• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
extent_state_in_tree(const struct extent_state * state)28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
btrfs_leak_debug_add(struct list_head * new,struct list_head * head)40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
btrfs_leak_debug_del(struct list_head * entry)50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
btrfs_leak_debug_check(void)60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 				 struct extent_changeset *changeset,
136 				 int set)
137 {
138 	int ret;
139 
140 	if (!changeset)
141 		return;
142 	if (set && (state->state & bits) == bits)
143 		return;
144 	if (!set && (state->state & bits) == 0)
145 		return;
146 	changeset->bytes_changed += state->end - state->start + 1;
147 	ret = ulist_add(changeset->range_changed, state->start, state->end,
148 			GFP_ATOMIC);
149 	/* ENOMEM */
150 	BUG_ON(ret < 0);
151 }
152 
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
tree_fs_info(struct extent_io_tree * tree)155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 	if (!tree->mapping)
158 		return NULL;
159 	return btrfs_sb(tree->mapping->host->i_sb);
160 }
161 
extent_io_init(void)162 int __init extent_io_init(void)
163 {
164 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 			sizeof(struct extent_state), 0,
166 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 	if (!extent_state_cache)
168 		return -ENOMEM;
169 
170 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 			sizeof(struct extent_buffer), 0,
172 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 	if (!extent_buffer_cache)
174 		goto free_state_cache;
175 
176 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 				     offsetof(struct btrfs_io_bio, bio));
178 	if (!btrfs_bioset)
179 		goto free_buffer_cache;
180 
181 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 		goto free_bioset;
183 
184 	return 0;
185 
186 free_bioset:
187 	bioset_free(btrfs_bioset);
188 	btrfs_bioset = NULL;
189 
190 free_buffer_cache:
191 	kmem_cache_destroy(extent_buffer_cache);
192 	extent_buffer_cache = NULL;
193 
194 free_state_cache:
195 	kmem_cache_destroy(extent_state_cache);
196 	extent_state_cache = NULL;
197 	return -ENOMEM;
198 }
199 
extent_io_exit(void)200 void extent_io_exit(void)
201 {
202 	btrfs_leak_debug_check();
203 
204 	/*
205 	 * Make sure all delayed rcu free are flushed before we
206 	 * destroy caches.
207 	 */
208 	rcu_barrier();
209 	if (extent_state_cache)
210 		kmem_cache_destroy(extent_state_cache);
211 	if (extent_buffer_cache)
212 		kmem_cache_destroy(extent_buffer_cache);
213 	if (btrfs_bioset)
214 		bioset_free(btrfs_bioset);
215 }
216 
extent_io_tree_init(struct extent_io_tree * tree,struct address_space * mapping)217 void extent_io_tree_init(struct extent_io_tree *tree,
218 			 struct address_space *mapping)
219 {
220 	tree->state = RB_ROOT;
221 	tree->ops = NULL;
222 	tree->dirty_bytes = 0;
223 	spin_lock_init(&tree->lock);
224 	tree->mapping = mapping;
225 }
226 
alloc_extent_state(gfp_t mask)227 static struct extent_state *alloc_extent_state(gfp_t mask)
228 {
229 	struct extent_state *state;
230 
231 	state = kmem_cache_alloc(extent_state_cache, mask);
232 	if (!state)
233 		return state;
234 	state->state = 0;
235 	state->private = 0;
236 	RB_CLEAR_NODE(&state->rb_node);
237 	btrfs_leak_debug_add(&state->leak_list, &states);
238 	atomic_set(&state->refs, 1);
239 	init_waitqueue_head(&state->wq);
240 	trace_alloc_extent_state(state, mask, _RET_IP_);
241 	return state;
242 }
243 
free_extent_state(struct extent_state * state)244 void free_extent_state(struct extent_state *state)
245 {
246 	if (!state)
247 		return;
248 	if (atomic_dec_and_test(&state->refs)) {
249 		WARN_ON(extent_state_in_tree(state));
250 		btrfs_leak_debug_del(&state->leak_list);
251 		trace_free_extent_state(state, _RET_IP_);
252 		kmem_cache_free(extent_state_cache, state);
253 	}
254 }
255 
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)256 static struct rb_node *tree_insert(struct rb_root *root,
257 				   struct rb_node *search_start,
258 				   u64 offset,
259 				   struct rb_node *node,
260 				   struct rb_node ***p_in,
261 				   struct rb_node **parent_in)
262 {
263 	struct rb_node **p;
264 	struct rb_node *parent = NULL;
265 	struct tree_entry *entry;
266 
267 	if (p_in && parent_in) {
268 		p = *p_in;
269 		parent = *parent_in;
270 		goto do_insert;
271 	}
272 
273 	p = search_start ? &search_start : &root->rb_node;
274 	while (*p) {
275 		parent = *p;
276 		entry = rb_entry(parent, struct tree_entry, rb_node);
277 
278 		if (offset < entry->start)
279 			p = &(*p)->rb_left;
280 		else if (offset > entry->end)
281 			p = &(*p)->rb_right;
282 		else
283 			return parent;
284 	}
285 
286 do_insert:
287 	rb_link_node(node, parent, p);
288 	rb_insert_color(node, root);
289 	return NULL;
290 }
291 
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** prev_ret,struct rb_node ** next_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 				      struct rb_node **prev_ret,
294 				      struct rb_node **next_ret,
295 				      struct rb_node ***p_ret,
296 				      struct rb_node **parent_ret)
297 {
298 	struct rb_root *root = &tree->state;
299 	struct rb_node **n = &root->rb_node;
300 	struct rb_node *prev = NULL;
301 	struct rb_node *orig_prev = NULL;
302 	struct tree_entry *entry;
303 	struct tree_entry *prev_entry = NULL;
304 
305 	while (*n) {
306 		prev = *n;
307 		entry = rb_entry(prev, struct tree_entry, rb_node);
308 		prev_entry = entry;
309 
310 		if (offset < entry->start)
311 			n = &(*n)->rb_left;
312 		else if (offset > entry->end)
313 			n = &(*n)->rb_right;
314 		else
315 			return *n;
316 	}
317 
318 	if (p_ret)
319 		*p_ret = n;
320 	if (parent_ret)
321 		*parent_ret = prev;
322 
323 	if (prev_ret) {
324 		orig_prev = prev;
325 		while (prev && offset > prev_entry->end) {
326 			prev = rb_next(prev);
327 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 		}
329 		*prev_ret = prev;
330 		prev = orig_prev;
331 	}
332 
333 	if (next_ret) {
334 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 		while (prev && offset < prev_entry->start) {
336 			prev = rb_prev(prev);
337 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 		}
339 		*next_ret = prev;
340 	}
341 	return NULL;
342 }
343 
344 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)345 tree_search_for_insert(struct extent_io_tree *tree,
346 		       u64 offset,
347 		       struct rb_node ***p_ret,
348 		       struct rb_node **parent_ret)
349 {
350 	struct rb_node *prev = NULL;
351 	struct rb_node *ret;
352 
353 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 	if (!ret)
355 		return prev;
356 	return ret;
357 }
358 
tree_search(struct extent_io_tree * tree,u64 offset)359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 					  u64 offset)
361 {
362 	return tree_search_for_insert(tree, offset, NULL, NULL);
363 }
364 
merge_cb(struct extent_io_tree * tree,struct extent_state * new,struct extent_state * other)365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 		     struct extent_state *other)
367 {
368 	if (tree->ops && tree->ops->merge_extent_hook)
369 		tree->ops->merge_extent_hook(tree->mapping->host, new,
370 					     other);
371 }
372 
373 /*
374  * utility function to look for merge candidates inside a given range.
375  * Any extents with matching state are merged together into a single
376  * extent in the tree.  Extents with EXTENT_IO in their state field
377  * are not merged because the end_io handlers need to be able to do
378  * operations on them without sleeping (or doing allocations/splits).
379  *
380  * This should be called with the tree lock held.
381  */
merge_state(struct extent_io_tree * tree,struct extent_state * state)382 static void merge_state(struct extent_io_tree *tree,
383 		        struct extent_state *state)
384 {
385 	struct extent_state *other;
386 	struct rb_node *other_node;
387 
388 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 		return;
390 
391 	other_node = rb_prev(&state->rb_node);
392 	if (other_node) {
393 		other = rb_entry(other_node, struct extent_state, rb_node);
394 		if (other->end == state->start - 1 &&
395 		    other->state == state->state) {
396 			merge_cb(tree, state, other);
397 			state->start = other->start;
398 			rb_erase(&other->rb_node, &tree->state);
399 			RB_CLEAR_NODE(&other->rb_node);
400 			free_extent_state(other);
401 		}
402 	}
403 	other_node = rb_next(&state->rb_node);
404 	if (other_node) {
405 		other = rb_entry(other_node, struct extent_state, rb_node);
406 		if (other->start == state->end + 1 &&
407 		    other->state == state->state) {
408 			merge_cb(tree, state, other);
409 			state->end = other->end;
410 			rb_erase(&other->rb_node, &tree->state);
411 			RB_CLEAR_NODE(&other->rb_node);
412 			free_extent_state(other);
413 		}
414 	}
415 }
416 
set_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)417 static void set_state_cb(struct extent_io_tree *tree,
418 			 struct extent_state *state, unsigned *bits)
419 {
420 	if (tree->ops && tree->ops->set_bit_hook)
421 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
422 }
423 
clear_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)424 static void clear_state_cb(struct extent_io_tree *tree,
425 			   struct extent_state *state, unsigned *bits)
426 {
427 	if (tree->ops && tree->ops->clear_bit_hook)
428 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
429 }
430 
431 static void set_state_bits(struct extent_io_tree *tree,
432 			   struct extent_state *state, unsigned *bits,
433 			   struct extent_changeset *changeset);
434 
435 /*
436  * insert an extent_state struct into the tree.  'bits' are set on the
437  * struct before it is inserted.
438  *
439  * This may return -EEXIST if the extent is already there, in which case the
440  * state struct is freed.
441  *
442  * The tree lock is not taken internally.  This is a utility function and
443  * probably isn't what you want to call (see set/clear_extent_bit).
444  */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)445 static int insert_state(struct extent_io_tree *tree,
446 			struct extent_state *state, u64 start, u64 end,
447 			struct rb_node ***p,
448 			struct rb_node **parent,
449 			unsigned *bits, struct extent_changeset *changeset)
450 {
451 	struct rb_node *node;
452 
453 	if (end < start)
454 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 		       end, start);
456 	state->start = start;
457 	state->end = end;
458 
459 	set_state_bits(tree, state, bits, changeset);
460 
461 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 	if (node) {
463 		struct extent_state *found;
464 		found = rb_entry(node, struct extent_state, rb_node);
465 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 		       "%llu %llu\n",
467 		       found->start, found->end, start, end);
468 		return -EEXIST;
469 	}
470 	merge_state(tree, state);
471 	return 0;
472 }
473 
split_cb(struct extent_io_tree * tree,struct extent_state * orig,u64 split)474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 		     u64 split)
476 {
477 	if (tree->ops && tree->ops->split_extent_hook)
478 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
479 }
480 
481 /*
482  * split a given extent state struct in two, inserting the preallocated
483  * struct 'prealloc' as the newly created second half.  'split' indicates an
484  * offset inside 'orig' where it should be split.
485  *
486  * Before calling,
487  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
488  * are two extent state structs in the tree:
489  * prealloc: [orig->start, split - 1]
490  * orig: [ split, orig->end ]
491  *
492  * The tree locks are not taken by this function. They need to be held
493  * by the caller.
494  */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 		       struct extent_state *prealloc, u64 split)
497 {
498 	struct rb_node *node;
499 
500 	split_cb(tree, orig, split);
501 
502 	prealloc->start = orig->start;
503 	prealloc->end = split - 1;
504 	prealloc->state = orig->state;
505 	orig->start = split;
506 
507 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 			   &prealloc->rb_node, NULL, NULL);
509 	if (node) {
510 		free_extent_state(prealloc);
511 		return -EEXIST;
512 	}
513 	return 0;
514 }
515 
next_state(struct extent_state * state)516 static struct extent_state *next_state(struct extent_state *state)
517 {
518 	struct rb_node *next = rb_next(&state->rb_node);
519 	if (next)
520 		return rb_entry(next, struct extent_state, rb_node);
521 	else
522 		return NULL;
523 }
524 
525 /*
526  * utility function to clear some bits in an extent state struct.
527  * it will optionally wake up any one waiting on this state (wake == 1).
528  *
529  * If no bits are set on the state struct after clearing things, the
530  * struct is freed and removed from the tree
531  */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 					    struct extent_state *state,
534 					    unsigned *bits, int wake,
535 					    struct extent_changeset *changeset)
536 {
537 	struct extent_state *next;
538 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
539 
540 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 		u64 range = state->end - state->start + 1;
542 		WARN_ON(range > tree->dirty_bytes);
543 		tree->dirty_bytes -= range;
544 	}
545 	clear_state_cb(tree, state, bits);
546 	add_extent_changeset(state, bits_to_clear, changeset, 0);
547 	state->state &= ~bits_to_clear;
548 	if (wake)
549 		wake_up(&state->wq);
550 	if (state->state == 0) {
551 		next = next_state(state);
552 		if (extent_state_in_tree(state)) {
553 			rb_erase(&state->rb_node, &tree->state);
554 			RB_CLEAR_NODE(&state->rb_node);
555 			free_extent_state(state);
556 		} else {
557 			WARN_ON(1);
558 		}
559 	} else {
560 		merge_state(tree, state);
561 		next = next_state(state);
562 	}
563 	return next;
564 }
565 
566 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)567 alloc_extent_state_atomic(struct extent_state *prealloc)
568 {
569 	if (!prealloc)
570 		prealloc = alloc_extent_state(GFP_ATOMIC);
571 
572 	return prealloc;
573 }
574 
extent_io_tree_panic(struct extent_io_tree * tree,int err)575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
576 {
577 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 		    "Extent tree was modified by another "
579 		    "thread while locked.");
580 }
581 
582 /*
583  * clear some bits on a range in the tree.  This may require splitting
584  * or inserting elements in the tree, so the gfp mask is used to
585  * indicate which allocations or sleeping are allowed.
586  *
587  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588  * the given range from the tree regardless of state (ie for truncate).
589  *
590  * the range [start, end] is inclusive.
591  *
592  * This takes the tree lock, and returns 0 on success and < 0 on error.
593  */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 			      unsigned bits, int wake, int delete,
596 			      struct extent_state **cached_state,
597 			      gfp_t mask, struct extent_changeset *changeset)
598 {
599 	struct extent_state *state;
600 	struct extent_state *cached;
601 	struct extent_state *prealloc = NULL;
602 	struct rb_node *node;
603 	u64 last_end;
604 	int err;
605 	int clear = 0;
606 
607 	btrfs_debug_check_extent_io_range(tree, start, end);
608 
609 	if (bits & EXTENT_DELALLOC)
610 		bits |= EXTENT_NORESERVE;
611 
612 	if (delete)
613 		bits |= ~EXTENT_CTLBITS;
614 	bits |= EXTENT_FIRST_DELALLOC;
615 
616 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 		clear = 1;
618 again:
619 	if (!prealloc && gfpflags_allow_blocking(mask)) {
620 		/*
621 		 * Don't care for allocation failure here because we might end
622 		 * up not needing the pre-allocated extent state at all, which
623 		 * is the case if we only have in the tree extent states that
624 		 * cover our input range and don't cover too any other range.
625 		 * If we end up needing a new extent state we allocate it later.
626 		 */
627 		prealloc = alloc_extent_state(mask);
628 	}
629 
630 	spin_lock(&tree->lock);
631 	if (cached_state) {
632 		cached = *cached_state;
633 
634 		if (clear) {
635 			*cached_state = NULL;
636 			cached_state = NULL;
637 		}
638 
639 		if (cached && extent_state_in_tree(cached) &&
640 		    cached->start <= start && cached->end > start) {
641 			if (clear)
642 				atomic_dec(&cached->refs);
643 			state = cached;
644 			goto hit_next;
645 		}
646 		if (clear)
647 			free_extent_state(cached);
648 	}
649 	/*
650 	 * this search will find the extents that end after
651 	 * our range starts
652 	 */
653 	node = tree_search(tree, start);
654 	if (!node)
655 		goto out;
656 	state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 	if (state->start > end)
659 		goto out;
660 	WARN_ON(state->end < start);
661 	last_end = state->end;
662 
663 	/* the state doesn't have the wanted bits, go ahead */
664 	if (!(state->state & bits)) {
665 		state = next_state(state);
666 		goto next;
667 	}
668 
669 	/*
670 	 *     | ---- desired range ---- |
671 	 *  | state | or
672 	 *  | ------------- state -------------- |
673 	 *
674 	 * We need to split the extent we found, and may flip
675 	 * bits on second half.
676 	 *
677 	 * If the extent we found extends past our range, we
678 	 * just split and search again.  It'll get split again
679 	 * the next time though.
680 	 *
681 	 * If the extent we found is inside our range, we clear
682 	 * the desired bit on it.
683 	 */
684 
685 	if (state->start < start) {
686 		prealloc = alloc_extent_state_atomic(prealloc);
687 		BUG_ON(!prealloc);
688 		err = split_state(tree, state, prealloc, start);
689 		if (err)
690 			extent_io_tree_panic(tree, err);
691 
692 		prealloc = NULL;
693 		if (err)
694 			goto out;
695 		if (state->end <= end) {
696 			state = clear_state_bit(tree, state, &bits, wake,
697 						changeset);
698 			goto next;
699 		}
700 		goto search_again;
701 	}
702 	/*
703 	 * | ---- desired range ---- |
704 	 *                        | state |
705 	 * We need to split the extent, and clear the bit
706 	 * on the first half
707 	 */
708 	if (state->start <= end && state->end > end) {
709 		prealloc = alloc_extent_state_atomic(prealloc);
710 		BUG_ON(!prealloc);
711 		err = split_state(tree, state, prealloc, end + 1);
712 		if (err)
713 			extent_io_tree_panic(tree, err);
714 
715 		if (wake)
716 			wake_up(&state->wq);
717 
718 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
719 
720 		prealloc = NULL;
721 		goto out;
722 	}
723 
724 	state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 	if (last_end == (u64)-1)
727 		goto out;
728 	start = last_end + 1;
729 	if (start <= end && state && !need_resched())
730 		goto hit_next;
731 	goto search_again;
732 
733 out:
734 	spin_unlock(&tree->lock);
735 	if (prealloc)
736 		free_extent_state(prealloc);
737 
738 	return 0;
739 
740 search_again:
741 	if (start > end)
742 		goto out;
743 	spin_unlock(&tree->lock);
744 	if (gfpflags_allow_blocking(mask))
745 		cond_resched();
746 	goto again;
747 }
748 
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)749 static void wait_on_state(struct extent_io_tree *tree,
750 			  struct extent_state *state)
751 		__releases(tree->lock)
752 		__acquires(tree->lock)
753 {
754 	DEFINE_WAIT(wait);
755 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 	spin_unlock(&tree->lock);
757 	schedule();
758 	spin_lock(&tree->lock);
759 	finish_wait(&state->wq, &wait);
760 }
761 
762 /*
763  * waits for one or more bits to clear on a range in the state tree.
764  * The range [start, end] is inclusive.
765  * The tree lock is taken by this function
766  */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 			    unsigned long bits)
769 {
770 	struct extent_state *state;
771 	struct rb_node *node;
772 
773 	btrfs_debug_check_extent_io_range(tree, start, end);
774 
775 	spin_lock(&tree->lock);
776 again:
777 	while (1) {
778 		/*
779 		 * this search will find all the extents that end after
780 		 * our range starts
781 		 */
782 		node = tree_search(tree, start);
783 process_node:
784 		if (!node)
785 			break;
786 
787 		state = rb_entry(node, struct extent_state, rb_node);
788 
789 		if (state->start > end)
790 			goto out;
791 
792 		if (state->state & bits) {
793 			start = state->start;
794 			atomic_inc(&state->refs);
795 			wait_on_state(tree, state);
796 			free_extent_state(state);
797 			goto again;
798 		}
799 		start = state->end + 1;
800 
801 		if (start > end)
802 			break;
803 
804 		if (!cond_resched_lock(&tree->lock)) {
805 			node = rb_next(node);
806 			goto process_node;
807 		}
808 	}
809 out:
810 	spin_unlock(&tree->lock);
811 }
812 
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)813 static void set_state_bits(struct extent_io_tree *tree,
814 			   struct extent_state *state,
815 			   unsigned *bits, struct extent_changeset *changeset)
816 {
817 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
818 
819 	set_state_cb(tree, state, bits);
820 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 		u64 range = state->end - state->start + 1;
822 		tree->dirty_bytes += range;
823 	}
824 	add_extent_changeset(state, bits_to_set, changeset, 1);
825 	state->state |= bits_to_set;
826 }
827 
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)828 static void cache_state_if_flags(struct extent_state *state,
829 				 struct extent_state **cached_ptr,
830 				 unsigned flags)
831 {
832 	if (cached_ptr && !(*cached_ptr)) {
833 		if (!flags || (state->state & flags)) {
834 			*cached_ptr = state;
835 			atomic_inc(&state->refs);
836 		}
837 	}
838 }
839 
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)840 static void cache_state(struct extent_state *state,
841 			struct extent_state **cached_ptr)
842 {
843 	return cache_state_if_flags(state, cached_ptr,
844 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
845 }
846 
847 /*
848  * set some bits on a range in the tree.  This may require allocations or
849  * sleeping, so the gfp mask is used to indicate what is allowed.
850  *
851  * If any of the exclusive bits are set, this will fail with -EEXIST if some
852  * part of the range already has the desired bits set.  The start of the
853  * existing range is returned in failed_start in this case.
854  *
855  * [start, end] is inclusive This takes the tree lock.
856  */
857 
858 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 		 unsigned bits, unsigned exclusive_bits,
861 		 u64 *failed_start, struct extent_state **cached_state,
862 		 gfp_t mask, struct extent_changeset *changeset)
863 {
864 	struct extent_state *state;
865 	struct extent_state *prealloc = NULL;
866 	struct rb_node *node;
867 	struct rb_node **p;
868 	struct rb_node *parent;
869 	int err = 0;
870 	u64 last_start;
871 	u64 last_end;
872 
873 	btrfs_debug_check_extent_io_range(tree, start, end);
874 
875 	bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 	if (!prealloc && gfpflags_allow_blocking(mask)) {
878 		prealloc = alloc_extent_state(mask);
879 		BUG_ON(!prealloc);
880 	}
881 
882 	spin_lock(&tree->lock);
883 	if (cached_state && *cached_state) {
884 		state = *cached_state;
885 		if (state->start <= start && state->end > start &&
886 		    extent_state_in_tree(state)) {
887 			node = &state->rb_node;
888 			goto hit_next;
889 		}
890 	}
891 	/*
892 	 * this search will find all the extents that end after
893 	 * our range starts.
