1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35
36 #ifdef CONFIG_KEXEC_CORE
37 #include <linux/kexec.h>
38 #endif
39
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/nmi.h>
48 #include <xen/interface/xen-mca.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/cpu.h>
78
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92
93 EXPORT_SYMBOL_GPL(hypercall_page);
94
95 /*
96 * Pointer to the xen_vcpu_info structure or
97 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
98 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
99 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
100 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
101 * acknowledge pending events.
102 * Also more subtly it is used by the patched version of irq enable/disable
103 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
104 *
105 * The desire to be able to do those mask/unmask operations as a single
106 * instruction by using the per-cpu offset held in %gs is the real reason
107 * vcpu info is in a per-cpu pointer and the original reason for this
108 * hypercall.
109 *
110 */
111 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
112
113 /*
114 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
115 * hypercall. This can be used both in PV and PVHVM mode. The structure
116 * overrides the default per_cpu(xen_vcpu, cpu) value.
117 */
118 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
119
120 enum xen_domain_type xen_domain_type = XEN_NATIVE;
121 EXPORT_SYMBOL_GPL(xen_domain_type);
122
123 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
124 EXPORT_SYMBOL(machine_to_phys_mapping);
125 unsigned long machine_to_phys_nr;
126 EXPORT_SYMBOL(machine_to_phys_nr);
127
128 struct start_info *xen_start_info;
129 EXPORT_SYMBOL_GPL(xen_start_info);
130
131 struct shared_info xen_dummy_shared_info;
132
133 void *xen_initial_gdt;
134
135 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
136 __read_mostly int xen_have_vector_callback;
137 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
138
139 /*
140 * Point at some empty memory to start with. We map the real shared_info
141 * page as soon as fixmap is up and running.
142 */
143 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
144
145 /*
146 * Flag to determine whether vcpu info placement is available on all
147 * VCPUs. We assume it is to start with, and then set it to zero on
148 * the first failure. This is because it can succeed on some VCPUs
149 * and not others, since it can involve hypervisor memory allocation,
150 * or because the guest failed to guarantee all the appropriate
151 * constraints on all VCPUs (ie buffer can't cross a page boundary).
152 *
153 * Note that any particular CPU may be using a placed vcpu structure,
154 * but we can only optimise if the all are.
155 *
156 * 0: not available, 1: available
157 */
158 static int have_vcpu_info_placement = 1;
159
160 struct tls_descs {
161 struct desc_struct desc[3];
162 };
163
164 /*
165 * Updating the 3 TLS descriptors in the GDT on every task switch is
166 * surprisingly expensive so we avoid updating them if they haven't
167 * changed. Since Xen writes different descriptors than the one
168 * passed in the update_descriptor hypercall we keep shadow copies to
169 * compare against.
170 */
171 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
172
clamp_max_cpus(void)173 static void clamp_max_cpus(void)
174 {
175 #ifdef CONFIG_SMP
176 if (setup_max_cpus > MAX_VIRT_CPUS)
177 setup_max_cpus = MAX_VIRT_CPUS;
178 #endif
179 }
180
xen_vcpu_setup(int cpu)181 static void xen_vcpu_setup(int cpu)
182 {
183 struct vcpu_register_vcpu_info info;
184 int err;
185 struct vcpu_info *vcpup;
186
187 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
188
189 /*
190 * This path is called twice on PVHVM - first during bootup via
191 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
192 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
193 * As we can only do the VCPUOP_register_vcpu_info once lets
194 * not over-write its result.
195 *
196 * For PV it is called during restore (xen_vcpu_restore) and bootup
197 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
198 * use this function.
199 */
200 if (xen_hvm_domain()) {
201 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
202 return;
203 }
204 if (cpu < MAX_VIRT_CPUS)
205 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
206
207 if (!have_vcpu_info_placement) {
208 if (cpu >= MAX_VIRT_CPUS)
209 clamp_max_cpus();
210 return;
211 }
212
213 vcpup = &per_cpu(xen_vcpu_info, cpu);
214 info.mfn = arbitrary_virt_to_mfn(vcpup);
215 info.offset = offset_in_page(vcpup);
216
217 /* Check to see if the hypervisor will put the vcpu_info
218 structure where we want it, which allows direct access via
219 a percpu-variable.
220 N.B. This hypercall can _only_ be called once per CPU. Subsequent
221 calls will error out with -EINVAL. This is due to the fact that
222 hypervisor has no unregister variant and this hypercall does not
223 allow to over-write info.mfn and info.offset.
224 */
225 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
226
227 if (err) {
228 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
229 have_vcpu_info_placement = 0;
230 clamp_max_cpus();
231 } else {
232 /* This cpu is using the registered vcpu info, even if
233 later ones fail to. */
234 per_cpu(xen_vcpu, cpu) = vcpup;
235 }
236 }
237
238 /*
239 * On restore, set the vcpu placement up again.
240 * If it fails, then we're in a bad state, since
241 * we can't back out from using it...
242 */
xen_vcpu_restore(void)243 void xen_vcpu_restore(void)
244 {
245 int cpu;
246
247 for_each_possible_cpu(cpu) {
248 bool other_cpu = (cpu != smp_processor_id());
249 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
250
251 if (other_cpu && is_up &&
252 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
253 BUG();
254
255 xen_setup_runstate_info(cpu);
256
257 if (have_vcpu_info_placement)
258 xen_vcpu_setup(cpu);
259
260 if (other_cpu && is_up &&
261 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
262 BUG();
263 }
264 }
265
xen_banner(void)266 static void __init xen_banner(void)
267 {
268 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
269 struct xen_extraversion extra;
270 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
271
272 pr_info("Booting paravirtualized kernel %son %s\n",
273 xen_feature(XENFEAT_auto_translated_physmap) ?
274 "with PVH extensions " : "", pv_info.name);
275 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
276 version >> 16, version & 0xffff, extra.extraversion,
277 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
278 }
279 /* Check if running on Xen version (major, minor) or later */
280 bool
xen_running_on_version_or_later(unsigned int major,unsigned int minor)281 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
282 {
283 unsigned int version;
284
285 if (!xen_domain())
286 return false;
287
288 version = HYPERVISOR_xen_version(XENVER_version, NULL);
289 if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
290 ((version >> 16) > major))
291 return true;
292 return false;
293 }
294
295 #define CPUID_THERM_POWER_LEAF 6
296 #define APERFMPERF_PRESENT 0
297
298 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
299 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
300
301 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
302 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
303 static __read_mostly unsigned int cpuid_leaf5_edx_val;
304
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)305 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
306 unsigned int *cx, unsigned int *dx)
307 {
308 unsigned maskebx = ~0;
309 unsigned maskecx = ~0;
310 unsigned maskedx = ~0;
311 unsigned setecx = 0;
312 /*
313 * Mask out inconvenient features, to try and disable as many
314 * unsupported kernel subsystems as possible.
