1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
3 *
4 * RPCSEC_GSS client authentication.
5 *
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 #include <linux/hashtable.h>
55
56 #include "auth_gss_internal.h"
57 #include "../netns.h"
58
59 static const struct rpc_authops authgss_ops;
60
61 static const struct rpc_credops gss_credops;
62 static const struct rpc_credops gss_nullops;
63
64 #define GSS_RETRY_EXPIRED 5
65 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
66
67 #define GSS_KEY_EXPIRE_TIMEO 240
68 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY RPCDBG_AUTH
72 #endif
73
74 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2)
75 /* length of a krb5 verifier (48), plus data added before arguments when
76 * using integrity (two 4-byte integers): */
77 #define GSS_VERF_SLACK 100
78
79 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
80 static DEFINE_SPINLOCK(gss_auth_hash_lock);
81
82 struct gss_pipe {
83 struct rpc_pipe_dir_object pdo;
84 struct rpc_pipe *pipe;
85 struct rpc_clnt *clnt;
86 const char *name;
87 struct kref kref;
88 };
89
90 struct gss_auth {
91 struct kref kref;
92 struct hlist_node hash;
93 struct rpc_auth rpc_auth;
94 struct gss_api_mech *mech;
95 enum rpc_gss_svc service;
96 struct rpc_clnt *client;
97 struct net *net;
98 /*
99 * There are two upcall pipes; dentry[1], named "gssd", is used
100 * for the new text-based upcall; dentry[0] is named after the
101 * mechanism (for example, "krb5") and exists for
102 * backwards-compatibility with older gssd's.
103 */
104 struct gss_pipe *gss_pipe[2];
105 const char *target_name;
106 };
107
108 /* pipe_version >= 0 if and only if someone has a pipe open. */
109 static DEFINE_SPINLOCK(pipe_version_lock);
110 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
111 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
112 static void gss_put_auth(struct gss_auth *gss_auth);
113
114 static void gss_free_ctx(struct gss_cl_ctx *);
115 static const struct rpc_pipe_ops gss_upcall_ops_v0;
116 static const struct rpc_pipe_ops gss_upcall_ops_v1;
117
118 static inline struct gss_cl_ctx *
gss_get_ctx(struct gss_cl_ctx * ctx)119 gss_get_ctx(struct gss_cl_ctx *ctx)
120 {
121 atomic_inc(&ctx->count);
122 return ctx;
123 }
124
125 static inline void
gss_put_ctx(struct gss_cl_ctx * ctx)126 gss_put_ctx(struct gss_cl_ctx *ctx)
127 {
128 if (atomic_dec_and_test(&ctx->count))
129 gss_free_ctx(ctx);
130 }
131
132 /* gss_cred_set_ctx:
133 * called by gss_upcall_callback and gss_create_upcall in order
134 * to set the gss context. The actual exchange of an old context
135 * and a new one is protected by the pipe->lock.
136 */
137 static void
gss_cred_set_ctx(struct rpc_cred * cred,struct gss_cl_ctx * ctx)138 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
139 {
140 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
141
142 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
143 return;
144 gss_get_ctx(ctx);
145 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
146 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
147 smp_mb__before_atomic();
148 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
149 }
150
151 static struct gss_cl_ctx *
gss_cred_get_ctx(struct rpc_cred * cred)152 gss_cred_get_ctx(struct rpc_cred *cred)
153 {
154 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
155 struct gss_cl_ctx *ctx = NULL;
156
157 rcu_read_lock();
158 ctx = rcu_dereference(gss_cred->gc_ctx);
159 if (ctx)
160 gss_get_ctx(ctx);
161 rcu_read_unlock();
162 return ctx;
163 }
164
165 static struct gss_cl_ctx *
gss_alloc_context(void)166 gss_alloc_context(void)
167 {
168 struct gss_cl_ctx *ctx;
169
170 ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
171 if (ctx != NULL) {
172 ctx->gc_proc = RPC_GSS_PROC_DATA;
173 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
174 spin_lock_init(&ctx->gc_seq_lock);
175 atomic_set(&ctx->count,1);
176 }
177 return ctx;
178 }
179
180 #define GSSD_MIN_TIMEOUT (60 * 60)
181 static const void *
gss_fill_context(const void * p,const void * end,struct gss_cl_ctx * ctx,struct gss_api_mech * gm)182 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
183 {
184 const void *q;
185 unsigned int seclen;
186 unsigned int timeout;
187 unsigned long now = jiffies;
188 u32 window_size;
189 int ret;
190
191 /* First unsigned int gives the remaining lifetime in seconds of the
192 * credential - e.g. the remaining TGT lifetime for Kerberos or
193 * the -t value passed to GSSD.
194 */
195 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
196 if (IS_ERR(p))
197 goto err;
198 if (timeout == 0)
199 timeout = GSSD_MIN_TIMEOUT;
200 ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
201 /* Sequence number window. Determines the maximum number of
202 * simultaneous requests
203 */
204 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
205 if (IS_ERR(p))
206 goto err;
207 ctx->gc_win = window_size;
208 /* gssd signals an error by passing ctx->gc_win = 0: */
209 if (ctx->gc_win == 0) {
210 /*
211 * in which case, p points to an error code. Anything other
212 * than -EKEYEXPIRED gets converted to -EACCES.
213 */
214 p = simple_get_bytes(p, end, &ret, sizeof(ret));
215 if (!IS_ERR(p))
216 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
217 ERR_PTR(-EACCES);
218 goto err;
219 }
220 /* copy the opaque wire context */
221 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
222 if (IS_ERR(p))
223 goto err;
224 /* import the opaque security context */
225 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
226 if (IS_ERR(p))
227 goto err;
228 q = (const void *)((const char *)p + seclen);
229 if (unlikely(q > end || q < p)) {
230 p = ERR_PTR(-EFAULT);
231 goto err;
232 }
233 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS);
234 if (ret < 0) {
235 p = ERR_PTR(ret);
236 goto err;
237 }
238
239 /* is there any trailing data? */
240 if (q == end) {
241 p = q;
242 goto done;
243 }
244
245 /* pull in acceptor name (if there is one) */
246 p = simple_get_netobj(q, end, &ctx->gc_acceptor);
247 if (IS_ERR(p))
248 goto err;
249 done:
250 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u acceptor %.*s\n",
251 __func__, ctx->gc_expiry, now, timeout, ctx->gc_acceptor.len,
252 ctx->gc_acceptor.data);
253 return p;
254 err:
255 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p));
256 return p;
257 }
258
259 #define UPCALL_BUF_LEN 128
260
261 struct gss_upcall_msg {
262 atomic_t count;
263 kuid_t uid;
264 struct rpc_pipe_msg msg;
265 struct list_head list;
266 struct gss_auth *auth;
267 struct rpc_pipe *pipe;
268 struct rpc_wait_queue rpc_waitqueue;
269 wait_queue_head_t waitqueue;
270 struct gss_cl_ctx *ctx;
271 char databuf[UPCALL_BUF_LEN];
272 };
273
get_pipe_version(struct net * net)274 static int get_pipe_version(struct net *net)
275 {
276 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
277 int ret;
278
279 spin_lock(&pipe_version_lock);
280 if (sn->pipe_version >= 0) {
281 atomic_inc(&sn->pipe_users);
282 ret = sn->pipe_version;
283 } else
284 ret = -EAGAIN;
285 spin_unlock(&pipe_version_lock);
286 return ret;
287 }
288
put_pipe_version(struct net * net)289 static void put_pipe_version(struct net *net)
290 {
291 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
292
293 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
294 sn->pipe_version = -1;
295 spin_unlock(&pipe_version_lock);
296 }
297 }
298
299 static void
gss_release_msg(struct gss_upcall_msg * gss_msg)300 gss_release_msg(struct gss_upcall_msg *gss_msg)
301 {
302 struct net *net = gss_msg->auth->net;
303 if (!atomic_dec_and_test(&gss_msg->count))
304 return;
305 put_pipe_version(net);
306 BUG_ON(!list_empty(&gss_msg->list));
307 if (gss_msg->ctx != NULL)
308 gss_put_ctx(gss_msg->ctx);
309 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
310 gss_put_auth(gss_msg->auth);
311 kfree(gss_msg);
312 }
313
314 static struct gss_upcall_msg *
__gss_find_upcall(struct rpc_pipe * pipe,kuid_t uid,const struct gss_auth * auth)315 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth)
316 {
317 struct gss_upcall_msg *pos;
318 list_for_each_entry(pos, &pipe->in_downcall, list) {
319 if (!uid_eq(pos->uid, uid))
320 continue;
321 if (auth && pos->auth->service != auth->service)
322 continue;
323 atomic_inc(&pos->count);
324 dprintk("RPC: %s found msg %p\n", __func__, pos);
325 return pos;
326 }
327 dprintk("RPC: %s found nothing\n", __func__);
328 return NULL;
329 }
330
331 /* Try to add an upcall to the pipefs queue.
