_compute_shiftstate();
1801 break;
1802 case K_UNICODE:
1803 kb->kbdmode = VC_UNICODE;
1804 do_compute_shiftstate();
1805 break;
1806 case K_OFF:
1807 kb->kbdmode = VC_OFF;
1808 break;
1809 default:
1810 ret = -EINVAL;
1811 }
1812 spin_unlock_irqrestore(&kbd_event_lock, flags);
1813 return ret;
1814 }
1815
1816 /**
1817 * vt_do_kdskbmeta - set keyboard meta state
1818 * @console: the console to use
1819 * @arg: the requested meta state
1820 *
1821 * Update the keyboard meta bits while holding the correct locks.
1822 * Return 0 for success or an error code.
1823 */
vt_do_kdskbmeta(int console,unsigned int arg)1824 int vt_do_kdskbmeta(int console, unsigned int arg)
1825 {
1826 struct kbd_struct *kb = kbd_table + console;
1827 int ret = 0;
1828 unsigned long flags;
1829
1830 spin_lock_irqsave(&kbd_event_lock, flags);
1831 switch(arg) {
1832 case K_METABIT:
1833 clr_vc_kbd_mode(kb, VC_META);
1834 break;
1835 case K_ESCPREFIX:
1836 set_vc_kbd_mode(kb, VC_META);
1837 break;
1838 default:
1839 ret = -EINVAL;
1840 }
1841 spin_unlock_irqrestore(&kbd_event_lock, flags);
1842 return ret;
1843 }
1844
vt_do_kbkeycode_ioctl(int cmd,struct kbkeycode __user * user_kbkc,int perm)1845 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1846 int perm)
1847 {
1848 struct kbkeycode tmp;
1849 int kc = 0;
1850
1851 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1852 return -EFAULT;
1853 switch (cmd) {
1854 case KDGETKEYCODE:
1855 kc = getkeycode(tmp.scancode);
1856 if (kc >= 0)
1857 kc = put_user(kc, &user_kbkc->keycode);
1858 break;
1859 case KDSETKEYCODE:
1860 if (!perm)
1861 return -EPERM;
1862 kc = setkeycode(tmp.scancode, tmp.keycode);
1863 break;
1864 }
1865 return kc;
1866 }
1867
1868 #define i (tmp.kb_index)
1869 #define s (tmp.kb_table)
1870 #define v (tmp.kb_value)
1871
vt_do_kdsk_ioctl(int cmd,struct kbentry __user * user_kbe,int perm,int console)1872 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1873 int console)
1874 {
1875 struct kbd_struct *kb = kbd_table + console;
1876 struct kbentry tmp;
1877 ushort *key_map, *new_map, val, ov;
1878 unsigned long flags;
1879
1880 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1881 return -EFAULT;
1882
1883 if (!capable(CAP_SYS_TTY_CONFIG))
1884 perm = 0;
1885
1886 switch (cmd) {
1887 case KDGKBENT:
1888 /* Ensure another thread doesn't free it under us */
1889 spin_lock_irqsave(&kbd_event_lock, flags);
1890 key_map = key_maps[s];
1891 if (key_map) {
1892 val = U(key_map[i]);
1893 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1894 val = K_HOLE;
1895 } else
1896 val = (i ? K_HOLE : K_NOSUCHMAP);
1897 spin_unlock_irqrestore(&kbd_event_lock, flags);
1898 return put_user(val, &user_kbe->kb_value);
1899 case KDSKBENT:
1900 if (!perm)
1901 return -EPERM;
1902 if (!i && v == K_NOSUCHMAP) {
1903 spin_lock_irqsave(&kbd_event_lock, flags);
1904 /* deallocate map */
1905 key_map = key_maps[s];
1906 if (s && key_map) {
1907 key_maps[s] = NULL;
1908 if (key_map[0] == U(K_ALLOCATED)) {
1909 kfree(key_map);
1910 keymap_count--;
1911 }
1912 }
1913 spin_unlock_irqrestore(&kbd_event_lock, flags);
1914 break;
1915 }
1916
1917 if (KTYP(v) < NR_TYPES) {
1918 if (KVAL(v) > max_vals[KTYP(v)])
1919 return -EINVAL;
1920 } else
1921 if (kb->kbdmode != VC_UNICODE)
1922 return -EINVAL;
1923
1924 /* ++Geert: non-PC keyboards may generate keycode zero */
1925 #if !defined(__mc68000__) && !defined(__powerpc__)
1926 /* assignment to entry 0 only tests validity of args */
1927 if (!i)
1928 break;
1929 #endif
1930
1931 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1932 if (!new_map)
1933 return -ENOMEM;
1934 spin_lock_irqsave(&kbd_event_lock, flags);
1935 key_map = key_maps[s];
1936 if (key_map == NULL) {
1937 int j;
1938
1939 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1940 !capable(CAP_SYS_RESOURCE)) {
1941 spin_unlock_irqrestore(&kbd_event_lock, flags);
1942 kfree(new_map);
1943 return -EPERM;
1944 }
1945 key_maps[s] = new_map;
1946 key_map = new_map;
1947 key_map[0] = U(K_ALLOCATED);
1948 for (j = 1; j < NR_KEYS; j++)
1949 key_map[j] = U(K_HOLE);
1950 keymap_count++;
1951 } else
1952 kfree(new_map);
1953
1954 ov = U(key_map[i]);
1955 if (v == ov)
1956 goto out;
1957 /*
1958 * Attention Key.