315 */
316 switch (*ax) {
317 case 1:
318 maskecx = cpuid_leaf1_ecx_mask;
319 setecx = cpuid_leaf1_ecx_set_mask;
320 maskedx = cpuid_leaf1_edx_mask;
321 break;
322
323 case CPUID_MWAIT_LEAF:
324 /* Synthesize the values.. */
325 *ax = 0;
326 *bx = 0;
327 *cx = cpuid_leaf5_ecx_val;
328 *dx = cpuid_leaf5_edx_val;
329 return;
330
331 case CPUID_THERM_POWER_LEAF:
332 /* Disabling APERFMPERF for kernel usage */
333 maskecx = ~(1 << APERFMPERF_PRESENT);
334 break;
335
336 case 0xb:
337 /* Suppress extended topology stuff */
338 maskebx = 0;
339 break;
340 }
341
342 asm(XEN_EMULATE_PREFIX "cpuid"
343 : "=a" (*ax),
344 "=b" (*bx),
345 "=c" (*cx),
346 "=d" (*dx)
347 : "0" (*ax), "2" (*cx));
348
349 *bx &= maskebx;
350 *cx &= maskecx;
351 *cx |= setecx;
352 *dx &= maskedx;
353
354 }
355
xen_check_mwait(void)356 static bool __init xen_check_mwait(void)
357 {
358 #ifdef CONFIG_ACPI
359 struct xen_platform_op op = {
360 .cmd = XENPF_set_processor_pminfo,
361 .u.set_pminfo.id = -1,
362 .u.set_pminfo.type = XEN_PM_PDC,
363 };
364 uint32_t buf[3];
365 unsigned int ax, bx, cx, dx;
366 unsigned int mwait_mask;
367
368 /* We need to determine whether it is OK to expose the MWAIT
369 * capability to the kernel to harvest deeper than C3 states from ACPI
370 * _CST using the processor_harvest_xen.c module. For this to work, we
371 * need to gather the MWAIT_LEAF values (which the cstate.c code
372 * checks against). The hypervisor won't expose the MWAIT flag because
373 * it would break backwards compatibility; so we will find out directly
374 * from the hardware and hypercall.
375 */
376 if (!xen_initial_domain())
377 return false;
378
379 /*
380 * When running under platform earlier than Xen4.2, do not expose
381 * mwait, to avoid the risk of loading native acpi pad driver
382 */
383 if (!xen_running_on_version_or_later(4, 2))
384 return false;
385
386 ax = 1;
387 cx = 0;
388
389 native_cpuid(&ax, &bx, &cx, &dx);
390
391 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
392 (1 << (X86_FEATURE_MWAIT % 32));
393
394 if ((cx & mwait_mask) != mwait_mask)
395 return false;
396
397 /* We need to emulate the MWAIT_LEAF and for that we need both
398 * ecx and edx. The hypercall provides only partial information.
399 */
400
401 ax = CPUID_MWAIT_LEAF;
402 bx = 0;
403 cx = 0;
404 dx = 0;
405
406 native_cpuid(&ax, &bx, &cx, &dx);
407
408 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
409 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
410 */
411 buf[0] = ACPI_PDC_REVISION_ID;
412 buf[1] = 1;
413 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
414
415 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
416
417 if ((HYPERVISOR_dom0_op(&op) == 0) &&
418 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
419 cpuid_leaf5_ecx_val = cx;
420 cpuid_leaf5_edx_val = dx;
421 }
422 return true;
423 #else
424 return false;
425 #endif
426 }
xen_init_cpuid_mask(void)427 static void __init xen_init_cpuid_mask(void)
428 {
429 unsigned int ax, bx, cx, dx;
430 unsigned int xsave_mask;
431
432 cpuid_leaf1_edx_mask =
433 ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
434 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
435
436 /*
437 * Xen PV would need some work to support PCID: CR3 handling as well
438 * as xen_flush_tlb_others() would need updating.
439 */
440 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_PCID % 32)); /* disable PCID */
441
442 if (!xen_initial_domain())
443 cpuid_leaf1_edx_mask &=
444 ~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
445
446 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
447
448 ax = 1;
449 cx = 0;
450 cpuid(1, &ax, &bx, &cx, &dx);
451
452 xsave_mask =
453 (1 << (X86_FEATURE_XSAVE % 32)) |
454 (1 << (X86_FEATURE_OSXSAVE % 32));
455
456 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
457 if ((cx & xsave_mask) != xsave_mask)
458 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
459 if (xen_check_mwait())
460 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
461 }
462
xen_init_capabilities(void)463 static void __init xen_init_capabilities(void)
464 {
465 if (xen_pv_domain())
466 setup_force_cpu_cap(X86_FEATURE_XENPV);
467 }
468
xen_set_debugreg(int reg,unsigned long val)469 static void xen_set_debugreg(int reg, unsigned long val)
470 {
471 HYPERVISOR_set_debugreg(reg, val);
472 }
473
xen_get_debugreg(int reg)474 static unsigned long xen_get_debugreg(int reg)
475 {
476 return HYPERVISOR_get_debugreg(reg);
477 }
478
xen_end_context_switch(struct task_struct * next)479 static void xen_end_context_switch(struct task_struct *next)
480 {
481 xen_mc_flush();
482 paravirt_end_context_switch(next);
483 }
484
xen_store_tr(void)485 static unsigned long xen_store_tr(void)
486 {
487 return 0;
488 }
489
490 /*
491 * Set the page permissions for a particular virtual address. If the
492 * address is a vmalloc mapping (or other non-linear mapping), then
493 * find the linear mapping of the page and also set its protections to
494 * match.
495 */
set_aliased_prot(void * v,pgprot_t prot)496 static void set_aliased_prot(void *v, pgprot_t prot)
497 {
498 int level;
499 pte_t *ptep;
500 pte_t pte;
501 unsigned long pfn;
502 struct page *page;
503 unsigned char dummy;
504
505 ptep = lookup_address((unsigned long)v, &level);
506 BUG_ON(ptep == NULL);
507
508 pfn = pte_pfn(*ptep);
509 page = pfn_to_page(pfn);
510
511 pte = pfn_pte(pfn, prot);
512
513 /*
514 * Careful: update_va_mapping() will fail if the virtual address
515 * we're poking isn't populated in the page tables. We don't
516 * need to worry about the direct map (that's always in the page
517 * tables), but we need to be careful about vmap space. In
518 * particular, the top level page table can lazily propagate
519 * entries between processes, so if we've switched mms since we
520 * vmapped the target in the first place, we might not have the
521 * top-level page table entry populated.
522 *
523 * We disable preemption because we want the same mm active when
524 * we probe the target and when we issue the hypercall. We'll
525 * have the same nominal mm, but if we're a kernel thread, lazy
526 * mm dropping could change our pgd.
527 *
528 * Out of an abundance of caution, this uses __get_user() to fault
529 * in the target address just in case there's some obscure case
530 * in which the target address isn't readable.