332 * If an upcall owned by our uid already exists, then we return a reference
333 * to that upcall instead of adding the new upcall.
334 */
335 static inline struct gss_upcall_msg *
gss_add_msg(struct gss_upcall_msg * gss_msg)336 gss_add_msg(struct gss_upcall_msg *gss_msg)
337 {
338 struct rpc_pipe *pipe = gss_msg->pipe;
339 struct gss_upcall_msg *old;
340
341 spin_lock(&pipe->lock);
342 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth);
343 if (old == NULL) {
344 atomic_inc(&gss_msg->count);
345 list_add(&gss_msg->list, &pipe->in_downcall);
346 } else
347 gss_msg = old;
348 spin_unlock(&pipe->lock);
349 return gss_msg;
350 }
351
352 static void
__gss_unhash_msg(struct gss_upcall_msg * gss_msg)353 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
354 {
355 list_del_init(&gss_msg->list);
356 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
357 wake_up_all(&gss_msg->waitqueue);
358 atomic_dec(&gss_msg->count);
359 }
360
361 static void
gss_unhash_msg(struct gss_upcall_msg * gss_msg)362 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
363 {
364 struct rpc_pipe *pipe = gss_msg->pipe;
365
366 if (list_empty(&gss_msg->list))
367 return;
368 spin_lock(&pipe->lock);
369 if (!list_empty(&gss_msg->list))
370 __gss_unhash_msg(gss_msg);
371 spin_unlock(&pipe->lock);
372 }
373
374 static void
gss_handle_downcall_result(struct gss_cred * gss_cred,struct gss_upcall_msg * gss_msg)375 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
376 {
377 switch (gss_msg->msg.errno) {
378 case 0:
379 if (gss_msg->ctx == NULL)
380 break;
381 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
382 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
383 break;
384 case -EKEYEXPIRED:
385 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
386 }
387 gss_cred->gc_upcall_timestamp = jiffies;
388 gss_cred->gc_upcall = NULL;
389 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
390 }
391
392 static void
gss_upcall_callback(struct rpc_task * task)393 gss_upcall_callback(struct rpc_task *task)
394 {
395 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
396 struct gss_cred, gc_base);
397 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
398 struct rpc_pipe *pipe = gss_msg->pipe;
399
400 spin_lock(&pipe->lock);
401 gss_handle_downcall_result(gss_cred, gss_msg);
402 spin_unlock(&pipe->lock);
403 task->tk_status = gss_msg->msg.errno;
404 gss_release_msg(gss_msg);
405 }
406
gss_encode_v0_msg(struct gss_upcall_msg * gss_msg)407 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
408 {
409 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid);
410 memcpy(gss_msg->databuf, &uid, sizeof(uid));
411 gss_msg->msg.data = gss_msg->databuf;
412 gss_msg->msg.len = sizeof(uid);
413
414 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
415 }
416
gss_encode_v1_msg(struct gss_upcall_msg * gss_msg,const char * service_name,const char * target_name)417 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
418 const char *service_name,
419 const char *target_name)
420 {
421 struct gss_api_mech *mech = gss_msg->auth->mech;
422 char *p = gss_msg->databuf;
423 size_t buflen = sizeof(gss_msg->databuf);
424 int len;
425
426 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name,
427 from_kuid(&init_user_ns, gss_msg->uid));
428 buflen -= len;
429 p += len;
430 gss_msg->msg.len = len;
431 if (target_name) {
432 len = scnprintf(p, buflen, "target=%s ", target_name);
433 buflen -= len;
434 p += len;
435 gss_msg->msg.len += len;
436 }
437 if (service_name != NULL) {
438 len = scnprintf(p, buflen, "service=%s ", service_name);
439 buflen -= len;
440 p += len;
441 gss_msg->msg.len += len;
442 }
443 if (mech->gm_upcall_enctypes) {
444 len = scnprintf(p, buflen, "enctypes=%s ",
445 mech->gm_upcall_enctypes);
446 buflen -= len;
447 p += len;
448 gss_msg->msg.len += len;
449 }
450 len = scnprintf(p, buflen, "\n");
451 if (len == 0)
452 goto out_overflow;
453 gss_msg->msg.len += len;
454
455 gss_msg->msg.data = gss_msg->databuf;
456 return 0;
457 out_overflow:
458 WARN_ON_ONCE(1);
459 return -ENOMEM;
460 }
461
462 static struct gss_upcall_msg *
gss_alloc_msg(struct gss_auth * gss_auth,kuid_t uid,const char * service_name)463 gss_alloc_msg(struct gss_auth *gss_auth,
464 kuid_t uid, const char *service_name)
465 {
466 struct gss_upcall_msg *gss_msg;
467 int vers;
468 int err = -ENOMEM;
469
470 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
471 if (gss_msg == NULL)
472 goto err;
473 vers = get_pipe_version(gss_auth->net);
474 err = vers;
475 if (err < 0)
476 goto err_free_msg;
477 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
478 INIT_LIST_HEAD(&gss_msg->list);
479 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
480 init_waitqueue_head(&gss_msg->waitqueue);
481 atomic_set(&gss_msg->count, 1);
482 gss_msg->uid = uid;
483 gss_msg->auth = gss_auth;
484 switch (vers) {
485 case 0:
486 gss_encode_v0_msg(gss_msg);
487 break;
488 default:
489 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name);
490 if (err)
491 goto err_put_pipe_version;
492 };
493 kref_get(&gss_auth->kref);
494 return gss_msg;
495 err_put_pipe_version:
496 put_pipe_version(gss_auth->net);
497 err_free_msg:
498 kfree(gss_msg);
499 err:
500 return ERR_PTR(err);
501 }
502
503 static struct gss_upcall_msg *
gss_setup_upcall(struct gss_auth * gss_auth,struct rpc_cred * cred)504 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
505 {
506 struct gss_cred *gss_cred = container_of(cred,
507 struct gss_cred, gc_base);
508 struct gss_upcall_msg *gss_new, *gss_msg;
509 kuid_t uid = cred->cr_uid;
510
511 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
512 if (IS_ERR(gss_new))
513 return gss_new;
514 gss_msg = gss_add_msg(gss_new);
515 if (gss_msg == gss_new) {
516 int res;
517 atomic_inc(&gss_msg->count);
518 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
519 if (res) {
520 gss_unhash_msg(gss_new);
521 atomic_dec(&gss_msg->count);
522 gss_release_msg(gss_new);
523 gss_msg = ERR_PTR(res);
524 }
525 } else
526 gss_release_msg(gss_new);
527 return gss_msg;
528 }
529
warn_gssd(void)530 static void warn_gssd(void)
531 {
532 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n");
533 }
534
535 static inline int
gss_refresh_upcall(struct rpc_task * task)536 gss_refresh_upcall(struct rpc_task *task)
537 {
538 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
539 struct gss_auth *gss_auth = container_of(cred->cr_auth,
540 struct gss_auth, rpc_auth);
541 struct gss_cred *gss_cred = container_of(cred,
542 struct gss_cred, gc_base);
543 struct gss_upcall_msg *gss_msg;
544 struct rpc_pipe *pipe;