894 	 */
895 	node = tree_search_for_insert(tree, start, &p, &parent);
896 	if (!node) {
897 		prealloc = alloc_extent_state_atomic(prealloc);
898 		BUG_ON(!prealloc);
899 		err = insert_state(tree, prealloc, start, end,
900 				   &p, &parent, &bits, changeset);
901 		if (err)
902 			extent_io_tree_panic(tree, err);
903 
904 		cache_state(prealloc, cached_state);
905 		prealloc = NULL;
906 		goto out;
907 	}
908 	state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 	last_start = state->start;
911 	last_end = state->end;
912 
913 	/*
914 	 * | ---- desired range ---- |
915 	 * | state |
916 	 *
917 	 * Just lock what we found and keep going
918 	 */
919 	if (state->start == start && state->end <= end) {
920 		if (state->state & exclusive_bits) {
921 			*failed_start = state->start;
922 			err = -EEXIST;
923 			goto out;
924 		}
925 
926 		set_state_bits(tree, state, &bits, changeset);
927 		cache_state(state, cached_state);
928 		merge_state(tree, state);
929 		if (last_end == (u64)-1)
930 			goto out;
931 		start = last_end + 1;
932 		state = next_state(state);
933 		if (start < end && state && state->start == start &&
934 		    !need_resched())
935 			goto hit_next;
936 		goto search_again;
937 	}
938 
939 	/*
940 	 *     | ---- desired range ---- |
941 	 * | state |
942 	 *   or
943 	 * | ------------- state -------------- |
944 	 *
945 	 * We need to split the extent we found, and may flip bits on
946 	 * second half.
947 	 *
948 	 * If the extent we found extends past our
949 	 * range, we just split and search again.  It'll get split
950 	 * again the next time though.
951 	 *
952 	 * If the extent we found is inside our range, we set the
953 	 * desired bit on it.
954 	 */
955 	if (state->start < start) {
956 		if (state->state & exclusive_bits) {
957 			*failed_start = start;
958 			err = -EEXIST;
959 			goto out;
960 		}
961 
962 		prealloc = alloc_extent_state_atomic(prealloc);
963 		BUG_ON(!prealloc);
964 		err = split_state(tree, state, prealloc, start);
965 		if (err)
966 			extent_io_tree_panic(tree, err);
967 
968 		prealloc = NULL;
969 		if (err)
970 			goto out;
971 		if (state->end <= end) {
972 			set_state_bits(tree, state, &bits, changeset);
973 			cache_state(state, cached_state);
974 			merge_state(tree, state);
975 			if (last_end == (u64)-1)
976 				goto out;
977 			start = last_end + 1;
978 			state = next_state(state);
979 			if (start < end && state && state->start == start &&
980 			    !need_resched())
981 				goto hit_next;
982 		}
983 		goto search_again;
984 	}
985 	/*
986 	 * | ---- desired range ---- |
987 	 *     | state | or               | state |
988 	 *
989 	 * There's a hole, we need to insert something in it and
990 	 * ignore the extent we found.
991 	 */
992 	if (state->start > start) {
993 		u64 this_end;
994 		if (end < last_start)
995 			this_end = end;
996 		else
997 			this_end = last_start - 1;
998 
999 		prealloc = alloc_extent_state_atomic(prealloc);
1000 		BUG_ON(!prealloc);
1001 
1002 		/*
1003 		 * Avoid to free 'prealloc' if it can be merged with
1004 		 * the later extent.
1005 		 */
1006 		err = insert_state(tree, prealloc, start, this_end,
1007 				   NULL, NULL, &bits, changeset);
1008 		if (err)
1009 			extent_io_tree_panic(tree, err);
1010 
1011 		cache_state(prealloc, cached_state);
1012 		prealloc = NULL;
1013 		start = this_end + 1;
1014 		goto search_again;
1015 	}
1016 	/*
1017 	 * | ---- desired range ---- |
1018 	 *                        | state |
1019 	 * We need to split the extent, and set the bit
1020 	 * on the first half
1021 	 */
1022 	if (state->start <= end && state->end > end) {
1023 		if (state->state & exclusive_bits) {
1024 			*failed_start = start;
1025 			err = -EEXIST;
1026 			goto out;
1027 		}
1028 
1029 		prealloc = alloc_extent_state_atomic(prealloc);
1030 		BUG_ON(!prealloc);
1031 		err = split_state(tree, state, prealloc, end + 1);
1032 		if (err)
1033 			extent_io_tree_panic(tree, err);
1034 
1035 		set_state_bits(tree, prealloc, &bits, changeset);
1036 		cache_state(prealloc, cached_state);
1037 		merge_state(tree, prealloc);
1038 		prealloc = NULL;
1039 		goto out;
1040 	}
1041 
1042 	goto search_again;
1043 
1044 out:
1045 	spin_unlock(&tree->lock);
1046 	if (prealloc)
1047 		free_extent_state(prealloc);
1048 
1049 	return err;
1050 
1051 search_again:
1052 	if (start > end)
1053 		goto out;
1054 	spin_unlock(&tree->lock);
1055 	if (gfpflags_allow_blocking(mask))
1056 		cond_resched();
1057 	goto again;
1058 }
1059 
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 		   unsigned bits, u64 * failed_start,
1062 		   struct extent_state **cached_state, gfp_t mask)
1063 {
1064 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 				cached_state, mask, NULL);
1066 }
1067 
1068 
1069 /**
1070  * convert_extent_bit - convert all bits in a given range from one bit to
1071  * 			another
1072  * @tree:	the io tree to search
1073  * @start:	the start offset in bytes
1074  * @end:	the end offset in bytes (inclusive)
1075  * @bits:	the bits to set in this range
1076  * @clear_bits:	the bits to clear in this range
1077  * @cached_state:	state that we're going to cache
1078  * @mask:	the allocation mask
1079  *
1080  * This will go through and set bits for the given range.  If any states exist
1081  * already in this range they are set with the given bit and cleared of the
1082  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1083  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1084  * boundary bits like LOCK.
1085  */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state,gfp_t mask)1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 		       unsigned bits, unsigned clear_bits,
1088 		       struct extent_state **cached_state, gfp_t mask)
1089 {
1090 	struct extent_state *state;
1091 	struct extent_state *prealloc = NULL;
1092 	struct rb_node *node;
1093 	struct rb_node **p;
1094 	struct rb_node *parent;
1095 	int err = 0;
1096 	u64 last_start;
1097 	u64 last_end;
1098 	bool first_iteration = true;
1099 
1100 	btrfs_debug_check_extent_io_range(tree, start, end);
1101 
1102 again:
1103 	if (!prealloc && gfpflags_allow_blocking(mask)) {
1104 		/*
1105 		 * Best effort, don't worry if extent state allocation fails
1106 		 * here for the first iteration. We might have a cached state
1107 		 * that matches exactly the target range, in which case no
1108 		 * extent state allocations are needed. We'll only know this
1109 		 * after locking the tree.
1110 		 */
1111 		prealloc = alloc_extent_state(mask);
1112 		if (!prealloc && !first_iteration)
1113 			return -ENOMEM;
1114 	}
1115 
1116 	spin_lock(&tree->lock);
1117 	if (cached_state && *cached_state) {
1118 		state = *cached_state;
1119 		if (state->start <= start && state->end > start &&
1120 		    extent_state_in_tree(state)) {
1121 			node = &state->rb_node;
1122 			goto hit_next;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * this search will find all the extents that end after
1128 	 * our range starts.
1129 	 */
1130 	node = tree_search_for_insert(tree, start, &p, &parent);
1131 	if (!node) {
1132 		prealloc = alloc_extent_state_atomic(prealloc);
1133 		if (!prealloc) {
1134 			err = -ENOMEM;
1135 			goto out;
1136 		}
1137 		err = insert_state(tree, prealloc, start, end,
1138 				   &p, &parent, &bits, NULL);
1139 		if (err)
1140 			extent_io_tree_panic(tree, err);
1141 		cache_state(prealloc, cached_state);
1142 		prealloc = NULL;
1143 		goto out;
1144 	}
1145 	state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 	last_start = state->start;
1148 	last_end = state->end;
1149 
1150 	/*
1151 	 * | ---- desired range ---- |
1152 	 * | state |
1153 	 *
1154 	 * Just lock what we found and keep going
1155 	 */
1156 	if (state->start == start && state->end <= end) {
1157 		set_state_bits(tree, state, &bits, NULL);
1158 		cache_state(state, cached_state);
1159 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 		if (last_end == (u64)-1)
1161 			goto out;
1162 		start = last_end + 1;
1163 		if (start < end && state && state->start == start &&
1164 		    !need_resched())
1165 			goto hit_next;
1166 		goto search_again;
1167 	}
1168 
1169 	/*
1170 	 *     | ---- desired range ---- |
1171 	 * | state |
1172 	 *   or
1173 	 * | ------------- state -------------- |
1174 	 *
1175 	 * We need to split the extent we found, and may flip bits on
1176 	 * second half.
1177 	 *
1178 	 * If the extent we found extends past our
1179 	 * range, we just split and search again.  It'll get split
1180 	 * again the next time though.
1181 	 *
1182 	 * If the extent we found is inside our range, we set the
1183 	 * desired bit on it.
1184 	 */
1185 	if (state->start < start) {
1186 		prealloc = alloc_extent_state_atomic(prealloc);
1187 		if (!prealloc) {
1188 			err = -ENOMEM;
1189 			goto out;
1190 		}
1191 		err = split_state(tree, state, prealloc, start);
1192 		if (err)
1193 			extent_io_tree_panic(tree, err);
1194 		prealloc = NULL;
1195 		if (err)
1196 			goto out;
1197 		if (state->end <= end) {
1198 			set_state_bits(tree, state, &bits, NULL);
1199 			cache_state(state, cached_state);
1200 			state = clear_state_bit(tree, state, &clear_bits, 0,
1201 						NULL);
1202 			if (last_end == (u64)-1)
1203 				goto out;
1204 			start = last_end + 1;
1205 			if (start < end && state && state->start == start &&
1206 			    !need_resched())
1207 				goto hit_next;
1208 		}
1209 		goto search_again;
1210 	}
1211 	/*
1212 	 * | ---- desired range ---- |
1213 	 *     | state | or               | state |
1214 	 *
1215 	 * There's a hole, we need to insert something in it and
1216 	 * ignore the extent we found.
1217 	 */
1218 	if (state->start > start) {
1219 		u64 this_end;
1220 		if (end < last_start)
1221 			this_end = end;
1222 		else
1223 			this_end = last_start - 1;
1224 
1225 		prealloc = alloc_extent_state_atomic(prealloc);
1226 		if (!prealloc) {
1227 			err = -ENOMEM;
1228 			goto out;
1229 		}
1230 
1231 		/*
1232 		 * Avoid to free 'prealloc' if it can be merged with
1233 		 * the later extent.
1234 		 */
1235 		err = insert_state(tree, prealloc, start, this_end,
1236 				   NULL, NULL, &bits, NULL);
1237 		if (err)
1238 			extent_io_tree_panic(tree, err);
1239 		cache_state(prealloc, cached_state);
1240 		prealloc = NULL;
1241 		start = this_end + 1;
1242 		goto search_again;
1243 	}
1244 	/*
1245 	 * | ---- desired range ---- |
1246 	 *                        | state |
1247 	 * We need to split the extent, and set the bit
1248 	 * on the first half
1249 	 */
1250 	if (state->start <= end && state->end > end) {
1251 		prealloc = alloc_extent_state_atomic(prealloc);
1252 		if (!prealloc) {
1253 			err = -ENOMEM;
1254 			goto out;
1255 		}
1256 
1257 		err = split_state(tree, state, prealloc, end + 1);
1258 		if (err)
1259 			extent_io_tree_panic(tree, err);
1260 
1261 		set_state_bits(tree, prealloc, &bits, NULL);
1262 		cache_state(prealloc, cached_state);
1263 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 		prealloc = NULL;
1265 		goto out;
1266 	}
1267 
1268 	goto search_again;
1269 
1270 out:
1271 	spin_unlock(&tree->lock);
1272 	if (prealloc)
1273 		free_extent_state(prealloc);
1274 
1275 	return err;
1276 
1277 search_again:
1278 	if (start > end)
1279 		goto out;
1280 	spin_unlock(&tree->lock);
1281 	if (gfpflags_allow_blocking(mask))
1282 		cond_resched();
1283 	first_iteration = false;
1284 	goto again;
1285 }
1286 
1287 /* wrappers around set/clear extent bit */
set_extent_dirty(struct extent_io_tree * tree,u64 start,u64 end,gfp_t mask)1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 		     gfp_t mask)
1290 {
1291 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1292 			      NULL, mask);
1293 }
1294 
set_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask)1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1296 		    unsigned bits, gfp_t mask)
1297 {
1298 	return set_extent_bit(tree, start, end, bits, NULL,
1299 			      NULL, mask);
1300 }
1301 
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask,struct extent_changeset * changeset)1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 			   unsigned bits, gfp_t mask,
1304 			   struct extent_changeset *changeset)
1305 {
1306 	/*
1307 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 	 * either fail with -EEXIST or changeset will record the whole
1310 	 * range.
1311 	 */
1312 	BUG_ON(bits & EXTENT_LOCKED);
1313 
1314 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 				changeset);
1316 }
1317 
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached,gfp_t mask)1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 		     unsigned bits, int wake, int delete,
1320 		     struct extent_state **cached, gfp_t mask)
1321 {
1322 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 				  cached, mask, NULL);
1324 }
1325 
clear_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask)1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1327 		      unsigned bits, gfp_t mask)
1328 {
1329 	int wake = 0;
1330 
1331 	if (bits & EXTENT_LOCKED)
1332 		wake = 1;
1333 
1334 	return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1335 }
1336 
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,gfp_t mask,struct extent_changeset * changeset)1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 			     unsigned bits, gfp_t mask,
1339 			     struct extent_changeset *changeset)
1340 {
1341 	/*
1342 	 * Don't support EXTENT_LOCKED case, same reason as
1343 	 * set_record_extent_bits().
1344 	 */
1345 	BUG_ON(bits & EXTENT_LOCKED);
1346 
1347 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 				  changeset);
1349 }
1350 
set_extent_delalloc(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1352 			struct extent_state **cached_state, gfp_t mask)
1353 {
1354 	return set_extent_bit(tree, start, end,
1355 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1356 			      NULL, cached_state, mask);
1357 }
1358 
set_extent_defrag(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 		      struct extent_state **cached_state, gfp_t mask)
1361 {
1362 	return set_extent_bit(tree, start, end,
1363 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 			      NULL, cached_state, mask);
1365 }
1366 
clear_extent_dirty(struct extent_io_tree * tree,u64 start,u64 end,gfp_t mask)1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 		       gfp_t mask)
1369 {
1370 	return clear_extent_bit(tree, start, end,
1371 				EXTENT_DIRTY | EXTENT_DELALLOC |
1372 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1373 }
1374 
set_extent_new(struct extent_io_tree * tree,u64 start,u64 end,gfp_t mask)1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 		     gfp_t mask)
1377 {
1378 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1379 			      NULL, mask);
1380 }
1381 
set_extent_uptodate(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1383 			struct extent_state **cached_state, gfp_t mask)
1384 {
1385 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1386 			      cached_state, mask);
1387 }
1388 
clear_extent_uptodate(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state,gfp_t mask)1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 			  struct extent_state **cached_state, gfp_t mask)
1391 {
1392 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1393 				cached_state, mask);
1394 }
1395 
1396 /*
1397  * either insert or lock state struct between start and end use mask to tell
1398  * us if waiting is desired.
1399  */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_state ** cached_state)1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1401 		     unsigned bits, struct extent_state **cached_state)
1402 {
1403 	int err;
1404 	u64 failed_start;
1405 
1406 	while (1) {
1407 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 				       EXTENT_LOCKED, &failed_start,
1409 				       cached_state, GFP_NOFS, NULL);
1410 		if (err == -EEXIST) {
1411 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 			start = failed_start;
1413 		} else
1414 			break;
1415 		WARN_ON(start > end);
1416 	}
1417 	return err;
1418 }
1419 
lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1421 {
1422 	return lock_extent_bits(tree, start, end, 0, NULL);
1423 }
1424 
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1426 {
1427 	int err;
1428 	u64 failed_start;
1429 
1430 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1431 			       &failed_start, NULL, GFP_NOFS, NULL);
1432 	if (err == -EEXIST) {
1433 		if (failed_start > start)
1434 			clear_extent_bit(tree, start, failed_start - 1,
1435 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1436 		return 0;
1437 	}
1438 	return 1;
1439 }
1440 
unlock_extent_cached(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached,gfp_t mask)1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 			 struct extent_state **cached, gfp_t mask)
1443 {
1444 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 				mask);
1446 }
1447 
unlock_extent(struct extent_io_tree * tree,u64 start,u64 end)1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1449 {
1450 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1451 				GFP_NOFS);
1452 }
1453 
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1454 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455 {
1456 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 	struct page *page;
1459 
1460 	while (index <= end_index) {
1461 		page = find_get_page(inode->i_mapping, index);
1462 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 		clear_page_dirty_for_io(page);
1464 		page_cache_release(page);
1465 		index++;
1466 	}
1467 	return 0;
1468 }
1469 
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1470 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1471 {
1472 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1473 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1474 	struct page *page;
1475 
1476 	while (index <= end_index) {
1477 		page = find_get_page(inode->i_mapping, index);
1478 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1479 		__set_page_dirty_nobuffers(page);
1480 		account_page_redirty(page);
1481 		page_cache_release(page);
1482 		index++;
1483 	}
1484 	return 0;
1485 }
1486 
1487 /*
1488  * helper function to set both pages and extents in the tree writeback
1489  */
set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)1490 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1491 {
1492 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1493 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1494 	struct page *page;
1495 
1496 	while (index <= end_index) {
1497 		page = find_get_page(tree->mapping, index);
1498 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1499 		set_page_writeback(page);
1500 		page_cache_release(page);
1501 		index++;
1502 	}
1503 	return 0;
1504 }
1505 
1506 /* find the first state struct with 'bits' set after 'start', and
1507  * return it.  tree->lock must be held.  NULL will returned if
1508  * nothing was found after 'start'
1509  */
1510 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1511 find_first_extent_bit_state(struct extent_io_tree *tree,
1512 			    u64 start, unsigned bits)
1513 {
1514 	struct rb_node *node;
1515 	struct extent_state *state;
1516 
1517 	/*
1518 	 * this search will find all the extents that end after
1519 	 * our range starts.
1520 	 */
1521 	node = tree_search(tree, start);
1522 	if (!node)
1523 		goto out;
1524 
1525 	while (1) {
1526 		state = rb_entry(node, struct extent_state, rb_node);
1527 		if (state->end >= start && (state->state & bits))
1528 			return state;
1529 
1530 		node = rb_next(node);
1531 		if (!node)
1532 			break;
1533 	}
1534 out:
1535 	return NULL;
1536 }
1537 
1538 /*
1539  * find the first offset in the io tree with 'bits' set. zero is
1540  * returned if we find something, and *start_ret and *end_ret are
1541  * set to reflect the state struct that was found.
1542  *
1543  * If nothing was found, 1 is returned. If found something, return 0.
1544  */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1545 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1546 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1547 			  struct extent_state **cached_state)
1548 {
1549 	struct extent_state *state;
1550 	struct rb_node *n;
1551 	int ret = 1;
1552 
1553 	spin_lock(&tree->lock);
1554 	if (cached_state && *cached_state) {
1555 		state = *cached_state;
1556 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1557 			n = rb_next(&state->rb_node);
1558 			while (n) {
1559 				state = rb_entry(n, struct extent_state,
1560 						 rb_node);
1561 				if (state->state & bits)
1562 					goto got_it;
1563 				n = rb_next(n);
1564 			}
1565 			free_extent_state(*cached_state);
1566 			*cached_state = NULL;
1567 			goto out;
1568 		}
1569 		free_extent_state(*cached_state);
1570 		*cached_state = NULL;
1571 	}
1572 
1573 	state = find_first_extent_bit_state(tree, start, bits);
1574 got_it:
1575 	if (state) {
1576 		cache_state_if_flags(state, cached_state, 0);
1577 		*start_ret = state->start;
1578 		*end_ret = state->end;
1579 		ret = 0;
1580 	}
1581 out:
1582 	spin_unlock(&tree->lock);
1583 	return ret;
1584 }
1585 
1586 /*
1587  * find a contiguous range of bytes in the file marked as delalloc, not
1588  * more than 'max_bytes'.  start and end are used to return the range,
1589  *
1590  * 1 is returned if we find something, 0 if nothing was in the tree
1591  */
find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1592 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1593 					u64 *start, u64 *end, u64 max_bytes,
1594 					struct extent_state **cached_state)
1595 {
1596 	struct rb_node *node;
1597 	struct extent_state *state;
1598 	u64 cur_start = *start;
1599 	u64 found = 0;
1600 	u64 total_bytes = 0;
1601 
1602 	spin_lock(&tree->lock);
1603 
1604 	/*
1605 	 * this search will find all the extents that end after
1606 	 * our range starts.
