1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
extent_state_in_tree(const struct extent_state * state)28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
btrfs_leak_debug_add(struct list_head * new,struct list_head * head)40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
btrfs_leak_debug_del(struct list_head * entry)50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
btrfs_leak_debug_check(void)60 void btrfs_leak_debug_check(void)
61 {
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
tree_fs_info(struct extent_io_tree * tree)155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
extent_io_init(void)162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
extent_io_exit(void)200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
215 }
216
extent_io_tree_init(struct extent_io_tree * tree,struct address_space * mapping)217 void extent_io_tree_init(struct extent_io_tree *tree,
218 struct address_space *mapping)
219 {
220 tree->state = RB_ROOT;
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
223 spin_lock_init(&tree->lock);
224 tree->mapping = mapping;
225 }
226
alloc_extent_state(gfp_t mask)227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229 struct extent_state *state;
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
232 if (!state)
233 return state;
234 state->state = 0;
235 state->private = 0;
236 RB_CLEAR_NODE(&state->rb_node);
237 btrfs_leak_debug_add(&state->leak_list, &states);
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
240 trace_alloc_extent_state(state, mask, _RET_IP_);
241 return state;
242 }
243
free_extent_state(struct extent_state * state)244 void free_extent_state(struct extent_state *state)
245 {
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
249 WARN_ON(extent_state_in_tree(state));
250 btrfs_leak_debug_del(&state->leak_list);
251 trace_free_extent_state(state, _RET_IP_);
252 kmem_cache_free(extent_state_cache, state);
253 }
254 }
255
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)256 static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
262 {
263 struct rb_node **p;
264 struct rb_node *parent = NULL;
265 struct tree_entry *entry;
266
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
273 p = search_start ? &search_start : &root->rb_node;
274 while (*p) {
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
286 do_insert:
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290 }
291
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** prev_ret,struct rb_node ** next_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
297 {
298 struct rb_root *root = &tree->state;
299 struct rb_node **n = &root->rb_node;
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
308 prev_entry = entry;
309
310 if (offset < entry->start)
311 n = &(*n)->rb_left;
312 else if (offset > entry->end)
313 n = &(*n)->rb_right;
314 else
315 return *n;
316 }
317
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
323 if (prev_ret) {
324 orig_prev = prev;
325 while (prev && offset > prev_entry->end) {
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 while (prev && offset < prev_entry->start) {
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342 }
343
344 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)345 tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
349 {
350 struct rb_node *prev = NULL;
351 struct rb_node *ret;
352
353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 if (!ret)
355 return prev;
356 return ret;
357 }
358
tree_search(struct extent_io_tree * tree,u64 offset)359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361 {
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364
merge_cb(struct extent_io_tree * tree,struct extent_state * new,struct extent_state * other)365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367 {
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371 }
372
373 /*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
merge_state(struct extent_io_tree * tree,struct extent_state * state)382 static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
384 {
385 struct extent_state *other;
386 struct rb_node *other_node;
387
388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 return;
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
396 merge_cb(tree, state, other);
397 state->start = other->start;
398 rb_erase(&other->rb_node, &tree->state);
399 RB_CLEAR_NODE(&other->rb_node);
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
408 merge_cb(tree, state, other);
409 state->end = other->end;
410 rb_erase(&other->rb_node, &tree->state);
411 RB_CLEAR_NODE(&other->rb_node);
412 free_extent_state(other);
413 }
414 }
415 }
416
set_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)417 static void set_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
419 {
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423
clear_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)424 static void clear_state_cb(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits)
426 {
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430
431 static void set_state_bits(struct extent_io_tree *tree,
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
434
435 /*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)445 static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
447 struct rb_node ***p,
448 struct rb_node **parent,
449 unsigned *bits, struct extent_changeset *changeset)
450 {
451 struct rb_node *node;
452
453 if (end < start)
454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 end, start);
456 state->start = start;
457 state->end = end;
458
459 set_state_bits(tree, state, bits, changeset);
460
461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 "%llu %llu\n",
467 found->start, found->end, start, end);
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472 }
473
split_cb(struct extent_io_tree * tree,struct extent_state * orig,u64 split)474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 u64 split)
476 {
477 if (tree->ops && tree->ops->split_extent_hook)
478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480
481 /*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497 {
498 struct rb_node *node;
499
500 split_cb(tree, orig, split);
501
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
509 if (node) {
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514 }
515
next_state(struct extent_state * state)516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523 }
524
525 /*
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
536 {
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
545 clear_state_cb(tree, state, bits);
546 add_extent_changeset(state, bits_to_clear, changeset, 0);
547 state->state &= ~bits_to_clear;
548 if (wake)
549 wake_up(&state->wq);
550 if (state->state == 0) {
551 next = next_state(state);
552 if (extent_state_in_tree(state)) {
553 rb_erase(&state->rb_node, &tree->state);
554 RB_CLEAR_NODE(&state->rb_node);
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
561 next = next_state(state);
562 }
563 return next;
564 }
565
566 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573 }
574
extent_io_tree_panic(struct extent_io_tree * tree,int err)575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580 }
581
582 /*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
593 */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
598 {
599 struct extent_state *state;
600 struct extent_state *cached;
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
603 u64 last_end;
604 int err;
605 int clear = 0;
606
607 btrfs_debug_check_extent_io_range(tree, start, end);
608
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
618 again:
619 if (!prealloc && gfpflags_allow_blocking(mask)) {
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
627 prealloc = alloc_extent_state(mask);
628 }
629
630 spin_lock(&tree->lock);
631 if (cached_state) {
632 cached = *cached_state;
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
641 if (clear)
642 atomic_dec(&cached->refs);
643 state = cached;
644 goto hit_next;
645 }
646 if (clear)
647 free_extent_state(cached);
648 }
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
653 node = tree_search(tree, start);
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
661 last_end = state->end;
662
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state->state & bits)) {
665 state = next_state(state);
666 goto next;
667 }
668
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, start);
689 if (err)
690 extent_io_tree_panic(tree, err);
691
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
698 goto next;
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
711 err = split_state(tree, state, prealloc, end + 1);
712 if (err)
713 extent_io_tree_panic(tree, err);
714
715 if (wake)
716 wake_up(&state->wq);
717
718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
719
720 prealloc = NULL;
721 goto out;
722 }
723
724 state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
729 if (start <= end && state && !need_resched())
730 goto hit_next;
731 goto search_again;
732
733 out:
734 spin_unlock(&tree->lock);
735 if (prealloc)
736 free_extent_state(prealloc);
737
738 return 0;
739
740 search_again:
741 if (start > end)
742 goto out;
743 spin_unlock(&tree->lock);
744 if (gfpflags_allow_blocking(mask))
745 cond_resched();
746 goto again;
747 }
748
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)749 static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
751 __releases(tree->lock)
752 __acquires(tree->lock)
753 {
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 spin_unlock(&tree->lock);
757 schedule();
758 spin_lock(&tree->lock);
759 finish_wait(&state->wq, &wait);
760 }
761
762 /*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
769 {
770 struct extent_state *state;
771 struct rb_node *node;
772
773 btrfs_debug_check_extent_io_range(tree, start, end);
774
775 spin_lock(&tree->lock);
776 again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
782 node = tree_search(tree, start);
783 process_node:
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
808 }
809 out:
810 spin_unlock(&tree->lock);
811 }
812
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)813 static void set_state_bits(struct extent_io_tree *tree,
814 struct extent_state *state,
815 unsigned *bits, struct extent_changeset *changeset)
816 {
817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818
819 set_state_cb(tree, state, bits);
820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
824 add_extent_changeset(state, bits_to_set, changeset, 1);
825 state->state |= bits_to_set;
826 }
827
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)828 static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
830 unsigned flags)
831 {
832 if (cached_ptr && !(*cached_ptr)) {
833 if (!flags || (state->state & flags)) {
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838 }
839
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)840 static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842 {
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846
847 /*
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
850 *
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
854 *
855 * [start, end] is inclusive This takes the tree lock.
856 */
857
858 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 unsigned bits, unsigned exclusive_bits,
861 u64 *failed_start, struct extent_state **cached_state,
862 gfp_t mask, struct extent_changeset *changeset)
863 {
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
867 struct rb_node **p;
868 struct rb_node *parent;
869 int err = 0;
870 u64 last_start;
871 u64 last_end;
872
873 btrfs_debug_check_extent_io_range(tree, start, end);
874
875 bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 if (!prealloc && gfpflags_allow_blocking(mask)) {
878 prealloc = alloc_extent_state(mask);
879 BUG_ON(!prealloc);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044 out:
1045 spin_unlock(&tree->lock);
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051 search_again:
1052 if (start > end)
1053 goto out;
1054 spin_unlock(&tree->lock);
1055 if (gfpflags_allow_blocking(mask))
1056 cond_resched();
1057 goto again;
1058 }
1059
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 unsigned bits, u64 * failed_start,
1062 struct extent_state **cached_state, gfp_t mask)
1063 {
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 cached_state, mask, NULL);
1066 }
1067
1068
1069 /**
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state,gfp_t mask)1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state, gfp_t mask)
1089 {
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102 again:
1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(mask);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270 out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277 search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
1281 if (gfpflags_allow_blocking(mask))
1282 cond_resched();
1283 first_iteration = false;
1284 goto again;
1285 }
1286
1287 /* wrappers around set/clear extent bit */
set_extent_dirty(struct extent_io_tree * tree,u64 start,u64 end,gfp_t mask)1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 gfp_t mask)
1290 {
1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1292 NULL, mask);
1293 }
1294
set_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask)1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1296 unsigned bits, gfp_t mask)
1297 {
1298 return set_extent_bit(tree, start, end, bits, NULL,
1299 NULL, mask);
1300 }
1301
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask,struct extent_changeset * changeset)1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1305 {
1306 /*
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1310 * range.
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 changeset);
1316 }
1317
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached,gfp_t mask)1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1321 {
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1324 }
1325
clear_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask)1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1327 unsigned bits, gfp_t mask)
1328 {
1329 int wake = 0;
1330
1331 if (bits & EXTENT_LOCKED)
1332 wake = 1;
1333
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1335 }
1336
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask,struct extent_changeset * changeset)1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1340 {
1341 /*
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1344 */
1345 BUG_ON(bits & EXTENT_LOCKED);
1346
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 changeset);
1349 }
1350
set_extent_delalloc(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1352 struct extent_state **cached_state, gfp_t mask)
1353 {
1354 return set_extent_bit(tree, start, end,
1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
1356 NULL, cached_state, mask);
1357 }
1358
set_extent_defrag(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1361 {
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1365 }
1366
clear_extent_dirty(struct extent_io_tree * tree,u64 start,u64 end,gfp_t mask)1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 gfp_t mask)
1369 {
1370 return clear_extent_bit(tree, start, end,
1371 EXTENT_DIRTY | EXTENT_DELALLOC |
1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1373 }
1374
set_extent_new(struct extent_io_tree * tree,u64 start,u64 end,gfp_t mask)1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 gfp_t mask)
1377 {
1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1379 NULL, mask);
1380 }
1381
set_extent_uptodate(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1383 struct extent_state **cached_state, gfp_t mask)
1384 {
1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1386 cached_state, mask);
1387 }
1388
clear_extent_uptodate(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
1391 {
1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1393 cached_state, mask);
1394 }
1395
1396 /*
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1399 */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_state ** cached_state)1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1401 unsigned bits, struct extent_state **cached_state)
1402 {
1403 int err;
1404 u64 failed_start;
1405
1406 while (1) {
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
1409 cached_state, GFP_NOFS, NULL);
1410 if (err == -EEXIST) {
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
1413 } else
1414 break;
1415 WARN_ON(start > end);
1416 }
1417 return err;
1418 }
1419
lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1421 {
1422 return lock_extent_bits(tree, start, end, 0, NULL);
1423 }
1424
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1426 {
1427 int err;
1428 u64 failed_start;
1429
1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1431 &failed_start, NULL, GFP_NOFS, NULL);
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1436 return 0;
1437 }
1438 return 1;
1439 }
1440
unlock_extent_cached(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached,gfp_t mask)1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1443 {
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 mask);
1446 }
1447
unlock_extent(struct extent_io_tree * tree,u64 start,u64 end)1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1451 GFP_NOFS);
1452 }
1453
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1454 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1465 index++;
1466 }
1467 return 0;
1468 }
1469
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1470 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1471 {
1472 unsigned long index = start >> PAGE_CACHE_SHIFT;
1473 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1474 struct page *page;
1475
1476 while (index <= end_index) {
1477 page = find_get_page(inode->i_mapping, index);
1478 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1479 __set_page_dirty_nobuffers(page);
1480 account_page_redirty(page);
1481 page_cache_release(page);
1482 index++;
1483 }
1484 return 0;
1485 }
1486
1487 /*
1488 * helper function to set both pages and extents in the tree writeback
1489 */
set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)1490 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1491 {
1492 unsigned long index = start >> PAGE_CACHE_SHIFT;
1493 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1494 struct page *page;
1495
1496 while (index <= end_index) {
1497 page = find_get_page(tree->mapping, index);
1498 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1499 set_page_writeback(page);
1500 page_cache_release(page);
1501 index++;
1502 }
1503 return 0;
1504 }
1505
1506 /* find the first state struct with 'bits' set after 'start', and
1507 * return it. tree->lock must be held. NULL will returned if
1508 * nothing was found after 'start'
1509 */
1510 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1511 find_first_extent_bit_state(struct extent_io_tree *tree,
1512 u64 start, unsigned bits)
1513 {
1514 struct rb_node *node;
1515 struct extent_state *state;
1516
1517 /*
1518 * this search will find all the extents that end after
1519 * our range starts.
1520 */
1521 node = tree_search(tree, start);
1522 if (!node)
1523 goto out;
1524
1525 while (1) {
1526 state = rb_entry(node, struct extent_state, rb_node);
1527 if (state->end >= start && (state->state & bits))
1528 return state;
1529
1530 node = rb_next(node);
1531 if (!node)
1532 break;
1533 }
1534 out:
1535 return NULL;
1536 }
1537
1538 /*
1539 * find the first offset in the io tree with 'bits' set. zero is
1540 * returned if we find something, and *start_ret and *end_ret are
1541 * set to reflect the state struct that was found.
1542 *
1543 * If nothing was found, 1 is returned. If found something, return 0.
1544 */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1545 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1546 u64 *start_ret, u64 *end_ret, unsigned bits,
1547 struct extent_state **cached_state)
1548 {
1549 struct extent_state *state;
1550 struct rb_node *n;
1551 int ret = 1;
1552
1553 spin_lock(&tree->lock);
1554 if (cached_state && *cached_state) {
1555 state = *cached_state;
1556 if (state->end == start - 1 && extent_state_in_tree(state)) {
1557 n = rb_next(&state->rb_node);
1558 while (n) {
1559 state = rb_entry(n, struct extent_state,
1560 rb_node);
1561 if (state->state & bits)
1562 goto got_it;
1563 n = rb_next(n);
1564 }
1565 free_extent_state(*cached_state);
1566 *cached_state = NULL;
1567 goto out;
1568 }
1569 free_extent_state(*cached_state);
1570 *cached_state = NULL;
1571 }
1572
1573 state = find_first_extent_bit_state(tree, start, bits);
1574 got_it:
1575 if (state) {
1576 cache_state_if_flags(state, cached_state, 0);
1577 *start_ret = state->start;
1578 *end_ret = state->end;
1579 ret = 0;
1580 }
1581 out:
1582 spin_unlock(&tree->lock);
1583 return ret;
1584 }
1585
1586 /*
1587 * find a contiguous range of bytes in the file marked as delalloc, not
1588 * more than 'max_bytes'. start and end are used to return the range,
1589 *
1590 * 1 is returned if we find something, 0 if nothing was in the tree
1591 */
find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1592 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1593 u64 *start, u64 *end, u64 max_bytes,
1594 struct extent_state **cached_state)
1595 {
1596 struct rb_node *node;
1597 struct extent_state *state;
1598 u64 cur_start = *start;
1599 u64 found = 0;
1600 u64 total_bytes = 0;
1601
1602 spin_lock(&tree->lock);
1603
1604 /*
1605 * this search will find all the extents that end after
1606 * our range starts.