545 int err = 0;
546
547 dprintk("RPC: %5u %s for uid %u\n",
548 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid));
549 gss_msg = gss_setup_upcall(gss_auth, cred);
550 if (PTR_ERR(gss_msg) == -EAGAIN) {
551 /* XXX: warning on the first, under the assumption we
552 * shouldn't normally hit this case on a refresh. */
553 warn_gssd();
554 task->tk_timeout = 15*HZ;
555 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
556 return -EAGAIN;
557 }
558 if (IS_ERR(gss_msg)) {
559 err = PTR_ERR(gss_msg);
560 goto out;
561 }
562 pipe = gss_msg->pipe;
563 spin_lock(&pipe->lock);
564 if (gss_cred->gc_upcall != NULL)
565 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
566 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
567 task->tk_timeout = 0;
568 gss_cred->gc_upcall = gss_msg;
569 /* gss_upcall_callback will release the reference to gss_upcall_msg */
570 atomic_inc(&gss_msg->count);
571 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
572 } else {
573 gss_handle_downcall_result(gss_cred, gss_msg);
574 err = gss_msg->msg.errno;
575 }
576 spin_unlock(&pipe->lock);
577 gss_release_msg(gss_msg);
578 out:
579 dprintk("RPC: %5u %s for uid %u result %d\n",
580 task->tk_pid, __func__,
581 from_kuid(&init_user_ns, cred->cr_uid), err);
582 return err;
583 }
584
585 static inline int
gss_create_upcall(struct gss_auth * gss_auth,struct gss_cred * gss_cred)586 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
587 {
588 struct net *net = gss_auth->net;
589 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
590 struct rpc_pipe *pipe;
591 struct rpc_cred *cred = &gss_cred->gc_base;
592 struct gss_upcall_msg *gss_msg;
593 DEFINE_WAIT(wait);
594 int err;
595
596 dprintk("RPC: %s for uid %u\n",
597 __func__, from_kuid(&init_user_ns, cred->cr_uid));
598 retry:
599 err = 0;
600 /* if gssd is down, just skip upcalling altogether */
601 if (!gssd_running(net)) {
602 warn_gssd();
603 return -EACCES;
604 }
605 gss_msg = gss_setup_upcall(gss_auth, cred);
606 if (PTR_ERR(gss_msg) == -EAGAIN) {
607 err = wait_event_interruptible_timeout(pipe_version_waitqueue,
608 sn->pipe_version >= 0, 15 * HZ);
609 if (sn->pipe_version < 0) {
610 warn_gssd();
611 err = -EACCES;
612 }
613 if (err < 0)
614 goto out;
615 goto retry;
616 }
617 if (IS_ERR(gss_msg)) {
618 err = PTR_ERR(gss_msg);
619 goto out;
620 }
621 pipe = gss_msg->pipe;
622 for (;;) {
623 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
624 spin_lock(&pipe->lock);
625 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
626 break;
627 }
628 spin_unlock(&pipe->lock);
629 if (fatal_signal_pending(current)) {
630 err = -ERESTARTSYS;
631 goto out_intr;
632 }
633 schedule();
634 }
635 if (gss_msg->ctx)
636 gss_cred_set_ctx(cred, gss_msg->ctx);
637 else
638 err = gss_msg->msg.errno;
639 spin_unlock(&pipe->lock);
640 out_intr:
641 finish_wait(&gss_msg->waitqueue, &wait);
642 gss_release_msg(gss_msg);
643 out:
644 dprintk("RPC: %s for uid %u result %d\n",
645 __func__, from_kuid(&init_user_ns, cred->cr_uid), err);
646 return err;
647 }
648
649 #define MSG_BUF_MAXSIZE 1024
650
651 static ssize_t
gss_pipe_downcall(struct file * filp,const char __user * src,size_t mlen)652 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
653 {
654 const void *p, *end;
655 void *buf;
656 struct gss_upcall_msg *gss_msg;
657 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
658 struct gss_cl_ctx *ctx;
659 uid_t id;
660 kuid_t uid;
661 ssize_t err = -EFBIG;
662
663 if (mlen > MSG_BUF_MAXSIZE)
664 goto out;
665 err = -ENOMEM;
666 buf = kmalloc(mlen, GFP_NOFS);
667 if (!buf)
668 goto out;
669
670 err = -EFAULT;
671 if (copy_from_user(buf, src, mlen))
672 goto err;
673
674 end = (const void *)((char *)buf + mlen);
675 p = simple_get_bytes(buf, end, &id, sizeof(id));
676 if (IS_ERR(p)) {
677 err = PTR_ERR(p);
678 goto err;
679 }
680
681 uid = make_kuid(&init_user_ns, id);
682 if (!uid_valid(uid)) {
683 err = -EINVAL;
684 goto err;
685 }
686
687 err = -ENOMEM;
688 ctx = gss_alloc_context();
689 if (ctx == NULL)
690 goto err;
691
692 err = -ENOENT;
693 /* Find a matching upcall */
694 spin_lock(&pipe->lock);
695 gss_msg = __gss_find_upcall(pipe, uid, NULL);
696 if (gss_msg == NULL) {
697 spin_unlock(&pipe->lock);
698 goto err_put_ctx;
699 }
700 list_del_init(&gss_msg->list);
701 spin_unlock(&pipe->lock);
702
703 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
704 if (IS_ERR(p)) {
705 err = PTR_ERR(p);
706 switch (err) {
707 case -EACCES:
708 case -EKEYEXPIRED:
709 gss_msg->msg.errno = err;
710 err = mlen;
711 break;
712 case -EFAULT:
713 case -ENOMEM:
714 case -EINVAL:
715 case -ENOSYS:
716 gss_msg->msg.errno = -EAGAIN;
717 break;
718 default:
719 printk(KERN_CRIT "%s: bad return from "
720 "gss_fill_context: %zd\n", __func__, err);
721 BUG();
722 }
723 goto err_release_msg;
724 }
725 gss_msg->ctx = gss_get_ctx(ctx);
726 err = mlen;
727
728 err_release_msg:
729 spin_lock(&pipe->lock);
730 __gss_unhash_msg(gss_msg);
731 spin_unlock(&pipe->lock);
732 gss_release_msg(gss_msg);
733 err_put_ctx:
734 gss_put_ctx(ctx);
735 err:
736 kfree(buf);
737 out:
738 dprintk("RPC: %s returning %Zd\n", __func__, err);
739 return err;
740 }
741
gss_pipe_open(struct inode * inode,int new_version)742 static int gss_pipe_open(struct inode *inode, int new_version)
743 {
744 struct net *net = inode->i_sb->s_fs_info;
745 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
746 int ret = 0;
747
748 spin_lock(&pipe_version_lock);
749 if (sn->pipe_version < 0) {
750 /* First open of any gss pipe determines the version: */
751 sn->pipe_version = new_version;
752 rpc_wake_up(&pipe_version_rpc_waitqueue);
753 wake_up(&pipe_version_waitqueue);
754 } else if (sn->pipe_version != new_version) {
755 /* Trying to open a pipe of a different version */
756 ret = -EBUSY;
757 goto out;
758 }
759 atomic_inc(&sn->pipe_users);
760 out:
761 spin_unlock(&pipe_version_lock);
762 return ret;
763
764 }
765
gss_pipe_open_v0(struct inode * inode)766 static int gss_pipe_open_v0(struct inode *inode)
767 {
768 return gss_pipe_open(inode, 0);
769 }
770
gss_pipe_open_v1(struct inode * inode)771 static int gss_pipe_open_v1(struct inode *inode)
772 {
773 return gss_pipe_open(inode, 1);
774 }
775
776 static void
gss_pipe_release(struct inode * inode)777 gss_pipe_release(struct inode *inode)
778 {
779 struct net *net = inode->i_sb->s_fs_info;
780 struct rpc_pipe *pipe = RPC_I(inode)->pipe;
781 struct gss_upcall_msg *gss_msg;
782
783 restart:
784 spin_lock(&pipe->lock);
785 list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
786
787 if (!list_empty(&gss_msg->msg.list))