531 */
532
533 preempt_disable();
534
535 pagefault_disable(); /* Avoid warnings due to being atomic. */
536 __get_user(dummy, (unsigned char __user __force *)v);
537 pagefault_enable();
538
539 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
540 BUG();
541
542 if (!PageHighMem(page)) {
543 void *av = __va(PFN_PHYS(pfn));
544
545 if (av != v)
546 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
547 BUG();
548 } else
549 kmap_flush_unused();
550
551 preempt_enable();
552 }
553
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)554 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
555 {
556 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
557 int i;
558
559 /*
560 * We need to mark the all aliases of the LDT pages RO. We
561 * don't need to call vm_flush_aliases(), though, since that's
562 * only responsible for flushing aliases out the TLBs, not the
563 * page tables, and Xen will flush the TLB for us if needed.
564 *
565 * To avoid confusing future readers: none of this is necessary
566 * to load the LDT. The hypervisor only checks this when the
567 * LDT is faulted in due to subsequent descriptor access.
568 */
569
570 for(i = 0; i < entries; i += entries_per_page)
571 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
572 }
573
xen_free_ldt(struct desc_struct * ldt,unsigned entries)574 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
575 {
576 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
577 int i;
578
579 for(i = 0; i < entries; i += entries_per_page)
580 set_aliased_prot(ldt + i, PAGE_KERNEL);
581 }
582
xen_set_ldt(const void * addr,unsigned entries)583 static void xen_set_ldt(const void *addr, unsigned entries)
584 {
585 struct mmuext_op *op;
586 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
587
588 trace_xen_cpu_set_ldt(addr, entries);
589
590 op = mcs.args;
591 op->cmd = MMUEXT_SET_LDT;
592 op->arg1.linear_addr = (unsigned long)addr;
593 op->arg2.nr_ents = entries;
594
595 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
596
597 xen_mc_issue(PARAVIRT_LAZY_CPU);
598 }
599
xen_load_gdt(const struct desc_ptr * dtr)600 static void xen_load_gdt(const struct desc_ptr *dtr)
601 {
602 unsigned long va = dtr->address;
603 unsigned int size = dtr->size + 1;
604 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
605 unsigned long frames[pages];
606 int f;
607
608 /*
609 * A GDT can be up to 64k in size, which corresponds to 8192
610 * 8-byte entries, or 16 4k pages..
611 */
612
613 BUG_ON(size > 65536);
614 BUG_ON(va & ~PAGE_MASK);
615
616 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
617 int level;
618 pte_t *ptep;
619 unsigned long pfn, mfn;
620 void *virt;
621
622 /*
623 * The GDT is per-cpu and is in the percpu data area.
624 * That can be virtually mapped, so we need to do a
625 * page-walk to get the underlying MFN for the
626 * hypercall. The page can also be in the kernel's
627 * linear range, so we need to RO that mapping too.
628 */
629 ptep = lookup_address(va, &level);
630 BUG_ON(ptep == NULL);
631
632 pfn = pte_pfn(*ptep);
633 mfn = pfn_to_mfn(pfn);
634 virt = __va(PFN_PHYS(pfn));
635
636 frames[f] = mfn;
637
638 make_lowmem_page_readonly((void *)va);
639 make_lowmem_page_readonly(virt);
640 }
641
642 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
643 BUG();
644 }
645
646 /*
647 * load_gdt for early boot, when the gdt is only mapped once
648 */
xen_load_gdt_boot(const struct desc_ptr * dtr)649 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
650 {
651 unsigned long va = dtr->address;
652 unsigned int size = dtr->size + 1;
653 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
654 unsigned long frames[pages];
655 int f;
656
657 /*
658 * A GDT can be up to 64k in size, which corresponds to 8192
659 * 8-byte entries, or 16 4k pages..
660 */
661
662 BUG_ON(size > 65536);
663 BUG_ON(va & ~PAGE_MASK);
664
665 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
666 pte_t pte;
667 unsigned long pfn, mfn;
668
669 pfn = virt_to_pfn(va);
670 mfn = pfn_to_mfn(pfn);
671
672 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
673
674 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
675 BUG();
676
677 frames[f] = mfn;
678 }
679
680 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
681 BUG();
682 }
683
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)684 static inline bool desc_equal(const struct desc_struct *d1,
685 const struct desc_struct *d2)
686 {
687 return d1->a == d2->a && d1->b == d2->b;
688 }
689
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)690 static void load_TLS_descriptor(struct thread_struct *t,
691 unsigned int cpu, unsigned int i)
692 {
693 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
694 struct desc_struct *gdt;
695 xmaddr_t maddr;
696 struct multicall_space mc;
697
698 if (desc_equal(shadow, &t->tls_array[i]))
699 return;
700
701 *shadow = t->tls_array[i];
702
703 gdt = get_cpu_gdt_table(cpu);
704 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
705 mc = __xen_mc_entry(0);
706
707 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
708 }
709
xen_load_tls(struct thread_struct * t,unsigned int cpu)710 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
711 {
712 /*
713 * XXX sleazy hack: If we're being called in a lazy-cpu zone
714 * and lazy gs handling is enabled, it means we're in a
715 * context switch, and %gs has just been saved. This means we
716 * can zero it out to prevent faults on exit from the
717 * hypervisor if the next process has no %gs. Either way, it
718 * has been saved, and the new value will get loaded properly.
719 * This will go away as soon as Xen has been modified to not
720 * save/restore %gs for normal hypercalls.
721 *
722 * On x86_64, this hack is not used for %gs, because gs points
723 * to KERNEL_GS_BASE (and uses it for PDA references), so we
724 * must not zero %gs on x86_64
725 *
726 * For x86_64, we need to zero %fs, otherwise we may get an
727 * exception between the new %fs descriptor being loaded and
728 * %fs being effectively cleared at __switch_to().
729 */
730 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
731 #ifdef CONFIG_X86_32
732 lazy_load_gs(0);
733 #else
734 loadsegment(fs, 0);
735 #endif
736 }
737
738 xen_mc_batch();
739
740 load_TLS_descriptor(t, cpu, 0);
741 load_TLS_descriptor(t, cpu, 1);
742 load_TLS_descriptor(t, cpu, 2);
743
744 xen_mc_issue(PARAVIRT_LAZY_CPU);
745 }
746
747 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)748 static void xen_load_gs_index(unsigned int idx)
749 {
750 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
751 BUG();
752 }
753 #endif
754
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)755 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
756 const void *ptr)
757 {
758 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
759 u64 entry = *(u64 *)ptr;
760
761 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
762
763 preempt_disable();
764
765 xen_mc_flush();
766 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
767 BUG();
768
769 preempt_enable();
770 }
771
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)772 static int cvt_gate_to_trap(int vector, const gate_desc *val,
773 struct trap_info *info)
774 {
775 unsigned long addr;
776
777 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
778 return 0;
779
780 info->vector = vector;
781
782 addr = gate_offset(*val);
783 #ifdef CONFIG_X86_64
784 /*
785 * Look for known traps using IST, and substitute them
786 * appropriately. The debugger ones are the only ones we care
787 * about. Xen will handle faults like double_fault,
788 * so we should never see them. Warn if
789 * there's an unexpected IST-using fault handler.
