1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77 #include <linux/cpufreq_times.h>
78
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 #include <asm/irq_regs.h>
82 #include <asm/mutex.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93 #include "walt.h"
94
95 DEFINE_MUTEX(sched_domains_mutex);
96 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
97
98 static void update_rq_clock_task(struct rq *rq, s64 delta);
99
update_rq_clock(struct rq * rq)100 void update_rq_clock(struct rq *rq)
101 {
102 s64 delta;
103
104 lockdep_assert_held(&rq->lock);
105
106 if (rq->clock_skip_update & RQCF_ACT_SKIP)
107 return;
108
109 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
110 if (delta < 0)
111 return;
112 rq->clock += delta;
113 update_rq_clock_task(rq, delta);
114 }
115
116 /*
117 * Debugging: various feature bits
118 */
119
120 #define SCHED_FEAT(name, enabled) \
121 (1UL << __SCHED_FEAT_##name) * enabled |
122
123 const_debug unsigned int sysctl_sched_features =
124 #include "features.h"
125 0;
126
127 #undef SCHED_FEAT
128
129 #ifdef CONFIG_SCHED_DEBUG
130 #define SCHED_FEAT(name, enabled) \
131 #name ,
132
133 static const char * const sched_feat_names[] = {
134 #include "features.h"
135 };
136
137 #undef SCHED_FEAT
138
sched_feat_show(struct seq_file * m,void * v)139 static int sched_feat_show(struct seq_file *m, void *v)
140 {
141 int i;
142
143 for (i = 0; i < __SCHED_FEAT_NR; i++) {
144 if (!(sysctl_sched_features & (1UL << i)))
145 seq_puts(m, "NO_");
146 seq_printf(m, "%s ", sched_feat_names[i]);
147 }
148 seq_puts(m, "\n");
149
150 return 0;
151 }
152
153 #ifdef HAVE_JUMP_LABEL
154
155 #define jump_label_key__true STATIC_KEY_INIT_TRUE
156 #define jump_label_key__false STATIC_KEY_INIT_FALSE
157
158 #define SCHED_FEAT(name, enabled) \
159 jump_label_key__##enabled ,
160
161 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
162 #include "features.h"
163 };
164
165 #undef SCHED_FEAT
166
sched_feat_disable(int i)167 static void sched_feat_disable(int i)
168 {
169 static_key_disable(&sched_feat_keys[i]);
170 }
171
sched_feat_enable(int i)172 static void sched_feat_enable(int i)
173 {
174 static_key_enable(&sched_feat_keys[i]);
175 }
176 #else
sched_feat_disable(int i)177 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180
sched_feat_set(char * cmp)181 static int sched_feat_set(char *cmp)
182 {
183 int i;
184 int neg = 0;
185
186 if (strncmp(cmp, "NO_", 3) == 0) {
187 neg = 1;
188 cmp += 3;
189 }
190
191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 if (neg) {
194 sysctl_sched_features &= ~(1UL << i);
195 sched_feat_disable(i);
196 } else {
197 sysctl_sched_features |= (1UL << i);
198 sched_feat_enable(i);
199 }
200 break;
201 }
202 }
203
204 return i;
205 }
206
207 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210 {
211 char buf[64];
212 char *cmp;
213 int i;
214 struct inode *inode;
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
228 i = sched_feat_set(cmp);
229 mutex_unlock(&inode->i_mutex);
230 if (i == __SCHED_FEAT_NR)
231 return -EINVAL;
232
233 *ppos += cnt;
234
235 return cnt;
236 }
237
sched_feat_open(struct inode * inode,struct file * filp)238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 return single_open(filp, sched_feat_show, NULL);
241 }
242
243 static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
249 };
250
sched_init_debug(void)251 static __init int sched_init_debug(void)
252 {
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260
261 /*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
267 /*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
275 /*
276 * period over which we measure -rt task cpu usage in us.
277 * default: 1s
278 */
279 unsigned int sysctl_sched_rt_period = 1000000;
280
281 __read_mostly int scheduler_running;
282
283 /*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287 int sysctl_sched_rt_runtime = 950000;
288
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291
292 struct rq *
lock_rq_of(struct task_struct * p,unsigned long * flags)293 lock_rq_of(struct task_struct *p, unsigned long *flags)
294 {
295 return task_rq_lock(p, flags);
296 }
297
298 void
unlock_rq_of(struct rq * rq,struct task_struct * p,unsigned long * flags)299 unlock_rq_of(struct rq *rq, struct task_struct *p, unsigned long *flags)
300 {
301 task_rq_unlock(rq, p, flags);
302 }
303
304 /*
305 * this_rq_lock - lock this runqueue and disable interrupts.
306 */
this_rq_lock(void)307 static struct rq *this_rq_lock(void)
308 __acquires(rq->lock)
309 {
310 struct rq *rq;
311
312 local_irq_disable();
313 rq = this_rq();
314 raw_spin_lock(&rq->lock);
315
316 return rq;
317 }
318
319 #ifdef CONFIG_SCHED_HRTICK
320 /*
321 * Use HR-timers to deliver accurate preemption points.
322 */
323
hrtick_clear(struct rq * rq)324 static void hrtick_clear(struct rq *rq)
325 {
326 if (hrtimer_active(&rq->hrtick_timer))
327 hrtimer_cancel(&rq->hrtick_timer);
328 }
329
330 /*
331 * High-resolution timer tick.
332 * Runs from hardirq context with interrupts disabled.
333 */
hrtick(struct hrtimer * timer)334 static enum hrtimer_restart hrtick(struct hrtimer *timer)
335 {
336 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
337
338 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
339
340 raw_spin_lock(&rq->lock);
341 update_rq_clock(rq);
342 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
343 raw_spin_unlock(&rq->lock);
344
345 return HRTIMER_NORESTART;
346 }
347
348 #ifdef CONFIG_SMP
349
__hrtick_restart(struct rq * rq)350 static void __hrtick_restart(struct rq *rq)
351 {
352 struct hrtimer *timer = &rq->hrtick_timer;
353
354 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
355 }
356
357 /*
358 * called from hardirq (IPI) context
359 */
__hrtick_start(void * arg)360 static void __hrtick_start(void *arg)
361 {
362 struct rq *rq = arg;
363
364 raw_spin_lock(&rq->lock);
365 __hrtick_restart(rq);
366 rq->hrtick_csd_pending = 0;
367 raw_spin_unlock(&rq->lock);
368 }
369
370 /*
371 * Called to set the hrtick timer state.
372 *
373 * called with rq->lock held and irqs disabled
374 */
hrtick_start(struct rq * rq,u64 delay)375 void hrtick_start(struct rq *rq, u64 delay)
376 {
377 struct hrtimer *timer = &rq->hrtick_timer;
378 ktime_t time;
379 s64 delta;
380
381 /*
382 * Don't schedule slices shorter than 10000ns, that just
383 * doesn't make sense and can cause timer DoS.
384 */
385 delta = max_t(s64, delay, 10000LL);
386 time = ktime_add_ns(timer->base->get_time(), delta);
387
388 hrtimer_set_expires(timer, time);
389
390 if (rq == this_rq()) {
391 __hrtick_restart(rq);
392 } else if (!rq->hrtick_csd_pending) {
393 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
394 rq->hrtick_csd_pending = 1;
395 }
396 }
397
398 static int
hotplug_hrtick(struct notifier_block * nfb,unsigned long action,void * hcpu)399 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
400 {
401 int cpu = (int)(long)hcpu;
402
403 switch (action) {
404 case CPU_UP_CANCELED:
405 case CPU_UP_CANCELED_FROZEN:
406 case CPU_DOWN_PREPARE:
407 case CPU_DOWN_PREPARE_FROZEN:
408 case CPU_DEAD:
409 case CPU_DEAD_FROZEN:
410 hrtick_clear(cpu_rq(cpu));
411 return NOTIFY_OK;
412 }
413
414 return NOTIFY_DONE;
415 }
416
init_hrtick(void)417 static __init void init_hrtick(void)
418 {
419 hotcpu_notifier(hotplug_hrtick, 0);
420 }
421 #else
422 /*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
hrtick_start(struct rq * rq,u64 delay)427 void hrtick_start(struct rq *rq, u64 delay)
428 {
429 /*
430 * Don't schedule slices shorter than 10000ns, that just
431 * doesn't make sense. Rely on vruntime for fairness.
432 */
433 delay = max_t(u64, delay, 10000LL);
434 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
435 HRTIMER_MODE_REL_PINNED);
436 }
437
init_hrtick(void)438 static inline void init_hrtick(void)
439 {
440 }
441 #endif /* CONFIG_SMP */
442
init_rq_hrtick(struct rq * rq)443 static void init_rq_hrtick(struct rq *rq)
444 {
445 #ifdef CONFIG_SMP
446 rq->hrtick_csd_pending = 0;
447
448 rq->hrtick_csd.flags = 0;
449 rq->hrtick_csd.func = __hrtick_start;
450 rq->hrtick_csd.info = rq;
451 #endif
452
453 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
454 rq->hrtick_timer.function = hrtick;
455 }
456 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)457 static inline void hrtick_clear(struct rq *rq)
458 {
459 }
460
init_rq_hrtick(struct rq * rq)461 static inline void init_rq_hrtick(struct rq *rq)
462 {
463 }
464
init_hrtick(void)465 static inline void init_hrtick(void)
466 {
467 }
468 #endif /* CONFIG_SCHED_HRTICK */
469
470 /*
471 * cmpxchg based fetch_or, macro so it works for different integer types
472 */
473 #define fetch_or(ptr, val) \
474 ({ typeof(*(ptr)) __old, __val = *(ptr); \
475 for (;;) { \
476 __old = cmpxchg((ptr), __val, __val | (val)); \
477 if (__old == __val) \
478 break; \
479 __val = __old; \
480 } \
481 __old; \
482 })
483
484 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
485 /*
486 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
487 * this avoids any races wrt polling state changes and thereby avoids
488 * spurious IPIs.
489 */
set_nr_and_not_polling(struct task_struct * p)490 static bool set_nr_and_not_polling(struct task_struct *p)
491 {
492 struct thread_info *ti = task_thread_info(p);
493 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
494 }
495
496 /*
497 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
498 *
499 * If this returns true, then the idle task promises to call
500 * sched_ttwu_pending() and reschedule soon.
501 */
set_nr_if_polling(struct task_struct * p)502 static bool set_nr_if_polling(struct task_struct *p)
503 {
504 struct thread_info *ti = task_thread_info(p);
505 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
506
507 for (;;) {
508 if (!(val & _TIF_POLLING_NRFLAG))
509 return false;
510 if (val & _TIF_NEED_RESCHED)
511 return true;
512 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
513 if (old == val)
514 break;
515 val = old;
516 }
517 return true;
518 }
519
520 #else
set_nr_and_not_polling(struct task_struct * p)521 static bool set_nr_and_not_polling(struct task_struct *p)
522 {
523 set_tsk_need_resched(p);
524 return true;
525 }
526
527 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)528 static bool set_nr_if_polling(struct task_struct *p)
529 {
530 return false;
531 }
532 #endif
533 #endif
534
wake_q_add(struct wake_q_head * head,struct task_struct * task)535 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
536 {
537 struct wake_q_node *node = &task->wake_q;
538
539 /*
540 * Atomically grab the task, if ->wake_q is !nil already it means
541 * its already queued (either by us or someone else) and will get the
542 * wakeup due to that.
543 *
544 * This cmpxchg() implies a full barrier, which pairs with the write
545 * barrier implied by the wakeup in wake_up_list().
546 */
547 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
548 return;
549
550 head->count++;
551
552 get_task_struct(task);
553
554 /*
555 * The head is context local, there can be no concurrency.
556 */
557 *head->lastp = node;
558 head->lastp = &node->next;
559 }
560
561 static int
562 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
563 int sibling_count_hint);
564
wake_up_q(struct wake_q_head * head)565 void wake_up_q(struct wake_q_head *head)
566 {
567 struct wake_q_node *node = head->first;
568
569 while (node != WAKE_Q_TAIL) {
570 struct task_struct *task;
571
572 task = container_of(node, struct task_struct, wake_q);
573 BUG_ON(!task);
574 /* task can safely be re-inserted now */
575 node = node->next;
576 task->wake_q.next = NULL;
577
578 /*
579 * try_to_wake_up() implies a wmb() to pair with the queueing
580 * in wake_q_add() so as not to miss wakeups.
581 */
582 try_to_wake_up(task, TASK_NORMAL, 0, head->count);
583 put_task_struct(task);
584 }
585 }
586
587 /*
588 * resched_curr - mark rq's current task 'to be rescheduled now'.
589 *
590 * On UP this means the setting of the need_resched flag, on SMP it
591 * might also involve a cross-CPU call to trigger the scheduler on
592 * the target CPU.
593 */
resched_curr(struct rq * rq)594 void resched_curr(struct rq *rq)
595 {
596 struct task_struct *curr = rq->curr;
597 int cpu;
598
599 lockdep_assert_held(&rq->lock);
600
601 if (test_tsk_need_resched(curr))
602 return;
603
604 cpu = cpu_of(rq);
605
606 if (cpu == smp_processor_id()) {
607 set_tsk_need_resched(curr);
608 set_preempt_need_resched();
609 return;
610 }
611
612 if (set_nr_and_not_polling(curr))
613 smp_send_reschedule(cpu);
614 else
615 trace_sched_wake_idle_without_ipi(cpu);
616 }
617
resched_cpu(int cpu)618 void resched_cpu(int cpu)
619 {
620 struct rq *rq = cpu_rq(cpu);
621 unsigned long flags;
622
623 raw_spin_lock_irqsave(&rq->lock, flags);
624 if (cpu_online(cpu) || cpu == smp_processor_id())
625 resched_curr(rq);
626 raw_spin_unlock_irqrestore(&rq->lock, flags);
627 }
628
629 #ifdef CONFIG_SMP
630 #ifdef CONFIG_NO_HZ_COMMON
631 /*
632 * In the semi idle case, use the nearest busy cpu for migrating timers
633 * from an idle cpu. This is good for power-savings.
634 *
635 * We don't do similar optimization for completely idle system, as
636 * selecting an idle cpu will add more delays to the timers than intended
637 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
638 */
get_nohz_timer_target(void)639 int get_nohz_timer_target(void)
640 {
641 int i, cpu = smp_processor_id();
642 struct sched_domain *sd;
643
644 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
645 return cpu;
646
647 rcu_read_lock();
648 for_each_domain(cpu, sd) {
649 for_each_cpu(i, sched_domain_span(sd)) {
650 if (cpu == i)
651 continue;
652
653 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
654 cpu = i;
655 goto unlock;
656 }
657 }
658 }
659
660 if (!is_housekeeping_cpu(cpu))
661 cpu = housekeeping_any_cpu();
662 unlock:
663 rcu_read_unlock();
664 return cpu;
665 }
666 /*
667 * When add_timer_on() enqueues a timer into the timer wheel of an
668 * idle CPU then this timer might expire before the next timer event
669 * which is scheduled to wake up that CPU. In case of a completely
670 * idle system the next event might even be infinite time into the
671 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
672 * leaves the inner idle loop so the newly added timer is taken into
673 * account when the CPU goes back to idle and evaluates the timer
674 * wheel for the next timer event.
675 */
wake_up_idle_cpu(int cpu)676 static void wake_up_idle_cpu(int cpu)
677 {
678 struct rq *rq = cpu_rq(cpu);
679
680 if (cpu == smp_processor_id())
681 return;
682
683 if (set_nr_and_not_polling(rq->idle))
684 smp_send_reschedule(cpu);
685 else
686 trace_sched_wake_idle_without_ipi(cpu);
687 }
688
wake_up_full_nohz_cpu(int cpu)689 static bool wake_up_full_nohz_cpu(int cpu)
690 {
691 /*
692 * We just need the target to call irq_exit() and re-evaluate
693 * the next tick. The nohz full kick at least implies that.
694 * If needed we can still optimize that later with an
695 * empty IRQ.
696 */
697 if (tick_nohz_full_cpu(cpu)) {
698 if (cpu != smp_processor_id() ||
699 tick_nohz_tick_stopped())
700 tick_nohz_full_kick_cpu(cpu);
701 return true;
702 }
703
704 return false;
705 }
706
wake_up_nohz_cpu(int cpu)707 void wake_up_nohz_cpu(int cpu)
708 {
709 if (!wake_up_full_nohz_cpu(cpu))
710 wake_up_idle_cpu(cpu);
711 }
712
got_nohz_idle_kick(void)713 static inline bool got_nohz_idle_kick(void)
714 {
715 int cpu = smp_processor_id();
716
717 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
718 return false;
719
720 if (idle_cpu(cpu) && !need_resched())
721 return true;
722
723 /*
724 * We can't run Idle Load Balance on this CPU for this time so we
725 * cancel it and clear NOHZ_BALANCE_KICK
726 */
727 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
728 return false;
729 }
730
731 #else /* CONFIG_NO_HZ_COMMON */
732
got_nohz_idle_kick(void)733 static inline bool got_nohz_idle_kick(void)
734 {
735 return false;
736 }
737
738 #endif /* CONFIG_NO_HZ_COMMON */
739
740 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(void)741 bool sched_can_stop_tick(void)
742 {
743 /*
744 * FIFO realtime policy runs the highest priority task. Other runnable
745 * tasks are of a lower priority. The scheduler tick does nothing.
746 */
747 if (current->policy == SCHED_FIFO)
748 return true;
749
750 /*
751 * Round-robin realtime tasks time slice with other tasks at the same
752 * realtime priority. Is this task the only one at this priority?
753 */
754 if (current->policy == SCHED_RR) {
755 struct sched_rt_entity *rt_se = ¤t->rt;
756
757 return rt_se->run_list.prev == rt_se->run_list.next;
758 }
759
760 /*
761 * More than one running task need preemption.
762 * nr_running update is assumed to be visible
763 * after IPI is sent from wakers.
764 */
765 if (this_rq()->nr_running > 1)
766 return false;
767
768 return true;
769 }
770 #endif /* CONFIG_NO_HZ_FULL */
771
sched_avg_update(struct rq * rq)772 void sched_avg_update(struct rq *rq)
773 {
774 s64 period = sched_avg_period();
775
776 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
777 /*
778 * Inline assembly required to prevent the compiler
779 * optimising this loop into a divmod call.
780 * See __iter_div_u64_rem() for another example of this.
781 */
782 asm("" : "+rm" (rq->age_stamp));
783 rq->age_stamp += period;
784 rq->rt_avg /= 2;
785 }
786 }
787
788 #endif /* CONFIG_SMP */
789
790 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
791 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
792 /*
793 * Iterate task_group tree rooted at *from, calling @down when first entering a
794 * node and @up when leaving it for the final time.
795 *
796 * Caller must hold rcu_lock or sufficient equivalent.
797 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)798 int walk_tg_tree_from(struct task_group *from,
799 tg_visitor down, tg_visitor up, void *data)
800 {
801 struct task_group *parent, *child;
802 int ret;
803
804 parent = from;
805
806 down:
807 ret = (*down)(parent, data);
808 if (ret)
809 goto out;
810 list_for_each_entry_rcu(child, &parent->children, siblings) {
811 parent = child;
812 goto down;
813
814 up:
815 continue;
816 }
817 ret = (*up)(parent, data);
818 if (ret || parent == from)
819 goto out;
820
821 child = parent;
822 parent = parent->parent;
823 if (parent)
824 goto up;
825 out:
826 return ret;
827 }
828
tg_nop(struct task_group * tg,void * data)829 int tg_nop(struct task_group *tg, void *data)
830 {
831 return 0;
832 }
833 #endif
834
set_load_weight(struct task_struct * p)835 static void set_load_weight(struct task_struct *p)
836 {
837 int prio = p->static_prio - MAX_RT_PRIO;
838 struct load_weight *load = &p->se.load;
839
840 /*
841 * SCHED_IDLE tasks get minimal weight:
842 */
843 if (idle_policy(p->policy)) {
844 load->weight = scale_load(WEIGHT_IDLEPRIO);
845 load->inv_weight = WMULT_IDLEPRIO;
846 return;
847 }
848
849 load->weight = scale_load(prio_to_weight[prio]);
850 load->inv_weight = prio_to_wmult[prio];
851 }
852
enqueue_task(struct rq * rq,struct task_struct * p,int flags)853 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
854 {
855 update_rq_clock(rq);
856 if (!(flags & ENQUEUE_RESTORE))
857 sched_info_queued(rq, p);
858 p->sched_class->enqueue_task(rq, p, flags);
859 }
860
dequeue_task(struct rq * rq,struct task_struct * p,int flags)861 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
862 {
863 update_rq_clock(rq);
864 if (!(flags & DEQUEUE_SAVE))
865 sched_info_dequeued(rq, p);
866 p->sched_class->dequeue_task(rq, p, flags);
867 }
868
activate_task(struct rq * rq,struct task_struct * p,int flags)869 void activate_task(struct rq *rq, struct task_struct *p, int flags)
870 {
871 if (task_contributes_to_load(p))
872 rq->nr_uninterruptible--;
873
874 enqueue_task(rq, p, flags);
875 }
876
deactivate_task(struct rq * rq,struct task_struct * p,int flags)877 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
878 {
879 if (task_contributes_to_load(p))
880 rq->nr_uninterruptible++;
881
882 dequeue_task(rq, p, flags);
883 }
884
update_rq_clock_task(struct rq * rq,s64 delta)885 static void update_rq_clock_task(struct rq *rq, s64 delta)
886 {
887 /*
888 * In theory, the compile should just see 0 here, and optimize out the call
889 * to sched_rt_avg_update. But I don't trust it...
890 */
891 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
892 s64 steal = 0, irq_delta = 0;
893 #endif
894 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
896
897 /*
898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
899 * this case when a previous update_rq_clock() happened inside a
900 * {soft,}irq region.
901 *
902 * When this happens, we stop ->clock_task and only update the
903 * prev_irq_time stamp to account for the part that fit, so that a next
904 * update will consume the rest. This ensures ->clock_task is
905 * monotonic.
906 *
907 * It does however cause some slight miss-attribution of {soft,}irq
908 * time, a more accurate solution would be to update the irq_time using
909 * the current rq->clock timestamp, except that would require using
910 * atomic ops.
911 */
912 if (irq_delta > delta)
913 irq_delta = delta;
914
915 rq->prev_irq_time += irq_delta;
916 delta -= irq_delta;
917 #endif
918 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
919 if (static_key_false((¶virt_steal_rq_enabled))) {
920 steal = paravirt_steal_clock(cpu_of(rq));
921 steal -= rq->prev_steal_time_rq;
922
923 if (unlikely(steal > delta))
924 steal = delta;
925
926 rq->prev_steal_time_rq += steal;
927 delta -= steal;
928 }
929 #endif
930
931 rq->clock_task += delta;
932
933 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
934 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
935 sched_rt_avg_update(rq, irq_delta + steal);
936 #endif
937 }
938
sched_set_stop_task(int cpu,struct task_struct * stop)939 void sched_set_stop_task(int cpu, struct task_struct *stop)
940 {
941 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
942 struct task_struct *old_stop = cpu_rq(cpu)->stop;
943
944 if (stop) {
945 /*
946 * Make it appear like a SCHED_FIFO task, its something
947 * userspace knows about and won't get confused about.
948 *
949 * Also, it will make PI more or less work without too
950 * much confusion -- but then, stop work should not
951 * rely on PI working anyway.
952 */
953 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
954
955 stop->sched_class = &stop_sched_class;
956 }
957
958 cpu_rq(cpu)->stop = stop;
959
960 if (old_stop) {
961 /*
962 * Reset it back to a normal scheduling class so that
963 * it can die in pieces.
964 */
965 old_stop->sched_class = &rt_sched_class;
966 }
967 }
968
969 /*
970 * __normal_prio - return the priority that is based on the static prio
971 */
__normal_prio(struct task_struct * p)972 static inline int __normal_prio(struct task_struct *p)
973 {
974 return p->static_prio;
975 }
976
977 /*
978 * Calculate the expected normal priority: i.e. priority
979 * without taking RT-inheritance into account. Might be
980 * boosted by interactivity modifiers. Changes upon fork,
981 * setprio syscalls, and whenever the interactivity
982 * estimator recalculates.
983 */
normal_prio(struct task_struct * p)984 static inline int normal_prio(struct task_struct *p)
985 {
986 int prio;
987
988 if (task_has_dl_policy(p))
989 prio = MAX_DL_PRIO-1;
990 else if (task_has_rt_policy(p))
991 prio = MAX_RT_PRIO-1 - p->rt_priority;
992 else
993 prio = __normal_prio(p);
994 return prio;
995 }
996
997 /*
998 * Calculate the current priority, i.e. the priority
999 * taken into account by the scheduler. This value might
1000 * be boosted by RT tasks, or might be boosted by
1001 * interactivity modifiers. Will be RT if the task got
1002 * RT-boosted. If not then it returns p->normal_prio.
1003 */
effective_prio(struct task_struct * p)1004 static int effective_prio(struct task_struct *p)
1005 {
1006 p->normal_prio = normal_prio(p);
1007 /*
1008 * If we are RT tasks or we were boosted to RT priority,
1009 * keep the priority unchanged. Otherwise, update priority
1010 * to the normal priority:
1011 */
1012 if (!rt_prio(p->prio))
1013 return p->normal_prio;
1014 return p->prio;
1015 }
1016
1017 /**
1018 * task_curr - is this task currently executing on a CPU?
1019 * @p: the task in question.
1020 *
1021 * Return: 1 if the task is currently executing. 0 otherwise.
1022 */
task_curr(const struct task_struct * p)1023 inline int task_curr(const struct task_struct *p)
1024 {
1025 return cpu_curr(task_cpu(p)) == p;
1026 }
1027
1028 /*
1029 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1030 * use the balance_callback list if you want balancing.
1031 *
1032 * this means any call to check_class_changed() must be followed by a call to
1033 * balance_callback().
1034 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1035 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1036 const struct sched_class *prev_class,
1037 int oldprio)
1038 {
1039 if (prev_class != p->sched_class) {
1040 if (prev_class->switched_from)
1041 prev_class->switched_from(rq, p);
1042
1043 p->sched_class->switched_to(rq, p);
1044 } else if (oldprio != p->prio || dl_task(p))
1045 p->sched_class->prio_changed(rq, p, oldprio);
1046 }
1047
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1048 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1049 {
1050 const struct sched_class *class;
1051
1052 if (p->sched_class == rq->curr->sched_class) {
1053 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1054 } else {
1055 for_each_class(class) {
1056 if (class == rq->curr->sched_class)
1057 break;
1058 if (class == p->sched_class) {
1059 resched_curr(rq);
1060 break;
1061 }
1062 }
1063 }
1064
1065 /*
1066 * A queue event has occurred, and we're going to schedule. In
1067 * this case, we can save a useless back to back clock update.
1068 */
1069 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1070 rq_clock_skip_update(rq, true);
1071 }
1072
1073 #ifdef CONFIG_SMP
1074 /*
1075 * This is how migration works:
1076 *
1077 * 1) we invoke migration_cpu_stop() on the target CPU using
1078 * stop_one_cpu().
1079 * 2) stopper starts to run (implicitly forcing the migrated thread
1080 * off the CPU)
1081 * 3) it checks whether the migrated task is still in the wrong runqueue.
1082 * 4) if it's in the wrong runqueue then the migration thread removes
1083 * it and puts it into the right queue.
1084 * 5) stopper completes and stop_one_cpu() returns and the migration
1085 * is done.
1086 */
1087
1088 /*
1089 * move_queued_task - move a queued task to new rq.
1090 *
1091 * Returns (locked) new rq. Old rq's lock is released.
1092 */
move_queued_task(struct rq * rq,struct task_struct * p,int new_cpu)1093 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1094 {
1095 lockdep_assert_held(&rq->lock);
1096
1097 dequeue_task(rq, p, 0);
1098 p->on_rq = TASK_ON_RQ_MIGRATING;
1099 double_lock_balance(rq, cpu_rq(new_cpu));
1100 set_task_cpu(p, new_cpu);
1101 double_unlock_balance(rq, cpu_rq(new_cpu));
1102 raw_spin_unlock(&rq->lock);
1103
1104 rq = cpu_rq(new_cpu);
1105
1106 raw_spin_lock(&rq->lock);
1107 BUG_ON(task_cpu(p) != new_cpu);
1108 p->on_rq = TASK_ON_RQ_QUEUED;
1109 enqueue_task(rq, p, 0);
1110 check_preempt_curr(rq, p, 0);
1111
1112 return rq;
1113 }
1114
1115 struct migration_arg {
1116 struct task_struct *task;
1117 int dest_cpu;
1118 };
1119
1120 /*
1121 * Move (not current) task off this cpu, onto dest cpu. We're doing
1122 * this because either it can't run here any more (set_cpus_allowed()
1123 * away from this CPU, or CPU going down), or because we're
1124 * attempting to rebalance this task on exec (sched_exec).
1125 *
1126 * So we race with normal scheduler movements, but that's OK, as long
1127 * as the task is no longer on this CPU.
1128 */
__migrate_task(struct rq * rq,struct task_struct * p,int dest_cpu)1129 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1130 {
1131 if (unlikely(!cpu_active(dest_cpu)))
1132 return rq;
1133
1134 /* Affinity changed (again). */
1135 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1136 return rq;
1137
1138 rq = move_queued_task(rq, p, dest_cpu);
1139
1140 return rq;
1141 }
1142
1143 /*
1144 * migration_cpu_stop - this will be executed by a highprio stopper thread
1145 * and performs thread migration by bumping thread off CPU then
1146 * 'pushing' onto another runqueue.
1147 */
migration_cpu_stop(void * data)1148 static int migration_cpu_stop(void *data)
1149 {
1150 struct migration_arg *arg = data;
1151 struct task_struct *p = arg->task;
1152 struct rq *rq = this_rq();
1153
1154 /*
1155 * The original target cpu might have gone down and we might
1156 * be on another cpu but it doesn't matter.
1157 */
1158 local_irq_disable();
1159 /*
1160 * We need to explicitly wake pending tasks before running
1161 * __migrate_task() such that we will not miss enforcing cpus_allowed
1162 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1163 */
1164 sched_ttwu_pending();
1165
1166 raw_spin_lock(&p->pi_lock);
1167 raw_spin_lock(&rq->lock);
1168 /*
1169 * If task_rq(p) != rq, it cannot be migrated here, because we're
1170 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1171 * we're holding p->pi_lock.
1172 */
1173 if (task_rq(p) == rq && task_on_rq_queued(p))
1174 rq = __migrate_task(rq, p, arg->dest_cpu);
1175 raw_spin_unlock(&rq->lock);
1176 raw_spin_unlock(&p->pi_lock);
1177
1178 local_irq_enable();
1179 return 0;
1180 }
1181
1182 /*
1183 * sched_class::set_cpus_allowed must do the below, but is not required to
1184 * actually call this function.
1185 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1186 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1187 {
1188 cpumask_copy(&p->cpus_allowed, new_mask);
1189 p->nr_cpus_allowed = cpumask_weight(new_mask);
1190 }
1191
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1192 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1193 {
1194 struct rq *rq = task_rq(p);
1195 bool queued, running;
1196
1197 lockdep_assert_held(&p->pi_lock);
1198
1199 queued = task_on_rq_queued(p);
1200 running = task_current(rq, p);
1201
1202 if (queued) {
1203 /*
1204 * Because __kthread_bind() calls this on blocked tasks without
1205 * holding rq->lock.
1206 */
1207 lockdep_assert_held(&rq->lock);
1208 dequeue_task(rq, p, DEQUEUE_SAVE);
1209 }
1210 if (running)
1211 put_prev_task(rq, p);
1212
1213 p->sched_class->set_cpus_allowed(p, new_mask);
1214
1215 if (running)
1216 p->sched_class->set_curr_task(rq);
1217 if (queued)
1218 enqueue_task(rq, p, ENQUEUE_RESTORE);
1219 }
1220
1221 /*
1222 * Change a given task's CPU affinity. Migrate the thread to a
1223 * proper CPU and schedule it away if the CPU it's executing on
1224 * is removed from the allowed bitmask.
1225 *
1226 * NOTE: the caller must have a valid reference to the task, the
1227 * task must not exit() & deallocate itself prematurely. The
1228 * call is not atomic; no spinlocks may be held.
1229 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1230 static int __set_cpus_allowed_ptr(struct task_struct *p,
1231 const struct cpumask *new_mask, bool check)
1232 {
1233 unsigned long flags;
1234 struct rq *rq;
1235 unsigned int dest_cpu;
1236 int ret = 0;
1237
1238 rq = task_rq_lock(p, &flags);
1239
1240 /*
1241 * Must re-check here, to close a race against __kthread_bind(),
1242 * sched_setaffinity() is not guaranteed to observe the flag.
1243 */
1244 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1245 ret = -EINVAL;
1246 goto out;
1247 }
1248
1249 if (cpumask_equal(&p->cpus_allowed, new_mask))
1250 goto out;
1251
1252 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1253 ret = -EINVAL;
1254 goto out;
1255 }
1256
1257 do_set_cpus_allowed(p, new_mask);
1258
1259 /* Can the task run on the task's current CPU? If so, we're done */
1260 if (cpumask_test_cpu(task_cpu(p), new_mask))
1261 goto out;
1262
1263 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1264 if (task_running(rq, p) || p->state == TASK_WAKING) {
1265 struct migration_arg arg = { p, dest_cpu };
1266 /* Need help from migration thread: drop lock and wait. */
1267 task_rq_unlock(rq, p, &flags);
1268 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1269 tlb_migrate_finish(p->mm);
1270 return 0;
1271 } else if (task_on_rq_queued(p)) {
1272 /*
1273 * OK, since we're going to drop the lock immediately
1274 * afterwards anyway.
1275 */
1276 lockdep_unpin_lock(&rq->lock);
1277 rq = move_queued_task(rq, p, dest_cpu);
1278 lockdep_pin_lock(&rq->lock);
1279 }
1280 out:
1281 task_rq_unlock(rq, p, &flags);
1282
1283 return ret;
1284 }
1285
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1286 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1287 {
1288 return __set_cpus_allowed_ptr(p, new_mask, false);
1289 }
1290 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1291
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1292 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1293 {
1294 #ifdef CONFIG_SCHED_DEBUG
1295 /*
1296 * We should never call set_task_cpu() on a blocked task,
1297 * ttwu() will sort out the placement.
