• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 #include <linux/nospec.h>
29 
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40 
41 #include "perf_event.h"
42 
43 struct x86_pmu x86_pmu __read_mostly;
44 
45 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
46 	.enabled = 1,
47 };
48 
49 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
50 
51 u64 __read_mostly hw_cache_event_ids
52 				[PERF_COUNT_HW_CACHE_MAX]
53 				[PERF_COUNT_HW_CACHE_OP_MAX]
54 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
55 u64 __read_mostly hw_cache_extra_regs
56 				[PERF_COUNT_HW_CACHE_MAX]
57 				[PERF_COUNT_HW_CACHE_OP_MAX]
58 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
59 
60 /*
61  * Propagate event elapsed time into the generic event.
62  * Can only be executed on the CPU where the event is active.
63  * Returns the delta events processed.
64  */
x86_perf_event_update(struct perf_event * event)65 u64 x86_perf_event_update(struct perf_event *event)
66 {
67 	struct hw_perf_event *hwc = &event->hw;
68 	int shift = 64 - x86_pmu.cntval_bits;
69 	u64 prev_raw_count, new_raw_count;
70 	int idx = hwc->idx;
71 	u64 delta;
72 
73 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
74 		return 0;
75 
76 	/*
77 	 * Careful: an NMI might modify the previous event value.
78 	 *
79 	 * Our tactic to handle this is to first atomically read and
80 	 * exchange a new raw count - then add that new-prev delta
81 	 * count to the generic event atomically:
82 	 */
83 again:
84 	prev_raw_count = local64_read(&hwc->prev_count);
85 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
86 
87 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
88 					new_raw_count) != prev_raw_count)
89 		goto again;
90 
91 	/*
92 	 * Now we have the new raw value and have updated the prev
93 	 * timestamp already. We can now calculate the elapsed delta
94 	 * (event-)time and add that to the generic event.
95 	 *
96 	 * Careful, not all hw sign-extends above the physical width
97 	 * of the count.
98 	 */
99 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
100 	delta >>= shift;
101 
102 	local64_add(delta, &event->count);
103 	local64_sub(delta, &hwc->period_left);
104 
105 	return new_raw_count;
106 }
107 
108 /*
109  * Find and validate any extra registers to set up.
110  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)111 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
112 {
113 	struct hw_perf_event_extra *reg;
114 	struct extra_reg *er;
115 
116 	reg = &event->hw.extra_reg;
117 
118 	if (!x86_pmu.extra_regs)
119 		return 0;
120 
121 	for (er = x86_pmu.extra_regs; er->msr; er++) {
122 		if (er->event != (config & er->config_mask))
123 			continue;
124 		if (event->attr.config1 & ~er->valid_mask)
125 			return -EINVAL;
126 		/* Check if the extra msrs can be safely accessed*/
127 		if (!er->extra_msr_access)
128 			return -ENXIO;
129 
130 		reg->idx = er->idx;
131 		reg->config = event->attr.config1;
132 		reg->reg = er->msr;
133 		break;
134 	}
135 	return 0;
136 }
137 
138 static atomic_t active_events;
139 static atomic_t pmc_refcount;
140 static DEFINE_MUTEX(pmc_reserve_mutex);
141 
142 #ifdef CONFIG_X86_LOCAL_APIC
143 
reserve_pmc_hardware(void)144 static bool reserve_pmc_hardware(void)
145 {
146 	int i;
147 
148 	for (i = 0; i < x86_pmu.num_counters; i++) {
149 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
150 			goto perfctr_fail;
151 	}
152 
153 	for (i = 0; i < x86_pmu.num_counters; i++) {
154 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
155 			goto eventsel_fail;
156 	}
157 
158 	return true;
159 
160 eventsel_fail:
161 	for (i--; i >= 0; i--)
162 		release_evntsel_nmi(x86_pmu_config_addr(i));
163 
164 	i = x86_pmu.num_counters;
165 
166 perfctr_fail:
167 	for (i--; i >= 0; i--)
168 		release_perfctr_nmi(x86_pmu_event_addr(i));
169 
170 	return false;
171 }
172 
release_pmc_hardware(void)173 static void release_pmc_hardware(void)
174 {
175 	int i;
176 
177 	for (i = 0; i < x86_pmu.num_counters; i++) {
178 		release_perfctr_nmi(x86_pmu_event_addr(i));
179 		release_evntsel_nmi(x86_pmu_config_addr(i));
180 	}
181 }
182 
183 #else
184 
reserve_pmc_hardware(void)185 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)186 static void release_pmc_hardware(void) {}
187 
188 #endif
189 
check_hw_exists(void)190 static bool check_hw_exists(void)
191 {
192 	u64 val, val_fail = -1, val_new= ~0;
193 	int i, reg, reg_fail = -1, ret = 0;
194 	int bios_fail = 0;
195 	int reg_safe = -1;
196 
197 	/*
198 	 * Check to see if the BIOS enabled any of the counters, if so
199 	 * complain and bail.
200 	 */
201 	for (i = 0; i < x86_pmu.num_counters; i++) {
202 		reg = x86_pmu_config_addr(i);
203 		ret = rdmsrl_safe(reg, &val);
204 		if (ret)
205 			goto msr_fail;
206 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
207 			bios_fail = 1;
208 			val_fail = val;
209 			reg_fail = reg;
210 		} else {
211 			reg_safe = i;
212 		}
213 	}
214 
215 	if (x86_pmu.num_counters_fixed) {
216 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
217 		ret = rdmsrl_safe(reg, &val);
218 		if (ret)
219 			goto msr_fail;
220 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
221 			if (val & (0x03 << i*4)) {
222 				bios_fail = 1;
223 				val_fail = val;
224 				reg_fail = reg;
225 			}
226 		}
227 	}
228 
229 	/*
230 	 * If all the counters are enabled, the below test will always
231 	 * fail.  The tools will also become useless in this scenario.
232 	 * Just fail and disable the hardware counters.
233 	 */
234 
235 	if (reg_safe == -1) {
236 		reg = reg_safe;
237 		goto msr_fail;
238 	}
239 
240 	/*
241 	 * Read the current value, change it and read it back to see if it
242 	 * matches, this is needed to detect certain hardware emulators
243 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
244 	 */
245 	reg = x86_pmu_event_addr(reg_safe);
246 	if (rdmsrl_safe(reg, &val))
247 		goto msr_fail;
248 	val ^= 0xffffUL;
249 	ret = wrmsrl_safe(reg, val);
250 	ret |= rdmsrl_safe(reg, &val_new);
251 	if (ret || val != val_new)
252 		goto msr_fail;
253 
254 	/*
255 	 * We still allow the PMU driver to operate:
256 	 */
257 	if (bios_fail) {
258 		printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
259 		printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
260 	}
261 
262 	return true;
263 
264 msr_fail:
265 	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
266 	printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 		reg, val_new);
269 
270 	return false;
271 }
272 
hw_perf_event_destroy(struct perf_event * event)273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275 	x86_release_hardware();
276 	atomic_dec(&active_events);
277 }
278 
hw_perf_lbr_event_destroy(struct perf_event * event)279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281 	hw_perf_event_destroy(event);
282 
283 	/* undo the lbr/bts event accounting */
284 	x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286 
x86_pmu_initialized(void)287 static inline int x86_pmu_initialized(void)
288 {
289 	return x86_pmu.handle_irq != NULL;
290 }
291 
292 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295 	struct perf_event_attr *attr = &event->attr;
296 	unsigned int cache_type, cache_op, cache_result;
297 	u64 config, val;
298 
299 	config = attr->config;
300 
301 	cache_type = (config >> 0) & 0xff;
302 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 		return -EINVAL;
304 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
305 
306 	cache_op = (config >>  8) & 0xff;
307 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
308 		return -EINVAL;
309 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
310 
311 	cache_result = (config >> 16) & 0xff;
312 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
313 		return -EINVAL;
314 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
315 
316 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
317 
318 	if (val == 0)
319 		return -ENOENT;
320 
321 	if (val == -1)
322 		return -EINVAL;
323 
324 	hwc->config |= val;
325 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
326 	return x86_pmu_extra_regs(val, event);
327 }
328 
x86_reserve_hardware(void)329 int x86_reserve_hardware(void)
330 {
331 	int err = 0;
332 
333 	if (!atomic_inc_not_zero(&pmc_refcount)) {
334 		mutex_lock(&pmc_reserve_mutex);
335 		if (atomic_read(&pmc_refcount) == 0) {
336 			if (!reserve_pmc_hardware())
337 				err = -EBUSY;
338 			else
339 				reserve_ds_buffers();
340 		}
341 		if (!err)
342 			atomic_inc(&pmc_refcount);
343 		mutex_unlock(&pmc_reserve_mutex);
344 	}
345 
346 	return err;
347 }
348 
x86_release_hardware(void)349 void x86_release_hardware(void)
350 {
351 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
352 		release_pmc_hardware();
353 		release_ds_buffers();
354 		mutex_unlock(&pmc_reserve_mutex);
355 	}
356 }
357 
358 /*
359  * Check if we can create event of a certain type (that no conflicting events
360  * are present).