788 continue;
789 gss_msg->msg.errno = -EPIPE;
790 atomic_inc(&gss_msg->count);
791 __gss_unhash_msg(gss_msg);
792 spin_unlock(&pipe->lock);
793 gss_release_msg(gss_msg);
794 goto restart;
795 }
796 spin_unlock(&pipe->lock);
797
798 put_pipe_version(net);
799 }
800
801 static void
gss_pipe_destroy_msg(struct rpc_pipe_msg * msg)802 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
803 {
804 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
805
806 if (msg->errno < 0) {
807 dprintk("RPC: %s releasing msg %p\n",
808 __func__, gss_msg);
809 atomic_inc(&gss_msg->count);
810 gss_unhash_msg(gss_msg);
811 if (msg->errno == -ETIMEDOUT)
812 warn_gssd();
813 gss_release_msg(gss_msg);
814 }
815 gss_release_msg(gss_msg);
816 }
817
gss_pipe_dentry_destroy(struct dentry * dir,struct rpc_pipe_dir_object * pdo)818 static void gss_pipe_dentry_destroy(struct dentry *dir,
819 struct rpc_pipe_dir_object *pdo)
820 {
821 struct gss_pipe *gss_pipe = pdo->pdo_data;
822 struct rpc_pipe *pipe = gss_pipe->pipe;
823
824 if (pipe->dentry != NULL) {
825 rpc_unlink(pipe->dentry);
826 pipe->dentry = NULL;
827 }
828 }
829
gss_pipe_dentry_create(struct dentry * dir,struct rpc_pipe_dir_object * pdo)830 static int gss_pipe_dentry_create(struct dentry *dir,
831 struct rpc_pipe_dir_object *pdo)
832 {
833 struct gss_pipe *p = pdo->pdo_data;
834 struct dentry *dentry;
835
836 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
837 if (IS_ERR(dentry))
838 return PTR_ERR(dentry);
839 p->pipe->dentry = dentry;
840 return 0;
841 }
842
843 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
844 .create = gss_pipe_dentry_create,
845 .destroy = gss_pipe_dentry_destroy,
846 };
847
gss_pipe_alloc(struct rpc_clnt * clnt,const char * name,const struct rpc_pipe_ops * upcall_ops)848 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
849 const char *name,
850 const struct rpc_pipe_ops *upcall_ops)
851 {
852 struct gss_pipe *p;
853 int err = -ENOMEM;
854
855 p = kmalloc(sizeof(*p), GFP_KERNEL);
856 if (p == NULL)
857 goto err;
858 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
859 if (IS_ERR(p->pipe)) {
860 err = PTR_ERR(p->pipe);
861 goto err_free_gss_pipe;
862 }
863 p->name = name;
864 p->clnt = clnt;
865 kref_init(&p->kref);
866 rpc_init_pipe_dir_object(&p->pdo,
867 &gss_pipe_dir_object_ops,
868 p);
869 return p;
870 err_free_gss_pipe:
871 kfree(p);
872 err:
873 return ERR_PTR(err);
874 }
875
876 struct gss_alloc_pdo {
877 struct rpc_clnt *clnt;
878 const char *name;
879 const struct rpc_pipe_ops *upcall_ops;
880 };
881
gss_pipe_match_pdo(struct rpc_pipe_dir_object * pdo,void * data)882 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
883 {
884 struct gss_pipe *gss_pipe;
885 struct gss_alloc_pdo *args = data;
886
887 if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
888 return 0;
889 gss_pipe = container_of(pdo, struct gss_pipe, pdo);
890 if (strcmp(gss_pipe->name, args->name) != 0)
891 return 0;
892 if (!kref_get_unless_zero(&gss_pipe->kref))
893 return 0;
894 return 1;
895 }
896
gss_pipe_alloc_pdo(void * data)897 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
898 {
899 struct gss_pipe *gss_pipe;
900 struct gss_alloc_pdo *args = data;
901
902 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
903 if (!IS_ERR(gss_pipe))
904 return &gss_pipe->pdo;
905 return NULL;
906 }
907
gss_pipe_get(struct rpc_clnt * clnt,const char * name,const struct rpc_pipe_ops * upcall_ops)908 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
909 const char *name,
910 const struct rpc_pipe_ops *upcall_ops)
911 {
912 struct net *net = rpc_net_ns(clnt);
913 struct rpc_pipe_dir_object *pdo;
914 struct gss_alloc_pdo args = {
915 .clnt = clnt,
916 .name = name,
917 .upcall_ops = upcall_ops,
918 };
919
920 pdo = rpc_find_or_alloc_pipe_dir_object(net,
921 &clnt->cl_pipedir_objects,
922 gss_pipe_match_pdo,
923 gss_pipe_alloc_pdo,
924 &args);
925 if (pdo != NULL)
926 return container_of(pdo, struct gss_pipe, pdo);
927 return ERR_PTR(-ENOMEM);
928 }
929
__gss_pipe_free(struct gss_pipe * p)930 static void __gss_pipe_free(struct gss_pipe *p)
931 {
932 struct rpc_clnt *clnt = p->clnt;
933 struct net *net = rpc_net_ns(clnt);
934
935 rpc_remove_pipe_dir_object(net,
936 &clnt->cl_pipedir_objects,
937 &p->pdo);
938 rpc_destroy_pipe_data(p->pipe);
939 kfree(p);
940 }
941
__gss_pipe_release(struct kref * kref)942 static void __gss_pipe_release(struct kref *kref)
943 {
944 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
945
946 __gss_pipe_free(p);
947 }
948
gss_pipe_free(struct gss_pipe * p)949 static void gss_pipe_free(struct gss_pipe *p)
950 {
951 if (p != NULL)
952 kref_put(&p->kref, __gss_pipe_release);
953 }
954
955 /*
956 * NOTE: we have the opportunity to use different
957 * parameters based on the input flavor (which must be a pseudoflavor)
958 */
959 static struct gss_auth *
gss_create_new(struct rpc_auth_create_args * args,struct rpc_clnt * clnt)960 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
961 {
962 rpc_authflavor_t flavor = args->pseudoflavor;
963 struct gss_auth *gss_auth;
964 struct gss_pipe *gss_pipe;
965 struct rpc_auth * auth;
966 int err = -ENOMEM; /* XXX? */
967
968 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
969
970 if (!try_module_get(THIS_MODULE))
971 return ERR_PTR(err);
972 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
973 goto out_dec;
974 INIT_HLIST_NODE(&gss_auth->hash);
975 gss_auth->target_name = NULL;
976 if (args->target_name) {
977 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
978 if (gss_auth->target_name == NULL)
979 goto err_free;
980 }
981 gss_auth->client = clnt;
982 gss_auth->net = get_net(rpc_net_ns(clnt));
983 err = -EINVAL;
984 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
985 if (!gss_auth->mech) {
986 dprintk("RPC: Pseudoflavor %d not found!\n", flavor);
987 goto err_put_net;
988 }
989 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
990 if (gss_auth->service == 0)
991 goto err_put_mech;
992 if (!gssd_running(gss_auth->net))
993 goto err_put_mech;
994 auth = &gss_auth->rpc_auth;
995 auth->au_cslack = GSS_CRED_SLACK >> 2;
996 auth->au_rslack = GSS_VERF_SLACK >> 2;
997 auth->au_ops = &authgss_ops;
998 auth->au_flavor = flavor;
999 atomic_set(&auth->au_count, 1);
1000 kref_init(&gss_auth->kref);
1001
1002 err = rpcauth_init_credcache(auth);
1003 if (err)
1004 goto err_put_mech;
1005 /*
1006 * Note: if we created the old pipe first, then someone who
1007 * examined the directory at the right moment might conclude
1008 * that we supported only the old pipe. So we instead create
1009 * the new pipe first.