1298 */
1299 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1300 !p->on_rq);
1301
1302 #ifdef CONFIG_LOCKDEP
1303 /*
1304 * The caller should hold either p->pi_lock or rq->lock, when changing
1305 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1306 *
1307 * sched_move_task() holds both and thus holding either pins the cgroup,
1308 * see task_group().
1309 *
1310 * Furthermore, all task_rq users should acquire both locks, see
1311 * task_rq_lock().
1312 */
1313 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1314 lockdep_is_held(&task_rq(p)->lock)));
1315 #endif
1316 #endif
1317
1318 trace_sched_migrate_task(p, new_cpu);
1319
1320 if (task_cpu(p) != new_cpu) {
1321 if (p->sched_class->migrate_task_rq)
1322 p->sched_class->migrate_task_rq(p);
1323 p->se.nr_migrations++;
1324 perf_event_task_migrate(p);
1325
1326 walt_fixup_busy_time(p, new_cpu);
1327 }
1328
1329 __set_task_cpu(p, new_cpu);
1330 }
1331
__migrate_swap_task(struct task_struct * p,int cpu)1332 static void __migrate_swap_task(struct task_struct *p, int cpu)
1333 {
1334 if (task_on_rq_queued(p)) {
1335 struct rq *src_rq, *dst_rq;
1336
1337 src_rq = task_rq(p);
1338 dst_rq = cpu_rq(cpu);
1339
1340 deactivate_task(src_rq, p, 0);
1341 p->on_rq = TASK_ON_RQ_MIGRATING;
1342 set_task_cpu(p, cpu);
1343 p->on_rq = TASK_ON_RQ_QUEUED;
1344 activate_task(dst_rq, p, 0);
1345 check_preempt_curr(dst_rq, p, 0);
1346 } else {
1347 /*
1348 * Task isn't running anymore; make it appear like we migrated
1349 * it before it went to sleep. This means on wakeup we make the
1350 * previous cpu our targer instead of where it really is.
1351 */
1352 p->wake_cpu = cpu;
1353 }
1354 }
1355
1356 struct migration_swap_arg {
1357 struct task_struct *src_task, *dst_task;
1358 int src_cpu, dst_cpu;
1359 };
1360
migrate_swap_stop(void * data)1361 static int migrate_swap_stop(void *data)
1362 {
1363 struct migration_swap_arg *arg = data;
1364 struct rq *src_rq, *dst_rq;
1365 int ret = -EAGAIN;
1366
1367 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1368 return -EAGAIN;
1369
1370 src_rq = cpu_rq(arg->src_cpu);
1371 dst_rq = cpu_rq(arg->dst_cpu);
1372
1373 double_raw_lock(&arg->src_task->pi_lock,
1374 &arg->dst_task->pi_lock);
1375 double_rq_lock(src_rq, dst_rq);
1376
1377 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1378 goto unlock;
1379
1380 if (task_cpu(arg->src_task) != arg->src_cpu)
1381 goto unlock;
1382
1383 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1384 goto unlock;
1385
1386 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1387 goto unlock;
1388
1389 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1390 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1391
1392 ret = 0;
1393
1394 unlock:
1395 double_rq_unlock(src_rq, dst_rq);
1396 raw_spin_unlock(&arg->dst_task->pi_lock);
1397 raw_spin_unlock(&arg->src_task->pi_lock);
1398
1399 return ret;
1400 }
1401
1402 /*
1403 * Cross migrate two tasks
1404 */
migrate_swap(struct task_struct * cur,struct task_struct * p)1405 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1406 {
1407 struct migration_swap_arg arg;
1408 int ret = -EINVAL;
1409
1410 arg = (struct migration_swap_arg){
1411 .src_task = cur,
1412 .src_cpu = task_cpu(cur),
1413 .dst_task = p,
1414 .dst_cpu = task_cpu(p),
1415 };
1416
1417 if (arg.src_cpu == arg.dst_cpu)
1418 goto out;
1419
1420 /*
1421 * These three tests are all lockless; this is OK since all of them
1422 * will be re-checked with proper locks held further down the line.
1423 */
1424 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1425 goto out;
1426
1427 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1428 goto out;
1429
1430 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1431 goto out;
1432
1433 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1434 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1435
1436 out:
1437 return ret;
1438 }
1439
1440 /*
1441 * wait_task_inactive - wait for a thread to unschedule.
1442 *
1443 * If @match_state is nonzero, it's the @p->state value just checked and
1444 * not expected to change. If it changes, i.e. @p might have woken up,
1445 * then return zero. When we succeed in waiting for @p to be off its CPU,
1446 * we return a positive number (its total switch count). If a second call
1447 * a short while later returns the same number, the caller can be sure that
1448 * @p has remained unscheduled the whole time.
1449 *
1450 * The caller must ensure that the task *will* unschedule sometime soon,
1451 * else this function might spin for a *long* time. This function can't
1452 * be called with interrupts off, or it may introduce deadlock with
1453 * smp_call_function() if an IPI is sent by the same process we are
1454 * waiting to become inactive.
1455 */
wait_task_inactive(struct task_struct * p,long match_state)1456 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1457 {
1458 unsigned long flags;
1459 int running, queued;
1460 unsigned long ncsw;
1461 struct rq *rq;
1462
1463 for (;;) {
1464 /*
1465 * We do the initial early heuristics without holding
1466 * any task-queue locks at all. We'll only try to get
1467 * the runqueue lock when things look like they will
1468 * work out!
1469 */
1470 rq = task_rq(p);
1471
1472 /*
1473 * If the task is actively running on another CPU
1474 * still, just relax and busy-wait without holding
1475 * any locks.
1476 *
1477 * NOTE! Since we don't hold any locks, it's not
1478 * even sure that "rq" stays as the right runqueue!
1479 * But we don't care, since "task_running()" will
1480 * return false if the runqueue has changed and p
1481 * is actually now running somewhere else!
1482 */
1483 while (task_running(rq, p)) {
1484 if (match_state && unlikely(p->state != match_state))
1485 return 0;
1486 cpu_relax();
1487 }
1488
1489 /*
1490 * Ok, time to look more closely! We need the rq
1491 * lock now, to be *sure*. If we're wrong, we'll
1492 * just go back and repeat.
1493 */
1494 rq = task_rq_lock(p, &flags);
1495 trace_sched_wait_task(p);
1496 running = task_running(rq, p);
1497 queued = task_on_rq_queued(p);
1498 ncsw = 0;
1499 if (!match_state || p->state == match_state)
1500 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1501 task_rq_unlock(rq, p, &flags);
1502
1503 /*
1504 * If it changed from the expected state, bail out now.
1505 */
1506 if (unlikely(!ncsw))
1507 break;
1508
1509 /*
1510 * Was it really running after all now that we
1511 * checked with the proper locks actually held?
1512 *
1513 * Oops. Go back and try again..
1514 */
1515 if (unlikely(running)) {
1516 cpu_relax();
1517 continue;
1518 }
1519
1520 /*
1521 * It's not enough that it's not actively running,
1522 * it must be off the runqueue _entirely_, and not
1523 * preempted!
1524 *
1525 * So if it was still runnable (but just not actively
1526 * running right now), it's preempted, and we should
1527 * yield - it could be a while.
1528 */
1529 if (unlikely(queued)) {
1530 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1531
1532 set_current_state(TASK_UNINTERRUPTIBLE);
1533 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1534 continue;
1535 }
1536
1537 /*
1538 * Ahh, all good. It wasn't running, and it wasn't
1539 * runnable, which means that it will never become
1540 * running in the future either. We're all done!
1541 */
1542 break;
1543 }
1544
1545 return ncsw;
1546 }
1547
1548 /***
1549 * kick_process - kick a running thread to enter/exit the kernel
1550 * @p: the to-be-kicked thread
1551 *
1552 * Cause a process which is running on another CPU to enter
1553 * kernel-mode, without any delay. (to get signals handled.)
1554 *
1555 * NOTE: this function doesn't have to take the runqueue lock,
1556 * because all it wants to ensure is that the remote task enters
1557 * the kernel. If the IPI races and the task has been migrated
1558 * to another CPU then no harm is done and the purpose has been
1559 * achieved as well.
1560 */
kick_process(struct task_struct * p)1561 void kick_process(struct task_struct *p)
1562 {
1563 int cpu;
1564
1565 preempt_disable();
1566 cpu = task_cpu(p);
1567 if ((cpu != smp_processor_id()) && task_curr(p))
1568 smp_send_reschedule(cpu);
1569 preempt_enable();
1570 }
1571 EXPORT_SYMBOL_GPL(kick_process);
1572
1573 /*
1574 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1575 */
select_fallback_rq(int cpu,struct task_struct * p)1576 static int select_fallback_rq(int cpu, struct task_struct *p)
1577 {
1578 int nid = cpu_to_node(cpu);
1579 const struct cpumask *nodemask = NULL;
1580 enum { cpuset, possible, fail } state = cpuset;
1581 int dest_cpu;
1582
1583 /*
1584 * If the node that the cpu is on has been offlined, cpu_to_node()
1585 * will return -1. There is no cpu on the node, and we should
1586 * select the cpu on the other node.
1587 */
1588 if (nid != -1) {
1589 nodemask = cpumask_of_node(nid);
1590
1591 /* Look for allowed, online CPU in same node. */
1592 for_each_cpu(dest_cpu, nodemask) {
1593 if (!cpu_online(dest_cpu))
1594 continue;
1595 if (!cpu_active(dest_cpu))
1596 continue;
1597 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1598 return dest_cpu;
1599 }
1600 }
1601
1602 for (;;) {
1603 /* Any allowed, online CPU? */
1604 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1605 if (!cpu_online(dest_cpu))
1606 continue;
1607 if (!cpu_active(dest_cpu))
1608 continue;
1609 goto out;
1610 }
1611
1612 /* No more Mr. Nice Guy. */
1613 switch (state) {
1614 case cpuset:
1615 if (IS_ENABLED(CONFIG_CPUSETS)) {
1616 cpuset_cpus_allowed_fallback(p);
1617 state = possible;
1618 break;
1619 }
1620 /* fall-through */
1621 case possible:
1622 do_set_cpus_allowed(p, cpu_possible_mask);
1623 state = fail;
1624 break;
1625
1626 case fail:
1627 BUG();
1628 break;
1629 }
1630 }
1631
1632 out:
1633 if (state != cpuset) {
1634 /*
1635 * Don't tell them about moving exiting tasks or
1636 * kernel threads (both mm NULL), since they never
1637 * leave kernel.
1638 */
1639 if (p->mm && printk_ratelimit()) {
1640 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1641 task_pid_nr(p), p->comm, cpu);
1642 }
1643 }
1644
1645 return dest_cpu;
1646 }
1647
1648 /*
1649 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1650 */
1651 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags,int sibling_count_hint)1652 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags,
1653 int sibling_count_hint)
1654 {
1655 lockdep_assert_held(&p->pi_lock);
1656
1657 if (p->nr_cpus_allowed > 1)
1658 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags,
1659 sibling_count_hint);
1660
1661 /*
1662 * In order not to call set_task_cpu() on a blocking task we need
1663 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1664 * cpu.
1665 *
1666 * Since this is common to all placement strategies, this lives here.
1667 *
1668 * [ this allows ->select_task() to simply return task_cpu(p) and
1669 * not worry about this generic constraint ]
1670 */
1671 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1672 !cpu_online(cpu)))
1673 cpu = select_fallback_rq(task_cpu(p), p);
1674
1675 return cpu;
1676 }
1677
update_avg(u64 * avg,u64 sample)1678 static void update_avg(u64 *avg, u64 sample)
1679 {
1680 s64 diff = sample - *avg;
1681 *avg += diff >> 3;
1682 }
1683
1684 #else
1685
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1686 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1687 const struct cpumask *new_mask, bool check)
1688 {
1689 return set_cpus_allowed_ptr(p, new_mask);
1690 }
1691
1692 #endif /* CONFIG_SMP */
1693
1694 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1695 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1696 {
1697 #ifdef CONFIG_SCHEDSTATS
1698 struct rq *rq = this_rq();
1699
1700 #ifdef CONFIG_SMP
1701 int this_cpu = smp_processor_id();
1702
1703 if (cpu == this_cpu) {
1704 schedstat_inc(rq, ttwu_local);
1705 schedstat_inc(p, se.statistics.nr_wakeups_local);
1706 } else {
1707 struct sched_domain *sd;
1708
1709 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1710 rcu_read_lock();
1711 for_each_domain(this_cpu, sd) {
1712 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1713 schedstat_inc(sd, ttwu_wake_remote);
1714 break;
1715 }
1716 }
1717 rcu_read_unlock();
1718 }
1719
1720 if (wake_flags & WF_MIGRATED)
1721 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1722
1723 #endif /* CONFIG_SMP */
1724
1725 schedstat_inc(rq, ttwu_count);
1726 schedstat_inc(p, se.statistics.nr_wakeups);
1727
1728 if (wake_flags & WF_SYNC)
1729 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1730
1731 #endif /* CONFIG_SCHEDSTATS */
1732 }
1733
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1734 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1735 {
1736 activate_task(rq, p, en_flags);
1737 p->on_rq = TASK_ON_RQ_QUEUED;
1738
1739 /* if a worker is waking up, notify workqueue */
1740 if (p->flags & PF_WQ_WORKER)
1741 wq_worker_waking_up(p, cpu_of(rq));
1742 }
1743
1744 /*
1745 * Mark the task runnable and perform wakeup-preemption.
1746 */
1747 static void
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)1748 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1749 {
1750 check_preempt_curr(rq, p, wake_flags);
1751 p->state = TASK_RUNNING;
1752 trace_sched_wakeup(p);
1753
1754 #ifdef CONFIG_SMP
1755 if (p->sched_class->task_woken) {
1756 /*
1757 * Our task @p is fully woken up and running; so its safe to
1758 * drop the rq->lock, hereafter rq is only used for statistics.
1759 */
1760 lockdep_unpin_lock(&rq->lock);
1761 p->sched_class->task_woken(rq, p);
1762 lockdep_pin_lock(&rq->lock);
1763 }
1764
1765 if (rq->idle_stamp) {
1766 u64 delta = rq_clock(rq) - rq->idle_stamp;
1767 u64 max = 2*rq->max_idle_balance_cost;
1768
1769 update_avg(&rq->avg_idle, delta);
1770
1771 if (rq->avg_idle > max)
1772 rq->avg_idle = max;
1773
1774 rq->idle_stamp = 0;
1775 }
1776 #endif
1777 }
1778
1779 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags)1780 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1781 {
1782 lockdep_assert_held(&rq->lock);
1783
1784 #ifdef CONFIG_SMP
1785 if (p->sched_contributes_to_load)
1786 rq->nr_uninterruptible--;
1787 #endif
1788
1789 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1790 ttwu_do_wakeup(rq, p, wake_flags);
1791 }
1792
1793 /*
1794 * Called in case the task @p isn't fully descheduled from its runqueue,
1795 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1796 * since all we need to do is flip p->state to TASK_RUNNING, since
1797 * the task is still ->on_rq.
1798 */
ttwu_remote(struct task_struct * p,int wake_flags)1799 static int ttwu_remote(struct task_struct *p, int wake_flags)
1800 {
1801 struct rq *rq;
1802 int ret = 0;
1803
1804 rq = __task_rq_lock(p);
1805 if (task_on_rq_queued(p)) {
1806 /* check_preempt_curr() may use rq clock */
1807 update_rq_clock(rq);
1808 ttwu_do_wakeup(rq, p, wake_flags);
1809 ret = 1;
1810 }
1811 __task_rq_unlock(rq);
1812
1813 return ret;
1814 }
1815
1816 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1817 void sched_ttwu_pending(void)
1818 {
1819 struct rq *rq = this_rq();
1820 struct llist_node *llist = llist_del_all(&rq->wake_list);
1821 struct task_struct *p;
1822 unsigned long flags;
1823
1824 if (!llist)
1825 return;
1826
1827 raw_spin_lock_irqsave(&rq->lock, flags);
1828 lockdep_pin_lock(&rq->lock);
1829
1830 while (llist) {
1831 p = llist_entry(llist, struct task_struct, wake_entry);
1832 llist = llist_next(llist);
1833 ttwu_do_activate(rq, p, 0);
1834 }
1835
1836 lockdep_unpin_lock(&rq->lock);
1837 raw_spin_unlock_irqrestore(&rq->lock, flags);
1838 }
1839
scheduler_ipi(void)1840 void scheduler_ipi(void)
1841 {
1842 /*
1843 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1844 * TIF_NEED_RESCHED remotely (for the first time) will also send
1845 * this IPI.
1846 */
1847 preempt_fold_need_resched();
1848
1849 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1850 return;
1851
1852 /*
1853 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1854 * traditionally all their work was done from the interrupt return
1855 * path. Now that we actually do some work, we need to make sure
1856 * we do call them.
1857 *
1858 * Some archs already do call them, luckily irq_enter/exit nest
1859 * properly.
1860 *
1861 * Arguably we should visit all archs and update all handlers,
1862 * however a fair share of IPIs are still resched only so this would
1863 * somewhat pessimize the simple resched case.
1864 */
1865 irq_enter();
1866 sched_ttwu_pending();
1867
1868 /*
1869 * Check if someone kicked us for doing the nohz idle load balance.
1870 */
1871 if (unlikely(got_nohz_idle_kick())) {
1872 this_rq()->idle_balance = 1;
1873 raise_softirq_irqoff(SCHED_SOFTIRQ);
1874 }
1875 irq_exit();
1876 }
1877
ttwu_queue_remote(struct task_struct * p,int cpu)1878 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1879 {
1880 struct rq *rq = cpu_rq(cpu);
1881
1882 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1883 if (!set_nr_if_polling(rq->idle))
1884 smp_send_reschedule(cpu);
1885 else
1886 trace_sched_wake_idle_without_ipi(cpu);
1887 }
1888 }
1889
wake_up_if_idle(int cpu)1890 void wake_up_if_idle(int cpu)
1891 {
1892 struct rq *rq = cpu_rq(cpu);
1893 unsigned long flags;
1894
1895 rcu_read_lock();
1896
1897 if (!is_idle_task(rcu_dereference(rq->curr)))
1898 goto out;
1899
1900 if (set_nr_if_polling(rq->idle)) {
1901 trace_sched_wake_idle_without_ipi(cpu);
1902 } else {
1903 raw_spin_lock_irqsave(&rq->lock, flags);
1904 if (is_idle_task(rq->curr))
1905 smp_send_reschedule(cpu);
1906 /* Else cpu is not in idle, do nothing here */
1907 raw_spin_unlock_irqrestore(&rq->lock, flags);
1908 }
1909
1910 out:
1911 rcu_read_unlock();
1912 }
1913
cpus_share_cache(int this_cpu,int that_cpu)1914 bool cpus_share_cache(int this_cpu, int that_cpu)
1915 {
1916 if (this_cpu == that_cpu)
1917 return true;
1918
1919 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1920 }
1921 #endif /* CONFIG_SMP */
1922
ttwu_queue(struct task_struct * p,int cpu)1923 static void ttwu_queue(struct task_struct *p, int cpu)
1924 {
1925 struct rq *rq = cpu_rq(cpu);
1926
1927 #if defined(CONFIG_SMP)
1928 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1929 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1930 ttwu_queue_remote(p, cpu);
1931 return;
1932 }
1933 #endif
1934
1935 raw_spin_lock(&rq->lock);
1936 lockdep_pin_lock(&rq->lock);
1937 ttwu_do_activate(rq, p, 0);
1938 lockdep_unpin_lock(&rq->lock);
1939 raw_spin_unlock(&rq->lock);
1940 }
1941
1942 /**
1943 * try_to_wake_up - wake up a thread
1944 * @p: the thread to be awakened
1945 * @state: the mask of task states that can be woken
1946 * @wake_flags: wake modifier flags (WF_*)
1947 * @sibling_count_hint: A hint at the number of threads that are being woken up
1948 * in this event.
1949 *
1950 * Put it on the run-queue if it's not already there. The "current"
1951 * thread is always on the run-queue (except when the actual
1952 * re-schedule is in progress), and as such you're allowed to do
1953 * the simpler "current->state = TASK_RUNNING" to mark yourself
1954 * runnable without the overhead of this.
1955 *
1956 * Return: %true if @p was woken up, %false if it was already running.
1957 * or @state didn't match @p's state.
1958 */
1959 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags,int sibling_count_hint)1960 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags,
1961 int sibling_count_hint)
1962 {
1963 unsigned long flags;
1964 int cpu, success = 0;
1965 #ifdef CONFIG_SMP
1966 struct rq *rq;
1967 u64 wallclock;
1968 #endif
1969
1970 /*
1971 * If we are going to wake up a thread waiting for CONDITION we
1972 * need to ensure that CONDITION=1 done by the caller can not be
1973 * reordered with p->state check below. This pairs with mb() in
1974 * set_current_state() the waiting thread does.
1975 */
1976 smp_mb__before_spinlock();
1977 raw_spin_lock_irqsave(&p->pi_lock, flags);
1978 if (!(p->state & state))
1979 goto out;
1980
1981 trace_sched_waking(p);
1982
1983 success = 1; /* we're going to change ->state */
1984 cpu = task_cpu(p);
1985
1986 /*
1987 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1988 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1989 * in smp_cond_load_acquire() below.
1990 *
1991 * sched_ttwu_pending() try_to_wake_up()
1992 * [S] p->on_rq = 1; [L] P->state
1993 * UNLOCK rq->lock -----.
1994 * \
1995 * +--- RMB
1996 * schedule() /
1997 * LOCK rq->lock -----'
1998 * UNLOCK rq->lock
1999 *
2000 * [task p]
2001 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2002 *
2003 * Pairs with the UNLOCK+LOCK on rq->lock from the
2004 * last wakeup of our task and the schedule that got our task
2005 * current.
2006 */
2007 smp_rmb();
2008 if (p->on_rq && ttwu_remote(p, wake_flags))
2009 goto stat;
2010
2011 #ifdef CONFIG_SMP
2012 /*
2013 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2014 * possible to, falsely, observe p->on_cpu == 0.
2015 *
2016 * One must be running (->on_cpu == 1) in order to remove oneself
2017 * from the runqueue.
2018 *
2019 * [S] ->on_cpu = 1; [L] ->on_rq
2020 * UNLOCK rq->lock
2021 * RMB
2022 * LOCK rq->lock
2023 * [S] ->on_rq = 0; [L] ->on_cpu
2024 *
2025 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2026 * from the consecutive calls to schedule(); the first switching to our
2027 * task, the second putting it to sleep.
2028 */
2029 smp_rmb();
2030
2031 /*
2032 * If the owning (remote) cpu is still in the middle of schedule() with
2033 * this task as prev, wait until its done referencing the task.
2034 */
2035 while (p->on_cpu)
2036 cpu_relax();
2037 /*
2038 * Combined with the control dependency above, we have an effective
2039 * smp_load_acquire() without the need for full barriers.
2040 *
2041 * Pairs with the smp_store_release() in finish_lock_switch().
2042 *
2043 * This ensures that tasks getting woken will be fully ordered against
2044 * their previous state and preserve Program Order.
2045 */
2046 smp_rmb();
2047
2048 rq = cpu_rq(task_cpu(p));
2049
2050 raw_spin_lock(&rq->lock);
2051 wallclock = walt_ktime_clock();
2052 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2053 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2054 raw_spin_unlock(&rq->lock);
2055
2056 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2057 p->state = TASK_WAKING;
2058
2059 if (p->sched_class->task_waking)
2060 p->sched_class->task_waking(p);
2061
2062 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags,
2063 sibling_count_hint);
2064 if (task_cpu(p) != cpu) {
2065 wake_flags |= WF_MIGRATED;
2066 set_task_cpu(p, cpu);
2067 }
2068
2069 #endif /* CONFIG_SMP */
2070
2071 ttwu_queue(p, cpu);
2072 stat:
2073 ttwu_stat(p, cpu, wake_flags);
2074 out:
2075 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2076
2077 return success;
2078 }
2079
2080 /**
2081 * try_to_wake_up_local - try to wake up a local task with rq lock held
2082 * @p: the thread to be awakened
2083 *
2084 * Put @p on the run-queue if it's not already there. The caller must
2085 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2086 * the current task.
2087 */
try_to_wake_up_local(struct task_struct * p)2088 static void try_to_wake_up_local(struct task_struct *p)
2089 {
2090 struct rq *rq = task_rq(p);
2091
2092 if (WARN_ON_ONCE(rq != this_rq()) ||
2093 WARN_ON_ONCE(p == current))
2094 return;
2095
2096 lockdep_assert_held(&rq->lock);
2097
2098 if (!raw_spin_trylock(&p->pi_lock)) {
2099 /*
2100 * This is OK, because current is on_cpu, which avoids it being
2101 * picked for load-balance and preemption/IRQs are still
2102 * disabled avoiding further scheduler activity on it and we've
2103 * not yet picked a replacement task.
2104 */
2105 lockdep_unpin_lock(&rq->lock);
2106 raw_spin_unlock(&rq->lock);
2107 raw_spin_lock(&p->pi_lock);
2108 raw_spin_lock(&rq->lock);
2109 lockdep_pin_lock(&rq->lock);
2110 }
2111
2112 if (!(p->state & TASK_NORMAL))
2113 goto out;
2114
2115 trace_sched_waking(p);
2116
2117 if (!task_on_rq_queued(p)) {
2118 u64 wallclock = walt_ktime_clock();
2119
2120 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2121 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2122 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2123 }
2124
2125 ttwu_do_wakeup(rq, p, 0);
2126 ttwu_stat(p, smp_processor_id(), 0);
2127 out:
2128 raw_spin_unlock(&p->pi_lock);
2129 }
2130
2131 /**
2132 * wake_up_process - Wake up a specific process
2133 * @p: The process to be woken up.
2134 *
2135 * Attempt to wake up the nominated process and move it to the set of runnable
2136 * processes.
2137 *
2138 * Return: 1 if the process was woken up, 0 if it was already running.
2139 *
2140 * It may be assumed that this function implies a write memory barrier before
2141 * changing the task state if and only if any tasks are woken up.
2142 */
wake_up_process(struct task_struct * p)2143 int wake_up_process(struct task_struct *p)
2144 {
2145 return try_to_wake_up(p, TASK_NORMAL, 0, 1);
2146 }
2147 EXPORT_SYMBOL(wake_up_process);
2148
wake_up_state(struct task_struct * p,unsigned int state)2149 int wake_up_state(struct task_struct *p, unsigned int state)
2150 {
2151 return try_to_wake_up(p, state, 0, 1);
2152 }
2153
2154 /*
2155 * This function clears the sched_dl_entity static params.
2156 */
__dl_clear_params(struct task_struct * p)2157 void __dl_clear_params(struct task_struct *p)
2158 {
2159 struct sched_dl_entity *dl_se = &p->dl;
2160
2161 dl_se->dl_runtime = 0;
2162 dl_se->dl_deadline = 0;
2163 dl_se->dl_period = 0;
2164 dl_se->flags = 0;
2165 dl_se->dl_bw = 0;
2166 dl_se->dl_density = 0;
2167
2168 dl_se->dl_throttled = 0;
2169 dl_se->dl_new = 1;
2170 dl_se->dl_yielded = 0;
2171 }
2172
2173 /*
2174 * Perform scheduler related setup for a newly forked process p.
2175 * p is forked by current.
2176 *
2177 * __sched_fork() is basic setup used by init_idle() too:
2178 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2179 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2180 {
2181 p->on_rq = 0;
2182
2183 p->se.on_rq = 0;
2184 p->se.exec_start = 0;
2185 p->se.sum_exec_runtime = 0;
2186 p->se.prev_sum_exec_runtime = 0;
2187 p->se.nr_migrations = 0;
2188 p->se.vruntime = 0;
2189 #ifdef CONFIG_SCHED_WALT
2190 p->last_sleep_ts = 0;
2191 #endif
2192
2193 INIT_LIST_HEAD(&p->se.group_node);
2194 walt_init_new_task_load(p);
2195
2196 #ifdef CONFIG_FAIR_GROUP_SCHED
2197 p->se.cfs_rq = NULL;
2198 #endif
2199
2200 #ifdef CONFIG_SCHEDSTATS
2201 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2202 #endif
2203
2204 RB_CLEAR_NODE(&p->dl.rb_node);
2205 init_dl_task_timer(&p->dl);
2206 __dl_clear_params(p);
2207
2208 init_rt_schedtune_timer(&p->rt);
2209 INIT_LIST_HEAD(&p->rt.run_list);
2210
2211 #ifdef CONFIG_PREEMPT_NOTIFIERS
2212 INIT_HLIST_HEAD(&p->preempt_notifiers);
2213 #endif
2214
2215 #ifdef CONFIG_NUMA_BALANCING
2216 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2217 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2218 p->mm->numa_scan_seq = 0;
2219 }
2220
2221 if (clone_flags & CLONE_VM)
2222 p->numa_preferred_nid = current->numa_preferred_nid;
2223 else
2224 p->numa_preferred_nid = -1;
2225
2226 p->node_stamp = 0ULL;
2227 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2228 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2229 p->numa_work.next = &p->numa_work;
2230 p->numa_faults = NULL;
2231 p->last_task_numa_placement = 0;
2232 p->last_sum_exec_runtime = 0;
2233
2234 p->numa_group = NULL;
2235 #endif /* CONFIG_NUMA_BALANCING */
2236 }
2237
2238 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2239
2240 #ifdef CONFIG_NUMA_BALANCING
2241
set_numabalancing_state(bool enabled)2242 void set_numabalancing_state(bool enabled)
2243 {
2244 if (enabled)
2245 static_branch_enable(&sched_numa_balancing);
2246 else
2247 static_branch_disable(&sched_numa_balancing);
2248 }
2249
2250 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2251 int sysctl_numa_balancing(struct ctl_table *table, int write,
2252 void __user *buffer, size_t *lenp, loff_t *ppos)
2253 {
2254 struct ctl_table t;
2255 int err;
2256 int state = static_branch_likely(&sched_numa_balancing);
2257
2258 if (write && !capable(CAP_SYS_ADMIN))
2259 return -EPERM;
2260
2261 t = *table;
2262 t.data = &state;
2263 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2264 if (err < 0)
2265 return err;
2266 if (write)
2267 set_numabalancing_state(state);
2268 return err;
2269 }
2270 #endif
2271 #endif
2272
2273 /*
2274 * fork()/clone()-time setup:
2275 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2276 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2277 {
2278 unsigned long flags;
2279 int cpu = get_cpu();
2280
2281 __sched_fork(clone_flags, p);
2282 /*
2283 * We mark the process as NEW here. This guarantees that
2284 * nobody will actually run it, and a signal or other external
2285 * event cannot wake it up and insert it on the runqueue either.
2286 */
2287 p->state = TASK_NEW;
2288
2289 /*
2290 * Make sure we do not leak PI boosting priority to the child.
2291 */
2292 p->prio = current->normal_prio;
2293
2294 /*
2295 * Revert to default priority/policy on fork if requested.
2296 */
2297 if (unlikely(p->sched_reset_on_fork)) {
2298 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2299 p->policy = SCHED_NORMAL;
2300 p->static_prio = NICE_TO_PRIO(0);
2301 p->rt_priority = 0;
2302 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2303 p->static_prio = NICE_TO_PRIO(0);
2304
2305 p->prio = p->normal_prio = __normal_prio(p);
2306 set_load_weight(p);
2307
2308 /*
2309 * We don't need the reset flag anymore after the fork. It has
2310 * fulfilled its duty:
2311 */
2312 p->sched_reset_on_fork = 0;
2313 }
2314
2315 if (dl_prio(p->prio)) {
2316 put_cpu();
2317 return -EAGAIN;
2318 } else if (rt_prio(p->prio)) {
2319 p->sched_class = &rt_sched_class;
2320 } else {
2321 p->sched_class = &fair_sched_class;
2322 }
2323
2324 init_entity_runnable_average(&p->se);
2325
2326 /*
2327 * The child is not yet in the pid-hash so no cgroup attach races,
2328 * and the cgroup is pinned to this child due to cgroup_fork()
2329 * is ran before sched_fork().
2330 *
2331 * Silence PROVE_RCU.
2332 */
2333 raw_spin_lock_irqsave(&p->pi_lock, flags);
2334 /*
2335 * We're setting the cpu for the first time, we don't migrate,
2336 * so use __set_task_cpu().
2337 */
2338 __set_task_cpu(p, cpu);
2339 if (p->sched_class->task_fork)
2340 p->sched_class->task_fork(p);
2341 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2342
2343 #ifdef CONFIG_SCHED_INFO
2344 if (likely(sched_info_on()))
2345 memset(&p->sched_info, 0, sizeof(p->sched_info));
2346 #endif
2347 #if defined(CONFIG_SMP)
2348 p->on_cpu = 0;
2349 #endif
2350 init_task_preempt_count(p);
2351 #ifdef CONFIG_SMP
2352 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2353 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2354 #endif
2355
2356 put_cpu();
2357 return 0;
2358 }
2359
to_ratio(u64 period,u64 runtime)2360 unsigned long to_ratio(u64 period, u64 runtime)
2361 {
2362 if (runtime == RUNTIME_INF)
2363 return 1ULL << 20;
2364
2365 /*
2366 * Doing this here saves a lot of checks in all
2367 * the calling paths, and returning zero seems
2368 * safe for them anyway.
2369 */
2370 if (period == 0)
2371 return 0;
2372
2373 return div64_u64(runtime << 20, period);
2374 }
2375
2376 #ifdef CONFIG_SMP
dl_bw_of(int i)2377 inline struct dl_bw *dl_bw_of(int i)
2378 {
2379 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2380 "sched RCU must be held");
2381 return &cpu_rq(i)->rd->dl_bw;
2382 }
2383
dl_bw_cpus(int i)2384 static inline int dl_bw_cpus(int i)
2385 {
2386 struct root_domain *rd = cpu_rq(i)->rd;
2387 int cpus = 0;
2388
2389 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2390 "sched RCU must be held");
2391 for_each_cpu_and(i, rd->span, cpu_active_mask)
2392 cpus++;
2393
2394 return cpus;
2395 }
2396 #else
dl_bw_of(int i)2397 inline struct dl_bw *dl_bw_of(int i)
2398 {
2399 return &cpu_rq(i)->dl.dl_bw;
2400 }
2401
dl_bw_cpus(int i)2402 static inline int dl_bw_cpus(int i)
2403 {
2404 return 1;
2405 }
2406 #endif
2407
2408 /*
2409 * We must be sure that accepting a new task (or allowing changing the
2410 * parameters of an existing one) is consistent with the bandwidth
2411 * constraints. If yes, this function also accordingly updates the currently
2412 * allocated bandwidth to reflect the new situation.