361  */
x86_add_exclusive(unsigned int what)362 int x86_add_exclusive(unsigned int what)
363 {
364 	int i;
365 
366 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
367 		mutex_lock(&pmc_reserve_mutex);
368 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
369 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
370 				goto fail_unlock;
371 		}
372 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
373 		mutex_unlock(&pmc_reserve_mutex);
374 	}
375 
376 	atomic_inc(&active_events);
377 	return 0;
378 
379 fail_unlock:
380 	mutex_unlock(&pmc_reserve_mutex);
381 	return -EBUSY;
382 }
383 
x86_del_exclusive(unsigned int what)384 void x86_del_exclusive(unsigned int what)
385 {
386 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
387 	atomic_dec(&active_events);
388 }
389 
x86_setup_perfctr(struct perf_event * event)390 int x86_setup_perfctr(struct perf_event *event)
391 {
392 	struct perf_event_attr *attr = &event->attr;
393 	struct hw_perf_event *hwc = &event->hw;
394 	u64 config;
395 
396 	if (!is_sampling_event(event)) {
397 		hwc->sample_period = x86_pmu.max_period;
398 		hwc->last_period = hwc->sample_period;
399 		local64_set(&hwc->period_left, hwc->sample_period);
400 	}
401 
402 	if (attr->type == PERF_TYPE_RAW)
403 		return x86_pmu_extra_regs(event->attr.config, event);
404 
405 	if (attr->type == PERF_TYPE_HW_CACHE)
406 		return set_ext_hw_attr(hwc, event);
407 
408 	if (attr->config >= x86_pmu.max_events)
409 		return -EINVAL;
410 
411 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
412 
413 	/*
414 	 * The generic map:
415 	 */
416 	config = x86_pmu.event_map(attr->config);
417 
418 	if (config == 0)
419 		return -ENOENT;
420 
421 	if (config == -1LL)
422 		return -EINVAL;
423 
424 	/*
425 	 * Branch tracing:
426 	 */
427 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
428 	    !attr->freq && hwc->sample_period == 1) {
429 		/* BTS is not supported by this architecture. */
430 		if (!x86_pmu.bts_active)
431 			return -EOPNOTSUPP;
432 
433 		/* BTS is currently only allowed for user-mode. */
434 		if (!attr->exclude_kernel)
435 			return -EOPNOTSUPP;
436 
437 		/* disallow bts if conflicting events are present */
438 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
439 			return -EBUSY;
440 
441 		event->destroy = hw_perf_lbr_event_destroy;
442 	}
443 
444 	hwc->config |= config;
445 
446 	return 0;
447 }
448 
449 /*
450  * check that branch_sample_type is compatible with
451  * settings needed for precise_ip > 1 which implies
452  * using the LBR to capture ALL taken branches at the
453  * priv levels of the measurement
454  */
precise_br_compat(struct perf_event * event)455 static inline int precise_br_compat(struct perf_event *event)
456 {
457 	u64 m = event->attr.branch_sample_type;
458 	u64 b = 0;
459 
460 	/* must capture all branches */
461 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
462 		return 0;
463 
464 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
465 
466 	if (!event->attr.exclude_user)
467 		b |= PERF_SAMPLE_BRANCH_USER;
468 
469 	if (!event->attr.exclude_kernel)
470 		b |= PERF_SAMPLE_BRANCH_KERNEL;
471 
472 	/*
473 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
474 	 */
475 
476 	return m == b;
477 }
478 
x86_pmu_hw_config(struct perf_event * event)479 int x86_pmu_hw_config(struct perf_event *event)
480 {
481 	if (event->attr.precise_ip) {
482 		int precise = 0;
483 
484 		/* Support for constant skid */
485 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
486 			precise++;
487 
488 			/* Support for IP fixup */
489 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
490 				precise++;
491 		}
492 
493 		if (event->attr.precise_ip > precise)
494 			return -EOPNOTSUPP;
495 	}
496 	/*
497 	 * check that PEBS LBR correction does not conflict with
498 	 * whatever the user is asking with attr->branch_sample_type
499 	 */
500 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
501 		u64 *br_type = &event->attr.branch_sample_type;
502 
503 		if (has_branch_stack(event)) {
504 			if (!precise_br_compat(event))
505 				return -EOPNOTSUPP;
506 
507 			/* branch_sample_type is compatible */
508 
509 		} else {
510 			/*
511 			 * user did not specify  branch_sample_type
512 			 *
513 			 * For PEBS fixups, we capture all
514 			 * the branches at the priv level of the
515 			 * event.
516 			 */
517 			*br_type = PERF_SAMPLE_BRANCH_ANY;
518 
519 			if (!event->attr.exclude_user)
520 				*br_type |= PERF_SAMPLE_BRANCH_USER;
521 
522 			if (!event->attr.exclude_kernel)
523 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
524 		}
525 	}
526 
527 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
528 		event->attach_state |= PERF_ATTACH_TASK_DATA;
529 
530 	/*
531 	 * Generate PMC IRQs:
532 	 * (keep 'enabled' bit clear for now)
533 	 */
534 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
535 
536 	/*
537 	 * Count user and OS events unless requested not to
538 	 */
539 	if (!event->attr.exclude_user)
540 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
541 	if (!event->attr.exclude_kernel)
542 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
543 
544 	if (event->attr.type == PERF_TYPE_RAW)
545 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
546 
547 	if (event->attr.sample_period && x86_pmu.limit_period) {
548 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
549 				event->attr.sample_period)
550 			return -EINVAL;
551 	}
552 
553 	return x86_setup_perfctr(event);
554 }
555 
556 /*
557  * Setup the hardware configuration for a given attr_type
558  */
__x86_pmu_event_init(struct perf_event * event)559 static int __x86_pmu_event_init(struct perf_event *event)
560 {
561 	int err;
562 
563 	if (!x86_pmu_initialized())
564 		return -ENODEV;
565 
566 	err = x86_reserve_hardware();
567 	if (err)
568 		return err;
569 
570 	atomic_inc(&active_events);
571 	event->destroy = hw_perf_event_destroy;
572 
573 	event->hw.idx = -1;
574 	event->hw.last_cpu = -1;
575 	event->hw.last_tag = ~0ULL;
576 
577 	/* mark unused */
578 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
579 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
580 
581 	return x86_pmu.hw_config(event);
582 }
583 
x86_pmu_disable_all(void)584 void x86_pmu_disable_all(void)
585 {
586 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
587 	int idx;
588 
589 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
590 		u64 val;
591 
592 		if (!test_bit(idx, cpuc->active_mask))
593 			continue;
594 		rdmsrl(x86_pmu_config_addr(idx), val);
595 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
596 			continue;
597 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
598 		wrmsrl(x86_pmu_config_addr(idx), val);
599 	}
600 }
601 
602 /*
603  * There may be PMI landing after enabled=0. The PMI hitting could be before or
604  * after disable_all.
605  *
606  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
607  * It will not be re-enabled in the NMI handler again, because enabled=0. After
608  * handling the NMI, disable_all will be called, which will not change the
609  * state either. If PMI hits after disable_all, the PMU is already disabled
610  * before entering NMI handler. The NMI handler will not change the state
611  * either.
612  *
613  * So either situation is harmless.
614  */
x86_pmu_disable(struct pmu * pmu)615 static void x86_pmu_disable(struct pmu *pmu)
616 {
617 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
618 
619 	if (!x86_pmu_initialized())
620 		return;
621 
622 	if (!cpuc->enabled)
623 		return;
624 
625 	cpuc->n_added = 0;
626 	cpuc->enabled = 0;
627 	barrier();
628 
629 	x86_pmu.disable_all();
630 }
631 
x86_pmu_enable_all(int added)632 void x86_pmu_enable_all(int added)
633 {
634 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
635 	int idx;
636 
637 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
638 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
639 
640 		if (!test_bit(idx, cpuc->active_mask))
641 			continue;
642 
643 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
644 	}
645 }
646 
647 static struct pmu pmu;
648 
is_x86_event(struct perf_event * event)649 static inline int is_x86_event(struct perf_event *event)
650 {
651 	return event->pmu == &pmu;
652 }
653 
654 /*
655  * Event scheduler state:
656  *
657  * Assign events iterating over all events and counters, beginning
658  * with events with least weights first. Keep the current iterator
659  * state in struct sched_state.