1607 */
1608 node = tree_search(tree, cur_start);
1609 if (!node) {
1610 if (!found)
1611 *end = (u64)-1;
1612 goto out;
1613 }
1614
1615 while (1) {
1616 state = rb_entry(node, struct extent_state, rb_node);
1617 if (found && (state->start != cur_start ||
1618 (state->state & EXTENT_BOUNDARY))) {
1619 goto out;
1620 }
1621 if (!(state->state & EXTENT_DELALLOC)) {
1622 if (!found)
1623 *end = state->end;
1624 goto out;
1625 }
1626 if (!found) {
1627 *start = state->start;
1628 *cached_state = state;
1629 atomic_inc(&state->refs);
1630 }
1631 found++;
1632 *end = state->end;
1633 cur_start = state->end + 1;
1634 node = rb_next(node);
1635 total_bytes += state->end - state->start + 1;
1636 if (total_bytes >= max_bytes)
1637 break;
1638 if (!node)
1639 break;
1640 }
1641 out:
1642 spin_unlock(&tree->lock);
1643 return found;
1644 }
1645
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1646 static noinline void __unlock_for_delalloc(struct inode *inode,
1647 struct page *locked_page,
1648 u64 start, u64 end)
1649 {
1650 int ret;
1651 struct page *pages[16];
1652 unsigned long index = start >> PAGE_CACHE_SHIFT;
1653 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1654 unsigned long nr_pages = end_index - index + 1;
1655 int i;
1656
1657 if (index == locked_page->index && end_index == index)
1658 return;
1659
1660 while (nr_pages > 0) {
1661 ret = find_get_pages_contig(inode->i_mapping, index,
1662 min_t(unsigned long, nr_pages,
1663 ARRAY_SIZE(pages)), pages);
1664 for (i = 0; i < ret; i++) {
1665 if (pages[i] != locked_page)
1666 unlock_page(pages[i]);
1667 page_cache_release(pages[i]);
1668 }
1669 nr_pages -= ret;
1670 index += ret;
1671 cond_resched();
1672 }
1673 }
1674
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1675 static noinline int lock_delalloc_pages(struct inode *inode,
1676 struct page *locked_page,
1677 u64 delalloc_start,
1678 u64 delalloc_end)
1679 {
1680 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1681 unsigned long start_index = index;
1682 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1683 unsigned long pages_locked = 0;
1684 struct page *pages[16];
1685 unsigned long nrpages;
1686 int ret;
1687 int i;
1688
1689 /* the caller is responsible for locking the start index */
1690 if (index == locked_page->index && index == end_index)
1691 return 0;
1692
1693 /* skip the page at the start index */
1694 nrpages = end_index - index + 1;
1695 while (nrpages > 0) {
1696 ret = find_get_pages_contig(inode->i_mapping, index,
1697 min_t(unsigned long,
1698 nrpages, ARRAY_SIZE(pages)), pages);
1699 if (ret == 0) {
1700 ret = -EAGAIN;
1701 goto done;
1702 }
1703 /* now we have an array of pages, lock them all */
1704 for (i = 0; i < ret; i++) {
1705 /*
1706 * the caller is taking responsibility for
1707 * locked_page
1708 */
1709 if (pages[i] != locked_page) {
1710 lock_page(pages[i]);
1711 if (!PageDirty(pages[i]) ||
1712 pages[i]->mapping != inode->i_mapping) {
1713 ret = -EAGAIN;
1714 unlock_page(pages[i]);
1715 page_cache_release(pages[i]);
1716 goto done;
1717 }
1718 }
1719 page_cache_release(pages[i]);
1720 pages_locked++;
1721 }
1722 nrpages -= ret;
1723 index += ret;
1724 cond_resched();
1725 }
1726 ret = 0;
1727 done:
1728 if (ret && pages_locked) {
1729 __unlock_for_delalloc(inode, locked_page,
1730 delalloc_start,
1731 ((u64)(start_index + pages_locked - 1)) <<
1732 PAGE_CACHE_SHIFT);
1733 }
1734 return ret;
1735 }
1736
1737 /*
1738 * find a contiguous range of bytes in the file marked as delalloc, not
1739 * more than 'max_bytes'. start and end are used to return the range,
1740 *
1741 * 1 is returned if we find something, 0 if nothing was in the tree
1742 */
find_lock_delalloc_range(struct inode * inode,struct extent_io_tree * tree,struct page * locked_page,u64 * start,u64 * end,u64 max_bytes)1743 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1744 struct extent_io_tree *tree,
1745 struct page *locked_page, u64 *start,
1746 u64 *end, u64 max_bytes)
1747 {
1748 u64 delalloc_start;
1749 u64 delalloc_end;
1750 u64 found;
1751 struct extent_state *cached_state = NULL;
1752 int ret;
1753 int loops = 0;
1754
1755 again:
1756 /* step one, find a bunch of delalloc bytes starting at start */
1757 delalloc_start = *start;
1758 delalloc_end = 0;
1759 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1760 max_bytes, &cached_state);
1761 if (!found || delalloc_end <= *start) {
1762 *start = delalloc_start;
1763 *end = delalloc_end;
1764 free_extent_state(cached_state);
1765 return 0;
1766 }
1767
1768 /*
1769 * start comes from the offset of locked_page. We have to lock
1770 * pages in order, so we can't process delalloc bytes before
1771 * locked_page
1772 */
1773 if (delalloc_start < *start)
1774 delalloc_start = *start;
1775
1776 /*
1777 * make sure to limit the number of pages we try to lock down
1778 */
1779 if (delalloc_end + 1 - delalloc_start > max_bytes)
1780 delalloc_end = delalloc_start + max_bytes - 1;
1781
1782 /* step two, lock all the pages after the page that has start */
1783 ret = lock_delalloc_pages(inode, locked_page,
1784 delalloc_start, delalloc_end);
1785 if (ret == -EAGAIN) {
1786 /* some of the pages are gone, lets avoid looping by
1787 * shortening the size of the delalloc range we're searching
1788 */
1789 free_extent_state(cached_state);
1790 cached_state = NULL;
1791 if (!loops) {
1792 max_bytes = PAGE_CACHE_SIZE;
1793 loops = 1;
1794 goto again;
1795 } else {
1796 found = 0;
1797 goto out_failed;
1798 }
1799 }
1800 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1801
1802 /* step three, lock the state bits for the whole range */
1803 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1804
1805 /* then test to make sure it is all still delalloc */
1806 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1807 EXTENT_DELALLOC, 1, cached_state);
1808 if (!ret) {
1809 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1810 &cached_state, GFP_NOFS);
1811 __unlock_for_delalloc(inode, locked_page,
1812 delalloc_start, delalloc_end);
1813 cond_resched();
1814 goto again;
1815 }
1816 free_extent_state(cached_state);
1817 *start = delalloc_start;
1818 *end = delalloc_end;
1819 out_failed:
1820 return found;
1821 }
1822
extent_clear_unlock_delalloc(struct inode * inode,u64 start,u64 end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)1823 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1824 struct page *locked_page,
1825 unsigned clear_bits,
1826 unsigned long page_ops)
1827 {
1828 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1829 int ret;
1830 struct page *pages[16];
1831 unsigned long index = start >> PAGE_CACHE_SHIFT;
1832 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1833 unsigned long nr_pages = end_index - index + 1;
1834 int i;
1835
1836 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1837 if (page_ops == 0)
1838 return 0;
1839
1840 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1841 mapping_set_error(inode->i_mapping, -EIO);
1842
1843 while (nr_pages > 0) {
1844 ret = find_get_pages_contig(inode->i_mapping, index,
1845 min_t(unsigned long,
1846 nr_pages, ARRAY_SIZE(pages)), pages);
1847 for (i = 0; i < ret; i++) {
1848
1849 if (page_ops & PAGE_SET_PRIVATE2)
1850 SetPagePrivate2(pages[i]);
1851
1852 if (pages[i] == locked_page) {
1853 page_cache_release(pages[i]);
1854 continue;
1855 }
1856 if (page_ops & PAGE_CLEAR_DIRTY)
1857 clear_page_dirty_for_io(pages[i]);
1858 if (page_ops & PAGE_SET_WRITEBACK)
1859 set_page_writeback(pages[i]);
1860 if (page_ops & PAGE_SET_ERROR)
1861 SetPageError(pages[i]);
1862 if (page_ops & PAGE_END_WRITEBACK)
1863 end_page_writeback(pages[i]);
1864 if (page_ops & PAGE_UNLOCK)
1865 unlock_page(pages[i]);
1866 page_cache_release(pages[i]);
1867 }
1868 nr_pages -= ret;
1869 index += ret;
1870 cond_resched();
1871 }
1872 return 0;
1873 }
1874
1875 /*
1876 * count the number of bytes in the tree that have a given bit(s)
1877 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1878 * cached. The total number found is returned.
1879 */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)1880 u64 count_range_bits(struct extent_io_tree *tree,
1881 u64 *start, u64 search_end, u64 max_bytes,
1882 unsigned bits, int contig)
1883 {
1884 struct rb_node *node;
1885 struct extent_state *state;
1886 u64 cur_start = *start;
1887 u64 total_bytes = 0;
1888 u64 last = 0;
1889 int found = 0;
1890
1891 if (WARN_ON(search_end <= cur_start))
1892 return 0;
1893
1894 spin_lock(&tree->lock);
1895 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1896 total_bytes = tree->dirty_bytes;
1897 goto out;
1898 }
1899 /*
1900 * this search will find all the extents that end after
1901 * our range starts.
1902 */
1903 node = tree_search(tree, cur_start);
1904 if (!node)
1905 goto out;
1906
1907 while (1) {
1908 state = rb_entry(node, struct extent_state, rb_node);
1909 if (state->start > search_end)
1910 break;
1911 if (contig && found && state->start > last + 1)
1912 break;
1913 if (state->end >= cur_start && (state->state & bits) == bits) {
1914 total_bytes += min(search_end, state->end) + 1 -
1915 max(cur_start, state->start);
1916 if (total_bytes >= max_bytes)
1917 break;
1918 if (!found) {
1919 *start = max(cur_start, state->start);
1920 found = 1;
1921 }
1922 last = state->end;
1923 } else if (contig && found) {
1924 break;
1925 }
1926 node = rb_next(node);
1927 if (!node)
1928 break;
1929 }
1930 out:
1931 spin_unlock(&tree->lock);
1932 return total_bytes;
1933 }
1934
1935 /*
1936 * set the private field for a given byte offset in the tree. If there isn't
1937 * an extent_state there already, this does nothing.
1938 */
set_state_private(struct extent_io_tree * tree,u64 start,u64 private)1939 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1940 {
1941 struct rb_node *node;
1942 struct extent_state *state;
1943 int ret = 0;
1944
1945 spin_lock(&tree->lock);
1946 /*
1947 * this search will find all the extents that end after
1948 * our range starts.
1949 */
1950 node = tree_search(tree, start);
1951 if (!node) {
1952 ret = -ENOENT;
1953 goto out;
1954 }
1955 state = rb_entry(node, struct extent_state, rb_node);
1956 if (state->start != start) {
1957 ret = -ENOENT;
1958 goto out;
1959 }
1960 state->private = private;
1961 out:
1962 spin_unlock(&tree->lock);
1963 return ret;
1964 }
1965
get_state_private(struct extent_io_tree * tree,u64 start,u64 * private)1966 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1967 {
1968 struct rb_node *node;
1969 struct extent_state *state;
1970 int ret = 0;
1971
1972 spin_lock(&tree->lock);
1973 /*
1974 * this search will find all the extents that end after
1975 * our range starts.
1976 */
1977 node = tree_search(tree, start);
1978 if (!node) {
1979 ret = -ENOENT;
1980 goto out;
1981 }
1982 state = rb_entry(node, struct extent_state, rb_node);
1983 if (state->start != start) {
1984 ret = -ENOENT;
1985 goto out;
1986 }
1987 *private = state->private;
1988 out:
1989 spin_unlock(&tree->lock);
1990 return ret;
1991 }
1992
1993 /*
1994 * searches a range in the state tree for a given mask.
1995 * If 'filled' == 1, this returns 1 only if every extent in the tree
1996 * has the bits set. Otherwise, 1 is returned if any bit in the
1997 * range is found set.
1998 */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)1999 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2000 unsigned bits, int filled, struct extent_state *cached)
2001 {
2002 struct extent_state *state = NULL;
2003 struct rb_node *node;
2004 int bitset = 0;
2005
2006 spin_lock(&tree->lock);
2007 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2008 cached->end > start)
2009 node = &cached->rb_node;
2010 else
2011 node = tree_search(tree, start);
2012 while (node && start <= end) {
2013 state = rb_entry(node, struct extent_state, rb_node);
2014
2015 if (filled && state->start > start) {
2016 bitset = 0;
2017 break;
2018 }
2019
2020 if (state->start > end)
2021 break;
2022
2023 if (state->state & bits) {
2024 bitset = 1;
2025 if (!filled)
2026 break;
2027 } else if (filled) {
2028 bitset = 0;
2029 break;
2030 }
2031
2032 if (state->end == (u64)-1)
2033 break;
2034
2035 start = state->end + 1;
2036 if (start > end)
2037 break;
2038 node = rb_next(node);
2039 if (!node) {
2040 if (filled)
2041 bitset = 0;
2042 break;
2043 }
2044 }
2045 spin_unlock(&tree->lock);
2046 return bitset;
2047 }
2048
2049 /*
2050 * helper function to set a given page up to date if all the
2051 * extents in the tree for that page are up to date
2052 */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)2053 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2054 {
2055 u64 start = page_offset(page);
2056 u64 end = start + PAGE_CACHE_SIZE - 1;
2057 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2058 SetPageUptodate(page);
2059 }
2060
free_io_failure(struct inode * inode,struct io_failure_record * rec)2061 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2062 {
2063 int ret;
2064 int err = 0;
2065 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2066
2067 set_state_private(failure_tree, rec->start, 0);
2068 ret = clear_extent_bits(failure_tree, rec->start,
2069 rec->start + rec->len - 1,
2070 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2071 if (ret)
2072 err = ret;
2073
2074 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2075 rec->start + rec->len - 1,
2076 EXTENT_DAMAGED, GFP_NOFS);
2077 if (ret && !err)
2078 err = ret;
2079
2080 kfree(rec);
2081 return err;
2082 }
2083
2084 /*
2085 * this bypasses the standard btrfs submit functions deliberately, as
2086 * the standard behavior is to write all copies in a raid setup. here we only
2087 * want to write the one bad copy. so we do the mapping for ourselves and issue
2088 * submit_bio directly.
2089 * to avoid any synchronization issues, wait for the data after writing, which
2090 * actually prevents the read that triggered the error from finishing.
2091 * currently, there can be no more than two copies of every data bit. thus,
2092 * exactly one rewrite is required.
2093 */
repair_io_failure(struct inode * inode,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2094 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2095 struct page *page, unsigned int pg_offset, int mirror_num)
2096 {
2097 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2098 struct bio *bio;
2099 struct btrfs_device *dev;
2100 u64 map_length = 0;
2101 u64 sector;
2102 struct btrfs_bio *bbio = NULL;
2103 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2104 int ret;
2105
2106 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2107 BUG_ON(!mirror_num);
2108
2109 /* we can't repair anything in raid56 yet */
2110 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2111 return 0;
2112
2113 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2114 if (!bio)
2115 return -EIO;
2116 bio->bi_iter.bi_size = 0;
2117 map_length = length;
2118
2119 ret = btrfs_map_block(fs_info, WRITE, logical,
2120 &map_length, &bbio, mirror_num);
2121 if (ret) {
2122 bio_put(bio);
2123 return -EIO;
2124 }
2125 BUG_ON(mirror_num != bbio->mirror_num);
2126 sector = bbio->stripes[mirror_num-1].physical >> 9;
2127 bio->bi_iter.bi_sector = sector;
2128 dev = bbio->stripes[mirror_num-1].dev;
2129 btrfs_put_bbio(bbio);
2130 if (!dev || !dev->bdev || !dev->writeable) {
2131 bio_put(bio);
2132 return -EIO;
2133 }
2134 bio->bi_bdev = dev->bdev;
2135 bio_add_page(bio, page, length, pg_offset);
2136
2137 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2138 /* try to remap that extent elsewhere? */
2139 bio_put(bio);
2140 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2141 return -EIO;
2142 }
2143
2144 btrfs_info_rl_in_rcu(fs_info,
2145 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2146 btrfs_ino(inode), start,
2147 rcu_str_deref(dev->name), sector);
2148 bio_put(bio);
2149 return 0;
2150 }
2151
repair_eb_io_failure(struct btrfs_root * root,struct extent_buffer * eb,int mirror_num)2152 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2153 int mirror_num)
2154 {
2155 u64 start = eb->start;
2156 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2157 int ret = 0;
2158
2159 if (root->fs_info->sb->s_flags & MS_RDONLY)
2160 return -EROFS;
2161
2162 for (i = 0; i < num_pages; i++) {
2163 struct page *p = eb->pages[i];
2164
2165 ret = repair_io_failure(root->fs_info->btree_inode, start,
2166 PAGE_CACHE_SIZE, start, p,
2167 start - page_offset(p), mirror_num);
2168 if (ret)
2169 break;
2170 start += PAGE_CACHE_SIZE;
2171 }
2172
2173 return ret;
2174 }
2175
2176 /*
2177 * each time an IO finishes, we do a fast check in the IO failure tree
2178 * to see if we need to process or clean up an io_failure_record
2179 */
clean_io_failure(struct inode * inode,u64 start,struct page * page,unsigned int pg_offset)2180 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2181 unsigned int pg_offset)
2182 {
2183 u64 private;
2184 u64 private_failure;
2185 struct io_failure_record *failrec;
2186 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2187 struct extent_state *state;
2188 int num_copies;
2189 int ret;
2190
2191 private = 0;
2192 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2193 (u64)-1, 1, EXTENT_DIRTY, 0);
2194 if (!ret)
2195 return 0;
2196
2197 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2198 &private_failure);
2199 if (ret)
2200 return 0;
2201
2202 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2203 BUG_ON(!failrec->this_mirror);
2204
2205 if (failrec->in_validation) {
2206 /* there was no real error, just free the record */
2207 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2208 failrec->start);
2209 goto out;
2210 }
2211 if (fs_info->sb->s_flags & MS_RDONLY)
2212 goto out;
2213
2214 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2215 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2216 failrec->start,
2217 EXTENT_LOCKED);
2218 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2219
2220 if (state && state->start <= failrec->start &&
2221 state->end >= failrec->start + failrec->len - 1) {
2222 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2223 failrec->len);
2224 if (num_copies > 1) {
2225 repair_io_failure(inode, start, failrec->len,
2226 failrec->logical, page,
2227 pg_offset, failrec->failed_mirror);
2228 }
2229 }
2230
2231 out:
2232 free_io_failure(inode, failrec);
2233
2234 return 0;
2235 }
2236
2237 /*
2238 * Can be called when
2239 * - hold extent lock
2240 * - under ordered extent
2241 * - the inode is freeing
2242 */
btrfs_free_io_failure_record(struct inode * inode,u64 start,u64 end)2243 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2244 {
2245 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2246 struct io_failure_record *failrec;
2247 struct extent_state *state, *next;
2248
2249 if (RB_EMPTY_ROOT(&failure_tree->state))
2250 return;
2251
2252 spin_lock(&failure_tree->lock);
2253 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2254 while (state) {
2255 if (state->start > end)
2256 break;
2257
2258 ASSERT(state->end <= end);
2259
2260 next = next_state(state);
2261
2262 failrec = (struct io_failure_record *)(unsigned long)state->private;
2263 free_extent_state(state);
2264 kfree(failrec);
2265
2266 state = next;
2267 }
2268 spin_unlock(&failure_tree->lock);
2269 }
2270
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end,struct io_failure_record ** failrec_ret)2271 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2272 struct io_failure_record **failrec_ret)
2273 {
2274 struct io_failure_record *failrec;
2275 u64 private;
2276 struct extent_map *em;
2277 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2278 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2279 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2280 int ret;
2281 u64 logical;
2282
2283 ret = get_state_private(failure_tree, start, &private);
2284 if (ret) {
2285 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2286 if (!failrec)
2287 return -ENOMEM;
2288
2289 failrec->start = start;
2290 failrec->len = end - start + 1;
2291 failrec->this_mirror = 0;
2292 failrec->bio_flags = 0;
2293 failrec->in_validation = 0;
2294
2295 read_lock(&em_tree->lock);
2296 em = lookup_extent_mapping(em_tree, start, failrec->len);
2297 if (!em) {
2298 read_unlock(&em_tree->lock);
2299 kfree(failrec);
2300 return -EIO;
2301 }
2302
2303 if (em->start > start || em->start + em->len <= start) {
2304 free_extent_map(em);
2305 em = NULL;
2306 }
2307 read_unlock(&em_tree->lock);
2308 if (!em) {
2309 kfree(failrec);
2310 return -EIO;
2311 }
2312
2313 logical = start - em->start;
2314 logical = em->block_start + logical;
2315 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2316 logical = em->block_start;
2317 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2318 extent_set_compress_type(&failrec->bio_flags,
2319 em->compress_type);
2320 }
2321
2322 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323 logical, start, failrec->len);
2324
2325 failrec->logical = logical;
2326 free_extent_map(em);
2327
2328 /* set the bits in the private failure tree */
2329 ret = set_extent_bits(failure_tree, start, end,
2330 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2331 if (ret >= 0)
2332 ret = set_state_private(failure_tree, start,
2333 (u64)(unsigned long)failrec);
2334 /* set the bits in the inode's tree */
2335 if (ret >= 0)
2336 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2337 GFP_NOFS);
2338 if (ret < 0) {
2339 kfree(failrec);
2340 return ret;
2341 }
2342 } else {
2343 failrec = (struct io_failure_record *)(unsigned long)private;
2344 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2345 failrec->logical, failrec->start, failrec->len,
2346 failrec->in_validation);
2347 /*
2348 * when data can be on disk more than twice, add to failrec here
2349 * (e.g. with a list for failed_mirror) to make
2350 * clean_io_failure() clean all those errors at once.