1607 	 */
1608 	node = tree_search(tree, cur_start);
1609 	if (!node) {
1610 		if (!found)
1611 			*end = (u64)-1;
1612 		goto out;
1613 	}
1614 
1615 	while (1) {
1616 		state = rb_entry(node, struct extent_state, rb_node);
1617 		if (found && (state->start != cur_start ||
1618 			      (state->state & EXTENT_BOUNDARY))) {
1619 			goto out;
1620 		}
1621 		if (!(state->state & EXTENT_DELALLOC)) {
1622 			if (!found)
1623 				*end = state->end;
1624 			goto out;
1625 		}
1626 		if (!found) {
1627 			*start = state->start;
1628 			*cached_state = state;
1629 			atomic_inc(&state->refs);
1630 		}
1631 		found++;
1632 		*end = state->end;
1633 		cur_start = state->end + 1;
1634 		node = rb_next(node);
1635 		total_bytes += state->end - state->start + 1;
1636 		if (total_bytes >= max_bytes)
1637 			break;
1638 		if (!node)
1639 			break;
1640 	}
1641 out:
1642 	spin_unlock(&tree->lock);
1643 	return found;
1644 }
1645 
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1646 static noinline void __unlock_for_delalloc(struct inode *inode,
1647 					   struct page *locked_page,
1648 					   u64 start, u64 end)
1649 {
1650 	int ret;
1651 	struct page *pages[16];
1652 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1653 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1654 	unsigned long nr_pages = end_index - index + 1;
1655 	int i;
1656 
1657 	if (index == locked_page->index && end_index == index)
1658 		return;
1659 
1660 	while (nr_pages > 0) {
1661 		ret = find_get_pages_contig(inode->i_mapping, index,
1662 				     min_t(unsigned long, nr_pages,
1663 				     ARRAY_SIZE(pages)), pages);
1664 		for (i = 0; i < ret; i++) {
1665 			if (pages[i] != locked_page)
1666 				unlock_page(pages[i]);
1667 			page_cache_release(pages[i]);
1668 		}
1669 		nr_pages -= ret;
1670 		index += ret;
1671 		cond_resched();
1672 	}
1673 }
1674 
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1675 static noinline int lock_delalloc_pages(struct inode *inode,
1676 					struct page *locked_page,
1677 					u64 delalloc_start,
1678 					u64 delalloc_end)
1679 {
1680 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1681 	unsigned long start_index = index;
1682 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1683 	unsigned long pages_locked = 0;
1684 	struct page *pages[16];
1685 	unsigned long nrpages;
1686 	int ret;
1687 	int i;
1688 
1689 	/* the caller is responsible for locking the start index */
1690 	if (index == locked_page->index && index == end_index)
1691 		return 0;
1692 
1693 	/* skip the page at the start index */
1694 	nrpages = end_index - index + 1;
1695 	while (nrpages > 0) {
1696 		ret = find_get_pages_contig(inode->i_mapping, index,
1697 				     min_t(unsigned long,
1698 				     nrpages, ARRAY_SIZE(pages)), pages);
1699 		if (ret == 0) {
1700 			ret = -EAGAIN;
1701 			goto done;
1702 		}
1703 		/* now we have an array of pages, lock them all */
1704 		for (i = 0; i < ret; i++) {
1705 			/*
1706 			 * the caller is taking responsibility for
1707 			 * locked_page
1708 			 */
1709 			if (pages[i] != locked_page) {
1710 				lock_page(pages[i]);
1711 				if (!PageDirty(pages[i]) ||
1712 				    pages[i]->mapping != inode->i_mapping) {
1713 					ret = -EAGAIN;
1714 					unlock_page(pages[i]);
1715 					page_cache_release(pages[i]);
1716 					goto done;
1717 				}
1718 			}
1719 			page_cache_release(pages[i]);
1720 			pages_locked++;
1721 		}
1722 		nrpages -= ret;
1723 		index += ret;
1724 		cond_resched();
1725 	}
1726 	ret = 0;
1727 done:
1728 	if (ret && pages_locked) {
1729 		__unlock_for_delalloc(inode, locked_page,
1730 			      delalloc_start,
1731 			      ((u64)(start_index + pages_locked - 1)) <<
1732 			      PAGE_CACHE_SHIFT);
1733 	}
1734 	return ret;
1735 }
1736 
1737 /*
1738  * find a contiguous range of bytes in the file marked as delalloc, not
1739  * more than 'max_bytes'.  start and end are used to return the range,
1740  *
1741  * 1 is returned if we find something, 0 if nothing was in the tree
1742  */
find_lock_delalloc_range(struct inode * inode,struct extent_io_tree * tree,struct page * locked_page,u64 * start,u64 * end,u64 max_bytes)1743 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1744 				    struct extent_io_tree *tree,
1745 				    struct page *locked_page, u64 *start,
1746 				    u64 *end, u64 max_bytes)
1747 {
1748 	u64 delalloc_start;
1749 	u64 delalloc_end;
1750 	u64 found;
1751 	struct extent_state *cached_state = NULL;
1752 	int ret;
1753 	int loops = 0;
1754 
1755 again:
1756 	/* step one, find a bunch of delalloc bytes starting at start */
1757 	delalloc_start = *start;
1758 	delalloc_end = 0;
1759 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1760 				    max_bytes, &cached_state);
1761 	if (!found || delalloc_end <= *start) {
1762 		*start = delalloc_start;
1763 		*end = delalloc_end;
1764 		free_extent_state(cached_state);
1765 		return 0;
1766 	}
1767 
1768 	/*
1769 	 * start comes from the offset of locked_page.  We have to lock
1770 	 * pages in order, so we can't process delalloc bytes before
1771 	 * locked_page
1772 	 */
1773 	if (delalloc_start < *start)
1774 		delalloc_start = *start;
1775 
1776 	/*
1777 	 * make sure to limit the number of pages we try to lock down
1778 	 */
1779 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1780 		delalloc_end = delalloc_start + max_bytes - 1;
1781 
1782 	/* step two, lock all the pages after the page that has start */
1783 	ret = lock_delalloc_pages(inode, locked_page,
1784 				  delalloc_start, delalloc_end);
1785 	if (ret == -EAGAIN) {
1786 		/* some of the pages are gone, lets avoid looping by
1787 		 * shortening the size of the delalloc range we're searching
1788 		 */
1789 		free_extent_state(cached_state);
1790 		cached_state = NULL;
1791 		if (!loops) {
1792 			max_bytes = PAGE_CACHE_SIZE;
1793 			loops = 1;
1794 			goto again;
1795 		} else {
1796 			found = 0;
1797 			goto out_failed;
1798 		}
1799 	}
1800 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1801 
1802 	/* step three, lock the state bits for the whole range */
1803 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1804 
1805 	/* then test to make sure it is all still delalloc */
1806 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1807 			     EXTENT_DELALLOC, 1, cached_state);
1808 	if (!ret) {
1809 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1810 				     &cached_state, GFP_NOFS);
1811 		__unlock_for_delalloc(inode, locked_page,
1812 			      delalloc_start, delalloc_end);
1813 		cond_resched();
1814 		goto again;
1815 	}
1816 	free_extent_state(cached_state);
1817 	*start = delalloc_start;
1818 	*end = delalloc_end;
1819 out_failed:
1820 	return found;
1821 }
1822 
extent_clear_unlock_delalloc(struct inode * inode,u64 start,u64 end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)1823 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1824 				 struct page *locked_page,
1825 				 unsigned clear_bits,
1826 				 unsigned long page_ops)
1827 {
1828 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1829 	int ret;
1830 	struct page *pages[16];
1831 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1832 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1833 	unsigned long nr_pages = end_index - index + 1;
1834 	int i;
1835 
1836 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1837 	if (page_ops == 0)
1838 		return 0;
1839 
1840 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1841 		mapping_set_error(inode->i_mapping, -EIO);
1842 
1843 	while (nr_pages > 0) {
1844 		ret = find_get_pages_contig(inode->i_mapping, index,
1845 				     min_t(unsigned long,
1846 				     nr_pages, ARRAY_SIZE(pages)), pages);
1847 		for (i = 0; i < ret; i++) {
1848 
1849 			if (page_ops & PAGE_SET_PRIVATE2)
1850 				SetPagePrivate2(pages[i]);
1851 
1852 			if (pages[i] == locked_page) {
1853 				page_cache_release(pages[i]);
1854 				continue;
1855 			}
1856 			if (page_ops & PAGE_CLEAR_DIRTY)
1857 				clear_page_dirty_for_io(pages[i]);
1858 			if (page_ops & PAGE_SET_WRITEBACK)
1859 				set_page_writeback(pages[i]);
1860 			if (page_ops & PAGE_SET_ERROR)
1861 				SetPageError(pages[i]);
1862 			if (page_ops & PAGE_END_WRITEBACK)
1863 				end_page_writeback(pages[i]);
1864 			if (page_ops & PAGE_UNLOCK)
1865 				unlock_page(pages[i]);
1866 			page_cache_release(pages[i]);
1867 		}
1868 		nr_pages -= ret;
1869 		index += ret;
1870 		cond_resched();
1871 	}
1872 	return 0;
1873 }
1874 
1875 /*
1876  * count the number of bytes in the tree that have a given bit(s)
1877  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1878  * cached.  The total number found is returned.
1879  */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)1880 u64 count_range_bits(struct extent_io_tree *tree,
1881 		     u64 *start, u64 search_end, u64 max_bytes,
1882 		     unsigned bits, int contig)
1883 {
1884 	struct rb_node *node;
1885 	struct extent_state *state;
1886 	u64 cur_start = *start;
1887 	u64 total_bytes = 0;
1888 	u64 last = 0;
1889 	int found = 0;
1890 
1891 	if (WARN_ON(search_end <= cur_start))
1892 		return 0;
1893 
1894 	spin_lock(&tree->lock);
1895 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1896 		total_bytes = tree->dirty_bytes;
1897 		goto out;
1898 	}
1899 	/*
1900 	 * this search will find all the extents that end after
1901 	 * our range starts.
1902 	 */
1903 	node = tree_search(tree, cur_start);
1904 	if (!node)
1905 		goto out;
1906 
1907 	while (1) {
1908 		state = rb_entry(node, struct extent_state, rb_node);
1909 		if (state->start > search_end)
1910 			break;
1911 		if (contig && found && state->start > last + 1)
1912 			break;
1913 		if (state->end >= cur_start && (state->state & bits) == bits) {
1914 			total_bytes += min(search_end, state->end) + 1 -
1915 				       max(cur_start, state->start);
1916 			if (total_bytes >= max_bytes)
1917 				break;
1918 			if (!found) {
1919 				*start = max(cur_start, state->start);
1920 				found = 1;
1921 			}
1922 			last = state->end;
1923 		} else if (contig && found) {
1924 			break;
1925 		}
1926 		node = rb_next(node);
1927 		if (!node)
1928 			break;
1929 	}
1930 out:
1931 	spin_unlock(&tree->lock);
1932 	return total_bytes;
1933 }
1934 
1935 /*
1936  * set the private field for a given byte offset in the tree.  If there isn't
1937  * an extent_state there already, this does nothing.
1938  */
set_state_private(struct extent_io_tree * tree,u64 start,u64 private)1939 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1940 {
1941 	struct rb_node *node;
1942 	struct extent_state *state;
1943 	int ret = 0;
1944 
1945 	spin_lock(&tree->lock);
1946 	/*
1947 	 * this search will find all the extents that end after
1948 	 * our range starts.
1949 	 */
1950 	node = tree_search(tree, start);
1951 	if (!node) {
1952 		ret = -ENOENT;
1953 		goto out;
1954 	}
1955 	state = rb_entry(node, struct extent_state, rb_node);
1956 	if (state->start != start) {
1957 		ret = -ENOENT;
1958 		goto out;
1959 	}
1960 	state->private = private;
1961 out:
1962 	spin_unlock(&tree->lock);
1963 	return ret;
1964 }
1965 
get_state_private(struct extent_io_tree * tree,u64 start,u64 * private)1966 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1967 {
1968 	struct rb_node *node;
1969 	struct extent_state *state;
1970 	int ret = 0;
1971 
1972 	spin_lock(&tree->lock);
1973 	/*
1974 	 * this search will find all the extents that end after
1975 	 * our range starts.
1976 	 */
1977 	node = tree_search(tree, start);
1978 	if (!node) {
1979 		ret = -ENOENT;
1980 		goto out;
1981 	}
1982 	state = rb_entry(node, struct extent_state, rb_node);
1983 	if (state->start != start) {
1984 		ret = -ENOENT;
1985 		goto out;
1986 	}
1987 	*private = state->private;
1988 out:
1989 	spin_unlock(&tree->lock);
1990 	return ret;
1991 }
1992 
1993 /*
1994  * searches a range in the state tree for a given mask.
1995  * If 'filled' == 1, this returns 1 only if every extent in the tree
1996  * has the bits set.  Otherwise, 1 is returned if any bit in the
1997  * range is found set.
1998  */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)1999 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2000 		   unsigned bits, int filled, struct extent_state *cached)
2001 {
2002 	struct extent_state *state = NULL;
2003 	struct rb_node *node;
2004 	int bitset = 0;
2005 
2006 	spin_lock(&tree->lock);
2007 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2008 	    cached->end > start)
2009 		node = &cached->rb_node;
2010 	else
2011 		node = tree_search(tree, start);
2012 	while (node && start <= end) {
2013 		state = rb_entry(node, struct extent_state, rb_node);
2014 
2015 		if (filled && state->start > start) {
2016 			bitset = 0;
2017 			break;
2018 		}
2019 
2020 		if (state->start > end)
2021 			break;
2022 
2023 		if (state->state & bits) {
2024 			bitset = 1;
2025 			if (!filled)
2026 				break;
2027 		} else if (filled) {
2028 			bitset = 0;
2029 			break;
2030 		}
2031 
2032 		if (state->end == (u64)-1)
2033 			break;
2034 
2035 		start = state->end + 1;
2036 		if (start > end)
2037 			break;
2038 		node = rb_next(node);
2039 		if (!node) {
2040 			if (filled)
2041 				bitset = 0;
2042 			break;
2043 		}
2044 	}
2045 	spin_unlock(&tree->lock);
2046 	return bitset;
2047 }
2048 
2049 /*
2050  * helper function to set a given page up to date if all the
2051  * extents in the tree for that page are up to date
2052  */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)2053 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2054 {
2055 	u64 start = page_offset(page);
2056 	u64 end = start + PAGE_CACHE_SIZE - 1;
2057 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2058 		SetPageUptodate(page);
2059 }
2060 
free_io_failure(struct inode * inode,struct io_failure_record * rec)2061 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2062 {
2063 	int ret;
2064 	int err = 0;
2065 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2066 
2067 	set_state_private(failure_tree, rec->start, 0);
2068 	ret = clear_extent_bits(failure_tree, rec->start,
2069 				rec->start + rec->len - 1,
2070 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2071 	if (ret)
2072 		err = ret;
2073 
2074 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2075 				rec->start + rec->len - 1,
2076 				EXTENT_DAMAGED, GFP_NOFS);
2077 	if (ret && !err)
2078 		err = ret;
2079 
2080 	kfree(rec);
2081 	return err;
2082 }
2083 
2084 /*
2085  * this bypasses the standard btrfs submit functions deliberately, as
2086  * the standard behavior is to write all copies in a raid setup. here we only
2087  * want to write the one bad copy. so we do the mapping for ourselves and issue
2088  * submit_bio directly.
2089  * to avoid any synchronization issues, wait for the data after writing, which
2090  * actually prevents the read that triggered the error from finishing.
2091  * currently, there can be no more than two copies of every data bit. thus,
2092  * exactly one rewrite is required.
2093  */
repair_io_failure(struct inode * inode,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2094 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2095 		      struct page *page, unsigned int pg_offset, int mirror_num)
2096 {
2097 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2098 	struct bio *bio;
2099 	struct btrfs_device *dev;
2100 	u64 map_length = 0;
2101 	u64 sector;
2102 	struct btrfs_bio *bbio = NULL;
2103 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2104 	int ret;
2105 
2106 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2107 	BUG_ON(!mirror_num);
2108 
2109 	/* we can't repair anything in raid56 yet */
2110 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2111 		return 0;
2112 
2113 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2114 	if (!bio)
2115 		return -EIO;
2116 	bio->bi_iter.bi_size = 0;
2117 	map_length = length;
2118 
2119 	ret = btrfs_map_block(fs_info, WRITE, logical,
2120 			      &map_length, &bbio, mirror_num);
2121 	if (ret) {
2122 		bio_put(bio);
2123 		return -EIO;
2124 	}
2125 	BUG_ON(mirror_num != bbio->mirror_num);
2126 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2127 	bio->bi_iter.bi_sector = sector;
2128 	dev = bbio->stripes[mirror_num-1].dev;
2129 	btrfs_put_bbio(bbio);
2130 	if (!dev || !dev->bdev || !dev->writeable) {
2131 		bio_put(bio);
2132 		return -EIO;
2133 	}
2134 	bio->bi_bdev = dev->bdev;
2135 	bio_add_page(bio, page, length, pg_offset);
2136 
2137 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2138 		/* try to remap that extent elsewhere? */
2139 		bio_put(bio);
2140 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2141 		return -EIO;
2142 	}
2143 
2144 	btrfs_info_rl_in_rcu(fs_info,
2145 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2146 				  btrfs_ino(inode), start,
2147 				  rcu_str_deref(dev->name), sector);
2148 	bio_put(bio);
2149 	return 0;
2150 }
2151 
repair_eb_io_failure(struct btrfs_root * root,struct extent_buffer * eb,int mirror_num)2152 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2153 			 int mirror_num)
2154 {
2155 	u64 start = eb->start;
2156 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2157 	int ret = 0;
2158 
2159 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2160 		return -EROFS;
2161 
2162 	for (i = 0; i < num_pages; i++) {
2163 		struct page *p = eb->pages[i];
2164 
2165 		ret = repair_io_failure(root->fs_info->btree_inode, start,
2166 					PAGE_CACHE_SIZE, start, p,
2167 					start - page_offset(p), mirror_num);
2168 		if (ret)
2169 			break;
2170 		start += PAGE_CACHE_SIZE;
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 /*
2177  * each time an IO finishes, we do a fast check in the IO failure tree
2178  * to see if we need to process or clean up an io_failure_record
2179  */
clean_io_failure(struct inode * inode,u64 start,struct page * page,unsigned int pg_offset)2180 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2181 		     unsigned int pg_offset)
2182 {
2183 	u64 private;
2184 	u64 private_failure;
2185 	struct io_failure_record *failrec;
2186 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2187 	struct extent_state *state;
2188 	int num_copies;
2189 	int ret;
2190 
2191 	private = 0;
2192 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2193 				(u64)-1, 1, EXTENT_DIRTY, 0);
2194 	if (!ret)
2195 		return 0;
2196 
2197 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2198 				&private_failure);
2199 	if (ret)
2200 		return 0;
2201 
2202 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2203 	BUG_ON(!failrec->this_mirror);
2204 
2205 	if (failrec->in_validation) {
2206 		/* there was no real error, just free the record */
2207 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2208 			 failrec->start);
2209 		goto out;
2210 	}
2211 	if (fs_info->sb->s_flags & MS_RDONLY)
2212 		goto out;
2213 
2214 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2215 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2216 					    failrec->start,
2217 					    EXTENT_LOCKED);
2218 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2219 
2220 	if (state && state->start <= failrec->start &&
2221 	    state->end >= failrec->start + failrec->len - 1) {
2222 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2223 					      failrec->len);
2224 		if (num_copies > 1)  {
2225 			repair_io_failure(inode, start, failrec->len,
2226 					  failrec->logical, page,
2227 					  pg_offset, failrec->failed_mirror);
2228 		}
2229 	}
2230 
2231 out:
2232 	free_io_failure(inode, failrec);
2233 
2234 	return 0;
2235 }
2236 
2237 /*
2238  * Can be called when
2239  * - hold extent lock
2240  * - under ordered extent
2241  * - the inode is freeing
2242  */
btrfs_free_io_failure_record(struct inode * inode,u64 start,u64 end)2243 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2244 {
2245 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2246 	struct io_failure_record *failrec;
2247 	struct extent_state *state, *next;
2248 
2249 	if (RB_EMPTY_ROOT(&failure_tree->state))
2250 		return;
2251 
2252 	spin_lock(&failure_tree->lock);
2253 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2254 	while (state) {
2255 		if (state->start > end)
2256 			break;
2257 
2258 		ASSERT(state->end <= end);
2259 
2260 		next = next_state(state);
2261 
2262 		failrec = (struct io_failure_record *)(unsigned long)state->private;
2263 		free_extent_state(state);
2264 		kfree(failrec);
2265 
2266 		state = next;
2267 	}
2268 	spin_unlock(&failure_tree->lock);
2269 }
2270 
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end,struct io_failure_record ** failrec_ret)2271 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2272 				struct io_failure_record **failrec_ret)
2273 {
2274 	struct io_failure_record *failrec;
2275 	u64 private;
2276 	struct extent_map *em;
2277 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2278 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2279 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2280 	int ret;
2281 	u64 logical;
2282 
2283 	ret = get_state_private(failure_tree, start, &private);
2284 	if (ret) {
2285 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2286 		if (!failrec)
2287 			return -ENOMEM;
2288 
2289 		failrec->start = start;
2290 		failrec->len = end - start + 1;
2291 		failrec->this_mirror = 0;
2292 		failrec->bio_flags = 0;
2293 		failrec->in_validation = 0;
2294 
2295 		read_lock(&em_tree->lock);
2296 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2297 		if (!em) {
2298 			read_unlock(&em_tree->lock);
2299 			kfree(failrec);
2300 			return -EIO;
2301 		}
2302 
2303 		if (em->start > start || em->start + em->len <= start) {
2304 			free_extent_map(em);
2305 			em = NULL;
2306 		}
2307 		read_unlock(&em_tree->lock);
2308 		if (!em) {
2309 			kfree(failrec);
2310 			return -EIO;
2311 		}
2312 
2313 		logical = start - em->start;
2314 		logical = em->block_start + logical;
2315 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2316 			logical = em->block_start;
2317 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2318 			extent_set_compress_type(&failrec->bio_flags,
2319 						 em->compress_type);
2320 		}
2321 
2322 		pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323 			 logical, start, failrec->len);
2324 
2325 		failrec->logical = logical;
2326 		free_extent_map(em);
2327 
2328 		/* set the bits in the private failure tree */
2329 		ret = set_extent_bits(failure_tree, start, end,
2330 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2331 		if (ret >= 0)
2332 			ret = set_state_private(failure_tree, start,
2333 						(u64)(unsigned long)failrec);
2334 		/* set the bits in the inode's tree */
2335 		if (ret >= 0)
2336 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2337 						GFP_NOFS);
2338 		if (ret < 0) {
2339 			kfree(failrec);
2340 			return ret;
2341 		}
2342 	} else {
2343 		failrec = (struct io_failure_record *)(unsigned long)private;
2344 		pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2345 			 failrec->logical, failrec->start, failrec->len,
2346 			 failrec->in_validation);
2347 		/*
2348 		 * when data can be on disk more than twice, add to failrec here
2349 		 * (e.g. with a list for failed_mirror) to make
2350 		 * clean_io_failure() clean all those errors at once.
2351 		 */
2352 	}
2353 
2354 	*failrec_ret = failrec;
2355 
2356 	return 0;
2357 }
2358 
btrfs_check_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)2359 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2360 			   struct io_failure_record *failrec, int failed_mirror)
2361 {
2362 	int num_copies;
2363 
2364 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2365 				      failrec->logical, failrec->len);
2366 	if (num_copies == 1) {
2367 		/*
2368 		 * we only have a single copy of the data, so don't bother with
2369 		 * all the retry and error correction code that follows. no
2370 		 * matter what the error is, it is very likely to persist.
