• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 
36 #ifdef CONFIG_KEXEC_CORE
37 #include <linux/kexec.h>
38 #endif
39 
40 #include <xen/xen.h>
41 #include <xen/events.h>
42 #include <xen/interface/xen.h>
43 #include <xen/interface/version.h>
44 #include <xen/interface/physdev.h>
45 #include <xen/interface/vcpu.h>
46 #include <xen/interface/memory.h>
47 #include <xen/interface/nmi.h>
48 #include <xen/interface/xen-mca.h>
49 #include <xen/features.h>
50 #include <xen/page.h>
51 #include <xen/hvm.h>
52 #include <xen/hvc-console.h>
53 #include <xen/acpi.h>
54 
55 #include <asm/paravirt.h>
56 #include <asm/apic.h>
57 #include <asm/page.h>
58 #include <asm/xen/pci.h>
59 #include <asm/xen/hypercall.h>
60 #include <asm/xen/hypervisor.h>
61 #include <asm/fixmap.h>
62 #include <asm/processor.h>
63 #include <asm/proto.h>
64 #include <asm/msr-index.h>
65 #include <asm/traps.h>
66 #include <asm/setup.h>
67 #include <asm/desc.h>
68 #include <asm/pgalloc.h>
69 #include <asm/pgtable.h>
70 #include <asm/tlbflush.h>
71 #include <asm/reboot.h>
72 #include <asm/stackprotector.h>
73 #include <asm/hypervisor.h>
74 #include <asm/mach_traps.h>
75 #include <asm/mwait.h>
76 #include <asm/pci_x86.h>
77 #include <asm/cpu.h>
78 
79 #ifdef CONFIG_ACPI
80 #include <linux/acpi.h>
81 #include <asm/acpi.h>
82 #include <acpi/pdc_intel.h>
83 #include <acpi/processor.h>
84 #include <xen/interface/platform.h>
85 #endif
86 
87 #include "xen-ops.h"
88 #include "mmu.h"
89 #include "smp.h"
90 #include "multicalls.h"
91 #include "pmu.h"
92 
93 EXPORT_SYMBOL_GPL(hypercall_page);
94 
95 /*
96  * Pointer to the xen_vcpu_info structure or
97  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
98  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
99  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
100  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
101  * acknowledge pending events.
102  * Also more subtly it is used by the patched version of irq enable/disable
103  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
104  *
105  * The desire to be able to do those mask/unmask operations as a single
106  * instruction by using the per-cpu offset held in %gs is the real reason
107  * vcpu info is in a per-cpu pointer and the original reason for this
108  * hypercall.
109  *
110  */
111 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
112 
113 /*
114  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
115  * hypercall. This can be used both in PV and PVHVM mode. The structure
116  * overrides the default per_cpu(xen_vcpu, cpu) value.
117  */
118 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
119 
120 enum xen_domain_type xen_domain_type = XEN_NATIVE;
121 EXPORT_SYMBOL_GPL(xen_domain_type);
122 
123 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
124 EXPORT_SYMBOL(machine_to_phys_mapping);
125 unsigned long  machine_to_phys_nr;
126 EXPORT_SYMBOL(machine_to_phys_nr);
127 
128 struct start_info *xen_start_info;
129 EXPORT_SYMBOL_GPL(xen_start_info);
130 
131 struct shared_info xen_dummy_shared_info;
132 
133 void *xen_initial_gdt;
134 
135 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
136 __read_mostly int xen_have_vector_callback;
137 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
138 
139 /*
140  * Point at some empty memory to start with. We map the real shared_info
141  * page as soon as fixmap is up and running.
142  */
143 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
144 
145 /*
146  * Flag to determine whether vcpu info placement is available on all
147  * VCPUs.  We assume it is to start with, and then set it to zero on
148  * the first failure.  This is because it can succeed on some VCPUs
149  * and not others, since it can involve hypervisor memory allocation,
150  * or because the guest failed to guarantee all the appropriate
151  * constraints on all VCPUs (ie buffer can't cross a page boundary).
152  *
153  * Note that any particular CPU may be using a placed vcpu structure,
154  * but we can only optimise if the all are.
155  *
156  * 0: not available, 1: available
157  */
158 static int have_vcpu_info_placement = 1;
159 
160 struct tls_descs {
161 	struct desc_struct desc[3];
162 };
163 
164 /*
165  * Updating the 3 TLS descriptors in the GDT on every task switch is
166  * surprisingly expensive so we avoid updating them if they haven't
167  * changed.  Since Xen writes different descriptors than the one
168  * passed in the update_descriptor hypercall we keep shadow copies to
169  * compare against.