2351 */
2352 }
2353
2354 *failrec_ret = failrec;
2355
2356 return 0;
2357 }
2358
btrfs_check_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)2359 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2360 struct io_failure_record *failrec, int failed_mirror)
2361 {
2362 int num_copies;
2363
2364 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2365 failrec->logical, failrec->len);
2366 if (num_copies == 1) {
2367 /*
2368 * we only have a single copy of the data, so don't bother with
2369 * all the retry and error correction code that follows. no
2370 * matter what the error is, it is very likely to persist.
2371 */
2372 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2373 num_copies, failrec->this_mirror, failed_mirror);
2374 return 0;
2375 }
2376
2377 /*
2378 * there are two premises:
2379 * a) deliver good data to the caller
2380 * b) correct the bad sectors on disk
2381 */
2382 if (failed_bio->bi_vcnt > 1) {
2383 /*
2384 * to fulfill b), we need to know the exact failing sectors, as
2385 * we don't want to rewrite any more than the failed ones. thus,
2386 * we need separate read requests for the failed bio
2387 *
2388 * if the following BUG_ON triggers, our validation request got
2389 * merged. we need separate requests for our algorithm to work.
2390 */
2391 BUG_ON(failrec->in_validation);
2392 failrec->in_validation = 1;
2393 failrec->this_mirror = failed_mirror;
2394 } else {
2395 /*
2396 * we're ready to fulfill a) and b) alongside. get a good copy
2397 * of the failed sector and if we succeed, we have setup
2398 * everything for repair_io_failure to do the rest for us.
2399 */
2400 if (failrec->in_validation) {
2401 BUG_ON(failrec->this_mirror != failed_mirror);
2402 failrec->in_validation = 0;
2403 failrec->this_mirror = 0;
2404 }
2405 failrec->failed_mirror = failed_mirror;
2406 failrec->this_mirror++;
2407 if (failrec->this_mirror == failed_mirror)
2408 failrec->this_mirror++;
2409 }
2410
2411 if (failrec->this_mirror > num_copies) {
2412 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2413 num_copies, failrec->this_mirror, failed_mirror);
2414 return 0;
2415 }
2416
2417 return 1;
2418 }
2419
2420
btrfs_create_repair_bio(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,struct page * page,int pg_offset,int icsum,bio_end_io_t * endio_func,void * data)2421 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2422 struct io_failure_record *failrec,
2423 struct page *page, int pg_offset, int icsum,
2424 bio_end_io_t *endio_func, void *data)
2425 {
2426 struct bio *bio;
2427 struct btrfs_io_bio *btrfs_failed_bio;
2428 struct btrfs_io_bio *btrfs_bio;
2429
2430 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2431 if (!bio)
2432 return NULL;
2433
2434 bio->bi_end_io = endio_func;
2435 bio->bi_iter.bi_sector = failrec->logical >> 9;
2436 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2437 bio->bi_iter.bi_size = 0;
2438 bio->bi_private = data;
2439
2440 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2441 if (btrfs_failed_bio->csum) {
2442 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2443 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2444
2445 btrfs_bio = btrfs_io_bio(bio);
2446 btrfs_bio->csum = btrfs_bio->csum_inline;
2447 icsum *= csum_size;
2448 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2449 csum_size);
2450 }
2451
2452 bio_add_page(bio, page, failrec->len, pg_offset);
2453
2454 return bio;
2455 }
2456
2457 /*
2458 * this is a generic handler for readpage errors (default
2459 * readpage_io_failed_hook). if other copies exist, read those and write back
2460 * good data to the failed position. does not investigate in remapping the
2461 * failed extent elsewhere, hoping the device will be smart enough to do this as
2462 * needed
2463 */
2464
bio_readpage_error(struct bio * failed_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int failed_mirror)2465 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2466 struct page *page, u64 start, u64 end,
2467 int failed_mirror)
2468 {
2469 struct io_failure_record *failrec;
2470 struct inode *inode = page->mapping->host;
2471 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2472 struct bio *bio;
2473 int read_mode;
2474 int ret;
2475
2476 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2477
2478 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2479 if (ret)
2480 return ret;
2481
2482 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2483 if (!ret) {
2484 free_io_failure(inode, failrec);
2485 return -EIO;
2486 }
2487
2488 if (failed_bio->bi_vcnt > 1)
2489 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2490 else
2491 read_mode = READ_SYNC;
2492
2493 phy_offset >>= inode->i_sb->s_blocksize_bits;
2494 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2495 start - page_offset(page),
2496 (int)phy_offset, failed_bio->bi_end_io,
2497 NULL);
2498 if (!bio) {
2499 free_io_failure(inode, failrec);
2500 return -EIO;
2501 }
2502
2503 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504 read_mode, failrec->this_mirror, failrec->in_validation);
2505
2506 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2507 failrec->this_mirror,
2508 failrec->bio_flags, 0);
2509 if (ret) {
2510 free_io_failure(inode, failrec);
2511 bio_put(bio);
2512 }
2513
2514 return ret;
2515 }
2516
2517 /* lots and lots of room for performance fixes in the end_bio funcs */
2518
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2519 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2520 {
2521 int uptodate = (err == 0);
2522 struct extent_io_tree *tree;
2523 int ret = 0;
2524
2525 tree = &BTRFS_I(page->mapping->host)->io_tree;
2526
2527 if (tree->ops && tree->ops->writepage_end_io_hook) {
2528 ret = tree->ops->writepage_end_io_hook(page, start,
2529 end, NULL, uptodate);
2530 if (ret)
2531 uptodate = 0;
2532 }
2533
2534 if (!uptodate) {
2535 ClearPageUptodate(page);
2536 SetPageError(page);
2537 ret = err < 0 ? err : -EIO;
2538 mapping_set_error(page->mapping, ret);
2539 }
2540 return 0;
2541 }
2542
2543 /*
2544 * after a writepage IO is done, we need to:
2545 * clear the uptodate bits on error
2546 * clear the writeback bits in the extent tree for this IO
2547 * end_page_writeback if the page has no more pending IO
2548 *
2549 * Scheduling is not allowed, so the extent state tree is expected
2550 * to have one and only one object corresponding to this IO.
2551 */
end_bio_extent_writepage(struct bio * bio)2552 static void end_bio_extent_writepage(struct bio *bio)
2553 {
2554 struct bio_vec *bvec;
2555 u64 start;
2556 u64 end;
2557 int i;
2558
2559 bio_for_each_segment_all(bvec, bio, i) {
2560 struct page *page = bvec->bv_page;
2561
2562 /* We always issue full-page reads, but if some block
2563 * in a page fails to read, blk_update_request() will
2564 * advance bv_offset and adjust bv_len to compensate.
2565 * Print a warning for nonzero offsets, and an error
2566 * if they don't add up to a full page. */
2567 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2568 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2569 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2570 "partial page write in btrfs with offset %u and length %u",
2571 bvec->bv_offset, bvec->bv_len);
2572 else
2573 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2574 "incomplete page write in btrfs with offset %u and "
2575 "length %u",
2576 bvec->bv_offset, bvec->bv_len);
2577 }
2578
2579 start = page_offset(page);
2580 end = start + bvec->bv_offset + bvec->bv_len - 1;
2581
2582 if (end_extent_writepage(page, bio->bi_error, start, end))
2583 continue;
2584
2585 end_page_writeback(page);
2586 }
2587
2588 bio_put(bio);
2589 }
2590
2591 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2592 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2593 int uptodate)
2594 {
2595 struct extent_state *cached = NULL;
2596 u64 end = start + len - 1;
2597
2598 if (uptodate && tree->track_uptodate)
2599 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2600 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2601 }
2602
2603 /*
2604 * after a readpage IO is done, we need to:
2605 * clear the uptodate bits on error
2606 * set the uptodate bits if things worked
2607 * set the page up to date if all extents in the tree are uptodate
2608 * clear the lock bit in the extent tree
2609 * unlock the page if there are no other extents locked for it
2610 *
2611 * Scheduling is not allowed, so the extent state tree is expected
2612 * to have one and only one object corresponding to this IO.
2613 */
end_bio_extent_readpage(struct bio * bio)2614 static void end_bio_extent_readpage(struct bio *bio)
2615 {
2616 struct bio_vec *bvec;
2617 int uptodate = !bio->bi_error;
2618 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2619 struct extent_io_tree *tree;
2620 u64 offset = 0;
2621 u64 start;
2622 u64 end;
2623 u64 len;
2624 u64 extent_start = 0;
2625 u64 extent_len = 0;
2626 int mirror;
2627 int ret;
2628 int i;
2629
2630 bio_for_each_segment_all(bvec, bio, i) {
2631 struct page *page = bvec->bv_page;
2632 struct inode *inode = page->mapping->host;
2633
2634 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2635 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2636 bio->bi_error, io_bio->mirror_num);
2637 tree = &BTRFS_I(inode)->io_tree;
2638
2639 /* We always issue full-page reads, but if some block
2640 * in a page fails to read, blk_update_request() will
2641 * advance bv_offset and adjust bv_len to compensate.
2642 * Print a warning for nonzero offsets, and an error
2643 * if they don't add up to a full page. */
2644 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2645 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2646 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2647 "partial page read in btrfs with offset %u and length %u",
2648 bvec->bv_offset, bvec->bv_len);
2649 else
2650 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2651 "incomplete page read in btrfs with offset %u and "
2652 "length %u",
2653 bvec->bv_offset, bvec->bv_len);
2654 }
2655
2656 start = page_offset(page);
2657 end = start + bvec->bv_offset + bvec->bv_len - 1;
2658 len = bvec->bv_len;
2659
2660 mirror = io_bio->mirror_num;
2661 if (likely(uptodate && tree->ops &&
2662 tree->ops->readpage_end_io_hook)) {
2663 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2664 page, start, end,
2665 mirror);
2666 if (ret)
2667 uptodate = 0;
2668 else
2669 clean_io_failure(inode, start, page, 0);
2670 }
2671
2672 if (likely(uptodate))
2673 goto readpage_ok;
2674
2675 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2676 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2677 if (!ret && !bio->bi_error)
2678 uptodate = 1;
2679 } else {
2680 /*
2681 * The generic bio_readpage_error handles errors the
2682 * following way: If possible, new read requests are
2683 * created and submitted and will end up in
2684 * end_bio_extent_readpage as well (if we're lucky, not
2685 * in the !uptodate case). In that case it returns 0 and
2686 * we just go on with the next page in our bio. If it
2687 * can't handle the error it will return -EIO and we
2688 * remain responsible for that page.
2689 */
2690 ret = bio_readpage_error(bio, offset, page, start, end,
2691 mirror);
2692 if (ret == 0) {
2693 uptodate = !bio->bi_error;
2694 offset += len;
2695 continue;
2696 }
2697 }
2698 readpage_ok:
2699 if (likely(uptodate)) {
2700 loff_t i_size = i_size_read(inode);
2701 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2702 unsigned off;
2703
2704 /* Zero out the end if this page straddles i_size */
2705 off = i_size & (PAGE_CACHE_SIZE-1);
2706 if (page->index == end_index && off)
2707 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2708 SetPageUptodate(page);
2709 } else {
2710 ClearPageUptodate(page);
2711 SetPageError(page);
2712 }
2713 unlock_page(page);
2714 offset += len;
2715
2716 if (unlikely(!uptodate)) {
2717 if (extent_len) {
2718 endio_readpage_release_extent(tree,
2719 extent_start,
2720 extent_len, 1);
2721 extent_start = 0;
2722 extent_len = 0;
2723 }
2724 endio_readpage_release_extent(tree, start,
2725 end - start + 1, 0);
2726 } else if (!extent_len) {
2727 extent_start = start;
2728 extent_len = end + 1 - start;
2729 } else if (extent_start + extent_len == start) {
2730 extent_len += end + 1 - start;
2731 } else {
2732 endio_readpage_release_extent(tree, extent_start,
2733 extent_len, uptodate);
2734 extent_start = start;
2735 extent_len = end + 1 - start;
2736 }
2737 }
2738
2739 if (extent_len)
2740 endio_readpage_release_extent(tree, extent_start, extent_len,
2741 uptodate);
2742 if (io_bio->end_io)
2743 io_bio->end_io(io_bio, bio->bi_error);
2744 bio_put(bio);
2745 }
2746
2747 /*
2748 * this allocates from the btrfs_bioset. We're returning a bio right now
2749 * but you can call btrfs_io_bio for the appropriate container_of magic
2750 */
2751 struct bio *
btrfs_bio_alloc(struct block_device * bdev,u64 first_sector,int nr_vecs,gfp_t gfp_flags)2752 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2753 gfp_t gfp_flags)
2754 {
2755 struct btrfs_io_bio *btrfs_bio;
2756 struct bio *bio;
2757
2758 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2759
2760 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2761 while (!bio && (nr_vecs /= 2)) {
2762 bio = bio_alloc_bioset(gfp_flags,
2763 nr_vecs, btrfs_bioset);
2764 }
2765 }
2766
2767 if (bio) {
2768 bio->bi_bdev = bdev;
2769 bio->bi_iter.bi_sector = first_sector;
2770 btrfs_bio = btrfs_io_bio(bio);
2771 btrfs_bio->csum = NULL;
2772 btrfs_bio->csum_allocated = NULL;
2773 btrfs_bio->end_io = NULL;
2774 }
2775 return bio;
2776 }
2777
btrfs_bio_clone(struct bio * bio,gfp_t gfp_mask)2778 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2779 {
2780 struct btrfs_io_bio *btrfs_bio;
2781 struct bio *new;
2782
2783 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2784 if (new) {
2785 btrfs_bio = btrfs_io_bio(new);
2786 btrfs_bio->csum = NULL;
2787 btrfs_bio->csum_allocated = NULL;
2788 btrfs_bio->end_io = NULL;
2789 }
2790 return new;
2791 }
2792
2793 /* this also allocates from the btrfs_bioset */
btrfs_io_bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)2794 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2795 {
2796 struct btrfs_io_bio *btrfs_bio;
2797 struct bio *bio;
2798
2799 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2800 if (bio) {
2801 btrfs_bio = btrfs_io_bio(bio);
2802 btrfs_bio->csum = NULL;
2803 btrfs_bio->csum_allocated = NULL;
2804 btrfs_bio->end_io = NULL;
2805 }
2806 return bio;
2807 }
2808
2809
submit_one_bio(int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)2810 static int __must_check submit_one_bio(int rw, struct bio *bio,
2811 int mirror_num, unsigned long bio_flags)
2812 {
2813 int ret = 0;
2814 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2815 struct page *page = bvec->bv_page;
2816 struct extent_io_tree *tree = bio->bi_private;
2817 u64 start;
2818
2819 start = page_offset(page) + bvec->bv_offset;
2820
2821 bio->bi_private = NULL;
2822
2823 bio_get(bio);
2824
2825 if (tree->ops && tree->ops->submit_bio_hook)
2826 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2827 mirror_num, bio_flags, start);
2828 else
2829 btrfsic_submit_bio(rw, bio);
2830
2831 bio_put(bio);
2832 return ret;
2833 }
2834
merge_bio(int rw,struct extent_io_tree * tree,struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)2835 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2836 unsigned long offset, size_t size, struct bio *bio,
2837 unsigned long bio_flags)
2838 {
2839 int ret = 0;
2840 if (tree->ops && tree->ops->merge_bio_hook)
2841 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2842 bio_flags);
2843 BUG_ON(ret < 0);
2844 return ret;
2845
2846 }
2847
submit_extent_page(int rw,struct extent_io_tree * tree,struct writeback_control * wbc,struct page * page,sector_t sector,size_t size,unsigned long offset,struct block_device * bdev,struct bio ** bio_ret,unsigned long max_pages,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)2848 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2849 struct writeback_control *wbc,
2850 struct page *page, sector_t sector,
2851 size_t size, unsigned long offset,
2852 struct block_device *bdev,
2853 struct bio **bio_ret,
2854 unsigned long max_pages,
2855 bio_end_io_t end_io_func,
2856 int mirror_num,
2857 unsigned long prev_bio_flags,
2858 unsigned long bio_flags,
2859 bool force_bio_submit)
2860 {
2861 int ret = 0;
2862 struct bio *bio;
2863 int contig = 0;
2864 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2865 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2866
2867 if (bio_ret && *bio_ret) {
2868 bio = *bio_ret;
2869 if (old_compressed)
2870 contig = bio->bi_iter.bi_sector == sector;
2871 else
2872 contig = bio_end_sector(bio) == sector;
2873
2874 if (prev_bio_flags != bio_flags || !contig ||
2875 force_bio_submit ||
2876 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2877 bio_add_page(bio, page, page_size, offset) < page_size) {
2878 ret = submit_one_bio(rw, bio, mirror_num,