1010 */
1011 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1012 if (IS_ERR(gss_pipe)) {
1013 err = PTR_ERR(gss_pipe);
1014 goto err_destroy_credcache;
1015 }
1016 gss_auth->gss_pipe[1] = gss_pipe;
1017
1018 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1019 &gss_upcall_ops_v0);
1020 if (IS_ERR(gss_pipe)) {
1021 err = PTR_ERR(gss_pipe);
1022 goto err_destroy_pipe_1;
1023 }
1024 gss_auth->gss_pipe[0] = gss_pipe;
1025
1026 return gss_auth;
1027 err_destroy_pipe_1:
1028 gss_pipe_free(gss_auth->gss_pipe[1]);
1029 err_destroy_credcache:
1030 rpcauth_destroy_credcache(auth);
1031 err_put_mech:
1032 gss_mech_put(gss_auth->mech);
1033 err_put_net:
1034 put_net(gss_auth->net);
1035 err_free:
1036 kfree(gss_auth->target_name);
1037 kfree(gss_auth);
1038 out_dec:
1039 module_put(THIS_MODULE);
1040 return ERR_PTR(err);
1041 }
1042
1043 static void
gss_free(struct gss_auth * gss_auth)1044 gss_free(struct gss_auth *gss_auth)
1045 {
1046 gss_pipe_free(gss_auth->gss_pipe[0]);
1047 gss_pipe_free(gss_auth->gss_pipe[1]);
1048 gss_mech_put(gss_auth->mech);
1049 put_net(gss_auth->net);
1050 kfree(gss_auth->target_name);
1051
1052 kfree(gss_auth);
1053 module_put(THIS_MODULE);
1054 }
1055
1056 static void
gss_free_callback(struct kref * kref)1057 gss_free_callback(struct kref *kref)
1058 {
1059 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1060
1061 gss_free(gss_auth);
1062 }
1063
1064 static void
gss_put_auth(struct gss_auth * gss_auth)1065 gss_put_auth(struct gss_auth *gss_auth)
1066 {
1067 kref_put(&gss_auth->kref, gss_free_callback);
1068 }
1069
1070 static void
gss_destroy(struct rpc_auth * auth)1071 gss_destroy(struct rpc_auth *auth)
1072 {
1073 struct gss_auth *gss_auth = container_of(auth,
1074 struct gss_auth, rpc_auth);
1075
1076 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
1077 auth, auth->au_flavor);
1078
1079 if (hash_hashed(&gss_auth->hash)) {
1080 spin_lock(&gss_auth_hash_lock);
1081 hash_del(&gss_auth->hash);
1082 spin_unlock(&gss_auth_hash_lock);
1083 }
1084
1085 gss_pipe_free(gss_auth->gss_pipe[0]);
1086 gss_auth->gss_pipe[0] = NULL;
1087 gss_pipe_free(gss_auth->gss_pipe[1]);
1088 gss_auth->gss_pipe[1] = NULL;
1089 rpcauth_destroy_credcache(auth);
1090
1091 gss_put_auth(gss_auth);
1092 }
1093
1094 /*
1095 * Auths may be shared between rpc clients that were cloned from a
1096 * common client with the same xprt, if they also share the flavor and
1097 * target_name.
1098 *
1099 * The auth is looked up from the oldest parent sharing the same
1100 * cl_xprt, and the auth itself references only that common parent
1101 * (which is guaranteed to last as long as any of its descendants).
1102 */
1103 static struct gss_auth *
gss_auth_find_or_add_hashed(struct rpc_auth_create_args * args,struct rpc_clnt * clnt,struct gss_auth * new)1104 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args,
1105 struct rpc_clnt *clnt,
1106 struct gss_auth *new)
1107 {
1108 struct gss_auth *gss_auth;
1109 unsigned long hashval = (unsigned long)clnt;
1110
1111 spin_lock(&gss_auth_hash_lock);
1112 hash_for_each_possible(gss_auth_hash_table,
1113 gss_auth,
1114 hash,
1115 hashval) {
1116 if (gss_auth->client != clnt)
1117 continue;
1118 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1119 continue;
1120 if (gss_auth->target_name != args->target_name) {
1121 if (gss_auth->target_name == NULL)
1122 continue;
1123 if (args->target_name == NULL)
1124 continue;
1125 if (strcmp(gss_auth->target_name, args->target_name))
1126 continue;
1127 }
1128 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count))
1129 continue;
1130 goto out;
1131 }
1132 if (new)
1133 hash_add(gss_auth_hash_table, &new->hash, hashval);
1134 gss_auth = new;
1135 out:
1136 spin_unlock(&gss_auth_hash_lock);
1137 return gss_auth;
1138 }
1139
1140 static struct gss_auth *
gss_create_hashed(struct rpc_auth_create_args * args,struct rpc_clnt * clnt)1141 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1142 {
1143 struct gss_auth *gss_auth;
1144 struct gss_auth *new;
1145
1146 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1147 if (gss_auth != NULL)
1148 goto out;
1149 new = gss_create_new(args, clnt);
1150 if (IS_ERR(new))
1151 return new;
1152 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1153 if (gss_auth != new)
1154 gss_destroy(&new->rpc_auth);
1155 out:
1156 return gss_auth;
1157 }
1158
1159 static struct rpc_auth *
gss_create(struct rpc_auth_create_args * args,struct rpc_clnt * clnt)1160 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1161 {
1162 struct gss_auth *gss_auth;
1163 struct rpc_xprt *xprt = rcu_access_pointer(clnt->cl_xprt);
1164
1165 while (clnt != clnt->cl_parent) {
1166 struct rpc_clnt *parent = clnt->cl_parent;
1167 /* Find the original parent for this transport */
1168 if (rcu_access_pointer(parent->cl_xprt) != xprt)
1169 break;
1170 clnt = parent;
1171 }
1172
1173 gss_auth = gss_create_hashed(args, clnt);
1174 if (IS_ERR(gss_auth))
1175 return ERR_CAST(gss_auth);
1176 return &gss_auth->rpc_auth;
1177 }
1178
1179 /*
1180 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
1181 * to the server with the GSS control procedure field set to
1182 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1183 * all RPCSEC_GSS state associated with that context.
1184 */
1185 static int
gss_destroying_context(struct rpc_cred * cred)1186 gss_destroying_context(struct rpc_cred *cred)
1187 {
1188 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1189 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1190 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1191 struct rpc_task *task;
1192
1193 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
1194 return 0;
1195
1196 ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1197 cred->cr_ops = &gss_nullops;
1198
1199 /* Take a reference to ensure the cred will be destroyed either
1200 * by the RPC call or by the put_rpccred() below */
1201 get_rpccred(cred);
1202
1203 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
1204 if (!IS_ERR(task))
1205 rpc_put_task(task);
1206
1207 put_rpccred(cred);
1208 return 1;
1209 }
1210
1211 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1212 * to create a new cred or context, so they check that things have been
1213 * allocated before freeing them. */
1214 static void
gss_do_free_ctx(struct gss_cl_ctx * ctx)1215 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1216 {
1217 dprintk("RPC: %s\n", __func__);
1218
1219 gss_delete_sec_context(&ctx->gc_gss_ctx);
1220 kfree(ctx->gc_wire_ctx.data);
1221 kfree(ctx->gc_acceptor.data);
1222 kfree(ctx);
1223 }
1224
1225 static void
gss_free_ctx_callback(struct rcu_head * head)1226 gss_free_ctx_callback(struct rcu_head *head)
1227 {
1228 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1229 gss_do_free_ctx(ctx);
1230 }
1231
1232 static void
gss_free_ctx(struct gss_cl_ctx * ctx)1233 gss_free_ctx(struct gss_cl_ctx *ctx)
1234 {
1235 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1236 }
1237
1238 static void
gss_free_cred(struct gss_cred * gss_cred)1239 gss_free_cred(struct gss_cred *gss_cred)
1240 {
1241 dprintk("RPC: %s cred=%p\n", __func__, gss_cred);
1242 kfree(gss_cred);
1243 }
1244
1245 static void
gss_free_cred_callback(struct rcu_head * head)1246 gss_free_cred_callback(struct rcu_head *head)
1247 {
1248 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1249 gss_free_cred(gss_cred);
1250 }
1251
1252 static void
gss_destroy_nullcred(struct rpc_cred * cred)1253 gss_destroy_nullcred(struct rpc_cred *cred)
1254 {
1255 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1256 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1257 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1258
1259 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1260 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1261 if (ctx)
1262 gss_put_ctx(ctx);
1263 gss_put_auth(gss_auth);
1264 }
1265
1266 static void
gss_destroy_cred(struct rpc_cred * cred)1267 gss_destroy_cred(struct rpc_cred *cred)
1268 {
1269
1270 if (gss_destroying_context(cred))
1271 return;
1272 gss_destroy_nullcred(cred);
1273 }
1274
1275 /*
1276 * Lookup RPCSEC_GSS cred for the current process
1277 */
1278 static struct rpc_cred *
gss_lookup_cred(struct rpc_auth * auth,struct auth_cred * acred,int flags)1279 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1280 {
1281 return rpcauth_lookup_credcache(auth, acred, flags);
1282 }
1283
1284 static struct rpc_cred *
gss_create_cred(struct rpc_auth * auth,struct auth_cred * acred,int flags)1285 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1286 {
1287 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1288 struct gss_cred *cred = NULL;
1289 int err = -ENOMEM;
1290
1291 dprintk("RPC: %s for uid %d, flavor %d\n",
1292 __func__, from_kuid(&init_user_ns, acred->uid),
1293 auth->au_flavor);
1294
1295 if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
1296 goto out_err;
1297
1298 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1299 /*
1300 * Note: in order to force a call to call_refresh(), we deliberately
1301 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1302 */
1303 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1304 cred->gc_service = gss_auth->service;
1305 cred->gc_principal = NULL;
1306 if (acred->machine_cred)
1307 cred->gc_principal = acred->principal;
1308 kref_get(&gss_auth->kref);
1309 return &cred->gc_base;
1310
1311 out_err:
1312 dprintk("RPC: %s failed with error %d\n", __func__, err);
1313 return ERR_PTR(err);
1314 }
1315
1316 static int
gss_cred_init(struct rpc_auth * auth,struct rpc_cred * cred)1317 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1318 {
1319 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1320 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1321 int err;
1322
1323 do {
1324 err = gss_create_upcall(gss_auth, gss_cred);
1325 } while (err == -EAGAIN);
1326 return err;
1327 }
1328
1329 static char *
gss_stringify_acceptor(struct rpc_cred * cred)1330 gss_stringify_acceptor(struct rpc_cred *cred)
1331 {
1332 char *string = NULL;
1333 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1334 struct gss_cl_ctx *ctx;
1335 unsigned int len;
1336 struct xdr_netobj *acceptor;
1337
1338 rcu_read_lock();
1339 ctx = rcu_dereference(gss_cred->gc_ctx);
1340 if (!ctx)
1341 goto out;
1342
1343 len = ctx->gc_acceptor.len;
1344 rcu_read_unlock();
1345
1346 /* no point if there's no string */
1347 if (!len)
1348 return NULL;
1349 realloc:
1350 string = kmalloc(len + 1, GFP_KERNEL);
1351 if (!string)
1352 return NULL;
1353
1354 rcu_read_lock();
1355 ctx = rcu_dereference(gss_cred->gc_ctx);
1356
1357 /* did the ctx disappear or was it replaced by one with no acceptor? */
1358 if (!ctx || !ctx->gc_acceptor.len) {
1359 kfree(string);
1360 string = NULL;
1361 goto out;
1362 }
1363
1364 acceptor = &ctx->gc_acceptor;
1365
1366 /*
1367 * Did we find a new acceptor that's longer than the original? Allocate
1368 * a longer buffer and try again.