790 */
791 if (addr == (unsigned long)debug)
792 addr = (unsigned long)xen_debug;
793 else if (addr == (unsigned long)int3)
794 addr = (unsigned long)xen_int3;
795 else if (addr == (unsigned long)stack_segment)
796 addr = (unsigned long)xen_stack_segment;
797 else if (addr == (unsigned long)double_fault) {
798 /* Don't need to handle these */
799 return 0;
800 #ifdef CONFIG_X86_MCE
801 } else if (addr == (unsigned long)machine_check) {
802 /*
803 * when xen hypervisor inject vMCE to guest,
804 * use native mce handler to handle it
805 */
806 ;
807 #endif
808 } else if (addr == (unsigned long)nmi)
809 /*
810 * Use the native version as well.
811 */
812 ;
813 else {
814 /* Some other trap using IST? */
815 if (WARN_ON(val->ist != 0))
816 return 0;
817 }
818 #endif /* CONFIG_X86_64 */
819 info->address = addr;
820
821 info->cs = gate_segment(*val);
822 info->flags = val->dpl;
823 /* interrupt gates clear IF */
824 if (val->type == GATE_INTERRUPT)
825 info->flags |= 1 << 2;
826
827 return 1;
828 }
829
830 /* Locations of each CPU's IDT */
831 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
832
833 /* Set an IDT entry. If the entry is part of the current IDT, then
834 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)835 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
836 {
837 unsigned long p = (unsigned long)&dt[entrynum];
838 unsigned long start, end;
839
840 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
841
842 preempt_disable();
843
844 start = __this_cpu_read(idt_desc.address);
845 end = start + __this_cpu_read(idt_desc.size) + 1;
846
847 xen_mc_flush();
848
849 native_write_idt_entry(dt, entrynum, g);
850
851 if (p >= start && (p + 8) <= end) {
852 struct trap_info info[2];
853
854 info[1].address = 0;
855
856 if (cvt_gate_to_trap(entrynum, g, &info[0]))
857 if (HYPERVISOR_set_trap_table(info))
858 BUG();
859 }
860
861 preempt_enable();
862 }
863
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)864 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
865 struct trap_info *traps, bool full)
866 {
867 unsigned in, out, count;
868
869 count = (desc->size+1) / sizeof(gate_desc);
870 BUG_ON(count > 256);
871
872 for (in = out = 0; in < count; in++) {
873 gate_desc *entry = (gate_desc*)(desc->address) + in;
874
875 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
876 out++;
877 }
878
879 return out;
880 }
881
xen_copy_trap_info(struct trap_info * traps)882 void xen_copy_trap_info(struct trap_info *traps)
883 {
884 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
885
886 xen_convert_trap_info(desc, traps, true);
887 }
888
889 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
890 hold a spinlock to protect the static traps[] array (static because
891 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)892 static void xen_load_idt(const struct desc_ptr *desc)
893 {
894 static DEFINE_SPINLOCK(lock);
895 static struct trap_info traps[257];
896 unsigned out;
897
898 trace_xen_cpu_load_idt(desc);
899
900 spin_lock(&lock);
901
902 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
903
904 out = xen_convert_trap_info(desc, traps, false);
905 memset(&traps[out], 0, sizeof(traps[0]));
906
907 xen_mc_flush();
908 if (HYPERVISOR_set_trap_table(traps))
909 BUG();
910
911 spin_unlock(&lock);
912 }
913
914 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
915 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)916 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
917 const void *desc, int type)
918 {
919 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
920
921 preempt_disable();
922
923 switch (type) {
924 case DESC_LDT:
925 case DESC_TSS:
926 /* ignore */
927 break;
928
929 default: {
930 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
931
932 xen_mc_flush();
933 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
934 BUG();
935 }
936
937 }
938
939 preempt_enable();
940 }
941
942 /*
943 * Version of write_gdt_entry for use at early boot-time needed to
944 * update an entry as simply as possible.
945 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)946 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
947 const void *desc, int type)
948 {
949 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
950
951 switch (type) {
952 case DESC_LDT:
953 case DESC_TSS:
954 /* ignore */
955 break;
956
957 default: {
958 xmaddr_t maddr = virt_to_machine(&dt[entry]);
959
960 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
961 dt[entry] = *(struct desc_struct *)desc;
962 }
963
964 }
965 }
966
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)967 static void xen_load_sp0(struct tss_struct *tss,
968 struct thread_struct *thread)
969 {
970 struct multicall_space mcs;
971
972 mcs = xen_mc_entry(0);
973 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
974 xen_mc_issue(PARAVIRT_LAZY_CPU);
975 tss->x86_tss.sp0 = thread->sp0;
976 }
977
xen_set_iopl_mask(unsigned mask)978 void xen_set_iopl_mask(unsigned mask)
979 {
980 struct physdev_set_iopl set_iopl;
981
982 /* Force the change at ring 0. */
983 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
984 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
985 }
986
xen_io_delay(void)987 static void xen_io_delay(void)
988 {
989 }
990
xen_clts(void)991 static void xen_clts(void)
992 {
993 struct multicall_space mcs;
994
995 mcs = xen_mc_entry(0);
996
997 MULTI_fpu_taskswitch(mcs.mc, 0);
998
999 xen_mc_issue(PARAVIRT_LAZY_CPU);
1000 }
1001
1002 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1003
xen_read_cr0(void)1004 static unsigned long xen_read_cr0(void)
1005 {
1006 unsigned long cr0 = this_cpu_read(xen_cr0_value);
1007
1008 if (unlikely(cr0 == 0)) {
1009 cr0 = native_read_cr0();
1010 this_cpu_write(xen_cr0_value, cr0);
1011 }
1012
1013 return cr0;
1014 }
1015
xen_write_cr0(unsigned long cr0)1016 static void xen_write_cr0(unsigned long cr0)
1017 {
1018 struct multicall_space mcs;
1019
1020 this_cpu_write(xen_cr0_value, cr0);
1021
1022 /* Only pay attention to cr0.TS; everything else is
1023 ignored. */
1024 mcs = xen_mc_entry(0);
1025
1026 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1027
1028 xen_mc_issue(PARAVIRT_LAZY_CPU);
1029 }
1030
xen_write_cr4(unsigned long cr4)1031 static void xen_write_cr4(unsigned long cr4)