660  */
661 struct sched_state {
662 	int	weight;
663 	int	event;		/* event index */
664 	int	counter;	/* counter index */
665 	int	unassigned;	/* number of events to be assigned left */
666 	int	nr_gp;		/* number of GP counters used */
667 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
668 };
669 
670 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
671 #define	SCHED_STATES_MAX	2
672 
673 struct perf_sched {
674 	int			max_weight;
675 	int			max_events;
676 	int			max_gp;
677 	int			saved_states;
678 	struct event_constraint	**constraints;
679 	struct sched_state	state;
680 	struct sched_state	saved[SCHED_STATES_MAX];
681 };
682 
683 /*
684  * Initialize interator that runs through all events and counters.
685  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)686 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
687 			    int num, int wmin, int wmax, int gpmax)
688 {
689 	int idx;
690 
691 	memset(sched, 0, sizeof(*sched));
692 	sched->max_events	= num;
693 	sched->max_weight	= wmax;
694 	sched->max_gp		= gpmax;
695 	sched->constraints	= constraints;
696 
697 	for (idx = 0; idx < num; idx++) {
698 		if (constraints[idx]->weight == wmin)
699 			break;
700 	}
701 
702 	sched->state.event	= idx;		/* start with min weight */
703 	sched->state.weight	= wmin;
704 	sched->state.unassigned	= num;
705 }
706 
perf_sched_save_state(struct perf_sched * sched)707 static void perf_sched_save_state(struct perf_sched *sched)
708 {
709 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
710 		return;
711 
712 	sched->saved[sched->saved_states] = sched->state;
713 	sched->saved_states++;
714 }
715 
perf_sched_restore_state(struct perf_sched * sched)716 static bool perf_sched_restore_state(struct perf_sched *sched)
717 {
718 	if (!sched->saved_states)
719 		return false;
720 
721 	sched->saved_states--;
722 	sched->state = sched->saved[sched->saved_states];
723 
724 	/* continue with next counter: */
725 	clear_bit(sched->state.counter++, sched->state.used);
726 
727 	return true;
728 }
729 
730 /*
731  * Select a counter for the current event to schedule. Return true on
732  * success.
733  */
__perf_sched_find_counter(struct perf_sched * sched)734 static bool __perf_sched_find_counter(struct perf_sched *sched)
735 {
736 	struct event_constraint *c;
737 	int idx;
738 
739 	if (!sched->state.unassigned)
740 		return false;
741 
742 	if (sched->state.event >= sched->max_events)
743 		return false;
744 
745 	c = sched->constraints[sched->state.event];
746 	/* Prefer fixed purpose counters */
747 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
748 		idx = INTEL_PMC_IDX_FIXED;
749 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
750 			if (!__test_and_set_bit(idx, sched->state.used))
751 				goto done;
752 		}
753 	}
754 
755 	/* Grab the first unused counter starting with idx */
756 	idx = sched->state.counter;
757 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
758 		if (!__test_and_set_bit(idx, sched->state.used)) {
759 			if (sched->state.nr_gp++ >= sched->max_gp)
760 				return false;
761 
762 			goto done;
763 		}
764 	}
765 
766 	return false;
767 
768 done:
769 	sched->state.counter = idx;
770 
771 	if (c->overlap)
772 		perf_sched_save_state(sched);
773 
774 	return true;
775 }
776 
perf_sched_find_counter(struct perf_sched * sched)777 static bool perf_sched_find_counter(struct perf_sched *sched)
778 {
779 	while (!__perf_sched_find_counter(sched)) {
780 		if (!perf_sched_restore_state(sched))
781 			return false;
782 	}
783 
784 	return true;
785 }
786 
787 /*
788  * Go through all unassigned events and find the next one to schedule.
789  * Take events with the least weight first. Return true on success.
790  */
perf_sched_next_event(struct perf_sched * sched)791 static bool perf_sched_next_event(struct perf_sched *sched)
792 {
793 	struct event_constraint *c;
794 
795 	if (!sched->state.unassigned || !--sched->state.unassigned)
796 		return false;
797 
798 	do {
799 		/* next event */
800 		sched->state.event++;
801 		if (sched->state.event >= sched->max_events) {
802 			/* next weight */
803 			sched->state.event = 0;
804 			sched->state.weight++;
805 			if (sched->state.weight > sched->max_weight)
806 				return false;
807 		}
808 		c = sched->constraints[sched->state.event];
809 	} while (c->weight != sched->state.weight);
810 
811 	sched->state.counter = 0;	/* start with first counter */
812 
813 	return true;
814 }
815 
816 /*
817  * Assign a counter for each event.
818  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)819 int perf_assign_events(struct event_constraint **constraints, int n,
820 			int wmin, int wmax, int gpmax, int *assign)
821 {
822 	struct perf_sched sched;
823 
824 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
825 
826 	do {
827 		if (!perf_sched_find_counter(&sched))
828 			break;	/* failed */
829 		if (assign)
830 			assign[sched.state.event] = sched.state.counter;
831 	} while (perf_sched_next_event(&sched));
832 
833 	return sched.state.unassigned;
834 }
835 EXPORT_SYMBOL_GPL(perf_assign_events);
836 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)837 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
838 {
839 	struct event_constraint *c;
840 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
841 	struct perf_event *e;
842 	int i, wmin, wmax, unsched = 0;
843 	struct hw_perf_event *hwc;
844 
845 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
846 
847 	if (x86_pmu.start_scheduling)
848 		x86_pmu.start_scheduling(cpuc);
849 
850 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
851 		cpuc->event_constraint[i] = NULL;
852 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
853 		cpuc->event_constraint[i] = c;
854 
855 		wmin = min(wmin, c->weight);
856 		wmax = max(wmax, c->weight);
857 	}
858 
859 	/*
860 	 * fastpath, try to reuse previous register
861 	 */
862 	for (i = 0; i < n; i++) {
863 		hwc = &cpuc->event_list[i]->hw;
864 		c = cpuc->event_constraint[i];
865 
866 		/* never assigned */
867 		if (hwc->idx == -1)
868 			break;
869 
870 		/* constraint still honored */
871 		if (!test_bit(hwc->idx, c->idxmsk))
872 			break;
873 
874 		/* not already used */
875 		if (test_bit(hwc->idx, used_mask))
876 			break;
877 
878 		__set_bit(hwc->idx, used_mask);
879 		if (assign)
880 			assign[i] = hwc->idx;
881 	}
882 
883 	/* slow path */
884 	if (i != n) {
885 		int gpmax = x86_pmu.num_counters;
886 
887 		/*
888 		 * Do not allow scheduling of more than half the available
889 		 * generic counters.
890 		 *
891 		 * This helps avoid counter starvation of sibling thread by
892 		 * ensuring at most half the counters cannot be in exclusive
893 		 * mode. There is no designated counters for the limits. Any
894 		 * N/2 counters can be used. This helps with events with
895 		 * specific counter constraints.