2879 prev_bio_flags);
2880 if (ret < 0) {
2881 *bio_ret = NULL;
2882 return ret;
2883 }
2884 bio = NULL;
2885 } else {
2886 if (wbc)
2887 wbc_account_io(wbc, page, page_size);
2888 return 0;
2889 }
2890 }
2891
2892 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2893 GFP_NOFS | __GFP_HIGH);
2894 if (!bio)
2895 return -ENOMEM;
2896
2897 bio_add_page(bio, page, page_size, offset);
2898 bio->bi_end_io = end_io_func;
2899 bio->bi_private = tree;
2900 if (wbc) {
2901 wbc_init_bio(wbc, bio);
2902 wbc_account_io(wbc, page, page_size);
2903 }
2904
2905 if (bio_ret)
2906 *bio_ret = bio;
2907 else
2908 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2909
2910 return ret;
2911 }
2912
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)2913 static void attach_extent_buffer_page(struct extent_buffer *eb,
2914 struct page *page)
2915 {
2916 if (!PagePrivate(page)) {
2917 SetPagePrivate(page);
2918 page_cache_get(page);
2919 set_page_private(page, (unsigned long)eb);
2920 } else {
2921 WARN_ON(page->private != (unsigned long)eb);
2922 }
2923 }
2924
set_page_extent_mapped(struct page * page)2925 void set_page_extent_mapped(struct page *page)
2926 {
2927 if (!PagePrivate(page)) {
2928 SetPagePrivate(page);
2929 page_cache_get(page);
2930 set_page_private(page, EXTENT_PAGE_PRIVATE);
2931 }
2932 }
2933
2934 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,get_extent_t * get_extent,struct extent_map ** em_cached)2935 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2936 u64 start, u64 len, get_extent_t *get_extent,
2937 struct extent_map **em_cached)
2938 {
2939 struct extent_map *em;
2940
2941 if (em_cached && *em_cached) {
2942 em = *em_cached;
2943 if (extent_map_in_tree(em) && start >= em->start &&
2944 start < extent_map_end(em)) {
2945 atomic_inc(&em->refs);
2946 return em;
2947 }
2948
2949 free_extent_map(em);
2950 *em_cached = NULL;
2951 }
2952
2953 em = get_extent(inode, page, pg_offset, start, len, 0);
2954 if (em_cached && !IS_ERR_OR_NULL(em)) {
2955 BUG_ON(*em_cached);
2956 atomic_inc(&em->refs);
2957 *em_cached = em;
2958 }
2959 return em;
2960 }
2961 /*
2962 * basic readpage implementation. Locked extent state structs are inserted
2963 * into the tree that are removed when the IO is done (by the end_io
2964 * handlers)
2965 * XXX JDM: This needs looking at to ensure proper page locking
2966 */
__do_readpage(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw,u64 * prev_em_start)2967 static int __do_readpage(struct extent_io_tree *tree,
2968 struct page *page,
2969 get_extent_t *get_extent,
2970 struct extent_map **em_cached,
2971 struct bio **bio, int mirror_num,
2972 unsigned long *bio_flags, int rw,
2973 u64 *prev_em_start)
2974 {
2975 struct inode *inode = page->mapping->host;
2976 u64 start = page_offset(page);
2977 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2978 u64 end;
2979 u64 cur = start;
2980 u64 extent_offset;
2981 u64 last_byte = i_size_read(inode);
2982 u64 block_start;
2983 u64 cur_end;
2984 sector_t sector;
2985 struct extent_map *em;
2986 struct block_device *bdev;
2987 int ret;
2988 int nr = 0;
2989 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2990 size_t pg_offset = 0;
2991 size_t iosize;
2992 size_t disk_io_size;
2993 size_t blocksize = inode->i_sb->s_blocksize;
2994 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2995
2996 set_page_extent_mapped(page);
2997
2998 end = page_end;
2999 if (!PageUptodate(page)) {
3000 if (cleancache_get_page(page) == 0) {
3001 BUG_ON(blocksize != PAGE_SIZE);
3002 unlock_extent(tree, start, end);
3003 goto out;
3004 }
3005 }
3006
3007 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3008 char *userpage;
3009 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3010
3011 if (zero_offset) {
3012 iosize = PAGE_CACHE_SIZE - zero_offset;
3013 userpage = kmap_atomic(page);
3014 memset(userpage + zero_offset, 0, iosize);
3015 flush_dcache_page(page);
3016 kunmap_atomic(userpage);
3017 }
3018 }
3019 while (cur <= end) {
3020 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
3021 bool force_bio_submit = false;
3022
3023 if (cur >= last_byte) {
3024 char *userpage;
3025 struct extent_state *cached = NULL;
3026
3027 iosize = PAGE_CACHE_SIZE - pg_offset;
3028 userpage = kmap_atomic(page);
3029 memset(userpage + pg_offset, 0, iosize);
3030 flush_dcache_page(page);
3031 kunmap_atomic(userpage);
3032 set_extent_uptodate(tree, cur, cur + iosize - 1,
3033 &cached, GFP_NOFS);
3034 if (!parent_locked)
3035 unlock_extent_cached(tree, cur,
3036 cur + iosize - 1,
3037 &cached, GFP_NOFS);
3038 break;
3039 }
3040 em = __get_extent_map(inode, page, pg_offset, cur,
3041 end - cur + 1, get_extent, em_cached);
3042 if (IS_ERR_OR_NULL(em)) {
3043 SetPageError(page);
3044 if (!parent_locked)
3045 unlock_extent(tree, cur, end);
3046 break;
3047 }
3048 extent_offset = cur - em->start;
3049 BUG_ON(extent_map_end(em) <= cur);
3050 BUG_ON(end < cur);
3051
3052 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3053 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3054 extent_set_compress_type(&this_bio_flag,
3055 em->compress_type);
3056 }
3057
3058 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3059 cur_end = min(extent_map_end(em) - 1, end);
3060 iosize = ALIGN(iosize, blocksize);
3061 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3062 disk_io_size = em->block_len;
3063 sector = em->block_start >> 9;
3064 } else {
3065 sector = (em->block_start + extent_offset) >> 9;
3066 disk_io_size = iosize;
3067 }
3068 bdev = em->bdev;
3069 block_start = em->block_start;
3070 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3071 block_start = EXTENT_MAP_HOLE;
3072
3073 /*
3074 * If we have a file range that points to a compressed extent
3075 * and it's followed by a consecutive file range that points to
3076 * to the same compressed extent (possibly with a different
3077 * offset and/or length, so it either points to the whole extent
3078 * or only part of it), we must make sure we do not submit a
3079 * single bio to populate the pages for the 2 ranges because
3080 * this makes the compressed extent read zero out the pages
3081 * belonging to the 2nd range. Imagine the following scenario:
3082 *
3083 * File layout
3084 * [0 - 8K] [8K - 24K]
3085 * | |
3086 * | |
3087 * points to extent X, points to extent X,
3088 * offset 4K, length of 8K offset 0, length 16K
3089 *
3090 * [extent X, compressed length = 4K uncompressed length = 16K]
3091 *
3092 * If the bio to read the compressed extent covers both ranges,
3093 * it will decompress extent X into the pages belonging to the
3094 * first range and then it will stop, zeroing out the remaining
3095 * pages that belong to the other range that points to extent X.
3096 * So here we make sure we submit 2 bios, one for the first
3097 * range and another one for the third range. Both will target
3098 * the same physical extent from disk, but we can't currently
3099 * make the compressed bio endio callback populate the pages
3100 * for both ranges because each compressed bio is tightly
3101 * coupled with a single extent map, and each range can have
3102 * an extent map with a different offset value relative to the
3103 * uncompressed data of our extent and different lengths. This
3104 * is a corner case so we prioritize correctness over
3105 * non-optimal behavior (submitting 2 bios for the same extent).
3106 */
3107 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3108 prev_em_start && *prev_em_start != (u64)-1 &&
3109 *prev_em_start != em->start)
3110 force_bio_submit = true;
3111
3112 if (prev_em_start)
3113 *prev_em_start = em->start;
3114
3115 free_extent_map(em);
3116 em = NULL;
3117
3118 /* we've found a hole, just zero and go on */
3119 if (block_start == EXTENT_MAP_HOLE) {
3120 char *userpage;
3121 struct extent_state *cached = NULL;
3122
3123 userpage = kmap_atomic(page);
3124 memset(userpage + pg_offset, 0, iosize);
3125 flush_dcache_page(page);
3126 kunmap_atomic(userpage);
3127
3128 set_extent_uptodate(tree, cur, cur + iosize - 1,
3129 &cached, GFP_NOFS);
3130 if (parent_locked)
3131 free_extent_state(cached);
3132 else
3133 unlock_extent_cached(tree, cur,
3134 cur + iosize - 1,
3135 &cached, GFP_NOFS);
3136 cur = cur + iosize;
3137 pg_offset += iosize;
3138 continue;
3139 }
3140 /* the get_extent function already copied into the page */
3141 if (test_range_bit(tree, cur, cur_end,
3142 EXTENT_UPTODATE, 1, NULL)) {
3143 check_page_uptodate(tree, page);
3144 if (!parent_locked)
3145 unlock_extent(tree, cur, cur + iosize - 1);
3146 cur = cur + iosize;
3147 pg_offset += iosize;
3148 continue;
3149 }
3150 /* we have an inline extent but it didn't get marked up
3151 * to date. Error out
3152 */
3153 if (block_start == EXTENT_MAP_INLINE) {
3154 SetPageError(page);
3155 if (!parent_locked)
3156 unlock_extent(tree, cur, cur + iosize - 1);
3157 cur = cur + iosize;
3158 pg_offset += iosize;
3159 continue;
3160 }
3161
3162 pnr -= page->index;
3163 ret = submit_extent_page(rw, tree, NULL, page,
3164 sector, disk_io_size, pg_offset,
3165 bdev, bio, pnr,
3166 end_bio_extent_readpage, mirror_num,
3167 *bio_flags,
3168 this_bio_flag,
3169 force_bio_submit);
3170 if (!ret) {
3171 nr++;
3172 *bio_flags = this_bio_flag;
3173 } else {
3174 SetPageError(page);
3175 if (!parent_locked)
3176 unlock_extent(tree, cur, cur + iosize - 1);
3177 }
3178 cur = cur + iosize;
3179 pg_offset += iosize;
3180 }
3181 out:
3182 if (!nr) {
3183 if (!PageError(page))
3184 SetPageUptodate(page);
3185 unlock_page(page);
3186 }
3187 return 0;
3188 }
3189
__do_contiguous_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,u64 start,u64 end,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw,u64 * prev_em_start)3190 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3191 struct page *pages[], int nr_pages,
3192 u64 start, u64 end,
3193 get_extent_t *get_extent,
3194 struct extent_map **em_cached,
3195 struct bio **bio, int mirror_num,
3196 unsigned long *bio_flags, int rw,
3197 u64 *prev_em_start)
3198 {
3199 struct inode *inode;
3200 struct btrfs_ordered_extent *ordered;
3201 int index;
3202
3203 inode = pages[0]->mapping->host;
3204 while (1) {
3205 lock_extent(tree, start, end);
3206 ordered = btrfs_lookup_ordered_range(inode, start,
3207 end - start + 1);
3208 if (!ordered)
3209 break;
3210 unlock_extent(tree, start, end);
3211 btrfs_start_ordered_extent(inode, ordered, 1);
3212 btrfs_put_ordered_extent(ordered);
3213 }
3214
3215 for (index = 0; index < nr_pages; index++) {
3216 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3217 mirror_num, bio_flags, rw, prev_em_start);
3218 page_cache_release(pages[index]);
3219 }
3220 }
3221
__extent_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw,u64 * prev_em_start)3222 static void __extent_readpages(struct extent_io_tree *tree,
3223 struct page *pages[],
3224 int nr_pages, get_extent_t *get_extent,
3225 struct extent_map **em_cached,
3226 struct bio **bio, int mirror_num,
3227 unsigned long *bio_flags, int rw,
3228 u64 *prev_em_start)
3229 {
3230 u64 start = 0;
3231 u64 end = 0;
3232 u64 page_start;
3233 int index;
3234 int first_index = 0;
3235
3236 for (index = 0; index < nr_pages; index++) {
3237 page_start = page_offset(pages[index]);
3238 if (!end) {
3239 start = page_start;
3240 end = start + PAGE_CACHE_SIZE - 1;
3241 first_index = index;
3242 } else if (end + 1 == page_start) {
3243 end += PAGE_CACHE_SIZE;
3244 } else {
3245 __do_contiguous_readpages(tree, &pages[first_index],
3246 index - first_index, start,
3247 end, get_extent, em_cached,
3248 bio, mirror_num, bio_flags,
3249 rw, prev_em_start);
3250 start = page_start;
3251 end = start + PAGE_CACHE_SIZE - 1;
3252 first_index = index;
3253 }
3254 }
3255
3256 if (end)
3257 __do_contiguous_readpages(tree, &pages[first_index],
3258 index - first_index, start,
3259 end, get_extent, em_cached, bio,
3260 mirror_num, bio_flags, rw,
3261 prev_em_start);
3262 }
3263
__extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw)3264 static int __extent_read_full_page(struct extent_io_tree *tree,
3265 struct page *page,
3266 get_extent_t *get_extent,
3267 struct bio **bio, int mirror_num,
3268 unsigned long *bio_flags, int rw)
3269 {
3270 struct inode *inode = page->mapping->host;
3271 struct btrfs_ordered_extent *ordered;
3272 u64 start = page_offset(page);
3273 u64 end = start + PAGE_CACHE_SIZE - 1;
3274 int ret;
3275
3276 while (1) {
3277 lock_extent(tree, start, end);
3278 ordered = btrfs_lookup_ordered_extent(inode, start);
3279 if (!ordered)
3280 break;
3281 unlock_extent(tree, start, end);
3282 btrfs_start_ordered_extent(inode, ordered, 1);
3283 btrfs_put_ordered_extent(ordered);
3284 }
3285
3286 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3287 bio_flags, rw, NULL);
3288 return ret;
3289 }
3290
extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3291 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3292 get_extent_t *get_extent, int mirror_num)
3293 {
3294 struct bio *bio = NULL;
3295 unsigned long bio_flags = 0;
3296 int ret;
3297
3298 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3299 &bio_flags, READ);
3300 if (bio)
3301 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3302 return ret;
3303 }
3304
extent_read_full_page_nolock(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3305 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3306 get_extent_t *get_extent, int mirror_num)
3307 {
3308 struct bio *bio = NULL;
3309 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3310 int ret;
3311
3312 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3313 &bio_flags, READ, NULL);
3314 if (bio)
3315 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3316 return ret;
3317 }
3318
update_nr_written(struct page * page,struct writeback_control * wbc,unsigned long nr_written)3319 static noinline void update_nr_written(struct page *page,
3320 struct writeback_control *wbc,
3321 unsigned long nr_written)
3322 {
3323 wbc->nr_to_write -= nr_written;
3324 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3325 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3326 page->mapping->writeback_index = page->index + nr_written;
3327 }
3328
3329 /*
3330 * helper for __extent_writepage, doing all of the delayed allocation setup.
3331 *
3332 * This returns 1 if our fill_delalloc function did all the work required
3333 * to write the page (copy into inline extent). In this case the IO has
3334 * been started and the page is already unlocked.
3335 *
3336 * This returns 0 if all went well (page still locked)
3337 * This returns < 0 if there were errors (page still locked)
3338 */
writepage_delalloc(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,u64 delalloc_start,unsigned long * nr_written)3339 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3340 struct page *page, struct writeback_control *wbc,
3341 struct extent_page_data *epd,
3342 u64 delalloc_start,
3343 unsigned long *nr_written)
3344 {
3345 struct extent_io_tree *tree = epd->tree;
3346 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3347 u64 nr_delalloc;
3348 u64 delalloc_to_write = 0;
3349 u64 delalloc_end = 0;
3350 int ret;
3351 int page_started = 0;
3352
3353 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3354 return 0;
3355
3356 while (delalloc_end < page_end) {
3357 nr_delalloc = find_lock_delalloc_range(inode, tree,
3358 page,
3359 &delalloc_start,
3360 &delalloc_end,
3361 BTRFS_MAX_EXTENT_SIZE);
3362 if (nr_delalloc == 0) {
3363 delalloc_start = delalloc_end + 1;
3364 continue;
3365 }
3366 ret = tree->ops->fill_delalloc(inode, page,
3367 delalloc_start,
3368 delalloc_end,
3369 &page_started,
3370 nr_written);
3371 /* File system has been set read-only */
3372 if (ret) {
3373 SetPageError(page);
3374 /* fill_delalloc should be return < 0 for error
3375 * but just in case, we use > 0 here meaning the
3376 * IO is started, so we don't want to return > 0
3377 * unless things are going well.
3378 */
3379 ret = ret < 0 ? ret : -EIO;
3380 goto done;
3381 }
3382 /*
3383 * delalloc_end is already one less than the total
3384 * length, so we don't subtract one from
3385 * PAGE_CACHE_SIZE
3386 */
3387 delalloc_to_write += (delalloc_end - delalloc_start +
3388 PAGE_CACHE_SIZE) >>
3389 PAGE_CACHE_SHIFT;
3390 delalloc_start = delalloc_end + 1;
3391 }
3392 if (wbc->nr_to_write < delalloc_to_write) {
3393 int thresh = 8192;
3394
3395 if (delalloc_to_write < thresh * 2)
3396 thresh = delalloc_to_write;
3397 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3398 thresh);
3399 }
3400
3401 /* did the fill delalloc function already unlock and start
3402 * the IO?
3403 */
3404 if (page_started) {
3405 /*
3406 * we've unlocked the page, so we can't update
3407 * the mapping's writeback index, just update
3408 * nr_to_write.
3409 */
3410 wbc->nr_to_write -= *nr_written;
3411 return 1;
3412 }
3413
3414 ret = 0;
3415
3416 done:
3417 return ret;
3418 }
3419
3420 /*
3421 * helper for __extent_writepage. This calls the writepage start hooks,
3422 * and does the loop to map the page into extents and bios.