2413 *
2414 * This function is called while holding p's rq->lock.
2415 *
2416 * XXX we should delay bw change until the task's 0-lag point, see
2417 * __setparam_dl().
2418 */
dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2419 static int dl_overflow(struct task_struct *p, int policy,
2420 const struct sched_attr *attr)
2421 {
2422
2423 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2424 u64 period = attr->sched_period ?: attr->sched_deadline;
2425 u64 runtime = attr->sched_runtime;
2426 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2427 int cpus, err = -1;
2428
2429 if (new_bw == p->dl.dl_bw)
2430 return 0;
2431
2432 /*
2433 * Either if a task, enters, leave, or stays -deadline but changes
2434 * its parameters, we may need to update accordingly the total
2435 * allocated bandwidth of the container.
2436 */
2437 raw_spin_lock(&dl_b->lock);
2438 cpus = dl_bw_cpus(task_cpu(p));
2439 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2440 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2441 __dl_add(dl_b, new_bw);
2442 err = 0;
2443 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2444 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2445 __dl_clear(dl_b, p->dl.dl_bw);
2446 __dl_add(dl_b, new_bw);
2447 err = 0;
2448 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2449 __dl_clear(dl_b, p->dl.dl_bw);
2450 err = 0;
2451 }
2452 raw_spin_unlock(&dl_b->lock);
2453
2454 return err;
2455 }
2456
2457 extern void init_dl_bw(struct dl_bw *dl_b);
2458
2459 /*
2460 * wake_up_new_task - wake up a newly created task for the first time.
2461 *
2462 * This function will do some initial scheduler statistics housekeeping
2463 * that must be done for every newly created context, then puts the task
2464 * on the runqueue and wakes it.
2465 */
wake_up_new_task(struct task_struct * p)2466 void wake_up_new_task(struct task_struct *p)
2467 {
2468 unsigned long flags;
2469 struct rq *rq;
2470
2471 raw_spin_lock_irqsave(&p->pi_lock, flags);
2472 p->state = TASK_RUNNING;
2473
2474 walt_init_new_task_load(p);
2475
2476 /* Initialize new task's runnable average */
2477 init_entity_runnable_average(&p->se);
2478 #ifdef CONFIG_SMP
2479 /*
2480 * Fork balancing, do it here and not earlier because:
2481 * - cpus_allowed can change in the fork path
2482 * - any previously selected cpu might disappear through hotplug
2483 *
2484 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2485 * as we're not fully set-up yet.
2486 */
2487 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0, 1));
2488 #endif
2489 rq = __task_rq_lock(p);
2490 update_rq_clock(rq);
2491 post_init_entity_util_avg(&p->se);
2492
2493 walt_mark_task_starting(p);
2494 activate_task(rq, p, ENQUEUE_WAKEUP_NEW);
2495 p->on_rq = TASK_ON_RQ_QUEUED;
2496 trace_sched_wakeup_new(p);
2497 check_preempt_curr(rq, p, WF_FORK);
2498 #ifdef CONFIG_SMP
2499 if (p->sched_class->task_woken) {
2500 /*
2501 * Nothing relies on rq->lock after this, so its fine to
2502 * drop it.
2503 */
2504 lockdep_unpin_lock(&rq->lock);
2505 p->sched_class->task_woken(rq, p);
2506 lockdep_pin_lock(&rq->lock);
2507 }
2508 #endif
2509 task_rq_unlock(rq, p, &flags);
2510 }
2511
2512 #ifdef CONFIG_PREEMPT_NOTIFIERS
2513
2514 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2515
preempt_notifier_inc(void)2516 void preempt_notifier_inc(void)
2517 {
2518 static_key_slow_inc(&preempt_notifier_key);
2519 }
2520 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2521
preempt_notifier_dec(void)2522 void preempt_notifier_dec(void)
2523 {
2524 static_key_slow_dec(&preempt_notifier_key);
2525 }
2526 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2527
2528 /**
2529 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2530 * @notifier: notifier struct to register
2531 */
preempt_notifier_register(struct preempt_notifier * notifier)2532 void preempt_notifier_register(struct preempt_notifier *notifier)
2533 {
2534 if (!static_key_false(&preempt_notifier_key))
2535 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2536
2537 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2538 }
2539 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2540
2541 /**
2542 * preempt_notifier_unregister - no longer interested in preemption notifications
2543 * @notifier: notifier struct to unregister
2544 *
2545 * This is *not* safe to call from within a preemption notifier.
2546 */
preempt_notifier_unregister(struct preempt_notifier * notifier)2547 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2548 {
2549 hlist_del(¬ifier->link);
2550 }
2551 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2552
__fire_sched_in_preempt_notifiers(struct task_struct * curr)2553 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2554 {
2555 struct preempt_notifier *notifier;
2556
2557 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2558 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2559 }
2560
fire_sched_in_preempt_notifiers(struct task_struct * curr)2561 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2562 {
2563 if (static_key_false(&preempt_notifier_key))
2564 __fire_sched_in_preempt_notifiers(curr);
2565 }
2566
2567 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2568 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2569 struct task_struct *next)
2570 {
2571 struct preempt_notifier *notifier;
2572
2573 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2574 notifier->ops->sched_out(notifier, next);
2575 }
2576
2577 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2578 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2579 struct task_struct *next)
2580 {
2581 if (static_key_false(&preempt_notifier_key))
2582 __fire_sched_out_preempt_notifiers(curr, next);
2583 }
2584
2585 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2586
fire_sched_in_preempt_notifiers(struct task_struct * curr)2587 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2588 {
2589 }
2590
2591 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2592 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2593 struct task_struct *next)
2594 {
2595 }
2596
2597 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2598
2599 /**
2600 * prepare_task_switch - prepare to switch tasks
2601 * @rq: the runqueue preparing to switch
2602 * @prev: the current task that is being switched out
2603 * @next: the task we are going to switch to.
2604 *
2605 * This is called with the rq lock held and interrupts off. It must
2606 * be paired with a subsequent finish_task_switch after the context
2607 * switch.
2608 *
2609 * prepare_task_switch sets up locking and calls architecture specific
2610 * hooks.
2611 */
2612 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2613 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2614 struct task_struct *next)
2615 {
2616 sched_info_switch(rq, prev, next);
2617 perf_event_task_sched_out(prev, next);
2618 fire_sched_out_preempt_notifiers(prev, next);
2619 prepare_lock_switch(rq, next);
2620 prepare_arch_switch(next);
2621 }
2622
2623 /**
2624 * finish_task_switch - clean up after a task-switch
2625 * @prev: the thread we just switched away from.
2626 *
2627 * finish_task_switch must be called after the context switch, paired
2628 * with a prepare_task_switch call before the context switch.
2629 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2630 * and do any other architecture-specific cleanup actions.
2631 *
2632 * Note that we may have delayed dropping an mm in context_switch(). If
2633 * so, we finish that here outside of the runqueue lock. (Doing it
2634 * with the lock held can cause deadlocks; see schedule() for
2635 * details.)
2636 *
2637 * The context switch have flipped the stack from under us and restored the
2638 * local variables which were saved when this task called schedule() in the
2639 * past. prev == current is still correct but we need to recalculate this_rq
2640 * because prev may have moved to another CPU.
2641 */
finish_task_switch(struct task_struct * prev)2642 static struct rq *finish_task_switch(struct task_struct *prev)
2643 __releases(rq->lock)
2644 {
2645 struct rq *rq = this_rq();
2646 struct mm_struct *mm = rq->prev_mm;
2647 long prev_state;
2648
2649 /*
2650 * The previous task will have left us with a preempt_count of 2
2651 * because it left us after:
2652 *
2653 * schedule()
2654 * preempt_disable(); // 1
2655 * __schedule()
2656 * raw_spin_lock_irq(&rq->lock) // 2
2657 *
2658 * Also, see FORK_PREEMPT_COUNT.
2659 */
2660 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2661 "corrupted preempt_count: %s/%d/0x%x\n",
2662 current->comm, current->pid, preempt_count()))
2663 preempt_count_set(FORK_PREEMPT_COUNT);
2664
2665 rq->prev_mm = NULL;
2666
2667 /*
2668 * A task struct has one reference for the use as "current".
2669 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2670 * schedule one last time. The schedule call will never return, and
2671 * the scheduled task must drop that reference.
2672 *
2673 * We must observe prev->state before clearing prev->on_cpu (in
2674 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2675 * running on another CPU and we could rave with its RUNNING -> DEAD
2676 * transition, resulting in a double drop.
2677 */
2678 prev_state = prev->state;
2679 vtime_task_switch(prev);
2680 perf_event_task_sched_in(prev, current);
2681 finish_lock_switch(rq, prev);
2682 finish_arch_post_lock_switch();
2683
2684 fire_sched_in_preempt_notifiers(current);
2685 if (mm)
2686 mmdrop(mm);
2687 if (unlikely(prev_state == TASK_DEAD)) {
2688 if (prev->sched_class->task_dead)
2689 prev->sched_class->task_dead(prev);
2690
2691 /*
2692 * Remove function-return probe instances associated with this
2693 * task and put them back on the free list.
2694 */
2695 kprobe_flush_task(prev);
2696 put_task_struct(prev);
2697 }
2698
2699 tick_nohz_task_switch();
2700 return rq;
2701 }
2702
2703 #ifdef CONFIG_SMP
2704
2705 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)2706 static void __balance_callback(struct rq *rq)
2707 {
2708 struct callback_head *head, *next;
2709 void (*func)(struct rq *rq);
2710 unsigned long flags;
2711
2712 raw_spin_lock_irqsave(&rq->lock, flags);
2713 head = rq->balance_callback;
2714 rq->balance_callback = NULL;
2715 while (head) {
2716 func = (void (*)(struct rq *))head->func;
2717 next = head->next;
2718 head->next = NULL;
2719 head = next;
2720
2721 func(rq);
2722 }
2723 raw_spin_unlock_irqrestore(&rq->lock, flags);
2724 }
2725
balance_callback(struct rq * rq)2726 static inline void balance_callback(struct rq *rq)
2727 {
2728 if (unlikely(rq->balance_callback))
2729 __balance_callback(rq);
2730 }
2731
2732 #else
2733
balance_callback(struct rq * rq)2734 static inline void balance_callback(struct rq *rq)
2735 {
2736 }
2737
2738 #endif
2739
2740 /**
2741 * schedule_tail - first thing a freshly forked thread must call.
2742 * @prev: the thread we just switched away from.
2743 */
schedule_tail(struct task_struct * prev)2744 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2745 __releases(rq->lock)
2746 {
2747 struct rq *rq;
2748
2749 /*
2750 * New tasks start with FORK_PREEMPT_COUNT, see there and
2751 * finish_task_switch() for details.
2752 *
2753 * finish_task_switch() will drop rq->lock() and lower preempt_count
2754 * and the preempt_enable() will end up enabling preemption (on
2755 * PREEMPT_COUNT kernels).
2756 */
2757
2758 rq = finish_task_switch(prev);
2759 balance_callback(rq);
2760 preempt_enable();
2761
2762 if (current->set_child_tid)
2763 put_user(task_pid_vnr(current), current->set_child_tid);
2764 }
2765
2766 /*
2767 * context_switch - switch to the new MM and the new thread's register state.
2768 */
2769 static inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2770 context_switch(struct rq *rq, struct task_struct *prev,
2771 struct task_struct *next)
2772 {
2773 struct mm_struct *mm, *oldmm;
2774
2775 prepare_task_switch(rq, prev, next);
2776
2777 mm = next->mm;
2778 oldmm = prev->active_mm;
2779 /*
2780 * For paravirt, this is coupled with an exit in switch_to to
2781 * combine the page table reload and the switch backend into
2782 * one hypercall.
2783 */
2784 arch_start_context_switch(prev);
2785
2786 if (!mm) {
2787 next->active_mm = oldmm;
2788 atomic_inc(&oldmm->mm_count);
2789 enter_lazy_tlb(oldmm, next);
2790 } else
2791 switch_mm_irqs_off(oldmm, mm, next);
2792
2793 if (!prev->mm) {
2794 prev->active_mm = NULL;
2795 rq->prev_mm = oldmm;
2796 }
2797 /*
2798 * Since the runqueue lock will be released by the next
2799 * task (which is an invalid locking op but in the case
2800 * of the scheduler it's an obvious special-case), so we
2801 * do an early lockdep release here:
2802 */
2803 lockdep_unpin_lock(&rq->lock);
2804 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2805
2806 /* Here we just switch the register state and the stack. */
2807 switch_to(prev, next, prev);
2808 barrier();
2809
2810 return finish_task_switch(prev);
2811 }
2812
2813 /*
2814 * nr_running and nr_context_switches:
2815 *
2816 * externally visible scheduler statistics: current number of runnable
2817 * threads, total number of context switches performed since bootup.
2818 */
nr_running(void)2819 unsigned long nr_running(void)
2820 {
2821 unsigned long i, sum = 0;
2822
2823 for_each_online_cpu(i)
2824 sum += cpu_rq(i)->nr_running;
2825
2826 return sum;
2827 }
2828
2829 /*
2830 * Check if only the current task is running on the cpu.
2831 *
2832 * Caution: this function does not check that the caller has disabled
2833 * preemption, thus the result might have a time-of-check-to-time-of-use
2834 * race. The caller is responsible to use it correctly, for example:
2835 *
2836 * - from a non-preemptable section (of course)
2837 *
2838 * - from a thread that is bound to a single CPU
2839 *
2840 * - in a loop with very short iterations (e.g. a polling loop)
2841 */
single_task_running(void)2842 bool single_task_running(void)
2843 {
2844 return raw_rq()->nr_running == 1;
2845 }
2846 EXPORT_SYMBOL(single_task_running);
2847
nr_context_switches(void)2848 unsigned long long nr_context_switches(void)
2849 {
2850 int i;
2851 unsigned long long sum = 0;
2852
2853 for_each_possible_cpu(i)
2854 sum += cpu_rq(i)->nr_switches;
2855
2856 return sum;
2857 }
2858
nr_iowait(void)2859 unsigned long nr_iowait(void)
2860 {
2861 unsigned long i, sum = 0;
2862
2863 for_each_possible_cpu(i)
2864 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2865
2866 return sum;
2867 }
2868
nr_iowait_cpu(int cpu)2869 unsigned long nr_iowait_cpu(int cpu)
2870 {
2871 struct rq *this = cpu_rq(cpu);
2872 return atomic_read(&this->nr_iowait);
2873 }
2874
2875 #ifdef CONFIG_CPU_QUIET
nr_running_integral(unsigned int cpu)2876 u64 nr_running_integral(unsigned int cpu)
2877 {
2878 unsigned int seqcnt;
2879 u64 integral;
2880 struct rq *q;
2881
2882 if (cpu >= nr_cpu_ids)
2883 return 0;
2884
2885 q = cpu_rq(cpu);
2886
2887 /*
2888 * Update average to avoid reading stalled value if there were
2889 * no run-queue changes for a long time. On the other hand if
2890 * the changes are happening right now, just read current value
2891 * directly.
2892 */
2893
2894 seqcnt = read_seqcount_begin(&q->ave_seqcnt);
2895 integral = do_nr_running_integral(q);
2896 if (read_seqcount_retry(&q->ave_seqcnt, seqcnt)) {
2897 read_seqcount_begin(&q->ave_seqcnt);
2898 integral = q->nr_running_integral;
2899 }
2900
2901 return integral;
2902 }
2903 #endif
2904
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)2905 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2906 {
2907 struct rq *rq = this_rq();
2908 *nr_waiters = atomic_read(&rq->nr_iowait);
2909 *load = rq->load.weight;
2910 }
2911
2912 #ifdef CONFIG_SMP
2913
2914 /*
2915 * sched_exec - execve() is a valuable balancing opportunity, because at
2916 * this point the task has the smallest effective memory and cache footprint.
2917 */
sched_exec(void)2918 void sched_exec(void)
2919 {
2920 struct task_struct *p = current;
2921 unsigned long flags;
2922 int dest_cpu;
2923
2924 raw_spin_lock_irqsave(&p->pi_lock, flags);
2925 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0, 1);
2926 if (dest_cpu == smp_processor_id())
2927 goto unlock;
2928
2929 if (likely(cpu_active(dest_cpu))) {
2930 struct migration_arg arg = { p, dest_cpu };
2931
2932 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2933 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2934 return;
2935 }
2936 unlock:
2937 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2938 }
2939
2940 #endif
2941
2942 DEFINE_PER_CPU(struct kernel_stat, kstat);
2943 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2944
2945 EXPORT_PER_CPU_SYMBOL(kstat);
2946 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2947
2948 /*
2949 * Return accounted runtime for the task.
2950 * In case the task is currently running, return the runtime plus current's
2951 * pending runtime that have not been accounted yet.
2952 */
task_sched_runtime(struct task_struct * p)2953 unsigned long long task_sched_runtime(struct task_struct *p)
2954 {
2955 unsigned long flags;
2956 struct rq *rq;
2957 u64 ns;
2958
2959 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2960 /*
2961 * 64-bit doesn't need locks to atomically read a 64bit value.
2962 * So we have a optimization chance when the task's delta_exec is 0.
2963 * Reading ->on_cpu is racy, but this is ok.
2964 *
2965 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2966 * If we race with it entering cpu, unaccounted time is 0. This is
2967 * indistinguishable from the read occurring a few cycles earlier.
2968 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2969 * been accounted, so we're correct here as well.
2970 */
2971 if (!p->on_cpu || !task_on_rq_queued(p))
2972 return p->se.sum_exec_runtime;
2973 #endif
2974
2975 rq = task_rq_lock(p, &flags);
2976 /*
2977 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2978 * project cycles that may never be accounted to this
2979 * thread, breaking clock_gettime().
2980 */
2981 if (task_current(rq, p) && task_on_rq_queued(p)) {
2982 update_rq_clock(rq);
2983 p->sched_class->update_curr(rq);
2984 }
2985 ns = p->se.sum_exec_runtime;
2986 task_rq_unlock(rq, p, &flags);
2987
2988 return ns;
2989 }
2990
2991 /*
2992 * This function gets called by the timer code, with HZ frequency.
2993 * We call it with interrupts disabled.
2994 */
scheduler_tick(void)2995 void scheduler_tick(void)
2996 {
2997 int cpu = smp_processor_id();
2998 struct rq *rq = cpu_rq(cpu);
2999 struct task_struct *curr = rq->curr;
3000
3001 sched_clock_tick();
3002
3003 raw_spin_lock(&rq->lock);
3004 walt_set_window_start(rq);
3005 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
3006 walt_ktime_clock(), 0);
3007 update_rq_clock(rq);
3008 curr->sched_class->task_tick(rq, curr, 0);
3009 update_cpu_load_active(rq);
3010 calc_global_load_tick(rq);
3011 raw_spin_unlock(&rq->lock);
3012
3013 perf_event_task_tick();
3014
3015 #ifdef CONFIG_SMP
3016 rq->idle_balance = idle_cpu(cpu);
3017 trigger_load_balance(rq);
3018 #endif
3019 rq_last_tick_reset(rq);
3020
3021 if (curr->sched_class == &fair_sched_class)
3022 check_for_migration(rq, curr);
3023 }
3024
3025 #ifdef CONFIG_NO_HZ_FULL
3026 /**
3027 * scheduler_tick_max_deferment
3028 *
3029 * Keep at least one tick per second when a single
3030 * active task is running because the scheduler doesn't
3031 * yet completely support full dynticks environment.
3032 *
3033 * This makes sure that uptime, CFS vruntime, load
3034 * balancing, etc... continue to move forward, even
3035 * with a very low granularity.
3036 *
3037 * Return: Maximum deferment in nanoseconds.
3038 */
scheduler_tick_max_deferment(void)3039 u64 scheduler_tick_max_deferment(void)
3040 {
3041 struct rq *rq = this_rq();
3042 unsigned long next, now = READ_ONCE(jiffies);
3043
3044 next = rq->last_sched_tick + HZ;
3045
3046 if (time_before_eq(next, now))
3047 return 0;
3048
3049 return jiffies_to_nsecs(next - now);
3050 }
3051 #endif
3052
get_parent_ip(unsigned long addr)3053 notrace unsigned long get_parent_ip(unsigned long addr)
3054 {
3055 if (in_lock_functions(addr)) {
3056 addr = CALLER_ADDR2;
3057 if (in_lock_functions(addr))
3058 addr = CALLER_ADDR3;
3059 }
3060 return addr;
3061 }
3062
3063 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3064 defined(CONFIG_PREEMPT_TRACER))
3065
preempt_count_add(int val)3066 void preempt_count_add(int val)
3067 {
3068 #ifdef CONFIG_DEBUG_PREEMPT
3069 /*
3070 * Underflow?
3071 */
3072 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3073 return;
3074 #endif
3075 __preempt_count_add(val);
3076 #ifdef CONFIG_DEBUG_PREEMPT
3077 /*
3078 * Spinlock count overflowing soon?
3079 */
3080 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3081 PREEMPT_MASK - 10);
3082 #endif
3083 if (preempt_count() == val) {
3084 unsigned long ip = get_parent_ip(CALLER_ADDR1);
3085 #ifdef CONFIG_DEBUG_PREEMPT
3086 current->preempt_disable_ip = ip;
3087 #endif
3088 trace_preempt_off(CALLER_ADDR0, ip);
3089 }
3090 }
3091 EXPORT_SYMBOL(preempt_count_add);
3092 NOKPROBE_SYMBOL(preempt_count_add);
3093
preempt_count_sub(int val)3094 void preempt_count_sub(int val)
3095 {
3096 #ifdef CONFIG_DEBUG_PREEMPT
3097 /*
3098 * Underflow?
3099 */
3100 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3101 return;
3102 /*
3103 * Is the spinlock portion underflowing?
3104 */
3105 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3106 !(preempt_count() & PREEMPT_MASK)))
3107 return;
3108 #endif
3109
3110 if (preempt_count() == val)
3111 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3112 __preempt_count_sub(val);
3113 }
3114 EXPORT_SYMBOL(preempt_count_sub);
3115 NOKPROBE_SYMBOL(preempt_count_sub);
3116
3117 #endif
3118
3119 /*
3120 * Print scheduling while atomic bug:
3121 */
__schedule_bug(struct task_struct * prev)3122 static noinline void __schedule_bug(struct task_struct *prev)
3123 {
3124 if (oops_in_progress)
3125 return;
3126
3127 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3128 prev->comm, prev->pid, preempt_count());
3129
3130 debug_show_held_locks(prev);
3131 print_modules();
3132 if (irqs_disabled())
3133 print_irqtrace_events(prev);
3134 #ifdef CONFIG_DEBUG_PREEMPT
3135 if (in_atomic_preempt_off()) {
3136 pr_err("Preemption disabled at:");
3137 print_ip_sym(current->preempt_disable_ip);
3138 pr_cont("\n");
3139 }
3140 #endif
3141 dump_stack();
3142 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3143 }
3144
3145 /*
3146 * Various schedule()-time debugging checks and statistics:
3147 */
schedule_debug(struct task_struct * prev)3148 static inline void schedule_debug(struct task_struct *prev)
3149 {
3150 #ifdef CONFIG_SCHED_STACK_END_CHECK
3151 if (task_stack_end_corrupted(prev))
3152 panic("corrupted stack end detected inside scheduler\n");
3153 #endif
3154
3155 if (unlikely(in_atomic_preempt_off())) {
3156 __schedule_bug(prev);
3157 preempt_count_set(PREEMPT_DISABLED);
3158 }
3159 rcu_sleep_check();
3160
3161 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3162
3163 schedstat_inc(this_rq(), sched_count);
3164 }
3165
3166 /*
3167 * Pick up the highest-prio task:
3168 */
3169 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev)3170 pick_next_task(struct rq *rq, struct task_struct *prev)
3171 {
3172 const struct sched_class *class = &fair_sched_class;
3173 struct task_struct *p;
3174
3175 /*
3176 * Optimization: we know that if all tasks are in
3177 * the fair class we can call that function directly:
3178 */
3179 if (likely(prev->sched_class == class &&
3180 rq->nr_running == rq->cfs.h_nr_running)) {
3181 p = fair_sched_class.pick_next_task(rq, prev);
3182 if (unlikely(p == RETRY_TASK))
3183 goto again;
3184
3185 /* assumes fair_sched_class->next == idle_sched_class */
3186 if (unlikely(!p))
3187 p = idle_sched_class.pick_next_task(rq, prev);
3188
3189 return p;
3190 }
3191
3192 again:
3193 for_each_class(class) {
3194 p = class->pick_next_task(rq, prev);
3195 if (p) {
3196 if (unlikely(p == RETRY_TASK))
3197 goto again;
3198 return p;
3199 }
3200 }
3201
3202 BUG(); /* the idle class will always have a runnable task */
3203 }
3204
3205 /*
3206 * __schedule() is the main scheduler function.
3207 *
3208 * The main means of driving the scheduler and thus entering this function are:
3209 *
3210 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3211 *
3212 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3213 * paths. For example, see arch/x86/entry_64.S.
3214 *
3215 * To drive preemption between tasks, the scheduler sets the flag in timer
3216 * interrupt handler scheduler_tick().
3217 *
3218 * 3. Wakeups don't really cause entry into schedule(). They add a
3219 * task to the run-queue and that's it.
3220 *
3221 * Now, if the new task added to the run-queue preempts the current
3222 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3223 * called on the nearest possible occasion:
3224 *
3225 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3226 *
3227 * - in syscall or exception context, at the next outmost
3228 * preempt_enable(). (this might be as soon as the wake_up()'s
3229 * spin_unlock()!)
3230 *
3231 * - in IRQ context, return from interrupt-handler to
3232 * preemptible context
3233 *
3234 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3235 * then at the next:
3236 *
3237 * - cond_resched() call
3238 * - explicit schedule() call
3239 * - return from syscall or exception to user-space
3240 * - return from interrupt-handler to user-space
3241 *
3242 * WARNING: must be called with preemption disabled!
3243 */
__schedule(bool preempt)3244 static void __sched notrace __schedule(bool preempt)
3245 {
3246 struct task_struct *prev, *next;
3247 unsigned long *switch_count;
3248 struct rq *rq;
3249 int cpu;
3250 u64 wallclock;
3251
3252 cpu = smp_processor_id();
3253 rq = cpu_rq(cpu);
3254 rcu_note_context_switch();
3255 prev = rq->curr;
3256
3257 /*
3258 * do_exit() calls schedule() with preemption disabled as an exception;
3259 * however we must fix that up, otherwise the next task will see an
3260 * inconsistent (higher) preempt count.
3261 *
3262 * It also avoids the below schedule_debug() test from complaining
3263 * about this.
3264 */
3265 if (unlikely(prev->state == TASK_DEAD))
3266 preempt_enable_no_resched_notrace();
3267
3268 schedule_debug(prev);
3269
3270 if (sched_feat(HRTICK))
3271 hrtick_clear(rq);
3272
3273 /*
3274 * Make sure that signal_pending_state()->signal_pending() below
3275 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3276 * done by the caller to avoid the race with signal_wake_up().
3277 */
3278 smp_mb__before_spinlock();
3279 raw_spin_lock_irq(&rq->lock);
3280 lockdep_pin_lock(&rq->lock);
3281
3282 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3283
3284 switch_count = &prev->nivcsw;
3285 if (!preempt && prev->state) {
3286 if (unlikely(signal_pending_state(prev->state, prev))) {
3287 prev->state = TASK_RUNNING;
3288 } else {
3289 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3290 prev->on_rq = 0;
3291
3292 /*
3293 * If a worker went to sleep, notify and ask workqueue
3294 * whether it wants to wake up a task to maintain
3295 * concurrency.
3296 */
3297 if (prev->flags & PF_WQ_WORKER) {
3298 struct task_struct *to_wakeup;
3299
3300 to_wakeup = wq_worker_sleeping(prev, cpu);
3301 if (to_wakeup)
3302 try_to_wake_up_local(to_wakeup);
3303 }
3304 }
3305 switch_count = &prev->nvcsw;
3306 }
3307
3308 if (task_on_rq_queued(prev))
3309 update_rq_clock(rq);
3310
3311 next = pick_next_task(rq, prev);
3312 wallclock = walt_ktime_clock();
3313 walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
3314 walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
3315 clear_tsk_need_resched(prev);
3316 clear_preempt_need_resched();
3317 rq->clock_skip_update = 0;
3318
3319 if (likely(prev != next)) {
3320 #ifdef CONFIG_SCHED_WALT
3321 if (!prev->on_rq)
3322 prev->last_sleep_ts = wallclock;
3323 #endif
3324 rq->nr_switches++;
3325 rq->curr = next;
3326 ++*switch_count;
3327
3328 trace_sched_switch(preempt, prev, next);
3329 rq = context_switch(rq, prev, next); /* unlocks the rq */
3330 cpu = cpu_of(rq);
3331 } else {
3332 lockdep_unpin_lock(&rq->lock);
3333 raw_spin_unlock_irq(&rq->lock);
3334 }
3335
3336 balance_callback(rq);
3337 }
3338
sched_submit_work(struct task_struct * tsk)3339 static inline void sched_submit_work(struct task_struct *tsk)
3340 {
3341 if (!tsk->state || tsk_is_pi_blocked(tsk))
3342 return;
3343 /*
3344 * If we are going to sleep and we have plugged IO queued,
3345 * make sure to submit it to avoid deadlocks.
3346 */
3347 if (blk_needs_flush_plug(tsk))
3348 blk_schedule_flush_plug(tsk);
3349 }
3350
schedule(void)3351 asmlinkage __visible void __sched schedule(void)
3352 {
3353 struct task_struct *tsk = current;
3354
3355 sched_submit_work(tsk);
3356 do {
3357 preempt_disable();
3358 __schedule(false);
3359 sched_preempt_enable_no_resched();
3360 } while (need_resched());
3361 }
3362 EXPORT_SYMBOL(schedule);
3363
3364 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3365 asmlinkage __visible void __sched schedule_user(void)
3366 {
3367 /*
3368 * If we come here after a random call to set_need_resched(),
3369 * or we have been woken up remotely but the IPI has not yet arrived,
3370 * we haven't yet exited the RCU idle mode. Do it here manually until
3371 * we find a better solution.
3372 *
3373 * NB: There are buggy callers of this function. Ideally we
3374 * should warn if prev_state != CONTEXT_USER, but that will trigger
3375 * too frequently to make sense yet.
3376 */
3377 enum ctx_state prev_state = exception_enter();
3378 schedule();
3379 exception_exit(prev_state);
3380 }
3381 #endif
3382
3383 /**
3384 * schedule_preempt_disabled - called with preemption disabled
3385 *
3386 * Returns with preemption disabled. Note: preempt_count must be 1
3387 */
schedule_preempt_disabled(void)3388 void __sched schedule_preempt_disabled(void)
3389 {
3390 sched_preempt_enable_no_resched();
3391 schedule();
3392 preempt_disable();
3393 }
3394
preempt_schedule_common(void)3395 static void __sched notrace preempt_schedule_common(void)
3396 {
3397 do {
3398 preempt_disable_notrace();
3399 __schedule(true);
3400 preempt_enable_no_resched_notrace();
3401
3402 /*
3403 * Check again in case we missed a preemption opportunity
3404 * between schedule and now.
3405 */
3406 } while (need_resched());
3407 }
3408
3409 #ifdef CONFIG_PREEMPT
3410 /*
3411 * this is the entry point to schedule() from in-kernel preemption
3412 * off of preempt_enable. Kernel preemptions off return from interrupt
3413 * occur there and call schedule directly.
3414 */
preempt_schedule(void)3415 asmlinkage __visible void __sched notrace preempt_schedule(void)
3416 {
3417 /*
3418 * If there is a non-zero preempt_count or interrupts are disabled,
3419 * we do not want to preempt the current task. Just return..
3420 */
3421 if (likely(!preemptible()))
3422 return;
3423
3424 preempt_schedule_common();
3425 }
3426 NOKPROBE_SYMBOL(preempt_schedule);
3427 EXPORT_SYMBOL(preempt_schedule);
3428
3429 /**
3430 * preempt_schedule_notrace - preempt_schedule called by tracing
3431 *
3432 * The tracing infrastructure uses preempt_enable_notrace to prevent
3433 * recursion and tracing preempt enabling caused by the tracing
3434 * infrastructure itself. But as tracing can happen in areas coming
3435 * from userspace or just about to enter userspace, a preempt enable
3436 * can occur before user_exit() is called. This will cause the scheduler
3437 * to be called when the system is still in usermode.
3438 *
3439 * To prevent this, the preempt_enable_notrace will use this function
3440 * instead of preempt_schedule() to exit user context if needed before
3441 * calling the scheduler.
3442 */
preempt_schedule_notrace(void)3443 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3444 {
3445 enum ctx_state prev_ctx;
3446
3447 if (likely(!preemptible()))
3448 return;
3449
3450 do {
3451 preempt_disable_notrace();
3452 /*
3453 * Needs preempt disabled in case user_exit() is traced
3454 * and the tracer calls preempt_enable_notrace() causing
3455 * an infinite recursion.
3456 */
3457 prev_ctx = exception_enter();
3458 __schedule(true);
3459 exception_exit(prev_ctx);
3460
3461 preempt_enable_no_resched_notrace();
3462 } while (need_resched());
3463 }
3464 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3465
3466 #endif /* CONFIG_PREEMPT */
3467
3468 /*
3469 * this is the entry point to schedule() from kernel preemption
3470 * off of irq context.
3471 * Note, that this is called and return with irqs disabled. This will
3472 * protect us against recursive calling from irq.