1369 */
1370 if (len < acceptor->len) {
1371 len = acceptor->len;
1372 rcu_read_unlock();
1373 kfree(string);
1374 goto realloc;
1375 }
1376
1377 memcpy(string, acceptor->data, acceptor->len);
1378 string[acceptor->len] = '\0';
1379 out:
1380 rcu_read_unlock();
1381 return string;
1382 }
1383
1384 /*
1385 * Returns -EACCES if GSS context is NULL or will expire within the
1386 * timeout (miliseconds)
1387 */
1388 static int
gss_key_timeout(struct rpc_cred * rc)1389 gss_key_timeout(struct rpc_cred *rc)
1390 {
1391 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1392 struct gss_cl_ctx *ctx;
1393 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ);
1394 int ret = 0;
1395
1396 rcu_read_lock();
1397 ctx = rcu_dereference(gss_cred->gc_ctx);
1398 if (!ctx || time_after(timeout, ctx->gc_expiry))
1399 ret = -EACCES;
1400 rcu_read_unlock();
1401
1402 return ret;
1403 }
1404
1405 static int
gss_match(struct auth_cred * acred,struct rpc_cred * rc,int flags)1406 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1407 {
1408 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1409 struct gss_cl_ctx *ctx;
1410 int ret;
1411
1412 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1413 goto out;
1414 /* Don't match with creds that have expired. */
1415 rcu_read_lock();
1416 ctx = rcu_dereference(gss_cred->gc_ctx);
1417 if (!ctx || time_after(jiffies, ctx->gc_expiry)) {
1418 rcu_read_unlock();
1419 return 0;
1420 }
1421 rcu_read_unlock();
1422 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1423 return 0;
1424 out:
1425 if (acred->principal != NULL) {
1426 if (gss_cred->gc_principal == NULL)
1427 return 0;
1428 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1429 goto check_expire;
1430 }
1431 if (gss_cred->gc_principal != NULL)
1432 return 0;
1433 ret = uid_eq(rc->cr_uid, acred->uid);
1434
1435 check_expire:
1436 if (ret == 0)
1437 return ret;
1438
1439 /* Notify acred users of GSS context expiration timeout */
1440 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) &&
1441 (gss_key_timeout(rc) != 0)) {
1442 /* test will now be done from generic cred */
1443 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags);
1444 /* tell NFS layer that key will expire soon */
1445 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags);
1446 }
1447 return ret;
1448 }
1449
1450 /*
1451 * Marshal credentials.
1452 * Maybe we should keep a cached credential for performance reasons.
1453 */
1454 static __be32 *
gss_marshal(struct rpc_task * task,__be32 * p)1455 gss_marshal(struct rpc_task *task, __be32 *p)
1456 {
1457 struct rpc_rqst *req = task->tk_rqstp;
1458 struct rpc_cred *cred = req->rq_cred;
1459 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1460 gc_base);
1461 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1462 __be32 *cred_len;
1463 u32 maj_stat = 0;
1464 struct xdr_netobj mic;
1465 struct kvec iov;
1466 struct xdr_buf verf_buf;
1467
1468 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1469
1470 *p++ = htonl(RPC_AUTH_GSS);
1471 cred_len = p++;
1472
1473 spin_lock(&ctx->gc_seq_lock);
1474 req->rq_seqno = ctx->gc_seq++;
1475 spin_unlock(&ctx->gc_seq_lock);
1476
1477 *p++ = htonl((u32) RPC_GSS_VERSION);
1478 *p++ = htonl((u32) ctx->gc_proc);
1479 *p++ = htonl((u32) req->rq_seqno);
1480 *p++ = htonl((u32) gss_cred->gc_service);
1481 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1482 *cred_len = htonl((p - (cred_len + 1)) << 2);
1483
1484 /* We compute the checksum for the verifier over the xdr-encoded bytes
1485 * starting with the xid and ending at the end of the credential: */
1486 iov.iov_base = xprt_skip_transport_header(req->rq_xprt,
1487 req->rq_snd_buf.head[0].iov_base);
1488 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1489 xdr_buf_from_iov(&iov, &verf_buf);
1490
1491 /* set verifier flavor*/
1492 *p++ = htonl(RPC_AUTH_GSS);
1493
1494 mic.data = (u8 *)(p + 1);
1495 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1496 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1497 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1498 } else if (maj_stat != 0) {
1499 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1500 goto out_put_ctx;
1501 }
1502 p = xdr_encode_opaque(p, NULL, mic.len);
1503 gss_put_ctx(ctx);
1504 return p;
1505 out_put_ctx:
1506 gss_put_ctx(ctx);
1507 return NULL;
1508 }
1509
gss_renew_cred(struct rpc_task * task)1510 static int gss_renew_cred(struct rpc_task *task)
1511 {
1512 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1513 struct gss_cred *gss_cred = container_of(oldcred,
1514 struct gss_cred,
1515 gc_base);
1516 struct rpc_auth *auth = oldcred->cr_auth;
1517 struct auth_cred acred = {
1518 .uid = oldcred->cr_uid,
1519 .principal = gss_cred->gc_principal,
1520 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1521 };
1522 struct rpc_cred *new;
1523
1524 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1525 if (IS_ERR(new))
1526 return PTR_ERR(new);
1527 task->tk_rqstp->rq_cred = new;
1528 put_rpccred(oldcred);
1529 return 0;
1530 }
1531
gss_cred_is_negative_entry(struct rpc_cred * cred)1532 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1533 {
1534 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1535 unsigned long now = jiffies;
1536 unsigned long begin, expire;
1537 struct gss_cred *gss_cred;
1538
1539 gss_cred = container_of(cred, struct gss_cred, gc_base);
1540 begin = gss_cred->gc_upcall_timestamp;
1541 expire = begin + gss_expired_cred_retry_delay * HZ;
1542
1543 if (time_in_range_open(now, begin, expire))
1544 return 1;
1545 }
1546 return 0;
1547 }
1548
1549 /*
1550 * Refresh credentials. XXX - finish
1551 */
1552 static int
gss_refresh(struct rpc_task * task)1553 gss_refresh(struct rpc_task *task)
1554 {
1555 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1556 int ret = 0;
1557
1558 if (gss_cred_is_negative_entry(cred))
1559 return -EKEYEXPIRED;
1560
1561 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1562 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1563 ret = gss_renew_cred(task);
1564 if (ret < 0)
1565 goto out;
1566 cred = task->tk_rqstp->rq_cred;
1567 }
1568
1569 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1570 ret = gss_refresh_upcall(task);
1571 out:
1572 return ret;
1573 }
1574
1575 /* Dummy refresh routine: used only when destroying the context */
1576 static int
gss_refresh_null(struct rpc_task * task)1577 gss_refresh_null(struct rpc_task *task)
1578 {
1579 return 0;
1580 }
1581
1582 static __be32 *
gss_validate(struct rpc_task * task,__be32 * p)1583 gss_validate(struct rpc_task *task, __be32 *p)
1584 {
1585 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1586 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1587 __be32 seq;
1588 struct kvec iov;
1589 struct xdr_buf verf_buf;
1590 struct xdr_netobj mic;
1591 u32 flav,len;
1592 u32 maj_stat;
1593 __be32 *ret = ERR_PTR(-EIO);
1594
1595 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1596
1597 flav = ntohl(*p++);
1598 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1599 goto out_bad;
1600 if (flav != RPC_AUTH_GSS)
1601 goto out_bad;
1602 seq = htonl(task->tk_rqstp->rq_seqno);
1603 iov.iov_base = &seq;
1604 iov.iov_len = sizeof(seq);
1605 xdr_buf_from_iov(&iov, &verf_buf);