896 		 */
897 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
898 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
899 			gpmax /= 2;
900 
901 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
902 					     wmax, gpmax, assign);
903 	}
904 
905 	/*
906 	 * In case of success (unsched = 0), mark events as committed,
907 	 * so we do not put_constraint() in case new events are added
908 	 * and fail to be scheduled
909 	 *
910 	 * We invoke the lower level commit callback to lock the resource
911 	 *
912 	 * We do not need to do all of this in case we are called to
913 	 * validate an event group (assign == NULL)
914 	 */
915 	if (!unsched && assign) {
916 		for (i = 0; i < n; i++) {
917 			e = cpuc->event_list[i];
918 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
919 			if (x86_pmu.commit_scheduling)
920 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
921 		}
922 	} else {
923 		for (i = 0; i < n; i++) {
924 			e = cpuc->event_list[i];
925 			/*
926 			 * do not put_constraint() on comitted events,
927 			 * because they are good to go
928 			 */
929 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
930 				continue;
931 
932 			/*
933 			 * release events that failed scheduling
934 			 */
935 			if (x86_pmu.put_event_constraints)
936 				x86_pmu.put_event_constraints(cpuc, e);
937 		}
938 	}
939 
940 	if (x86_pmu.stop_scheduling)
941 		x86_pmu.stop_scheduling(cpuc);
942 
943 	return unsched ? -EINVAL : 0;
944 }
945 
946 /*
947  * dogrp: true if must collect siblings events (group)
948  * returns total number of events and error code
949  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)950 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
951 {
952 	struct perf_event *event;
953 	int n, max_count;
954 
955 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
956 
957 	/* current number of events already accepted */
958 	n = cpuc->n_events;
959 
960 	if (is_x86_event(leader)) {
961 		if (n >= max_count)
962 			return -EINVAL;
963 		cpuc->event_list[n] = leader;
964 		n++;
965 	}
966 	if (!dogrp)
967 		return n;
968 
969 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
970 		if (!is_x86_event(event) ||
971 		    event->state <= PERF_EVENT_STATE_OFF)
972 			continue;
973 
974 		if (n >= max_count)
975 			return -EINVAL;
976 
977 		cpuc->event_list[n] = event;
978 		n++;
979 	}
980 	return n;
981 }
982 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)983 static inline void x86_assign_hw_event(struct perf_event *event,
984 				struct cpu_hw_events *cpuc, int i)
985 {
986 	struct hw_perf_event *hwc = &event->hw;
987 
988 	hwc->idx = cpuc->assign[i];
989 	hwc->last_cpu = smp_processor_id();
990 	hwc->last_tag = ++cpuc->tags[i];
991 
992 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
993 		hwc->config_base = 0;
994 		hwc->event_base	= 0;
995 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
996 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
997 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
998 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
999 	} else {
1000 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1001 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1002 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1003 	}
1004 }
1005 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1006 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1007 					struct cpu_hw_events *cpuc,
1008 					int i)
1009 {
1010 	return hwc->idx == cpuc->assign[i] &&
1011 		hwc->last_cpu == smp_processor_id() &&
1012 		hwc->last_tag == cpuc->tags[i];
1013 }
1014 
1015 static void x86_pmu_start(struct perf_event *event, int flags);
1016 
x86_pmu_enable(struct pmu * pmu)1017 static void x86_pmu_enable(struct pmu *pmu)
1018 {
1019 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1020 	struct perf_event *event;
1021 	struct hw_perf_event *hwc;
1022 	int i, added = cpuc->n_added;
1023 
1024 	if (!x86_pmu_initialized())
1025 		return;
1026 
1027 	if (cpuc->enabled)
1028 		return;
1029 
1030 	if (cpuc->n_added) {
1031 		int n_running = cpuc->n_events - cpuc->n_added;
1032 		/*
1033 		 * apply assignment obtained either from
1034 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1035 		 *
1036 		 * step1: save events moving to new counters
1037 		 */
1038 		for (i = 0; i < n_running; i++) {
1039 			event = cpuc->event_list[i];
1040 			hwc = &event->hw;
1041 
1042 			/*
1043 			 * we can avoid reprogramming counter if:
1044 			 * - assigned same counter as last time
1045 			 * - running on same CPU as last time
1046 			 * - no other event has used the counter since
1047 			 */
1048 			if (hwc->idx == -1 ||
1049 			    match_prev_assignment(hwc, cpuc, i))
1050 				continue;
1051 
1052 			/*
1053 			 * Ensure we don't accidentally enable a stopped
1054 			 * counter simply because we rescheduled.
1055 			 */
1056 			if (hwc->state & PERF_HES_STOPPED)
1057 				hwc->state |= PERF_HES_ARCH;
1058 
1059 			x86_pmu_stop(event, PERF_EF_UPDATE);
1060 		}
1061 
1062 		/*
1063 		 * step2: reprogram moved events into new counters
1064 		 */
1065 		for (i = 0; i < cpuc->n_events; i++) {
1066 			event = cpuc->event_list[i];
1067 			hwc = &event->hw;
1068 
1069 			if (!match_prev_assignment(hwc, cpuc, i))
1070 				x86_assign_hw_event(event, cpuc, i);
1071 			else if (i < n_running)
1072 				continue;
1073 
1074 			if (hwc->state & PERF_HES_ARCH)
1075 				continue;
1076 
1077 			x86_pmu_start(event, PERF_EF_RELOAD);
1078 		}
1079 		cpuc->n_added = 0;
1080 		perf_events_lapic_init();
1081 	}
1082 
1083 	cpuc->enabled = 1;
1084 	barrier();
1085 
1086 	x86_pmu.enable_all(added);
1087 }
1088 
1089 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1090 
1091 /*
1092  * Set the next IRQ period, based on the hwc->period_left value.
1093  * To be called with the event disabled in hw:
1094  */
x86_perf_event_set_period(struct perf_event * event)1095 int x86_perf_event_set_period(struct perf_event *event)
1096 {
1097 	struct hw_perf_event *hwc = &event->hw;
1098 	s64 left = local64_read(&hwc->period_left);
1099 	s64 period = hwc->sample_period;
1100 	int ret = 0, idx = hwc->idx;
1101 
1102 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1103 		return 0;
1104 
1105 	/*
1106 	 * If we are way outside a reasonable range then just skip forward:
1107 	 */
1108 	if (unlikely(left <= -period)) {
1109 		left = period;
1110 		local64_set(&hwc->period_left, left);
1111 		hwc->last_period = period;
1112 		ret = 1;
1113 	}
1114 
1115 	if (unlikely(left <= 0)) {
1116 		left += period;
1117 		local64_set(&hwc->period_left, left);
1118 		hwc->last_period = period;
1119 		ret = 1;
1120 	}
1121 	/*
1122 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1123 	 */
1124 	if (unlikely(left < 2))
1125 		left = 2;
1126 
1127 	if (left > x86_pmu.max_period)
1128 		left = x86_pmu.max_period;
1129 
1130 	if (x86_pmu.limit_period)
1131 		left = x86_pmu.limit_period(event, left);
1132 
1133 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1134 
1135 	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1136 	    local64_read(&hwc->prev_count) != (u64)-left) {
1137 		/*
1138 		 * The hw event starts counting from this event offset,
1139 		 * mark it to be able to extra future deltas:
1140 		 */
1141 		local64_set(&hwc->prev_count, (u64)-left);
1142 
1143 		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1144 	}
1145 
1146 	/*
1147 	 * Due to erratum on certan cpu we need
1148 	 * a second write to be sure the register
1149 	 * is updated properly
1150 	 */
1151 	if (x86_pmu.perfctr_second_write) {
1152 		wrmsrl(hwc->event_base,
1153 			(u64)(-left) & x86_pmu.cntval_mask);
1154 	}
1155 
1156 	perf_event_update_userpage(event);
1157 
1158 	return ret;
1159 }
1160 
x86_pmu_enable_event(struct perf_event * event)1161 void x86_pmu_enable_event(struct perf_event *event)
1162 {
1163 	if (__this_cpu_read(cpu_hw_events.enabled))
1164 		__x86_pmu_enable_event(&event->hw,
1165 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1166 }
1167 
1168 /*
1169  * Add a single event to the PMU.
1170  *
1171  * The event is added to the group of enabled events
1172  * but only if it can be scehduled with existing events.
1173  */
x86_pmu_add(struct perf_event * event,int flags)1174 static int x86_pmu_add(struct perf_event *event, int flags)
1175 {
1176 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1177 	struct hw_perf_event *hwc;
1178 	int assign[X86_PMC_IDX_MAX];
1179 	int n, n0, ret;
1180 
1181 	hwc = &event->hw;
1182 
1183 	n0 = cpuc->n_events;
1184 	ret = n = collect_events(cpuc, event, false);
1185 	if (ret < 0)
1186 		goto out;
1187 
1188 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1189 	if (!(flags & PERF_EF_START))
1190 		hwc->state |= PERF_HES_ARCH;
1191 
1192 	/*
1193 	 * If group events scheduling transaction was started,
1194 	 * skip the schedulability test here, it will be performed
1195 	 * at commit time (->commit_txn) as a whole.
1196 	 */
1197 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1198 		goto done_collect;
1199 
1200 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1201 	if (ret)
1202 		goto out;
1203 	/*
1204 	 * copy new assignment, now we know it is possible
1205 	 * will be used by hw_perf_enable()
1206 	 */
1207 	memcpy(cpuc->assign, assign, n*sizeof(int));
1208 
1209 done_collect:
1210 	/*
1211 	 * Commit the collect_events() state. See x86_pmu_del() and
1212 	 * x86_pmu_*_txn().