3473 */
preempt_schedule_irq(void)3474 asmlinkage __visible void __sched preempt_schedule_irq(void)
3475 {
3476 enum ctx_state prev_state;
3477
3478 /* Catch callers which need to be fixed */
3479 BUG_ON(preempt_count() || !irqs_disabled());
3480
3481 prev_state = exception_enter();
3482
3483 do {
3484 preempt_disable();
3485 local_irq_enable();
3486 __schedule(true);
3487 local_irq_disable();
3488 sched_preempt_enable_no_resched();
3489 } while (need_resched());
3490
3491 exception_exit(prev_state);
3492 }
3493
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)3494 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3495 void *key)
3496 {
3497 return try_to_wake_up(curr->private, mode, wake_flags, 1);
3498 }
3499 EXPORT_SYMBOL(default_wake_function);
3500
3501 #ifdef CONFIG_RT_MUTEXES
3502
3503 /*
3504 * rt_mutex_setprio - set the current priority of a task
3505 * @p: task
3506 * @prio: prio value (kernel-internal form)
3507 *
3508 * This function changes the 'effective' priority of a task. It does
3509 * not touch ->normal_prio like __setscheduler().
3510 *
3511 * Used by the rt_mutex code to implement priority inheritance
3512 * logic. Call site only calls if the priority of the task changed.
3513 */
rt_mutex_setprio(struct task_struct * p,int prio)3514 void rt_mutex_setprio(struct task_struct *p, int prio)
3515 {
3516 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3517 struct rq *rq;
3518 const struct sched_class *prev_class;
3519
3520 BUG_ON(prio > MAX_PRIO);
3521
3522 rq = __task_rq_lock(p);
3523 update_rq_clock(rq);
3524
3525 /*
3526 * Idle task boosting is a nono in general. There is one
3527 * exception, when PREEMPT_RT and NOHZ is active:
3528 *
3529 * The idle task calls get_next_timer_interrupt() and holds
3530 * the timer wheel base->lock on the CPU and another CPU wants
3531 * to access the timer (probably to cancel it). We can safely
3532 * ignore the boosting request, as the idle CPU runs this code
3533 * with interrupts disabled and will complete the lock
3534 * protected section without being interrupted. So there is no
3535 * real need to boost.
3536 */
3537 if (unlikely(p == rq->idle)) {
3538 WARN_ON(p != rq->curr);
3539 WARN_ON(p->pi_blocked_on);
3540 goto out_unlock;
3541 }
3542
3543 trace_sched_pi_setprio(p, prio);
3544 oldprio = p->prio;
3545 prev_class = p->sched_class;
3546 queued = task_on_rq_queued(p);
3547 running = task_current(rq, p);
3548 if (queued)
3549 dequeue_task(rq, p, DEQUEUE_SAVE);
3550 if (running)
3551 put_prev_task(rq, p);
3552
3553 /*
3554 * Boosting condition are:
3555 * 1. -rt task is running and holds mutex A
3556 * --> -dl task blocks on mutex A
3557 *
3558 * 2. -dl task is running and holds mutex A
3559 * --> -dl task blocks on mutex A and could preempt the
3560 * running task
3561 */
3562 if (dl_prio(prio)) {
3563 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3564 if (!dl_prio(p->normal_prio) ||
3565 (pi_task && dl_prio(pi_task->prio) &&
3566 dl_entity_preempt(&pi_task->dl, &p->dl))) {
3567 p->dl.dl_boosted = 1;
3568 enqueue_flag |= ENQUEUE_REPLENISH;
3569 } else
3570 p->dl.dl_boosted = 0;
3571 p->sched_class = &dl_sched_class;
3572 } else if (rt_prio(prio)) {
3573 if (dl_prio(oldprio))
3574 p->dl.dl_boosted = 0;
3575 if (oldprio < prio)
3576 enqueue_flag |= ENQUEUE_HEAD;
3577 p->sched_class = &rt_sched_class;
3578 } else {
3579 if (dl_prio(oldprio))
3580 p->dl.dl_boosted = 0;
3581 if (rt_prio(oldprio))
3582 p->rt.timeout = 0;
3583 p->sched_class = &fair_sched_class;
3584 }
3585
3586 p->prio = prio;
3587
3588 if (running)
3589 p->sched_class->set_curr_task(rq);
3590 if (queued)
3591 enqueue_task(rq, p, enqueue_flag);
3592
3593 check_class_changed(rq, p, prev_class, oldprio);
3594 out_unlock:
3595 preempt_disable(); /* avoid rq from going away on us */
3596 __task_rq_unlock(rq);
3597
3598 balance_callback(rq);
3599 preempt_enable();
3600 }
3601 #endif
3602
set_user_nice(struct task_struct * p,long nice)3603 void set_user_nice(struct task_struct *p, long nice)
3604 {
3605 int old_prio, delta, queued;
3606 unsigned long flags;
3607 struct rq *rq;
3608
3609 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3610 return;
3611 /*
3612 * We have to be careful, if called from sys_setpriority(),
3613 * the task might be in the middle of scheduling on another CPU.
3614 */
3615 rq = task_rq_lock(p, &flags);
3616 update_rq_clock(rq);
3617
3618 /*
3619 * The RT priorities are set via sched_setscheduler(), but we still
3620 * allow the 'normal' nice value to be set - but as expected
3621 * it wont have any effect on scheduling until the task is
3622 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3623 */
3624 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3625 p->static_prio = NICE_TO_PRIO(nice);
3626 goto out_unlock;
3627 }
3628 queued = task_on_rq_queued(p);
3629 if (queued)
3630 dequeue_task(rq, p, DEQUEUE_SAVE);
3631
3632 p->static_prio = NICE_TO_PRIO(nice);
3633 set_load_weight(p);
3634 old_prio = p->prio;
3635 p->prio = effective_prio(p);
3636 delta = p->prio - old_prio;
3637
3638 if (queued) {
3639 enqueue_task(rq, p, ENQUEUE_RESTORE);
3640 /*
3641 * If the task increased its priority or is running and
3642 * lowered its priority, then reschedule its CPU:
3643 */
3644 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3645 resched_curr(rq);
3646 }
3647 out_unlock:
3648 task_rq_unlock(rq, p, &flags);
3649 }
3650 EXPORT_SYMBOL(set_user_nice);
3651
3652 /*
3653 * can_nice - check if a task can reduce its nice value
3654 * @p: task
3655 * @nice: nice value
3656 */
can_nice(const struct task_struct * p,const int nice)3657 int can_nice(const struct task_struct *p, const int nice)
3658 {
3659 /* convert nice value [19,-20] to rlimit style value [1,40] */
3660 int nice_rlim = nice_to_rlimit(nice);
3661
3662 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3663 capable(CAP_SYS_NICE));
3664 }
3665
3666 #ifdef __ARCH_WANT_SYS_NICE
3667
3668 /*
3669 * sys_nice - change the priority of the current process.
3670 * @increment: priority increment
3671 *
3672 * sys_setpriority is a more generic, but much slower function that
3673 * does similar things.
3674 */
SYSCALL_DEFINE1(nice,int,increment)3675 SYSCALL_DEFINE1(nice, int, increment)
3676 {
3677 long nice, retval;
3678
3679 /*
3680 * Setpriority might change our priority at the same moment.
3681 * We don't have to worry. Conceptually one call occurs first
3682 * and we have a single winner.
3683 */
3684 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3685 nice = task_nice(current) + increment;
3686
3687 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3688 if (increment < 0 && !can_nice(current, nice))
3689 return -EPERM;
3690
3691 retval = security_task_setnice(current, nice);
3692 if (retval)
3693 return retval;
3694
3695 set_user_nice(current, nice);
3696 return 0;
3697 }
3698
3699 #endif
3700
3701 /**
3702 * task_prio - return the priority value of a given task.
3703 * @p: the task in question.
3704 *
3705 * Return: The priority value as seen by users in /proc.
3706 * RT tasks are offset by -200. Normal tasks are centered
3707 * around 0, value goes from -16 to +15.
3708 */
task_prio(const struct task_struct * p)3709 int task_prio(const struct task_struct *p)
3710 {
3711 return p->prio - MAX_RT_PRIO;
3712 }
3713
3714 /**
3715 * idle_cpu - is a given cpu idle currently?
3716 * @cpu: the processor in question.
3717 *
3718 * Return: 1 if the CPU is currently idle. 0 otherwise.
3719 */
idle_cpu(int cpu)3720 int idle_cpu(int cpu)
3721 {
3722 struct rq *rq = cpu_rq(cpu);
3723
3724 if (rq->curr != rq->idle)
3725 return 0;
3726
3727 if (rq->nr_running)
3728 return 0;
3729
3730 #ifdef CONFIG_SMP
3731 if (!llist_empty(&rq->wake_list))
3732 return 0;
3733 #endif
3734
3735 return 1;
3736 }
3737
3738 /**
3739 * idle_task - return the idle task for a given cpu.
3740 * @cpu: the processor in question.
3741 *
3742 * Return: The idle task for the cpu @cpu.
3743 */
idle_task(int cpu)3744 struct task_struct *idle_task(int cpu)
3745 {
3746 return cpu_rq(cpu)->idle;
3747 }
3748
3749 /**
3750 * find_process_by_pid - find a process with a matching PID value.
3751 * @pid: the pid in question.
3752 *
3753 * The task of @pid, if found. %NULL otherwise.
3754 */
find_process_by_pid(pid_t pid)3755 static struct task_struct *find_process_by_pid(pid_t pid)
3756 {
3757 return pid ? find_task_by_vpid(pid) : current;
3758 }
3759
3760 /*
3761 * This function initializes the sched_dl_entity of a newly becoming
3762 * SCHED_DEADLINE task.
3763 *
3764 * Only the static values are considered here, the actual runtime and the
3765 * absolute deadline will be properly calculated when the task is enqueued
3766 * for the first time with its new policy.
3767 */
3768 static void
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3769 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3770 {
3771 struct sched_dl_entity *dl_se = &p->dl;
3772
3773 dl_se->dl_runtime = attr->sched_runtime;
3774 dl_se->dl_deadline = attr->sched_deadline;
3775 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3776 dl_se->flags = attr->sched_flags;
3777 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3778 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3779
3780 /*
3781 * Changing the parameters of a task is 'tricky' and we're not doing
3782 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3783 *
3784 * What we SHOULD do is delay the bandwidth release until the 0-lag
3785 * point. This would include retaining the task_struct until that time
3786 * and change dl_overflow() to not immediately decrement the current
3787 * amount.
3788 *
3789 * Instead we retain the current runtime/deadline and let the new
3790 * parameters take effect after the current reservation period lapses.
3791 * This is safe (albeit pessimistic) because the 0-lag point is always
3792 * before the current scheduling deadline.
3793 *
3794 * We can still have temporary overloads because we do not delay the
3795 * change in bandwidth until that time; so admission control is
3796 * not on the safe side. It does however guarantee tasks will never
3797 * consume more than promised.
3798 */
3799 }
3800
3801 /*
3802 * sched_setparam() passes in -1 for its policy, to let the functions
3803 * it calls know not to change it.
3804 */
3805 #define SETPARAM_POLICY -1
3806
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)3807 static void __setscheduler_params(struct task_struct *p,
3808 const struct sched_attr *attr)
3809 {
3810 int policy = attr->sched_policy;
3811
3812 if (policy == SETPARAM_POLICY)
3813 policy = p->policy;
3814
3815 p->policy = policy;
3816
3817 if (dl_policy(policy))
3818 __setparam_dl(p, attr);
3819 else if (fair_policy(policy))
3820 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3821
3822 /*
3823 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3824 * !rt_policy. Always setting this ensures that things like
3825 * getparam()/getattr() don't report silly values for !rt tasks.
3826 */
3827 p->rt_priority = attr->sched_priority;
3828 p->normal_prio = normal_prio(p);
3829 set_load_weight(p);
3830 }
3831
3832 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)3833 static void __setscheduler(struct rq *rq, struct task_struct *p,
3834 const struct sched_attr *attr, bool keep_boost)
3835 {
3836 __setscheduler_params(p, attr);
3837
3838 /*
3839 * Keep a potential priority boosting if called from
3840 * sched_setscheduler().
3841 */
3842 if (keep_boost)
3843 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3844 else
3845 p->prio = normal_prio(p);
3846
3847 if (dl_prio(p->prio))
3848 p->sched_class = &dl_sched_class;
3849 else if (rt_prio(p->prio))
3850 p->sched_class = &rt_sched_class;
3851 else
3852 p->sched_class = &fair_sched_class;
3853 }
3854
3855 static void
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3856 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3857 {
3858 struct sched_dl_entity *dl_se = &p->dl;
3859
3860 attr->sched_priority = p->rt_priority;
3861 attr->sched_runtime = dl_se->dl_runtime;
3862 attr->sched_deadline = dl_se->dl_deadline;
3863 attr->sched_period = dl_se->dl_period;
3864 attr->sched_flags = dl_se->flags;
3865 }
3866
3867 /*
3868 * This function validates the new parameters of a -deadline task.
3869 * We ask for the deadline not being zero, and greater or equal
3870 * than the runtime, as well as the period of being zero or
3871 * greater than deadline. Furthermore, we have to be sure that
3872 * user parameters are above the internal resolution of 1us (we
3873 * check sched_runtime only since it is always the smaller one) and
3874 * below 2^63 ns (we have to check both sched_deadline and
3875 * sched_period, as the latter can be zero).
3876 */
3877 static bool
__checkparam_dl(const struct sched_attr * attr)3878 __checkparam_dl(const struct sched_attr *attr)
3879 {
3880 /* deadline != 0 */
3881 if (attr->sched_deadline == 0)
3882 return false;
3883
3884 /*
3885 * Since we truncate DL_SCALE bits, make sure we're at least
3886 * that big.
3887 */
3888 if (attr->sched_runtime < (1ULL << DL_SCALE))
3889 return false;
3890
3891 /*
3892 * Since we use the MSB for wrap-around and sign issues, make
3893 * sure it's not set (mind that period can be equal to zero).
3894 */
3895 if (attr->sched_deadline & (1ULL << 63) ||
3896 attr->sched_period & (1ULL << 63))
3897 return false;
3898
3899 /* runtime <= deadline <= period (if period != 0) */
3900 if ((attr->sched_period != 0 &&
3901 attr->sched_period < attr->sched_deadline) ||
3902 attr->sched_deadline < attr->sched_runtime)
3903 return false;
3904
3905 return true;
3906 }
3907
3908 /*
3909 * check the target process has a UID that matches the current process's
3910 */
check_same_owner(struct task_struct * p)3911 static bool check_same_owner(struct task_struct *p)
3912 {
3913 const struct cred *cred = current_cred(), *pcred;
3914 bool match;
3915
3916 rcu_read_lock();
3917 pcred = __task_cred(p);
3918 match = (uid_eq(cred->euid, pcred->euid) ||
3919 uid_eq(cred->euid, pcred->uid));
3920 rcu_read_unlock();
3921 return match;
3922 }
3923
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3924 static bool dl_param_changed(struct task_struct *p,
3925 const struct sched_attr *attr)
3926 {
3927 struct sched_dl_entity *dl_se = &p->dl;
3928
3929 if (dl_se->dl_runtime != attr->sched_runtime ||
3930 dl_se->dl_deadline != attr->sched_deadline ||
3931 dl_se->dl_period != attr->sched_period ||
3932 dl_se->flags != attr->sched_flags)
3933 return true;
3934
3935 return false;
3936 }
3937
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)3938 static int __sched_setscheduler(struct task_struct *p,
3939 const struct sched_attr *attr,
3940 bool user, bool pi)
3941 {
3942 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3943 MAX_RT_PRIO - 1 - attr->sched_priority;
3944 int retval, oldprio, oldpolicy = -1, queued, running;
3945 int new_effective_prio, policy = attr->sched_policy;
3946 unsigned long flags;
3947 const struct sched_class *prev_class;
3948 struct rq *rq;
3949 int reset_on_fork;
3950
3951 /* The pi code expects interrupts enabled */
3952 BUG_ON(pi && in_interrupt());
3953 recheck:
3954 /* double check policy once rq lock held */
3955 if (policy < 0) {
3956 reset_on_fork = p->sched_reset_on_fork;
3957 policy = oldpolicy = p->policy;
3958 } else {
3959 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3960
3961 if (!valid_policy(policy))
3962 return -EINVAL;
3963 }
3964
3965 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3966 return -EINVAL;
3967
3968 /*
3969 * Valid priorities for SCHED_FIFO and SCHED_RR are
3970 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3971 * SCHED_BATCH and SCHED_IDLE is 0.
3972 */
3973 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3974 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3975 return -EINVAL;
3976 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3977 (rt_policy(policy) != (attr->sched_priority != 0)))
3978 return -EINVAL;
3979
3980 /*
3981 * Allow unprivileged RT tasks to decrease priority:
3982 */
3983 if (user && !capable(CAP_SYS_NICE)) {
3984 if (fair_policy(policy)) {
3985 if (attr->sched_nice < task_nice(p) &&
3986 !can_nice(p, attr->sched_nice))
3987 return -EPERM;
3988 }
3989
3990 if (rt_policy(policy)) {
3991 unsigned long rlim_rtprio =
3992 task_rlimit(p, RLIMIT_RTPRIO);
3993
3994 /* can't set/change the rt policy */
3995 if (policy != p->policy && !rlim_rtprio)
3996 return -EPERM;
3997
3998 /* can't increase priority */
3999 if (attr->sched_priority > p->rt_priority &&
4000 attr->sched_priority > rlim_rtprio)
4001 return -EPERM;
4002 }
4003
4004 /*
4005 * Can't set/change SCHED_DEADLINE policy at all for now
4006 * (safest behavior); in the future we would like to allow
4007 * unprivileged DL tasks to increase their relative deadline
4008 * or reduce their runtime (both ways reducing utilization)
4009 */
4010 if (dl_policy(policy))
4011 return -EPERM;
4012
4013 /*
4014 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4015 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4016 */
4017 if (idle_policy(p->policy) && !idle_policy(policy)) {
4018 if (!can_nice(p, task_nice(p)))
4019 return -EPERM;
4020 }
4021
4022 /* can't change other user's priorities */
4023 if (!check_same_owner(p))
4024 return -EPERM;
4025
4026 /* Normal users shall not reset the sched_reset_on_fork flag */
4027 if (p->sched_reset_on_fork && !reset_on_fork)
4028 return -EPERM;
4029 }
4030
4031 if (user) {
4032 retval = security_task_setscheduler(p);
4033 if (retval)
4034 return retval;
4035 }
4036
4037 /*
4038 * make sure no PI-waiters arrive (or leave) while we are
4039 * changing the priority of the task:
4040 *
4041 * To be able to change p->policy safely, the appropriate
4042 * runqueue lock must be held.
4043 */
4044 rq = task_rq_lock(p, &flags);
4045 update_rq_clock(rq);
4046
4047 /*
4048 * Changing the policy of the stop threads its a very bad idea
4049 */
4050 if (p == rq->stop) {
4051 task_rq_unlock(rq, p, &flags);
4052 return -EINVAL;
4053 }
4054
4055 /*
4056 * If not changing anything there's no need to proceed further,
4057 * but store a possible modification of reset_on_fork.
4058 */
4059 if (unlikely(policy == p->policy)) {
4060 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4061 goto change;
4062 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4063 goto change;
4064 if (dl_policy(policy) && dl_param_changed(p, attr))
4065 goto change;
4066
4067 p->sched_reset_on_fork = reset_on_fork;
4068 task_rq_unlock(rq, p, &flags);
4069 return 0;
4070 }
4071 change:
4072
4073 if (user) {
4074 #ifdef CONFIG_RT_GROUP_SCHED
4075 /*
4076 * Do not allow realtime tasks into groups that have no runtime
4077 * assigned.
4078 */
4079 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4080 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4081 !task_group_is_autogroup(task_group(p))) {
4082 task_rq_unlock(rq, p, &flags);
4083 return -EPERM;
4084 }
4085 #endif
4086 #ifdef CONFIG_SMP
4087 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4088 cpumask_t *span = rq->rd->span;
4089
4090 /*
4091 * Don't allow tasks with an affinity mask smaller than
4092 * the entire root_domain to become SCHED_DEADLINE. We
4093 * will also fail if there's no bandwidth available.
4094 */
4095 if (!cpumask_subset(span, &p->cpus_allowed) ||
4096 rq->rd->dl_bw.bw == 0) {
4097 task_rq_unlock(rq, p, &flags);
4098 return -EPERM;
4099 }
4100 }
4101 #endif
4102 }
4103
4104 /* recheck policy now with rq lock held */
4105 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4106 policy = oldpolicy = -1;
4107 task_rq_unlock(rq, p, &flags);
4108 goto recheck;
4109 }
4110
4111 /*
4112 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4113 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4114 * is available.
4115 */
4116 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4117 task_rq_unlock(rq, p, &flags);
4118 return -EBUSY;
4119 }
4120
4121 p->sched_reset_on_fork = reset_on_fork;
4122 oldprio = p->prio;
4123
4124 if (pi) {
4125 /*
4126 * Take priority boosted tasks into account. If the new
4127 * effective priority is unchanged, we just store the new
4128 * normal parameters and do not touch the scheduler class and
4129 * the runqueue. This will be done when the task deboost
4130 * itself.
4131 */
4132 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4133 if (new_effective_prio == oldprio) {
4134 __setscheduler_params(p, attr);
4135 task_rq_unlock(rq, p, &flags);
4136 return 0;
4137 }
4138 }
4139
4140 queued = task_on_rq_queued(p);
4141 running = task_current(rq, p);
4142 if (queued)
4143 dequeue_task(rq, p, DEQUEUE_SAVE);
4144 if (running)
4145 put_prev_task(rq, p);
4146
4147 prev_class = p->sched_class;
4148 __setscheduler(rq, p, attr, pi);
4149
4150 if (running)
4151 p->sched_class->set_curr_task(rq);
4152 if (queued) {
4153 int enqueue_flags = ENQUEUE_RESTORE;
4154 /*
4155 * We enqueue to tail when the priority of a task is
4156 * increased (user space view).
4157 */
4158 if (oldprio <= p->prio)
4159 enqueue_flags |= ENQUEUE_HEAD;
4160
4161 enqueue_task(rq, p, enqueue_flags);
4162 }
4163
4164 check_class_changed(rq, p, prev_class, oldprio);
4165 preempt_disable(); /* avoid rq from going away on us */
4166 task_rq_unlock(rq, p, &flags);
4167
4168 if (pi)
4169 rt_mutex_adjust_pi(p);
4170
4171 /*
4172 * Run balance callbacks after we've adjusted the PI chain.
4173 */
4174 balance_callback(rq);
4175 preempt_enable();
4176
4177 return 0;
4178 }
4179
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)4180 static int _sched_setscheduler(struct task_struct *p, int policy,
4181 const struct sched_param *param, bool check)
4182 {
4183 struct sched_attr attr = {
4184 .sched_policy = policy,
4185 .sched_priority = param->sched_priority,
4186 .sched_nice = PRIO_TO_NICE(p->static_prio),
4187 };
4188
4189 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4190 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4191 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4192 policy &= ~SCHED_RESET_ON_FORK;
4193 attr.sched_policy = policy;
4194 }
4195
4196 return __sched_setscheduler(p, &attr, check, true);
4197 }
4198 /**
4199 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4200 * @p: the task in question.
4201 * @policy: new policy.
4202 * @param: structure containing the new RT priority.
4203 *
4204 * Return: 0 on success. An error code otherwise.
4205 *
4206 * NOTE that the task may be already dead.
4207 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4208 int sched_setscheduler(struct task_struct *p, int policy,
4209 const struct sched_param *param)
4210 {
4211 return _sched_setscheduler(p, policy, param, true);
4212 }
4213 EXPORT_SYMBOL_GPL(sched_setscheduler);
4214
sched_setattr(struct task_struct * p,const struct sched_attr * attr)4215 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4216 {
4217 return __sched_setscheduler(p, attr, true, true);
4218 }
4219 EXPORT_SYMBOL_GPL(sched_setattr);
4220
4221 /**
4222 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4223 * @p: the task in question.
4224 * @policy: new policy.
4225 * @param: structure containing the new RT priority.
4226 *
4227 * Just like sched_setscheduler, only don't bother checking if the
4228 * current context has permission. For example, this is needed in
4229 * stop_machine(): we create temporary high priority worker threads,
4230 * but our caller might not have that capability.
4231 *
4232 * Return: 0 on success. An error code otherwise.
4233 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4234 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4235 const struct sched_param *param)
4236 {
4237 return _sched_setscheduler(p, policy, param, false);
4238 }
4239 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4240
4241 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4242 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4243 {
4244 struct sched_param lparam;
4245 struct task_struct *p;
4246 int retval;
4247
4248 if (!param || pid < 0)
4249 return -EINVAL;
4250 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4251 return -EFAULT;
4252
4253 rcu_read_lock();
4254 retval = -ESRCH;
4255 p = find_process_by_pid(pid);
4256 if (p != NULL)
4257 retval = sched_setscheduler(p, policy, &lparam);
4258 rcu_read_unlock();
4259
4260 return retval;
4261 }
4262
4263 /*
4264 * Mimics kernel/events/core.c perf_copy_attr().
4265 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)4266 static int sched_copy_attr(struct sched_attr __user *uattr,
4267 struct sched_attr *attr)
4268 {
4269 u32 size;
4270 int ret;
4271
4272 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4273 return -EFAULT;
4274
4275 /*
4276 * zero the full structure, so that a short copy will be nice.
4277 */
4278 memset(attr, 0, sizeof(*attr));
4279
4280 ret = get_user(size, &uattr->size);
4281 if (ret)
4282 return ret;
4283
4284 if (size > PAGE_SIZE) /* silly large */
4285 goto err_size;
4286
4287 if (!size) /* abi compat */
4288 size = SCHED_ATTR_SIZE_VER0;
4289
4290 if (size < SCHED_ATTR_SIZE_VER0)
4291 goto err_size;
4292
4293 /*
4294 * If we're handed a bigger struct than we know of,
4295 * ensure all the unknown bits are 0 - i.e. new
4296 * user-space does not rely on any kernel feature
4297 * extensions we dont know about yet.
4298 */
4299 if (size > sizeof(*attr)) {
4300 unsigned char __user *addr;
4301 unsigned char __user *end;
4302 unsigned char val;
4303
4304 addr = (void __user *)uattr + sizeof(*attr);
4305 end = (void __user *)uattr + size;
4306
4307 for (; addr < end; addr++) {
4308 ret = get_user(val, addr);
4309 if (ret)
4310 return ret;
4311 if (val)
4312 goto err_size;
4313 }
4314 size = sizeof(*attr);
4315 }
4316
4317 ret = copy_from_user(attr, uattr, size);
4318 if (ret)
4319 return -EFAULT;
4320
4321 /*
4322 * XXX: do we want to be lenient like existing syscalls; or do we want
4323 * to be strict and return an error on out-of-bounds values?
4324 */
4325 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4326
4327 return 0;
4328
4329 err_size:
4330 put_user(sizeof(*attr), &uattr->size);
4331 return -E2BIG;
4332 }
4333
4334 /**
4335 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4336 * @pid: the pid in question.
4337 * @policy: new policy.
4338 * @param: structure containing the new RT priority.
4339 *
4340 * Return: 0 on success. An error code otherwise.
4341 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4342 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4343 struct sched_param __user *, param)
4344 {
4345 /* negative values for policy are not valid */
4346 if (policy < 0)
4347 return -EINVAL;
4348
4349 return do_sched_setscheduler(pid, policy, param);
4350 }
4351
4352 /**
4353 * sys_sched_setparam - set/change the RT priority of a thread
4354 * @pid: the pid in question.
4355 * @param: structure containing the new RT priority.
4356 *
4357 * Return: 0 on success. An error code otherwise.
4358 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4359 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4360 {
4361 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4362 }
4363
4364 /**
4365 * sys_sched_setattr - same as above, but with extended sched_attr
4366 * @pid: the pid in question.
4367 * @uattr: structure containing the extended parameters.
4368 * @flags: for future extension.
4369 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)4370 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4371 unsigned int, flags)
4372 {
4373 struct sched_attr attr;
4374 struct task_struct *p;
4375 int retval;
4376
4377 if (!uattr || pid < 0 || flags)
4378 return -EINVAL;
4379
4380 retval = sched_copy_attr(uattr, &attr);
4381 if (retval)
4382 return retval;
4383
4384 if ((int)attr.sched_policy < 0)
4385 return -EINVAL;
4386
4387 rcu_read_lock();
4388 retval = -ESRCH;
4389 p = find_process_by_pid(pid);
4390 if (p != NULL)
4391 retval = sched_setattr(p, &attr);
4392 rcu_read_unlock();
4393
4394 return retval;
4395 }
4396
4397 /**
4398 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4399 * @pid: the pid in question.
4400 *
4401 * Return: On success, the policy of the thread. Otherwise, a negative error
4402 * code.
4403 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4404 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4405 {
4406 struct task_struct *p;
4407 int retval;
4408
4409 if (pid < 0)
4410 return -EINVAL;
4411
4412 retval = -ESRCH;
4413 rcu_read_lock();
4414 p = find_process_by_pid(pid);
4415 if (p) {
4416 retval = security_task_getscheduler(p);
4417 if (!retval)
4418 retval = p->policy
4419 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4420 }
4421 rcu_read_unlock();
4422 return retval;
4423 }
4424
4425 /**
4426 * sys_sched_getparam - get the RT priority of a thread
4427 * @pid: the pid in question.
4428 * @param: structure containing the RT priority.
4429 *
4430 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4431 * code.
4432 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4433 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4434 {
4435 struct sched_param lp = { .sched_priority = 0 };
4436 struct task_struct *p;
4437 int retval;
4438
4439 if (!param || pid < 0)
4440 return -EINVAL;
4441
4442 rcu_read_lock();
4443 p = find_process_by_pid(pid);
4444 retval = -ESRCH;
4445 if (!p)
4446 goto out_unlock;
4447
4448 retval = security_task_getscheduler(p);
4449 if (retval)
4450 goto out_unlock;
4451
4452 if (task_has_rt_policy(p))
4453 lp.sched_priority = p->rt_priority;
4454 rcu_read_unlock();
4455
4456 /*
4457 * This one might sleep, we cannot do it with a spinlock held ...
4458 */
4459 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4460
4461 return retval;
4462
4463 out_unlock:
4464 rcu_read_unlock();
4465 return retval;
4466 }
4467
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)4468 static int sched_read_attr(struct sched_attr __user *uattr,
4469 struct sched_attr *attr,
4470 unsigned int usize)
4471 {
4472 int ret;
4473
4474 if (!access_ok(VERIFY_WRITE, uattr, usize))
4475 return -EFAULT;
4476
4477 /*
4478 * If we're handed a smaller struct than we know of,
4479 * ensure all the unknown bits are 0 - i.e. old
4480 * user-space does not get uncomplete information.
4481 */
4482 if (usize < sizeof(*attr)) {
4483 unsigned char *addr;
4484 unsigned char *end;
4485
4486 addr = (void *)attr + usize;
4487 end = (void *)attr + sizeof(*attr);
4488
4489 for (; addr < end; addr++) {
4490 if (*addr)
4491 return -EFBIG;
4492 }
4493
4494 attr->size = usize;
4495 }
4496
4497 ret = copy_to_user(uattr, attr, attr->size);
4498 if (ret)
4499 return -EFAULT;
4500
4501 return 0;
4502 }
4503
4504 /**
4505 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4506 * @pid: the pid in question.
4507 * @uattr: structure containing the extended parameters.
4508 * @size: sizeof(attr) for fwd/bwd comp.
4509 * @flags: for future extension.
4510 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)4511 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4512 unsigned int, size, unsigned int, flags)
4513 {
4514 struct sched_attr attr = {
4515 .size = sizeof(struct sched_attr),
4516 };
4517 struct task_struct *p;
4518 int retval;
4519
4520 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4521 size < SCHED_ATTR_SIZE_VER0 || flags)
4522 return -EINVAL;
4523
4524 rcu_read_lock();
4525 p = find_process_by_pid(pid);
4526 retval = -ESRCH;
4527 if (!p)
4528 goto out_unlock;
4529
4530 retval = security_task_getscheduler(p);
4531 if (retval)
4532 goto out_unlock;
4533
4534 attr.sched_policy = p->policy;
4535 if (p->sched_reset_on_fork)
4536 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4537 if (task_has_dl_policy(p))
4538 __getparam_dl(p, &attr);
4539 else if (task_has_rt_policy(p))
4540 attr.sched_priority = p->rt_priority;
4541 else
4542 attr.sched_nice = task_nice(p);
4543
4544 rcu_read_unlock();
4545
4546 retval = sched_read_attr(uattr, &attr, size);
4547 return retval;
4548
4549 out_unlock:
4550 rcu_read_unlock();
4551 return retval;
4552 }
4553
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4554 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4555 {
4556 cpumask_var_t cpus_allowed, new_mask;
4557 struct task_struct *p;
4558 int retval;
4559
4560 rcu_read_lock();
4561
4562 p = find_process_by_pid(pid);
4563 if (!p) {
4564 rcu_read_unlock();
4565 return -ESRCH;
4566 }
4567
4568 /* Prevent p going away */
4569 get_task_struct(p);
4570 rcu_read_unlock();
4571
4572 if (p->flags & PF_NO_SETAFFINITY) {
4573 retval = -EINVAL;
4574 goto out_put_task;
4575 }
4576 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4577 retval = -ENOMEM;
4578 goto out_put_task;
4579 }
4580 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4581 retval = -ENOMEM;
4582 goto out_free_cpus_allowed;
4583 }
4584 retval = -EPERM;
4585 if (!check_same_owner(p)) {
4586 rcu_read_lock();
4587 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4588 rcu_read_unlock();
4589 goto out_free_new_mask;
4590 }
4591 rcu_read_unlock();
4592 }
4593
4594 retval = security_task_setscheduler(p);
4595 if (retval)
4596 goto out_free_new_mask;
4597
4598
4599 cpuset_cpus_allowed(p, cpus_allowed);
4600 cpumask_and(new_mask, in_mask, cpus_allowed);
4601
4602 /*
4603 * Since bandwidth control happens on root_domain basis,
4604 * if admission test is enabled, we only admit -deadline
4605 * tasks allowed to run on all the CPUs in the task's
4606 * root_domain.