2371 		 */
2372 		pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2373 			 num_copies, failrec->this_mirror, failed_mirror);
2374 		return 0;
2375 	}
2376 
2377 	/*
2378 	 * there are two premises:
2379 	 *	a) deliver good data to the caller
2380 	 *	b) correct the bad sectors on disk
2381 	 */
2382 	if (failed_bio->bi_vcnt > 1) {
2383 		/*
2384 		 * to fulfill b), we need to know the exact failing sectors, as
2385 		 * we don't want to rewrite any more than the failed ones. thus,
2386 		 * we need separate read requests for the failed bio
2387 		 *
2388 		 * if the following BUG_ON triggers, our validation request got
2389 		 * merged. we need separate requests for our algorithm to work.
2390 		 */
2391 		BUG_ON(failrec->in_validation);
2392 		failrec->in_validation = 1;
2393 		failrec->this_mirror = failed_mirror;
2394 	} else {
2395 		/*
2396 		 * we're ready to fulfill a) and b) alongside. get a good copy
2397 		 * of the failed sector and if we succeed, we have setup
2398 		 * everything for repair_io_failure to do the rest for us.
2399 		 */
2400 		if (failrec->in_validation) {
2401 			BUG_ON(failrec->this_mirror != failed_mirror);
2402 			failrec->in_validation = 0;
2403 			failrec->this_mirror = 0;
2404 		}
2405 		failrec->failed_mirror = failed_mirror;
2406 		failrec->this_mirror++;
2407 		if (failrec->this_mirror == failed_mirror)
2408 			failrec->this_mirror++;
2409 	}
2410 
2411 	if (failrec->this_mirror > num_copies) {
2412 		pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2413 			 num_copies, failrec->this_mirror, failed_mirror);
2414 		return 0;
2415 	}
2416 
2417 	return 1;
2418 }
2419 
2420 
btrfs_create_repair_bio(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,struct page * page,int pg_offset,int icsum,bio_end_io_t * endio_func,void * data)2421 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2422 				    struct io_failure_record *failrec,
2423 				    struct page *page, int pg_offset, int icsum,
2424 				    bio_end_io_t *endio_func, void *data)
2425 {
2426 	struct bio *bio;
2427 	struct btrfs_io_bio *btrfs_failed_bio;
2428 	struct btrfs_io_bio *btrfs_bio;
2429 
2430 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2431 	if (!bio)
2432 		return NULL;
2433 
2434 	bio->bi_end_io = endio_func;
2435 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2436 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2437 	bio->bi_iter.bi_size = 0;
2438 	bio->bi_private = data;
2439 
2440 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2441 	if (btrfs_failed_bio->csum) {
2442 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2443 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2444 
2445 		btrfs_bio = btrfs_io_bio(bio);
2446 		btrfs_bio->csum = btrfs_bio->csum_inline;
2447 		icsum *= csum_size;
2448 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2449 		       csum_size);
2450 	}
2451 
2452 	bio_add_page(bio, page, failrec->len, pg_offset);
2453 
2454 	return bio;
2455 }
2456 
2457 /*
2458  * this is a generic handler for readpage errors (default
2459  * readpage_io_failed_hook). if other copies exist, read those and write back
2460  * good data to the failed position. does not investigate in remapping the
2461  * failed extent elsewhere, hoping the device will be smart enough to do this as
2462  * needed
2463  */
2464 
bio_readpage_error(struct bio * failed_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int failed_mirror)2465 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2466 			      struct page *page, u64 start, u64 end,
2467 			      int failed_mirror)
2468 {
2469 	struct io_failure_record *failrec;
2470 	struct inode *inode = page->mapping->host;
2471 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2472 	struct bio *bio;
2473 	int read_mode;
2474 	int ret;
2475 
2476 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2477 
2478 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2479 	if (ret)
2480 		return ret;
2481 
2482 	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2483 	if (!ret) {
2484 		free_io_failure(inode, failrec);
2485 		return -EIO;
2486 	}
2487 
2488 	if (failed_bio->bi_vcnt > 1)
2489 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2490 	else
2491 		read_mode = READ_SYNC;
2492 
2493 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2494 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2495 				      start - page_offset(page),
2496 				      (int)phy_offset, failed_bio->bi_end_io,
2497 				      NULL);
2498 	if (!bio) {
2499 		free_io_failure(inode, failrec);
2500 		return -EIO;
2501 	}
2502 
2503 	pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504 		 read_mode, failrec->this_mirror, failrec->in_validation);
2505 
2506 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2507 					 failrec->this_mirror,
2508 					 failrec->bio_flags, 0);
2509 	if (ret) {
2510 		free_io_failure(inode, failrec);
2511 		bio_put(bio);
2512 	}
2513 
2514 	return ret;
2515 }
2516 
2517 /* lots and lots of room for performance fixes in the end_bio funcs */
2518 
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2519 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2520 {
2521 	int uptodate = (err == 0);
2522 	struct extent_io_tree *tree;
2523 	int ret = 0;
2524 
2525 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2526 
2527 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2528 		ret = tree->ops->writepage_end_io_hook(page, start,
2529 					       end, NULL, uptodate);
2530 		if (ret)
2531 			uptodate = 0;
2532 	}
2533 
2534 	if (!uptodate) {
2535 		ClearPageUptodate(page);
2536 		SetPageError(page);
2537 		ret = err < 0 ? err : -EIO;
2538 		mapping_set_error(page->mapping, ret);
2539 	}
2540 	return 0;
2541 }
2542 
2543 /*
2544  * after a writepage IO is done, we need to:
2545  * clear the uptodate bits on error
2546  * clear the writeback bits in the extent tree for this IO
2547  * end_page_writeback if the page has no more pending IO
2548  *
2549  * Scheduling is not allowed, so the extent state tree is expected
2550  * to have one and only one object corresponding to this IO.
2551  */
end_bio_extent_writepage(struct bio * bio)2552 static void end_bio_extent_writepage(struct bio *bio)
2553 {
2554 	struct bio_vec *bvec;
2555 	u64 start;
2556 	u64 end;
2557 	int i;
2558 
2559 	bio_for_each_segment_all(bvec, bio, i) {
2560 		struct page *page = bvec->bv_page;
2561 
2562 		/* We always issue full-page reads, but if some block
2563 		 * in a page fails to read, blk_update_request() will
2564 		 * advance bv_offset and adjust bv_len to compensate.
2565 		 * Print a warning for nonzero offsets, and an error
2566 		 * if they don't add up to a full page.  */
2567 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2568 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2569 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2570 				   "partial page write in btrfs with offset %u and length %u",
2571 					bvec->bv_offset, bvec->bv_len);
2572 			else
2573 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2574 				   "incomplete page write in btrfs with offset %u and "
2575 				   "length %u",
2576 					bvec->bv_offset, bvec->bv_len);
2577 		}
2578 
2579 		start = page_offset(page);
2580 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2581 
2582 		if (end_extent_writepage(page, bio->bi_error, start, end))
2583 			continue;
2584 
2585 		end_page_writeback(page);
2586 	}
2587 
2588 	bio_put(bio);
2589 }
2590 
2591 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2592 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2593 			      int uptodate)
2594 {
2595 	struct extent_state *cached = NULL;
2596 	u64 end = start + len - 1;
2597 
2598 	if (uptodate && tree->track_uptodate)
2599 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2600 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2601 }
2602 
2603 /*
2604  * after a readpage IO is done, we need to:
2605  * clear the uptodate bits on error
2606  * set the uptodate bits if things worked
2607  * set the page up to date if all extents in the tree are uptodate
2608  * clear the lock bit in the extent tree
2609  * unlock the page if there are no other extents locked for it
2610  *
2611  * Scheduling is not allowed, so the extent state tree is expected
2612  * to have one and only one object corresponding to this IO.
2613  */
end_bio_extent_readpage(struct bio * bio)2614 static void end_bio_extent_readpage(struct bio *bio)
2615 {
2616 	struct bio_vec *bvec;
2617 	int uptodate = !bio->bi_error;
2618 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2619 	struct extent_io_tree *tree;
2620 	u64 offset = 0;
2621 	u64 start;
2622 	u64 end;
2623 	u64 len;
2624 	u64 extent_start = 0;
2625 	u64 extent_len = 0;
2626 	int mirror;
2627 	int ret;
2628 	int i;
2629 
2630 	bio_for_each_segment_all(bvec, bio, i) {
2631 		struct page *page = bvec->bv_page;
2632 		struct inode *inode = page->mapping->host;
2633 
2634 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2635 			 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2636 			 bio->bi_error, io_bio->mirror_num);
2637 		tree = &BTRFS_I(inode)->io_tree;
2638 
2639 		/* We always issue full-page reads, but if some block
2640 		 * in a page fails to read, blk_update_request() will
2641 		 * advance bv_offset and adjust bv_len to compensate.
2642 		 * Print a warning for nonzero offsets, and an error
2643 		 * if they don't add up to a full page.  */
2644 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2645 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2646 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2647 				   "partial page read in btrfs with offset %u and length %u",
2648 					bvec->bv_offset, bvec->bv_len);
2649 			else
2650 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2651 				   "incomplete page read in btrfs with offset %u and "
2652 				   "length %u",
2653 					bvec->bv_offset, bvec->bv_len);
2654 		}
2655 
2656 		start = page_offset(page);
2657 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2658 		len = bvec->bv_len;
2659 
2660 		mirror = io_bio->mirror_num;
2661 		if (likely(uptodate && tree->ops &&
2662 			   tree->ops->readpage_end_io_hook)) {
2663 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2664 							      page, start, end,
2665 							      mirror);
2666 			if (ret)
2667 				uptodate = 0;
2668 			else
2669 				clean_io_failure(inode, start, page, 0);
2670 		}
2671 
2672 		if (likely(uptodate))
2673 			goto readpage_ok;
2674 
2675 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2676 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2677 			if (!ret && !bio->bi_error)
2678 				uptodate = 1;
2679 		} else {
2680 			/*
2681 			 * The generic bio_readpage_error handles errors the
2682 			 * following way: If possible, new read requests are
2683 			 * created and submitted and will end up in
2684 			 * end_bio_extent_readpage as well (if we're lucky, not
2685 			 * in the !uptodate case). In that case it returns 0 and
2686 			 * we just go on with the next page in our bio. If it
2687 			 * can't handle the error it will return -EIO and we
2688 			 * remain responsible for that page.
2689 			 */
2690 			ret = bio_readpage_error(bio, offset, page, start, end,
2691 						 mirror);
2692 			if (ret == 0) {
2693 				uptodate = !bio->bi_error;
2694 				offset += len;
2695 				continue;
2696 			}
2697 		}
2698 readpage_ok:
2699 		if (likely(uptodate)) {
2700 			loff_t i_size = i_size_read(inode);
2701 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2702 			unsigned off;
2703 
2704 			/* Zero out the end if this page straddles i_size */
2705 			off = i_size & (PAGE_CACHE_SIZE-1);
2706 			if (page->index == end_index && off)
2707 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
2708 			SetPageUptodate(page);
2709 		} else {
2710 			ClearPageUptodate(page);
2711 			SetPageError(page);
2712 		}
2713 		unlock_page(page);
2714 		offset += len;
2715 
2716 		if (unlikely(!uptodate)) {
2717 			if (extent_len) {
2718 				endio_readpage_release_extent(tree,
2719 							      extent_start,
2720 							      extent_len, 1);
2721 				extent_start = 0;
2722 				extent_len = 0;
2723 			}
2724 			endio_readpage_release_extent(tree, start,
2725 						      end - start + 1, 0);
2726 		} else if (!extent_len) {
2727 			extent_start = start;
2728 			extent_len = end + 1 - start;
2729 		} else if (extent_start + extent_len == start) {
2730 			extent_len += end + 1 - start;
2731 		} else {
2732 			endio_readpage_release_extent(tree, extent_start,
2733 						      extent_len, uptodate);
2734 			extent_start = start;
2735 			extent_len = end + 1 - start;
2736 		}
2737 	}
2738 
2739 	if (extent_len)
2740 		endio_readpage_release_extent(tree, extent_start, extent_len,
2741 					      uptodate);
2742 	if (io_bio->end_io)
2743 		io_bio->end_io(io_bio, bio->bi_error);
2744 	bio_put(bio);
2745 }
2746 
2747 /*
2748  * this allocates from the btrfs_bioset.  We're returning a bio right now
2749  * but you can call btrfs_io_bio for the appropriate container_of magic
2750  */
2751 struct bio *
btrfs_bio_alloc(struct block_device * bdev,u64 first_sector,int nr_vecs,gfp_t gfp_flags)2752 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2753 		gfp_t gfp_flags)
2754 {
2755 	struct btrfs_io_bio *btrfs_bio;
2756 	struct bio *bio;
2757 
2758 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2759 
2760 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2761 		while (!bio && (nr_vecs /= 2)) {
2762 			bio = bio_alloc_bioset(gfp_flags,
2763 					       nr_vecs, btrfs_bioset);
2764 		}
2765 	}
2766 
2767 	if (bio) {
2768 		bio->bi_bdev = bdev;
2769 		bio->bi_iter.bi_sector = first_sector;
2770 		btrfs_bio = btrfs_io_bio(bio);
2771 		btrfs_bio->csum = NULL;
2772 		btrfs_bio->csum_allocated = NULL;
2773 		btrfs_bio->end_io = NULL;
2774 	}
2775 	return bio;
2776 }
2777 
btrfs_bio_clone(struct bio * bio,gfp_t gfp_mask)2778 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2779 {
2780 	struct btrfs_io_bio *btrfs_bio;
2781 	struct bio *new;
2782 
2783 	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2784 	if (new) {
2785 		btrfs_bio = btrfs_io_bio(new);
2786 		btrfs_bio->csum = NULL;
2787 		btrfs_bio->csum_allocated = NULL;
2788 		btrfs_bio->end_io = NULL;
2789 	}
2790 	return new;
2791 }
2792 
2793 /* this also allocates from the btrfs_bioset */
btrfs_io_bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)2794 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2795 {
2796 	struct btrfs_io_bio *btrfs_bio;
2797 	struct bio *bio;
2798 
2799 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2800 	if (bio) {
2801 		btrfs_bio = btrfs_io_bio(bio);
2802 		btrfs_bio->csum = NULL;
2803 		btrfs_bio->csum_allocated = NULL;
2804 		btrfs_bio->end_io = NULL;
2805 	}
2806 	return bio;
2807 }
2808 
2809 
submit_one_bio(int rw,struct bio * bio,int mirror_num,unsigned long bio_flags)2810 static int __must_check submit_one_bio(int rw, struct bio *bio,
2811 				       int mirror_num, unsigned long bio_flags)
2812 {
2813 	int ret = 0;
2814 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2815 	struct page *page = bvec->bv_page;
2816 	struct extent_io_tree *tree = bio->bi_private;
2817 	u64 start;
2818 
2819 	start = page_offset(page) + bvec->bv_offset;
2820 
2821 	bio->bi_private = NULL;
2822 
2823 	bio_get(bio);
2824 
2825 	if (tree->ops && tree->ops->submit_bio_hook)
2826 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2827 					   mirror_num, bio_flags, start);
2828 	else
2829 		btrfsic_submit_bio(rw, bio);
2830 
2831 	bio_put(bio);
2832 	return ret;
2833 }
2834 
merge_bio(int rw,struct extent_io_tree * tree,struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)2835 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2836 		     unsigned long offset, size_t size, struct bio *bio,
2837 		     unsigned long bio_flags)
2838 {
2839 	int ret = 0;
2840 	if (tree->ops && tree->ops->merge_bio_hook)
2841 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2842 						bio_flags);
2843 	BUG_ON(ret < 0);
2844 	return ret;
2845 
2846 }
2847 
submit_extent_page(int rw,struct extent_io_tree * tree,struct writeback_control * wbc,struct page * page,sector_t sector,size_t size,unsigned long offset,struct block_device * bdev,struct bio ** bio_ret,unsigned long max_pages,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)2848 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2849 			      struct writeback_control *wbc,
2850 			      struct page *page, sector_t sector,
2851 			      size_t size, unsigned long offset,
2852 			      struct block_device *bdev,
2853 			      struct bio **bio_ret,
2854 			      unsigned long max_pages,
2855 			      bio_end_io_t end_io_func,
2856 			      int mirror_num,
2857 			      unsigned long prev_bio_flags,
2858 			      unsigned long bio_flags,
2859 			      bool force_bio_submit)
2860 {
2861 	int ret = 0;
2862 	struct bio *bio;
2863 	int contig = 0;
2864 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2865 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2866 
2867 	if (bio_ret && *bio_ret) {
2868 		bio = *bio_ret;
2869 		if (old_compressed)
2870 			contig = bio->bi_iter.bi_sector == sector;
2871 		else
2872 			contig = bio_end_sector(bio) == sector;
2873 
2874 		if (prev_bio_flags != bio_flags || !contig ||
2875 		    force_bio_submit ||
2876 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2877 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2878 			ret = submit_one_bio(rw, bio, mirror_num,
2879 					     prev_bio_flags);
2880 			if (ret < 0) {
2881 				*bio_ret = NULL;
2882 				return ret;
2883 			}
2884 			bio = NULL;
2885 		} else {
2886 			if (wbc)
2887 				wbc_account_io(wbc, page, page_size);
2888 			return 0;
2889 		}
2890 	}
2891 
2892 	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2893 			GFP_NOFS | __GFP_HIGH);
2894 	if (!bio)
2895 		return -ENOMEM;
2896 
2897 	bio_add_page(bio, page, page_size, offset);
2898 	bio->bi_end_io = end_io_func;
2899 	bio->bi_private = tree;
2900 	if (wbc) {
2901 		wbc_init_bio(wbc, bio);
2902 		wbc_account_io(wbc, page, page_size);
2903 	}
2904 
2905 	if (bio_ret)
2906 		*bio_ret = bio;
2907 	else
2908 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2909 
2910 	return ret;
2911 }
2912 
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)2913 static void attach_extent_buffer_page(struct extent_buffer *eb,
2914 				      struct page *page)
2915 {
2916 	if (!PagePrivate(page)) {
2917 		SetPagePrivate(page);
2918 		page_cache_get(page);
2919 		set_page_private(page, (unsigned long)eb);
2920 	} else {
2921 		WARN_ON(page->private != (unsigned long)eb);
2922 	}
2923 }
2924 
set_page_extent_mapped(struct page * page)2925 void set_page_extent_mapped(struct page *page)
2926 {
2927 	if (!PagePrivate(page)) {
2928 		SetPagePrivate(page);
2929 		page_cache_get(page);
2930 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2931 	}
2932 }
2933 
2934 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,get_extent_t * get_extent,struct extent_map ** em_cached)2935 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2936 		 u64 start, u64 len, get_extent_t *get_extent,
2937 		 struct extent_map **em_cached)
2938 {
2939 	struct extent_map *em;
2940 
2941 	if (em_cached && *em_cached) {
2942 		em = *em_cached;
2943 		if (extent_map_in_tree(em) && start >= em->start &&
2944 		    start < extent_map_end(em)) {
2945 			atomic_inc(&em->refs);
2946 			return em;
2947 		}
2948 
2949 		free_extent_map(em);
2950 		*em_cached = NULL;
2951 	}
2952 
2953 	em = get_extent(inode, page, pg_offset, start, len, 0);
2954 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2955 		BUG_ON(*em_cached);
2956 		atomic_inc(&em->refs);
2957 		*em_cached = em;
2958 	}
2959 	return em;
2960 }
2961 /*
2962  * basic readpage implementation.  Locked extent state structs are inserted
2963  * into the tree that are removed when the IO is done (by the end_io
2964  * handlers)
2965  * XXX JDM: This needs looking at to ensure proper page locking
2966  */
__do_readpage(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw,u64 * prev_em_start)2967 static int __do_readpage(struct extent_io_tree *tree,
2968 			 struct page *page,
2969 			 get_extent_t *get_extent,
2970 			 struct extent_map **em_cached,
2971 			 struct bio **bio, int mirror_num,
2972 			 unsigned long *bio_flags, int rw,
2973 			 u64 *prev_em_start)
2974 {
2975 	struct inode *inode = page->mapping->host;
2976 	u64 start = page_offset(page);
2977 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2978 	u64 end;
2979 	u64 cur = start;
2980 	u64 extent_offset;
2981 	u64 last_byte = i_size_read(inode);
2982 	u64 block_start;
2983 	u64 cur_end;
2984 	sector_t sector;
2985 	struct extent_map *em;
2986 	struct block_device *bdev;
2987 	int ret;
2988 	int nr = 0;
2989 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2990 	size_t pg_offset = 0;
2991 	size_t iosize;
2992 	size_t disk_io_size;
2993 	size_t blocksize = inode->i_sb->s_blocksize;
2994 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2995 
2996 	set_page_extent_mapped(page);
2997 
2998 	end = page_end;
2999 	if (!PageUptodate(page)) {
3000 		if (cleancache_get_page(page) == 0) {
3001 			BUG_ON(blocksize != PAGE_SIZE);
3002 			unlock_extent(tree, start, end);
3003 			goto out;
3004 		}
3005 	}
3006 
3007 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3008 		char *userpage;
3009 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3010 
3011 		if (zero_offset) {
3012 			iosize = PAGE_CACHE_SIZE - zero_offset;
3013 			userpage = kmap_atomic(page);
3014 			memset(userpage + zero_offset, 0, iosize);
3015 			flush_dcache_page(page);
3016 			kunmap_atomic(userpage);
3017 		}
3018 	}
3019 	while (cur <= end) {
3020 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
3021 		bool force_bio_submit = false;
3022 
3023 		if (cur >= last_byte) {
3024 			char *userpage;
3025 			struct extent_state *cached = NULL;
3026 
3027 			iosize = PAGE_CACHE_SIZE - pg_offset;
3028 			userpage = kmap_atomic(page);
3029 			memset(userpage + pg_offset, 0, iosize);
3030 			flush_dcache_page(page);
3031 			kunmap_atomic(userpage);
3032 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3033 					    &cached, GFP_NOFS);
3034 			if (!parent_locked)
3035 				unlock_extent_cached(tree, cur,
3036 						     cur + iosize - 1,
3037 						     &cached, GFP_NOFS);
3038 			break;
3039 		}
3040 		em = __get_extent_map(inode, page, pg_offset, cur,
3041 				      end - cur + 1, get_extent, em_cached);
3042 		if (IS_ERR_OR_NULL(em)) {
3043 			SetPageError(page);
3044 			if (!parent_locked)
3045 				unlock_extent(tree, cur, end);
3046 			break;
3047 		}
3048 		extent_offset = cur - em->start;
3049 		BUG_ON(extent_map_end(em) <= cur);
3050 		BUG_ON(end < cur);
3051 
3052 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3053 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3054 			extent_set_compress_type(&this_bio_flag,
3055 						 em->compress_type);
3056 		}
3057 
3058 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3059 		cur_end = min(extent_map_end(em) - 1, end);
3060 		iosize = ALIGN(iosize, blocksize);
3061 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3062 			disk_io_size = em->block_len;
3063 			sector = em->block_start >> 9;
3064 		} else {
3065 			sector = (em->block_start + extent_offset) >> 9;
3066 			disk_io_size = iosize;
3067 		}
3068 		bdev = em->bdev;
3069 		block_start = em->block_start;
3070 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3071 			block_start = EXTENT_MAP_HOLE;
3072 
3073 		/*
3074 		 * If we have a file range that points to a compressed extent
3075 		 * and it's followed by a consecutive file range that points to
3076 		 * to the same compressed extent (possibly with a different
3077 		 * offset and/or length, so it either points to the whole extent
3078 		 * or only part of it), we must make sure we do not submit a
3079 		 * single bio to populate the pages for the 2 ranges because
3080 		 * this makes the compressed extent read zero out the pages
3081 		 * belonging to the 2nd range. Imagine the following scenario:
3082 		 *
3083 		 *  File layout
3084 		 *  [0 - 8K]                     [8K - 24K]
3085 		 *    |                               |
3086 		 *    |                               |
3087 		 * points to extent X,         points to extent X,
3088 		 * offset 4K, length of 8K     offset 0, length 16K
3089 		 *
3090 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3091 		 *
3092 		 * If the bio to read the compressed extent covers both ranges,
3093 		 * it will decompress extent X into the pages belonging to the
3094 		 * first range and then it will stop, zeroing out the remaining
3095 		 * pages that belong to the other range that points to extent X.