1959 */
1960 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1961 spin_unlock_irqrestore(&kbd_event_lock, flags);
1962 return -EPERM;
1963 }
1964 key_map[i] = U(v);
1965 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1966 do_compute_shiftstate();
1967 out:
1968 spin_unlock_irqrestore(&kbd_event_lock, flags);
1969 break;
1970 }
1971 return 0;
1972 }
1973 #undef i
1974 #undef s
1975 #undef v
1976
1977 /* FIXME: This one needs untangling */
vt_do_kdgkb_ioctl(int cmd,struct kbsentry __user * user_kdgkb,int perm)1978 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1979 {
1980 struct kbsentry *kbs;
1981 u_char *q;
1982 int sz, fnw_sz;
1983 int delta;
1984 char *first_free, *fj, *fnw;
1985 int i, j, k;
1986 int ret;
1987 unsigned long flags;
1988
1989 if (!capable(CAP_SYS_TTY_CONFIG))
1990 perm = 0;
1991
1992 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1993 if (!kbs) {
1994 ret = -ENOMEM;
1995 goto reterr;
1996 }
1997
1998 /* we mostly copy too much here (512bytes), but who cares ;) */
1999 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2000 ret = -EFAULT;
2001 goto reterr;
2002 }
2003 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2004 i = kbs->kb_func;
2005
2006 switch (cmd) {
2007 case KDGKBSENT: {
2008 /* size should have been a struct member */
2009 ssize_t len = sizeof(user_kdgkb->kb_string);
2010
2011 spin_lock_irqsave(&func_buf_lock, flags);
2012 len = strlcpy(kbs->kb_string, func_table[i] ? : "", len);
2013 spin_unlock_irqrestore(&func_buf_lock, flags);
2014
2015 ret = copy_to_user(user_kdgkb->kb_string, kbs->kb_string,
2016 len + 1) ? -EFAULT : 0;
2017
2018 goto reterr;
2019 }
2020 case KDSKBSENT:
2021 if (!perm) {
2022 ret = -EPERM;
2023 goto reterr;
2024 }
2025
2026 fnw = NULL;
2027 fnw_sz = 0;
2028 /* race aginst other writers */
2029 again:
2030 spin_lock_irqsave(&func_buf_lock, flags);
2031 q = func_table[i];
2032
2033 /* fj pointer to next entry after 'q' */
2034 first_free = funcbufptr + (funcbufsize - funcbufleft);
2035 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2036 ;
2037 if (j < MAX_NR_FUNC)
2038 fj = func_table[j];
2039 else
2040 fj = first_free;
2041 /* buffer usage increase by new entry */
2042 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2043
2044 if (delta <= funcbufleft) { /* it fits in current buf */
2045 if (j < MAX_NR_FUNC) {
2046 /* make enough space for new entry at 'fj' */
2047 memmove(fj + delta, fj, first_free - fj);
2048 for (k = j; k < MAX_NR_FUNC; k++)
2049 if (func_table[k])
2050 func_table[k] += delta;
2051 }
2052 if (!q)
2053 func_table[i] = fj;
2054 funcbufleft -= delta;
2055 } else { /* allocate a larger buffer */
2056 sz = 256;
2057 while (sz < funcbufsize - funcbufleft + delta)
2058 sz <<= 1;
2059 if (fnw_sz != sz) {
2060 spin_unlock_irqrestore(&func_buf_lock, flags);
2061 kfree(fnw);
2062 fnw = kmalloc(sz, GFP_KERNEL);
2063 fnw_sz = sz;
2064 if (!fnw) {
2065 ret = -ENOMEM;
2066 goto reterr;
2067 }
2068 goto again;
2069 }
2070
2071 if (!q)
2072 func_table[i] = fj;
2073 /* copy data before insertion point to new location */
2074 if (fj > funcbufptr)
2075 memmove(fnw, funcbufptr, fj - funcbufptr);
2076 for (k = 0; k < j; k++)
2077 if (func_table[k])
2078 func_table[k] = fnw + (func_table[k] - funcbufptr);
2079
2080 /* copy data after insertion point to new location */
2081 if (first_free > fj) {