1213 	 */
1214 	cpuc->n_events = n;
1215 	cpuc->n_added += n - n0;
1216 	cpuc->n_txn += n - n0;
1217 
1218 	ret = 0;
1219 out:
1220 	return ret;
1221 }
1222 
x86_pmu_start(struct perf_event * event,int flags)1223 static void x86_pmu_start(struct perf_event *event, int flags)
1224 {
1225 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1226 	int idx = event->hw.idx;
1227 
1228 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1229 		return;
1230 
1231 	if (WARN_ON_ONCE(idx == -1))
1232 		return;
1233 
1234 	if (flags & PERF_EF_RELOAD) {
1235 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1236 		x86_perf_event_set_period(event);
1237 	}
1238 
1239 	event->hw.state = 0;
1240 
1241 	cpuc->events[idx] = event;
1242 	__set_bit(idx, cpuc->active_mask);
1243 	__set_bit(idx, cpuc->running);
1244 	x86_pmu.enable(event);
1245 	perf_event_update_userpage(event);
1246 }
1247 
perf_event_print_debug(void)1248 void perf_event_print_debug(void)
1249 {
1250 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1251 	u64 pebs, debugctl;
1252 	struct cpu_hw_events *cpuc;
1253 	unsigned long flags;
1254 	int cpu, idx;
1255 
1256 	if (!x86_pmu.num_counters)
1257 		return;
1258 
1259 	local_irq_save(flags);
1260 
1261 	cpu = smp_processor_id();
1262 	cpuc = &per_cpu(cpu_hw_events, cpu);
1263 
1264 	if (x86_pmu.version >= 2) {
1265 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1266 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1267 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1268 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1269 
1270 		pr_info("\n");
1271 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1272 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1273 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1274 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1275 		if (x86_pmu.pebs_constraints) {
1276 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1277 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1278 		}
1279 		if (x86_pmu.lbr_nr) {
1280 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1281 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1282 		}
1283 	}
1284 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1285 
1286 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1287 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1288 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1289 
1290 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1291 
1292 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1293 			cpu, idx, pmc_ctrl);
1294 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1295 			cpu, idx, pmc_count);
1296 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1297 			cpu, idx, prev_left);
1298 	}
1299 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1300 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1301 
1302 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1303 			cpu, idx, pmc_count);
1304 	}
1305 	local_irq_restore(flags);
1306 }
1307 
x86_pmu_stop(struct perf_event * event,int flags)1308 void x86_pmu_stop(struct perf_event *event, int flags)
1309 {
1310 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1311 	struct hw_perf_event *hwc = &event->hw;
1312 
1313 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1314 		x86_pmu.disable(event);
1315 		cpuc->events[hwc->idx] = NULL;
1316 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1317 		hwc->state |= PERF_HES_STOPPED;
1318 	}
1319 
1320 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1321 		/*
1322 		 * Drain the remaining delta count out of a event
1323 		 * that we are disabling:
1324 		 */
1325 		x86_perf_event_update(event);
1326 		hwc->state |= PERF_HES_UPTODATE;
1327 	}
1328 }
1329 
x86_pmu_del(struct perf_event * event,int flags)1330 static void x86_pmu_del(struct perf_event *event, int flags)
1331 {
1332 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1333 	int i;
1334 
1335 	/*
1336 	 * event is descheduled
1337 	 */
1338 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1339 
1340 	/*
1341 	 * If we're called during a txn, we don't need to do anything.
1342 	 * The events never got scheduled and ->cancel_txn will truncate
1343 	 * the event_list.
1344 	 *
1345 	 * XXX assumes any ->del() called during a TXN will only be on
1346 	 * an event added during that same TXN.
1347 	 */
1348 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1349 		return;
1350 
1351 	/*
1352 	 * Not a TXN, therefore cleanup properly.
1353 	 */
1354 	x86_pmu_stop(event, PERF_EF_UPDATE);
1355 
1356 	for (i = 0; i < cpuc->n_events; i++) {
1357 		if (event == cpuc->event_list[i])
1358 			break;
1359 	}
1360 
1361 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1362 		return;
1363 
1364 	/* If we have a newly added event; make sure to decrease n_added. */
1365 	if (i >= cpuc->n_events - cpuc->n_added)
1366 		--cpuc->n_added;
1367 
1368 	if (x86_pmu.put_event_constraints)
1369 		x86_pmu.put_event_constraints(cpuc, event);
1370 
1371 	/* Delete the array entry. */
1372 	while (++i < cpuc->n_events) {
1373 		cpuc->event_list[i-1] = cpuc->event_list[i];
1374 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1375 	}
1376 	--cpuc->n_events;
1377 
1378 	perf_event_update_userpage(event);
1379 }
1380 
x86_pmu_handle_irq(struct pt_regs * regs)1381 int x86_pmu_handle_irq(struct pt_regs *regs)
1382 {
1383 	struct perf_sample_data data;
1384 	struct cpu_hw_events *cpuc;
1385 	struct perf_event *event;
1386 	int idx, handled = 0;
1387 	u64 val;
1388 
1389 	cpuc = this_cpu_ptr(&cpu_hw_events);
1390 
1391 	/*
1392 	 * Some chipsets need to unmask the LVTPC in a particular spot
1393 	 * inside the nmi handler.  As a result, the unmasking was pushed
1394 	 * into all the nmi handlers.
1395 	 *
1396 	 * This generic handler doesn't seem to have any issues where the
1397 	 * unmasking occurs so it was left at the top.
1398 	 */
1399 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1400 
1401 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1402 		if (!test_bit(idx, cpuc->active_mask)) {
1403 			/*
1404 			 * Though we deactivated the counter some cpus
1405 			 * might still deliver spurious interrupts still
1406 			 * in flight. Catch them:
1407 			 */
1408 			if (__test_and_clear_bit(idx, cpuc->running))
1409 				handled++;
1410 			continue;
1411 		}
1412 
1413 		event = cpuc->events[idx];
1414 
1415 		val = x86_perf_event_update(event);
1416 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1417 			continue;
1418 
1419 		/*
1420 		 * event overflow
1421 		 */
1422 		handled++;
1423 		perf_sample_data_init(&data, 0, event->hw.last_period);
1424 
1425 		if (!x86_perf_event_set_period(event))
1426 			continue;
1427 
1428 		if (perf_event_overflow(event, &data, regs))
1429 			x86_pmu_stop(event, 0);
1430 	}
1431 
1432 	if (handled)
1433 		inc_irq_stat(apic_perf_irqs);
1434 
1435 	return handled;
1436 }
1437 
perf_events_lapic_init(void)1438 void perf_events_lapic_init(void)
1439 {
1440 	if (!x86_pmu.apic || !x86_pmu_initialized())
1441 		return;
1442 
1443 	/*
1444 	 * Always use NMI for PMU
1445 	 */
1446 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1447 }
1448 
1449 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1450 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1451 {
1452 	u64 start_clock;
1453 	u64 finish_clock;
1454 	int ret;
1455 
1456 	/*
1457 	 * All PMUs/events that share this PMI handler should make sure to
1458 	 * increment active_events for their events.
1459 	 */
1460 	if (!atomic_read(&active_events))
1461 		return NMI_DONE;
1462 
1463 	start_clock = sched_clock();
1464 	ret = x86_pmu.handle_irq(regs);
1465 	finish_clock = sched_clock();
1466 
1467 	perf_sample_event_took(finish_clock - start_clock);
1468 
1469 	return ret;
1470 }
1471 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1472 
1473 struct event_constraint emptyconstraint;
1474 struct event_constraint unconstrained;
1475 
1476 static int
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1477 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1478 {
1479 	unsigned int cpu = (long)hcpu;
1480 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1481 	int i, ret = NOTIFY_OK;
1482 
1483 	switch (action & ~CPU_TASKS_FROZEN) {
1484 	case CPU_UP_PREPARE:
1485 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1486 			cpuc->kfree_on_online[i] = NULL;
1487 		if (x86_pmu.cpu_prepare)
1488 			ret = x86_pmu.cpu_prepare(cpu);
1489 		break;
1490 
1491 	case CPU_STARTING:
1492 		if (x86_pmu.cpu_starting)
1493 			x86_pmu.cpu_starting(cpu);
1494 		break;
1495 
1496 	case CPU_ONLINE:
1497 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1498 			kfree(cpuc->kfree_on_online[i]);
1499 			cpuc->kfree_on_online[i] = NULL;
1500 		}
1501 		break;
1502 
1503 	case CPU_DYING:
1504 		if (x86_pmu.cpu_dying)
1505 			x86_pmu.cpu_dying(cpu);
1506 		break;
1507 
1508 	case CPU_UP_CANCELED:
1509 	case CPU_DEAD:
1510 		if (x86_pmu.cpu_dead)
1511 			x86_pmu.cpu_dead(cpu);
1512 		break;
1513 
1514 	default:
1515 		break;
1516 	}
1517 
1518 	return ret;
1519 }
1520 
pmu_check_apic(void)1521 static void __init pmu_check_apic(void)
1522 {
1523 	if (cpu_has_apic)
1524 		return;
1525 
1526 	x86_pmu.apic = 0;
1527 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1528 	pr_info("no hardware sampling interrupt available.\n");
1529 
1530 	/*
1531 	 * If we have a PMU initialized but no APIC
1532 	 * interrupts, we cannot sample hardware
1533 	 * events (user-space has to fall back and
1534 	 * sample via a hrtimer based software event):
1535 	 */
1536 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1537 
1538 }
1539 
1540 static struct attribute_group x86_pmu_format_group = {
1541 	.name = "format",
1542 	.attrs = NULL,
1543 };
1544 
1545 /*
1546  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1547  * out of events_attr attributes.