1032 {
1033 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1034
1035 native_write_cr4(cr4);
1036 }
1037 #ifdef CONFIG_X86_64
xen_read_cr8(void)1038 static inline unsigned long xen_read_cr8(void)
1039 {
1040 return 0;
1041 }
xen_write_cr8(unsigned long val)1042 static inline void xen_write_cr8(unsigned long val)
1043 {
1044 BUG_ON(val);
1045 }
1046 #endif
1047
xen_read_msr_safe(unsigned int msr,int * err)1048 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1049 {
1050 u64 val;
1051
1052 if (pmu_msr_read(msr, &val, err))
1053 return val;
1054
1055 val = native_read_msr_safe(msr, err);
1056 switch (msr) {
1057 case MSR_IA32_APICBASE:
1058 #ifdef CONFIG_X86_X2APIC
1059 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1060 #endif
1061 val &= ~X2APIC_ENABLE;
1062 break;
1063 }
1064 return val;
1065 }
1066
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)1067 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1068 {
1069 int ret;
1070
1071 ret = 0;
1072
1073 switch (msr) {
1074 #ifdef CONFIG_X86_64
1075 unsigned which;
1076 u64 base;
1077
1078 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
1079 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
1080 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
1081
1082 set:
1083 base = ((u64)high << 32) | low;
1084 if (HYPERVISOR_set_segment_base(which, base) != 0)
1085 ret = -EIO;
1086 break;
1087 #endif
1088
1089 case MSR_STAR:
1090 case MSR_CSTAR:
1091 case MSR_LSTAR:
1092 case MSR_SYSCALL_MASK:
1093 case MSR_IA32_SYSENTER_CS:
1094 case MSR_IA32_SYSENTER_ESP:
1095 case MSR_IA32_SYSENTER_EIP:
1096 /* Fast syscall setup is all done in hypercalls, so
1097 these are all ignored. Stub them out here to stop
1098 Xen console noise. */
1099 break;
1100
1101 default:
1102 if (!pmu_msr_write(msr, low, high, &ret))
1103 ret = native_write_msr_safe(msr, low, high);
1104 }
1105
1106 return ret;
1107 }
1108
xen_setup_shared_info(void)1109 void xen_setup_shared_info(void)
1110 {
1111 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1112 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1113 xen_start_info->shared_info);
1114
1115 HYPERVISOR_shared_info =
1116 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1117 } else
1118 HYPERVISOR_shared_info =
1119 (struct shared_info *)__va(xen_start_info->shared_info);
1120
1121 #ifndef CONFIG_SMP
1122 /* In UP this is as good a place as any to set up shared info */
1123 xen_setup_vcpu_info_placement();
1124 #endif
1125
1126 xen_setup_mfn_list_list();
1127 }
1128
1129 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1130 void xen_setup_vcpu_info_placement(void)
1131 {
1132 int cpu;
1133
1134 for_each_possible_cpu(cpu)
1135 xen_vcpu_setup(cpu);
1136
1137 /* xen_vcpu_setup managed to place the vcpu_info within the
1138 * percpu area for all cpus, so make use of it. Note that for
1139 * PVH we want to use native IRQ mechanism. */
1140 if (have_vcpu_info_placement && !xen_pvh_domain()) {
1141 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1142 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1143 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1144 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1145 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1146 }
1147 }
1148
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)1149 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1150 unsigned long addr, unsigned len)
1151 {
1152 char *start, *end, *reloc;
1153 unsigned ret;
1154
1155 start = end = reloc = NULL;
1156
1157 #define SITE(op, x) \
1158 case PARAVIRT_PATCH(op.x): \
1159 if (have_vcpu_info_placement) { \
1160 start = (char *)xen_##x##_direct; \
1161 end = xen_##x##_direct_end; \
1162 reloc = xen_##x##_direct_reloc; \
1163 } \
1164 goto patch_site
1165
1166 switch (type) {
1167 SITE(pv_irq_ops, irq_enable);
1168 SITE(pv_irq_ops, irq_disable);
1169 SITE(pv_irq_ops, save_fl);
1170 SITE(pv_irq_ops, restore_fl);
1171 #undef SITE
1172
1173 patch_site:
1174 if (start == NULL || (end-start) > len)
1175 goto default_patch;
1176
1177 ret = paravirt_patch_insns(insnbuf, len, start, end);
1178
1179 /* Note: because reloc is assigned from something that
1180 appears to be an array, gcc assumes it's non-null,
1181 but doesn't know its relationship with start and
1182 end. */
1183 if (reloc > start && reloc < end) {
1184 int reloc_off = reloc - start;
1185 long *relocp = (long *)(insnbuf + reloc_off);
1186 long delta = start - (char *)addr;
1187
1188 *relocp += delta;
1189 }
1190 break;
1191
1192 default_patch:
1193 default:
1194 ret = paravirt_patch_default(type, clobbers, insnbuf,
1195 addr, len);
1196 break;
1197 }
1198
1199 return ret;
1200 }
1201
1202 static const struct pv_info xen_info __initconst = {
1203 .paravirt_enabled = 1,
1204 .shared_kernel_pmd = 0,
1205
1206 #ifdef CONFIG_X86_64
1207 .extra_user_64bit_cs = FLAT_USER_CS64,
1208 #endif
1209 .features = 0,
1210 .name = "Xen",
1211 };
1212
1213 static const struct pv_init_ops xen_init_ops __initconst = {
1214 .patch = xen_patch,
1215 };
1216
1217 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1218 .cpuid = xen_cpuid,
1219
1220 .set_debugreg = xen_set_debugreg,
1221 .get_debugreg = xen_get_debugreg,
1222
1223 .clts = xen_clts,
1224
1225 .read_cr0 = xen_read_cr0,
1226 .write_cr0 = xen_write_cr0,
1227
1228 .read_cr4 = native_read_cr4,
1229 .read_cr4_safe = native_read_cr4_safe,
1230 .write_cr4 = xen_write_cr4,
1231
1232 #ifdef CONFIG_X86_64
1233 .read_cr8 = xen_read_cr8,
1234 .write_cr8 = xen_write_cr8,
1235 #endif
1236
1237 .wbinvd = native_wbinvd,
1238
1239 .read_msr = xen_read_msr_safe,
1240 .write_msr = xen_write_msr_safe,
1241
1242 .read_pmc = xen_read_pmc,
1243
1244 .iret = xen_iret,
1245 #ifdef CONFIG_X86_64
1246 .usergs_sysret64 = xen_sysret64,
1247 #endif
1248
1249 .load_tr_desc = paravirt_nop,
1250 .set_ldt = xen_set_ldt,
1251 .load_gdt = xen_load_gdt,
1252 .load_idt = xen_load_idt,
1253 .load_tls = xen_load_tls,
1254 #ifdef CONFIG_X86_64
1255 .load_gs_index = xen_load_gs_index,
1256 #endif
1257
1258 .alloc_ldt = xen_alloc_ldt,
1259 .free_ldt = xen_free_ldt,
1260
1261 .store_idt = native_store_idt,
1262 .store_tr = xen_store_tr,
1263
1264 .write_ldt_entry = xen_write_ldt_entry,