4607 */
4608 #ifdef CONFIG_SMP
4609 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4610 rcu_read_lock();
4611 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4612 retval = -EBUSY;
4613 rcu_read_unlock();
4614 goto out_free_new_mask;
4615 }
4616 rcu_read_unlock();
4617 }
4618 #endif
4619 again:
4620 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4621
4622 if (!retval) {
4623 cpuset_cpus_allowed(p, cpus_allowed);
4624 if (!cpumask_subset(new_mask, cpus_allowed)) {
4625 /*
4626 * We must have raced with a concurrent cpuset
4627 * update. Just reset the cpus_allowed to the
4628 * cpuset's cpus_allowed
4629 */
4630 cpumask_copy(new_mask, cpus_allowed);
4631 goto again;
4632 }
4633 }
4634 out_free_new_mask:
4635 free_cpumask_var(new_mask);
4636 out_free_cpus_allowed:
4637 free_cpumask_var(cpus_allowed);
4638 out_put_task:
4639 put_task_struct(p);
4640 return retval;
4641 }
4642
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4643 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4644 struct cpumask *new_mask)
4645 {
4646 if (len < cpumask_size())
4647 cpumask_clear(new_mask);
4648 else if (len > cpumask_size())
4649 len = cpumask_size();
4650
4651 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4652 }
4653
4654 /**
4655 * sys_sched_setaffinity - set the cpu affinity of a process
4656 * @pid: pid of the process
4657 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4658 * @user_mask_ptr: user-space pointer to the new cpu mask
4659 *
4660 * Return: 0 on success. An error code otherwise.
4661 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4662 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4663 unsigned long __user *, user_mask_ptr)
4664 {
4665 cpumask_var_t new_mask;
4666 int retval;
4667
4668 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4669 return -ENOMEM;
4670
4671 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4672 if (retval == 0)
4673 retval = sched_setaffinity(pid, new_mask);
4674 free_cpumask_var(new_mask);
4675 return retval;
4676 }
4677
sched_getaffinity(pid_t pid,struct cpumask * mask)4678 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4679 {
4680 struct task_struct *p;
4681 unsigned long flags;
4682 int retval;
4683
4684 rcu_read_lock();
4685
4686 retval = -ESRCH;
4687 p = find_process_by_pid(pid);
4688 if (!p)
4689 goto out_unlock;
4690
4691 retval = security_task_getscheduler(p);
4692 if (retval)
4693 goto out_unlock;
4694
4695 raw_spin_lock_irqsave(&p->pi_lock, flags);
4696 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4697 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4698
4699 out_unlock:
4700 rcu_read_unlock();
4701
4702 return retval;
4703 }
4704
4705 /**
4706 * sys_sched_getaffinity - get the cpu affinity of a process
4707 * @pid: pid of the process
4708 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4709 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4710 *
4711 * Return: 0 on success. An error code otherwise.
4712 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4713 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4714 unsigned long __user *, user_mask_ptr)
4715 {
4716 int ret;
4717 cpumask_var_t mask;
4718
4719 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4720 return -EINVAL;
4721 if (len & (sizeof(unsigned long)-1))
4722 return -EINVAL;
4723
4724 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4725 return -ENOMEM;
4726
4727 ret = sched_getaffinity(pid, mask);
4728 if (ret == 0) {
4729 size_t retlen = min_t(size_t, len, cpumask_size());
4730
4731 if (copy_to_user(user_mask_ptr, mask, retlen))
4732 ret = -EFAULT;
4733 else
4734 ret = retlen;
4735 }
4736 free_cpumask_var(mask);
4737
4738 return ret;
4739 }
4740
4741 /**
4742 * sys_sched_yield - yield the current processor to other threads.
4743 *
4744 * This function yields the current CPU to other tasks. If there are no
4745 * other threads running on this CPU then this function will return.
4746 *
4747 * Return: 0.
4748 */
SYSCALL_DEFINE0(sched_yield)4749 SYSCALL_DEFINE0(sched_yield)
4750 {
4751 struct rq *rq = this_rq_lock();
4752
4753 schedstat_inc(rq, yld_count);
4754 current->sched_class->yield_task(rq);
4755
4756 /*
4757 * Since we are going to call schedule() anyway, there's
4758 * no need to preempt or enable interrupts:
4759 */
4760 __release(rq->lock);
4761 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4762 do_raw_spin_unlock(&rq->lock);
4763 sched_preempt_enable_no_resched();
4764
4765 schedule();
4766
4767 return 0;
4768 }
4769
_cond_resched(void)4770 int __sched _cond_resched(void)
4771 {
4772 if (should_resched(0)) {
4773 preempt_schedule_common();
4774 return 1;
4775 }
4776 return 0;
4777 }
4778 EXPORT_SYMBOL(_cond_resched);
4779
4780 /*
4781 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4782 * call schedule, and on return reacquire the lock.
4783 *
4784 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4785 * operations here to prevent schedule() from being called twice (once via
4786 * spin_unlock(), once by hand).
4787 */
__cond_resched_lock(spinlock_t * lock)4788 int __cond_resched_lock(spinlock_t *lock)
4789 {
4790 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4791 int ret = 0;
4792
4793 lockdep_assert_held(lock);
4794
4795 if (spin_needbreak(lock) || resched) {
4796 spin_unlock(lock);
4797 if (resched)
4798 preempt_schedule_common();
4799 else
4800 cpu_relax();
4801 ret = 1;
4802 spin_lock(lock);
4803 }
4804 return ret;
4805 }
4806 EXPORT_SYMBOL(__cond_resched_lock);
4807
__cond_resched_softirq(void)4808 int __sched __cond_resched_softirq(void)
4809 {
4810 BUG_ON(!in_softirq());
4811
4812 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4813 local_bh_enable();
4814 preempt_schedule_common();
4815 local_bh_disable();
4816 return 1;
4817 }
4818 return 0;
4819 }
4820 EXPORT_SYMBOL(__cond_resched_softirq);
4821
4822 /**
4823 * yield - yield the current processor to other threads.
4824 *
4825 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4826 *
4827 * The scheduler is at all times free to pick the calling task as the most
4828 * eligible task to run, if removing the yield() call from your code breaks
4829 * it, its already broken.
4830 *
4831 * Typical broken usage is:
4832 *
4833 * while (!event)
4834 * yield();
4835 *
4836 * where one assumes that yield() will let 'the other' process run that will
4837 * make event true. If the current task is a SCHED_FIFO task that will never
4838 * happen. Never use yield() as a progress guarantee!!
4839 *
4840 * If you want to use yield() to wait for something, use wait_event().
4841 * If you want to use yield() to be 'nice' for others, use cond_resched().
4842 * If you still want to use yield(), do not!
4843 */
yield(void)4844 void __sched yield(void)
4845 {
4846 set_current_state(TASK_RUNNING);
4847 sys_sched_yield();
4848 }
4849 EXPORT_SYMBOL(yield);
4850
4851 /**
4852 * yield_to - yield the current processor to another thread in
4853 * your thread group, or accelerate that thread toward the
4854 * processor it's on.
4855 * @p: target task
4856 * @preempt: whether task preemption is allowed or not
4857 *
4858 * It's the caller's job to ensure that the target task struct
4859 * can't go away on us before we can do any checks.
4860 *
4861 * Return:
4862 * true (>0) if we indeed boosted the target task.
4863 * false (0) if we failed to boost the target.
4864 * -ESRCH if there's no task to yield to.
4865 */
yield_to(struct task_struct * p,bool preempt)4866 int __sched yield_to(struct task_struct *p, bool preempt)
4867 {
4868 struct task_struct *curr = current;
4869 struct rq *rq, *p_rq;
4870 unsigned long flags;
4871 int yielded = 0;
4872
4873 local_irq_save(flags);
4874 rq = this_rq();
4875
4876 again:
4877 p_rq = task_rq(p);
4878 /*
4879 * If we're the only runnable task on the rq and target rq also
4880 * has only one task, there's absolutely no point in yielding.
4881 */
4882 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4883 yielded = -ESRCH;
4884 goto out_irq;
4885 }
4886
4887 double_rq_lock(rq, p_rq);
4888 if (task_rq(p) != p_rq) {
4889 double_rq_unlock(rq, p_rq);
4890 goto again;
4891 }
4892
4893 if (!curr->sched_class->yield_to_task)
4894 goto out_unlock;
4895
4896 if (curr->sched_class != p->sched_class)
4897 goto out_unlock;
4898
4899 if (task_running(p_rq, p) || p->state)
4900 goto out_unlock;
4901
4902 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4903 if (yielded) {
4904 schedstat_inc(rq, yld_count);
4905 /*
4906 * Make p's CPU reschedule; pick_next_entity takes care of
4907 * fairness.
4908 */
4909 if (preempt && rq != p_rq)
4910 resched_curr(p_rq);
4911 }
4912
4913 out_unlock:
4914 double_rq_unlock(rq, p_rq);
4915 out_irq:
4916 local_irq_restore(flags);
4917
4918 if (yielded > 0)
4919 schedule();
4920
4921 return yielded;
4922 }
4923 EXPORT_SYMBOL_GPL(yield_to);
4924
4925 /*
4926 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4927 * that process accounting knows that this is a task in IO wait state.
4928 */
io_schedule_timeout(long timeout)4929 long __sched io_schedule_timeout(long timeout)
4930 {
4931 int old_iowait = current->in_iowait;
4932 struct rq *rq;
4933 long ret;
4934
4935 current->in_iowait = 1;
4936 blk_schedule_flush_plug(current);
4937
4938 delayacct_blkio_start();
4939 rq = raw_rq();
4940 atomic_inc(&rq->nr_iowait);
4941 ret = schedule_timeout(timeout);
4942 current->in_iowait = old_iowait;
4943 atomic_dec(&rq->nr_iowait);
4944 delayacct_blkio_end();
4945
4946 return ret;
4947 }
4948 EXPORT_SYMBOL(io_schedule_timeout);
4949
4950 /**
4951 * sys_sched_get_priority_max - return maximum RT priority.
4952 * @policy: scheduling class.
4953 *
4954 * Return: On success, this syscall returns the maximum
4955 * rt_priority that can be used by a given scheduling class.
4956 * On failure, a negative error code is returned.
4957 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)4958 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4959 {
4960 int ret = -EINVAL;
4961
4962 switch (policy) {
4963 case SCHED_FIFO:
4964 case SCHED_RR:
4965 ret = MAX_USER_RT_PRIO-1;
4966 break;
4967 case SCHED_DEADLINE:
4968 case SCHED_NORMAL:
4969 case SCHED_BATCH:
4970 case SCHED_IDLE:
4971 ret = 0;
4972 break;
4973 }
4974 return ret;
4975 }
4976
4977 /**
4978 * sys_sched_get_priority_min - return minimum RT priority.
4979 * @policy: scheduling class.
4980 *
4981 * Return: On success, this syscall returns the minimum
4982 * rt_priority that can be used by a given scheduling class.
4983 * On failure, a negative error code is returned.
4984 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)4985 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4986 {
4987 int ret = -EINVAL;
4988
4989 switch (policy) {
4990 case SCHED_FIFO:
4991 case SCHED_RR:
4992 ret = 1;
4993 break;
4994 case SCHED_DEADLINE:
4995 case SCHED_NORMAL:
4996 case SCHED_BATCH:
4997 case SCHED_IDLE:
4998 ret = 0;
4999 }
5000 return ret;
5001 }
5002
5003 /**
5004 * sys_sched_rr_get_interval - return the default timeslice of a process.
5005 * @pid: pid of the process.
5006 * @interval: userspace pointer to the timeslice value.
5007 *
5008 * this syscall writes the default timeslice value of a given process
5009 * into the user-space timespec buffer. A value of '0' means infinity.
5010 *
5011 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5012 * an error code.
5013 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5014 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5015 struct timespec __user *, interval)
5016 {
5017 struct task_struct *p;
5018 unsigned int time_slice;
5019 unsigned long flags;
5020 struct rq *rq;
5021 int retval;
5022 struct timespec t;
5023
5024 if (pid < 0)
5025 return -EINVAL;
5026
5027 retval = -ESRCH;
5028 rcu_read_lock();
5029 p = find_process_by_pid(pid);
5030 if (!p)
5031 goto out_unlock;
5032
5033 retval = security_task_getscheduler(p);
5034 if (retval)
5035 goto out_unlock;
5036
5037 rq = task_rq_lock(p, &flags);
5038 time_slice = 0;
5039 if (p->sched_class->get_rr_interval)
5040 time_slice = p->sched_class->get_rr_interval(rq, p);
5041 task_rq_unlock(rq, p, &flags);
5042
5043 rcu_read_unlock();
5044 jiffies_to_timespec(time_slice, &t);
5045 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5046 return retval;
5047
5048 out_unlock:
5049 rcu_read_unlock();
5050 return retval;
5051 }
5052
5053 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5054
sched_show_task(struct task_struct * p)5055 void sched_show_task(struct task_struct *p)
5056 {
5057 unsigned long free = 0;
5058 int ppid;
5059 unsigned long state = p->state;
5060
5061 if (state)
5062 state = __ffs(state) + 1;
5063 printk(KERN_INFO "%-15.15s %c", p->comm,
5064 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5065 #if BITS_PER_LONG == 32
5066 if (state == TASK_RUNNING)
5067 printk(KERN_CONT " running ");
5068 else
5069 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5070 #else
5071 if (state == TASK_RUNNING)
5072 printk(KERN_CONT " running task ");
5073 else
5074 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5075 #endif
5076 #ifdef CONFIG_DEBUG_STACK_USAGE
5077 free = stack_not_used(p);
5078 #endif
5079 ppid = 0;
5080 rcu_read_lock();
5081 if (pid_alive(p))
5082 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5083 rcu_read_unlock();
5084 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5085 task_pid_nr(p), ppid,
5086 (unsigned long)task_thread_info(p)->flags);
5087
5088 print_worker_info(KERN_INFO, p);
5089 show_stack(p, NULL);
5090 }
5091
show_state_filter(unsigned long state_filter)5092 void show_state_filter(unsigned long state_filter)
5093 {
5094 struct task_struct *g, *p;
5095
5096 #if BITS_PER_LONG == 32
5097 printk(KERN_INFO
5098 " task PC stack pid father\n");
5099 #else
5100 printk(KERN_INFO
5101 " task PC stack pid father\n");
5102 #endif
5103 rcu_read_lock();
5104 for_each_process_thread(g, p) {
5105 /*
5106 * reset the NMI-timeout, listing all files on a slow
5107 * console might take a lot of time:
5108 * Also, reset softlockup watchdogs on all CPUs, because
5109 * another CPU might be blocked waiting for us to process
5110 * an IPI.
5111 */
5112 touch_nmi_watchdog();
5113 touch_all_softlockup_watchdogs();
5114 if (!state_filter || (p->state & state_filter))
5115 sched_show_task(p);
5116 }
5117
5118 #ifdef CONFIG_SCHED_DEBUG
5119 sysrq_sched_debug_show();
5120 #endif
5121 rcu_read_unlock();
5122 /*
5123 * Only show locks if all tasks are dumped:
5124 */
5125 if (!state_filter)
5126 debug_show_all_locks();
5127 }
5128
init_idle_bootup_task(struct task_struct * idle)5129 void init_idle_bootup_task(struct task_struct *idle)
5130 {
5131 idle->sched_class = &idle_sched_class;
5132 }
5133
5134 /**
5135 * init_idle - set up an idle thread for a given CPU
5136 * @idle: task in question
5137 * @cpu: cpu the idle task belongs to
5138 *
5139 * NOTE: this function does not set the idle thread's NEED_RESCHED
5140 * flag, to make booting more robust.
5141 */
init_idle(struct task_struct * idle,int cpu)5142 void init_idle(struct task_struct *idle, int cpu)
5143 {
5144 struct rq *rq = cpu_rq(cpu);
5145 unsigned long flags;
5146
5147 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5148 raw_spin_lock(&rq->lock);
5149
5150 __sched_fork(0, idle);
5151
5152 idle->state = TASK_RUNNING;
5153 idle->se.exec_start = sched_clock();
5154
5155 #ifdef CONFIG_SMP
5156 /*
5157 * Its possible that init_idle() gets called multiple times on a task,
5158 * in that case do_set_cpus_allowed() will not do the right thing.
5159 *
5160 * And since this is boot we can forgo the serialization.
5161 */
5162 set_cpus_allowed_common(idle, cpumask_of(cpu));
5163 #endif
5164 /*
5165 * We're having a chicken and egg problem, even though we are
5166 * holding rq->lock, the cpu isn't yet set to this cpu so the
5167 * lockdep check in task_group() will fail.
5168 *
5169 * Similar case to sched_fork(). / Alternatively we could
5170 * use task_rq_lock() here and obtain the other rq->lock.
5171 *
5172 * Silence PROVE_RCU
5173 */
5174 rcu_read_lock();
5175 __set_task_cpu(idle, cpu);
5176 rcu_read_unlock();
5177
5178 rq->curr = rq->idle = idle;
5179 idle->on_rq = TASK_ON_RQ_QUEUED;
5180 #ifdef CONFIG_SMP
5181 idle->on_cpu = 1;
5182 #endif
5183 raw_spin_unlock(&rq->lock);
5184 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5185
5186 /* Set the preempt count _outside_ the spinlocks! */
5187 init_idle_preempt_count(idle, cpu);
5188
5189 /*
5190 * The idle tasks have their own, simple scheduling class:
5191 */
5192 idle->sched_class = &idle_sched_class;
5193 ftrace_graph_init_idle_task(idle, cpu);
5194 vtime_init_idle(idle, cpu);
5195 #ifdef CONFIG_SMP
5196 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5197 #endif
5198 }
5199
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)5200 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5201 const struct cpumask *trial)
5202 {
5203 int ret = 1, trial_cpus;
5204 struct dl_bw *cur_dl_b;
5205 unsigned long flags;
5206
5207 if (!cpumask_weight(cur))
5208 return ret;
5209
5210 rcu_read_lock_sched();
5211 cur_dl_b = dl_bw_of(cpumask_any(cur));
5212 trial_cpus = cpumask_weight(trial);
5213
5214 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5215 if (cur_dl_b->bw != -1 &&
5216 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5217 ret = 0;
5218 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5219 rcu_read_unlock_sched();
5220
5221 return ret;
5222 }
5223
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)5224 int task_can_attach(struct task_struct *p,
5225 const struct cpumask *cs_cpus_allowed)
5226 {
5227 int ret = 0;
5228
5229 /*
5230 * Kthreads which disallow setaffinity shouldn't be moved
5231 * to a new cpuset; we don't want to change their cpu
5232 * affinity and isolating such threads by their set of
5233 * allowed nodes is unnecessary. Thus, cpusets are not
5234 * applicable for such threads. This prevents checking for
5235 * success of set_cpus_allowed_ptr() on all attached tasks
5236 * before cpus_allowed may be changed.
5237 */
5238 if (p->flags & PF_NO_SETAFFINITY) {
5239 ret = -EINVAL;
5240 goto out;
5241 }
5242
5243 #ifdef CONFIG_SMP
5244 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5245 cs_cpus_allowed)) {
5246 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5247 cs_cpus_allowed);
5248 struct dl_bw *dl_b;
5249 bool overflow;
5250 int cpus;
5251 unsigned long flags;
5252
5253 rcu_read_lock_sched();
5254 dl_b = dl_bw_of(dest_cpu);
5255 raw_spin_lock_irqsave(&dl_b->lock, flags);
5256 cpus = dl_bw_cpus(dest_cpu);
5257 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5258 if (overflow)
5259 ret = -EBUSY;
5260 else {
5261 /*
5262 * We reserve space for this task in the destination
5263 * root_domain, as we can't fail after this point.
5264 * We will free resources in the source root_domain
5265 * later on (see set_cpus_allowed_dl()).
5266 */
5267 __dl_add(dl_b, p->dl.dl_bw);
5268 }
5269 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5270 rcu_read_unlock_sched();
5271
5272 }
5273 #endif
5274 out:
5275 return ret;
5276 }
5277
5278 #ifdef CONFIG_SMP
5279
5280 #ifdef CONFIG_NUMA_BALANCING
5281 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)5282 int migrate_task_to(struct task_struct *p, int target_cpu)
5283 {
5284 struct migration_arg arg = { p, target_cpu };
5285 int curr_cpu = task_cpu(p);
5286
5287 if (curr_cpu == target_cpu)
5288 return 0;
5289
5290 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5291 return -EINVAL;
5292
5293 /* TODO: This is not properly updating schedstats */
5294
5295 trace_sched_move_numa(p, curr_cpu, target_cpu);
5296 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5297 }
5298
5299 /*
5300 * Requeue a task on a given node and accurately track the number of NUMA
5301 * tasks on the runqueues
5302 */
sched_setnuma(struct task_struct * p,int nid)5303 void sched_setnuma(struct task_struct *p, int nid)
5304 {
5305 struct rq *rq;
5306 unsigned long flags;
5307 bool queued, running;
5308
5309 rq = task_rq_lock(p, &flags);
5310 queued = task_on_rq_queued(p);
5311 running = task_current(rq, p);
5312
5313 if (queued)
5314 dequeue_task(rq, p, DEQUEUE_SAVE);
5315 if (running)
5316 put_prev_task(rq, p);
5317
5318 p->numa_preferred_nid = nid;
5319
5320 if (running)
5321 p->sched_class->set_curr_task(rq);
5322 if (queued)
5323 enqueue_task(rq, p, ENQUEUE_RESTORE);
5324 task_rq_unlock(rq, p, &flags);
5325 }
5326 #endif /* CONFIG_NUMA_BALANCING */
5327
5328 #ifdef CONFIG_HOTPLUG_CPU
5329 /*
5330 * Ensures that the idle task is using init_mm right before its cpu goes
5331 * offline.
5332 */
idle_task_exit(void)5333 void idle_task_exit(void)
5334 {
5335 struct mm_struct *mm = current->active_mm;
5336
5337 BUG_ON(cpu_online(smp_processor_id()));
5338
5339 if (mm != &init_mm) {
5340 switch_mm(mm, &init_mm, current);
5341 finish_arch_post_lock_switch();
5342 }
5343 mmdrop(mm);
5344 }
5345
5346 /*
5347 * Since this CPU is going 'away' for a while, fold any nr_active delta
5348 * we might have. Assumes we're called after migrate_tasks() so that the
5349 * nr_active count is stable.
5350 *
5351 * Also see the comment "Global load-average calculations".
5352 */
calc_load_migrate(struct rq * rq)5353 static void calc_load_migrate(struct rq *rq)
5354 {
5355 long delta = calc_load_fold_active(rq);
5356 if (delta)
5357 atomic_long_add(delta, &calc_load_tasks);
5358 }
5359
put_prev_task_fake(struct rq * rq,struct task_struct * prev)5360 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5361 {
5362 }
5363
5364 static const struct sched_class fake_sched_class = {
5365 .put_prev_task = put_prev_task_fake,
5366 };
5367
5368 static struct task_struct fake_task = {
5369 /*
5370 * Avoid pull_{rt,dl}_task()
5371 */
5372 .prio = MAX_PRIO + 1,
5373 .sched_class = &fake_sched_class,
5374 };
5375
5376 /*
5377 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5378 * try_to_wake_up()->select_task_rq().
5379 *
5380 * Called with rq->lock held even though we'er in stop_machine() and
5381 * there's no concurrency possible, we hold the required locks anyway
5382 * because of lock validation efforts.
5383 */
migrate_tasks(struct rq * dead_rq)5384 static void migrate_tasks(struct rq *dead_rq)
5385 {
5386 struct rq *rq = dead_rq;
5387 struct task_struct *next, *stop = rq->stop;
5388 int dest_cpu;
5389
5390 /*
5391 * Fudge the rq selection such that the below task selection loop
5392 * doesn't get stuck on the currently eligible stop task.
5393 *
5394 * We're currently inside stop_machine() and the rq is either stuck
5395 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5396 * either way we should never end up calling schedule() until we're
5397 * done here.
5398 */
5399 rq->stop = NULL;
5400
5401 /*
5402 * put_prev_task() and pick_next_task() sched
5403 * class method both need to have an up-to-date
5404 * value of rq->clock[_task]
5405 */
5406 update_rq_clock(rq);
5407
5408 for (;;) {
5409 /*
5410 * There's this thread running, bail when that's the only
5411 * remaining thread.
5412 */
5413 if (rq->nr_running == 1)
5414 break;
5415
5416 /*
5417 * pick_next_task assumes pinned rq->lock.
5418 */
5419 lockdep_pin_lock(&rq->lock);
5420 next = pick_next_task(rq, &fake_task);
5421 BUG_ON(!next);
5422 next->sched_class->put_prev_task(rq, next);
5423
5424 /*
5425 * Rules for changing task_struct::cpus_allowed are holding
5426 * both pi_lock and rq->lock, such that holding either
5427 * stabilizes the mask.
5428 *
5429 * Drop rq->lock is not quite as disastrous as it usually is
5430 * because !cpu_active at this point, which means load-balance
5431 * will not interfere. Also, stop-machine.
5432 */
5433 lockdep_unpin_lock(&rq->lock);
5434 raw_spin_unlock(&rq->lock);
5435 raw_spin_lock(&next->pi_lock);
5436 raw_spin_lock(&rq->lock);
5437
5438 /*
5439 * Since we're inside stop-machine, _nothing_ should have
5440 * changed the task, WARN if weird stuff happened, because in
5441 * that case the above rq->lock drop is a fail too.
5442 */
5443 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5444 raw_spin_unlock(&next->pi_lock);
5445 continue;
5446 }
5447
5448 /* Find suitable destination for @next, with force if needed. */
5449 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5450
5451 rq = __migrate_task(rq, next, dest_cpu);
5452 if (rq != dead_rq) {
5453 raw_spin_unlock(&rq->lock);
5454 rq = dead_rq;
5455 raw_spin_lock(&rq->lock);
5456 }
5457 raw_spin_unlock(&next->pi_lock);
5458 }
5459
5460 rq->stop = stop;
5461 }
5462 #endif /* CONFIG_HOTPLUG_CPU */
5463
5464 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5465
5466 static struct ctl_table sd_ctl_dir[] = {
5467 {
5468 .procname = "sched_domain",
5469 .mode = 0555,
5470 },
5471 {}
5472 };
5473
5474 static struct ctl_table sd_ctl_root[] = {
5475 {
5476 .procname = "kernel",
5477 .mode = 0555,
5478 .child = sd_ctl_dir,
5479 },
5480 {}
5481 };
5482
sd_alloc_ctl_entry(int n)5483 static struct ctl_table *sd_alloc_ctl_entry(int n)
5484 {
5485 struct ctl_table *entry =
5486 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5487
5488 return entry;
5489 }
5490
sd_free_ctl_entry(struct ctl_table ** tablep)5491 static void sd_free_ctl_entry(struct ctl_table **tablep)
5492 {
5493 struct ctl_table *entry;
5494
5495 /*
5496 * In the intermediate directories, both the child directory and
5497 * procname are dynamically allocated and could fail but the mode
5498 * will always be set. In the lowest directory the names are
5499 * static strings and all have proc handlers.
5500 */
5501 for (entry = *tablep; entry->mode; entry++) {
5502 if (entry->child)
5503 sd_free_ctl_entry(&entry->child);
5504 if (entry->proc_handler == NULL)
5505 kfree(entry->procname);
5506 }
5507
5508 kfree(*tablep);
5509 *tablep = NULL;
5510 }
5511
5512 static int min_load_idx = 0;
5513 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5514
5515 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler,bool load_idx)5516 set_table_entry(struct ctl_table *entry,
5517 const char *procname, void *data, int maxlen,
5518 umode_t mode, proc_handler *proc_handler,
5519 bool load_idx)
5520 {
5521 entry->procname = procname;
5522 entry->data = data;
5523 entry->maxlen = maxlen;
5524 entry->mode = mode;
5525 entry->proc_handler = proc_handler;
5526
5527 if (load_idx) {
5528 entry->extra1 = &min_load_idx;
5529 entry->extra2 = &max_load_idx;
5530 }
5531 }
5532
5533 static struct ctl_table *
sd_alloc_ctl_energy_table(struct sched_group_energy * sge)5534 sd_alloc_ctl_energy_table(struct sched_group_energy *sge)
5535 {
5536 struct ctl_table *table = sd_alloc_ctl_entry(5);
5537
5538 if (table == NULL)
5539 return NULL;
5540
5541 set_table_entry(&table[0], "nr_idle_states", &sge->nr_idle_states,
5542 sizeof(int), 0644, proc_dointvec_minmax, false);
5543 set_table_entry(&table[1], "idle_states", &sge->idle_states[0].power,
5544 sge->nr_idle_states*sizeof(struct idle_state), 0644,
5545 proc_doulongvec_minmax, false);
5546 set_table_entry(&table[2], "nr_cap_states", &sge->nr_cap_states,
5547 sizeof(int), 0644, proc_dointvec_minmax, false);
5548 set_table_entry(&table[3], "cap_states", &sge->cap_states[0].cap,
5549 sge->nr_cap_states*sizeof(struct capacity_state), 0644,
5550 proc_doulongvec_minmax, false);
5551
5552 return table;
5553 }
5554
5555 static struct ctl_table *
sd_alloc_ctl_group_table(struct sched_group * sg)5556 sd_alloc_ctl_group_table(struct sched_group *sg)
5557 {
5558 struct ctl_table *table = sd_alloc_ctl_entry(2);
5559
5560 if (table == NULL)
5561 return NULL;
5562
5563 table->procname = kstrdup("energy", GFP_KERNEL);
5564 table->mode = 0555;
5565 table->child = sd_alloc_ctl_energy_table((struct sched_group_energy *)sg->sge);
5566
5567 return table;
5568 }
5569
5570 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)5571 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5572 {
5573 struct ctl_table *table;
5574 unsigned int nr_entries = 14;
5575
5576 int i = 0;
5577 struct sched_group *sg = sd->groups;
5578
5579 if (sg->sge) {
5580 int nr_sgs = 0;
5581
5582 do {} while (nr_sgs++, sg = sg->next, sg != sd->groups);
5583
5584 nr_entries += nr_sgs;
5585 }
5586
5587 table = sd_alloc_ctl_entry(nr_entries);
5588
5589 if (table == NULL)
5590 return NULL;
5591
5592 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5593 sizeof(long), 0644, proc_doulongvec_minmax, false);
5594 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5595 sizeof(long), 0644, proc_doulongvec_minmax, false);
5596 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5597 sizeof(int), 0644, proc_dointvec_minmax, true);
5598 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5599 sizeof(int), 0644, proc_dointvec_minmax, true);
5600 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5601 sizeof(int), 0644, proc_dointvec_minmax, true);
5602 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5603 sizeof(int), 0644, proc_dointvec_minmax, true);
5604 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5605 sizeof(int), 0644, proc_dointvec_minmax, true);
5606 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5607 sizeof(int), 0644, proc_dointvec_minmax, false);
5608 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5609 sizeof(int), 0644, proc_dointvec_minmax, false);
5610 set_table_entry(&table[9], "cache_nice_tries",
5611 &sd->cache_nice_tries,
5612 sizeof(int), 0644, proc_dointvec_minmax, false);
5613 set_table_entry(&table[10], "flags", &sd->flags,
5614 sizeof(int), 0644, proc_dointvec_minmax, false);
5615 set_table_entry(&table[11], "max_newidle_lb_cost",
5616 &sd->max_newidle_lb_cost,
5617 sizeof(long), 0644, proc_doulongvec_minmax, false);
5618 set_table_entry(&table[12], "name", sd->name,
5619 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5620 sg = sd->groups;
5621 if (sg->sge) {
5622 char buf[32];
5623 struct ctl_table *entry = &table[13];
5624
5625 do {
5626 snprintf(buf, 32, "group%d", i);
5627 entry->procname = kstrdup(buf, GFP_KERNEL);
5628 entry->mode = 0555;
5629 entry->child = sd_alloc_ctl_group_table(sg);
5630 } while (entry++, i++, sg = sg->next, sg != sd->groups);
5631 }
5632 /* &table[nr_entries-1] is terminator */
5633
5634 return table;
5635 }
5636
sd_alloc_ctl_cpu_table(int cpu)5637 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5638 {
5639 struct ctl_table *entry, *table;
5640 struct sched_domain *sd;
5641 int domain_num = 0, i;
5642 char buf[32];
5643
5644 for_each_domain(cpu, sd)
5645 domain_num++;
5646 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5647 if (table == NULL)
5648 return NULL;
5649
5650 i = 0;
5651 for_each_domain(cpu, sd) {
5652 snprintf(buf, 32, "domain%d", i);
5653 entry->procname = kstrdup(buf, GFP_KERNEL);
5654 entry->mode = 0555;
5655 entry->child = sd_alloc_ctl_domain_table(sd);
5656 entry++;
5657 i++;
5658 }
5659 return table;
5660 }
5661
5662 static struct ctl_table_header *sd_sysctl_header;
register_sched_domain_sysctl(void)5663 static void register_sched_domain_sysctl(void)
5664 {
5665 int i, cpu_num = num_possible_cpus();
5666 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5667 char buf[32];
5668
5669 WARN_ON(sd_ctl_dir[0].child);
5670 sd_ctl_dir[0].child = entry;
5671
5672 if (entry == NULL)
5673 return;
5674
5675 for_each_possible_cpu(i) {
5676 snprintf(buf, 32, "cpu%d", i);
5677 entry->procname = kstrdup(buf, GFP_KERNEL);
5678 entry->mode = 0555;
5679 entry->child = sd_alloc_ctl_cpu_table(i);
5680 entry++;
5681 }
5682
5683 WARN_ON(sd_sysctl_header);
5684 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5685 }
5686
5687 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)5688 static void unregister_sched_domain_sysctl(void)
5689 {
5690 unregister_sysctl_table(sd_sysctl_header);
5691 sd_sysctl_header = NULL;
5692 if (sd_ctl_dir[0].child)
5693 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5694 }
5695 #else
register_sched_domain_sysctl(void)5696 static void register_sched_domain_sysctl(void)
5697 {
5698 }
unregister_sched_domain_sysctl(void)5699 static void unregister_sched_domain_sysctl(void)
5700 {
5701 }
5702 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5703
set_rq_online(struct rq * rq)5704 static void set_rq_online(struct rq *rq)
5705 {
5706 if (!rq->online) {
5707 const struct sched_class *class;
5708
5709 cpumask_set_cpu(rq->cpu, rq->rd->online);
5710 rq->online = 1;
5711
5712 for_each_class(class) {
5713 if (class->rq_online)
5714 class->rq_online(rq);
5715 }
5716 }
5717 }
5718
set_rq_offline(struct rq * rq)5719 static void set_rq_offline(struct rq *rq)
5720 {
5721 if (rq->online) {
5722 const struct sched_class *class;
5723
5724 for_each_class(class) {
5725 if (class->rq_offline)
5726 class->rq_offline(rq);
5727 }
5728
5729 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5730 rq->online = 0;
5731 }
5732 }
5733
5734 /*
5735 * migration_call - callback that gets triggered when a CPU is added.