3423 *
3424 * We return 1 if the IO is started and the page is unlocked,
3425 * 0 if all went well (page still locked)
3426 * < 0 if there were errors (page still locked)
3427 */
__extent_writepage_io(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,int write_flags,int * nr_ret)3428 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3429 struct page *page,
3430 struct writeback_control *wbc,
3431 struct extent_page_data *epd,
3432 loff_t i_size,
3433 unsigned long nr_written,
3434 int write_flags, int *nr_ret)
3435 {
3436 struct extent_io_tree *tree = epd->tree;
3437 u64 start = page_offset(page);
3438 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3439 u64 end;
3440 u64 cur = start;
3441 u64 extent_offset;
3442 u64 block_start;
3443 u64 iosize;
3444 sector_t sector;
3445 struct extent_state *cached_state = NULL;
3446 struct extent_map *em;
3447 struct block_device *bdev;
3448 size_t pg_offset = 0;
3449 size_t blocksize;
3450 int ret = 0;
3451 int nr = 0;
3452 bool compressed;
3453
3454 if (tree->ops && tree->ops->writepage_start_hook) {
3455 ret = tree->ops->writepage_start_hook(page, start,
3456 page_end);
3457 if (ret) {
3458 /* Fixup worker will requeue */
3459 if (ret == -EBUSY)
3460 wbc->pages_skipped++;
3461 else
3462 redirty_page_for_writepage(wbc, page);
3463
3464 update_nr_written(page, wbc, nr_written);
3465 unlock_page(page);
3466 ret = 1;
3467 goto done_unlocked;
3468 }
3469 }
3470
3471 /*
3472 * we don't want to touch the inode after unlocking the page,
3473 * so we update the mapping writeback index now
3474 */
3475 update_nr_written(page, wbc, nr_written + 1);
3476
3477 end = page_end;
3478 if (i_size <= start) {
3479 if (tree->ops && tree->ops->writepage_end_io_hook)
3480 tree->ops->writepage_end_io_hook(page, start,
3481 page_end, NULL, 1);
3482 goto done;
3483 }
3484
3485 blocksize = inode->i_sb->s_blocksize;
3486
3487 while (cur <= end) {
3488 u64 em_end;
3489 if (cur >= i_size) {
3490 if (tree->ops && tree->ops->writepage_end_io_hook)
3491 tree->ops->writepage_end_io_hook(page, cur,
3492 page_end, NULL, 1);
3493 break;
3494 }
3495 em = epd->get_extent(inode, page, pg_offset, cur,
3496 end - cur + 1, 1);
3497 if (IS_ERR_OR_NULL(em)) {
3498 SetPageError(page);
3499 ret = PTR_ERR_OR_ZERO(em);
3500 break;
3501 }
3502
3503 extent_offset = cur - em->start;
3504 em_end = extent_map_end(em);
3505 BUG_ON(em_end <= cur);
3506 BUG_ON(end < cur);
3507 iosize = min(em_end - cur, end - cur + 1);
3508 iosize = ALIGN(iosize, blocksize);
3509 sector = (em->block_start + extent_offset) >> 9;
3510 bdev = em->bdev;
3511 block_start = em->block_start;
3512 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3513 free_extent_map(em);
3514 em = NULL;
3515
3516 /*
3517 * compressed and inline extents are written through other
3518 * paths in the FS
3519 */
3520 if (compressed || block_start == EXTENT_MAP_HOLE ||
3521 block_start == EXTENT_MAP_INLINE) {
3522 /*
3523 * end_io notification does not happen here for
3524 * compressed extents
3525 */
3526 if (!compressed && tree->ops &&
3527 tree->ops->writepage_end_io_hook)
3528 tree->ops->writepage_end_io_hook(page, cur,
3529 cur + iosize - 1,
3530 NULL, 1);
3531 else if (compressed) {
3532 /* we don't want to end_page_writeback on
3533 * a compressed extent. this happens
3534 * elsewhere
3535 */
3536 nr++;
3537 }
3538
3539 cur += iosize;
3540 pg_offset += iosize;
3541 continue;
3542 }
3543
3544 if (tree->ops && tree->ops->writepage_io_hook) {
3545 ret = tree->ops->writepage_io_hook(page, cur,
3546 cur + iosize - 1);
3547 } else {
3548 ret = 0;
3549 }
3550 if (ret) {
3551 SetPageError(page);
3552 } else {
3553 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3554
3555 set_range_writeback(tree, cur, cur + iosize - 1);
3556 if (!PageWriteback(page)) {
3557 btrfs_err(BTRFS_I(inode)->root->fs_info,
3558 "page %lu not writeback, cur %llu end %llu",
3559 page->index, cur, end);
3560 }
3561
3562 ret = submit_extent_page(write_flags, tree, wbc, page,
3563 sector, iosize, pg_offset,
3564 bdev, &epd->bio, max_nr,
3565 end_bio_extent_writepage,
3566 0, 0, 0, false);
3567 if (ret)
3568 SetPageError(page);
3569 }
3570 cur = cur + iosize;
3571 pg_offset += iosize;
3572 nr++;
3573 }
3574 done:
3575 *nr_ret = nr;
3576
3577 done_unlocked:
3578
3579 /* drop our reference on any cached states */
3580 free_extent_state(cached_state);
3581 return ret;
3582 }
3583
3584 /*
3585 * the writepage semantics are similar to regular writepage. extent
3586 * records are inserted to lock ranges in the tree, and as dirty areas
3587 * are found, they are marked writeback. Then the lock bits are removed
3588 * and the end_io handler clears the writeback ranges
3589 */
__extent_writepage(struct page * page,struct writeback_control * wbc,void * data)3590 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3591 void *data)
3592 {
3593 struct inode *inode = page->mapping->host;
3594 struct extent_page_data *epd = data;
3595 u64 start = page_offset(page);
3596 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3597 int ret;
3598 int nr = 0;
3599 size_t pg_offset = 0;
3600 loff_t i_size = i_size_read(inode);
3601 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3602 int write_flags;
3603 unsigned long nr_written = 0;
3604
3605 if (wbc->sync_mode == WB_SYNC_ALL)
3606 write_flags = WRITE_SYNC;
3607 else
3608 write_flags = WRITE;
3609
3610 trace___extent_writepage(page, inode, wbc);
3611
3612 WARN_ON(!PageLocked(page));
3613
3614 ClearPageError(page);
3615
3616 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3617 if (page->index > end_index ||
3618 (page->index == end_index && !pg_offset)) {
3619 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3620 unlock_page(page);
3621 return 0;
3622 }
3623
3624 if (page->index == end_index) {
3625 char *userpage;
3626
3627 userpage = kmap_atomic(page);
3628 memset(userpage + pg_offset, 0,
3629 PAGE_CACHE_SIZE - pg_offset);
3630 kunmap_atomic(userpage);
3631 flush_dcache_page(page);
3632 }
3633
3634 pg_offset = 0;
3635
3636 set_page_extent_mapped(page);
3637
3638 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3639 if (ret == 1)
3640 goto done_unlocked;
3641 if (ret)
3642 goto done;
3643
3644 ret = __extent_writepage_io(inode, page, wbc, epd,
3645 i_size, nr_written, write_flags, &nr);
3646 if (ret == 1)
3647 goto done_unlocked;
3648
3649 done:
3650 if (nr == 0) {
3651 /* make sure the mapping tag for page dirty gets cleared */
3652 set_page_writeback(page);
3653 end_page_writeback(page);
3654 }
3655 if (PageError(page)) {
3656 ret = ret < 0 ? ret : -EIO;
3657 end_extent_writepage(page, ret, start, page_end);
3658 }
3659 unlock_page(page);
3660 return ret;
3661
3662 done_unlocked:
3663 return 0;
3664 }
3665
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3666 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3667 {
3668 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3669 TASK_UNINTERRUPTIBLE);
3670 }
3671
3672 static noinline_for_stack int
lock_extent_buffer_for_io(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct extent_page_data * epd)3673 lock_extent_buffer_for_io(struct extent_buffer *eb,
3674 struct btrfs_fs_info *fs_info,
3675 struct extent_page_data *epd)
3676 {
3677 unsigned long i, num_pages;
3678 int flush = 0;
3679 int ret = 0;
3680
3681 if (!btrfs_try_tree_write_lock(eb)) {
3682 flush = 1;
3683 flush_write_bio(epd);
3684 btrfs_tree_lock(eb);
3685 }
3686
3687 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3688 btrfs_tree_unlock(eb);
3689 if (!epd->sync_io)
3690 return 0;
3691 if (!flush) {
3692 flush_write_bio(epd);
3693 flush = 1;
3694 }
3695 while (1) {
3696 wait_on_extent_buffer_writeback(eb);
3697 btrfs_tree_lock(eb);
3698 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3699 break;
3700 btrfs_tree_unlock(eb);
3701 }
3702 }
3703
3704 /*
3705 * We need to do this to prevent races in people who check if the eb is
3706 * under IO since we can end up having no IO bits set for a short period
3707 * of time.
3708 */
3709 spin_lock(&eb->refs_lock);
3710 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3711 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3712 spin_unlock(&eb->refs_lock);
3713 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3714 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3715 -eb->len,
3716 fs_info->dirty_metadata_batch);
3717 ret = 1;
3718 } else {
3719 spin_unlock(&eb->refs_lock);
3720 }
3721
3722 btrfs_tree_unlock(eb);
3723
3724 if (!ret)
3725 return ret;
3726
3727 num_pages = num_extent_pages(eb->start, eb->len);
3728 for (i = 0; i < num_pages; i++) {
3729 struct page *p = eb->pages[i];
3730
3731 if (!trylock_page(p)) {
3732 if (!flush) {
3733 flush_write_bio(epd);
3734 flush = 1;
3735 }
3736 lock_page(p);
3737 }
3738 }
3739
3740 return ret;
3741 }
3742
end_extent_buffer_writeback(struct extent_buffer * eb)3743 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3744 {
3745 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3746 smp_mb__after_atomic();
3747 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3748 }
3749
set_btree_ioerr(struct page * page)3750 static void set_btree_ioerr(struct page *page)
3751 {
3752 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3753 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3754
3755 SetPageError(page);
3756 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3757 return;
3758
3759 /*
3760 * If writeback for a btree extent that doesn't belong to a log tree
3761 * failed, increment the counter transaction->eb_write_errors.
3762 * We do this because while the transaction is running and before it's
3763 * committing (when we call filemap_fdata[write|wait]_range against
3764 * the btree inode), we might have
3765 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3766 * returns an error or an error happens during writeback, when we're
3767 * committing the transaction we wouldn't know about it, since the pages
3768 * can be no longer dirty nor marked anymore for writeback (if a
3769 * subsequent modification to the extent buffer didn't happen before the
3770 * transaction commit), which makes filemap_fdata[write|wait]_range not
3771 * able to find the pages tagged with SetPageError at transaction
3772 * commit time. So if this happens we must abort the transaction,
3773 * otherwise we commit a super block with btree roots that point to
3774 * btree nodes/leafs whose content on disk is invalid - either garbage
3775 * or the content of some node/leaf from a past generation that got
3776 * cowed or deleted and is no longer valid.
3777 *
3778 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3779 * not be enough - we need to distinguish between log tree extents vs
3780 * non-log tree extents, and the next filemap_fdatawait_range() call
3781 * will catch and clear such errors in the mapping - and that call might
3782 * be from a log sync and not from a transaction commit. Also, checking
3783 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3784 * not done and would not be reliable - the eb might have been released
3785 * from memory and reading it back again means that flag would not be
3786 * set (since it's a runtime flag, not persisted on disk).
3787 *
3788 * Using the flags below in the btree inode also makes us achieve the
3789 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3790 * writeback for all dirty pages and before filemap_fdatawait_range()
3791 * is called, the writeback for all dirty pages had already finished
3792 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3793 * filemap_fdatawait_range() would return success, as it could not know
3794 * that writeback errors happened (the pages were no longer tagged for
3795 * writeback).
3796 */
3797 switch (eb->log_index) {
3798 case -1:
3799 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3800 break;
3801 case 0:
3802 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3803 break;
3804 case 1:
3805 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3806 break;
3807 default:
3808 BUG(); /* unexpected, logic error */
3809 }
3810 }
3811
end_bio_extent_buffer_writepage(struct bio * bio)3812 static void end_bio_extent_buffer_writepage(struct bio *bio)
3813 {
3814 struct bio_vec *bvec;
3815 struct extent_buffer *eb;
3816 int i, done;
3817
3818 bio_for_each_segment_all(bvec, bio, i) {
3819 struct page *page = bvec->bv_page;
3820
3821 eb = (struct extent_buffer *)page->private;
3822 BUG_ON(!eb);
3823 done = atomic_dec_and_test(&eb->io_pages);
3824
3825 if (bio->bi_error ||
3826 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3827 ClearPageUptodate(page);
3828 set_btree_ioerr(page);
3829 }
3830
3831 end_page_writeback(page);
3832
3833 if (!done)
3834 continue;
3835
3836 end_extent_buffer_writeback(eb);
3837 }
3838
3839 bio_put(bio);
3840 }
3841
write_one_eb(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct writeback_control * wbc,struct extent_page_data * epd)3842 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3843 struct btrfs_fs_info *fs_info,
3844 struct writeback_control *wbc,
3845 struct extent_page_data *epd)
3846 {
3847 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3848 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3849 u64 offset = eb->start;
3850 u32 nritems;
3851 unsigned long i, num_pages;
3852 unsigned long bio_flags = 0;
3853 unsigned long start, end;
3854 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3855 int ret = 0;
3856
3857 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3858 num_pages = num_extent_pages(eb->start, eb->len);
3859 atomic_set(&eb->io_pages, num_pages);
3860 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3861 bio_flags = EXTENT_BIO_TREE_LOG;
3862
3863 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3864 nritems = btrfs_header_nritems(eb);
3865 if (btrfs_header_level(eb) > 0) {
3866 end = btrfs_node_key_ptr_offset(nritems);
3867
3868 memset_extent_buffer(eb, 0, end, eb->len - end);
3869 } else {
3870 /*
3871 * leaf:
3872 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3873 */
3874 start = btrfs_item_nr_offset(nritems);
3875 end = btrfs_leaf_data(eb) +
3876 leaf_data_end(fs_info->tree_root, eb);
3877 memset_extent_buffer(eb, 0, start, end - start);
3878 }
3879
3880 for (i = 0; i < num_pages; i++) {
3881 struct page *p = eb->pages[i];
3882
3883 clear_page_dirty_for_io(p);
3884 set_page_writeback(p);
3885 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3886 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3887 -1, end_bio_extent_buffer_writepage,
3888 0, epd->bio_flags, bio_flags, false);
3889 epd->bio_flags = bio_flags;
3890 if (ret) {
3891 set_btree_ioerr(p);
3892 end_page_writeback(p);
3893 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3894 end_extent_buffer_writeback(eb);
3895 ret = -EIO;
3896 break;
3897 }
3898 offset += PAGE_CACHE_SIZE;
3899 update_nr_written(p, wbc, 1);
3900 unlock_page(p);
3901 }
3902
3903 if (unlikely(ret)) {
3904 for (; i < num_pages; i++) {
3905 struct page *p = eb->pages[i];
3906 clear_page_dirty_for_io(p);
3907 unlock_page(p);
3908 }
3909 }
3910
3911 return ret;
3912 }
3913
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3914 int btree_write_cache_pages(struct address_space *mapping,
3915 struct writeback_control *wbc)
3916 {
3917 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3918 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3919 struct extent_buffer *eb, *prev_eb = NULL;
3920 struct extent_page_data epd = {
3921 .bio = NULL,
3922 .tree = tree,
3923 .extent_locked = 0,
3924 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3925 .bio_flags = 0,
3926 };
3927 int ret = 0;
3928 int done = 0;
3929 int nr_to_write_done = 0;
3930 struct pagevec pvec;
3931 int nr_pages;
3932 pgoff_t index;
3933 pgoff_t end; /* Inclusive */
3934 int scanned = 0;
3935 int tag;
3936
3937 pagevec_init(&pvec, 0);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3943 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3944 scanned = 1;
3945 }
3946 if (wbc->sync_mode == WB_SYNC_ALL)
3947 tag = PAGECACHE_TAG_TOWRITE;
3948 else
3949 tag = PAGECACHE_TAG_DIRTY;
3950 retry:
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag_pages_for_writeback(mapping, index, end);
3953 while (!done && !nr_to_write_done && (index <= end) &&
3954 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
3962 if (!PagePrivate(page))
3963 continue;
3964
3965 if (!wbc->range_cyclic && page->index > end) {
3966 done = 1;
3967 break;
3968 }
3969
3970 spin_lock(&mapping->private_lock);
3971 if (!PagePrivate(page)) {
3972 spin_unlock(&mapping->private_lock);
3973 continue;
3974 }
3975
3976 eb = (struct extent_buffer *)page->private;
3977
3978 /*
3979 * Shouldn't happen and normally this would be a BUG_ON
3980 * but no sense in crashing the users box for something
3981 * we can survive anyway.
3982 */
3983 if (WARN_ON(!eb)) {
3984 spin_unlock(&mapping->private_lock);
3985 continue;
3986 }
3987
3988 if (eb == prev_eb) {
3989 spin_unlock(&mapping->private_lock);
3990 continue;
3991 }
3992
3993 ret = atomic_inc_not_zero(&eb->refs);
3994 spin_unlock(&mapping->private_lock);
3995 if (!ret)
3996 continue;
3997
3998 prev_eb = eb;
3999 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
4000 if (!ret) {
4001 free_extent_buffer(eb);
4002 continue;
4003 } else if (ret < 0) {
4004 done = 1;
4005 free_extent_buffer(eb);
4006 break;
4007 }
4008
4009 ret = write_one_eb(eb, fs_info, wbc, &epd);
4010 if (ret) {
4011 done = 1;
4012 free_extent_buffer(eb);
4013 break;
4014 }
4015 free_extent_buffer(eb);
4016
4017 /*
4018 * the filesystem may choose to bump up nr_to_write.