1548  */
filter_events(struct attribute ** attrs)1549 static void __init filter_events(struct attribute **attrs)
1550 {
1551 	struct device_attribute *d;
1552 	struct perf_pmu_events_attr *pmu_attr;
1553 	int offset = 0;
1554 	int i, j;
1555 
1556 	for (i = 0; attrs[i]; i++) {
1557 		d = (struct device_attribute *)attrs[i];
1558 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1559 		/* str trumps id */
1560 		if (pmu_attr->event_str)
1561 			continue;
1562 		if (x86_pmu.event_map(i + offset))
1563 			continue;
1564 
1565 		for (j = i; attrs[j]; j++)
1566 			attrs[j] = attrs[j + 1];
1567 
1568 		/* Check the shifted attr. */
1569 		i--;
1570 
1571 		/*
1572 		 * event_map() is index based, the attrs array is organized
1573 		 * by increasing event index. If we shift the events, then
1574 		 * we need to compensate for the event_map(), otherwise
1575 		 * we are looking up the wrong event in the map
1576 		 */
1577 		offset++;
1578 	}
1579 }
1580 
1581 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1582 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1583 {
1584 	struct attribute **new;
1585 	int j, i;
1586 
1587 	for (j = 0; a[j]; j++)
1588 		;
1589 	for (i = 0; b[i]; i++)
1590 		j++;
1591 	j++;
1592 
1593 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1594 	if (!new)
1595 		return NULL;
1596 
1597 	j = 0;
1598 	for (i = 0; a[i]; i++)
1599 		new[j++] = a[i];
1600 	for (i = 0; b[i]; i++)
1601 		new[j++] = b[i];
1602 	new[j] = NULL;
1603 
1604 	return new;
1605 }
1606 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1607 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1608 			  char *page)
1609 {
1610 	struct perf_pmu_events_attr *pmu_attr = \
1611 		container_of(attr, struct perf_pmu_events_attr, attr);
1612 	u64 config = x86_pmu.event_map(pmu_attr->id);
1613 
1614 	/* string trumps id */
1615 	if (pmu_attr->event_str)
1616 		return sprintf(page, "%s", pmu_attr->event_str);
1617 
1618 	return x86_pmu.events_sysfs_show(page, config);
1619 }
1620 
1621 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1622 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1623 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1624 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1625 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1626 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1627 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1628 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1629 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1630 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1631 
1632 static struct attribute *empty_attrs;
1633 
1634 static struct attribute *events_attr[] = {
1635 	EVENT_PTR(CPU_CYCLES),
1636 	EVENT_PTR(INSTRUCTIONS),
1637 	EVENT_PTR(CACHE_REFERENCES),
1638 	EVENT_PTR(CACHE_MISSES),
1639 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1640 	EVENT_PTR(BRANCH_MISSES),
1641 	EVENT_PTR(BUS_CYCLES),
1642 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1643 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1644 	EVENT_PTR(REF_CPU_CYCLES),
1645 	NULL,
1646 };
1647 
1648 static struct attribute_group x86_pmu_events_group = {
1649 	.name = "events",
1650 	.attrs = events_attr,
1651 };
1652 
x86_event_sysfs_show(char * page,u64 config,u64 event)1653 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1654 {
1655 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1656 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1657 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1658 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1659 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1660 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1661 	ssize_t ret;
1662 
1663 	/*
1664 	* We have whole page size to spend and just little data
1665 	* to write, so we can safely use sprintf.
1666 	*/
1667 	ret = sprintf(page, "event=0x%02llx", event);
1668 
1669 	if (umask)
1670 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1671 
1672 	if (edge)
1673 		ret += sprintf(page + ret, ",edge");
1674 
1675 	if (pc)
1676 		ret += sprintf(page + ret, ",pc");
1677 
1678 	if (any)
1679 		ret += sprintf(page + ret, ",any");
1680 
1681 	if (inv)
1682 		ret += sprintf(page + ret, ",inv");
1683 
1684 	if (cmask)
1685 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1686 
1687 	ret += sprintf(page + ret, "\n");
1688 
1689 	return ret;
1690 }
1691 
init_hw_perf_events(void)1692 static int __init init_hw_perf_events(void)
1693 {
1694 	struct x86_pmu_quirk *quirk;
1695 	int err;
1696 
1697 	pr_info("Performance Events: ");
1698 
1699 	switch (boot_cpu_data.x86_vendor) {
1700 	case X86_VENDOR_INTEL:
1701 		err = intel_pmu_init();
1702 		break;
1703 	case X86_VENDOR_AMD:
1704 		err = amd_pmu_init();
1705 		break;
1706 	default:
1707 		err = -ENOTSUPP;
1708 	}
1709 	if (err != 0) {
1710 		pr_cont("no PMU driver, software events only.\n");
1711 		return 0;
1712 	}
1713 
1714 	pmu_check_apic();
1715 
1716 	/* sanity check that the hardware exists or is emulated */
1717 	if (!check_hw_exists())
1718 		return 0;
1719 
1720 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1721 
1722 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1723 
1724 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1725 		quirk->func();
1726 
1727 	if (!x86_pmu.intel_ctrl)
1728 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1729 
1730 	perf_events_lapic_init();
1731 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1732 
1733 	unconstrained = (struct event_constraint)
1734 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1735 				   0, x86_pmu.num_counters, 0, 0);
1736 
1737 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1738 
1739 	if (x86_pmu.event_attrs)
1740 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1741 
1742 	if (!x86_pmu.events_sysfs_show)
1743 		x86_pmu_events_group.attrs = &empty_attrs;
1744 	else
1745 		filter_events(x86_pmu_events_group.attrs);
1746 
1747 	if (x86_pmu.cpu_events) {
1748 		struct attribute **tmp;
1749 
1750 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1751 		if (!WARN_ON(!tmp))
1752 			x86_pmu_events_group.attrs = tmp;
1753 	}
1754 
1755 	pr_info("... version:                %d\n",     x86_pmu.version);
1756 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1757 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1758 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1759 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1760 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1761 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1762 
1763 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1764 	perf_cpu_notifier(x86_pmu_notifier);
1765 
1766 	return 0;
1767 }
1768 early_initcall(init_hw_perf_events);
1769 
x86_pmu_read(struct perf_event * event)1770 static inline void x86_pmu_read(struct perf_event *event)
1771 {
1772 	x86_perf_event_update(event);
1773 }
1774 
1775 /*
1776  * Start group events scheduling transaction
1777  * Set the flag to make pmu::enable() not perform the
1778  * schedulability test, it will be performed at commit time
1779  *
1780  * We only support PERF_PMU_TXN_ADD transactions. Save the
1781  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1782  * transactions.
1783  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1784 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1785 {
1786 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1787 
1788 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1789 
1790 	cpuc->txn_flags = txn_flags;
1791 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1792 		return;
1793 
1794 	perf_pmu_disable(pmu);
1795 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1796 }
1797 
1798 /*
1799  * Stop group events scheduling transaction
1800  * Clear the flag and pmu::enable() will perform the
1801  * schedulability test.
1802  */
x86_pmu_cancel_txn(struct pmu * pmu)1803 static void x86_pmu_cancel_txn(struct pmu *pmu)
1804 {
1805 	unsigned int txn_flags;
1806 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1807 
1808 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1809 
1810 	txn_flags = cpuc->txn_flags;
1811 	cpuc->txn_flags = 0;
1812 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1813 		return;
1814 
1815 	/*
1816 	 * Truncate collected array by the number of events added in this
1817 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1818 	 */
1819 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1820 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1821 	perf_pmu_enable(pmu);
1822 }
1823 
1824 /*
1825  * Commit group events scheduling transaction
1826  * Perform the group schedulability test as a whole
1827  * Return 0 if success
1828  *
1829  * Does not cancel the transaction on failure; expects the caller to do this.
1830  */
x86_pmu_commit_txn(struct pmu * pmu)1831 static int x86_pmu_commit_txn(struct pmu *pmu)
1832 {
1833 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1834 	int assign[X86_PMC_IDX_MAX];
1835 	int n, ret;
1836 
1837 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1838 
1839 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1840 		cpuc->txn_flags = 0;
1841 		return 0;
1842 	}
1843 
1844 	n = cpuc->n_events;
1845 
1846 	if (!x86_pmu_initialized())
1847 		return -EAGAIN;
1848 
1849 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1850 	if (ret)
1851 		return ret;
1852 
1853 	/*
1854 	 * copy new assignment, now we know it is possible
1855 	 * will be used by hw_perf_enable()
1856 	 */
1857 	memcpy(cpuc->assign, assign, n*sizeof(int));
1858 
1859 	cpuc->txn_flags = 0;
1860 	perf_pmu_enable(pmu);
1861 	return 0;
1862 }
1863 /*
1864  * a fake_cpuc is used to validate event groups. Due to
1865  * the extra reg logic, we need to also allocate a fake
1866  * per_core and per_cpu structure. Otherwise, group events
1867  * using extra reg may conflict without the kernel being
1868  * able to catch this when the last event gets added to
1869  * the group.