3096 		 * So here we make sure we submit 2 bios, one for the first
3097 		 * range and another one for the third range. Both will target
3098 		 * the same physical extent from disk, but we can't currently
3099 		 * make the compressed bio endio callback populate the pages
3100 		 * for both ranges because each compressed bio is tightly
3101 		 * coupled with a single extent map, and each range can have
3102 		 * an extent map with a different offset value relative to the
3103 		 * uncompressed data of our extent and different lengths. This
3104 		 * is a corner case so we prioritize correctness over
3105 		 * non-optimal behavior (submitting 2 bios for the same extent).
3106 		 */
3107 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3108 		    prev_em_start && *prev_em_start != (u64)-1 &&
3109 		    *prev_em_start != em->start)
3110 			force_bio_submit = true;
3111 
3112 		if (prev_em_start)
3113 			*prev_em_start = em->start;
3114 
3115 		free_extent_map(em);
3116 		em = NULL;
3117 
3118 		/* we've found a hole, just zero and go on */
3119 		if (block_start == EXTENT_MAP_HOLE) {
3120 			char *userpage;
3121 			struct extent_state *cached = NULL;
3122 
3123 			userpage = kmap_atomic(page);
3124 			memset(userpage + pg_offset, 0, iosize);
3125 			flush_dcache_page(page);
3126 			kunmap_atomic(userpage);
3127 
3128 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3129 					    &cached, GFP_NOFS);
3130 			if (parent_locked)
3131 				free_extent_state(cached);
3132 			else
3133 				unlock_extent_cached(tree, cur,
3134 						     cur + iosize - 1,
3135 						     &cached, GFP_NOFS);
3136 			cur = cur + iosize;
3137 			pg_offset += iosize;
3138 			continue;
3139 		}
3140 		/* the get_extent function already copied into the page */
3141 		if (test_range_bit(tree, cur, cur_end,
3142 				   EXTENT_UPTODATE, 1, NULL)) {
3143 			check_page_uptodate(tree, page);
3144 			if (!parent_locked)
3145 				unlock_extent(tree, cur, cur + iosize - 1);
3146 			cur = cur + iosize;
3147 			pg_offset += iosize;
3148 			continue;
3149 		}
3150 		/* we have an inline extent but it didn't get marked up
3151 		 * to date.  Error out
3152 		 */
3153 		if (block_start == EXTENT_MAP_INLINE) {
3154 			SetPageError(page);
3155 			if (!parent_locked)
3156 				unlock_extent(tree, cur, cur + iosize - 1);
3157 			cur = cur + iosize;
3158 			pg_offset += iosize;
3159 			continue;
3160 		}
3161 
3162 		pnr -= page->index;
3163 		ret = submit_extent_page(rw, tree, NULL, page,
3164 					 sector, disk_io_size, pg_offset,
3165 					 bdev, bio, pnr,
3166 					 end_bio_extent_readpage, mirror_num,
3167 					 *bio_flags,
3168 					 this_bio_flag,
3169 					 force_bio_submit);
3170 		if (!ret) {
3171 			nr++;
3172 			*bio_flags = this_bio_flag;
3173 		} else {
3174 			SetPageError(page);
3175 			if (!parent_locked)
3176 				unlock_extent(tree, cur, cur + iosize - 1);
3177 		}
3178 		cur = cur + iosize;
3179 		pg_offset += iosize;
3180 	}
3181 out:
3182 	if (!nr) {
3183 		if (!PageError(page))
3184 			SetPageUptodate(page);
3185 		unlock_page(page);
3186 	}
3187 	return 0;
3188 }
3189 
__do_contiguous_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,u64 start,u64 end,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw,u64 * prev_em_start)3190 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3191 					     struct page *pages[], int nr_pages,
3192 					     u64 start, u64 end,
3193 					     get_extent_t *get_extent,
3194 					     struct extent_map **em_cached,
3195 					     struct bio **bio, int mirror_num,
3196 					     unsigned long *bio_flags, int rw,
3197 					     u64 *prev_em_start)
3198 {
3199 	struct inode *inode;
3200 	struct btrfs_ordered_extent *ordered;
3201 	int index;
3202 
3203 	inode = pages[0]->mapping->host;
3204 	while (1) {
3205 		lock_extent(tree, start, end);
3206 		ordered = btrfs_lookup_ordered_range(inode, start,
3207 						     end - start + 1);
3208 		if (!ordered)
3209 			break;
3210 		unlock_extent(tree, start, end);
3211 		btrfs_start_ordered_extent(inode, ordered, 1);
3212 		btrfs_put_ordered_extent(ordered);
3213 	}
3214 
3215 	for (index = 0; index < nr_pages; index++) {
3216 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3217 			      mirror_num, bio_flags, rw, prev_em_start);
3218 		page_cache_release(pages[index]);
3219 	}
3220 }
3221 
__extent_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw,u64 * prev_em_start)3222 static void __extent_readpages(struct extent_io_tree *tree,
3223 			       struct page *pages[],
3224 			       int nr_pages, get_extent_t *get_extent,
3225 			       struct extent_map **em_cached,
3226 			       struct bio **bio, int mirror_num,
3227 			       unsigned long *bio_flags, int rw,
3228 			       u64 *prev_em_start)
3229 {
3230 	u64 start = 0;
3231 	u64 end = 0;
3232 	u64 page_start;
3233 	int index;
3234 	int first_index = 0;
3235 
3236 	for (index = 0; index < nr_pages; index++) {
3237 		page_start = page_offset(pages[index]);
3238 		if (!end) {
3239 			start = page_start;
3240 			end = start + PAGE_CACHE_SIZE - 1;
3241 			first_index = index;
3242 		} else if (end + 1 == page_start) {
3243 			end += PAGE_CACHE_SIZE;
3244 		} else {
3245 			__do_contiguous_readpages(tree, &pages[first_index],
3246 						  index - first_index, start,
3247 						  end, get_extent, em_cached,
3248 						  bio, mirror_num, bio_flags,
3249 						  rw, prev_em_start);
3250 			start = page_start;
3251 			end = start + PAGE_CACHE_SIZE - 1;
3252 			first_index = index;
3253 		}
3254 	}
3255 
3256 	if (end)
3257 		__do_contiguous_readpages(tree, &pages[first_index],
3258 					  index - first_index, start,
3259 					  end, get_extent, em_cached, bio,
3260 					  mirror_num, bio_flags, rw,
3261 					  prev_em_start);
3262 }
3263 
__extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int rw)3264 static int __extent_read_full_page(struct extent_io_tree *tree,
3265 				   struct page *page,
3266 				   get_extent_t *get_extent,
3267 				   struct bio **bio, int mirror_num,
3268 				   unsigned long *bio_flags, int rw)
3269 {
3270 	struct inode *inode = page->mapping->host;
3271 	struct btrfs_ordered_extent *ordered;
3272 	u64 start = page_offset(page);
3273 	u64 end = start + PAGE_CACHE_SIZE - 1;
3274 	int ret;
3275 
3276 	while (1) {
3277 		lock_extent(tree, start, end);
3278 		ordered = btrfs_lookup_ordered_extent(inode, start);
3279 		if (!ordered)
3280 			break;
3281 		unlock_extent(tree, start, end);
3282 		btrfs_start_ordered_extent(inode, ordered, 1);
3283 		btrfs_put_ordered_extent(ordered);
3284 	}
3285 
3286 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3287 			    bio_flags, rw, NULL);
3288 	return ret;
3289 }
3290 
extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3291 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3292 			    get_extent_t *get_extent, int mirror_num)
3293 {
3294 	struct bio *bio = NULL;
3295 	unsigned long bio_flags = 0;
3296 	int ret;
3297 
3298 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3299 				      &bio_flags, READ);
3300 	if (bio)
3301 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3302 	return ret;
3303 }
3304 
extent_read_full_page_nolock(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3305 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3306 				 get_extent_t *get_extent, int mirror_num)
3307 {
3308 	struct bio *bio = NULL;
3309 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3310 	int ret;
3311 
3312 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3313 			    &bio_flags, READ, NULL);
3314 	if (bio)
3315 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3316 	return ret;
3317 }
3318 
update_nr_written(struct page * page,struct writeback_control * wbc,unsigned long nr_written)3319 static noinline void update_nr_written(struct page *page,
3320 				      struct writeback_control *wbc,
3321 				      unsigned long nr_written)
3322 {
3323 	wbc->nr_to_write -= nr_written;
3324 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3325 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3326 		page->mapping->writeback_index = page->index + nr_written;
3327 }
3328 
3329 /*
3330  * helper for __extent_writepage, doing all of the delayed allocation setup.
3331  *
3332  * This returns 1 if our fill_delalloc function did all the work required
3333  * to write the page (copy into inline extent).  In this case the IO has
3334  * been started and the page is already unlocked.
3335  *
3336  * This returns 0 if all went well (page still locked)
3337  * This returns < 0 if there were errors (page still locked)
3338  */
writepage_delalloc(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,u64 delalloc_start,unsigned long * nr_written)3339 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3340 			      struct page *page, struct writeback_control *wbc,
3341 			      struct extent_page_data *epd,
3342 			      u64 delalloc_start,
3343 			      unsigned long *nr_written)
3344 {
3345 	struct extent_io_tree *tree = epd->tree;
3346 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3347 	u64 nr_delalloc;
3348 	u64 delalloc_to_write = 0;
3349 	u64 delalloc_end = 0;
3350 	int ret;
3351 	int page_started = 0;
3352 
3353 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3354 		return 0;
3355 
3356 	while (delalloc_end < page_end) {
3357 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3358 					       page,
3359 					       &delalloc_start,
3360 					       &delalloc_end,
3361 					       BTRFS_MAX_EXTENT_SIZE);
3362 		if (nr_delalloc == 0) {
3363 			delalloc_start = delalloc_end + 1;
3364 			continue;
3365 		}
3366 		ret = tree->ops->fill_delalloc(inode, page,
3367 					       delalloc_start,
3368 					       delalloc_end,
3369 					       &page_started,
3370 					       nr_written);
3371 		/* File system has been set read-only */
3372 		if (ret) {
3373 			SetPageError(page);
3374 			/* fill_delalloc should be return < 0 for error
3375 			 * but just in case, we use > 0 here meaning the
3376 			 * IO is started, so we don't want to return > 0
3377 			 * unless things are going well.
3378 			 */
3379 			ret = ret < 0 ? ret : -EIO;
3380 			goto done;
3381 		}
3382 		/*
3383 		 * delalloc_end is already one less than the total
3384 		 * length, so we don't subtract one from
3385 		 * PAGE_CACHE_SIZE
3386 		 */
3387 		delalloc_to_write += (delalloc_end - delalloc_start +
3388 				      PAGE_CACHE_SIZE) >>
3389 				      PAGE_CACHE_SHIFT;
3390 		delalloc_start = delalloc_end + 1;
3391 	}
3392 	if (wbc->nr_to_write < delalloc_to_write) {
3393 		int thresh = 8192;
3394 
3395 		if (delalloc_to_write < thresh * 2)
3396 			thresh = delalloc_to_write;
3397 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3398 					 thresh);
3399 	}
3400 
3401 	/* did the fill delalloc function already unlock and start
3402 	 * the IO?
3403 	 */
3404 	if (page_started) {
3405 		/*
3406 		 * we've unlocked the page, so we can't update
3407 		 * the mapping's writeback index, just update
3408 		 * nr_to_write.
3409 		 */
3410 		wbc->nr_to_write -= *nr_written;
3411 		return 1;
3412 	}
3413 
3414 	ret = 0;
3415 
3416 done:
3417 	return ret;
3418 }
3419 
3420 /*
3421  * helper for __extent_writepage.  This calls the writepage start hooks,
3422  * and does the loop to map the page into extents and bios.
3423  *
3424  * We return 1 if the IO is started and the page is unlocked,
3425  * 0 if all went well (page still locked)
3426  * < 0 if there were errors (page still locked)
3427  */
__extent_writepage_io(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,int write_flags,int * nr_ret)3428 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3429 				 struct page *page,
3430 				 struct writeback_control *wbc,
3431 				 struct extent_page_data *epd,
3432 				 loff_t i_size,
3433 				 unsigned long nr_written,
3434 				 int write_flags, int *nr_ret)
3435 {
3436 	struct extent_io_tree *tree = epd->tree;
3437 	u64 start = page_offset(page);
3438 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3439 	u64 end;
3440 	u64 cur = start;
3441 	u64 extent_offset;
3442 	u64 block_start;
3443 	u64 iosize;
3444 	sector_t sector;
3445 	struct extent_state *cached_state = NULL;
3446 	struct extent_map *em;
3447 	struct block_device *bdev;
3448 	size_t pg_offset = 0;
3449 	size_t blocksize;
3450 	int ret = 0;
3451 	int nr = 0;
3452 	bool compressed;
3453 
3454 	if (tree->ops && tree->ops->writepage_start_hook) {
3455 		ret = tree->ops->writepage_start_hook(page, start,
3456 						      page_end);
3457 		if (ret) {
3458 			/* Fixup worker will requeue */
3459 			if (ret == -EBUSY)
3460 				wbc->pages_skipped++;
3461 			else
3462 				redirty_page_for_writepage(wbc, page);
3463 
3464 			update_nr_written(page, wbc, nr_written);
3465 			unlock_page(page);
3466 			ret = 1;
3467 			goto done_unlocked;
3468 		}
3469 	}
3470 
3471 	/*
3472 	 * we don't want to touch the inode after unlocking the page,
3473 	 * so we update the mapping writeback index now
3474 	 */
3475 	update_nr_written(page, wbc, nr_written + 1);
3476 
3477 	end = page_end;
3478 	if (i_size <= start) {
3479 		if (tree->ops && tree->ops->writepage_end_io_hook)
3480 			tree->ops->writepage_end_io_hook(page, start,
3481 							 page_end, NULL, 1);
3482 		goto done;
3483 	}
3484 
3485 	blocksize = inode->i_sb->s_blocksize;
3486 
3487 	while (cur <= end) {
3488 		u64 em_end;
3489 		if (cur >= i_size) {
3490 			if (tree->ops && tree->ops->writepage_end_io_hook)
3491 				tree->ops->writepage_end_io_hook(page, cur,
3492 							 page_end, NULL, 1);
3493 			break;
3494 		}
3495 		em = epd->get_extent(inode, page, pg_offset, cur,
3496 				     end - cur + 1, 1);
3497 		if (IS_ERR_OR_NULL(em)) {
3498 			SetPageError(page);
3499 			ret = PTR_ERR_OR_ZERO(em);
3500 			break;
3501 		}
3502 
3503 		extent_offset = cur - em->start;
3504 		em_end = extent_map_end(em);
3505 		BUG_ON(em_end <= cur);
3506 		BUG_ON(end < cur);
3507 		iosize = min(em_end - cur, end - cur + 1);
3508 		iosize = ALIGN(iosize, blocksize);
3509 		sector = (em->block_start + extent_offset) >> 9;
3510 		bdev = em->bdev;
3511 		block_start = em->block_start;
3512 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3513 		free_extent_map(em);
3514 		em = NULL;
3515 
3516 		/*
3517 		 * compressed and inline extents are written through other
3518 		 * paths in the FS
3519 		 */
3520 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3521 		    block_start == EXTENT_MAP_INLINE) {
3522 			/*
3523 			 * end_io notification does not happen here for
3524 			 * compressed extents
3525 			 */
3526 			if (!compressed && tree->ops &&
3527 			    tree->ops->writepage_end_io_hook)
3528 				tree->ops->writepage_end_io_hook(page, cur,
3529 							 cur + iosize - 1,
3530 							 NULL, 1);
3531 			else if (compressed) {
3532 				/* we don't want to end_page_writeback on
3533 				 * a compressed extent.  this happens
3534 				 * elsewhere
3535 				 */
3536 				nr++;
3537 			}
3538 
3539 			cur += iosize;
3540 			pg_offset += iosize;
3541 			continue;
3542 		}
3543 
3544 		if (tree->ops && tree->ops->writepage_io_hook) {
3545 			ret = tree->ops->writepage_io_hook(page, cur,
3546 						cur + iosize - 1);
3547 		} else {
3548 			ret = 0;
3549 		}
3550 		if (ret) {
3551 			SetPageError(page);
3552 		} else {
3553 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3554 
3555 			set_range_writeback(tree, cur, cur + iosize - 1);
3556 			if (!PageWriteback(page)) {
3557 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3558 					   "page %lu not writeback, cur %llu end %llu",
3559 				       page->index, cur, end);
3560 			}
3561 
3562 			ret = submit_extent_page(write_flags, tree, wbc, page,
3563 						 sector, iosize, pg_offset,
3564 						 bdev, &epd->bio, max_nr,
3565 						 end_bio_extent_writepage,
3566 						 0, 0, 0, false);
3567 			if (ret)
3568 				SetPageError(page);
3569 		}
3570 		cur = cur + iosize;
3571 		pg_offset += iosize;
3572 		nr++;
3573 	}
3574 done:
3575 	*nr_ret = nr;
3576 
3577 done_unlocked:
3578 
3579 	/* drop our reference on any cached states */
3580 	free_extent_state(cached_state);
3581 	return ret;
3582 }
3583 
3584 /*
3585  * the writepage semantics are similar to regular writepage.  extent
3586  * records are inserted to lock ranges in the tree, and as dirty areas
3587  * are found, they are marked writeback.  Then the lock bits are removed
3588  * and the end_io handler clears the writeback ranges
3589  */
__extent_writepage(struct page * page,struct writeback_control * wbc,void * data)3590 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3591 			      void *data)
3592 {
3593 	struct inode *inode = page->mapping->host;
3594 	struct extent_page_data *epd = data;
3595 	u64 start = page_offset(page);
3596 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3597 	int ret;
3598 	int nr = 0;
3599 	size_t pg_offset = 0;
3600 	loff_t i_size = i_size_read(inode);
3601 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3602 	int write_flags;
3603 	unsigned long nr_written = 0;
3604 
3605 	if (wbc->sync_mode == WB_SYNC_ALL)
3606 		write_flags = WRITE_SYNC;
3607 	else
3608 		write_flags = WRITE;
3609 
3610 	trace___extent_writepage(page, inode, wbc);
3611 
3612 	WARN_ON(!PageLocked(page));
3613 
3614 	ClearPageError(page);
3615 
3616 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3617 	if (page->index > end_index ||
3618 	   (page->index == end_index && !pg_offset)) {
3619 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3620 		unlock_page(page);
3621 		return 0;
3622 	}
3623 
3624 	if (page->index == end_index) {
3625 		char *userpage;
3626 
3627 		userpage = kmap_atomic(page);
3628 		memset(userpage + pg_offset, 0,
3629 		       PAGE_CACHE_SIZE - pg_offset);
3630 		kunmap_atomic(userpage);
3631 		flush_dcache_page(page);
3632 	}
3633 
3634 	pg_offset = 0;
3635 
3636 	set_page_extent_mapped(page);
3637 
3638 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3639 	if (ret == 1)
3640 		goto done_unlocked;
3641 	if (ret)
3642 		goto done;
3643 
3644 	ret = __extent_writepage_io(inode, page, wbc, epd,
3645 				    i_size, nr_written, write_flags, &nr);
3646 	if (ret == 1)
3647 		goto done_unlocked;
3648 
3649 done:
3650 	if (nr == 0) {
3651 		/* make sure the mapping tag for page dirty gets cleared */
3652 		set_page_writeback(page);
3653 		end_page_writeback(page);
3654 	}
3655 	if (PageError(page)) {
3656 		ret = ret < 0 ? ret : -EIO;
3657 		end_extent_writepage(page, ret, start, page_end);
3658 	}
3659 	unlock_page(page);
3660 	return ret;
3661 
3662 done_unlocked:
3663 	return 0;
3664 }
3665 
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3666 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3667 {
3668 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3669 		       TASK_UNINTERRUPTIBLE);
3670 }
3671 
3672 static noinline_for_stack int
lock_extent_buffer_for_io(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct extent_page_data * epd)3673 lock_extent_buffer_for_io(struct extent_buffer *eb,
3674 			  struct btrfs_fs_info *fs_info,
3675 			  struct extent_page_data *epd)
3676 {
3677 	unsigned long i, num_pages;
3678 	int flush = 0;
3679 	int ret = 0;
3680 
3681 	if (!btrfs_try_tree_write_lock(eb)) {
3682 		flush = 1;
3683 		flush_write_bio(epd);
3684 		btrfs_tree_lock(eb);
3685 	}
3686 
3687 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3688 		btrfs_tree_unlock(eb);
3689 		if (!epd->sync_io)
3690 			return 0;
3691 		if (!flush) {
3692 			flush_write_bio(epd);
3693 			flush = 1;
3694 		}
3695 		while (1) {
3696 			wait_on_extent_buffer_writeback(eb);
3697 			btrfs_tree_lock(eb);
3698 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3699 				break;
3700 			btrfs_tree_unlock(eb);
3701 		}
3702 	}
3703 
3704 	/*
3705 	 * We need to do this to prevent races in people who check if the eb is
3706 	 * under IO since we can end up having no IO bits set for a short period
3707 	 * of time.