4019 * We have to make sure to honor the new nr_to_write
4020 * at any time
4021 */
4022 nr_to_write_done = wbc->nr_to_write <= 0;
4023 }
4024 pagevec_release(&pvec);
4025 cond_resched();
4026 }
4027 if (!scanned && !done) {
4028 /*
4029 * We hit the last page and there is more work to be done: wrap
4030 * back to the start of the file
4031 */
4032 scanned = 1;
4033 index = 0;
4034 goto retry;
4035 }
4036 flush_write_bio(&epd);
4037 return ret;
4038 }
4039
4040 /**
4041 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4042 * @mapping: address space structure to write
4043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4044 * @writepage: function called for each page
4045 * @data: data passed to writepage function
4046 *
4047 * If a page is already under I/O, write_cache_pages() skips it, even
4048 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4049 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4050 * and msync() need to guarantee that all the data which was dirty at the time
4051 * the call was made get new I/O started against them. If wbc->sync_mode is
4052 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4053 * existing IO to complete.
4054 */
extent_write_cache_pages(struct extent_io_tree * tree,struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data,void (* flush_fn)(void *))4055 static int extent_write_cache_pages(struct extent_io_tree *tree,
4056 struct address_space *mapping,
4057 struct writeback_control *wbc,
4058 writepage_t writepage, void *data,
4059 void (*flush_fn)(void *))
4060 {
4061 struct inode *inode = mapping->host;
4062 int ret = 0;
4063 int done = 0;
4064 int err = 0;
4065 int nr_to_write_done = 0;
4066 struct pagevec pvec;
4067 int nr_pages;
4068 pgoff_t index;
4069 pgoff_t end; /* Inclusive */
4070 int scanned = 0;
4071 int tag;
4072
4073 /*
4074 * We have to hold onto the inode so that ordered extents can do their
4075 * work when the IO finishes. The alternative to this is failing to add
4076 * an ordered extent if the igrab() fails there and that is a huge pain
4077 * to deal with, so instead just hold onto the inode throughout the
4078 * writepages operation. If it fails here we are freeing up the inode
4079 * anyway and we'd rather not waste our time writing out stuff that is
4080 * going to be truncated anyway.
4081 */
4082 if (!igrab(inode))
4083 return 0;
4084
4085 pagevec_init(&pvec, 0);
4086 if (wbc->range_cyclic) {
4087 index = mapping->writeback_index; /* Start from prev offset */
4088 end = -1;
4089 } else {
4090 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4091 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4092 scanned = 1;
4093 }
4094 if (wbc->sync_mode == WB_SYNC_ALL)
4095 tag = PAGECACHE_TAG_TOWRITE;
4096 else
4097 tag = PAGECACHE_TAG_DIRTY;
4098 retry:
4099 if (wbc->sync_mode == WB_SYNC_ALL)
4100 tag_pages_for_writeback(mapping, index, end);
4101 while (!done && !nr_to_write_done && (index <= end) &&
4102 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4103 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4104 unsigned i;
4105
4106 scanned = 1;
4107 for (i = 0; i < nr_pages; i++) {
4108 struct page *page = pvec.pages[i];
4109
4110 /*
4111 * At this point we hold neither mapping->tree_lock nor
4112 * lock on the page itself: the page may be truncated or
4113 * invalidated (changing page->mapping to NULL), or even
4114 * swizzled back from swapper_space to tmpfs file
4115 * mapping
4116 */
4117 if (!trylock_page(page)) {
4118 flush_fn(data);
4119 lock_page(page);
4120 }
4121
4122 if (unlikely(page->mapping != mapping)) {
4123 unlock_page(page);
4124 continue;
4125 }
4126
4127 if (!wbc->range_cyclic && page->index > end) {
4128 done = 1;
4129 unlock_page(page);
4130 continue;
4131 }
4132
4133 if (wbc->sync_mode != WB_SYNC_NONE) {
4134 if (PageWriteback(page))
4135 flush_fn(data);
4136 wait_on_page_writeback(page);
4137 }
4138
4139 if (PageWriteback(page) ||
4140 !clear_page_dirty_for_io(page)) {
4141 unlock_page(page);
4142 continue;
4143 }
4144
4145 ret = (*writepage)(page, wbc, data);
4146
4147 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4148 unlock_page(page);
4149 ret = 0;
4150 }
4151 if (!err && ret < 0)
4152 err = ret;
4153
4154 /*
4155 * the filesystem may choose to bump up nr_to_write.
4156 * We have to make sure to honor the new nr_to_write
4157 * at any time
4158 */
4159 nr_to_write_done = wbc->nr_to_write <= 0;
4160 }
4161 pagevec_release(&pvec);
4162 cond_resched();
4163 }
4164 if (!scanned && !done && !err) {
4165 /*
4166 * We hit the last page and there is more work to be done: wrap
4167 * back to the start of the file
4168 */
4169 scanned = 1;
4170 index = 0;
4171
4172 /*
4173 * If we're looping we could run into a page that is locked by a
4174 * writer and that writer could be waiting on writeback for a
4175 * page in our current bio, and thus deadlock, so flush the
4176 * write bio here.
4177 */
4178 flush_write_bio(data);
4179 goto retry;
4180 }
4181 btrfs_add_delayed_iput(inode);
4182 return err;
4183 }
4184
flush_epd_write_bio(struct extent_page_data * epd)4185 static void flush_epd_write_bio(struct extent_page_data *epd)
4186 {
4187 if (epd->bio) {
4188 int rw = WRITE;
4189 int ret;
4190
4191 if (epd->sync_io)
4192 rw = WRITE_SYNC;
4193
4194 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4195 BUG_ON(ret < 0); /* -ENOMEM */
4196 epd->bio = NULL;
4197 }
4198 }
4199
flush_write_bio(void * data)4200 static noinline void flush_write_bio(void *data)
4201 {
4202 struct extent_page_data *epd = data;
4203 flush_epd_write_bio(epd);
4204 }
4205
extent_write_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct writeback_control * wbc)4206 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4207 get_extent_t *get_extent,
4208 struct writeback_control *wbc)
4209 {
4210 int ret;
4211 struct extent_page_data epd = {
4212 .bio = NULL,
4213 .tree = tree,
4214 .get_extent = get_extent,
4215 .extent_locked = 0,
4216 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4217 .bio_flags = 0,
4218 };
4219
4220 ret = __extent_writepage(page, wbc, &epd);
4221
4222 flush_epd_write_bio(&epd);
4223 return ret;
4224 }
4225
extent_write_locked_range(struct extent_io_tree * tree,struct inode * inode,u64 start,u64 end,get_extent_t * get_extent,int mode)4226 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4227 u64 start, u64 end, get_extent_t *get_extent,
4228 int mode)
4229 {
4230 int ret = 0;
4231 struct address_space *mapping = inode->i_mapping;
4232 struct page *page;
4233 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4234 PAGE_CACHE_SHIFT;
4235
4236 struct extent_page_data epd = {
4237 .bio = NULL,
4238 .tree = tree,
4239 .get_extent = get_extent,
4240 .extent_locked = 1,
4241 .sync_io = mode == WB_SYNC_ALL,
4242 .bio_flags = 0,
4243 };
4244 struct writeback_control wbc_writepages = {
4245 .sync_mode = mode,
4246 .nr_to_write = nr_pages * 2,
4247 .range_start = start,
4248 .range_end = end + 1,
4249 };
4250
4251 while (start <= end) {
4252 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4253 if (clear_page_dirty_for_io(page))
4254 ret = __extent_writepage(page, &wbc_writepages, &epd);
4255 else {
4256 if (tree->ops && tree->ops->writepage_end_io_hook)
4257 tree->ops->writepage_end_io_hook(page, start,
4258 start + PAGE_CACHE_SIZE - 1,
4259 NULL, 1);
4260 unlock_page(page);
4261 }
4262 page_cache_release(page);
4263 start += PAGE_CACHE_SIZE;
4264 }
4265
4266 flush_epd_write_bio(&epd);
4267 return ret;
4268 }
4269
extent_writepages(struct extent_io_tree * tree,struct address_space * mapping,get_extent_t * get_extent,struct writeback_control * wbc)4270 int extent_writepages(struct extent_io_tree *tree,
4271 struct address_space *mapping,
4272 get_extent_t *get_extent,
4273 struct writeback_control *wbc)
4274 {
4275 int ret = 0;
4276 struct extent_page_data epd = {
4277 .bio = NULL,
4278 .tree = tree,
4279 .get_extent = get_extent,
4280 .extent_locked = 0,
4281 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4282 .bio_flags = 0,
4283 };
4284
4285 ret = extent_write_cache_pages(tree, mapping, wbc,
4286 __extent_writepage, &epd,
4287 flush_write_bio);
4288 flush_epd_write_bio(&epd);
4289 return ret;
4290 }
4291
extent_readpages(struct extent_io_tree * tree,struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_extent_t get_extent)4292 int extent_readpages(struct extent_io_tree *tree,
4293 struct address_space *mapping,
4294 struct list_head *pages, unsigned nr_pages,
4295 get_extent_t get_extent)
4296 {
4297 struct bio *bio = NULL;
4298 unsigned page_idx;
4299 unsigned long bio_flags = 0;
4300 struct page *pagepool[16];
4301 struct page *page;
4302 struct extent_map *em_cached = NULL;
4303 int nr = 0;
4304 u64 prev_em_start = (u64)-1;
4305
4306 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4307 page = list_entry(pages->prev, struct page, lru);
4308
4309 prefetchw(&page->flags);
4310 list_del(&page->lru);
4311 if (add_to_page_cache_lru(page, mapping,
4312 page->index, GFP_NOFS)) {
4313 page_cache_release(page);
4314 continue;
4315 }
4316
4317 pagepool[nr++] = page;
4318 if (nr < ARRAY_SIZE(pagepool))
4319 continue;
4320 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4321 &bio, 0, &bio_flags, READ, &prev_em_start);
4322 nr = 0;
4323 }
4324 if (nr)
4325 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4326 &bio, 0, &bio_flags, READ, &prev_em_start);
4327
4328 if (em_cached)
4329 free_extent_map(em_cached);
4330
4331 BUG_ON(!list_empty(pages));
4332 if (bio)
4333 return submit_one_bio(READ, bio, 0, bio_flags);
4334 return 0;
4335 }
4336
4337 /*
4338 * basic invalidatepage code, this waits on any locked or writeback
4339 * ranges corresponding to the page, and then deletes any extent state
4340 * records from the tree
4341 */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4342 int extent_invalidatepage(struct extent_io_tree *tree,
4343 struct page *page, unsigned long offset)
4344 {
4345 struct extent_state *cached_state = NULL;
4346 u64 start = page_offset(page);
4347 u64 end = start + PAGE_CACHE_SIZE - 1;
4348 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4349
4350 start += ALIGN(offset, blocksize);
4351 if (start > end)
4352 return 0;
4353
4354 lock_extent_bits(tree, start, end, 0, &cached_state);
4355 wait_on_page_writeback(page);
4356 clear_extent_bit(tree, start, end,
4357 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4358 EXTENT_DO_ACCOUNTING,
4359 1, 1, &cached_state, GFP_NOFS);
4360 return 0;
4361 }
4362
4363 /*
4364 * a helper for releasepage, this tests for areas of the page that
4365 * are locked or under IO and drops the related state bits if it is safe
4366 * to drop the page.
4367 */
try_release_extent_state(struct extent_map_tree * map,struct extent_io_tree * tree,struct page * page,gfp_t mask)4368 static int try_release_extent_state(struct extent_map_tree *map,
4369 struct extent_io_tree *tree,
4370 struct page *page, gfp_t mask)
4371 {
4372 u64 start = page_offset(page);
4373 u64 end = start + PAGE_CACHE_SIZE - 1;
4374 int ret = 1;
4375
4376 if (test_range_bit(tree, start, end,
4377 EXTENT_IOBITS, 0, NULL))
4378 ret = 0;
4379 else {
4380 if ((mask & GFP_NOFS) == GFP_NOFS)
4381 mask = GFP_NOFS;
4382 /*
4383 * at this point we can safely clear everything except the
4384 * locked bit and the nodatasum bit
4385 */
4386 ret = clear_extent_bit(tree, start, end,
4387 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4388 0, 0, NULL, mask);
4389
4390 /* if clear_extent_bit failed for enomem reasons,
4391 * we can't allow the release to continue.
4392 */
4393 if (ret < 0)
4394 ret = 0;
4395 else
4396 ret = 1;
4397 }
4398 return ret;
4399 }
4400
4401 /*
4402 * a helper for releasepage. As long as there are no locked extents
4403 * in the range corresponding to the page, both state records and extent
4404 * map records are removed
4405 */
try_release_extent_mapping(struct extent_map_tree * map,struct extent_io_tree * tree,struct page * page,gfp_t mask)4406 int try_release_extent_mapping(struct extent_map_tree *map,
4407 struct extent_io_tree *tree, struct page *page,
4408 gfp_t mask)
4409 {
4410 struct extent_map *em;
4411 u64 start = page_offset(page);
4412 u64 end = start + PAGE_CACHE_SIZE - 1;
4413
4414 if (gfpflags_allow_blocking(mask) &&
4415 page->mapping->host->i_size > 16 * 1024 * 1024) {
4416 u64 len;
4417 while (start <= end) {
4418 len = end - start + 1;
4419 write_lock(&map->lock);
4420 em = lookup_extent_mapping(map, start, len);
4421 if (!em) {
4422 write_unlock(&map->lock);
4423 break;
4424 }
4425 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4426 em->start != start) {
4427 write_unlock(&map->lock);
4428 free_extent_map(em);
4429 break;
4430 }
4431 if (!test_range_bit(tree, em->start,
4432 extent_map_end(em) - 1,
4433 EXTENT_LOCKED | EXTENT_WRITEBACK,
4434 0, NULL)) {
4435 remove_extent_mapping(map, em);
4436 /* once for the rb tree */
4437 free_extent_map(em);
4438 }
4439 start = extent_map_end(em);
4440 write_unlock(&map->lock);
4441
4442 /* once for us */
4443 free_extent_map(em);
4444
4445 cond_resched(); /* Allow large-extent preemption. */
4446 }
4447 }
4448 return try_release_extent_state(map, tree, page, mask);
4449 }
4450
4451 /*
4452 * helper function for fiemap, which doesn't want to see any holes.
4453 * This maps until we find something past 'last'
4454 */
get_extent_skip_holes(struct inode * inode,u64 offset,u64 last,get_extent_t * get_extent)4455 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4456 u64 offset,
4457 u64 last,
4458 get_extent_t *get_extent)
4459 {
4460 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4461 struct extent_map *em;
4462 u64 len;
4463
4464 if (offset >= last)
4465 return NULL;
4466
4467 while (1) {
4468 len = last - offset;
4469 if (len == 0)
4470 break;
4471 len = ALIGN(len, sectorsize);
4472 em = get_extent(inode, NULL, 0, offset, len, 0);
4473 if (IS_ERR_OR_NULL(em))
4474 return em;
4475
4476 /* if this isn't a hole return it */
4477 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4478 em->block_start != EXTENT_MAP_HOLE) {
4479 return em;
4480 }
4481
4482 /* this is a hole, advance to the next extent */
4483 offset = extent_map_end(em);
4484 free_extent_map(em);
4485 if (offset >= last)
4486 break;
4487 }
4488 return NULL;
4489 }
4490
extent_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len,get_extent_t * get_extent)4491 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4492 __u64 start, __u64 len, get_extent_t *get_extent)
4493 {
4494 int ret = 0;
4495 u64 off = start;
4496 u64 max = start + len;
4497 u32 flags = 0;
4498 u32 found_type;
4499 u64 last;
4500 u64 last_for_get_extent = 0;
4501 u64 disko = 0;
4502 u64 isize = i_size_read(inode);
4503 struct btrfs_key found_key;
4504 struct extent_map *em = NULL;
4505 struct extent_state *cached_state = NULL;
4506 struct btrfs_path *path;
4507 struct btrfs_root *root = BTRFS_I(inode)->root;
4508 int end = 0;
4509 u64 em_start = 0;
4510 u64 em_len = 0;
4511 u64 em_end = 0;
4512
4513 if (len == 0)
4514 return -EINVAL;
4515
4516 path = btrfs_alloc_path();
4517 if (!path)
4518 return -ENOMEM;
4519 path->leave_spinning = 1;
4520
4521 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4522 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4523
4524 /*
4525 * lookup the last file extent. We're not using i_size here
4526 * because there might be preallocation past i_size
4527 */
4528 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4529 0);
4530 if (ret < 0) {
4531 btrfs_free_path(path);
4532 return ret;
4533 }
4534 WARN_ON(!ret);
4535 path->slots[0]--;
4536 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4537 found_type = found_key.type;
4538
4539 /* No extents, but there might be delalloc bits */
4540 if (found_key.objectid != btrfs_ino(inode) ||
4541 found_type != BTRFS_EXTENT_DATA_KEY) {
4542 /* have to trust i_size as the end */
4543 last = (u64)-1;
4544 last_for_get_extent = isize;
4545 } else {
4546 /*
4547 * remember the start of the last extent. There are a
4548 * bunch of different factors that go into the length of the
4549 * extent, so its much less complex to remember where it started
4550 */
4551 last = found_key.offset;
4552 last_for_get_extent = last + 1;
4553 }
4554 btrfs_release_path(path);
4555
4556 /*
4557 * we might have some extents allocated but more delalloc past those
4558 * extents. so, we trust isize unless the start of the last extent is
4559 * beyond isize
4560 */
4561 if (last < isize) {
4562 last = (u64)-1;
4563 last_for_get_extent = isize;
4564 }
4565
4566 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4567 &cached_state);
4568
4569 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4570 get_extent);
4571 if (!em)
4572 goto out;
4573 if (IS_ERR(em)) {
4574 ret = PTR_ERR(em);
4575 goto out;
4576 }
4577
4578 while (!end) {
4579 u64 offset_in_extent = 0;
4580
4581 /* break if the extent we found is outside the range */
4582 if (em->start >= max || extent_map_end(em) < off)
4583 break;
4584
4585 /*
4586 * get_extent may return an extent that starts before our
4587 * requested range. We have to make sure the ranges
4588 * we return to fiemap always move forward and don't
4589 * overlap, so adjust the offsets here
4590 */
4591 em_start = max(em->start, off);
4592
4593 /*
4594 * record the offset from the start of the extent
4595 * for adjusting the disk offset below. Only do this if the
4596 * extent isn't compressed since our in ram offset may be past
4597 * what we have actually allocated on disk.