1870  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1871 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1872 {
1873 	kfree(cpuc->shared_regs);
1874 	kfree(cpuc);
1875 }
1876 
allocate_fake_cpuc(void)1877 static struct cpu_hw_events *allocate_fake_cpuc(void)
1878 {
1879 	struct cpu_hw_events *cpuc;
1880 	int cpu = raw_smp_processor_id();
1881 
1882 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1883 	if (!cpuc)
1884 		return ERR_PTR(-ENOMEM);
1885 
1886 	/* only needed, if we have extra_regs */
1887 	if (x86_pmu.extra_regs) {
1888 		cpuc->shared_regs = allocate_shared_regs(cpu);
1889 		if (!cpuc->shared_regs)
1890 			goto error;
1891 	}
1892 	cpuc->is_fake = 1;
1893 	return cpuc;
1894 error:
1895 	free_fake_cpuc(cpuc);
1896 	return ERR_PTR(-ENOMEM);
1897 }
1898 
1899 /*
1900  * validate that we can schedule this event
1901  */
validate_event(struct perf_event * event)1902 static int validate_event(struct perf_event *event)
1903 {
1904 	struct cpu_hw_events *fake_cpuc;
1905 	struct event_constraint *c;
1906 	int ret = 0;
1907 
1908 	fake_cpuc = allocate_fake_cpuc();
1909 	if (IS_ERR(fake_cpuc))
1910 		return PTR_ERR(fake_cpuc);
1911 
1912 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1913 
1914 	if (!c || !c->weight)
1915 		ret = -EINVAL;
1916 
1917 	if (x86_pmu.put_event_constraints)
1918 		x86_pmu.put_event_constraints(fake_cpuc, event);
1919 
1920 	free_fake_cpuc(fake_cpuc);
1921 
1922 	return ret;
1923 }
1924 
1925 /*
1926  * validate a single event group
1927  *
1928  * validation include:
1929  *	- check events are compatible which each other
1930  *	- events do not compete for the same counter
1931  *	- number of events <= number of counters
1932  *
1933  * validation ensures the group can be loaded onto the
1934  * PMU if it was the only group available.
1935  */
validate_group(struct perf_event * event)1936 static int validate_group(struct perf_event *event)
1937 {
1938 	struct perf_event *leader = event->group_leader;
1939 	struct cpu_hw_events *fake_cpuc;
1940 	int ret = -EINVAL, n;
1941 
1942 	fake_cpuc = allocate_fake_cpuc();
1943 	if (IS_ERR(fake_cpuc))
1944 		return PTR_ERR(fake_cpuc);
1945 	/*
1946 	 * the event is not yet connected with its
1947 	 * siblings therefore we must first collect
1948 	 * existing siblings, then add the new event
1949 	 * before we can simulate the scheduling
1950 	 */
1951 	n = collect_events(fake_cpuc, leader, true);
1952 	if (n < 0)
1953 		goto out;
1954 
1955 	fake_cpuc->n_events = n;
1956 	n = collect_events(fake_cpuc, event, false);
1957 	if (n < 0)
1958 		goto out;
1959 
1960 	fake_cpuc->n_events = n;
1961 
1962 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1963 
1964 out:
1965 	free_fake_cpuc(fake_cpuc);
1966 	return ret;
1967 }
1968 
x86_pmu_event_init(struct perf_event * event)1969 static int x86_pmu_event_init(struct perf_event *event)
1970 {
1971 	struct pmu *tmp;
1972 	int err;
1973 
1974 	switch (event->attr.type) {
1975 	case PERF_TYPE_RAW:
1976 	case PERF_TYPE_HARDWARE:
1977 	case PERF_TYPE_HW_CACHE:
1978 		break;
1979 
1980 	default:
1981 		return -ENOENT;
1982 	}
1983 
1984 	err = __x86_pmu_event_init(event);
1985 	if (!err) {
1986 		/*
1987 		 * we temporarily connect event to its pmu
1988 		 * such that validate_group() can classify
1989 		 * it as an x86 event using is_x86_event()
1990 		 */
1991 		tmp = event->pmu;
1992 		event->pmu = &pmu;
1993 
1994 		if (event->group_leader != event)
1995 			err = validate_group(event);
1996 		else
1997 			err = validate_event(event);
1998 
1999 		event->pmu = tmp;
2000 	}
2001 	if (err) {
2002 		if (event->destroy)
2003 			event->destroy(event);
2004 		event->destroy = NULL;
2005 	}
2006 
2007 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2008 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2009 
2010 	return err;
2011 }
2012 
refresh_pce(void * ignored)2013 static void refresh_pce(void *ignored)
2014 {
2015 	if (current->active_mm)
2016 		load_mm_cr4(current->active_mm);
2017 }
2018 
x86_pmu_event_mapped(struct perf_event * event)2019 static void x86_pmu_event_mapped(struct perf_event *event)
2020 {
2021 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2022 		return;
2023 
2024 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2025 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2026 }
2027 
x86_pmu_event_unmapped(struct perf_event * event)2028 static void x86_pmu_event_unmapped(struct perf_event *event)
2029 {
2030 	if (!current->mm)
2031 		return;
2032 
2033 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2034 		return;
2035 
2036 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2037 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2038 }
2039 
x86_pmu_event_idx(struct perf_event * event)2040 static int x86_pmu_event_idx(struct perf_event *event)
2041 {
2042 	int idx = event->hw.idx;
2043 
2044 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2045 		return 0;
2046 
2047 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2048 		idx -= INTEL_PMC_IDX_FIXED;
2049 		idx |= 1 << 30;
2050 	}
2051 
2052 	return idx + 1;
2053 }
2054 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2055 static ssize_t get_attr_rdpmc(struct device *cdev,
2056 			      struct device_attribute *attr,
2057 			      char *buf)
2058 {
2059 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2060 }
2061 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2062 static ssize_t set_attr_rdpmc(struct device *cdev,
2063 			      struct device_attribute *attr,
2064 			      const char *buf, size_t count)
2065 {
2066 	unsigned long val;
2067 	ssize_t ret;
2068 
2069 	ret = kstrtoul(buf, 0, &val);
2070 	if (ret)
2071 		return ret;
2072 
2073 	if (val > 2)
2074 		return -EINVAL;
2075 
2076 	if (x86_pmu.attr_rdpmc_broken)
2077 		return -ENOTSUPP;
2078 
2079 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2080 		/*
2081 		 * Changing into or out of always available, aka
2082 		 * perf-event-bypassing mode.  This path is extremely slow,
2083 		 * but only root can trigger it, so it's okay.
2084 		 */
2085 		if (val == 2)
2086 			static_key_slow_inc(&rdpmc_always_available);
2087 		else
2088 			static_key_slow_dec(&rdpmc_always_available);
2089 		on_each_cpu(refresh_pce, NULL, 1);
2090 	}
2091 
2092 	x86_pmu.attr_rdpmc = val;
2093 
2094 	return count;
2095 }
2096 
2097 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2098 
2099 static struct attribute *x86_pmu_attrs[] = {
2100 	&dev_attr_rdpmc.attr,
2101 	NULL,
2102 };
2103 
2104 static struct attribute_group x86_pmu_attr_group = {
2105 	.attrs = x86_pmu_attrs,
2106 };
2107 
2108 static const struct attribute_group *x86_pmu_attr_groups[] = {
2109 	&x86_pmu_attr_group,
2110 	&x86_pmu_format_group,
2111 	&x86_pmu_events_group,
2112 	NULL,
2113 };
2114 
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2115 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2116 {
2117 	if (x86_pmu.sched_task)
2118 		x86_pmu.sched_task(ctx, sched_in);
2119 }
2120 
perf_check_microcode(void)2121 void perf_check_microcode(void)
2122 {
2123 	if (x86_pmu.check_microcode)
2124 		x86_pmu.check_microcode();
2125 }
2126 EXPORT_SYMBOL_GPL(perf_check_microcode);
2127 
2128 static struct pmu pmu = {
2129 	.pmu_enable		= x86_pmu_enable,
2130 	.pmu_disable		= x86_pmu_disable,
2131 
2132 	.attr_groups		= x86_pmu_attr_groups,
2133 
2134 	.event_init		= x86_pmu_event_init,
2135 
2136 	.event_mapped		= x86_pmu_event_mapped,
2137 	.event_unmapped		= x86_pmu_event_unmapped,
2138 
2139 	.add			= x86_pmu_add,
2140 	.del			= x86_pmu_del,
2141 	.start			= x86_pmu_start,
2142 	.stop			= x86_pmu_stop,
2143 	.read			= x86_pmu_read,
2144 
2145 	.start_txn		= x86_pmu_start_txn,
2146 	.cancel_txn		= x86_pmu_cancel_txn,
2147 	.commit_txn		= x86_pmu_commit_txn,
2148 
2149 	.event_idx		= x86_pmu_event_idx,
2150 	.sched_task		= x86_pmu_sched_task,
2151 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2152 };
2153 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2154 void arch_perf_update_userpage(struct perf_event *event,
2155 			       struct perf_event_mmap_page *userpg, u64 now)
2156 {
2157 	struct cyc2ns_data *data;
2158 
2159 	userpg->cap_user_time = 0;
2160 	userpg->cap_user_time_zero = 0;
2161 	userpg->cap_user_rdpmc =
2162 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2163 	userpg->pmc_width = x86_pmu.cntval_bits;
2164 
2165 	if (!sched_clock_stable())
2166 		return;
2167 
2168 	data = cyc2ns_read_begin();
2169 
2170 	/*
2171 	 * Internal timekeeping for enabled/running/stopped times
2172 	 * is always in the local_clock domain.