3708 	 */
3709 	spin_lock(&eb->refs_lock);
3710 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3711 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3712 		spin_unlock(&eb->refs_lock);
3713 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3714 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3715 				     -eb->len,
3716 				     fs_info->dirty_metadata_batch);
3717 		ret = 1;
3718 	} else {
3719 		spin_unlock(&eb->refs_lock);
3720 	}
3721 
3722 	btrfs_tree_unlock(eb);
3723 
3724 	if (!ret)
3725 		return ret;
3726 
3727 	num_pages = num_extent_pages(eb->start, eb->len);
3728 	for (i = 0; i < num_pages; i++) {
3729 		struct page *p = eb->pages[i];
3730 
3731 		if (!trylock_page(p)) {
3732 			if (!flush) {
3733 				flush_write_bio(epd);
3734 				flush = 1;
3735 			}
3736 			lock_page(p);
3737 		}
3738 	}
3739 
3740 	return ret;
3741 }
3742 
end_extent_buffer_writeback(struct extent_buffer * eb)3743 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3744 {
3745 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3746 	smp_mb__after_atomic();
3747 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3748 }
3749 
set_btree_ioerr(struct page * page)3750 static void set_btree_ioerr(struct page *page)
3751 {
3752 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3753 	struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3754 
3755 	SetPageError(page);
3756 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3757 		return;
3758 
3759 	/*
3760 	 * If writeback for a btree extent that doesn't belong to a log tree
3761 	 * failed, increment the counter transaction->eb_write_errors.
3762 	 * We do this because while the transaction is running and before it's
3763 	 * committing (when we call filemap_fdata[write|wait]_range against
3764 	 * the btree inode), we might have
3765 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3766 	 * returns an error or an error happens during writeback, when we're
3767 	 * committing the transaction we wouldn't know about it, since the pages
3768 	 * can be no longer dirty nor marked anymore for writeback (if a
3769 	 * subsequent modification to the extent buffer didn't happen before the
3770 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3771 	 * able to find the pages tagged with SetPageError at transaction
3772 	 * commit time. So if this happens we must abort the transaction,
3773 	 * otherwise we commit a super block with btree roots that point to
3774 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3775 	 * or the content of some node/leaf from a past generation that got
3776 	 * cowed or deleted and is no longer valid.
3777 	 *
3778 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3779 	 * not be enough - we need to distinguish between log tree extents vs
3780 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3781 	 * will catch and clear such errors in the mapping - and that call might
3782 	 * be from a log sync and not from a transaction commit. Also, checking
3783 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3784 	 * not done and would not be reliable - the eb might have been released
3785 	 * from memory and reading it back again means that flag would not be
3786 	 * set (since it's a runtime flag, not persisted on disk).
3787 	 *
3788 	 * Using the flags below in the btree inode also makes us achieve the
3789 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3790 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3791 	 * is called, the writeback for all dirty pages had already finished
3792 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3793 	 * filemap_fdatawait_range() would return success, as it could not know
3794 	 * that writeback errors happened (the pages were no longer tagged for
3795 	 * writeback).
3796 	 */
3797 	switch (eb->log_index) {
3798 	case -1:
3799 		set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3800 		break;
3801 	case 0:
3802 		set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3803 		break;
3804 	case 1:
3805 		set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3806 		break;
3807 	default:
3808 		BUG(); /* unexpected, logic error */
3809 	}
3810 }
3811 
end_bio_extent_buffer_writepage(struct bio * bio)3812 static void end_bio_extent_buffer_writepage(struct bio *bio)
3813 {
3814 	struct bio_vec *bvec;
3815 	struct extent_buffer *eb;
3816 	int i, done;
3817 
3818 	bio_for_each_segment_all(bvec, bio, i) {
3819 		struct page *page = bvec->bv_page;
3820 
3821 		eb = (struct extent_buffer *)page->private;
3822 		BUG_ON(!eb);
3823 		done = atomic_dec_and_test(&eb->io_pages);
3824 
3825 		if (bio->bi_error ||
3826 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3827 			ClearPageUptodate(page);
3828 			set_btree_ioerr(page);
3829 		}
3830 
3831 		end_page_writeback(page);
3832 
3833 		if (!done)
3834 			continue;
3835 
3836 		end_extent_buffer_writeback(eb);
3837 	}
3838 
3839 	bio_put(bio);
3840 }
3841 
write_one_eb(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct writeback_control * wbc,struct extent_page_data * epd)3842 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3843 			struct btrfs_fs_info *fs_info,
3844 			struct writeback_control *wbc,
3845 			struct extent_page_data *epd)
3846 {
3847 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3848 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3849 	u64 offset = eb->start;
3850 	u32 nritems;
3851 	unsigned long i, num_pages;
3852 	unsigned long bio_flags = 0;
3853 	unsigned long start, end;
3854 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3855 	int ret = 0;
3856 
3857 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3858 	num_pages = num_extent_pages(eb->start, eb->len);
3859 	atomic_set(&eb->io_pages, num_pages);
3860 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3861 		bio_flags = EXTENT_BIO_TREE_LOG;
3862 
3863 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3864 	nritems = btrfs_header_nritems(eb);
3865 	if (btrfs_header_level(eb) > 0) {
3866 		end = btrfs_node_key_ptr_offset(nritems);
3867 
3868 		memset_extent_buffer(eb, 0, end, eb->len - end);
3869 	} else {
3870 		/*
3871 		 * leaf:
3872 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3873 		 */
3874 		start = btrfs_item_nr_offset(nritems);
3875 		end = btrfs_leaf_data(eb) +
3876 		      leaf_data_end(fs_info->tree_root, eb);
3877 		memset_extent_buffer(eb, 0, start, end - start);
3878 	}
3879 
3880 	for (i = 0; i < num_pages; i++) {
3881 		struct page *p = eb->pages[i];
3882 
3883 		clear_page_dirty_for_io(p);
3884 		set_page_writeback(p);
3885 		ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3886 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3887 					 -1, end_bio_extent_buffer_writepage,
3888 					 0, epd->bio_flags, bio_flags, false);
3889 		epd->bio_flags = bio_flags;
3890 		if (ret) {
3891 			set_btree_ioerr(p);
3892 			end_page_writeback(p);
3893 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3894 				end_extent_buffer_writeback(eb);
3895 			ret = -EIO;
3896 			break;
3897 		}
3898 		offset += PAGE_CACHE_SIZE;
3899 		update_nr_written(p, wbc, 1);
3900 		unlock_page(p);
3901 	}
3902 
3903 	if (unlikely(ret)) {
3904 		for (; i < num_pages; i++) {
3905 			struct page *p = eb->pages[i];
3906 			clear_page_dirty_for_io(p);
3907 			unlock_page(p);
3908 		}
3909 	}
3910 
3911 	return ret;
3912 }
3913 
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3914 int btree_write_cache_pages(struct address_space *mapping,
3915 				   struct writeback_control *wbc)
3916 {
3917 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3918 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3919 	struct extent_buffer *eb, *prev_eb = NULL;
3920 	struct extent_page_data epd = {
3921 		.bio = NULL,
3922 		.tree = tree,
3923 		.extent_locked = 0,
3924 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3925 		.bio_flags = 0,
3926 	};
3927 	int ret = 0;
3928 	int done = 0;
3929 	int nr_to_write_done = 0;
3930 	struct pagevec pvec;
3931 	int nr_pages;
3932 	pgoff_t index;
3933 	pgoff_t end;		/* Inclusive */
3934 	int scanned = 0;
3935 	int tag;
3936 
3937 	pagevec_init(&pvec, 0);
3938 	if (wbc->range_cyclic) {
3939 		index = mapping->writeback_index; /* Start from prev offset */
3940 		end = -1;
3941 	} else {
3942 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3943 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3944 		scanned = 1;
3945 	}
3946 	if (wbc->sync_mode == WB_SYNC_ALL)
3947 		tag = PAGECACHE_TAG_TOWRITE;
3948 	else
3949 		tag = PAGECACHE_TAG_DIRTY;
3950 retry:
3951 	if (wbc->sync_mode == WB_SYNC_ALL)
3952 		tag_pages_for_writeback(mapping, index, end);
3953 	while (!done && !nr_to_write_done && (index <= end) &&
3954 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956 		unsigned i;
3957 
3958 		scanned = 1;
3959 		for (i = 0; i < nr_pages; i++) {
3960 			struct page *page = pvec.pages[i];
3961 
3962 			if (!PagePrivate(page))
3963 				continue;
3964 
3965 			if (!wbc->range_cyclic && page->index > end) {
3966 				done = 1;
3967 				break;
3968 			}
3969 
3970 			spin_lock(&mapping->private_lock);
3971 			if (!PagePrivate(page)) {
3972 				spin_unlock(&mapping->private_lock);
3973 				continue;
3974 			}
3975 
3976 			eb = (struct extent_buffer *)page->private;
3977 
3978 			/*
3979 			 * Shouldn't happen and normally this would be a BUG_ON
3980 			 * but no sense in crashing the users box for something
3981 			 * we can survive anyway.
3982 			 */
3983 			if (WARN_ON(!eb)) {
3984 				spin_unlock(&mapping->private_lock);
3985 				continue;
3986 			}
3987 
3988 			if (eb == prev_eb) {
3989 				spin_unlock(&mapping->private_lock);
3990 				continue;
3991 			}
3992 
3993 			ret = atomic_inc_not_zero(&eb->refs);
3994 			spin_unlock(&mapping->private_lock);
3995 			if (!ret)
3996 				continue;
3997 
3998 			prev_eb = eb;
3999 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
4000 			if (!ret) {
4001 				free_extent_buffer(eb);
4002 				continue;
4003 			} else if (ret < 0) {
4004 				done = 1;
4005 				free_extent_buffer(eb);
4006 				break;
4007 			}
4008 
4009 			ret = write_one_eb(eb, fs_info, wbc, &epd);
4010 			if (ret) {
4011 				done = 1;
4012 				free_extent_buffer(eb);
4013 				break;
4014 			}
4015 			free_extent_buffer(eb);
4016 
4017 			/*
4018 			 * the filesystem may choose to bump up nr_to_write.
4019 			 * We have to make sure to honor the new nr_to_write
4020 			 * at any time
4021 			 */
4022 			nr_to_write_done = wbc->nr_to_write <= 0;
4023 		}
4024 		pagevec_release(&pvec);
4025 		cond_resched();
4026 	}
4027 	if (!scanned && !done) {
4028 		/*
4029 		 * We hit the last page and there is more work to be done: wrap
4030 		 * back to the start of the file
4031 		 */
4032 		scanned = 1;
4033 		index = 0;
4034 		goto retry;
4035 	}
4036 	flush_write_bio(&epd);
4037 	return ret;
4038 }
4039 
4040 /**
4041  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4042  * @mapping: address space structure to write
4043  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4044  * @writepage: function called for each page
4045  * @data: data passed to writepage function
4046  *
4047  * If a page is already under I/O, write_cache_pages() skips it, even
4048  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4049  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4050  * and msync() need to guarantee that all the data which was dirty at the time
4051  * the call was made get new I/O started against them.  If wbc->sync_mode is
4052  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4053  * existing IO to complete.
4054  */
extent_write_cache_pages(struct extent_io_tree * tree,struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data,void (* flush_fn)(void *))4055 static int extent_write_cache_pages(struct extent_io_tree *tree,
4056 			     struct address_space *mapping,
4057 			     struct writeback_control *wbc,
4058 			     writepage_t writepage, void *data,
4059 			     void (*flush_fn)(void *))
4060 {
4061 	struct inode *inode = mapping->host;
4062 	int ret = 0;
4063 	int done = 0;
4064 	int err = 0;
4065 	int nr_to_write_done = 0;
4066 	struct pagevec pvec;
4067 	int nr_pages;
4068 	pgoff_t index;
4069 	pgoff_t end;		/* Inclusive */
4070 	int scanned = 0;
4071 	int tag;
4072 
4073 	/*
4074 	 * We have to hold onto the inode so that ordered extents can do their
4075 	 * work when the IO finishes.  The alternative to this is failing to add
4076 	 * an ordered extent if the igrab() fails there and that is a huge pain
4077 	 * to deal with, so instead just hold onto the inode throughout the
4078 	 * writepages operation.  If it fails here we are freeing up the inode
4079 	 * anyway and we'd rather not waste our time writing out stuff that is
4080 	 * going to be truncated anyway.
4081 	 */
4082 	if (!igrab(inode))
4083 		return 0;
4084 
4085 	pagevec_init(&pvec, 0);
4086 	if (wbc->range_cyclic) {
4087 		index = mapping->writeback_index; /* Start from prev offset */
4088 		end = -1;
4089 	} else {
4090 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
4091 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
4092 		scanned = 1;
4093 	}
4094 	if (wbc->sync_mode == WB_SYNC_ALL)
4095 		tag = PAGECACHE_TAG_TOWRITE;
4096 	else
4097 		tag = PAGECACHE_TAG_DIRTY;
4098 retry:
4099 	if (wbc->sync_mode == WB_SYNC_ALL)
4100 		tag_pages_for_writeback(mapping, index, end);
4101 	while (!done && !nr_to_write_done && (index <= end) &&
4102 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4103 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4104 		unsigned i;
4105 
4106 		scanned = 1;
4107 		for (i = 0; i < nr_pages; i++) {
4108 			struct page *page = pvec.pages[i];
4109 
4110 			/*
4111 			 * At this point we hold neither mapping->tree_lock nor
4112 			 * lock on the page itself: the page may be truncated or
4113 			 * invalidated (changing page->mapping to NULL), or even
4114 			 * swizzled back from swapper_space to tmpfs file
4115 			 * mapping
4116 			 */
4117 			if (!trylock_page(page)) {
4118 				flush_fn(data);
4119 				lock_page(page);
4120 			}
4121 
4122 			if (unlikely(page->mapping != mapping)) {
4123 				unlock_page(page);
4124 				continue;
4125 			}
4126 
4127 			if (!wbc->range_cyclic && page->index > end) {
4128 				done = 1;
4129 				unlock_page(page);
4130 				continue;
4131 			}
4132 
4133 			if (wbc->sync_mode != WB_SYNC_NONE) {
4134 				if (PageWriteback(page))
4135 					flush_fn(data);
4136 				wait_on_page_writeback(page);
4137 			}
4138 
4139 			if (PageWriteback(page) ||
4140 			    !clear_page_dirty_for_io(page)) {
4141 				unlock_page(page);
4142 				continue;
4143 			}
4144 
4145 			ret = (*writepage)(page, wbc, data);
4146 
4147 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4148 				unlock_page(page);
4149 				ret = 0;
4150 			}
4151 			if (!err && ret < 0)
4152 				err = ret;
4153 
4154 			/*
4155 			 * the filesystem may choose to bump up nr_to_write.
4156 			 * We have to make sure to honor the new nr_to_write
4157 			 * at any time
4158 			 */
4159 			nr_to_write_done = wbc->nr_to_write <= 0;
4160 		}
4161 		pagevec_release(&pvec);
4162 		cond_resched();
4163 	}
4164 	if (!scanned && !done && !err) {
4165 		/*
4166 		 * We hit the last page and there is more work to be done: wrap
4167 		 * back to the start of the file
4168 		 */
4169 		scanned = 1;
4170 		index = 0;
4171 
4172 		/*
4173 		 * If we're looping we could run into a page that is locked by a
4174 		 * writer and that writer could be waiting on writeback for a
4175 		 * page in our current bio, and thus deadlock, so flush the
4176 		 * write bio here.
4177 		 */
4178 		flush_write_bio(data);
4179 		goto retry;
4180 	}
4181 	btrfs_add_delayed_iput(inode);
4182 	return err;
4183 }
4184 
flush_epd_write_bio(struct extent_page_data * epd)4185 static void flush_epd_write_bio(struct extent_page_data *epd)
4186 {
4187 	if (epd->bio) {
4188 		int rw = WRITE;
4189 		int ret;
4190 
4191 		if (epd->sync_io)
4192 			rw = WRITE_SYNC;
4193 
4194 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4195 		BUG_ON(ret < 0); /* -ENOMEM */
4196 		epd->bio = NULL;
4197 	}
4198 }
4199 
flush_write_bio(void * data)4200 static noinline void flush_write_bio(void *data)
4201 {
4202 	struct extent_page_data *epd = data;
4203 	flush_epd_write_bio(epd);
4204 }
4205 
extent_write_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct writeback_control * wbc)4206 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4207 			  get_extent_t *get_extent,
4208 			  struct writeback_control *wbc)
4209 {
4210 	int ret;
4211 	struct extent_page_data epd = {
4212 		.bio = NULL,
4213 		.tree = tree,
4214 		.get_extent = get_extent,
4215 		.extent_locked = 0,
4216 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4217 		.bio_flags = 0,
4218 	};
4219 
4220 	ret = __extent_writepage(page, wbc, &epd);
4221 
4222 	flush_epd_write_bio(&epd);
4223 	return ret;
4224 }
4225 
extent_write_locked_range(struct extent_io_tree * tree,struct inode * inode,u64 start,u64 end,get_extent_t * get_extent,int mode)4226 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4227 			      u64 start, u64 end, get_extent_t *get_extent,
4228 			      int mode)
4229 {
4230 	int ret = 0;
4231 	struct address_space *mapping = inode->i_mapping;
4232 	struct page *page;
4233 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4234 		PAGE_CACHE_SHIFT;
4235 
4236 	struct extent_page_data epd = {
4237 		.bio = NULL,
4238 		.tree = tree,
4239 		.get_extent = get_extent,
4240 		.extent_locked = 1,
4241 		.sync_io = mode == WB_SYNC_ALL,
4242 		.bio_flags = 0,
4243 	};
4244 	struct writeback_control wbc_writepages = {
4245 		.sync_mode	= mode,
4246 		.nr_to_write	= nr_pages * 2,
4247 		.range_start	= start,
4248 		.range_end	= end + 1,
4249 	};
4250 
4251 	while (start <= end) {
4252 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4253 		if (clear_page_dirty_for_io(page))
4254 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4255 		else {
4256 			if (tree->ops && tree->ops->writepage_end_io_hook)
4257 				tree->ops->writepage_end_io_hook(page, start,
4258 						 start + PAGE_CACHE_SIZE - 1,
4259 						 NULL, 1);
4260 			unlock_page(page);
4261 		}
4262 		page_cache_release(page);
4263 		start += PAGE_CACHE_SIZE;
4264 	}
4265 
4266 	flush_epd_write_bio(&epd);
4267 	return ret;
4268 }
4269 
extent_writepages(struct extent_io_tree * tree,struct address_space * mapping,get_extent_t * get_extent,struct writeback_control * wbc)4270 int extent_writepages(struct extent_io_tree *tree,
4271 		      struct address_space *mapping,
4272 		      get_extent_t *get_extent,
4273 		      struct writeback_control *wbc)
4274 {
4275 	int ret = 0;
4276 	struct extent_page_data epd = {
4277 		.bio = NULL,
4278 		.tree = tree,
4279 		.get_extent = get_extent,
4280 		.extent_locked = 0,
4281 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4282 		.bio_flags = 0,
4283 	};
4284 
4285 	ret = extent_write_cache_pages(tree, mapping, wbc,
4286 				       __extent_writepage, &epd,
4287 				       flush_write_bio);
4288 	flush_epd_write_bio(&epd);
4289 	return ret;
4290 }
4291 
extent_readpages(struct extent_io_tree * tree,struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_extent_t get_extent)4292 int extent_readpages(struct extent_io_tree *tree,
4293 		     struct address_space *mapping,
4294 		     struct list_head *pages, unsigned nr_pages,
4295 		     get_extent_t get_extent)
4296 {
4297 	struct bio *bio = NULL;
4298 	unsigned page_idx;
4299 	unsigned long bio_flags = 0;
4300 	struct page *pagepool[16];
4301 	struct page *page;
4302 	struct extent_map *em_cached = NULL;
4303 	int nr = 0;
4304 	u64 prev_em_start = (u64)-1;
4305 
4306 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4307 		page = list_entry(pages->prev, struct page, lru);
4308 
4309 		prefetchw(&page->flags);
4310 		list_del(&page->lru);
4311 		if (add_to_page_cache_lru(page, mapping,
4312 					page->index, GFP_NOFS)) {
4313 			page_cache_release(page);
4314 			continue;
4315 		}
4316 
4317 		pagepool[nr++] = page;
4318 		if (nr < ARRAY_SIZE(pagepool))
4319 			continue;
4320 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4321 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4322 		nr = 0;
4323 	}
4324 	if (nr)
4325 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4326 				   &bio, 0, &bio_flags, READ, &prev_em_start);
4327 
4328 	if (em_cached)
4329 		free_extent_map(em_cached);
4330 
4331 	BUG_ON(!list_empty(pages));
4332 	if (bio)
4333 		return submit_one_bio(READ, bio, 0, bio_flags);
4334 	return 0;
4335 }
4336 
4337 /*
4338  * basic invalidatepage code, this waits on any locked or writeback
4339  * ranges corresponding to the page, and then deletes any extent state
4340  * records from the tree
4341  */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4342 int extent_invalidatepage(struct extent_io_tree *tree,
4343 			  struct page *page, unsigned long offset)
4344 {
4345 	struct extent_state *cached_state = NULL;
4346 	u64 start = page_offset(page);
4347 	u64 end = start + PAGE_CACHE_SIZE - 1;
4348 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4349 
4350 	start += ALIGN(offset, blocksize);
4351 	if (start > end)
4352 		return 0;
4353 
4354 	lock_extent_bits(tree, start, end, 0, &cached_state);
4355 	wait_on_page_writeback(page);
4356 	clear_extent_bit(tree, start, end,
4357 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4358 			 EXTENT_DO_ACCOUNTING,
4359 			 1, 1, &cached_state, GFP_NOFS);
4360 	return 0;
4361 }
4362 
4363 /*
4364  * a helper for releasepage, this tests for areas of the page that
4365  * are locked or under IO and drops the related state bits if it is safe
4366  * to drop the page.