1606 mic.data = (u8 *)p;
1607 mic.len = len;
1608
1609 ret = ERR_PTR(-EACCES);
1610 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1611 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1612 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1613 if (maj_stat) {
1614 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n",
1615 task->tk_pid, __func__, maj_stat);
1616 goto out_bad;
1617 }
1618 /* We leave it to unwrap to calculate au_rslack. For now we just
1619 * calculate the length of the verifier: */
1620 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1621 gss_put_ctx(ctx);
1622 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n",
1623 task->tk_pid, __func__);
1624 return p + XDR_QUADLEN(len);
1625 out_bad:
1626 gss_put_ctx(ctx);
1627 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__,
1628 PTR_ERR(ret));
1629 return ret;
1630 }
1631
gss_wrap_req_encode(kxdreproc_t encode,struct rpc_rqst * rqstp,__be32 * p,void * obj)1632 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1633 __be32 *p, void *obj)
1634 {
1635 struct xdr_stream xdr;
1636
1637 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1638 encode(rqstp, &xdr, obj);
1639 }
1640
1641 static inline int
gss_wrap_req_integ(struct rpc_cred * cred,struct gss_cl_ctx * ctx,kxdreproc_t encode,struct rpc_rqst * rqstp,__be32 * p,void * obj)1642 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1643 kxdreproc_t encode, struct rpc_rqst *rqstp,
1644 __be32 *p, void *obj)
1645 {
1646 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1647 struct xdr_buf integ_buf;
1648 __be32 *integ_len = NULL;
1649 struct xdr_netobj mic;
1650 u32 offset;
1651 __be32 *q;
1652 struct kvec *iov;
1653 u32 maj_stat = 0;
1654 int status = -EIO;
1655
1656 integ_len = p++;
1657 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1658 *p++ = htonl(rqstp->rq_seqno);
1659
1660 gss_wrap_req_encode(encode, rqstp, p, obj);
1661
1662 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1663 offset, snd_buf->len - offset))
1664 return status;
1665 *integ_len = htonl(integ_buf.len);
1666
1667 /* guess whether we're in the head or the tail: */
1668 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1669 iov = snd_buf->tail;
1670 else
1671 iov = snd_buf->head;
1672 p = iov->iov_base + iov->iov_len;
1673 mic.data = (u8 *)(p + 1);
1674
1675 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1676 status = -EIO; /* XXX? */
1677 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1678 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1679 else if (maj_stat)
1680 return status;
1681 q = xdr_encode_opaque(p, NULL, mic.len);
1682
1683 offset = (u8 *)q - (u8 *)p;
1684 iov->iov_len += offset;
1685 snd_buf->len += offset;
1686 return 0;
1687 }
1688
1689 static void
priv_release_snd_buf(struct rpc_rqst * rqstp)1690 priv_release_snd_buf(struct rpc_rqst *rqstp)
1691 {
1692 int i;
1693
1694 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1695 __free_page(rqstp->rq_enc_pages[i]);
1696 kfree(rqstp->rq_enc_pages);
1697 rqstp->rq_release_snd_buf = NULL;
1698 }
1699
1700 static int
alloc_enc_pages(struct rpc_rqst * rqstp)1701 alloc_enc_pages(struct rpc_rqst *rqstp)
1702 {
1703 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1704 int first, last, i;
1705
1706 if (rqstp->rq_release_snd_buf)
1707 rqstp->rq_release_snd_buf(rqstp);
1708
1709 if (snd_buf->page_len == 0) {
1710 rqstp->rq_enc_pages_num = 0;
1711 return 0;
1712 }
1713
1714 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1715 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1716 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1717 rqstp->rq_enc_pages
1718 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1719 GFP_NOFS);
1720 if (!rqstp->rq_enc_pages)
1721 goto out;
1722 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1723 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1724 if (rqstp->rq_enc_pages[i] == NULL)
1725 goto out_free;
1726 }
1727 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1728 return 0;
1729 out_free:
1730 rqstp->rq_enc_pages_num = i;
1731 priv_release_snd_buf(rqstp);
1732 out:
1733 return -EAGAIN;
1734 }
1735
1736 static inline int
gss_wrap_req_priv(struct rpc_cred * cred,struct gss_cl_ctx * ctx,kxdreproc_t encode,struct rpc_rqst * rqstp,__be32 * p,void * obj)1737 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1738 kxdreproc_t encode, struct rpc_rqst *rqstp,
1739 __be32 *p, void *obj)
1740 {
1741 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1742 u32 offset;
1743 u32 maj_stat;
1744 int status;
1745 __be32 *opaque_len;
1746 struct page **inpages;
1747 int first;
1748 int pad;
1749 struct kvec *iov;
1750 char *tmp;
1751
1752 opaque_len = p++;
1753 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1754 *p++ = htonl(rqstp->rq_seqno);
1755
1756 gss_wrap_req_encode(encode, rqstp, p, obj);
1757
1758 status = alloc_enc_pages(rqstp);
1759 if (status)
1760 return status;
1761 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1762 inpages = snd_buf->pages + first;
1763 snd_buf->pages = rqstp->rq_enc_pages;
1764 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1765 /*
1766 * Give the tail its own page, in case we need extra space in the
1767 * head when wrapping:
1768 *
1769 * call_allocate() allocates twice the slack space required
1770 * by the authentication flavor to rq_callsize.
1771 * For GSS, slack is GSS_CRED_SLACK.
1772 */
1773 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1774 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1775 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1776 snd_buf->tail[0].iov_base = tmp;
1777 }
1778 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1779 /* slack space should prevent this ever happening: */
1780 BUG_ON(snd_buf->len > snd_buf->buflen);
1781 status = -EIO;
1782 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1783 * done anyway, so it's safe to put the request on the wire: */
1784 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1785 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1786 else if (maj_stat)
1787 return status;
1788
1789 *opaque_len = htonl(snd_buf->len - offset);
1790 /* guess whether we're in the head or the tail: */
1791 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1792 iov = snd_buf->tail;
1793 else
1794 iov = snd_buf->head;
1795 p = iov->iov_base + iov->iov_len;
1796 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1797 memset(p, 0, pad);
1798 iov->iov_len += pad;
1799 snd_buf->len += pad;
1800
1801 return 0;
1802 }
1803
1804 static int
gss_wrap_req(struct rpc_task * task,kxdreproc_t encode,void * rqstp,__be32 * p,void * obj)1805 gss_wrap_req(struct rpc_task *task,
1806 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1807 {
1808 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1809 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1810 gc_base);
1811 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1812 int status = -EIO;
1813
1814 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1815 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1816 /* The spec seems a little ambiguous here, but I think that not
1817 * wrapping context destruction requests makes the most sense.