1265 .write_gdt_entry = xen_write_gdt_entry,
1266 .write_idt_entry = xen_write_idt_entry,
1267 .load_sp0 = xen_load_sp0,
1268
1269 .set_iopl_mask = xen_set_iopl_mask,
1270 .io_delay = xen_io_delay,
1271
1272 /* Xen takes care of %gs when switching to usermode for us */
1273 .swapgs = paravirt_nop,
1274
1275 .start_context_switch = paravirt_start_context_switch,
1276 .end_context_switch = xen_end_context_switch,
1277 };
1278
1279 static const struct pv_apic_ops xen_apic_ops __initconst = {
1280 #ifdef CONFIG_X86_LOCAL_APIC
1281 .startup_ipi_hook = paravirt_nop,
1282 #endif
1283 };
1284
xen_reboot(int reason)1285 static void xen_reboot(int reason)
1286 {
1287 struct sched_shutdown r = { .reason = reason };
1288 int cpu;
1289
1290 for_each_online_cpu(cpu)
1291 xen_pmu_finish(cpu);
1292
1293 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1294 BUG();
1295 }
1296
xen_restart(char * msg)1297 static void xen_restart(char *msg)
1298 {
1299 xen_reboot(SHUTDOWN_reboot);
1300 }
1301
xen_emergency_restart(void)1302 static void xen_emergency_restart(void)
1303 {
1304 xen_reboot(SHUTDOWN_reboot);
1305 }
1306
xen_machine_halt(void)1307 static void xen_machine_halt(void)
1308 {
1309 xen_reboot(SHUTDOWN_poweroff);
1310 }
1311
xen_machine_power_off(void)1312 static void xen_machine_power_off(void)
1313 {
1314 if (pm_power_off)
1315 pm_power_off();
1316 xen_reboot(SHUTDOWN_poweroff);
1317 }
1318
xen_crash_shutdown(struct pt_regs * regs)1319 static void xen_crash_shutdown(struct pt_regs *regs)
1320 {
1321 xen_reboot(SHUTDOWN_crash);
1322 }
1323
1324 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1325 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1326 {
1327 xen_reboot(SHUTDOWN_crash);
1328 return NOTIFY_DONE;
1329 }
1330
1331 static struct notifier_block xen_panic_block = {
1332 .notifier_call= xen_panic_event,
1333 .priority = INT_MIN
1334 };
1335
xen_panic_handler_init(void)1336 int xen_panic_handler_init(void)
1337 {
1338 atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1339 return 0;
1340 }
1341
1342 static const struct machine_ops xen_machine_ops __initconst = {
1343 .restart = xen_restart,
1344 .halt = xen_machine_halt,
1345 .power_off = xen_machine_power_off,
1346 .shutdown = xen_machine_halt,
1347 .crash_shutdown = xen_crash_shutdown,
1348 .emergency_restart = xen_emergency_restart,
1349 };
1350
xen_get_nmi_reason(void)1351 static unsigned char xen_get_nmi_reason(void)
1352 {
1353 unsigned char reason = 0;
1354
1355 /* Construct a value which looks like it came from port 0x61. */
1356 if (test_bit(_XEN_NMIREASON_io_error,
1357 &HYPERVISOR_shared_info->arch.nmi_reason))
1358 reason |= NMI_REASON_IOCHK;
1359 if (test_bit(_XEN_NMIREASON_pci_serr,
1360 &HYPERVISOR_shared_info->arch.nmi_reason))
1361 reason |= NMI_REASON_SERR;
1362
1363 return reason;
1364 }
1365
xen_boot_params_init_edd(void)1366 static void __init xen_boot_params_init_edd(void)
1367 {
1368 #if IS_ENABLED(CONFIG_EDD)
1369 struct xen_platform_op op;
1370 struct edd_info *edd_info;
1371 u32 *mbr_signature;
1372 unsigned nr;
1373 int ret;
1374
1375 edd_info = boot_params.eddbuf;
1376 mbr_signature = boot_params.edd_mbr_sig_buffer;
1377
1378 op.cmd = XENPF_firmware_info;
1379
1380 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1381 for (nr = 0; nr < EDDMAXNR; nr++) {
1382 struct edd_info *info = edd_info + nr;
1383
1384 op.u.firmware_info.index = nr;
1385 info->params.length = sizeof(info->params);
1386 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1387 &info->params);
1388 ret = HYPERVISOR_dom0_op(&op);
1389 if (ret)
1390 break;
1391
1392 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1393 C(device);
1394 C(version);
1395 C(interface_support);
1396 C(legacy_max_cylinder);
1397 C(legacy_max_head);
1398 C(legacy_sectors_per_track);
1399 #undef C
1400 }
1401 boot_params.eddbuf_entries = nr;
1402
1403 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1404 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1405 op.u.firmware_info.index = nr;
1406 ret = HYPERVISOR_dom0_op(&op);
1407 if (ret)
1408 break;
1409 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1410 }
1411 boot_params.edd_mbr_sig_buf_entries = nr;
1412 #endif
1413 }
1414
1415 /*
1416 * Set up the GDT and segment registers for -fstack-protector. Until
1417 * we do this, we have to be careful not to call any stack-protected
1418 * function, which is most of the kernel.
1419 *
1420 * Note, that it is __ref because the only caller of this after init
1421 * is PVH which is not going to use xen_load_gdt_boot or other
1422 * __init functions.
1423 */
xen_setup_gdt(int cpu)1424 static void __ref xen_setup_gdt(int cpu)
1425 {
1426 if (xen_feature(XENFEAT_auto_translated_physmap)) {
1427 #ifdef CONFIG_X86_64
1428 unsigned long dummy;
1429
1430 load_percpu_segment(cpu); /* We need to access per-cpu area */
1431 switch_to_new_gdt(cpu); /* GDT and GS set */
1432
1433 /* We are switching of the Xen provided GDT to our HVM mode
1434 * GDT. The new GDT has __KERNEL_CS with CS.L = 1
1435 * and we are jumping to reload it.
1436 */
1437 asm volatile ("pushq %0\n"
1438 "leaq 1f(%%rip),%0\n"
1439 "pushq %0\n"
1440 "lretq\n"
1441 "1:\n"
1442 : "=&r" (dummy) : "0" (__KERNEL_CS));
1443
1444 /*
1445 * While not needed, we also set the %es, %ds, and %fs
1446 * to zero. We don't care about %ss as it is NULL.
1447 * Strictly speaking this is not needed as Xen zeros those
1448 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1449 *
1450 * Linux zeros them in cpu_init() and in secondary_startup_64
1451 * (for BSP).
1452 */
1453 loadsegment(es, 0);
1454 loadsegment(ds, 0);
1455 loadsegment(fs, 0);
1456 #else
1457 /* PVH: TODO Implement. */
1458 BUG();
1459 #endif
1460 return; /* PVH does not need any PV GDT ops. */
1461 }
1462 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1463 pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1464
1465 setup_stack_canary_segment(0);
1466 switch_to_new_gdt(0);
1467
1468 pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1469 pv_cpu_ops.load_gdt = xen_load_gdt;
1470 }
1471
1472 #ifdef CONFIG_XEN_PVH
1473 /*
1474 * A PV guest starts with default flags that are not set for PVH, set them
1475 * here asap.