5736 * Here we can start up the necessary migration thread for the new CPU.
5737 */
5738 static int
migration_call(struct notifier_block * nfb,unsigned long action,void * hcpu)5739 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5740 {
5741 int cpu = (long)hcpu;
5742 unsigned long flags;
5743 struct rq *rq = cpu_rq(cpu);
5744
5745 switch (action & ~CPU_TASKS_FROZEN) {
5746
5747 case CPU_UP_PREPARE:
5748 raw_spin_lock_irqsave(&rq->lock, flags);
5749 walt_set_window_start(rq);
5750 raw_spin_unlock_irqrestore(&rq->lock, flags);
5751 rq->calc_load_update = calc_load_update;
5752 break;
5753
5754 case CPU_ONLINE:
5755 /* Update our root-domain */
5756 raw_spin_lock_irqsave(&rq->lock, flags);
5757 if (rq->rd) {
5758 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5759
5760 set_rq_online(rq);
5761 }
5762 raw_spin_unlock_irqrestore(&rq->lock, flags);
5763 break;
5764
5765 #ifdef CONFIG_HOTPLUG_CPU
5766 case CPU_DYING:
5767 sched_ttwu_pending();
5768 /* Update our root-domain */
5769 raw_spin_lock_irqsave(&rq->lock, flags);
5770 walt_migrate_sync_cpu(cpu);
5771 if (rq->rd) {
5772 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5773 set_rq_offline(rq);
5774 }
5775 migrate_tasks(rq);
5776 BUG_ON(rq->nr_running != 1); /* the migration thread */
5777 raw_spin_unlock_irqrestore(&rq->lock, flags);
5778 break;
5779
5780 case CPU_DEAD:
5781 calc_load_migrate(rq);
5782 break;
5783 #endif
5784 }
5785
5786 update_max_interval();
5787
5788 return NOTIFY_OK;
5789 }
5790
5791 /*
5792 * Register at high priority so that task migration (migrate_all_tasks)
5793 * happens before everything else. This has to be lower priority than
5794 * the notifier in the perf_event subsystem, though.
5795 */
5796 static struct notifier_block migration_notifier = {
5797 .notifier_call = migration_call,
5798 .priority = CPU_PRI_MIGRATION,
5799 };
5800
set_cpu_rq_start_time(void)5801 static void set_cpu_rq_start_time(void)
5802 {
5803 int cpu = smp_processor_id();
5804 struct rq *rq = cpu_rq(cpu);
5805 rq->age_stamp = sched_clock_cpu(cpu);
5806 }
5807
5808 #ifdef CONFIG_SCHED_SMT
5809 atomic_t sched_smt_present = ATOMIC_INIT(0);
5810 #endif
5811
sched_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)5812 static int sched_cpu_active(struct notifier_block *nfb,
5813 unsigned long action, void *hcpu)
5814 {
5815 int cpu = (long)hcpu;
5816
5817 switch (action & ~CPU_TASKS_FROZEN) {
5818 case CPU_STARTING:
5819 set_cpu_rq_start_time();
5820 return NOTIFY_OK;
5821
5822 case CPU_ONLINE:
5823 /*
5824 * At this point a starting CPU has marked itself as online via
5825 * set_cpu_online(). But it might not yet have marked itself
5826 * as active, which is essential from here on.
5827 */
5828 #ifdef CONFIG_SCHED_SMT
5829 /*
5830 * When going up, increment the number of cores with SMT present.
5831 */
5832 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5833 atomic_inc(&sched_smt_present);
5834 #endif
5835 set_cpu_active(cpu, true);
5836 stop_machine_unpark(cpu);
5837 return NOTIFY_OK;
5838
5839 case CPU_DOWN_FAILED:
5840 #ifdef CONFIG_SCHED_SMT
5841 /* Same as for CPU_ONLINE */
5842 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5843 atomic_inc(&sched_smt_present);
5844 #endif
5845 set_cpu_active(cpu, true);
5846 return NOTIFY_OK;
5847
5848 default:
5849 return NOTIFY_DONE;
5850 }
5851 }
5852
sched_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)5853 static int sched_cpu_inactive(struct notifier_block *nfb,
5854 unsigned long action, void *hcpu)
5855 {
5856 switch (action & ~CPU_TASKS_FROZEN) {
5857 case CPU_DOWN_PREPARE:
5858 set_cpu_active((long)hcpu, false);
5859 #ifdef CONFIG_SCHED_SMT
5860 /*
5861 * When going down, decrement the number of cores with SMT present.
5862 */
5863 if (cpumask_weight(cpu_smt_mask((long)hcpu)) == 2)
5864 atomic_dec(&sched_smt_present);
5865 #endif
5866 return NOTIFY_OK;
5867
5868 default:
5869 return NOTIFY_DONE;
5870 }
5871 }
5872
migration_init(void)5873 static int __init migration_init(void)
5874 {
5875 void *cpu = (void *)(long)smp_processor_id();
5876 int err;
5877
5878 /* Initialize migration for the boot CPU */
5879 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5880 BUG_ON(err == NOTIFY_BAD);
5881 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5882 register_cpu_notifier(&migration_notifier);
5883
5884 /* Register cpu active notifiers */
5885 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5886 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5887
5888 return 0;
5889 }
5890 early_initcall(migration_init);
5891
5892 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5893
5894 #ifdef CONFIG_SCHED_DEBUG
5895
5896 static __read_mostly int sched_debug_enabled;
5897
sched_debug_setup(char * str)5898 static int __init sched_debug_setup(char *str)
5899 {
5900 sched_debug_enabled = 1;
5901
5902 return 0;
5903 }
5904 early_param("sched_debug", sched_debug_setup);
5905
sched_debug(void)5906 static inline bool sched_debug(void)
5907 {
5908 return sched_debug_enabled;
5909 }
5910
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)5911 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5912 struct cpumask *groupmask)
5913 {
5914 struct sched_group *group = sd->groups;
5915
5916 cpumask_clear(groupmask);
5917
5918 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5919
5920 if (!(sd->flags & SD_LOAD_BALANCE)) {
5921 printk("does not load-balance\n");
5922 return -1;
5923 }
5924
5925 printk(KERN_CONT "span %*pbl level %s\n",
5926 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5927
5928 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5929 printk(KERN_ERR "ERROR: domain->span does not contain "
5930 "CPU%d\n", cpu);
5931 }
5932 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5933 printk(KERN_ERR "ERROR: domain->groups does not contain"
5934 " CPU%d\n", cpu);
5935 }
5936
5937 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5938 do {
5939 if (!group) {
5940 printk("\n");
5941 printk(KERN_ERR "ERROR: group is NULL\n");
5942 break;
5943 }
5944
5945 if (!cpumask_weight(sched_group_cpus(group))) {
5946 printk(KERN_CONT "\n");
5947 printk(KERN_ERR "ERROR: empty group\n");
5948 break;
5949 }
5950
5951 if (!(sd->flags & SD_OVERLAP) &&
5952 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5953 printk(KERN_CONT "\n");
5954 printk(KERN_ERR "ERROR: repeated CPUs\n");
5955 break;
5956 }
5957
5958 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5959
5960 printk(KERN_CONT " %*pbl",
5961 cpumask_pr_args(sched_group_cpus(group)));
5962 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5963 printk(KERN_CONT " (cpu_capacity = %lu)",
5964 group->sgc->capacity);
5965 }
5966
5967 group = group->next;
5968 } while (group != sd->groups);
5969 printk(KERN_CONT "\n");
5970
5971 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5972 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5973
5974 if (sd->parent &&
5975 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5976 printk(KERN_ERR "ERROR: parent span is not a superset "
5977 "of domain->span\n");
5978 return 0;
5979 }
5980
sched_domain_debug(struct sched_domain * sd,int cpu)5981 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5982 {
5983 int level = 0;
5984
5985 if (!sched_debug_enabled)
5986 return;
5987
5988 if (!sd) {
5989 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5990 return;
5991 }
5992
5993 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5994
5995 for (;;) {
5996 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5997 break;
5998 level++;
5999 sd = sd->parent;
6000 if (!sd)
6001 break;
6002 }
6003 }
6004 #else /* !CONFIG_SCHED_DEBUG */
6005 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)6006 static inline bool sched_debug(void)
6007 {
6008 return false;
6009 }
6010 #endif /* CONFIG_SCHED_DEBUG */
6011
sd_degenerate(struct sched_domain * sd)6012 static int sd_degenerate(struct sched_domain *sd)
6013 {
6014 if (cpumask_weight(sched_domain_span(sd)) == 1) {
6015 if (sd->groups->sge)
6016 sd->flags &= ~SD_LOAD_BALANCE;
6017 else
6018 return 1;
6019 }
6020
6021 /* Following flags need at least 2 groups */
6022 if (sd->flags & (SD_LOAD_BALANCE |
6023 SD_BALANCE_NEWIDLE |
6024 SD_BALANCE_FORK |
6025 SD_BALANCE_EXEC |
6026 SD_SHARE_CPUCAPACITY |
6027 SD_ASYM_CPUCAPACITY |
6028 SD_SHARE_PKG_RESOURCES |
6029 SD_SHARE_POWERDOMAIN |
6030 SD_SHARE_CAP_STATES)) {
6031 if (sd->groups != sd->groups->next)
6032 return 0;
6033 }
6034
6035 /* Following flags don't use groups */
6036 if (sd->flags & (SD_WAKE_AFFINE))
6037 return 0;
6038
6039 return 1;
6040 }
6041
6042 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)6043 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6044 {
6045 unsigned long cflags = sd->flags, pflags = parent->flags;
6046
6047 if (sd_degenerate(parent))
6048 return 1;
6049
6050 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6051 return 0;
6052
6053 /* Flags needing groups don't count if only 1 group in parent */
6054 if (parent->groups == parent->groups->next) {
6055 pflags &= ~(SD_LOAD_BALANCE |
6056 SD_BALANCE_NEWIDLE |
6057 SD_BALANCE_FORK |
6058 SD_BALANCE_EXEC |
6059 SD_ASYM_CPUCAPACITY |
6060 SD_SHARE_CPUCAPACITY |
6061 SD_SHARE_PKG_RESOURCES |
6062 SD_PREFER_SIBLING |
6063 SD_SHARE_POWERDOMAIN |
6064 SD_SHARE_CAP_STATES);
6065 if (parent->groups->sge) {
6066 parent->flags &= ~SD_LOAD_BALANCE;
6067 return 0;
6068 }
6069 if (nr_node_ids == 1)
6070 pflags &= ~SD_SERIALIZE;
6071 }
6072 if (~cflags & pflags)
6073 return 0;
6074
6075 return 1;
6076 }
6077
free_rootdomain(struct rcu_head * rcu)6078 static void free_rootdomain(struct rcu_head *rcu)
6079 {
6080 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6081
6082 cpupri_cleanup(&rd->cpupri);
6083 cpudl_cleanup(&rd->cpudl);
6084 free_cpumask_var(rd->dlo_mask);
6085 free_cpumask_var(rd->rto_mask);
6086 free_cpumask_var(rd->online);
6087 free_cpumask_var(rd->span);
6088 kfree(rd);
6089 }
6090
rq_attach_root(struct rq * rq,struct root_domain * rd)6091 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6092 {
6093 struct root_domain *old_rd = NULL;
6094 unsigned long flags;
6095
6096 raw_spin_lock_irqsave(&rq->lock, flags);
6097
6098 if (rq->rd) {
6099 old_rd = rq->rd;
6100
6101 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6102 set_rq_offline(rq);
6103
6104 cpumask_clear_cpu(rq->cpu, old_rd->span);
6105
6106 /*
6107 * If we dont want to free the old_rd yet then
6108 * set old_rd to NULL to skip the freeing later
6109 * in this function:
6110 */
6111 if (!atomic_dec_and_test(&old_rd->refcount))
6112 old_rd = NULL;
6113 }
6114
6115 atomic_inc(&rd->refcount);
6116 rq->rd = rd;
6117
6118 cpumask_set_cpu(rq->cpu, rd->span);
6119 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6120 set_rq_online(rq);
6121
6122 raw_spin_unlock_irqrestore(&rq->lock, flags);
6123
6124 if (old_rd)
6125 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6126 }
6127
sched_get_rd(struct root_domain * rd)6128 void sched_get_rd(struct root_domain *rd)
6129 {
6130 atomic_inc(&rd->refcount);
6131 }
6132
sched_put_rd(struct root_domain * rd)6133 void sched_put_rd(struct root_domain *rd)
6134 {
6135 if (!atomic_dec_and_test(&rd->refcount))
6136 return;
6137
6138 call_rcu_sched(&rd->rcu, free_rootdomain);
6139 }
6140
init_rootdomain(struct root_domain * rd)6141 static int init_rootdomain(struct root_domain *rd)
6142 {
6143 memset(rd, 0, sizeof(*rd));
6144
6145 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
6146 goto out;
6147 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
6148 goto free_span;
6149 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
6150 goto free_online;
6151 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6152 goto free_dlo_mask;
6153
6154 #ifdef HAVE_RT_PUSH_IPI
6155 rd->rto_cpu = -1;
6156 raw_spin_lock_init(&rd->rto_lock);
6157 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
6158 #endif
6159
6160 init_dl_bw(&rd->dl_bw);
6161 if (cpudl_init(&rd->cpudl) != 0)
6162 goto free_dlo_mask;
6163
6164 if (cpupri_init(&rd->cpupri) != 0)
6165 goto free_rto_mask;
6166
6167 init_max_cpu_capacity(&rd->max_cpu_capacity);
6168
6169 rd->max_cap_orig_cpu = rd->min_cap_orig_cpu = -1;
6170
6171 return 0;
6172
6173 free_rto_mask:
6174 free_cpumask_var(rd->rto_mask);
6175 free_dlo_mask:
6176 free_cpumask_var(rd->dlo_mask);
6177 free_online:
6178 free_cpumask_var(rd->online);
6179 free_span:
6180 free_cpumask_var(rd->span);
6181 out:
6182 return -ENOMEM;
6183 }
6184
6185 /*
6186 * By default the system creates a single root-domain with all cpus as
6187 * members (mimicking the global state we have today).
6188 */
6189 struct root_domain def_root_domain;
6190
init_defrootdomain(void)6191 static void init_defrootdomain(void)
6192 {
6193 init_rootdomain(&def_root_domain);
6194
6195 atomic_set(&def_root_domain.refcount, 1);
6196 }
6197
alloc_rootdomain(void)6198 static struct root_domain *alloc_rootdomain(void)
6199 {
6200 struct root_domain *rd;
6201
6202 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6203 if (!rd)
6204 return NULL;
6205
6206 if (init_rootdomain(rd) != 0) {
6207 kfree(rd);
6208 return NULL;
6209 }
6210
6211 return rd;
6212 }
6213
free_sched_groups(struct sched_group * sg,int free_sgc)6214 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6215 {
6216 struct sched_group *tmp, *first;
6217
6218 if (!sg)
6219 return;
6220
6221 first = sg;
6222 do {
6223 tmp = sg->next;
6224
6225 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6226 kfree(sg->sgc);
6227
6228 kfree(sg);
6229 sg = tmp;
6230 } while (sg != first);
6231 }
6232
free_sched_domain(struct rcu_head * rcu)6233 static void free_sched_domain(struct rcu_head *rcu)
6234 {
6235 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6236
6237 /*
6238 * If its an overlapping domain it has private groups, iterate and
6239 * nuke them all.
6240 */
6241 if (sd->flags & SD_OVERLAP) {
6242 free_sched_groups(sd->groups, 1);
6243 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6244 kfree(sd->groups->sgc);
6245 kfree(sd->groups);
6246 }
6247 kfree(sd);
6248 }
6249
destroy_sched_domain(struct sched_domain * sd,int cpu)6250 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6251 {
6252 call_rcu(&sd->rcu, free_sched_domain);
6253 }
6254
destroy_sched_domains(struct sched_domain * sd,int cpu)6255 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6256 {
6257 for (; sd; sd = sd->parent)
6258 destroy_sched_domain(sd, cpu);
6259 }
6260
6261 /*
6262 * Keep a special pointer to the highest sched_domain that has
6263 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6264 * allows us to avoid some pointer chasing select_idle_sibling().
6265 *
6266 * Also keep a unique ID per domain (we use the first cpu number in
6267 * the cpumask of the domain), this allows us to quickly tell if
6268 * two cpus are in the same cache domain, see cpus_share_cache().
6269 */
6270 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6271 DEFINE_PER_CPU(int, sd_llc_size);
6272 DEFINE_PER_CPU(int, sd_llc_id);
6273 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6274 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6275 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6276 DEFINE_PER_CPU(struct sched_domain *, sd_ea);
6277 DEFINE_PER_CPU(struct sched_domain *, sd_scs);
6278
update_top_cache_domain(int cpu)6279 static void update_top_cache_domain(int cpu)
6280 {
6281 struct sched_domain *sd;
6282 struct sched_domain *busy_sd = NULL, *ea_sd = NULL;
6283 int id = cpu;
6284 int size = 1;
6285
6286 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6287 if (sd) {
6288 id = cpumask_first(sched_domain_span(sd));
6289 size = cpumask_weight(sched_domain_span(sd));
6290 busy_sd = sd->parent; /* sd_busy */
6291 }
6292 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
6293
6294 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6295 per_cpu(sd_llc_size, cpu) = size;
6296 per_cpu(sd_llc_id, cpu) = id;
6297
6298 sd = lowest_flag_domain(cpu, SD_NUMA);
6299 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6300
6301 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6302 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6303
6304 for_each_domain(cpu, sd) {
6305 if (sd->groups->sge)
6306 ea_sd = sd;
6307 else
6308 break;
6309 }
6310 rcu_assign_pointer(per_cpu(sd_ea, cpu), ea_sd);
6311
6312 sd = highest_flag_domain(cpu, SD_SHARE_CAP_STATES);
6313 rcu_assign_pointer(per_cpu(sd_scs, cpu), sd);
6314 }
6315
6316 /*
6317 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6318 * hold the hotplug lock.
6319 */
6320 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)6321 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6322 {
6323 struct rq *rq = cpu_rq(cpu);
6324 struct sched_domain *tmp;
6325
6326 /* Remove the sched domains which do not contribute to scheduling. */
6327 for (tmp = sd; tmp; ) {
6328 struct sched_domain *parent = tmp->parent;
6329 if (!parent)
6330 break;
6331
6332 if (sd_parent_degenerate(tmp, parent)) {
6333 tmp->parent = parent->parent;
6334 if (parent->parent)
6335 parent->parent->child = tmp;
6336 /*
6337 * Transfer SD_PREFER_SIBLING down in case of a
6338 * degenerate parent; the spans match for this
6339 * so the property transfers.
6340 */
6341 if (parent->flags & SD_PREFER_SIBLING)
6342 tmp->flags |= SD_PREFER_SIBLING;
6343 destroy_sched_domain(parent, cpu);
6344 } else
6345 tmp = tmp->parent;
6346 }
6347
6348 if (sd && sd_degenerate(sd)) {
6349 tmp = sd;
6350 sd = sd->parent;
6351 destroy_sched_domain(tmp, cpu);
6352 if (sd)
6353 sd->child = NULL;
6354 }
6355
6356 sched_domain_debug(sd, cpu);
6357
6358 rq_attach_root(rq, rd);
6359 tmp = rq->sd;
6360 rcu_assign_pointer(rq->sd, sd);
6361 destroy_sched_domains(tmp, cpu);
6362
6363 update_top_cache_domain(cpu);
6364 }
6365
6366 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)6367 static int __init isolated_cpu_setup(char *str)
6368 {
6369 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6370 cpulist_parse(str, cpu_isolated_map);
6371 return 1;
6372 }
6373
6374 __setup("isolcpus=", isolated_cpu_setup);
6375
6376 struct s_data {
6377 struct sched_domain ** __percpu sd;
6378 struct root_domain *rd;
6379 };
6380
6381 enum s_alloc {
6382 sa_rootdomain,
6383 sa_sd,
6384 sa_sd_storage,
6385 sa_none,
6386 };
6387
6388 /*
6389 * Build an iteration mask that can exclude certain CPUs from the upwards
6390 * domain traversal.
6391 *
6392 * Only CPUs that can arrive at this group should be considered to continue
6393 * balancing.
6394 *
6395 * Asymmetric node setups can result in situations where the domain tree is of
6396 * unequal depth, make sure to skip domains that already cover the entire
6397 * range.
6398 *
6399 * In that case build_sched_domains() will have terminated the iteration early
6400 * and our sibling sd spans will be empty. Domains should always include the
6401 * cpu they're built on, so check that.
6402 *
6403 */
build_group_mask(struct sched_domain * sd,struct sched_group * sg)6404 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6405 {
6406 const struct cpumask *sg_span = sched_group_cpus(sg);
6407 struct sd_data *sdd = sd->private;
6408 struct sched_domain *sibling;
6409 int i;
6410
6411 for_each_cpu(i, sg_span) {
6412 sibling = *per_cpu_ptr(sdd->sd, i);
6413
6414 /*
6415 * Can happen in the asymmetric case, where these siblings are
6416 * unused. The mask will not be empty because those CPUs that
6417 * do have the top domain _should_ span the domain.
6418 */
6419 if (!sibling->child)
6420 continue;
6421
6422 /* If we would not end up here, we can't continue from here */
6423 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
6424 continue;
6425
6426 cpumask_set_cpu(i, sched_group_mask(sg));
6427 }
6428
6429 /* We must not have empty masks here */
6430 WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
6431 }
6432
6433 /*
6434 * Return the canonical balance cpu for this group, this is the first cpu
6435 * of this group that's also in the iteration mask.
6436 */
group_balance_cpu(struct sched_group * sg)6437 int group_balance_cpu(struct sched_group *sg)
6438 {
6439 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6440 }
6441
6442 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)6443 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6444 {
6445 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6446 const struct cpumask *span = sched_domain_span(sd);
6447 struct cpumask *covered = sched_domains_tmpmask;
6448 struct sd_data *sdd = sd->private;
6449 struct sched_domain *sibling;
6450 int i;
6451
6452 cpumask_clear(covered);
6453
6454 for_each_cpu(i, span) {
6455 struct cpumask *sg_span;
6456
6457 if (cpumask_test_cpu(i, covered))
6458 continue;
6459
6460 sibling = *per_cpu_ptr(sdd->sd, i);
6461
6462 /* See the comment near build_group_mask(). */
6463 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6464 continue;
6465
6466 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6467 GFP_KERNEL, cpu_to_node(cpu));
6468
6469 if (!sg)
6470 goto fail;
6471
6472 sg_span = sched_group_cpus(sg);
6473 if (sibling->child)
6474 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6475 else
6476 cpumask_set_cpu(i, sg_span);
6477
6478 cpumask_or(covered, covered, sg_span);
6479
6480 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6481 if (atomic_inc_return(&sg->sgc->ref) == 1)
6482 build_group_mask(sd, sg);
6483
6484 /*
6485 * Initialize sgc->capacity such that even if we mess up the
6486 * domains and no possible iteration will get us here, we won't
6487 * die on a /0 trap.
6488 */
6489 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6490 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
6491 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6492
6493 /*
6494 * Make sure the first group of this domain contains the
6495 * canonical balance cpu. Otherwise the sched_domain iteration
6496 * breaks. See update_sg_lb_stats().
6497 */
6498 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6499 group_balance_cpu(sg) == cpu)
6500 groups = sg;
6501
6502 if (!first)
6503 first = sg;
6504 if (last)
6505 last->next = sg;
6506 last = sg;
6507 last->next = first;
6508 }
6509 sd->groups = groups;
6510
6511 return 0;
6512
6513 fail:
6514 free_sched_groups(first, 0);
6515
6516 return -ENOMEM;
6517 }
6518
get_group(int cpu,struct sd_data * sdd,struct sched_group ** sg)6519 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6520 {
6521 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6522 struct sched_domain *child = sd->child;
6523
6524 if (child)
6525 cpu = cpumask_first(sched_domain_span(child));
6526
6527 if (sg) {
6528 *sg = *per_cpu_ptr(sdd->sg, cpu);
6529 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6530 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6531 }
6532
6533 return cpu;
6534 }
6535
6536 /*
6537 * build_sched_groups will build a circular linked list of the groups
6538 * covered by the given span, and will set each group's ->cpumask correctly,
6539 * and ->cpu_capacity to 0.
6540 *
6541 * Assumes the sched_domain tree is fully constructed
6542 */
6543 static int
build_sched_groups(struct sched_domain * sd,int cpu)6544 build_sched_groups(struct sched_domain *sd, int cpu)
6545 {
6546 struct sched_group *first = NULL, *last = NULL;
6547 struct sd_data *sdd = sd->private;
6548 const struct cpumask *span = sched_domain_span(sd);
6549 struct cpumask *covered;
6550 int i;
6551
6552 get_group(cpu, sdd, &sd->groups);
6553 atomic_inc(&sd->groups->ref);
6554
6555 if (cpu != cpumask_first(span))
6556 return 0;
6557
6558 lockdep_assert_held(&sched_domains_mutex);
6559 covered = sched_domains_tmpmask;
6560
6561 cpumask_clear(covered);
6562
6563 for_each_cpu(i, span) {
6564 struct sched_group *sg;
6565 int group, j;
6566
6567 if (cpumask_test_cpu(i, covered))
6568 continue;
6569
6570 group = get_group(i, sdd, &sg);
6571 cpumask_setall(sched_group_mask(sg));
6572
6573 for_each_cpu(j, span) {
6574 if (get_group(j, sdd, NULL) != group)
6575 continue;
6576
6577 cpumask_set_cpu(j, covered);
6578 cpumask_set_cpu(j, sched_group_cpus(sg));
6579 }
6580
6581 if (!first)
6582 first = sg;
6583 if (last)
6584 last->next = sg;
6585 last = sg;
6586 }
6587 last->next = first;
6588
6589 return 0;
6590 }
6591
6592 /*
6593 * Initialize sched groups cpu_capacity.
6594 *
6595 * cpu_capacity indicates the capacity of sched group, which is used while
6596 * distributing the load between different sched groups in a sched domain.
6597 * Typically cpu_capacity for all the groups in a sched domain will be same
6598 * unless there are asymmetries in the topology. If there are asymmetries,
6599 * group having more cpu_capacity will pickup more load compared to the
6600 * group having less cpu_capacity.
6601 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)6602 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6603 {
6604 struct sched_group *sg = sd->groups;
6605
6606 WARN_ON(!sg);
6607
6608 do {
6609 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6610 sg = sg->next;
6611 } while (sg != sd->groups);
6612
6613 if (cpu != group_balance_cpu(sg))
6614 return;
6615
6616 update_group_capacity(sd, cpu);
6617 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6618 }
6619
6620 /*
6621 * Check that the per-cpu provided sd energy data is consistent for all cpus
6622 * within the mask.
6623 */
check_sched_energy_data(int cpu,sched_domain_energy_f fn,const struct cpumask * cpumask)6624 static inline void check_sched_energy_data(int cpu, sched_domain_energy_f fn,
6625 const struct cpumask *cpumask)
6626 {
6627 const struct sched_group_energy * const sge = fn(cpu);
6628 struct cpumask mask;
6629 int i;
6630
6631 if (cpumask_weight(cpumask) <= 1)
6632 return;
6633
6634 cpumask_xor(&mask, cpumask, get_cpu_mask(cpu));
6635
6636 for_each_cpu(i, &mask) {
6637 const struct sched_group_energy * const e = fn(i);
6638 int y;
6639
6640 BUG_ON(e->nr_idle_states != sge->nr_idle_states);
6641
6642 for (y = 0; y < (e->nr_idle_states); y++) {
6643 BUG_ON(e->idle_states[y].power !=
6644 sge->idle_states[y].power);
6645 }
6646
6647 BUG_ON(e->nr_cap_states != sge->nr_cap_states);
6648
6649 for (y = 0; y < (e->nr_cap_states); y++) {
6650 BUG_ON(e->cap_states[y].cap != sge->cap_states[y].cap);
6651 BUG_ON(e->cap_states[y].power !=
6652 sge->cap_states[y].power);
6653 }
6654 }
6655 }
6656
init_sched_energy(int cpu,struct sched_domain * sd,sched_domain_energy_f fn)6657 static void init_sched_energy(int cpu, struct sched_domain *sd,
6658 sched_domain_energy_f fn)
6659 {
6660 if (!(fn && fn(cpu)))
6661 return;
6662
6663 if (cpu != group_balance_cpu(sd->groups))
6664 return;
6665
6666 if (sd->child && !sd->child->groups->sge) {
6667 pr_err("BUG: EAS setup broken for CPU%d\n", cpu);
6668 #ifdef CONFIG_SCHED_DEBUG
6669 pr_err(" energy data on %s but not on %s domain\n",
6670 sd->name, sd->child->name);
6671 #endif
6672 return;
6673 }
6674
6675 check_sched_energy_data(cpu, fn, sched_group_cpus(sd->groups));
6676
6677 sd->groups->sge = fn(cpu);
6678 }
6679
6680 /*
6681 * Initializers for schedule domains
6682 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6683 */
6684
6685 static int default_relax_domain_level = -1;
6686 int sched_domain_level_max;
6687
setup_relax_domain_level(char * str)6688 static int __init setup_relax_domain_level(char *str)
6689 {
6690 if (kstrtoint(str, 0, &default_relax_domain_level))
6691 pr_warn("Unable to set relax_domain_level\n");
6692
6693 return 1;
6694 }
6695 __setup("relax_domain_level=", setup_relax_domain_level);
6696
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)6697 static void set_domain_attribute(struct sched_domain *sd,
6698 struct sched_domain_attr *attr)
6699 {
6700 int request;
6701
6702 if (!attr || attr->relax_domain_level < 0) {
6703 if (default_relax_domain_level < 0)
6704 return;
6705 else
6706 request = default_relax_domain_level;
6707 } else
6708 request = attr->relax_domain_level;
6709 if (request < sd->level) {
6710 /* turn off idle balance on this domain */
6711 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6712 } else {
6713 /* turn on idle balance on this domain */
6714 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6715 }
6716 }
6717
6718 static void __sdt_free(const struct cpumask *cpu_map);
6719 static int __sdt_alloc(const struct cpumask *cpu_map);
6720
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)6721 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6722 const struct cpumask *cpu_map)
6723 {
6724 switch (what) {
6725 case sa_rootdomain:
6726 if (!atomic_read(&d->rd->refcount))
6727 free_rootdomain(&d->rd->rcu); /* fall through */
6728 case sa_sd:
6729 free_percpu(d->sd); /* fall through */
6730 case sa_sd_storage:
6731 __sdt_free(cpu_map); /* fall through */
6732 case sa_none:
6733 break;
6734 }
6735 }
6736
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)6737 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6738 const struct cpumask *cpu_map)
6739 {
6740 memset(d, 0, sizeof(*d));
6741
6742 if (__sdt_alloc(cpu_map))
6743 return sa_sd_storage;
6744 d->sd = alloc_percpu(struct sched_domain *);
6745 if (!d->sd)
6746 return sa_sd_storage;
6747 d->rd = alloc_rootdomain();
6748 if (!d->rd)
6749 return sa_sd;
6750 return sa_rootdomain;
6751 }
6752
6753 /*
6754 * NULL the sd_data elements we've used to build the sched_domain and
6755 * sched_group structure so that the subsequent __free_domain_allocs()
6756 * will not free the data we're using.
6757 */
claim_allocations(int cpu,struct sched_domain * sd)6758 static void claim_allocations(int cpu, struct sched_domain *sd)
6759 {
6760 struct sd_data *sdd = sd->private;
6761
6762 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6763 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6764
6765 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6766 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6767
6768 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6769 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6770 }
6771
6772 #ifdef CONFIG_NUMA
6773 static int sched_domains_numa_levels;
6774 enum numa_topology_type sched_numa_topology_type;
6775 static int *sched_domains_numa_distance;
6776 int sched_max_numa_distance;
6777 static struct cpumask ***sched_domains_numa_masks;
6778 static int sched_domains_curr_level;
6779 #endif
6780
6781 /*
6782 * SD_flags allowed in topology descriptions.
6783 *
6784 * These flags are purely descriptive of the topology and do not prescribe
6785 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6786 * function:
6787 *
6788 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6789 * SD_SHARE_PKG_RESOURCES - describes shared caches
6790 * SD_NUMA - describes NUMA topologies
6791 * SD_SHARE_POWERDOMAIN - describes shared power domain
6792 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6793 * SD_SHARE_CAP_STATES - describes shared capacity states
6794 *
6795 * Odd one out, which beside describing the topology has a quirk also
6796 * prescribes the desired behaviour that goes along with it:
6797 *
6798 * Odd one out:
6799 * SD_ASYM_PACKING - describes SMT quirks
6800 */
6801 #define TOPOLOGY_SD_FLAGS \
6802 (SD_SHARE_CPUCAPACITY | \
6803 SD_SHARE_PKG_RESOURCES | \
6804 SD_NUMA | \
6805 SD_ASYM_PACKING | \
6806 SD_ASYM_CPUCAPACITY | \
6807 SD_SHARE_POWERDOMAIN | \
6808 SD_SHARE_CAP_STATES)
6809
6810 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,struct sched_domain * child,int cpu)6811 sd_init(struct sched_domain_topology_level *tl,
6812 struct sched_domain *child, int cpu)
6813 {
6814 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6815 int sd_weight, sd_flags = 0;
6816
6817 #ifdef CONFIG_NUMA
6818 /*
6819 * Ugly hack to pass state to sd_numa_mask()...