2082 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2083 for (k = j; k < MAX_NR_FUNC; k++)
2084 if (func_table[k])
2085 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2086 }
2087 if (funcbufptr != func_buf)
2088 kfree(funcbufptr);
2089 funcbufptr = fnw;
2090 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2091 funcbufsize = sz;
2092 }
2093 /* finally insert item itself */
2094 strcpy(func_table[i], kbs->kb_string);
2095 spin_unlock_irqrestore(&func_buf_lock, flags);
2096 break;
2097 }
2098 ret = 0;
2099 reterr:
2100 kfree(kbs);
2101 return ret;
2102 }
2103
vt_do_kdskled(int console,int cmd,unsigned long arg,int perm)2104 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2105 {
2106 struct kbd_struct *kb = kbd_table + console;
2107 unsigned long flags;
2108 unsigned char ucval;
2109
2110 switch(cmd) {
2111 /* the ioctls below read/set the flags usually shown in the leds */
2112 /* don't use them - they will go away without warning */
2113 case KDGKBLED:
2114 spin_lock_irqsave(&kbd_event_lock, flags);
2115 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2116 spin_unlock_irqrestore(&kbd_event_lock, flags);
2117 return put_user(ucval, (char __user *)arg);
2118
2119 case KDSKBLED:
2120 if (!perm)
2121 return -EPERM;
2122 if (arg & ~0x77)
2123 return -EINVAL;
2124 spin_lock_irqsave(&led_lock, flags);
2125 kb->ledflagstate = (arg & 7);
2126 kb->default_ledflagstate = ((arg >> 4) & 7);
2127 set_leds();
2128 spin_unlock_irqrestore(&led_lock, flags);
2129 return 0;
2130
2131 /* the ioctls below only set the lights, not the functions */
2132 /* for those, see KDGKBLED and KDSKBLED above */
2133 case KDGETLED:
2134 ucval = getledstate();
2135 return put_user(ucval, (char __user *)arg);
2136
2137 case KDSETLED:
2138 if (!perm)
2139 return -EPERM;
2140 setledstate(kb, arg);
2141 return 0;
2142 }
2143 return -ENOIOCTLCMD;
2144 }
2145
vt_do_kdgkbmode(int console)2146 int vt_do_kdgkbmode(int console)
2147 {
2148 struct kbd_struct *kb = kbd_table + console;
2149 /* This is a spot read so needs no locking */
2150 switch (kb->kbdmode) {
2151 case VC_RAW:
2152 return K_RAW;
2153 case VC_MEDIUMRAW:
2154 return K_MEDIUMRAW;
2155 case VC_UNICODE:
2156 return K_UNICODE;
2157 case VC_OFF:
2158 return K_OFF;
2159 default:
2160 return K_XLATE;
2161 }
2162 }
2163
2164 /**
2165 * vt_do_kdgkbmeta - report meta status
2166 * @console: console to report
2167 *
2168 * Report the meta flag status of this console
2169 */
vt_do_kdgkbmeta(int console)2170 int vt_do_kdgkbmeta(int console)
2171 {
2172 struct kbd_struct *kb = kbd_table + console;
2173 /* Again a spot read so no locking */
2174 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2175 }
2176
2177 /**
2178 * vt_reset_unicode - reset the unicode status
2179 * @console: console being reset
2180 *
2181 * Restore the unicode console state to its default
2182 */
vt_reset_unicode(int console)2183 void vt_reset_unicode(int console)
2184 {
2185 unsigned long flags;
2186
2187 spin_lock_irqsave(&kbd_event_lock, flags);
2188 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2189 spin_unlock_irqrestore(&kbd_event_lock, flags);
2190 }
2191
2192 /**
2193 * vt_get_shiftstate - shift bit state
2194 *
2195 * Report the shift bits from the keyboard state. We have to export
2196 * this to support some oddities in the vt layer.