1476 */
xen_pvh_set_cr_flags(int cpu)1477 static void xen_pvh_set_cr_flags(int cpu)
1478 {
1479
1480 /* Some of these are setup in 'secondary_startup_64'. The others:
1481 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1482 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1483 write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1484
1485 if (!cpu)
1486 return;
1487 /*
1488 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1489 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1490 */
1491 if (cpu_has_pse)
1492 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1493
1494 if (cpu_has_pge)
1495 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1496 }
1497
1498 /*
1499 * Note, that it is ref - because the only caller of this after init
1500 * is PVH which is not going to use xen_load_gdt_boot or other
1501 * __init functions.
1502 */
xen_pvh_secondary_vcpu_init(int cpu)1503 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1504 {
1505 xen_setup_gdt(cpu);
1506 xen_pvh_set_cr_flags(cpu);
1507 }
1508
xen_pvh_early_guest_init(void)1509 static void __init xen_pvh_early_guest_init(void)
1510 {
1511 if (!xen_feature(XENFEAT_auto_translated_physmap))
1512 return;
1513
1514 if (!xen_feature(XENFEAT_hvm_callback_vector))
1515 return;
1516
1517 xen_have_vector_callback = 1;
1518
1519 xen_pvh_early_cpu_init(0, false);
1520 xen_pvh_set_cr_flags(0);
1521
1522 #ifdef CONFIG_X86_32
1523 BUG(); /* PVH: Implement proper support. */
1524 #endif
1525 }
1526 #endif /* CONFIG_XEN_PVH */
1527
1528 /* First C function to be called on Xen boot */
xen_start_kernel(void)1529 asmlinkage __visible void __init xen_start_kernel(void)
1530 {
1531 struct physdev_set_iopl set_iopl;
1532 unsigned long initrd_start = 0;
1533 int rc;
1534
1535 if (!xen_start_info)
1536 return;
1537
1538 xen_domain_type = XEN_PV_DOMAIN;
1539
1540 xen_setup_features();
1541 #ifdef CONFIG_XEN_PVH
1542 xen_pvh_early_guest_init();
1543 #endif
1544 xen_setup_machphys_mapping();
1545
1546 /* Install Xen paravirt ops */
1547 pv_info = xen_info;
1548 if (xen_initial_domain())
1549 pv_info.features |= PV_SUPPORTED_RTC;
1550 pv_init_ops = xen_init_ops;
1551 pv_apic_ops = xen_apic_ops;
1552 if (!xen_pvh_domain()) {
1553 pv_cpu_ops = xen_cpu_ops;
1554
1555 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1556 }
1557
1558 if (xen_feature(XENFEAT_auto_translated_physmap))
1559 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1560 else
1561 x86_init.resources.memory_setup = xen_memory_setup;
1562 x86_init.oem.arch_setup = xen_arch_setup;
1563 x86_init.oem.banner = xen_banner;
1564
1565 xen_init_time_ops();
1566
1567 /*
1568 * Set up some pagetable state before starting to set any ptes.
1569 */
1570
1571 xen_init_mmu_ops();
1572
1573 /* Prevent unwanted bits from being set in PTEs. */
1574 __supported_pte_mask &= ~_PAGE_GLOBAL;
1575
1576 /*
1577 * Prevent page tables from being allocated in highmem, even
1578 * if CONFIG_HIGHPTE is enabled.
1579 */
1580 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1581
1582 /* Work out if we support NX */
1583 x86_configure_nx();
1584
1585 /* Get mfn list */
1586 xen_build_dynamic_phys_to_machine();
1587
1588 /*
1589 * Set up kernel GDT and segment registers, mainly so that
1590 * -fstack-protector code can be executed.
1591 */
1592 xen_setup_gdt(0);
1593
1594 xen_init_irq_ops();
1595 xen_init_cpuid_mask();
1596 xen_init_capabilities();
1597
1598 #ifdef CONFIG_X86_LOCAL_APIC
1599 /*
1600 * set up the basic apic ops.
1601 */
1602 xen_init_apic();
1603 #endif
1604
1605 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1606 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1607 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1608 }
1609
1610 machine_ops = xen_machine_ops;
1611
1612 /*
1613 * The only reliable way to retain the initial address of the
1614 * percpu gdt_page is to remember it here, so we can go and
1615 * mark it RW later, when the initial percpu area is freed.
1616 */
1617 xen_initial_gdt = &per_cpu(gdt_page, 0);
1618
1619 xen_smp_init();
1620
1621 #ifdef CONFIG_ACPI_NUMA
1622 /*
1623 * The pages we from Xen are not related to machine pages, so
1624 * any NUMA information the kernel tries to get from ACPI will
1625 * be meaningless. Prevent it from trying.
1626 */
1627 acpi_numa = -1;
1628 #endif
1629 /* Don't do the full vcpu_info placement stuff until we have a
1630 possible map and a non-dummy shared_info. */
1631 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1632
1633 local_irq_disable();
1634 early_boot_irqs_disabled = true;
1635
1636 xen_raw_console_write("mapping kernel into physical memory\n");
1637 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1638 xen_start_info->nr_pages);
1639 xen_reserve_special_pages();
1640
1641 /* keep using Xen gdt for now; no urgent need to change it */
1642
1643 #ifdef CONFIG_X86_32
1644 pv_info.kernel_rpl = 1;
1645 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1646 pv_info.kernel_rpl = 0;
1647 #else
1648 pv_info.kernel_rpl = 0;
1649 #endif
1650 /* set the limit of our address space */
1651 xen_reserve_top();
1652
1653 /* PVH: runs at default kernel iopl of 0 */
1654 if (!xen_pvh_domain()) {
1655 /*
1656 * We used to do this in xen_arch_setup, but that is too late
1657 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1658 * early_amd_init which pokes 0xcf8 port.