6820 */
6821 sched_domains_curr_level = tl->numa_level;
6822 #endif
6823
6824 sd_weight = cpumask_weight(tl->mask(cpu));
6825
6826 if (tl->sd_flags)
6827 sd_flags = (*tl->sd_flags)();
6828 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6829 "wrong sd_flags in topology description\n"))
6830 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6831
6832 *sd = (struct sched_domain){
6833 .min_interval = sd_weight,
6834 .max_interval = 2*sd_weight,
6835 .busy_factor = 32,
6836 .imbalance_pct = 125,
6837
6838 .cache_nice_tries = 0,
6839 .busy_idx = 0,
6840 .idle_idx = 0,
6841 .newidle_idx = 0,
6842 .wake_idx = 0,
6843 .forkexec_idx = 0,
6844
6845 .flags = 1*SD_LOAD_BALANCE
6846 | 1*SD_BALANCE_NEWIDLE
6847 | 1*SD_BALANCE_EXEC
6848 | 1*SD_BALANCE_FORK
6849 | 0*SD_BALANCE_WAKE
6850 | 1*SD_WAKE_AFFINE
6851 | 0*SD_SHARE_CPUCAPACITY
6852 | 0*SD_SHARE_PKG_RESOURCES
6853 | 0*SD_SERIALIZE
6854 | 0*SD_PREFER_SIBLING
6855 | 0*SD_NUMA
6856 | sd_flags
6857 ,
6858
6859 .last_balance = jiffies,
6860 .balance_interval = sd_weight,
6861 .smt_gain = 0,
6862 .max_newidle_lb_cost = 0,
6863 .next_decay_max_lb_cost = jiffies,
6864 .child = child,
6865 #ifdef CONFIG_SCHED_DEBUG
6866 .name = tl->name,
6867 #endif
6868 };
6869
6870 /*
6871 * Convert topological properties into behaviour.
6872 */
6873
6874 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6875 struct sched_domain *t = sd;
6876
6877 for_each_lower_domain(t)
6878 t->flags |= SD_BALANCE_WAKE;
6879 }
6880
6881 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6882 sd->flags |= SD_PREFER_SIBLING;
6883 sd->imbalance_pct = 110;
6884 sd->smt_gain = 1178; /* ~15% */
6885
6886 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6887 sd->imbalance_pct = 117;
6888 sd->cache_nice_tries = 1;
6889 sd->busy_idx = 2;
6890
6891 #ifdef CONFIG_NUMA
6892 } else if (sd->flags & SD_NUMA) {
6893 sd->cache_nice_tries = 2;
6894 sd->busy_idx = 3;
6895 sd->idle_idx = 2;
6896
6897 sd->flags |= SD_SERIALIZE;
6898 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6899 sd->flags &= ~(SD_BALANCE_EXEC |
6900 SD_BALANCE_FORK |
6901 SD_WAKE_AFFINE);
6902 }
6903
6904 #endif
6905 } else {
6906 sd->flags |= SD_PREFER_SIBLING;
6907 sd->cache_nice_tries = 1;
6908 sd->busy_idx = 2;
6909 sd->idle_idx = 1;
6910 }
6911
6912 sd->private = &tl->data;
6913
6914 return sd;
6915 }
6916
6917 /*
6918 * Topology list, bottom-up.
6919 */
6920 static struct sched_domain_topology_level default_topology[] = {
6921 #ifdef CONFIG_SCHED_SMT
6922 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6923 #endif
6924 #ifdef CONFIG_SCHED_MC
6925 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6926 #endif
6927 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6928 { NULL, },
6929 };
6930
6931 static struct sched_domain_topology_level *sched_domain_topology =
6932 default_topology;
6933
6934 #define for_each_sd_topology(tl) \
6935 for (tl = sched_domain_topology; tl->mask; tl++)
6936
set_sched_topology(struct sched_domain_topology_level * tl)6937 void set_sched_topology(struct sched_domain_topology_level *tl)
6938 {
6939 sched_domain_topology = tl;
6940 }
6941
6942 #ifdef CONFIG_NUMA
6943
sd_numa_mask(int cpu)6944 static const struct cpumask *sd_numa_mask(int cpu)
6945 {
6946 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6947 }
6948
sched_numa_warn(const char * str)6949 static void sched_numa_warn(const char *str)
6950 {
6951 static int done = false;
6952 int i,j;
6953
6954 if (done)
6955 return;
6956
6957 done = true;
6958
6959 printk(KERN_WARNING "ERROR: %s\n\n", str);
6960
6961 for (i = 0; i < nr_node_ids; i++) {
6962 printk(KERN_WARNING " ");
6963 for (j = 0; j < nr_node_ids; j++)
6964 printk(KERN_CONT "%02d ", node_distance(i,j));
6965 printk(KERN_CONT "\n");
6966 }
6967 printk(KERN_WARNING "\n");
6968 }
6969
find_numa_distance(int distance)6970 bool find_numa_distance(int distance)
6971 {
6972 int i;
6973
6974 if (distance == node_distance(0, 0))
6975 return true;
6976
6977 for (i = 0; i < sched_domains_numa_levels; i++) {
6978 if (sched_domains_numa_distance[i] == distance)
6979 return true;
6980 }
6981
6982 return false;
6983 }
6984
6985 /*
6986 * A system can have three types of NUMA topology:
6987 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6988 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6989 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6990 *
6991 * The difference between a glueless mesh topology and a backplane
6992 * topology lies in whether communication between not directly
6993 * connected nodes goes through intermediary nodes (where programs
6994 * could run), or through backplane controllers. This affects
6995 * placement of programs.
6996 *
6997 * The type of topology can be discerned with the following tests:
6998 * - If the maximum distance between any nodes is 1 hop, the system
6999 * is directly connected.
7000 * - If for two nodes A and B, located N > 1 hops away from each other,
7001 * there is an intermediary node C, which is < N hops away from both
7002 * nodes A and B, the system is a glueless mesh.
7003 */
init_numa_topology_type(void)7004 static void init_numa_topology_type(void)
7005 {
7006 int a, b, c, n;
7007
7008 n = sched_max_numa_distance;
7009
7010 if (sched_domains_numa_levels <= 1) {
7011 sched_numa_topology_type = NUMA_DIRECT;
7012 return;
7013 }
7014
7015 for_each_online_node(a) {
7016 for_each_online_node(b) {
7017 /* Find two nodes furthest removed from each other. */
7018 if (node_distance(a, b) < n)
7019 continue;
7020
7021 /* Is there an intermediary node between a and b? */
7022 for_each_online_node(c) {
7023 if (node_distance(a, c) < n &&
7024 node_distance(b, c) < n) {
7025 sched_numa_topology_type =
7026 NUMA_GLUELESS_MESH;
7027 return;
7028 }
7029 }
7030
7031 sched_numa_topology_type = NUMA_BACKPLANE;
7032 return;
7033 }
7034 }
7035 }
7036
sched_init_numa(void)7037 static void sched_init_numa(void)
7038 {
7039 int next_distance, curr_distance = node_distance(0, 0);
7040 struct sched_domain_topology_level *tl;
7041 int level = 0;
7042 int i, j, k;
7043
7044 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
7045 if (!sched_domains_numa_distance)
7046 return;
7047
7048 /*
7049 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
7050 * unique distances in the node_distance() table.
7051 *
7052 * Assumes node_distance(0,j) includes all distances in
7053 * node_distance(i,j) in order to avoid cubic time.
7054 */
7055 next_distance = curr_distance;
7056 for (i = 0; i < nr_node_ids; i++) {
7057 for (j = 0; j < nr_node_ids; j++) {
7058 for (k = 0; k < nr_node_ids; k++) {
7059 int distance = node_distance(i, k);
7060
7061 if (distance > curr_distance &&
7062 (distance < next_distance ||
7063 next_distance == curr_distance))
7064 next_distance = distance;
7065
7066 /*
7067 * While not a strong assumption it would be nice to know
7068 * about cases where if node A is connected to B, B is not
7069 * equally connected to A.
7070 */
7071 if (sched_debug() && node_distance(k, i) != distance)
7072 sched_numa_warn("Node-distance not symmetric");
7073
7074 if (sched_debug() && i && !find_numa_distance(distance))
7075 sched_numa_warn("Node-0 not representative");
7076 }
7077 if (next_distance != curr_distance) {
7078 sched_domains_numa_distance[level++] = next_distance;
7079 sched_domains_numa_levels = level;
7080 curr_distance = next_distance;
7081 } else break;
7082 }
7083
7084 /*
7085 * In case of sched_debug() we verify the above assumption.
7086 */
7087 if (!sched_debug())
7088 break;
7089 }
7090
7091 if (!level)
7092 return;
7093
7094 /*
7095 * 'level' contains the number of unique distances, excluding the
7096 * identity distance node_distance(i,i).
7097 *
7098 * The sched_domains_numa_distance[] array includes the actual distance
7099 * numbers.
7100 */
7101
7102 /*
7103 * Here, we should temporarily reset sched_domains_numa_levels to 0.
7104 * If it fails to allocate memory for array sched_domains_numa_masks[][],
7105 * the array will contain less then 'level' members. This could be
7106 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
7107 * in other functions.
7108 *
7109 * We reset it to 'level' at the end of this function.
7110 */
7111 sched_domains_numa_levels = 0;
7112
7113 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
7114 if (!sched_domains_numa_masks)
7115 return;
7116
7117 /*
7118 * Now for each level, construct a mask per node which contains all
7119 * cpus of nodes that are that many hops away from us.
7120 */
7121 for (i = 0; i < level; i++) {
7122 sched_domains_numa_masks[i] =
7123 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
7124 if (!sched_domains_numa_masks[i])
7125 return;
7126
7127 for (j = 0; j < nr_node_ids; j++) {
7128 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
7129 if (!mask)
7130 return;
7131
7132 sched_domains_numa_masks[i][j] = mask;
7133
7134 for_each_node(k) {
7135 if (node_distance(j, k) > sched_domains_numa_distance[i])
7136 continue;
7137
7138 cpumask_or(mask, mask, cpumask_of_node(k));
7139 }
7140 }
7141 }
7142
7143 /* Compute default topology size */
7144 for (i = 0; sched_domain_topology[i].mask; i++);
7145
7146 tl = kzalloc((i + level + 1) *
7147 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
7148 if (!tl)
7149 return;
7150
7151 /*
7152 * Copy the default topology bits..
7153 */
7154 for (i = 0; sched_domain_topology[i].mask; i++)
7155 tl[i] = sched_domain_topology[i];
7156
7157 /*
7158 * .. and append 'j' levels of NUMA goodness.
7159 */
7160 for (j = 0; j < level; i++, j++) {
7161 tl[i] = (struct sched_domain_topology_level){
7162 .mask = sd_numa_mask,
7163 .sd_flags = cpu_numa_flags,
7164 .flags = SDTL_OVERLAP,
7165 .numa_level = j,
7166 SD_INIT_NAME(NUMA)
7167 };
7168 }
7169
7170 sched_domain_topology = tl;
7171
7172 sched_domains_numa_levels = level;
7173 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
7174
7175 init_numa_topology_type();
7176 }
7177
sched_domains_numa_masks_set(int cpu)7178 static void sched_domains_numa_masks_set(int cpu)
7179 {
7180 int i, j;
7181 int node = cpu_to_node(cpu);
7182
7183 for (i = 0; i < sched_domains_numa_levels; i++) {
7184 for (j = 0; j < nr_node_ids; j++) {
7185 if (node_distance(j, node) <= sched_domains_numa_distance[i])
7186 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
7187 }
7188 }
7189 }
7190
sched_domains_numa_masks_clear(int cpu)7191 static void sched_domains_numa_masks_clear(int cpu)
7192 {
7193 int i, j;
7194 for (i = 0; i < sched_domains_numa_levels; i++) {
7195 for (j = 0; j < nr_node_ids; j++)
7196 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
7197 }
7198 }
7199
7200 /*
7201 * Update sched_domains_numa_masks[level][node] array when new cpus
7202 * are onlined.
7203 */
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)7204 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
7205 unsigned long action,
7206 void *hcpu)
7207 {
7208 int cpu = (long)hcpu;
7209
7210 switch (action & ~CPU_TASKS_FROZEN) {
7211 case CPU_ONLINE:
7212 sched_domains_numa_masks_set(cpu);
7213 break;
7214
7215 case CPU_DEAD:
7216 sched_domains_numa_masks_clear(cpu);
7217 break;
7218
7219 default:
7220 return NOTIFY_DONE;
7221 }
7222
7223 return NOTIFY_OK;
7224 }
7225 #else
sched_init_numa(void)7226 static inline void sched_init_numa(void)
7227 {
7228 }
7229
sched_domains_numa_masks_update(struct notifier_block * nfb,unsigned long action,void * hcpu)7230 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
7231 unsigned long action,
7232 void *hcpu)
7233 {
7234 return 0;
7235 }
7236 #endif /* CONFIG_NUMA */
7237
__sdt_alloc(const struct cpumask * cpu_map)7238 static int __sdt_alloc(const struct cpumask *cpu_map)
7239 {
7240 struct sched_domain_topology_level *tl;
7241 int j;
7242
7243 for_each_sd_topology(tl) {
7244 struct sd_data *sdd = &tl->data;
7245
7246 sdd->sd = alloc_percpu(struct sched_domain *);
7247 if (!sdd->sd)
7248 return -ENOMEM;
7249
7250 sdd->sg = alloc_percpu(struct sched_group *);
7251 if (!sdd->sg)
7252 return -ENOMEM;
7253
7254 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
7255 if (!sdd->sgc)
7256 return -ENOMEM;
7257
7258 for_each_cpu(j, cpu_map) {
7259 struct sched_domain *sd;
7260 struct sched_group *sg;
7261 struct sched_group_capacity *sgc;
7262
7263 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7264 GFP_KERNEL, cpu_to_node(j));
7265 if (!sd)
7266 return -ENOMEM;
7267
7268 *per_cpu_ptr(sdd->sd, j) = sd;
7269
7270 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7271 GFP_KERNEL, cpu_to_node(j));
7272 if (!sg)
7273 return -ENOMEM;
7274
7275 sg->next = sg;
7276
7277 *per_cpu_ptr(sdd->sg, j) = sg;
7278
7279 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
7280 GFP_KERNEL, cpu_to_node(j));
7281 if (!sgc)
7282 return -ENOMEM;
7283
7284 *per_cpu_ptr(sdd->sgc, j) = sgc;
7285 }
7286 }
7287
7288 return 0;
7289 }
7290
__sdt_free(const struct cpumask * cpu_map)7291 static void __sdt_free(const struct cpumask *cpu_map)
7292 {
7293 struct sched_domain_topology_level *tl;
7294 int j;
7295
7296 for_each_sd_topology(tl) {
7297 struct sd_data *sdd = &tl->data;
7298
7299 for_each_cpu(j, cpu_map) {
7300 struct sched_domain *sd;
7301
7302 if (sdd->sd) {
7303 sd = *per_cpu_ptr(sdd->sd, j);
7304 if (sd && (sd->flags & SD_OVERLAP))
7305 free_sched_groups(sd->groups, 0);
7306 kfree(*per_cpu_ptr(sdd->sd, j));
7307 }
7308
7309 if (sdd->sg)
7310 kfree(*per_cpu_ptr(sdd->sg, j));
7311 if (sdd->sgc)
7312 kfree(*per_cpu_ptr(sdd->sgc, j));
7313 }
7314 free_percpu(sdd->sd);
7315 sdd->sd = NULL;
7316 free_percpu(sdd->sg);
7317 sdd->sg = NULL;
7318 free_percpu(sdd->sgc);
7319 sdd->sgc = NULL;
7320 }
7321 }
7322
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)7323 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7324 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7325 struct sched_domain *child, int cpu)
7326 {
7327 struct sched_domain *sd = sd_init(tl, child, cpu);
7328
7329 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7330 if (child) {
7331 sd->level = child->level + 1;
7332 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7333 child->parent = sd;
7334
7335 if (!cpumask_subset(sched_domain_span(child),
7336 sched_domain_span(sd))) {
7337 pr_err("BUG: arch topology borken\n");
7338 #ifdef CONFIG_SCHED_DEBUG
7339 pr_err(" the %s domain not a subset of the %s domain\n",
7340 child->name, sd->name);
7341 #endif
7342 /* Fixup, ensure @sd has at least @child cpus. */
7343 cpumask_or(sched_domain_span(sd),
7344 sched_domain_span(sd),
7345 sched_domain_span(child));
7346 }
7347
7348 }
7349 set_domain_attribute(sd, attr);
7350
7351 return sd;
7352 }
7353
7354 /*
7355 * Build sched domains for a given set of cpus and attach the sched domains
7356 * to the individual cpus
7357 */
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)7358 static int build_sched_domains(const struct cpumask *cpu_map,
7359 struct sched_domain_attr *attr)
7360 {
7361 enum s_alloc alloc_state;
7362 struct sched_domain *sd;
7363 struct s_data d;
7364 int i, ret = -ENOMEM;
7365
7366 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7367 if (alloc_state != sa_rootdomain)
7368 goto error;
7369
7370 /* Set up domains for cpus specified by the cpu_map. */
7371 for_each_cpu(i, cpu_map) {
7372 struct sched_domain_topology_level *tl;
7373
7374 sd = NULL;
7375 for_each_sd_topology(tl) {
7376 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7377 if (tl == sched_domain_topology)
7378 *per_cpu_ptr(d.sd, i) = sd;
7379 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7380 sd->flags |= SD_OVERLAP;
7381 }
7382 }
7383
7384 /* Build the groups for the domains */
7385 for_each_cpu(i, cpu_map) {
7386 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7387 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7388 if (sd->flags & SD_OVERLAP) {
7389 if (build_overlap_sched_groups(sd, i))
7390 goto error;
7391 } else {
7392 if (build_sched_groups(sd, i))
7393 goto error;
7394 }
7395 }
7396 }
7397
7398 /* Calculate CPU capacity for physical packages and nodes */
7399 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7400 struct sched_domain_topology_level *tl = sched_domain_topology;
7401
7402 if (!cpumask_test_cpu(i, cpu_map))
7403 continue;
7404
7405 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent, tl++) {
7406 init_sched_energy(i, sd, tl->energy);
7407 claim_allocations(i, sd);
7408 init_sched_groups_capacity(i, sd);
7409 }
7410 }
7411
7412 /* Attach the domains */
7413 rcu_read_lock();
7414 for_each_cpu(i, cpu_map) {
7415 int max_cpu = READ_ONCE(d.rd->max_cap_orig_cpu);
7416 int min_cpu = READ_ONCE(d.rd->min_cap_orig_cpu);
7417
7418 if ((max_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig >
7419 cpu_rq(max_cpu)->cpu_capacity_orig))
7420 WRITE_ONCE(d.rd->max_cap_orig_cpu, i);
7421
7422 if ((min_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig <
7423 cpu_rq(min_cpu)->cpu_capacity_orig))
7424 WRITE_ONCE(d.rd->min_cap_orig_cpu, i);
7425
7426 sd = *per_cpu_ptr(d.sd, i);
7427
7428 cpu_attach_domain(sd, d.rd, i);
7429 }
7430 rcu_read_unlock();
7431
7432 ret = 0;
7433 error:
7434 __free_domain_allocs(&d, alloc_state, cpu_map);
7435 return ret;
7436 }
7437
7438 static cpumask_var_t *doms_cur; /* current sched domains */
7439 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7440 static struct sched_domain_attr *dattr_cur;
7441 /* attribues of custom domains in 'doms_cur' */
7442
7443 /*
7444 * Special case: If a kmalloc of a doms_cur partition (array of
7445 * cpumask) fails, then fallback to a single sched domain,
7446 * as determined by the single cpumask fallback_doms.
7447 */
7448 static cpumask_var_t fallback_doms;
7449
7450 /*
7451 * arch_update_cpu_topology lets virtualized architectures update the
7452 * cpu core maps. It is supposed to return 1 if the topology changed
7453 * or 0 if it stayed the same.
7454 */
arch_update_cpu_topology(void)7455 int __weak arch_update_cpu_topology(void)
7456 {
7457 return 0;
7458 }
7459
alloc_sched_domains(unsigned int ndoms)7460 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7461 {
7462 int i;
7463 cpumask_var_t *doms;
7464
7465 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7466 if (!doms)
7467 return NULL;
7468 for (i = 0; i < ndoms; i++) {
7469 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7470 free_sched_domains(doms, i);
7471 return NULL;
7472 }
7473 }
7474 return doms;
7475 }
7476
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)7477 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7478 {
7479 unsigned int i;
7480 for (i = 0; i < ndoms; i++)
7481 free_cpumask_var(doms[i]);
7482 kfree(doms);
7483 }
7484
7485 /*
7486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7487 * For now this just excludes isolated cpus, but could be used to
7488 * exclude other special cases in the future.
7489 */
init_sched_domains(const struct cpumask * cpu_map)7490 static int init_sched_domains(const struct cpumask *cpu_map)
7491 {
7492 int err;
7493
7494 arch_update_cpu_topology();
7495 ndoms_cur = 1;
7496 doms_cur = alloc_sched_domains(ndoms_cur);
7497 if (!doms_cur)
7498 doms_cur = &fallback_doms;
7499 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7500 err = build_sched_domains(doms_cur[0], NULL);
7501 register_sched_domain_sysctl();
7502
7503 return err;
7504 }
7505
7506 /*
7507 * Detach sched domains from a group of cpus specified in cpu_map
7508 * These cpus will now be attached to the NULL domain
7509 */
detach_destroy_domains(const struct cpumask * cpu_map)7510 static void detach_destroy_domains(const struct cpumask *cpu_map)
7511 {
7512 int i;
7513
7514 rcu_read_lock();
7515 for_each_cpu(i, cpu_map)
7516 cpu_attach_domain(NULL, &def_root_domain, i);
7517 rcu_read_unlock();
7518 }
7519
7520 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)7521 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7522 struct sched_domain_attr *new, int idx_new)
7523 {
7524 struct sched_domain_attr tmp;
7525
7526 /* fast path */
7527 if (!new && !cur)
7528 return 1;
7529
7530 tmp = SD_ATTR_INIT;
7531 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7532 new ? (new + idx_new) : &tmp,
7533 sizeof(struct sched_domain_attr));
7534 }
7535
7536 /*
7537 * Partition sched domains as specified by the 'ndoms_new'
7538 * cpumasks in the array doms_new[] of cpumasks. This compares
7539 * doms_new[] to the current sched domain partitioning, doms_cur[].
7540 * It destroys each deleted domain and builds each new domain.
7541 *
7542 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7543 * The masks don't intersect (don't overlap.) We should setup one
7544 * sched domain for each mask. CPUs not in any of the cpumasks will
7545 * not be load balanced. If the same cpumask appears both in the
7546 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7547 * it as it is.
7548 *
7549 * The passed in 'doms_new' should be allocated using
7550 * alloc_sched_domains. This routine takes ownership of it and will
7551 * free_sched_domains it when done with it. If the caller failed the
7552 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7553 * and partition_sched_domains() will fallback to the single partition
7554 * 'fallback_doms', it also forces the domains to be rebuilt.
7555 *
7556 * If doms_new == NULL it will be replaced with cpu_online_mask.
7557 * ndoms_new == 0 is a special case for destroying existing domains,
7558 * and it will not create the default domain.
7559 *
7560 * Call with hotplug lock held
7561 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)7562 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7563 struct sched_domain_attr *dattr_new)
7564 {
7565 int i, j, n;
7566 int new_topology;
7567
7568 mutex_lock(&sched_domains_mutex);
7569
7570 /* always unregister in case we don't destroy any domains */
7571 unregister_sched_domain_sysctl();
7572
7573 /* Let architecture update cpu core mappings. */
7574 new_topology = arch_update_cpu_topology();
7575
7576 n = doms_new ? ndoms_new : 0;
7577
7578 /* Destroy deleted domains */
7579 for (i = 0; i < ndoms_cur; i++) {
7580 for (j = 0; j < n && !new_topology; j++) {
7581 if (cpumask_equal(doms_cur[i], doms_new[j])
7582 && dattrs_equal(dattr_cur, i, dattr_new, j))
7583 goto match1;
7584 }
7585 /* no match - a current sched domain not in new doms_new[] */
7586 detach_destroy_domains(doms_cur[i]);
7587 match1:
7588 ;
7589 }
7590
7591 n = ndoms_cur;
7592 if (doms_new == NULL) {
7593 n = 0;
7594 doms_new = &fallback_doms;
7595 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7596 WARN_ON_ONCE(dattr_new);
7597 }
7598
7599 /* Build new domains */
7600 for (i = 0; i < ndoms_new; i++) {
7601 for (j = 0; j < n && !new_topology; j++) {
7602 if (cpumask_equal(doms_new[i], doms_cur[j])
7603 && dattrs_equal(dattr_new, i, dattr_cur, j))
7604 goto match2;
7605 }
7606 /* no match - add a new doms_new */
7607 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7608 match2:
7609 ;
7610 }
7611
7612 /* Remember the new sched domains */
7613 if (doms_cur != &fallback_doms)
7614 free_sched_domains(doms_cur, ndoms_cur);
7615 kfree(dattr_cur); /* kfree(NULL) is safe */
7616 doms_cur = doms_new;
7617 dattr_cur = dattr_new;
7618 ndoms_cur = ndoms_new;
7619
7620 register_sched_domain_sysctl();
7621
7622 mutex_unlock(&sched_domains_mutex);
7623 }
7624
7625 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7626
7627 /*
7628 * Update cpusets according to cpu_active mask. If cpusets are
7629 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7630 * around partition_sched_domains().
7631 *
7632 * If we come here as part of a suspend/resume, don't touch cpusets because we
7633 * want to restore it back to its original state upon resume anyway.
7634 */
cpuset_cpu_active(struct notifier_block * nfb,unsigned long action,void * hcpu)7635 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7636 void *hcpu)
7637 {
7638 switch (action) {
7639 case CPU_ONLINE_FROZEN:
7640 case CPU_DOWN_FAILED_FROZEN:
7641
7642 /*
7643 * num_cpus_frozen tracks how many CPUs are involved in suspend
7644 * resume sequence. As long as this is not the last online
7645 * operation in the resume sequence, just build a single sched
7646 * domain, ignoring cpusets.
7647 */
7648 partition_sched_domains(1, NULL, NULL);
7649 if (--num_cpus_frozen)
7650 break;
7651
7652 /*
7653 * This is the last CPU online operation. So fall through and
7654 * restore the original sched domains by considering the
7655 * cpuset configurations.
7656 */
7657 cpuset_force_rebuild();
7658
7659 case CPU_ONLINE:
7660 cpuset_update_active_cpus(true);
7661 break;
7662 default:
7663 return NOTIFY_DONE;
7664 }
7665 return NOTIFY_OK;
7666 }
7667
cpuset_cpu_inactive(struct notifier_block * nfb,unsigned long action,void * hcpu)7668 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7669 void *hcpu)
7670 {
7671 unsigned long flags;
7672 long cpu = (long)hcpu;
7673 struct dl_bw *dl_b;
7674 bool overflow;
7675 int cpus;
7676
7677 switch (action) {
7678 case CPU_DOWN_PREPARE:
7679 rcu_read_lock_sched();
7680 dl_b = dl_bw_of(cpu);
7681
7682 raw_spin_lock_irqsave(&dl_b->lock, flags);
7683 cpus = dl_bw_cpus(cpu);
7684 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7685 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7686
7687 rcu_read_unlock_sched();
7688
7689 if (overflow)
7690 return notifier_from_errno(-EBUSY);
7691 cpuset_update_active_cpus(false);
7692 break;
7693 case CPU_DOWN_PREPARE_FROZEN:
7694 num_cpus_frozen++;
7695 partition_sched_domains(1, NULL, NULL);
7696 break;
7697 default:
7698 return NOTIFY_DONE;
7699 }
7700 return NOTIFY_OK;
7701 }
7702
sched_init_smp(void)7703 void __init sched_init_smp(void)
7704 {
7705 cpumask_var_t non_isolated_cpus;
7706
7707 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7708 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7709
7710 sched_init_numa();
7711
7712 /*
7713 * There's no userspace yet to cause hotplug operations; hence all the
7714 * cpu masks are stable and all blatant races in the below code cannot
7715 * happen.
7716 */
7717 mutex_lock(&sched_domains_mutex);
7718 init_sched_domains(cpu_active_mask);
7719 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7720 if (cpumask_empty(non_isolated_cpus))
7721 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7722 mutex_unlock(&sched_domains_mutex);
7723
7724 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7725 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7726 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7727
7728 init_hrtick();
7729
7730 /* Move init over to a non-isolated CPU */
7731 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7732 BUG();
7733 sched_init_granularity();
7734 free_cpumask_var(non_isolated_cpus);
7735
7736 init_sched_rt_class();
7737 init_sched_dl_class();
7738 }
7739 #else
sched_init_smp(void)7740 void __init sched_init_smp(void)
7741 {
7742 sched_init_granularity();
7743 }
7744 #endif /* CONFIG_SMP */
7745
in_sched_functions(unsigned long addr)7746 int in_sched_functions(unsigned long addr)
7747 {
7748 return in_lock_functions(addr) ||
7749 (addr >= (unsigned long)__sched_text_start
7750 && addr < (unsigned long)__sched_text_end);
7751 }
7752
7753 #ifdef CONFIG_CGROUP_SCHED
7754 /*
7755 * Default task group.
7756 * Every task in system belongs to this group at bootup.
7757 */
7758 struct task_group root_task_group;
7759 LIST_HEAD(task_groups);
7760 #endif
7761
7762 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7763
sched_init(void)7764 void __init sched_init(void)
7765 {
7766 int i, j;
7767 unsigned long alloc_size = 0, ptr;
7768
7769 #ifdef CONFIG_FAIR_GROUP_SCHED
7770 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7771 #endif
7772 #ifdef CONFIG_RT_GROUP_SCHED
7773 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7774 #endif
7775 if (alloc_size) {
7776 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7777
7778 #ifdef CONFIG_FAIR_GROUP_SCHED
7779 root_task_group.se = (struct sched_entity **)ptr;
7780 ptr += nr_cpu_ids * sizeof(void **);
7781
7782 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7783 ptr += nr_cpu_ids * sizeof(void **);
7784
7785 #endif /* CONFIG_FAIR_GROUP_SCHED */
7786 #ifdef CONFIG_RT_GROUP_SCHED
7787 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7788 ptr += nr_cpu_ids * sizeof(void **);
7789
7790 root_task_group.rt_rq = (struct rt_rq **)ptr;
7791 ptr += nr_cpu_ids * sizeof(void **);
7792
7793 #endif /* CONFIG_RT_GROUP_SCHED */
7794 }
7795 #ifdef CONFIG_CPUMASK_OFFSTACK
7796 for_each_possible_cpu(i) {
7797 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7798 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7799 }
7800 #endif /* CONFIG_CPUMASK_OFFSTACK */
7801
7802 init_rt_bandwidth(&def_rt_bandwidth,
7803 global_rt_period(), global_rt_runtime());
7804 init_dl_bandwidth(&def_dl_bandwidth,
7805 global_rt_period(), global_rt_runtime());
7806
7807 #ifdef CONFIG_SMP
7808 init_defrootdomain();
7809 #endif
7810
7811 #ifdef CONFIG_RT_GROUP_SCHED
7812 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7813 global_rt_period(), global_rt_runtime());
7814 #endif /* CONFIG_RT_GROUP_SCHED */
7815
7816 #ifdef CONFIG_CGROUP_SCHED
7817 list_add(&root_task_group.list, &task_groups);
7818 INIT_LIST_HEAD(&root_task_group.children);
7819 INIT_LIST_HEAD(&root_task_group.siblings);
7820 autogroup_init(&init_task);
7821
7822 #endif /* CONFIG_CGROUP_SCHED */
7823
7824 for_each_possible_cpu(i) {
7825 struct rq *rq;
7826
7827 rq = cpu_rq(i);
7828 raw_spin_lock_init(&rq->lock);
7829 rq->nr_running = 0;
7830 rq->calc_load_active = 0;
7831 rq->calc_load_update = jiffies + LOAD_FREQ;
7832 init_cfs_rq(&rq->cfs);
7833 init_rt_rq(&rq->rt);
7834 init_dl_rq(&rq->dl);
7835 #ifdef CONFIG_FAIR_GROUP_SCHED
7836 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7837 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7838 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7839 /*
7840 * How much cpu bandwidth does root_task_group get?
7841 *
7842 * In case of task-groups formed thr' the cgroup filesystem, it
7843 * gets 100% of the cpu resources in the system. This overall
7844 * system cpu resource is divided among the tasks of
7845 * root_task_group and its child task-groups in a fair manner,
7846 * based on each entity's (task or task-group's) weight
7847 * (se->load.weight).
7848 *
7849 * In other words, if root_task_group has 10 tasks of weight
7850 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7851 * then A0's share of the cpu resource is:
7852 *
7853 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7854 *
7855 * We achieve this by letting root_task_group's tasks sit
7856 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7857 */
7858 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7859 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7860 #endif /* CONFIG_FAIR_GROUP_SCHED */
7861
7862 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7863 #ifdef CONFIG_RT_GROUP_SCHED
7864 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7865 #endif
7866
7867 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7868 rq->cpu_load[j] = 0;
7869
7870 rq->last_load_update_tick = jiffies;
7871
7872 #ifdef CONFIG_SMP
7873 rq->sd = NULL;
7874 rq->rd = NULL;
7875 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7876 rq->balance_callback = NULL;
7877 rq->active_balance = 0;
7878 rq->next_balance = jiffies;
7879 rq->push_cpu = 0;
7880 rq->push_task = NULL;
7881 rq->cpu = i;
7882 rq->online = 0;
7883 rq->idle_stamp = 0;
7884 rq->avg_idle = 2*sysctl_sched_migration_cost;
7885 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7886 #ifdef CONFIG_SCHED_WALT
7887 rq->cur_irqload = 0;
7888 rq->avg_irqload = 0;
7889 rq->irqload_ts = 0;
7890 #endif
7891
7892 INIT_LIST_HEAD(&rq->cfs_tasks);
7893
7894 rq_attach_root(rq, &def_root_domain);
7895 #ifdef CONFIG_NO_HZ_COMMON
7896 rq->nohz_flags = 0;
7897 #endif
7898 #ifdef CONFIG_NO_HZ_FULL
7899 rq->last_sched_tick = 0;
7900 #endif
7901 #endif
7902 init_rq_hrtick(rq);
7903 atomic_set(&rq->nr_iowait, 0);
7904 }
7905
7906 set_load_weight(&init_task);
7907
7908 #ifdef CONFIG_PREEMPT_NOTIFIERS
7909 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7910 #endif
7911
7912 /*
7913 * The boot idle thread does lazy MMU switching as well:
7914 */
7915 atomic_inc(&init_mm.mm_count);
7916 enter_lazy_tlb(&init_mm, current);
7917
7918 /*
7919 * During early bootup we pretend to be a normal task:
7920 */
7921 current->sched_class = &fair_sched_class;
7922
7923 /*
7924 * Make us the idle thread. Technically, schedule() should not be
7925 * called from this thread, however somewhere below it might be,
7926 * but because we are the idle thread, we just pick up running again
7927 * when this runqueue becomes "idle".