1818 */
1819 gss_wrap_req_encode(encode, rqstp, p, obj);
1820 status = 0;
1821 goto out;
1822 }
1823 switch (gss_cred->gc_service) {
1824 case RPC_GSS_SVC_NONE:
1825 gss_wrap_req_encode(encode, rqstp, p, obj);
1826 status = 0;
1827 break;
1828 case RPC_GSS_SVC_INTEGRITY:
1829 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1830 break;
1831 case RPC_GSS_SVC_PRIVACY:
1832 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1833 break;
1834 }
1835 out:
1836 gss_put_ctx(ctx);
1837 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status);
1838 return status;
1839 }
1840
1841 static inline int
gss_unwrap_resp_integ(struct rpc_cred * cred,struct gss_cl_ctx * ctx,struct rpc_rqst * rqstp,__be32 ** p)1842 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1843 struct rpc_rqst *rqstp, __be32 **p)
1844 {
1845 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1846 struct xdr_buf integ_buf;
1847 struct xdr_netobj mic;
1848 u32 data_offset, mic_offset;
1849 u32 integ_len;
1850 u32 maj_stat;
1851 int status = -EIO;
1852
1853 integ_len = ntohl(*(*p)++);
1854 if (integ_len & 3)
1855 return status;
1856 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1857 mic_offset = integ_len + data_offset;
1858 if (mic_offset > rcv_buf->len)
1859 return status;
1860 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1861 return status;
1862
1863 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1864 mic_offset - data_offset))
1865 return status;
1866
1867 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1868 return status;
1869
1870 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1871 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1872 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1873 if (maj_stat != GSS_S_COMPLETE)
1874 return status;
1875 return 0;
1876 }
1877
1878 static inline int
gss_unwrap_resp_priv(struct rpc_cred * cred,struct gss_cl_ctx * ctx,struct rpc_rqst * rqstp,__be32 ** p)1879 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1880 struct rpc_rqst *rqstp, __be32 **p)
1881 {
1882 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1883 u32 offset;
1884 u32 opaque_len;
1885 u32 maj_stat;
1886 int status = -EIO;
1887
1888 opaque_len = ntohl(*(*p)++);
1889 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1890 if (offset + opaque_len > rcv_buf->len)
1891 return status;
1892 /* remove padding: */
1893 rcv_buf->len = offset + opaque_len;
1894
1895 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1896 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1897 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1898 if (maj_stat != GSS_S_COMPLETE)
1899 return status;
1900 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1901 return status;
1902
1903 return 0;
1904 }
1905
1906 static int
gss_unwrap_req_decode(kxdrdproc_t decode,struct rpc_rqst * rqstp,__be32 * p,void * obj)1907 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1908 __be32 *p, void *obj)
1909 {
1910 struct xdr_stream xdr;
1911
1912 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1913 return decode(rqstp, &xdr, obj);
1914 }
1915
1916 static int
gss_unwrap_resp(struct rpc_task * task,kxdrdproc_t decode,void * rqstp,__be32 * p,void * obj)1917 gss_unwrap_resp(struct rpc_task *task,
1918 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1919 {
1920 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1921 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1922 gc_base);
1923 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1924 __be32 *savedp = p;
1925 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1926 int savedlen = head->iov_len;
1927 int status = -EIO;
1928
1929 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1930 goto out_decode;
1931 switch (gss_cred->gc_service) {
1932 case RPC_GSS_SVC_NONE:
1933 break;
1934 case RPC_GSS_SVC_INTEGRITY:
1935 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1936 if (status)
1937 goto out;
1938 break;
1939 case RPC_GSS_SVC_PRIVACY:
1940 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1941 if (status)
1942 goto out;
1943 break;
1944 }
1945 /* take into account extra slack for integrity and privacy cases: */
1946 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1947 + (savedlen - head->iov_len);
1948 out_decode:
1949 status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1950 out:
1951 gss_put_ctx(ctx);
1952 dprintk("RPC: %5u %s returning %d\n",
1953 task->tk_pid, __func__, status);
1954 return status;
1955 }
1956
1957 static const struct rpc_authops authgss_ops = {
1958 .owner = THIS_MODULE,
1959 .au_flavor = RPC_AUTH_GSS,
1960 .au_name = "RPCSEC_GSS",
1961 .create = gss_create,
1962 .destroy = gss_destroy,
1963 .lookup_cred = gss_lookup_cred,
1964 .crcreate = gss_create_cred,
1965 .list_pseudoflavors = gss_mech_list_pseudoflavors,
1966 .info2flavor = gss_mech_info2flavor,
1967 .flavor2info = gss_mech_flavor2info,
1968 };
1969
1970 static const struct rpc_credops gss_credops = {
1971 .cr_name = "AUTH_GSS",
1972 .crdestroy = gss_destroy_cred,
1973 .cr_init = gss_cred_init,
1974 .crbind = rpcauth_generic_bind_cred,
1975 .crmatch = gss_match,
1976 .crmarshal = gss_marshal,
1977 .crrefresh = gss_refresh,
1978 .crvalidate = gss_validate,
1979 .crwrap_req = gss_wrap_req,
1980 .crunwrap_resp = gss_unwrap_resp,
1981 .crkey_timeout = gss_key_timeout,
1982 .crstringify_acceptor = gss_stringify_acceptor,
1983 };
1984
1985 static const struct rpc_credops gss_nullops = {
1986 .cr_name = "AUTH_GSS",
1987 .crdestroy = gss_destroy_nullcred,
1988 .crbind = rpcauth_generic_bind_cred,
1989 .crmatch = gss_match,
1990 .crmarshal = gss_marshal,
1991 .crrefresh = gss_refresh_null,
1992 .crvalidate = gss_validate,
1993 .crwrap_req = gss_wrap_req,
1994 .crunwrap_resp = gss_unwrap_resp,
1995 .crstringify_acceptor = gss_stringify_acceptor,
1996 };
1997
1998 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
1999 .upcall = rpc_pipe_generic_upcall,
2000 .downcall = gss_pipe_downcall,
2001 .destroy_msg = gss_pipe_destroy_msg,
2002 .open_pipe = gss_pipe_open_v0,
2003 .release_pipe = gss_pipe_release,
2004 };
2005
2006 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
2007 .upcall = rpc_pipe_generic_upcall,
2008 .downcall = gss_pipe_downcall,
2009 .destroy_msg = gss_pipe_destroy_msg,
2010 .open_pipe = gss_pipe_open_v1,
2011 .release_pipe = gss_pipe_release,
2012 };
2013
rpcsec_gss_init_net(struct net * net)2014 static __net_init int rpcsec_gss_init_net(struct net *net)
2015 {
2016 return gss_svc_init_net(net);
2017 }
2018
rpcsec_gss_exit_net(struct net * net)2019 static __net_exit void rpcsec_gss_exit_net(struct net *net)
2020 {
2021 gss_svc_shutdown_net(net);
2022 }
2023
2024 static struct pernet_operations rpcsec_gss_net_ops = {
2025 .init = rpcsec_gss_init_net,
2026 .exit = rpcsec_gss_exit_net,
2027 };
2028
2029 /*
2030 * Initialize RPCSEC_GSS module
2031 */
init_rpcsec_gss(void)2032 static int __init init_rpcsec_gss(void)
2033 {
2034 int err = 0;
2035
2036 err = rpcauth_register(&authgss_ops);
2037 if (err)
2038 goto out;
2039 err = gss_svc_init();
2040 if (err)
2041 goto out_unregister;
2042 err = register_pernet_subsys(&rpcsec_gss_net_ops);
2043 if (err)
2044 goto out_svc_exit;
2045 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
2046 return 0;
2047 out_svc_exit:
2048 gss_svc_shutdown();
2049 out_unregister:
2050 rpcauth_unregister(&authgss_ops);
2051 out:
2052 return err;
2053 }
2054
exit_rpcsec_gss(void)2055 static void __exit exit_rpcsec_gss(void)
2056 {
2057 unregister_pernet_subsys(&rpcsec_gss_net_ops);
2058 gss_svc_shutdown();
2059 rpcauth_unregister(&authgss_ops);
2060 rcu_barrier(); /* Wait for completion of call_rcu()'s */
2061 }
2062
2063 MODULE_ALIAS("rpc-auth-6");
2064 MODULE_LICENSE("GPL");
2065 module_param_named(expired_cred_retry_delay,
2066 gss_expired_cred_retry_delay,
2067 uint, 0644);
2068 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
2069 "the RPC engine retries an expired credential");
2070
2071 module_param_named(key_expire_timeo,
2072 gss_key_expire_timeo,
2073 uint, 0644);
2074 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2075 "credential keys lifetime where the NFS layer cleans up "
2076 "prior to key expiration");
2077
2078 module_init(init_rpcsec_gss)
2079 module_exit(exit_rpcsec_gss)
2080