4367  */
try_release_extent_state(struct extent_map_tree * map,struct extent_io_tree * tree,struct page * page,gfp_t mask)4368 static int try_release_extent_state(struct extent_map_tree *map,
4369 				    struct extent_io_tree *tree,
4370 				    struct page *page, gfp_t mask)
4371 {
4372 	u64 start = page_offset(page);
4373 	u64 end = start + PAGE_CACHE_SIZE - 1;
4374 	int ret = 1;
4375 
4376 	if (test_range_bit(tree, start, end,
4377 			   EXTENT_IOBITS, 0, NULL))
4378 		ret = 0;
4379 	else {
4380 		if ((mask & GFP_NOFS) == GFP_NOFS)
4381 			mask = GFP_NOFS;
4382 		/*
4383 		 * at this point we can safely clear everything except the
4384 		 * locked bit and the nodatasum bit
4385 		 */
4386 		ret = clear_extent_bit(tree, start, end,
4387 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4388 				 0, 0, NULL, mask);
4389 
4390 		/* if clear_extent_bit failed for enomem reasons,
4391 		 * we can't allow the release to continue.
4392 		 */
4393 		if (ret < 0)
4394 			ret = 0;
4395 		else
4396 			ret = 1;
4397 	}
4398 	return ret;
4399 }
4400 
4401 /*
4402  * a helper for releasepage.  As long as there are no locked extents
4403  * in the range corresponding to the page, both state records and extent
4404  * map records are removed
4405  */
try_release_extent_mapping(struct extent_map_tree * map,struct extent_io_tree * tree,struct page * page,gfp_t mask)4406 int try_release_extent_mapping(struct extent_map_tree *map,
4407 			       struct extent_io_tree *tree, struct page *page,
4408 			       gfp_t mask)
4409 {
4410 	struct extent_map *em;
4411 	u64 start = page_offset(page);
4412 	u64 end = start + PAGE_CACHE_SIZE - 1;
4413 
4414 	if (gfpflags_allow_blocking(mask) &&
4415 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4416 		u64 len;
4417 		while (start <= end) {
4418 			len = end - start + 1;
4419 			write_lock(&map->lock);
4420 			em = lookup_extent_mapping(map, start, len);
4421 			if (!em) {
4422 				write_unlock(&map->lock);
4423 				break;
4424 			}
4425 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4426 			    em->start != start) {
4427 				write_unlock(&map->lock);
4428 				free_extent_map(em);
4429 				break;
4430 			}
4431 			if (!test_range_bit(tree, em->start,
4432 					    extent_map_end(em) - 1,
4433 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4434 					    0, NULL)) {
4435 				remove_extent_mapping(map, em);
4436 				/* once for the rb tree */
4437 				free_extent_map(em);
4438 			}
4439 			start = extent_map_end(em);
4440 			write_unlock(&map->lock);
4441 
4442 			/* once for us */
4443 			free_extent_map(em);
4444 
4445 			cond_resched(); /* Allow large-extent preemption. */
4446 		}
4447 	}
4448 	return try_release_extent_state(map, tree, page, mask);
4449 }
4450 
4451 /*
4452  * helper function for fiemap, which doesn't want to see any holes.
4453  * This maps until we find something past 'last'
4454  */
get_extent_skip_holes(struct inode * inode,u64 offset,u64 last,get_extent_t * get_extent)4455 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4456 						u64 offset,
4457 						u64 last,
4458 						get_extent_t *get_extent)
4459 {
4460 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4461 	struct extent_map *em;
4462 	u64 len;
4463 
4464 	if (offset >= last)
4465 		return NULL;
4466 
4467 	while (1) {
4468 		len = last - offset;
4469 		if (len == 0)
4470 			break;
4471 		len = ALIGN(len, sectorsize);
4472 		em = get_extent(inode, NULL, 0, offset, len, 0);
4473 		if (IS_ERR_OR_NULL(em))
4474 			return em;
4475 
4476 		/* if this isn't a hole return it */
4477 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4478 		    em->block_start != EXTENT_MAP_HOLE) {
4479 			return em;
4480 		}
4481 
4482 		/* this is a hole, advance to the next extent */
4483 		offset = extent_map_end(em);
4484 		free_extent_map(em);
4485 		if (offset >= last)
4486 			break;
4487 	}
4488 	return NULL;
4489 }
4490 
extent_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len,get_extent_t * get_extent)4491 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4492 		__u64 start, __u64 len, get_extent_t *get_extent)
4493 {
4494 	int ret = 0;
4495 	u64 off = start;
4496 	u64 max = start + len;
4497 	u32 flags = 0;
4498 	u32 found_type;
4499 	u64 last;
4500 	u64 last_for_get_extent = 0;
4501 	u64 disko = 0;
4502 	u64 isize = i_size_read(inode);
4503 	struct btrfs_key found_key;
4504 	struct extent_map *em = NULL;
4505 	struct extent_state *cached_state = NULL;
4506 	struct btrfs_path *path;
4507 	struct btrfs_root *root = BTRFS_I(inode)->root;
4508 	int end = 0;
4509 	u64 em_start = 0;
4510 	u64 em_len = 0;
4511 	u64 em_end = 0;
4512 
4513 	if (len == 0)
4514 		return -EINVAL;
4515 
4516 	path = btrfs_alloc_path();
4517 	if (!path)
4518 		return -ENOMEM;
4519 	path->leave_spinning = 1;
4520 
4521 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4522 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4523 
4524 	/*
4525 	 * lookup the last file extent.  We're not using i_size here
4526 	 * because there might be preallocation past i_size
4527 	 */
4528 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4529 				       0);
4530 	if (ret < 0) {
4531 		btrfs_free_path(path);
4532 		return ret;
4533 	}
4534 	WARN_ON(!ret);
4535 	path->slots[0]--;
4536 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4537 	found_type = found_key.type;
4538 
4539 	/* No extents, but there might be delalloc bits */
4540 	if (found_key.objectid != btrfs_ino(inode) ||
4541 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4542 		/* have to trust i_size as the end */
4543 		last = (u64)-1;
4544 		last_for_get_extent = isize;
4545 	} else {
4546 		/*
4547 		 * remember the start of the last extent.  There are a
4548 		 * bunch of different factors that go into the length of the
4549 		 * extent, so its much less complex to remember where it started
4550 		 */
4551 		last = found_key.offset;
4552 		last_for_get_extent = last + 1;
4553 	}
4554 	btrfs_release_path(path);
4555 
4556 	/*
4557 	 * we might have some extents allocated but more delalloc past those
4558 	 * extents.  so, we trust isize unless the start of the last extent is
4559 	 * beyond isize
4560 	 */
4561 	if (last < isize) {
4562 		last = (u64)-1;
4563 		last_for_get_extent = isize;
4564 	}
4565 
4566 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4567 			 &cached_state);
4568 
4569 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4570 				   get_extent);
4571 	if (!em)
4572 		goto out;
4573 	if (IS_ERR(em)) {
4574 		ret = PTR_ERR(em);
4575 		goto out;
4576 	}
4577 
4578 	while (!end) {
4579 		u64 offset_in_extent = 0;
4580 
4581 		/* break if the extent we found is outside the range */
4582 		if (em->start >= max || extent_map_end(em) < off)
4583 			break;
4584 
4585 		/*
4586 		 * get_extent may return an extent that starts before our
4587 		 * requested range.  We have to make sure the ranges
4588 		 * we return to fiemap always move forward and don't
4589 		 * overlap, so adjust the offsets here
4590 		 */
4591 		em_start = max(em->start, off);
4592 
4593 		/*
4594 		 * record the offset from the start of the extent
4595 		 * for adjusting the disk offset below.  Only do this if the
4596 		 * extent isn't compressed since our in ram offset may be past
4597 		 * what we have actually allocated on disk.
4598 		 */
4599 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4600 			offset_in_extent = em_start - em->start;
4601 		em_end = extent_map_end(em);
4602 		em_len = em_end - em_start;
4603 		disko = 0;
4604 		flags = 0;
4605 
4606 		/*
4607 		 * bump off for our next call to get_extent
4608 		 */
4609 		off = extent_map_end(em);
4610 		if (off >= max)
4611 			end = 1;
4612 
4613 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4614 			end = 1;
4615 			flags |= FIEMAP_EXTENT_LAST;
4616 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4617 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4618 				  FIEMAP_EXTENT_NOT_ALIGNED);
4619 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4620 			flags |= (FIEMAP_EXTENT_DELALLOC |
4621 				  FIEMAP_EXTENT_UNKNOWN);
4622 		} else if (fieinfo->fi_extents_max) {
4623 			u64 bytenr = em->block_start -
4624 				(em->start - em->orig_start);
4625 
4626 			disko = em->block_start + offset_in_extent;
4627 
4628 			/*
4629 			 * As btrfs supports shared space, this information
4630 			 * can be exported to userspace tools via
4631 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4632 			 * then we're just getting a count and we can skip the
4633 			 * lookup stuff.
4634 			 */
4635 			ret = btrfs_check_shared(NULL, root->fs_info,
4636 						 root->objectid,
4637 						 btrfs_ino(inode), bytenr);
4638 			if (ret < 0)
4639 				goto out_free;
4640 			if (ret)
4641 				flags |= FIEMAP_EXTENT_SHARED;
4642 			ret = 0;
4643 		}
4644 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4645 			flags |= FIEMAP_EXTENT_ENCODED;
4646 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4647 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4648 
4649 		free_extent_map(em);
4650 		em = NULL;
4651 		if ((em_start >= last) || em_len == (u64)-1 ||
4652 		   (last == (u64)-1 && isize <= em_end)) {
4653 			flags |= FIEMAP_EXTENT_LAST;
4654 			end = 1;
4655 		}
4656 
4657 		/* now scan forward to see if this is really the last extent. */
4658 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4659 					   get_extent);
4660 		if (IS_ERR(em)) {
4661 			ret = PTR_ERR(em);
4662 			goto out;
4663 		}
4664 		if (!em) {
4665 			flags |= FIEMAP_EXTENT_LAST;
4666 			end = 1;
4667 		}
4668 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4669 					      em_len, flags);
4670 		if (ret) {
4671 			if (ret == 1)
4672 				ret = 0;
4673 			goto out_free;
4674 		}
4675 	}
4676 out_free:
4677 	free_extent_map(em);
4678 out:
4679 	btrfs_free_path(path);
4680 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4681 			     &cached_state, GFP_NOFS);
4682 	return ret;
4683 }
4684 
__free_extent_buffer(struct extent_buffer * eb)4685 static void __free_extent_buffer(struct extent_buffer *eb)
4686 {
4687 	btrfs_leak_debug_del(&eb->leak_list);
4688 	kmem_cache_free(extent_buffer_cache, eb);
4689 }
4690 
extent_buffer_under_io(struct extent_buffer * eb)4691 int extent_buffer_under_io(struct extent_buffer *eb)
4692 {
4693 	return (atomic_read(&eb->io_pages) ||
4694 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4695 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4696 }
4697 
4698 /*
4699  * Helper for releasing extent buffer page.
4700  */
btrfs_release_extent_buffer_page(struct extent_buffer * eb)4701 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4702 {
4703 	unsigned long index;
4704 	struct page *page;
4705 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4706 
4707 	BUG_ON(extent_buffer_under_io(eb));
4708 
4709 	index = num_extent_pages(eb->start, eb->len);
4710 	if (index == 0)
4711 		return;
4712 
4713 	do {
4714 		index--;
4715 		page = eb->pages[index];
4716 		if (!page)
4717 			continue;
4718 		if (mapped)
4719 			spin_lock(&page->mapping->private_lock);
4720 		/*
4721 		 * We do this since we'll remove the pages after we've
4722 		 * removed the eb from the radix tree, so we could race
4723 		 * and have this page now attached to the new eb.  So
4724 		 * only clear page_private if it's still connected to
4725 		 * this eb.
4726 		 */
4727 		if (PagePrivate(page) &&
4728 		    page->private == (unsigned long)eb) {
4729 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4730 			BUG_ON(PageDirty(page));
4731 			BUG_ON(PageWriteback(page));
4732 			/*
4733 			 * We need to make sure we haven't be attached
4734 			 * to a new eb.
4735 			 */
4736 			ClearPagePrivate(page);
4737 			set_page_private(page, 0);
4738 			/* One for the page private */
4739 			page_cache_release(page);
4740 		}
4741 
4742 		if (mapped)
4743 			spin_unlock(&page->mapping->private_lock);
4744 
4745 		/* One for when we alloced the page */
4746 		page_cache_release(page);
4747 	} while (index != 0);
4748 }
4749 
4750 /*
4751  * Helper for releasing the extent buffer.
4752  */
btrfs_release_extent_buffer(struct extent_buffer * eb)4753 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4754 {
4755 	btrfs_release_extent_buffer_page(eb);
4756 	__free_extent_buffer(eb);
4757 }
4758 
4759 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4760 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4761 		      unsigned long len)
4762 {
4763 	struct extent_buffer *eb = NULL;
4764 
4765 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4766 	eb->start = start;
4767 	eb->len = len;
4768 	eb->fs_info = fs_info;
4769 	eb->bflags = 0;
4770 	rwlock_init(&eb->lock);
4771 	atomic_set(&eb->write_locks, 0);
4772 	atomic_set(&eb->read_locks, 0);
4773 	atomic_set(&eb->blocking_readers, 0);
4774 	atomic_set(&eb->blocking_writers, 0);
4775 	atomic_set(&eb->spinning_readers, 0);
4776 	atomic_set(&eb->spinning_writers, 0);
4777 	eb->lock_nested = 0;
4778 	init_waitqueue_head(&eb->write_lock_wq);
4779 	init_waitqueue_head(&eb->read_lock_wq);
4780 
4781 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4782 
4783 	spin_lock_init(&eb->refs_lock);
4784 	atomic_set(&eb->refs, 1);
4785 	atomic_set(&eb->io_pages, 0);
4786 
4787 	/*
4788 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4789 	 */
4790 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4791 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4792 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4793 
4794 	return eb;
4795 }
4796 
btrfs_clone_extent_buffer(struct extent_buffer * src)4797 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4798 {
4799 	unsigned long i;
4800 	struct page *p;
4801 	struct extent_buffer *new;
4802 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4803 
4804 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4805 	if (new == NULL)
4806 		return NULL;
4807 
4808 	for (i = 0; i < num_pages; i++) {
4809 		p = alloc_page(GFP_NOFS);
4810 		if (!p) {
4811 			btrfs_release_extent_buffer(new);
4812 			return NULL;
4813 		}
4814 		attach_extent_buffer_page(new, p);
4815 		WARN_ON(PageDirty(p));
4816 		SetPageUptodate(p);
4817 		new->pages[i] = p;
4818 	}
4819 
4820 	copy_extent_buffer(new, src, 0, 0, src->len);
4821 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4822 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4823 
4824 	return new;
4825 }
4826 
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4827 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4828 						u64 start)
4829 {
4830 	struct extent_buffer *eb;
4831 	unsigned long len;
4832 	unsigned long num_pages;
4833 	unsigned long i;
4834 
4835 	if (!fs_info) {
4836 		/*
4837 		 * Called only from tests that don't always have a fs_info
4838 		 * available, but we know that nodesize is 4096
4839 		 */
4840 		len = 4096;
4841 	} else {
4842 		len = fs_info->tree_root->nodesize;
4843 	}
4844 	num_pages = num_extent_pages(0, len);
4845 
4846 	eb = __alloc_extent_buffer(fs_info, start, len);
4847 	if (!eb)
4848 		return NULL;
4849 
4850 	for (i = 0; i < num_pages; i++) {
4851 		eb->pages[i] = alloc_page(GFP_NOFS);
4852 		if (!eb->pages[i])
4853 			goto err;
4854 	}
4855 	set_extent_buffer_uptodate(eb);
4856 	btrfs_set_header_nritems(eb, 0);
4857 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4858 
4859 	return eb;
4860 err:
4861 	for (; i > 0; i--)
4862 		__free_page(eb->pages[i - 1]);
4863 	__free_extent_buffer(eb);
4864 	return NULL;
4865 }
4866 
check_buffer_tree_ref(struct extent_buffer * eb)4867 static void check_buffer_tree_ref(struct extent_buffer *eb)
4868 {
4869 	int refs;
4870 	/*
4871 	 * The TREE_REF bit is first set when the extent_buffer is added
4872 	 * to the radix tree. It is also reset, if unset, when a new reference
4873 	 * is created by find_extent_buffer.
4874 	 *
4875 	 * It is only cleared in two cases: freeing the last non-tree
4876 	 * reference to the extent_buffer when its STALE bit is set or
4877 	 * calling releasepage when the tree reference is the only reference.
4878 	 *
4879 	 * In both cases, care is taken to ensure that the extent_buffer's
4880 	 * pages are not under io. However, releasepage can be concurrently
4881 	 * called with creating new references, which is prone to race
4882 	 * conditions between the calls to check_buffer_tree_ref in those
4883 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4884 	 *
4885 	 * The actual lifetime of the extent_buffer in the radix tree is
4886 	 * adequately protected by the refcount, but the TREE_REF bit and
4887 	 * its corresponding reference are not. To protect against this
4888 	 * class of races, we call check_buffer_tree_ref from the codepaths
4889 	 * which trigger io after they set eb->io_pages. Note that once io is
4890 	 * initiated, TREE_REF can no longer be cleared, so that is the
4891 	 * moment at which any such race is best fixed.
4892 	 */
4893 	refs = atomic_read(&eb->refs);
4894 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4895 		return;
4896 
4897 	spin_lock(&eb->refs_lock);
4898 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4899 		atomic_inc(&eb->refs);
4900 	spin_unlock(&eb->refs_lock);
4901 }
4902 
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4903 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4904 		struct page *accessed)
4905 {
4906 	unsigned long num_pages, i;
4907 
4908 	check_buffer_tree_ref(eb);
4909 
4910 	num_pages = num_extent_pages(eb->start, eb->len);
4911 	for (i = 0; i < num_pages; i++) {
4912 		struct page *p = eb->pages[i];
4913 
4914 		if (p != accessed)
4915 			mark_page_accessed(p);
4916 	}
4917 }
4918 
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4919 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4920 					 u64 start)
4921 {
4922 	struct extent_buffer *eb;
4923 
4924 	rcu_read_lock();
4925 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4926 			       start >> PAGE_CACHE_SHIFT);
4927 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4928 		rcu_read_unlock();
4929 		/*
4930 		 * Lock our eb's refs_lock to avoid races with
4931 		 * free_extent_buffer. When we get our eb it might be flagged
4932 		 * with EXTENT_BUFFER_STALE and another task running
4933 		 * free_extent_buffer might have seen that flag set,
4934 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4935 		 * writeback flags not set) and it's still in the tree (flag
4936 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4937 		 * of decrementing the extent buffer's reference count twice.
4938 		 * So here we could race and increment the eb's reference count,
4939 		 * clear its stale flag, mark it as dirty and drop our reference
4940 		 * before the other task finishes executing free_extent_buffer,
4941 		 * which would later result in an attempt to free an extent
4942 		 * buffer that is dirty.
4943 		 */
4944 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4945 			spin_lock(&eb->refs_lock);
4946 			spin_unlock(&eb->refs_lock);
4947 		}
4948 		mark_extent_buffer_accessed(eb, NULL);
4949 		return eb;
4950 	}
4951 	rcu_read_unlock();
4952 
4953 	return NULL;
4954 }
4955 
4956 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4957 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4958 					       u64 start)
4959 {
4960 	struct extent_buffer *eb, *exists = NULL;
4961 	int ret;
4962 
4963 	eb = find_extent_buffer(fs_info, start);
4964 	if (eb)
4965 		return eb;
4966 	eb = alloc_dummy_extent_buffer(fs_info, start);
4967 	if (!eb)
4968 		return ERR_PTR(-ENOMEM);
4969 	eb->fs_info = fs_info;
4970 again:
4971 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4972 	if (ret) {
4973 		exists = ERR_PTR(ret);
4974 		goto free_eb;
4975 	}
4976 	spin_lock(&fs_info->buffer_lock);
4977 	ret = radix_tree_insert(&fs_info->buffer_radix,
4978 				start >> PAGE_CACHE_SHIFT, eb);
4979 	spin_unlock(&fs_info->buffer_lock);
4980 	radix_tree_preload_end();
4981 	if (ret == -EEXIST) {
4982 		exists = find_extent_buffer(fs_info, start);
4983 		if (exists)
4984 			goto free_eb;
4985 		else
4986 			goto again;
4987 	}
4988 	check_buffer_tree_ref(eb);
4989 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4990 
4991 	/*
4992 	 * We will free dummy extent buffer's if they come into
4993 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4994 	 * want the buffers to stay in memory until we're done with them, so
4995 	 * bump the ref count again.
4996 	 */
4997 	atomic_inc(&eb->refs);
4998 	return eb;
4999 free_eb:
5000 	btrfs_release_extent_buffer(eb);
5001 	return exists;
5002 }
5003 #endif
5004 
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5005 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5006 					  u64 start)
5007 {
5008 	unsigned long len = fs_info->tree_root->nodesize;
5009 	unsigned long num_pages = num_extent_pages(start, len);
5010 	unsigned long i;
5011 	unsigned long index = start >> PAGE_CACHE_SHIFT;
5012 	struct extent_buffer *eb;
5013 	struct extent_buffer *exists = NULL;
5014 	struct page *p;
5015 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5016 	int uptodate = 1;
5017 	int ret;
5018 
5019 	eb = find_extent_buffer(fs_info, start);
5020 	if (eb)
5021 		return eb;
5022 
5023 	eb = __alloc_extent_buffer(fs_info, start, len);
5024 	if (!eb)
5025 		return NULL;
5026 
5027 	for (i = 0; i < num_pages; i++, index++) {
5028 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5029 		if (!p)
5030 			goto free_eb;
5031 
5032 		spin_lock(&mapping->private_lock);
5033 		if (PagePrivate(p)) {
5034 			/*
5035 			 * We could have already allocated an eb for this page
5036 			 * and attached one so lets see if we can get a ref on
5037 			 * the existing eb, and if we can we know it's good and
5038 			 * we can just return that one, else we know we can just
5039 			 * overwrite page->private.
5040 			 */
5041 			exists = (struct extent_buffer *)p->private;
5042 			if (atomic_inc_not_zero(&exists->refs)) {
5043 				spin_unlock(&mapping->private_lock);
5044 				unlock_page(p);
5045 				page_cache_release(p);
5046 				mark_extent_buffer_accessed(exists, p);
5047 				goto free_eb;
5048 			}
5049 			exists = NULL;
5050 
5051 			/*
5052 			 * Do this so attach doesn't complain and we need to
5053 			 * drop the ref the old guy had.