7928 */
7929 init_idle(current, smp_processor_id());
7930
7931 calc_load_update = jiffies + LOAD_FREQ;
7932
7933 #ifdef CONFIG_SMP
7934 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7935 /* May be allocated at isolcpus cmdline parse time */
7936 if (cpu_isolated_map == NULL)
7937 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7938 idle_thread_set_boot_cpu();
7939 set_cpu_rq_start_time();
7940 #endif
7941 init_sched_fair_class();
7942
7943 scheduler_running = 1;
7944 }
7945
7946 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7947 static inline int preempt_count_equals(int preempt_offset)
7948 {
7949 int nested = preempt_count() + rcu_preempt_depth();
7950
7951 return (nested == preempt_offset);
7952 }
7953
7954 static int __might_sleep_init_called;
__might_sleep_init(void)7955 int __init __might_sleep_init(void)
7956 {
7957 __might_sleep_init_called = 1;
7958 return 0;
7959 }
7960 early_initcall(__might_sleep_init);
7961
__might_sleep(const char * file,int line,int preempt_offset)7962 void __might_sleep(const char *file, int line, int preempt_offset)
7963 {
7964 /*
7965 * Blocking primitives will set (and therefore destroy) current->state,
7966 * since we will exit with TASK_RUNNING make sure we enter with it,
7967 * otherwise we will destroy state.
7968 */
7969 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7970 "do not call blocking ops when !TASK_RUNNING; "
7971 "state=%lx set at [<%p>] %pS\n",
7972 current->state,
7973 (void *)current->task_state_change,
7974 (void *)current->task_state_change);
7975
7976 ___might_sleep(file, line, preempt_offset);
7977 }
7978 EXPORT_SYMBOL(__might_sleep);
7979
___might_sleep(const char * file,int line,int preempt_offset)7980 void ___might_sleep(const char *file, int line, int preempt_offset)
7981 {
7982 static unsigned long prev_jiffy; /* ratelimiting */
7983
7984 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7985 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7986 !is_idle_task(current)) || oops_in_progress)
7987 return;
7988 if (system_state != SYSTEM_RUNNING &&
7989 (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
7990 return;
7991 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7992 return;
7993 prev_jiffy = jiffies;
7994
7995 printk(KERN_ERR
7996 "BUG: sleeping function called from invalid context at %s:%d\n",
7997 file, line);
7998 printk(KERN_ERR
7999 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8000 in_atomic(), irqs_disabled(),
8001 current->pid, current->comm);
8002
8003 if (task_stack_end_corrupted(current))
8004 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8005
8006 debug_show_held_locks(current);
8007 if (irqs_disabled())
8008 print_irqtrace_events(current);
8009 #ifdef CONFIG_DEBUG_PREEMPT
8010 if (!preempt_count_equals(preempt_offset)) {
8011 pr_err("Preemption disabled at:");
8012 print_ip_sym(current->preempt_disable_ip);
8013 pr_cont("\n");
8014 }
8015 #endif
8016 dump_stack();
8017 }
8018 EXPORT_SYMBOL(___might_sleep);
8019 #endif
8020
8021 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)8022 void normalize_rt_tasks(void)
8023 {
8024 struct task_struct *g, *p;
8025 struct sched_attr attr = {
8026 .sched_policy = SCHED_NORMAL,
8027 };
8028
8029 read_lock(&tasklist_lock);
8030 for_each_process_thread(g, p) {
8031 /*
8032 * Only normalize user tasks:
8033 */
8034 if (p->flags & PF_KTHREAD)
8035 continue;
8036
8037 p->se.exec_start = 0;
8038 #ifdef CONFIG_SCHEDSTATS
8039 p->se.statistics.wait_start = 0;
8040 p->se.statistics.sleep_start = 0;
8041 p->se.statistics.block_start = 0;
8042 #endif
8043
8044 if (!dl_task(p) && !rt_task(p)) {
8045 /*
8046 * Renice negative nice level userspace
8047 * tasks back to 0:
8048 */
8049 if (task_nice(p) < 0)
8050 set_user_nice(p, 0);
8051 continue;
8052 }
8053
8054 __sched_setscheduler(p, &attr, false, false);
8055 }
8056 read_unlock(&tasklist_lock);
8057 }
8058
8059 #endif /* CONFIG_MAGIC_SYSRQ */
8060
8061 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8062 /*
8063 * These functions are only useful for the IA64 MCA handling, or kdb.
8064 *
8065 * They can only be called when the whole system has been
8066 * stopped - every CPU needs to be quiescent, and no scheduling
8067 * activity can take place. Using them for anything else would
8068 * be a serious bug, and as a result, they aren't even visible
8069 * under any other configuration.
8070 */
8071
8072 /**
8073 * curr_task - return the current task for a given cpu.
8074 * @cpu: the processor in question.
8075 *
8076 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8077 *
8078 * Return: The current task for @cpu.
8079 */
curr_task(int cpu)8080 struct task_struct *curr_task(int cpu)
8081 {
8082 return cpu_curr(cpu);
8083 }
8084
8085 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8086
8087 #ifdef CONFIG_IA64
8088 /**
8089 * set_curr_task - set the current task for a given cpu.
8090 * @cpu: the processor in question.
8091 * @p: the task pointer to set.
8092 *
8093 * Description: This function must only be used when non-maskable interrupts
8094 * are serviced on a separate stack. It allows the architecture to switch the
8095 * notion of the current task on a cpu in a non-blocking manner. This function
8096 * must be called with all CPU's synchronized, and interrupts disabled, the
8097 * and caller must save the original value of the current task (see
8098 * curr_task() above) and restore that value before reenabling interrupts and
8099 * re-starting the system.
8100 *
8101 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8102 */
set_curr_task(int cpu,struct task_struct * p)8103 void set_curr_task(int cpu, struct task_struct *p)
8104 {
8105 cpu_curr(cpu) = p;
8106 }
8107
8108 #endif
8109
8110 #ifdef CONFIG_CGROUP_SCHED
8111 /* task_group_lock serializes the addition/removal of task groups */
8112 static DEFINE_SPINLOCK(task_group_lock);
8113
sched_free_group(struct task_group * tg)8114 static void sched_free_group(struct task_group *tg)
8115 {
8116 free_fair_sched_group(tg);
8117 free_rt_sched_group(tg);
8118 autogroup_free(tg);
8119 kfree(tg);
8120 }
8121
8122 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8123 struct task_group *sched_create_group(struct task_group *parent)
8124 {
8125 struct task_group *tg;
8126
8127 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8128 if (!tg)
8129 return ERR_PTR(-ENOMEM);
8130
8131 if (!alloc_fair_sched_group(tg, parent))
8132 goto err;
8133
8134 if (!alloc_rt_sched_group(tg, parent))
8135 goto err;
8136
8137 return tg;
8138
8139 err:
8140 sched_free_group(tg);
8141 return ERR_PTR(-ENOMEM);
8142 }
8143
sched_online_group(struct task_group * tg,struct task_group * parent)8144 void sched_online_group(struct task_group *tg, struct task_group *parent)
8145 {
8146 unsigned long flags;
8147
8148 spin_lock_irqsave(&task_group_lock, flags);
8149 list_add_rcu(&tg->list, &task_groups);
8150
8151 WARN_ON(!parent); /* root should already exist */
8152
8153 tg->parent = parent;
8154 INIT_LIST_HEAD(&tg->children);
8155 list_add_rcu(&tg->siblings, &parent->children);
8156 spin_unlock_irqrestore(&task_group_lock, flags);
8157 }
8158
8159 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)8160 static void sched_free_group_rcu(struct rcu_head *rhp)
8161 {
8162 /* now it should be safe to free those cfs_rqs */
8163 sched_free_group(container_of(rhp, struct task_group, rcu));
8164 }
8165
sched_destroy_group(struct task_group * tg)8166 void sched_destroy_group(struct task_group *tg)
8167 {
8168 /* wait for possible concurrent references to cfs_rqs complete */
8169 call_rcu(&tg->rcu, sched_free_group_rcu);
8170 }
8171
sched_offline_group(struct task_group * tg)8172 void sched_offline_group(struct task_group *tg)
8173 {
8174 unsigned long flags;
8175
8176 /* end participation in shares distribution */
8177 unregister_fair_sched_group(tg);
8178
8179 spin_lock_irqsave(&task_group_lock, flags);
8180 list_del_rcu(&tg->list);
8181 list_del_rcu(&tg->siblings);
8182 spin_unlock_irqrestore(&task_group_lock, flags);
8183 }
8184
sched_change_group(struct task_struct * tsk,int type)8185 static void sched_change_group(struct task_struct *tsk, int type)
8186 {
8187 struct task_group *tg;
8188
8189 /*
8190 * All callers are synchronized by task_rq_lock(); we do not use RCU
8191 * which is pointless here. Thus, we pass "true" to task_css_check()
8192 * to prevent lockdep warnings.
8193 */
8194 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8195 struct task_group, css);
8196 tg = autogroup_task_group(tsk, tg);
8197 tsk->sched_task_group = tg;
8198
8199 #ifdef CONFIG_FAIR_GROUP_SCHED
8200 if (tsk->sched_class->task_change_group)
8201 tsk->sched_class->task_change_group(tsk, type);
8202 else
8203 #endif
8204 set_task_rq(tsk, task_cpu(tsk));
8205 }
8206
8207 /*
8208 * Change task's runqueue when it moves between groups.
8209 *
8210 * The caller of this function should have put the task in its new group by
8211 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8212 * its new group.
8213 */
sched_move_task(struct task_struct * tsk)8214 void sched_move_task(struct task_struct *tsk)
8215 {
8216 int queued, running;
8217 unsigned long flags;
8218 struct rq *rq;
8219
8220 rq = task_rq_lock(tsk, &flags);
8221
8222 running = task_current(rq, tsk);
8223 queued = task_on_rq_queued(tsk);
8224
8225 if (queued)
8226 dequeue_task(rq, tsk, DEQUEUE_SAVE);
8227 if (unlikely(running))
8228 put_prev_task(rq, tsk);
8229
8230 sched_change_group(tsk, TASK_MOVE_GROUP);
8231
8232 if (unlikely(running))
8233 tsk->sched_class->set_curr_task(rq);
8234 if (queued)
8235 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
8236
8237 task_rq_unlock(rq, tsk, &flags);
8238 }
8239 #endif /* CONFIG_CGROUP_SCHED */
8240
8241 #ifdef CONFIG_RT_GROUP_SCHED
8242 /*
8243 * Ensure that the real time constraints are schedulable.
8244 */
8245 static DEFINE_MUTEX(rt_constraints_mutex);
8246
8247 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)8248 static inline int tg_has_rt_tasks(struct task_group *tg)
8249 {
8250 struct task_struct *g, *p;
8251
8252 /*
8253 * Autogroups do not have RT tasks; see autogroup_create().
8254 */
8255 if (task_group_is_autogroup(tg))
8256 return 0;
8257
8258 for_each_process_thread(g, p) {
8259 if (rt_task(p) && task_group(p) == tg)
8260 return 1;
8261 }
8262
8263 return 0;
8264 }
8265
8266 struct rt_schedulable_data {
8267 struct task_group *tg;
8268 u64 rt_period;
8269 u64 rt_runtime;
8270 };
8271
tg_rt_schedulable(struct task_group * tg,void * data)8272 static int tg_rt_schedulable(struct task_group *tg, void *data)
8273 {
8274 struct rt_schedulable_data *d = data;
8275 struct task_group *child;
8276 unsigned long total, sum = 0;
8277 u64 period, runtime;
8278
8279 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8280 runtime = tg->rt_bandwidth.rt_runtime;
8281
8282 if (tg == d->tg) {
8283 period = d->rt_period;
8284 runtime = d->rt_runtime;
8285 }
8286
8287 /*
8288 * Cannot have more runtime than the period.
8289 */
8290 if (runtime > period && runtime != RUNTIME_INF)
8291 return -EINVAL;
8292
8293 /*
8294 * Ensure we don't starve existing RT tasks.
8295 */
8296 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8297 return -EBUSY;
8298
8299 total = to_ratio(period, runtime);
8300
8301 /*
8302 * Nobody can have more than the global setting allows.
8303 */
8304 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8305 return -EINVAL;
8306
8307 /*
8308 * The sum of our children's runtime should not exceed our own.
8309 */
8310 list_for_each_entry_rcu(child, &tg->children, siblings) {
8311 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8312 runtime = child->rt_bandwidth.rt_runtime;
8313
8314 if (child == d->tg) {
8315 period = d->rt_period;
8316 runtime = d->rt_runtime;
8317 }
8318
8319 sum += to_ratio(period, runtime);
8320 }
8321
8322 if (sum > total)
8323 return -EINVAL;
8324
8325 return 0;
8326 }
8327
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)8328 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8329 {
8330 int ret;
8331
8332 struct rt_schedulable_data data = {
8333 .tg = tg,
8334 .rt_period = period,
8335 .rt_runtime = runtime,
8336 };
8337
8338 rcu_read_lock();
8339 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8340 rcu_read_unlock();
8341
8342 return ret;
8343 }
8344
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)8345 static int tg_set_rt_bandwidth(struct task_group *tg,
8346 u64 rt_period, u64 rt_runtime)
8347 {
8348 int i, err = 0;
8349
8350 /*
8351 * Disallowing the root group RT runtime is BAD, it would disallow the
8352 * kernel creating (and or operating) RT threads.
8353 */
8354 if (tg == &root_task_group && rt_runtime == 0)
8355 return -EINVAL;
8356
8357 /* No period doesn't make any sense. */
8358 if (rt_period == 0)
8359 return -EINVAL;
8360
8361 mutex_lock(&rt_constraints_mutex);
8362 read_lock(&tasklist_lock);
8363 err = __rt_schedulable(tg, rt_period, rt_runtime);
8364 if (err)
8365 goto unlock;
8366
8367 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8368 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8369 tg->rt_bandwidth.rt_runtime = rt_runtime;
8370
8371 for_each_possible_cpu(i) {
8372 struct rt_rq *rt_rq = tg->rt_rq[i];
8373
8374 raw_spin_lock(&rt_rq->rt_runtime_lock);
8375 rt_rq->rt_runtime = rt_runtime;
8376 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8377 }
8378 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8379 unlock:
8380 read_unlock(&tasklist_lock);
8381 mutex_unlock(&rt_constraints_mutex);
8382
8383 return err;
8384 }
8385
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)8386 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8387 {
8388 u64 rt_runtime, rt_period;
8389
8390 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8391 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8392 if (rt_runtime_us < 0)
8393 rt_runtime = RUNTIME_INF;
8394
8395 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8396 }
8397
sched_group_rt_runtime(struct task_group * tg)8398 static long sched_group_rt_runtime(struct task_group *tg)
8399 {
8400 u64 rt_runtime_us;
8401
8402 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8403 return -1;
8404
8405 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8406 do_div(rt_runtime_us, NSEC_PER_USEC);
8407 return rt_runtime_us;
8408 }
8409
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)8410 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8411 {
8412 u64 rt_runtime, rt_period;
8413
8414 rt_period = rt_period_us * NSEC_PER_USEC;
8415 rt_runtime = tg->rt_bandwidth.rt_runtime;
8416
8417 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8418 }
8419
sched_group_rt_period(struct task_group * tg)8420 static long sched_group_rt_period(struct task_group *tg)
8421 {
8422 u64 rt_period_us;
8423
8424 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8425 do_div(rt_period_us, NSEC_PER_USEC);
8426 return rt_period_us;
8427 }
8428 #endif /* CONFIG_RT_GROUP_SCHED */
8429
8430 #ifdef CONFIG_RT_GROUP_SCHED
sched_rt_global_constraints(void)8431 static int sched_rt_global_constraints(void)
8432 {
8433 int ret = 0;
8434
8435 mutex_lock(&rt_constraints_mutex);
8436 read_lock(&tasklist_lock);
8437 ret = __rt_schedulable(NULL, 0, 0);
8438 read_unlock(&tasklist_lock);
8439 mutex_unlock(&rt_constraints_mutex);
8440
8441 return ret;
8442 }
8443
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)8444 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8445 {
8446 /* Don't accept realtime tasks when there is no way for them to run */
8447 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8448 return 0;
8449
8450 return 1;
8451 }
8452
8453 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)8454 static int sched_rt_global_constraints(void)
8455 {
8456 unsigned long flags;
8457 int i, ret = 0;
8458
8459 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8460 for_each_possible_cpu(i) {
8461 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8462
8463 raw_spin_lock(&rt_rq->rt_runtime_lock);
8464 rt_rq->rt_runtime = global_rt_runtime();
8465 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8466 }
8467 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8468
8469 return ret;
8470 }
8471 #endif /* CONFIG_RT_GROUP_SCHED */
8472
sched_dl_global_validate(void)8473 static int sched_dl_global_validate(void)
8474 {
8475 u64 runtime = global_rt_runtime();
8476 u64 period = global_rt_period();
8477 u64 new_bw = to_ratio(period, runtime);
8478 struct dl_bw *dl_b;
8479 int cpu, ret = 0;
8480 unsigned long flags;
8481
8482 /*
8483 * Here we want to check the bandwidth not being set to some
8484 * value smaller than the currently allocated bandwidth in
8485 * any of the root_domains.
8486 *
8487 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8488 * cycling on root_domains... Discussion on different/better
8489 * solutions is welcome!
8490 */
8491 for_each_possible_cpu(cpu) {
8492 rcu_read_lock_sched();
8493 dl_b = dl_bw_of(cpu);
8494
8495 raw_spin_lock_irqsave(&dl_b->lock, flags);
8496 if (new_bw < dl_b->total_bw)
8497 ret = -EBUSY;
8498 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8499
8500 rcu_read_unlock_sched();
8501
8502 if (ret)
8503 break;
8504 }
8505
8506 return ret;
8507 }
8508
sched_dl_do_global(void)8509 static void sched_dl_do_global(void)
8510 {
8511 u64 new_bw = -1;
8512 struct dl_bw *dl_b;
8513 int cpu;
8514 unsigned long flags;
8515
8516 def_dl_bandwidth.dl_period = global_rt_period();
8517 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8518
8519 if (global_rt_runtime() != RUNTIME_INF)
8520 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8521
8522 /*
8523 * FIXME: As above...
8524 */
8525 for_each_possible_cpu(cpu) {
8526 rcu_read_lock_sched();
8527 dl_b = dl_bw_of(cpu);
8528
8529 raw_spin_lock_irqsave(&dl_b->lock, flags);
8530 dl_b->bw = new_bw;
8531 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8532
8533 rcu_read_unlock_sched();
8534 }
8535 }
8536
sched_rt_global_validate(void)8537 static int sched_rt_global_validate(void)
8538 {
8539 if (sysctl_sched_rt_period <= 0)
8540 return -EINVAL;
8541
8542 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8543 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8544 return -EINVAL;
8545
8546 return 0;
8547 }
8548
sched_rt_do_global(void)8549 static void sched_rt_do_global(void)
8550 {
8551 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8552 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8553 }
8554
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8555 int sched_rt_handler(struct ctl_table *table, int write,
8556 void __user *buffer, size_t *lenp,
8557 loff_t *ppos)
8558 {
8559 int old_period, old_runtime;
8560 static DEFINE_MUTEX(mutex);
8561 int ret;
8562
8563 mutex_lock(&mutex);
8564 old_period = sysctl_sched_rt_period;
8565 old_runtime = sysctl_sched_rt_runtime;
8566
8567 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8568
8569 if (!ret && write) {
8570 ret = sched_rt_global_validate();
8571 if (ret)
8572 goto undo;
8573
8574 ret = sched_dl_global_validate();
8575 if (ret)
8576 goto undo;
8577
8578 ret = sched_rt_global_constraints();
8579 if (ret)
8580 goto undo;
8581
8582 sched_rt_do_global();
8583 sched_dl_do_global();
8584 }
8585 if (0) {
8586 undo:
8587 sysctl_sched_rt_period = old_period;
8588 sysctl_sched_rt_runtime = old_runtime;
8589 }
8590 mutex_unlock(&mutex);
8591
8592 return ret;
8593 }
8594
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8595 int sched_rr_handler(struct ctl_table *table, int write,
8596 void __user *buffer, size_t *lenp,
8597 loff_t *ppos)
8598 {
8599 int ret;
8600 static DEFINE_MUTEX(mutex);
8601
8602 mutex_lock(&mutex);
8603 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8604 /* make sure that internally we keep jiffies */
8605 /* also, writing zero resets timeslice to default */
8606 if (!ret && write) {
8607 sched_rr_timeslice =
8608 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
8609 msecs_to_jiffies(sysctl_sched_rr_timeslice);
8610 }
8611 mutex_unlock(&mutex);
8612 return ret;
8613 }
8614
8615 #ifdef CONFIG_CGROUP_SCHED
8616
css_tg(struct cgroup_subsys_state * css)8617 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8618 {
8619 return css ? container_of(css, struct task_group, css) : NULL;
8620 }
8621
8622 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8623 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8624 {
8625 struct task_group *parent = css_tg(parent_css);
8626 struct task_group *tg;
8627
8628 if (!parent) {
8629 /* This is early initialization for the top cgroup */
8630 return &root_task_group.css;
8631 }
8632
8633 tg = sched_create_group(parent);
8634 if (IS_ERR(tg))
8635 return ERR_PTR(-ENOMEM);
8636
8637 return &tg->css;
8638 }
8639
8640 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8641 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8642 {
8643 struct task_group *tg = css_tg(css);
8644 struct task_group *parent = css_tg(css->parent);
8645
8646 if (parent)
8647 sched_online_group(tg, parent);
8648 return 0;
8649 }
8650
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8651 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8652 {
8653 struct task_group *tg = css_tg(css);
8654
8655 sched_offline_group(tg);
8656 }
8657
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8658 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8659 {
8660 struct task_group *tg = css_tg(css);
8661
8662 /*
8663 * Relies on the RCU grace period between css_released() and this.
8664 */
8665 sched_free_group(tg);
8666 }
8667
8668 /*
8669 * This is called before wake_up_new_task(), therefore we really only
8670 * have to set its group bits, all the other stuff does not apply.
8671 */
cpu_cgroup_fork(struct task_struct * task,void * private)8672 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8673 {
8674 unsigned long flags;
8675 struct rq *rq;
8676
8677 rq = task_rq_lock(task, &flags);
8678
8679 update_rq_clock(rq);
8680 sched_change_group(task, TASK_SET_GROUP);
8681
8682 task_rq_unlock(rq, task, &flags);
8683 }
8684
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8685 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8686 {
8687 struct task_struct *task;
8688 struct cgroup_subsys_state *css;
8689 int ret = 0;
8690
8691 cgroup_taskset_for_each(task, css, tset) {
8692 #ifdef CONFIG_RT_GROUP_SCHED
8693 if (!sched_rt_can_attach(css_tg(css), task))
8694 return -EINVAL;
8695 #endif
8696 /*
8697 * Serialize against wake_up_new_task() such that if its
8698 * running, we're sure to observe its full state.
8699 */
8700 raw_spin_lock_irq(&task->pi_lock);
8701 /*
8702 * Avoid calling sched_move_task() before wake_up_new_task()
8703 * has happened. This would lead to problems with PELT, due to
8704 * move wanting to detach+attach while we're not attached yet.
8705 */
8706 if (task->state == TASK_NEW)
8707 ret = -EINVAL;
8708 raw_spin_unlock_irq(&task->pi_lock);
8709
8710 if (ret)
8711 break;
8712 }
8713 return ret;
8714 }
8715
cpu_cgroup_attach(struct cgroup_taskset * tset)8716 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8717 {
8718 struct task_struct *task;
8719 struct cgroup_subsys_state *css;
8720
8721 cgroup_taskset_for_each(task, css, tset)
8722 sched_move_task(task);
8723 }
8724
8725 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8726 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8727 struct cftype *cftype, u64 shareval)
8728 {
8729 if (shareval > scale_load_down(ULONG_MAX))
8730 shareval = MAX_SHARES;
8731 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8732 }
8733
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8734 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8735 struct cftype *cft)
8736 {
8737 struct task_group *tg = css_tg(css);
8738
8739 return (u64) scale_load_down(tg->shares);
8740 }
8741
8742 #ifdef CONFIG_CFS_BANDWIDTH
8743 static DEFINE_MUTEX(cfs_constraints_mutex);
8744
8745 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8746 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8747
8748 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8749
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8750 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8751 {
8752 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8753 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8754
8755 if (tg == &root_task_group)
8756 return -EINVAL;
8757
8758 /*
8759 * Ensure we have at some amount of bandwidth every period. This is
8760 * to prevent reaching a state of large arrears when throttled via
8761 * entity_tick() resulting in prolonged exit starvation.
8762 */
8763 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8764 return -EINVAL;
8765
8766 /*
8767 * Likewise, bound things on the otherside by preventing insane quota
8768 * periods. This also allows us to normalize in computing quota
8769 * feasibility.
8770 */
8771 if (period > max_cfs_quota_period)
8772 return -EINVAL;
8773
8774 /*
8775 * Prevent race between setting of cfs_rq->runtime_enabled and
8776 * unthrottle_offline_cfs_rqs().
8777 */
8778 get_online_cpus();
8779 mutex_lock(&cfs_constraints_mutex);
8780 ret = __cfs_schedulable(tg, period, quota);
8781 if (ret)
8782 goto out_unlock;
8783
8784 runtime_enabled = quota != RUNTIME_INF;
8785 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8786 /*
8787 * If we need to toggle cfs_bandwidth_used, off->on must occur
8788 * before making related changes, and on->off must occur afterwards
8789 */
8790 if (runtime_enabled && !runtime_was_enabled)
8791 cfs_bandwidth_usage_inc();
8792 raw_spin_lock_irq(&cfs_b->lock);
8793 cfs_b->period = ns_to_ktime(period);
8794 cfs_b->quota = quota;
8795
8796 __refill_cfs_bandwidth_runtime(cfs_b);
8797 /* restart the period timer (if active) to handle new period expiry */
8798 if (runtime_enabled)
8799 start_cfs_bandwidth(cfs_b);
8800 raw_spin_unlock_irq(&cfs_b->lock);
8801
8802 for_each_online_cpu(i) {
8803 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8804 struct rq *rq = cfs_rq->rq;
8805
8806 raw_spin_lock_irq(&rq->lock);
8807 cfs_rq->runtime_enabled = runtime_enabled;
8808 cfs_rq->runtime_remaining = 0;
8809
8810 if (cfs_rq->throttled)
8811 unthrottle_cfs_rq(cfs_rq);
8812 raw_spin_unlock_irq(&rq->lock);
8813 }
8814 if (runtime_was_enabled && !runtime_enabled)
8815 cfs_bandwidth_usage_dec();
8816 out_unlock:
8817 mutex_unlock(&cfs_constraints_mutex);
8818 put_online_cpus();
8819
8820 return ret;
8821 }
8822
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8823 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8824 {
8825 u64 quota, period;
8826
8827 period = ktime_to_ns(tg->cfs_bandwidth.period);
8828 if (cfs_quota_us < 0)
8829 quota = RUNTIME_INF;
8830 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8831 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8832 else
8833 return -EINVAL;
8834
8835 return tg_set_cfs_bandwidth(tg, period, quota);
8836 }
8837
tg_get_cfs_quota(struct task_group * tg)8838 long tg_get_cfs_quota(struct task_group *tg)
8839 {
8840 u64 quota_us;
8841
8842 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8843 return -1;
8844
8845 quota_us = tg->cfs_bandwidth.quota;
8846 do_div(quota_us, NSEC_PER_USEC);
8847
8848 return quota_us;
8849 }
8850
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8851 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8852 {
8853 u64 quota, period;
8854
8855 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8856 return -EINVAL;
8857
8858 period = (u64)cfs_period_us * NSEC_PER_USEC;
8859 quota = tg->cfs_bandwidth.quota;
8860
8861 return tg_set_cfs_bandwidth(tg, period, quota);
8862 }
8863
tg_get_cfs_period(struct task_group * tg)8864 long tg_get_cfs_period(struct task_group *tg)
8865 {
8866 u64 cfs_period_us;
8867
8868 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8869 do_div(cfs_period_us, NSEC_PER_USEC);
8870
8871 return cfs_period_us;
8872 }
8873
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8874 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8875 struct cftype *cft)
8876 {
8877 return tg_get_cfs_quota(css_tg(css));
8878 }
8879
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8880 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8881 struct cftype *cftype, s64 cfs_quota_us)
8882 {
8883 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8884 }
8885
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8886 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8887 struct cftype *cft)
8888 {
8889 return tg_get_cfs_period(css_tg(css));
8890 }
8891
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8892 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8893 struct cftype *cftype, u64 cfs_period_us)
8894 {
8895 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8896 }
8897
8898 struct cfs_schedulable_data {
8899 struct task_group *tg;
8900 u64 period, quota;
8901 };
8902
8903 /*
8904 * normalize group quota/period to be quota/max_period
8905 * note: units are usecs
8906 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8907 static u64 normalize_cfs_quota(struct task_group *tg,
8908 struct cfs_schedulable_data *d)
8909 {
8910 u64 quota, period;
8911
8912 if (tg == d->tg) {
8913 period = d->period;
8914 quota = d->quota;
8915 } else {
8916 period = tg_get_cfs_period(tg);
8917 quota = tg_get_cfs_quota(tg);
8918 }
8919
8920 /* note: these should typically be equivalent */
8921 if (quota == RUNTIME_INF || quota == -1)
8922 return RUNTIME_INF;
8923
8924 return to_ratio(period, quota);
8925 }
8926
tg_cfs_schedulable_down(struct task_group * tg,void * data)8927 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8928 {
8929 struct cfs_schedulable_data *d = data;
8930 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8931 s64 quota = 0, parent_quota = -1;
8932
8933 if (!tg->parent) {
8934 quota = RUNTIME_INF;
8935 } else {
8936 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8937
8938 quota = normalize_cfs_quota(tg, d);
8939 parent_quota = parent_b->hierarchical_quota;
8940
8941 /*
8942 * ensure max(child_quota) <= parent_quota, inherit when no
8943 * limit is set
8944 */
8945 if (quota == RUNTIME_INF)
8946 quota = parent_quota;
8947 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8948 return -EINVAL;
8949 }
8950 cfs_b->hierarchical_quota = quota;
8951
8952 return 0;
8953 }
8954
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8955 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8956 {
8957 int ret;
8958 struct cfs_schedulable_data data = {
8959 .tg = tg,
8960 .period = period,
8961 .quota = quota,
8962 };
8963
8964 if (quota != RUNTIME_INF) {
8965 do_div(data.period, NSEC_PER_USEC);
8966 do_div(data.quota, NSEC_PER_USEC);
8967 }
8968
8969 rcu_read_lock();
8970 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8971 rcu_read_unlock();
8972
8973 return ret;
8974 }
8975
cpu_stats_show(struct seq_file * sf,void * v)8976 static int cpu_stats_show(struct seq_file *sf, void *v)
8977 {
8978 struct task_group *tg = css_tg(seq_css(sf));
8979 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8980
8981 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8982 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8983 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8984
8985 return 0;
8986 }
8987 #endif /* CONFIG_CFS_BANDWIDTH */
8988 #endif /* CONFIG_FAIR_GROUP_SCHED */
8989
8990 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8991 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8992 struct cftype *cft, s64 val)
8993 {
8994 return sched_group_set_rt_runtime(css_tg(css), val);
8995 }
8996
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8997 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8998 struct cftype *cft)
8999 {
9000 return sched_group_rt_runtime(css_tg(css));
9001 }
9002
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)9003 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9004 struct cftype *cftype, u64 rt_period_us)
9005 {
9006 return sched_group_set_rt_period(css_tg(css), rt_period_us);
9007 }
9008
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)9009 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9010 struct cftype *cft)
9011 {
9012 return sched_group_rt_period(css_tg(css));
9013 }
9014 #endif /* CONFIG_RT_GROUP_SCHED */
9015
9016 static struct cftype cpu_files[] = {
9017 #ifdef CONFIG_FAIR_GROUP_SCHED
9018 {
9019 .name = "shares",
9020 .read_u64 = cpu_shares_read_u64,
9021 .write_u64 = cpu_shares_write_u64,
9022 },
9023 #endif
9024 #ifdef CONFIG_CFS_BANDWIDTH
9025 {
9026 .name = "cfs_quota_us",
9027 .read_s64 = cpu_cfs_quota_read_s64,
9028 .write_s64 = cpu_cfs_quota_write_s64,
9029 },
9030 {
9031 .name = "cfs_period_us",
9032 .read_u64 = cpu_cfs_period_read_u64,
9033 .write_u64 = cpu_cfs_period_write_u64,
9034 },
9035 {
9036 .name = "stat",
9037 .seq_show = cpu_stats_show,
9038 },
9039 #endif
9040 #ifdef CONFIG_RT_GROUP_SCHED
9041 {
9042 .name = "rt_runtime_us",
9043 .read_s64 = cpu_rt_runtime_read,
9044 .write_s64 = cpu_rt_runtime_write,
9045 },
9046 {
9047 .name = "rt_period_us",
9048 .read_u64 = cpu_rt_period_read_uint,
9049 .write_u64 = cpu_rt_period_write_uint,
9050 },
9051 #endif
9052 { } /* terminate */
9053 };
9054
9055 struct cgroup_subsys cpu_cgrp_subsys = {
9056 .css_alloc = cpu_cgroup_css_alloc,
9057 .css_online = cpu_cgroup_css_online,
9058 .css_released = cpu_cgroup_css_released,
9059 .css_free = cpu_cgroup_css_free,
9060 .fork = cpu_cgroup_fork,
9061 .can_attach = cpu_cgroup_can_attach,
9062 .attach = cpu_cgroup_attach,
9063 .legacy_cftypes = cpu_files,
9064 .early_init = 1,
9065 };
9066
9067 #endif /* CONFIG_CGROUP_SCHED */
9068
dump_cpu_task(int cpu)9069 void dump_cpu_task(int cpu)
9070 {
9071 pr_info("Task dump for CPU %d:\n", cpu);
9072 sched_show_task(cpu_curr(cpu));
9073 }
9074