1659 */
1660 set_iopl.iopl = 1;
1661 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1662 if (rc != 0)
1663 xen_raw_printk("physdev_op failed %d\n", rc);
1664 }
1665
1666 #ifdef CONFIG_X86_32
1667 /* set up basic CPUID stuff */
1668 cpu_detect(&new_cpu_data);
1669 set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1670 new_cpu_data.wp_works_ok = 1;
1671 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1672 #endif
1673
1674 if (xen_start_info->mod_start) {
1675 if (xen_start_info->flags & SIF_MOD_START_PFN)
1676 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1677 else
1678 initrd_start = __pa(xen_start_info->mod_start);
1679 }
1680
1681 /* Poke various useful things into boot_params */
1682 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1683 boot_params.hdr.ramdisk_image = initrd_start;
1684 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1685 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1686
1687 if (!xen_initial_domain()) {
1688 add_preferred_console("xenboot", 0, NULL);
1689 add_preferred_console("tty", 0, NULL);
1690 add_preferred_console("hvc", 0, NULL);
1691 if (pci_xen)
1692 x86_init.pci.arch_init = pci_xen_init;
1693 } else {
1694 const struct dom0_vga_console_info *info =
1695 (void *)((char *)xen_start_info +
1696 xen_start_info->console.dom0.info_off);
1697 struct xen_platform_op op = {
1698 .cmd = XENPF_firmware_info,
1699 .interface_version = XENPF_INTERFACE_VERSION,
1700 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1701 };
1702
1703 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1704 xen_start_info->console.domU.mfn = 0;
1705 xen_start_info->console.domU.evtchn = 0;
1706
1707 if (HYPERVISOR_dom0_op(&op) == 0)
1708 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1709
1710 /* Make sure ACS will be enabled */
1711 pci_request_acs();
1712
1713 xen_acpi_sleep_register();
1714
1715 /* Avoid searching for BIOS MP tables */
1716 x86_init.mpparse.find_smp_config = x86_init_noop;
1717 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1718
1719 xen_boot_params_init_edd();
1720 }
1721 #ifdef CONFIG_PCI
1722 /* PCI BIOS service won't work from a PV guest. */
1723 pci_probe &= ~PCI_PROBE_BIOS;
1724 #endif
1725 xen_raw_console_write("about to get started...\n");
1726
1727 xen_setup_runstate_info(0);
1728
1729 xen_efi_init();
1730
1731 /* Start the world */
1732 #ifdef CONFIG_X86_32
1733 i386_start_kernel();
1734 #else
1735 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1736 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1737 #endif
1738 }
1739
xen_hvm_init_shared_info(void)1740 void __ref xen_hvm_init_shared_info(void)
1741 {
1742 int cpu;
1743 struct xen_add_to_physmap xatp;
1744 static struct shared_info *shared_info_page = 0;
1745
1746 if (!shared_info_page)
1747 shared_info_page = (struct shared_info *)
1748 extend_brk(PAGE_SIZE, PAGE_SIZE);
1749 xatp.domid = DOMID_SELF;
1750 xatp.idx = 0;
1751 xatp.space = XENMAPSPACE_shared_info;
1752 xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1753 if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1754 BUG();
1755
1756 HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1757
1758 /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1759 * page, we use it in the event channel upcall and in some pvclock
1760 * related functions. We don't need the vcpu_info placement
1761 * optimizations because we don't use any pv_mmu or pv_irq op on
1762 * HVM.
1763 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1764 * online but xen_hvm_init_shared_info is run at resume time too and
1765 * in that case multiple vcpus might be online. */
1766 for_each_online_cpu(cpu) {
1767 /* Leave it to be NULL. */
1768 if (cpu >= MAX_VIRT_CPUS)
1769 continue;
1770 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1771 }
1772 }
1773
1774 #ifdef CONFIG_XEN_PVHVM
init_hvm_pv_info(void)1775 static void __init init_hvm_pv_info(void)
1776 {
1777 int major, minor;
1778 uint32_t eax, ebx, ecx, edx, pages, msr, base;
1779 u64 pfn;
1780
1781 base = xen_cpuid_base();
1782 cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1783
1784 major = eax >> 16;
1785 minor = eax & 0xffff;
1786 printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1787
1788 cpuid(base + 2, &pages, &msr, &ecx, &edx);
1789
1790 pfn = __pa(hypercall_page);
1791 wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1792
1793 xen_setup_features();
1794
1795 pv_info.name = "Xen HVM";
1796
1797 xen_domain_type = XEN_HVM_DOMAIN;
1798 }
1799
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1800 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1801 void *hcpu)
1802 {
1803 int cpu = (long)hcpu;
1804 switch (action) {
1805 case CPU_UP_PREPARE:
1806 xen_vcpu_setup(cpu);
1807 if (xen_have_vector_callback) {
1808 if (xen_feature(XENFEAT_hvm_safe_pvclock))
1809 xen_setup_timer(cpu);
1810 }
1811 break;
1812 default:
1813 break;
1814 }
1815 return NOTIFY_OK;
1816 }
1817
1818 static struct notifier_block xen_hvm_cpu_notifier = {
1819 .notifier_call = xen_hvm_cpu_notify,
1820 };
1821
1822 #ifdef CONFIG_KEXEC_CORE
xen_hvm_shutdown(void)1823 static void xen_hvm_shutdown(void)
1824 {
1825 native_machine_shutdown();
1826 if (kexec_in_progress)
1827 xen_reboot(SHUTDOWN_soft_reset);
1828 }
1829
xen_hvm_crash_shutdown(struct pt_regs * regs)1830 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1831 {
1832 native_machine_crash_shutdown(regs);
1833 xen_reboot(SHUTDOWN_soft_reset);
1834 }
1835 #endif
1836
xen_hvm_guest_init(void)1837 static void __init xen_hvm_guest_init(void)
1838 {
1839 if (xen_pv_domain())
1840 return;
1841
1842 init_hvm_pv_info();
1843
1844 xen_hvm_init_shared_info();
1845
1846 xen_panic_handler_init();
1847
1848 if (xen_feature(XENFEAT_hvm_callback_vector))
1849 xen_have_vector_callback = 1;
1850 xen_hvm_smp_init();
1851 register_cpu_notifier(&xen_hvm_cpu_notifier);
1852 xen_unplug_emulated_devices();
1853 x86_init.irqs.intr_init = xen_init_IRQ;
1854 xen_hvm_init_time_ops();
1855 xen_hvm_init_mmu_ops();
1856 #ifdef CONFIG_KEXEC_CORE
1857 machine_ops.shutdown = xen_hvm_shutdown;
1858 machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1859 #endif
1860 }
1861 #endif
1862
1863 static bool xen_nopv = false;
xen_parse_nopv(char * arg)1864 static __init int xen_parse_nopv(char *arg)
1865 {
1866 xen_nopv = true;
1867 return 0;
1868 }
1869 early_param("xen_nopv", xen_parse_nopv);
1870
xen_platform(void)1871 static uint32_t __init xen_platform(void)
1872 {
1873 if (xen_nopv)
1874 return 0;
1875
1876 return xen_cpuid_base();
1877 }
1878
xen_hvm_need_lapic(void)1879 bool xen_hvm_need_lapic(void)
1880 {
1881 if (xen_nopv)
1882 return false;
1883 if (xen_pv_domain())
1884 return false;
1885 if (!xen_hvm_domain())
1886 return false;
1887 if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1888 return false;
1889 return true;
1890 }
1891 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1892
1893 const struct hypervisor_x86 x86_hyper_xen = {
1894 .name = "Xen",
1895 .detect = xen_platform,
1896 #ifdef CONFIG_XEN_PVHVM
1897 .init_platform = xen_hvm_guest_init,
1898 #endif
1899 .x2apic_available = xen_x2apic_para_available,
1900 };
1901 EXPORT_SYMBOL(x86_hyper_xen);
1902
1903 #ifdef CONFIG_HOTPLUG_CPU
xen_arch_register_cpu(int num)1904 void xen_arch_register_cpu(int num)
1905 {
1906 arch_register_cpu(num);
1907 }
1908 EXPORT_SYMBOL(xen_arch_register_cpu);
1909
xen_arch_unregister_cpu(int num)1910 void xen_arch_unregister_cpu(int num)
1911 {
1912 arch_unregister_cpu(num);
1913 }
1914 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1915 #endif
1916