4598 */
4599 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4600 offset_in_extent = em_start - em->start;
4601 em_end = extent_map_end(em);
4602 em_len = em_end - em_start;
4603 disko = 0;
4604 flags = 0;
4605
4606 /*
4607 * bump off for our next call to get_extent
4608 */
4609 off = extent_map_end(em);
4610 if (off >= max)
4611 end = 1;
4612
4613 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4614 end = 1;
4615 flags |= FIEMAP_EXTENT_LAST;
4616 } else if (em->block_start == EXTENT_MAP_INLINE) {
4617 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4618 FIEMAP_EXTENT_NOT_ALIGNED);
4619 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4620 flags |= (FIEMAP_EXTENT_DELALLOC |
4621 FIEMAP_EXTENT_UNKNOWN);
4622 } else if (fieinfo->fi_extents_max) {
4623 u64 bytenr = em->block_start -
4624 (em->start - em->orig_start);
4625
4626 disko = em->block_start + offset_in_extent;
4627
4628 /*
4629 * As btrfs supports shared space, this information
4630 * can be exported to userspace tools via
4631 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4632 * then we're just getting a count and we can skip the
4633 * lookup stuff.
4634 */
4635 ret = btrfs_check_shared(NULL, root->fs_info,
4636 root->objectid,
4637 btrfs_ino(inode), bytenr);
4638 if (ret < 0)
4639 goto out_free;
4640 if (ret)
4641 flags |= FIEMAP_EXTENT_SHARED;
4642 ret = 0;
4643 }
4644 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4645 flags |= FIEMAP_EXTENT_ENCODED;
4646 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4647 flags |= FIEMAP_EXTENT_UNWRITTEN;
4648
4649 free_extent_map(em);
4650 em = NULL;
4651 if ((em_start >= last) || em_len == (u64)-1 ||
4652 (last == (u64)-1 && isize <= em_end)) {
4653 flags |= FIEMAP_EXTENT_LAST;
4654 end = 1;
4655 }
4656
4657 /* now scan forward to see if this is really the last extent. */
4658 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4659 get_extent);
4660 if (IS_ERR(em)) {
4661 ret = PTR_ERR(em);
4662 goto out;
4663 }
4664 if (!em) {
4665 flags |= FIEMAP_EXTENT_LAST;
4666 end = 1;
4667 }
4668 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4669 em_len, flags);
4670 if (ret) {
4671 if (ret == 1)
4672 ret = 0;
4673 goto out_free;
4674 }
4675 }
4676 out_free:
4677 free_extent_map(em);
4678 out:
4679 btrfs_free_path(path);
4680 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4681 &cached_state, GFP_NOFS);
4682 return ret;
4683 }
4684
__free_extent_buffer(struct extent_buffer * eb)4685 static void __free_extent_buffer(struct extent_buffer *eb)
4686 {
4687 btrfs_leak_debug_del(&eb->leak_list);
4688 kmem_cache_free(extent_buffer_cache, eb);
4689 }
4690
extent_buffer_under_io(struct extent_buffer * eb)4691 int extent_buffer_under_io(struct extent_buffer *eb)
4692 {
4693 return (atomic_read(&eb->io_pages) ||
4694 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4695 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4696 }
4697
4698 /*
4699 * Helper for releasing extent buffer page.
4700 */
btrfs_release_extent_buffer_page(struct extent_buffer * eb)4701 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4702 {
4703 unsigned long index;
4704 struct page *page;
4705 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4706
4707 BUG_ON(extent_buffer_under_io(eb));
4708
4709 index = num_extent_pages(eb->start, eb->len);
4710 if (index == 0)
4711 return;
4712
4713 do {
4714 index--;
4715 page = eb->pages[index];
4716 if (!page)
4717 continue;
4718 if (mapped)
4719 spin_lock(&page->mapping->private_lock);
4720 /*
4721 * We do this since we'll remove the pages after we've
4722 * removed the eb from the radix tree, so we could race
4723 * and have this page now attached to the new eb. So
4724 * only clear page_private if it's still connected to
4725 * this eb.
4726 */
4727 if (PagePrivate(page) &&
4728 page->private == (unsigned long)eb) {
4729 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4730 BUG_ON(PageDirty(page));
4731 BUG_ON(PageWriteback(page));
4732 /*
4733 * We need to make sure we haven't be attached
4734 * to a new eb.
4735 */
4736 ClearPagePrivate(page);
4737 set_page_private(page, 0);
4738 /* One for the page private */
4739 page_cache_release(page);
4740 }
4741
4742 if (mapped)
4743 spin_unlock(&page->mapping->private_lock);
4744
4745 /* One for when we alloced the page */
4746 page_cache_release(page);
4747 } while (index != 0);
4748 }
4749
4750 /*
4751 * Helper for releasing the extent buffer.
4752 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4753 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4754 {
4755 btrfs_release_extent_buffer_page(eb);
4756 __free_extent_buffer(eb);
4757 }
4758
4759 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4760 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4761 unsigned long len)
4762 {
4763 struct extent_buffer *eb = NULL;
4764
4765 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4766 eb->start = start;
4767 eb->len = len;
4768 eb->fs_info = fs_info;
4769 eb->bflags = 0;
4770 rwlock_init(&eb->lock);
4771 atomic_set(&eb->write_locks, 0);
4772 atomic_set(&eb->read_locks, 0);
4773 atomic_set(&eb->blocking_readers, 0);
4774 atomic_set(&eb->blocking_writers, 0);
4775 atomic_set(&eb->spinning_readers, 0);
4776 atomic_set(&eb->spinning_writers, 0);
4777 eb->lock_nested = 0;
4778 init_waitqueue_head(&eb->write_lock_wq);
4779 init_waitqueue_head(&eb->read_lock_wq);
4780
4781 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4782
4783 spin_lock_init(&eb->refs_lock);
4784 atomic_set(&eb->refs, 1);
4785 atomic_set(&eb->io_pages, 0);
4786
4787 /*
4788 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4789 */
4790 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4791 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4792 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4793
4794 return eb;
4795 }
4796
btrfs_clone_extent_buffer(struct extent_buffer * src)4797 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4798 {
4799 unsigned long i;
4800 struct page *p;
4801 struct extent_buffer *new;
4802 unsigned long num_pages = num_extent_pages(src->start, src->len);
4803
4804 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4805 if (new == NULL)
4806 return NULL;
4807
4808 for (i = 0; i < num_pages; i++) {
4809 p = alloc_page(GFP_NOFS);
4810 if (!p) {
4811 btrfs_release_extent_buffer(new);
4812 return NULL;
4813 }
4814 attach_extent_buffer_page(new, p);
4815 WARN_ON(PageDirty(p));
4816 SetPageUptodate(p);
4817 new->pages[i] = p;
4818 }
4819
4820 copy_extent_buffer(new, src, 0, 0, src->len);
4821 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4822 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4823
4824 return new;
4825 }
4826
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4827 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4828 u64 start)
4829 {
4830 struct extent_buffer *eb;
4831 unsigned long len;
4832 unsigned long num_pages;
4833 unsigned long i;
4834
4835 if (!fs_info) {
4836 /*
4837 * Called only from tests that don't always have a fs_info
4838 * available, but we know that nodesize is 4096
4839 */
4840 len = 4096;
4841 } else {
4842 len = fs_info->tree_root->nodesize;
4843 }
4844 num_pages = num_extent_pages(0, len);
4845
4846 eb = __alloc_extent_buffer(fs_info, start, len);
4847 if (!eb)
4848 return NULL;
4849
4850 for (i = 0; i < num_pages; i++) {
4851 eb->pages[i] = alloc_page(GFP_NOFS);
4852 if (!eb->pages[i])
4853 goto err;
4854 }
4855 set_extent_buffer_uptodate(eb);
4856 btrfs_set_header_nritems(eb, 0);
4857 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4858
4859 return eb;
4860 err:
4861 for (; i > 0; i--)
4862 __free_page(eb->pages[i - 1]);
4863 __free_extent_buffer(eb);
4864 return NULL;
4865 }
4866
check_buffer_tree_ref(struct extent_buffer * eb)4867 static void check_buffer_tree_ref(struct extent_buffer *eb)
4868 {
4869 int refs;
4870 /*
4871 * The TREE_REF bit is first set when the extent_buffer is added
4872 * to the radix tree. It is also reset, if unset, when a new reference
4873 * is created by find_extent_buffer.
4874 *
4875 * It is only cleared in two cases: freeing the last non-tree
4876 * reference to the extent_buffer when its STALE bit is set or
4877 * calling releasepage when the tree reference is the only reference.
4878 *
4879 * In both cases, care is taken to ensure that the extent_buffer's
4880 * pages are not under io. However, releasepage can be concurrently
4881 * called with creating new references, which is prone to race
4882 * conditions between the calls to check_buffer_tree_ref in those
4883 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4884 *
4885 * The actual lifetime of the extent_buffer in the radix tree is
4886 * adequately protected by the refcount, but the TREE_REF bit and
4887 * its corresponding reference are not. To protect against this
4888 * class of races, we call check_buffer_tree_ref from the codepaths
4889 * which trigger io after they set eb->io_pages. Note that once io is
4890 * initiated, TREE_REF can no longer be cleared, so that is the
4891 * moment at which any such race is best fixed.
4892 */
4893 refs = atomic_read(&eb->refs);
4894 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4895 return;
4896
4897 spin_lock(&eb->refs_lock);
4898 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4899 atomic_inc(&eb->refs);
4900 spin_unlock(&eb->refs_lock);
4901 }
4902
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4903 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4904 struct page *accessed)
4905 {
4906 unsigned long num_pages, i;
4907
4908 check_buffer_tree_ref(eb);
4909
4910 num_pages = num_extent_pages(eb->start, eb->len);
4911 for (i = 0; i < num_pages; i++) {
4912 struct page *p = eb->pages[i];
4913
4914 if (p != accessed)
4915 mark_page_accessed(p);
4916 }
4917 }
4918
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4919 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4920 u64 start)
4921 {
4922 struct extent_buffer *eb;
4923
4924 rcu_read_lock();
4925 eb = radix_tree_lookup(&fs_info->buffer_radix,
4926 start >> PAGE_CACHE_SHIFT);
4927 if (eb && atomic_inc_not_zero(&eb->refs)) {
4928 rcu_read_unlock();
4929 /*
4930 * Lock our eb's refs_lock to avoid races with
4931 * free_extent_buffer. When we get our eb it might be flagged
4932 * with EXTENT_BUFFER_STALE and another task running
4933 * free_extent_buffer might have seen that flag set,
4934 * eb->refs == 2, that the buffer isn't under IO (dirty and
4935 * writeback flags not set) and it's still in the tree (flag
4936 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4937 * of decrementing the extent buffer's reference count twice.
4938 * So here we could race and increment the eb's reference count,
4939 * clear its stale flag, mark it as dirty and drop our reference
4940 * before the other task finishes executing free_extent_buffer,
4941 * which would later result in an attempt to free an extent
4942 * buffer that is dirty.
4943 */
4944 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4945 spin_lock(&eb->refs_lock);
4946 spin_unlock(&eb->refs_lock);
4947 }
4948 mark_extent_buffer_accessed(eb, NULL);
4949 return eb;
4950 }
4951 rcu_read_unlock();
4952
4953 return NULL;
4954 }
4955
4956 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4957 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4958 u64 start)
4959 {
4960 struct extent_buffer *eb, *exists = NULL;
4961 int ret;
4962
4963 eb = find_extent_buffer(fs_info, start);
4964 if (eb)
4965 return eb;
4966 eb = alloc_dummy_extent_buffer(fs_info, start);
4967 if (!eb)
4968 return ERR_PTR(-ENOMEM);
4969 eb->fs_info = fs_info;
4970 again:
4971 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4972 if (ret) {
4973 exists = ERR_PTR(ret);
4974 goto free_eb;
4975 }
4976 spin_lock(&fs_info->buffer_lock);
4977 ret = radix_tree_insert(&fs_info->buffer_radix,
4978 start >> PAGE_CACHE_SHIFT, eb);
4979 spin_unlock(&fs_info->buffer_lock);
4980 radix_tree_preload_end();
4981 if (ret == -EEXIST) {
4982 exists = find_extent_buffer(fs_info, start);
4983 if (exists)
4984 goto free_eb;
4985 else
4986 goto again;
4987 }
4988 check_buffer_tree_ref(eb);
4989 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4990
4991 /*
4992 * We will free dummy extent buffer's if they come into
4993 * free_extent_buffer with a ref count of 2, but if we are using this we
4994 * want the buffers to stay in memory until we're done with them, so
4995 * bump the ref count again.
4996 */
4997 atomic_inc(&eb->refs);
4998 return eb;
4999 free_eb:
5000 btrfs_release_extent_buffer(eb);
5001 return exists;
5002 }
5003 #endif
5004
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5005 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5006 u64 start)
5007 {
5008 unsigned long len = fs_info->tree_root->nodesize;
5009 unsigned long num_pages = num_extent_pages(start, len);
5010 unsigned long i;
5011 unsigned long index = start >> PAGE_CACHE_SHIFT;
5012 struct extent_buffer *eb;
5013 struct extent_buffer *exists = NULL;
5014 struct page *p;
5015 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5016 int uptodate = 1;
5017 int ret;
5018
5019 eb = find_extent_buffer(fs_info, start);
5020 if (eb)
5021 return eb;
5022
5023 eb = __alloc_extent_buffer(fs_info, start, len);
5024 if (!eb)
5025 return NULL;
5026
5027 for (i = 0; i < num_pages; i++, index++) {
5028 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5029 if (!p)
5030 goto free_eb;
5031
5032 spin_lock(&mapping->private_lock);
5033 if (PagePrivate(p)) {
5034 /*
5035 * We could have already allocated an eb for this page
5036 * and attached one so lets see if we can get a ref on
5037 * the existing eb, and if we can we know it's good and
5038 * we can just return that one, else we know we can just
5039 * overwrite page->private.
5040 */
5041 exists = (struct extent_buffer *)p->private;
5042 if (atomic_inc_not_zero(&exists->refs)) {
5043 spin_unlock(&mapping->private_lock);
5044 unlock_page(p);
5045 page_cache_release(p);
5046 mark_extent_buffer_accessed(exists, p);
5047 goto free_eb;
5048 }
5049 exists = NULL;
5050
5051 /*
5052 * Do this so attach doesn't complain and we need to
5053 * drop the ref the old guy had.
5054 */
5055 ClearPagePrivate(p);
5056 WARN_ON(PageDirty(p));
5057 page_cache_release(p);
5058 }
5059 attach_extent_buffer_page(eb, p);
5060 spin_unlock(&mapping->private_lock);
5061 WARN_ON(PageDirty(p));
5062 eb->pages[i] = p;
5063 if (!PageUptodate(p))
5064 uptodate = 0;
5065
5066 /*
5067 * see below about how we avoid a nasty race with release page
5068 * and why we unlock later
5069 */
5070 }
5071 if (uptodate)
5072 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5073 again:
5074 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5075 if (ret)
5076 goto free_eb;
5077
5078 spin_lock(&fs_info->buffer_lock);
5079 ret = radix_tree_insert(&fs_info->buffer_radix,
5080 start >> PAGE_CACHE_SHIFT, eb);
5081 spin_unlock(&fs_info->buffer_lock);
5082 radix_tree_preload_end();
5083 if (ret == -EEXIST) {
5084 exists = find_extent_buffer(fs_info, start);
5085 if (exists)
5086 goto free_eb;
5087 else
5088 goto again;
5089 }
5090 /* add one reference for the tree */
5091 check_buffer_tree_ref(eb);
5092 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5093
5094 /*
5095 * there is a race where release page may have
5096 * tried to find this extent buffer in the radix
5097 * but failed. It will tell the VM it is safe to
5098 * reclaim the, and it will clear the page private bit.
5099 * We must make sure to set the page private bit properly
5100 * after the extent buffer is in the radix tree so
5101 * it doesn't get lost
5102 */
5103 SetPageChecked(eb->pages[0]);
5104 for (i = 1; i < num_pages; i++) {
5105 p = eb->pages[i];
5106 ClearPageChecked(p);
5107 unlock_page(p);
5108 }
5109 unlock_page(eb->pages[0]);
5110 return eb;
5111
5112 free_eb:
5113 WARN_ON(!atomic_dec_and_test(&eb->refs));
5114 for (i = 0; i < num_pages; i++) {
5115 if (eb->pages[i])
5116 unlock_page(eb->pages[i]);
5117 }
5118
5119 btrfs_release_extent_buffer(eb);
5120 return exists;
5121 }
5122
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5123 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5124 {
5125 struct extent_buffer *eb =
5126 container_of(head, struct extent_buffer, rcu_head);
5127
5128 __free_extent_buffer(eb);
5129 }
5130
5131 /* Expects to have eb->eb_lock already held */
release_extent_buffer(struct extent_buffer * eb)5132 static int release_extent_buffer(struct extent_buffer *eb)
5133 {
5134 WARN_ON(atomic_read(&eb->refs) == 0);
5135 if (atomic_dec_and_test(&eb->refs)) {
5136 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5137 struct btrfs_fs_info *fs_info = eb->fs_info;
5138
5139 spin_unlock(&eb->refs_lock);
5140
5141 spin_lock(&fs_info->buffer_lock);
5142 radix_tree_delete(&fs_info->buffer_radix,
5143 eb->start >> PAGE_CACHE_SHIFT);
5144 spin_unlock(&fs_info->buffer_lock);
5145 } else {
5146 spin_unlock(&eb->refs_lock);
5147 }
5148
5149 /* Should be safe to release our pages at this point */
5150 btrfs_release_extent_buffer_page(eb);
5151 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5152 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5153 __free_extent_buffer(eb);
5154 return 1;
5155 }
5156 #endif
5157 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5158 return 1;
5159 }
5160 spin_unlock(&eb->refs_lock);
5161
5162 return 0;
5163 }
5164
free_extent_buffer(struct extent_buffer * eb)5165 void free_extent_buffer(struct extent_buffer *eb)
5166 {
5167 int refs;
5168 int old;
5169 if (!eb)
5170 return;
5171
5172 while (1) {
5173 refs = atomic_read(&eb->refs);
5174 if (refs <= 3)
5175 break;
5176 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5177 if (old == refs)
5178 return;
5179 }
5180
5181 spin_lock(&eb->refs_lock);
5182 if (atomic_read(&eb->refs) == 2 &&
5183 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5184 atomic_dec(&eb->refs);
5185
5186 if (atomic_read(&eb->refs) == 2 &&
5187 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5188 !extent_buffer_under_io(eb) &&
5189 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5190 atomic_dec(&eb->refs);
5191
5192 /*
5193 * I know this is terrible, but it's temporary until we stop tracking
5194 * the uptodate bits and such for the extent buffers.