5054 			 */
5055 			ClearPagePrivate(p);
5056 			WARN_ON(PageDirty(p));
5057 			page_cache_release(p);
5058 		}
5059 		attach_extent_buffer_page(eb, p);
5060 		spin_unlock(&mapping->private_lock);
5061 		WARN_ON(PageDirty(p));
5062 		eb->pages[i] = p;
5063 		if (!PageUptodate(p))
5064 			uptodate = 0;
5065 
5066 		/*
5067 		 * see below about how we avoid a nasty race with release page
5068 		 * and why we unlock later
5069 		 */
5070 	}
5071 	if (uptodate)
5072 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5073 again:
5074 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5075 	if (ret)
5076 		goto free_eb;
5077 
5078 	spin_lock(&fs_info->buffer_lock);
5079 	ret = radix_tree_insert(&fs_info->buffer_radix,
5080 				start >> PAGE_CACHE_SHIFT, eb);
5081 	spin_unlock(&fs_info->buffer_lock);
5082 	radix_tree_preload_end();
5083 	if (ret == -EEXIST) {
5084 		exists = find_extent_buffer(fs_info, start);
5085 		if (exists)
5086 			goto free_eb;
5087 		else
5088 			goto again;
5089 	}
5090 	/* add one reference for the tree */
5091 	check_buffer_tree_ref(eb);
5092 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5093 
5094 	/*
5095 	 * there is a race where release page may have
5096 	 * tried to find this extent buffer in the radix
5097 	 * but failed.  It will tell the VM it is safe to
5098 	 * reclaim the, and it will clear the page private bit.
5099 	 * We must make sure to set the page private bit properly
5100 	 * after the extent buffer is in the radix tree so
5101 	 * it doesn't get lost
5102 	 */
5103 	SetPageChecked(eb->pages[0]);
5104 	for (i = 1; i < num_pages; i++) {
5105 		p = eb->pages[i];
5106 		ClearPageChecked(p);
5107 		unlock_page(p);
5108 	}
5109 	unlock_page(eb->pages[0]);
5110 	return eb;
5111 
5112 free_eb:
5113 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5114 	for (i = 0; i < num_pages; i++) {
5115 		if (eb->pages[i])
5116 			unlock_page(eb->pages[i]);
5117 	}
5118 
5119 	btrfs_release_extent_buffer(eb);
5120 	return exists;
5121 }
5122 
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5123 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5124 {
5125 	struct extent_buffer *eb =
5126 			container_of(head, struct extent_buffer, rcu_head);
5127 
5128 	__free_extent_buffer(eb);
5129 }
5130 
5131 /* Expects to have eb->eb_lock already held */
release_extent_buffer(struct extent_buffer * eb)5132 static int release_extent_buffer(struct extent_buffer *eb)
5133 {
5134 	WARN_ON(atomic_read(&eb->refs) == 0);
5135 	if (atomic_dec_and_test(&eb->refs)) {
5136 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5137 			struct btrfs_fs_info *fs_info = eb->fs_info;
5138 
5139 			spin_unlock(&eb->refs_lock);
5140 
5141 			spin_lock(&fs_info->buffer_lock);
5142 			radix_tree_delete(&fs_info->buffer_radix,
5143 					  eb->start >> PAGE_CACHE_SHIFT);
5144 			spin_unlock(&fs_info->buffer_lock);
5145 		} else {
5146 			spin_unlock(&eb->refs_lock);
5147 		}
5148 
5149 		/* Should be safe to release our pages at this point */
5150 		btrfs_release_extent_buffer_page(eb);
5151 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5152 		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5153 			__free_extent_buffer(eb);
5154 			return 1;
5155 		}
5156 #endif
5157 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5158 		return 1;
5159 	}
5160 	spin_unlock(&eb->refs_lock);
5161 
5162 	return 0;
5163 }
5164 
free_extent_buffer(struct extent_buffer * eb)5165 void free_extent_buffer(struct extent_buffer *eb)
5166 {
5167 	int refs;
5168 	int old;
5169 	if (!eb)
5170 		return;
5171 
5172 	while (1) {
5173 		refs = atomic_read(&eb->refs);
5174 		if (refs <= 3)
5175 			break;
5176 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5177 		if (old == refs)
5178 			return;
5179 	}
5180 
5181 	spin_lock(&eb->refs_lock);
5182 	if (atomic_read(&eb->refs) == 2 &&
5183 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5184 		atomic_dec(&eb->refs);
5185 
5186 	if (atomic_read(&eb->refs) == 2 &&
5187 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5188 	    !extent_buffer_under_io(eb) &&
5189 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5190 		atomic_dec(&eb->refs);
5191 
5192 	/*
5193 	 * I know this is terrible, but it's temporary until we stop tracking
5194 	 * the uptodate bits and such for the extent buffers.
5195 	 */
5196 	release_extent_buffer(eb);
5197 }
5198 
free_extent_buffer_stale(struct extent_buffer * eb)5199 void free_extent_buffer_stale(struct extent_buffer *eb)
5200 {
5201 	if (!eb)
5202 		return;
5203 
5204 	spin_lock(&eb->refs_lock);
5205 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5206 
5207 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5208 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5209 		atomic_dec(&eb->refs);
5210 	release_extent_buffer(eb);
5211 }
5212 
clear_extent_buffer_dirty(struct extent_buffer * eb)5213 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5214 {
5215 	unsigned long i;
5216 	unsigned long num_pages;
5217 	struct page *page;
5218 
5219 	num_pages = num_extent_pages(eb->start, eb->len);
5220 
5221 	for (i = 0; i < num_pages; i++) {
5222 		page = eb->pages[i];
5223 		if (!PageDirty(page))
5224 			continue;
5225 
5226 		lock_page(page);
5227 		WARN_ON(!PagePrivate(page));
5228 
5229 		clear_page_dirty_for_io(page);
5230 		spin_lock_irq(&page->mapping->tree_lock);
5231 		if (!PageDirty(page)) {
5232 			radix_tree_tag_clear(&page->mapping->page_tree,
5233 						page_index(page),
5234 						PAGECACHE_TAG_DIRTY);
5235 		}
5236 		spin_unlock_irq(&page->mapping->tree_lock);
5237 		ClearPageError(page);
5238 		unlock_page(page);
5239 	}
5240 	WARN_ON(atomic_read(&eb->refs) == 0);
5241 }
5242 
set_extent_buffer_dirty(struct extent_buffer * eb)5243 int set_extent_buffer_dirty(struct extent_buffer *eb)
5244 {
5245 	unsigned long i;
5246 	unsigned long num_pages;
5247 	int was_dirty = 0;
5248 
5249 	check_buffer_tree_ref(eb);
5250 
5251 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5252 
5253 	num_pages = num_extent_pages(eb->start, eb->len);
5254 	WARN_ON(atomic_read(&eb->refs) == 0);
5255 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5256 
5257 	for (i = 0; i < num_pages; i++)
5258 		set_page_dirty(eb->pages[i]);
5259 	return was_dirty;
5260 }
5261 
clear_extent_buffer_uptodate(struct extent_buffer * eb)5262 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5263 {
5264 	unsigned long i;
5265 	struct page *page;
5266 	unsigned long num_pages;
5267 
5268 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5269 	num_pages = num_extent_pages(eb->start, eb->len);
5270 	for (i = 0; i < num_pages; i++) {
5271 		page = eb->pages[i];
5272 		if (page)
5273 			ClearPageUptodate(page);
5274 	}
5275 	return 0;
5276 }
5277 
set_extent_buffer_uptodate(struct extent_buffer * eb)5278 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5279 {
5280 	unsigned long i;
5281 	struct page *page;
5282 	unsigned long num_pages;
5283 
5284 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5285 	num_pages = num_extent_pages(eb->start, eb->len);
5286 	for (i = 0; i < num_pages; i++) {
5287 		page = eb->pages[i];
5288 		SetPageUptodate(page);
5289 	}
5290 	return 0;
5291 }
5292 
extent_buffer_uptodate(struct extent_buffer * eb)5293 int extent_buffer_uptodate(struct extent_buffer *eb)
5294 {
5295 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5296 }
5297 
read_extent_buffer_pages(struct extent_io_tree * tree,struct extent_buffer * eb,u64 start,int wait,get_extent_t * get_extent,int mirror_num)5298 int read_extent_buffer_pages(struct extent_io_tree *tree,
5299 			     struct extent_buffer *eb, u64 start, int wait,
5300 			     get_extent_t *get_extent, int mirror_num)
5301 {
5302 	unsigned long i;
5303 	unsigned long start_i;
5304 	struct page *page;
5305 	int err;
5306 	int ret = 0;
5307 	int locked_pages = 0;
5308 	int all_uptodate = 1;
5309 	unsigned long num_pages;
5310 	unsigned long num_reads = 0;
5311 	struct bio *bio = NULL;
5312 	unsigned long bio_flags = 0;
5313 
5314 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5315 		return 0;
5316 
5317 	if (start) {
5318 		WARN_ON(start < eb->start);
5319 		start_i = (start >> PAGE_CACHE_SHIFT) -
5320 			(eb->start >> PAGE_CACHE_SHIFT);
5321 	} else {
5322 		start_i = 0;
5323 	}
5324 
5325 	num_pages = num_extent_pages(eb->start, eb->len);
5326 	for (i = start_i; i < num_pages; i++) {
5327 		page = eb->pages[i];
5328 		if (wait == WAIT_NONE) {
5329 			if (!trylock_page(page))
5330 				goto unlock_exit;
5331 		} else {
5332 			lock_page(page);
5333 		}
5334 		locked_pages++;
5335 	}
5336 	/*
5337 	 * We need to firstly lock all pages to make sure that
5338 	 * the uptodate bit of our pages won't be affected by
5339 	 * clear_extent_buffer_uptodate().
5340 	 */
5341 	for (i = start_i; i < num_pages; i++) {
5342 		page = eb->pages[i];
5343 		if (!PageUptodate(page)) {
5344 			num_reads++;
5345 			all_uptodate = 0;
5346 		}
5347 	}
5348 
5349 	if (all_uptodate) {
5350 		if (start_i == 0)
5351 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5352 		goto unlock_exit;
5353 	}
5354 
5355 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5356 	eb->read_mirror = 0;
5357 	atomic_set(&eb->io_pages, num_reads);
5358 	/*
5359 	 * It is possible for releasepage to clear the TREE_REF bit before we
5360 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5361 	 */
5362 	check_buffer_tree_ref(eb);
5363 	for (i = start_i; i < num_pages; i++) {
5364 		page = eb->pages[i];
5365 		if (!PageUptodate(page)) {
5366 			ClearPageError(page);
5367 			err = __extent_read_full_page(tree, page,
5368 						      get_extent, &bio,
5369 						      mirror_num, &bio_flags,
5370 						      READ | REQ_META);
5371 			if (err)
5372 				ret = err;
5373 		} else {
5374 			unlock_page(page);
5375 		}
5376 	}
5377 
5378 	if (bio) {
5379 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5380 				     bio_flags);
5381 		if (err)
5382 			return err;
5383 	}
5384 
5385 	if (ret || wait != WAIT_COMPLETE)
5386 		return ret;
5387 
5388 	for (i = start_i; i < num_pages; i++) {
5389 		page = eb->pages[i];
5390 		wait_on_page_locked(page);
5391 		if (!PageUptodate(page))
5392 			ret = -EIO;
5393 	}
5394 
5395 	return ret;
5396 
5397 unlock_exit:
5398 	i = start_i;
5399 	while (locked_pages > 0) {
5400 		page = eb->pages[i];
5401 		i++;
5402 		unlock_page(page);
5403 		locked_pages--;
5404 	}
5405 	return ret;
5406 }
5407 
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5408 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5409 			unsigned long start, unsigned long len)
5410 {
5411 	size_t cur;
5412 	size_t offset;
5413 	struct page *page;
5414 	char *kaddr;
5415 	char *dst = (char *)dstv;
5416 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5417 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5418 
5419 	WARN_ON(start > eb->len);
5420 	WARN_ON(start + len > eb->start + eb->len);
5421 
5422 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5423 
5424 	while (len > 0) {
5425 		page = eb->pages[i];
5426 
5427 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5428 		kaddr = page_address(page);
5429 		memcpy(dst, kaddr + offset, cur);
5430 
5431 		dst += cur;
5432 		len -= cur;
5433 		offset = 0;
5434 		i++;
5435 	}
5436 }
5437 
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5438 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5439 				       void __user *dstv,
5440 				       unsigned long start, unsigned long len)
5441 {
5442 	size_t cur;
5443 	size_t offset;
5444 	struct page *page;
5445 	char *kaddr;
5446 	char __user *dst = (char __user *)dstv;
5447 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5448 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5449 	int ret = 0;
5450 
5451 	WARN_ON(start > eb->len);
5452 	WARN_ON(start + len > eb->start + eb->len);
5453 
5454 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5455 
5456 	while (len > 0) {
5457 		page = eb->pages[i];
5458 
5459 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5460 		kaddr = page_address(page);
5461 		if (probe_user_write(dst, kaddr + offset, cur)) {
5462 			ret = -EFAULT;
5463 			break;
5464 		}
5465 
5466 		dst += cur;
5467 		len -= cur;
5468 		offset = 0;
5469 		i++;
5470 	}
5471 
5472 	return ret;
5473 }
5474 
map_private_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long min_len,char ** map,unsigned long * map_start,unsigned long * map_len)5475 int map_private_extent_buffer(const struct extent_buffer *eb,
5476 			      unsigned long start, unsigned long min_len,
5477 			      char **map, unsigned long *map_start,
5478 			      unsigned long *map_len)
5479 {
5480 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5481 	char *kaddr;
5482 	struct page *p;
5483 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5484 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5485 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5486 		PAGE_CACHE_SHIFT;
5487 
5488 	if (i != end_i)
5489 		return -EINVAL;
5490 
5491 	if (i == 0) {
5492 		offset = start_offset;
5493 		*map_start = 0;
5494 	} else {
5495 		offset = 0;
5496 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5497 	}
5498 
5499 	if (start + min_len > eb->len) {
5500 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5501 		       "wanted %lu %lu\n",
5502 		       eb->start, eb->len, start, min_len);
5503 		return -EINVAL;
5504 	}
5505 
5506 	p = eb->pages[i];
5507 	kaddr = page_address(p);
5508 	*map = kaddr + offset;
5509 	*map_len = PAGE_CACHE_SIZE - offset;
5510 	return 0;
5511 }
5512 
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5513 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5514 			 unsigned long start, unsigned long len)
5515 {
5516 	size_t cur;
5517 	size_t offset;
5518 	struct page *page;
5519 	char *kaddr;
5520 	char *ptr = (char *)ptrv;
5521 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5522 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5523 	int ret = 0;
5524 
5525 	WARN_ON(start > eb->len);
5526 	WARN_ON(start + len > eb->start + eb->len);
5527 
5528 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5529 
5530 	while (len > 0) {
5531 		page = eb->pages[i];
5532 
5533 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5534 
5535 		kaddr = page_address(page);
5536 		ret = memcmp(ptr, kaddr + offset, cur);
5537 		if (ret)
5538 			break;
5539 
5540 		ptr += cur;
5541 		len -= cur;
5542 		offset = 0;
5543 		i++;
5544 	}
5545 	return ret;
5546 }
5547 
write_extent_buffer(struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5548 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5549 			 unsigned long start, unsigned long len)
5550 {
5551 	size_t cur;
5552 	size_t offset;
5553 	struct page *page;
5554 	char *kaddr;
5555 	char *src = (char *)srcv;
5556 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5557 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5558 
5559 	WARN_ON(start > eb->len);
5560 	WARN_ON(start + len > eb->start + eb->len);
5561 
5562 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5563 
5564 	while (len > 0) {
5565 		page = eb->pages[i];
5566 		WARN_ON(!PageUptodate(page));
5567 
5568 		cur = min(len, PAGE_CACHE_SIZE - offset);
5569 		kaddr = page_address(page);
5570 		memcpy(kaddr + offset, src, cur);
5571 
5572 		src += cur;
5573 		len -= cur;
5574 		offset = 0;
5575 		i++;
5576 	}
5577 }
5578 
memset_extent_buffer(struct extent_buffer * eb,char c,unsigned long start,unsigned long len)5579 void memset_extent_buffer(struct extent_buffer *eb, char c,
5580 			  unsigned long start, unsigned long len)
5581 {
5582 	size_t cur;
5583 	size_t offset;
5584 	struct page *page;
5585 	char *kaddr;
5586 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5587 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5588 
5589 	WARN_ON(start > eb->len);
5590 	WARN_ON(start + len > eb->start + eb->len);
5591 
5592 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5593 
5594 	while (len > 0) {
5595 		page = eb->pages[i];
5596 		WARN_ON(!PageUptodate(page));
5597 
5598 		cur = min(len, PAGE_CACHE_SIZE - offset);
5599 		kaddr = page_address(page);
5600 		memset(kaddr + offset, c, cur);
5601 
5602 		len -= cur;
5603 		offset = 0;
5604 		i++;
5605 	}
5606 }
5607 
copy_extent_buffer(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5608 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5609 			unsigned long dst_offset, unsigned long src_offset,
5610 			unsigned long len)
5611 {
5612 	u64 dst_len = dst->len;
5613 	size_t cur;
5614 	size_t offset;
5615 	struct page *page;
5616 	char *kaddr;
5617 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5618 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5619 
5620 	WARN_ON(src->len != dst_len);
5621 
5622 	offset = (start_offset + dst_offset) &
5623 		(PAGE_CACHE_SIZE - 1);
5624 
5625 	while (len > 0) {
5626 		page = dst->pages[i];
5627 		WARN_ON(!PageUptodate(page));
5628 
5629 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5630 
5631 		kaddr = page_address(page);
5632 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5633 
5634 		src_offset += cur;
5635 		len -= cur;
5636 		offset = 0;
5637 		i++;
5638 	}
5639 }
5640 
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5641 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5642 {
5643 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5644 	return distance < len;
5645 }
5646 
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5647 static void copy_pages(struct page *dst_page, struct page *src_page,
5648 		       unsigned long dst_off, unsigned long src_off,
5649 		       unsigned long len)
5650 {
5651 	char *dst_kaddr = page_address(dst_page);
5652 	char *src_kaddr;
5653 	int must_memmove = 0;
5654 
5655 	if (dst_page != src_page) {
5656 		src_kaddr = page_address(src_page);
5657 	} else {
5658 		src_kaddr = dst_kaddr;
5659 		if (areas_overlap(src_off, dst_off, len))
5660 			must_memmove = 1;
5661 	}
5662 
5663 	if (must_memmove)
5664 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5665 	else
5666 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5667 }
5668 
memcpy_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5669 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5670 			   unsigned long src_offset, unsigned long len)
5671 {
5672 	size_t cur;
5673 	size_t dst_off_in_page;
5674 	size_t src_off_in_page;
5675 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5676 	unsigned long dst_i;
5677 	unsigned long src_i;
5678 
5679 	if (src_offset + len > dst->len) {
5680 		btrfs_err(dst->fs_info,
5681 			"memmove bogus src_offset %lu move "
5682 		       "len %lu dst len %lu", src_offset, len, dst->len);
5683 		BUG_ON(1);
5684 	}
5685 	if (dst_offset + len > dst->len) {
5686 		btrfs_err(dst->fs_info,
5687 			"memmove bogus dst_offset %lu move "
5688 		       "len %lu dst len %lu", dst_offset, len, dst->len);
5689 		BUG_ON(1);
5690 	}
5691 
5692 	while (len > 0) {
5693 		dst_off_in_page = (start_offset + dst_offset) &
5694 			(PAGE_CACHE_SIZE - 1);
5695 		src_off_in_page = (start_offset + src_offset) &
5696 			(PAGE_CACHE_SIZE - 1);
5697 
5698 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5699 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5700 
5701 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5702 					       src_off_in_page));
5703 		cur = min_t(unsigned long, cur,
5704 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5705 
5706 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5707 			   dst_off_in_page, src_off_in_page, cur);
5708 
5709 		src_offset += cur;
5710 		dst_offset += cur;
5711 		len -= cur;
5712 	}
5713 }
5714 
memmove_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5715 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5716 			   unsigned long src_offset, unsigned long len)
5717 {
5718 	size_t cur;
5719 	size_t dst_off_in_page;
5720 	size_t src_off_in_page;
5721 	unsigned long dst_end = dst_offset + len - 1;
5722 	unsigned long src_end = src_offset + len - 1;
5723 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5724 	unsigned long dst_i;
5725 	unsigned long src_i;
5726 
5727 	if (src_offset + len > dst->len) {
5728 		btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5729 		       "len %lu len %lu", src_offset, len, dst->len);
5730 		BUG_ON(1);
5731 	}
5732 	if (dst_offset + len > dst->len) {
5733 		btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5734 		       "len %lu len %lu", dst_offset, len, dst->len);
5735 		BUG_ON(1);
5736 	}
5737 	if (dst_offset < src_offset) {
5738 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5739 		return;
5740 	}
5741 	while (len > 0) {
5742 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5743 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5744 
5745 		dst_off_in_page = (start_offset + dst_end) &
5746 			(PAGE_CACHE_SIZE - 1);
5747 		src_off_in_page = (start_offset + src_end) &
5748 			(PAGE_CACHE_SIZE - 1);
5749 
5750 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5751 		cur = min(cur, dst_off_in_page + 1);
5752 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5753 			   dst_off_in_page - cur + 1,
5754 			   src_off_in_page - cur + 1, cur);
5755 
5756 		dst_end -= cur;
5757 		src_end -= cur;
5758 		len -= cur;
5759 	}
5760 }
5761 
try_release_extent_buffer(struct page * page)5762 int try_release_extent_buffer(struct page *page)
5763 {
5764 	struct extent_buffer *eb;
5765 
5766 	/*
5767 	 * We need to make sure noboody is attaching this page to an eb right
5768 	 * now.
5769 	 */
5770 	spin_lock(&page->mapping->private_lock);
5771 	if (!PagePrivate(page)) {
5772 		spin_unlock(&page->mapping->private_lock);
5773 		return 1;
5774 	}
5775 
5776 	eb = (struct extent_buffer *)page->private;
5777 	BUG_ON(!eb);
5778 
5779 	/*
5780 	 * This is a little awful but should be ok, we need to make sure that
5781 	 * the eb doesn't disappear out from under us while we're looking at
5782 	 * this page.
5783 	 */
5784 	spin_lock(&eb->refs_lock);
5785 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5786 		spin_unlock(&eb->refs_lock);
5787 		spin_unlock(&page->mapping->private_lock);
5788 		return 0;
5789 	}
5790 	spin_unlock(&page->mapping->private_lock);
5791 
5792 	/*
5793 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5794 	 * so just return, this page will likely be freed soon anyway.
5795 	 */
5796 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5797 		spin_unlock(&eb->refs_lock);
5798 		return 0;
5799 	}
5800 
5801 	return release_extent_buffer(eb);
5802 }
5803