2197 */
vt_get_shift_state(void)2198 int vt_get_shift_state(void)
2199 {
2200 /* Don't lock as this is a transient report */
2201 return shift_state;
2202 }
2203
2204 /**
2205 * vt_reset_keyboard - reset keyboard state
2206 * @console: console to reset
2207 *
2208 * Reset the keyboard bits for a console as part of a general console
2209 * reset event
2210 */
vt_reset_keyboard(int console)2211 void vt_reset_keyboard(int console)
2212 {
2213 struct kbd_struct *kb = kbd_table + console;
2214 unsigned long flags;
2215
2216 spin_lock_irqsave(&kbd_event_lock, flags);
2217 set_vc_kbd_mode(kb, VC_REPEAT);
2218 clr_vc_kbd_mode(kb, VC_CKMODE);
2219 clr_vc_kbd_mode(kb, VC_APPLIC);
2220 clr_vc_kbd_mode(kb, VC_CRLF);
2221 kb->lockstate = 0;
2222 kb->slockstate = 0;
2223 spin_lock(&led_lock);
2224 kb->ledmode = LED_SHOW_FLAGS;
2225 kb->ledflagstate = kb->default_ledflagstate;
2226 spin_unlock(&led_lock);
2227 /* do not do set_leds here because this causes an endless tasklet loop
2228 when the keyboard hasn't been initialized yet */
2229 spin_unlock_irqrestore(&kbd_event_lock, flags);
2230 }
2231
2232 /**
2233 * vt_get_kbd_mode_bit - read keyboard status bits
2234 * @console: console to read from
2235 * @bit: mode bit to read
2236 *
2237 * Report back a vt mode bit. We do this without locking so the
2238 * caller must be sure that there are no synchronization needs
2239 */
2240
vt_get_kbd_mode_bit(int console,int bit)2241 int vt_get_kbd_mode_bit(int console, int bit)
2242 {
2243 struct kbd_struct *kb = kbd_table + console;
2244 return vc_kbd_mode(kb, bit);
2245 }
2246
2247 /**
2248 * vt_set_kbd_mode_bit - read keyboard status bits
2249 * @console: console to read from
2250 * @bit: mode bit to read
2251 *
2252 * Set a vt mode bit. We do this without locking so the
2253 * caller must be sure that there are no synchronization needs
2254 */
2255
vt_set_kbd_mode_bit(int console,int bit)2256 void vt_set_kbd_mode_bit(int console, int bit)
2257 {
2258 struct kbd_struct *kb = kbd_table + console;
2259 unsigned long flags;
2260
2261 spin_lock_irqsave(&kbd_event_lock, flags);
2262 set_vc_kbd_mode(kb, bit);
2263 spin_unlock_irqrestore(&kbd_event_lock, flags);
2264 }
2265
2266 /**
2267 * vt_clr_kbd_mode_bit - read keyboard status bits
2268 * @console: console to read from
2269 * @bit: mode bit to read
2270 *
2271 * Report back a vt mode bit. We do this without locking so the
2272 * caller must be sure that there are no synchronization needs
2273 */
2274
vt_clr_kbd_mode_bit(int console,int bit)2275 void vt_clr_kbd_mode_bit(int console, int bit)
2276 {
2277 struct kbd_struct *kb = kbd_table + console;
2278 unsigned long flags;
2279
2280 spin_lock_irqsave(&kbd_event_lock, flags);
2281 clr_vc_kbd_mode(kb, bit);
2282 spin_unlock_irqrestore(&kbd_event_lock, flags);
2283 }
2284