2173 	 */
2174 	userpg->cap_user_time = 1;
2175 	userpg->time_mult = data->cyc2ns_mul;
2176 	userpg->time_shift = data->cyc2ns_shift;
2177 	userpg->time_offset = data->cyc2ns_offset - now;
2178 
2179 	/*
2180 	 * cap_user_time_zero doesn't make sense when we're using a different
2181 	 * time base for the records.
2182 	 */
2183 	if (event->clock == &local_clock) {
2184 		userpg->cap_user_time_zero = 1;
2185 		userpg->time_zero = data->cyc2ns_offset;
2186 	}
2187 
2188 	cyc2ns_read_end(data);
2189 }
2190 
2191 /*
2192  * callchain support
2193  */
2194 
backtrace_stack(void * data,char * name)2195 static int backtrace_stack(void *data, char *name)
2196 {
2197 	return 0;
2198 }
2199 
backtrace_address(void * data,unsigned long addr,int reliable)2200 static void backtrace_address(void *data, unsigned long addr, int reliable)
2201 {
2202 	struct perf_callchain_entry *entry = data;
2203 
2204 	perf_callchain_store(entry, addr);
2205 }
2206 
2207 static const struct stacktrace_ops backtrace_ops = {
2208 	.stack			= backtrace_stack,
2209 	.address		= backtrace_address,
2210 	.walk_stack		= print_context_stack_bp,
2211 };
2212 
2213 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)2214 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2215 {
2216 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2217 		/* TODO: We don't support guest os callchain now */
2218 		return;
2219 	}
2220 
2221 	perf_callchain_store(entry, regs->ip);
2222 
2223 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2224 }
2225 
2226 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2227 valid_user_frame(const void __user *fp, unsigned long size)
2228 {
2229 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2230 }
2231 
get_segment_base(unsigned int segment)2232 static unsigned long get_segment_base(unsigned int segment)
2233 {
2234 	struct desc_struct *desc;
2235 	int idx = segment >> 3;
2236 
2237 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2238 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2239 		struct ldt_struct *ldt;
2240 
2241 		if (idx > LDT_ENTRIES)
2242 			return 0;
2243 
2244 		/* IRQs are off, so this synchronizes with smp_store_release */
2245 		ldt = lockless_dereference(current->active_mm->context.ldt);
2246 		if (!ldt || idx > ldt->size)
2247 			return 0;
2248 
2249 		desc = &ldt->entries[idx];
2250 #else
2251 		return 0;
2252 #endif
2253 	} else {
2254 		if (idx > GDT_ENTRIES)
2255 			return 0;
2256 
2257 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2258 	}
2259 
2260 	return get_desc_base(desc);
2261 }
2262 
2263 #ifdef CONFIG_IA32_EMULATION
2264 
2265 #include <asm/compat.h>
2266 
2267 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2268 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2269 {
2270 	/* 32-bit process in 64-bit kernel. */
2271 	unsigned long ss_base, cs_base;
2272 	struct stack_frame_ia32 frame;
2273 	const void __user *fp;
2274 
2275 	if (!test_thread_flag(TIF_IA32))
2276 		return 0;
2277 
2278 	cs_base = get_segment_base(regs->cs);
2279 	ss_base = get_segment_base(regs->ss);
2280 
2281 	fp = compat_ptr(ss_base + regs->bp);
2282 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2283 		unsigned long bytes;
2284 		frame.next_frame     = 0;
2285 		frame.return_address = 0;
2286 
2287 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2288 		if (bytes != 0)
2289 			break;
2290 
2291 		if (!valid_user_frame(fp, sizeof(frame)))
2292 			break;
2293 
2294 		perf_callchain_store(entry, cs_base + frame.return_address);
2295 		fp = compat_ptr(ss_base + frame.next_frame);
2296 	}
2297 	return 1;
2298 }
2299 #else
2300 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2301 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2302 {
2303     return 0;
2304 }
2305 #endif
2306 
2307 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)2308 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2309 {
2310 	struct stack_frame frame;
2311 	const void __user *fp;
2312 
2313 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2314 		/* TODO: We don't support guest os callchain now */
2315 		return;
2316 	}
2317 
2318 	/*
2319 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2320 	 */
2321 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2322 		return;
2323 
2324 	fp = (void __user *)regs->bp;
2325 
2326 	perf_callchain_store(entry, regs->ip);
2327 
2328 	if (!current->mm)
2329 		return;
2330 
2331 	if (perf_callchain_user32(regs, entry))
2332 		return;
2333 
2334 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2335 		unsigned long bytes;
2336 		frame.next_frame	     = NULL;
2337 		frame.return_address = 0;
2338 
2339 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2340 		if (bytes != 0)
2341 			break;
2342 
2343 		if (!valid_user_frame(fp, sizeof(frame)))
2344 			break;
2345 
2346 		perf_callchain_store(entry, frame.return_address);
2347 		fp = frame.next_frame;
2348 	}
2349 }
2350 
2351 /*
2352  * Deal with code segment offsets for the various execution modes:
2353  *
2354  *   VM86 - the good olde 16 bit days, where the linear address is
2355  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2356  *
2357  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2358  *          to figure out what the 32bit base address is.
2359  *
2360  *    X32 - has TIF_X32 set, but is running in x86_64
2361  *
2362  * X86_64 - CS,DS,SS,ES are all zero based.
2363  */
code_segment_base(struct pt_regs * regs)2364 static unsigned long code_segment_base(struct pt_regs *regs)
2365 {
2366 	/*
2367 	 * For IA32 we look at the GDT/LDT segment base to convert the
2368 	 * effective IP to a linear address.
2369 	 */
2370 
2371 #ifdef CONFIG_X86_32
2372 	/*
2373 	 * If we are in VM86 mode, add the segment offset to convert to a
2374 	 * linear address.
2375 	 */
2376 	if (regs->flags & X86_VM_MASK)
2377 		return 0x10 * regs->cs;
2378 
2379 	if (user_mode(regs) && regs->cs != __USER_CS)
2380 		return get_segment_base(regs->cs);
2381 #else
2382 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2383 	    regs->cs != __USER32_CS)
2384 		return get_segment_base(regs->cs);
2385 #endif
2386 	return 0;
2387 }
2388 
perf_instruction_pointer(struct pt_regs * regs)2389 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2390 {
2391 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2392 		return perf_guest_cbs->get_guest_ip();
2393 
2394 	return regs->ip + code_segment_base(regs);
2395 }
2396 
perf_misc_flags(struct pt_regs * regs)2397 unsigned long perf_misc_flags(struct pt_regs *regs)
2398 {
2399 	int misc = 0;
2400 
2401 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2402 		if (perf_guest_cbs->is_user_mode())
2403 			misc |= PERF_RECORD_MISC_GUEST_USER;
2404 		else
2405 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2406 	} else {
2407 		if (user_mode(regs))
2408 			misc |= PERF_RECORD_MISC_USER;
2409 		else
2410 			misc |= PERF_RECORD_MISC_KERNEL;
2411 	}
2412 
2413 	if (regs->flags & PERF_EFLAGS_EXACT)
2414 		misc |= PERF_RECORD_MISC_EXACT_IP;
2415 
2416 	return misc;
2417 }
2418 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2419 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2420 {
2421 	cap->version		= x86_pmu.version;
2422 	cap->num_counters_gp	= x86_pmu.num_counters;
2423 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2424 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2425 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2426 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2427 	cap->events_mask_len	= x86_pmu.events_mask_len;
2428 }
2429 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2430