5195 */
5196 release_extent_buffer(eb);
5197 }
5198
free_extent_buffer_stale(struct extent_buffer * eb)5199 void free_extent_buffer_stale(struct extent_buffer *eb)
5200 {
5201 if (!eb)
5202 return;
5203
5204 spin_lock(&eb->refs_lock);
5205 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5206
5207 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5208 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5209 atomic_dec(&eb->refs);
5210 release_extent_buffer(eb);
5211 }
5212
clear_extent_buffer_dirty(struct extent_buffer * eb)5213 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5214 {
5215 unsigned long i;
5216 unsigned long num_pages;
5217 struct page *page;
5218
5219 num_pages = num_extent_pages(eb->start, eb->len);
5220
5221 for (i = 0; i < num_pages; i++) {
5222 page = eb->pages[i];
5223 if (!PageDirty(page))
5224 continue;
5225
5226 lock_page(page);
5227 WARN_ON(!PagePrivate(page));
5228
5229 clear_page_dirty_for_io(page);
5230 spin_lock_irq(&page->mapping->tree_lock);
5231 if (!PageDirty(page)) {
5232 radix_tree_tag_clear(&page->mapping->page_tree,
5233 page_index(page),
5234 PAGECACHE_TAG_DIRTY);
5235 }
5236 spin_unlock_irq(&page->mapping->tree_lock);
5237 ClearPageError(page);
5238 unlock_page(page);
5239 }
5240 WARN_ON(atomic_read(&eb->refs) == 0);
5241 }
5242
set_extent_buffer_dirty(struct extent_buffer * eb)5243 int set_extent_buffer_dirty(struct extent_buffer *eb)
5244 {
5245 unsigned long i;
5246 unsigned long num_pages;
5247 int was_dirty = 0;
5248
5249 check_buffer_tree_ref(eb);
5250
5251 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5252
5253 num_pages = num_extent_pages(eb->start, eb->len);
5254 WARN_ON(atomic_read(&eb->refs) == 0);
5255 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5256
5257 for (i = 0; i < num_pages; i++)
5258 set_page_dirty(eb->pages[i]);
5259 return was_dirty;
5260 }
5261
clear_extent_buffer_uptodate(struct extent_buffer * eb)5262 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5263 {
5264 unsigned long i;
5265 struct page *page;
5266 unsigned long num_pages;
5267
5268 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5269 num_pages = num_extent_pages(eb->start, eb->len);
5270 for (i = 0; i < num_pages; i++) {
5271 page = eb->pages[i];
5272 if (page)
5273 ClearPageUptodate(page);
5274 }
5275 return 0;
5276 }
5277
set_extent_buffer_uptodate(struct extent_buffer * eb)5278 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5279 {
5280 unsigned long i;
5281 struct page *page;
5282 unsigned long num_pages;
5283
5284 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5285 num_pages = num_extent_pages(eb->start, eb->len);
5286 for (i = 0; i < num_pages; i++) {
5287 page = eb->pages[i];
5288 SetPageUptodate(page);
5289 }
5290 return 0;
5291 }
5292
extent_buffer_uptodate(struct extent_buffer * eb)5293 int extent_buffer_uptodate(struct extent_buffer *eb)
5294 {
5295 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5296 }
5297
read_extent_buffer_pages(struct extent_io_tree * tree,struct extent_buffer * eb,u64 start,int wait,get_extent_t * get_extent,int mirror_num)5298 int read_extent_buffer_pages(struct extent_io_tree *tree,
5299 struct extent_buffer *eb, u64 start, int wait,
5300 get_extent_t *get_extent, int mirror_num)
5301 {
5302 unsigned long i;
5303 unsigned long start_i;
5304 struct page *page;
5305 int err;
5306 int ret = 0;
5307 int locked_pages = 0;
5308 int all_uptodate = 1;
5309 unsigned long num_pages;
5310 unsigned long num_reads = 0;
5311 struct bio *bio = NULL;
5312 unsigned long bio_flags = 0;
5313
5314 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5315 return 0;
5316
5317 if (start) {
5318 WARN_ON(start < eb->start);
5319 start_i = (start >> PAGE_CACHE_SHIFT) -
5320 (eb->start >> PAGE_CACHE_SHIFT);
5321 } else {
5322 start_i = 0;
5323 }
5324
5325 num_pages = num_extent_pages(eb->start, eb->len);
5326 for (i = start_i; i < num_pages; i++) {
5327 page = eb->pages[i];
5328 if (wait == WAIT_NONE) {
5329 if (!trylock_page(page))
5330 goto unlock_exit;
5331 } else {
5332 lock_page(page);
5333 }
5334 locked_pages++;
5335 }
5336 /*
5337 * We need to firstly lock all pages to make sure that
5338 * the uptodate bit of our pages won't be affected by
5339 * clear_extent_buffer_uptodate().
5340 */
5341 for (i = start_i; i < num_pages; i++) {
5342 page = eb->pages[i];
5343 if (!PageUptodate(page)) {
5344 num_reads++;
5345 all_uptodate = 0;
5346 }
5347 }
5348
5349 if (all_uptodate) {
5350 if (start_i == 0)
5351 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5352 goto unlock_exit;
5353 }
5354
5355 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5356 eb->read_mirror = 0;
5357 atomic_set(&eb->io_pages, num_reads);
5358 /*
5359 * It is possible for releasepage to clear the TREE_REF bit before we
5360 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5361 */
5362 check_buffer_tree_ref(eb);
5363 for (i = start_i; i < num_pages; i++) {
5364 page = eb->pages[i];
5365 if (!PageUptodate(page)) {
5366 ClearPageError(page);
5367 err = __extent_read_full_page(tree, page,
5368 get_extent, &bio,
5369 mirror_num, &bio_flags,
5370 READ | REQ_META);
5371 if (err)
5372 ret = err;
5373 } else {
5374 unlock_page(page);
5375 }
5376 }
5377
5378 if (bio) {
5379 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5380 bio_flags);
5381 if (err)
5382 return err;
5383 }
5384
5385 if (ret || wait != WAIT_COMPLETE)
5386 return ret;
5387
5388 for (i = start_i; i < num_pages; i++) {
5389 page = eb->pages[i];
5390 wait_on_page_locked(page);
5391 if (!PageUptodate(page))
5392 ret = -EIO;
5393 }
5394
5395 return ret;
5396
5397 unlock_exit:
5398 i = start_i;
5399 while (locked_pages > 0) {
5400 page = eb->pages[i];
5401 i++;
5402 unlock_page(page);
5403 locked_pages--;
5404 }
5405 return ret;
5406 }
5407
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5408 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5409 unsigned long start, unsigned long len)
5410 {
5411 size_t cur;
5412 size_t offset;
5413 struct page *page;
5414 char *kaddr;
5415 char *dst = (char *)dstv;
5416 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5417 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5418
5419 WARN_ON(start > eb->len);
5420 WARN_ON(start + len > eb->start + eb->len);
5421
5422 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5423
5424 while (len > 0) {
5425 page = eb->pages[i];
5426
5427 cur = min(len, (PAGE_CACHE_SIZE - offset));
5428 kaddr = page_address(page);
5429 memcpy(dst, kaddr + offset, cur);
5430
5431 dst += cur;
5432 len -= cur;
5433 offset = 0;
5434 i++;
5435 }
5436 }
5437
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5438 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5439 void __user *dstv,
5440 unsigned long start, unsigned long len)
5441 {
5442 size_t cur;
5443 size_t offset;
5444 struct page *page;
5445 char *kaddr;
5446 char __user *dst = (char __user *)dstv;
5447 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5448 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5449 int ret = 0;
5450
5451 WARN_ON(start > eb->len);
5452 WARN_ON(start + len > eb->start + eb->len);
5453
5454 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5455
5456 while (len > 0) {
5457 page = eb->pages[i];
5458
5459 cur = min(len, (PAGE_CACHE_SIZE - offset));
5460 kaddr = page_address(page);
5461 if (probe_user_write(dst, kaddr + offset, cur)) {
5462 ret = -EFAULT;
5463 break;
5464 }
5465
5466 dst += cur;
5467 len -= cur;
5468 offset = 0;
5469 i++;
5470 }
5471
5472 return ret;
5473 }
5474
map_private_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long min_len,char ** map,unsigned long * map_start,unsigned long * map_len)5475 int map_private_extent_buffer(const struct extent_buffer *eb,
5476 unsigned long start, unsigned long min_len,
5477 char **map, unsigned long *map_start,
5478 unsigned long *map_len)
5479 {
5480 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5481 char *kaddr;
5482 struct page *p;
5483 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5484 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5485 unsigned long end_i = (start_offset + start + min_len - 1) >>
5486 PAGE_CACHE_SHIFT;
5487
5488 if (i != end_i)
5489 return -EINVAL;
5490
5491 if (i == 0) {
5492 offset = start_offset;
5493 *map_start = 0;
5494 } else {
5495 offset = 0;
5496 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5497 }
5498
5499 if (start + min_len > eb->len) {
5500 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5501 "wanted %lu %lu\n",
5502 eb->start, eb->len, start, min_len);
5503 return -EINVAL;
5504 }
5505
5506 p = eb->pages[i];
5507 kaddr = page_address(p);
5508 *map = kaddr + offset;
5509 *map_len = PAGE_CACHE_SIZE - offset;
5510 return 0;
5511 }
5512
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5513 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5514 unsigned long start, unsigned long len)
5515 {
5516 size_t cur;
5517 size_t offset;
5518 struct page *page;
5519 char *kaddr;
5520 char *ptr = (char *)ptrv;
5521 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5522 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5523 int ret = 0;
5524
5525 WARN_ON(start > eb->len);
5526 WARN_ON(start + len > eb->start + eb->len);
5527
5528 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5529
5530 while (len > 0) {
5531 page = eb->pages[i];
5532
5533 cur = min(len, (PAGE_CACHE_SIZE - offset));
5534
5535 kaddr = page_address(page);
5536 ret = memcmp(ptr, kaddr + offset, cur);
5537 if (ret)
5538 break;
5539
5540 ptr += cur;
5541 len -= cur;
5542 offset = 0;
5543 i++;
5544 }
5545 return ret;
5546 }
5547
write_extent_buffer(struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5548 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5549 unsigned long start, unsigned long len)
5550 {
5551 size_t cur;
5552 size_t offset;
5553 struct page *page;
5554 char *kaddr;
5555 char *src = (char *)srcv;
5556 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5557 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5558
5559 WARN_ON(start > eb->len);
5560 WARN_ON(start + len > eb->start + eb->len);
5561
5562 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5563
5564 while (len > 0) {
5565 page = eb->pages[i];
5566 WARN_ON(!PageUptodate(page));
5567
5568 cur = min(len, PAGE_CACHE_SIZE - offset);
5569 kaddr = page_address(page);
5570 memcpy(kaddr + offset, src, cur);
5571
5572 src += cur;
5573 len -= cur;
5574 offset = 0;
5575 i++;
5576 }
5577 }
5578
memset_extent_buffer(struct extent_buffer * eb,char c,unsigned long start,unsigned long len)5579 void memset_extent_buffer(struct extent_buffer *eb, char c,
5580 unsigned long start, unsigned long len)
5581 {
5582 size_t cur;
5583 size_t offset;
5584 struct page *page;
5585 char *kaddr;
5586 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5587 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5588
5589 WARN_ON(start > eb->len);
5590 WARN_ON(start + len > eb->start + eb->len);
5591
5592 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5593
5594 while (len > 0) {
5595 page = eb->pages[i];
5596 WARN_ON(!PageUptodate(page));
5597
5598 cur = min(len, PAGE_CACHE_SIZE - offset);
5599 kaddr = page_address(page);
5600 memset(kaddr + offset, c, cur);
5601
5602 len -= cur;
5603 offset = 0;
5604 i++;
5605 }
5606 }
5607
copy_extent_buffer(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5608 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5609 unsigned long dst_offset, unsigned long src_offset,
5610 unsigned long len)
5611 {
5612 u64 dst_len = dst->len;
5613 size_t cur;
5614 size_t offset;
5615 struct page *page;
5616 char *kaddr;
5617 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5618 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5619
5620 WARN_ON(src->len != dst_len);
5621
5622 offset = (start_offset + dst_offset) &
5623 (PAGE_CACHE_SIZE - 1);
5624
5625 while (len > 0) {
5626 page = dst->pages[i];
5627 WARN_ON(!PageUptodate(page));
5628
5629 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5630
5631 kaddr = page_address(page);
5632 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5633
5634 src_offset += cur;
5635 len -= cur;
5636 offset = 0;
5637 i++;
5638 }
5639 }
5640
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5641 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5642 {
5643 unsigned long distance = (src > dst) ? src - dst : dst - src;
5644 return distance < len;
5645 }
5646
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5647 static void copy_pages(struct page *dst_page, struct page *src_page,
5648 unsigned long dst_off, unsigned long src_off,
5649 unsigned long len)
5650 {
5651 char *dst_kaddr = page_address(dst_page);
5652 char *src_kaddr;
5653 int must_memmove = 0;
5654
5655 if (dst_page != src_page) {
5656 src_kaddr = page_address(src_page);
5657 } else {
5658 src_kaddr = dst_kaddr;
5659 if (areas_overlap(src_off, dst_off, len))
5660 must_memmove = 1;
5661 }
5662
5663 if (must_memmove)
5664 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5665 else
5666 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5667 }
5668
memcpy_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5669 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5670 unsigned long src_offset, unsigned long len)
5671 {
5672 size_t cur;
5673 size_t dst_off_in_page;
5674 size_t src_off_in_page;
5675 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5676 unsigned long dst_i;
5677 unsigned long src_i;
5678
5679 if (src_offset + len > dst->len) {
5680 btrfs_err(dst->fs_info,
5681 "memmove bogus src_offset %lu move "
5682 "len %lu dst len %lu", src_offset, len, dst->len);
5683 BUG_ON(1);
5684 }
5685 if (dst_offset + len > dst->len) {
5686 btrfs_err(dst->fs_info,
5687 "memmove bogus dst_offset %lu move "
5688 "len %lu dst len %lu", dst_offset, len, dst->len);
5689 BUG_ON(1);
5690 }
5691
5692 while (len > 0) {
5693 dst_off_in_page = (start_offset + dst_offset) &
5694 (PAGE_CACHE_SIZE - 1);
5695 src_off_in_page = (start_offset + src_offset) &
5696 (PAGE_CACHE_SIZE - 1);
5697
5698 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5699 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5700
5701 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5702 src_off_in_page));
5703 cur = min_t(unsigned long, cur,
5704 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5705
5706 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5707 dst_off_in_page, src_off_in_page, cur);
5708
5709 src_offset += cur;
5710 dst_offset += cur;
5711 len -= cur;
5712 }
5713 }
5714
memmove_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5715 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5716 unsigned long src_offset, unsigned long len)
5717 {
5718 size_t cur;
5719 size_t dst_off_in_page;
5720 size_t src_off_in_page;
5721 unsigned long dst_end = dst_offset + len - 1;
5722 unsigned long src_end = src_offset + len - 1;
5723 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5724 unsigned long dst_i;
5725 unsigned long src_i;
5726
5727 if (src_offset + len > dst->len) {
5728 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5729 "len %lu len %lu", src_offset, len, dst->len);
5730 BUG_ON(1);
5731 }
5732 if (dst_offset + len > dst->len) {
5733 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5734 "len %lu len %lu", dst_offset, len, dst->len);
5735 BUG_ON(1);
5736 }
5737 if (dst_offset < src_offset) {
5738 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5739 return;
5740 }
5741 while (len > 0) {
5742 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5743 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5744
5745 dst_off_in_page = (start_offset + dst_end) &
5746 (PAGE_CACHE_SIZE - 1);
5747 src_off_in_page = (start_offset + src_end) &
5748 (PAGE_CACHE_SIZE - 1);
5749
5750 cur = min_t(unsigned long, len, src_off_in_page + 1);
5751 cur = min(cur, dst_off_in_page + 1);
5752 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5753 dst_off_in_page - cur + 1,
5754 src_off_in_page - cur + 1, cur);
5755
5756 dst_end -= cur;
5757 src_end -= cur;
5758 len -= cur;
5759 }
5760 }
5761
try_release_extent_buffer(struct page * page)5762 int try_release_extent_buffer(struct page *page)
5763 {
5764 struct extent_buffer *eb;
5765
5766 /*
5767 * We need to make sure noboody is attaching this page to an eb right
5768 * now.
5769 */
5770 spin_lock(&page->mapping->private_lock);
5771 if (!PagePrivate(page)) {
5772 spin_unlock(&page->mapping->private_lock);
5773 return 1;
5774 }
5775
5776 eb = (struct extent_buffer *)page->private;
5777 BUG_ON(!eb);
5778
5779 /*
5780 * This is a little awful but should be ok, we need to make sure that
5781 * the eb doesn't disappear out from under us while we're looking at
5782 * this page.
5783 */
5784 spin_lock(&eb->refs_lock);
5785 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5786 spin_unlock(&eb->refs_lock);
5787 spin_unlock(&page->mapping->private_lock);
5788 return 0;
5789 }
5790 spin_unlock(&page->mapping->private_lock);
5791
5792 /*
5793 * If tree ref isn't set then we know the ref on this eb is a real ref,
5794 * so just return, this page will likely be freed soon anyway.
5795 */
5796 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5797 spin_unlock(&eb->refs_lock);
5798 return 0;
5799 }
5800
5801 return release_extent_buffer(eb);
5802 }
5803