170  */
171 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
172 
clamp_max_cpus(void)173 static void clamp_max_cpus(void)
174 {
175 #ifdef CONFIG_SMP
176 	if (setup_max_cpus > MAX_VIRT_CPUS)
177 		setup_max_cpus = MAX_VIRT_CPUS;
178 #endif
179 }
180 
xen_vcpu_setup(int cpu)181 static void xen_vcpu_setup(int cpu)
182 {
183 	struct vcpu_register_vcpu_info info;
184 	int err;
185 	struct vcpu_info *vcpup;
186 
187 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
188 
189 	/*
190 	 * This path is called twice on PVHVM - first during bootup via
191 	 * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
192 	 * hotplugged: cpu_up -> xen_hvm_cpu_notify.
193 	 * As we can only do the VCPUOP_register_vcpu_info once lets
194 	 * not over-write its result.
195 	 *
196 	 * For PV it is called during restore (xen_vcpu_restore) and bootup
197 	 * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
198 	 * use this function.
199 	 */
200 	if (xen_hvm_domain()) {
201 		if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
202 			return;
203 	}
204 	if (cpu < MAX_VIRT_CPUS)
205 		per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
206 
207 	if (!have_vcpu_info_placement) {
208 		if (cpu >= MAX_VIRT_CPUS)
209 			clamp_max_cpus();
210 		return;
211 	}
212 
213 	vcpup = &per_cpu(xen_vcpu_info, cpu);
214 	info.mfn = arbitrary_virt_to_mfn(vcpup);
215 	info.offset = offset_in_page(vcpup);
216 
217 	/* Check to see if the hypervisor will put the vcpu_info
218 	   structure where we want it, which allows direct access via
219 	   a percpu-variable.
220 	   N.B. This hypercall can _only_ be called once per CPU. Subsequent
221 	   calls will error out with -EINVAL. This is due to the fact that
222 	   hypervisor has no unregister variant and this hypercall does not
223 	   allow to over-write info.mfn and info.offset.
224 	 */
225 	err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
226 
227 	if (err) {
228 		printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
229 		have_vcpu_info_placement = 0;
230 		clamp_max_cpus();
231 	} else {
232 		/* This cpu is using the registered vcpu info, even if
233 		   later ones fail to. */
234 		per_cpu(xen_vcpu, cpu) = vcpup;
235 	}
236 }
237 
238 /*
239  * On restore, set the vcpu placement up again.
240  * If it fails, then we're in a bad state, since
241  * we can't back out from using it...
242  */
xen_vcpu_restore(void)243 void xen_vcpu_restore(void)
244 {
245 	int cpu;
246 
247 	for_each_possible_cpu(cpu) {
248 		bool other_cpu = (cpu != smp_processor_id());
249 		bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
250 
251 		if (other_cpu && is_up &&
252 		    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
253 			BUG();
254 
255 		xen_setup_runstate_info(cpu);
256 
257 		if (have_vcpu_info_placement)
258 			xen_vcpu_setup(cpu);
259 
260 		if (other_cpu && is_up &&
261 		    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
262 			BUG();
263 	}
264 }
265 
xen_banner(void)266 static void __init xen_banner(void)
267 {
268 	unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
269 	struct xen_extraversion extra;
270 	HYPERVISOR_xen_version(XENVER_extraversion, &extra);
271 
272 	pr_info("Booting paravirtualized kernel %son %s\n",
273 		xen_feature(XENFEAT_auto_translated_physmap) ?
274 			"with PVH extensions " : "", pv_info.name);
275 	printk(KERN_INFO "Xen version: %d.%d%s%s\n",
276 	       version >> 16, version & 0xffff, extra.extraversion,
277 	       xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
278 }
279 /* Check if running on Xen version (major, minor) or later */
280 bool
xen_running_on_version_or_later(unsigned int major,unsigned int minor)281 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
282 {
283 	unsigned int version;
284 
285 	if (!xen_domain())
286 		return false;
287 
288 	version = HYPERVISOR_xen_version(XENVER_version, NULL);
289 	if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
290 		((version >> 16) > major))
291 		return true;
292 	return false;
293 }
294 
295 #define CPUID_THERM_POWER_LEAF 6
296 #define APERFMPERF_PRESENT 0
297 
298 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
299 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
300 
301 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
302 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
303 static __read_mostly unsigned int cpuid_leaf5_edx_val;
304 
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)305 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
306 		      unsigned int *cx, unsigned int *dx)
307 {
308 	unsigned maskebx = ~0;
309 	unsigned maskecx = ~0;
310 	unsigned maskedx = ~0;
311 	unsigned setecx = 0;
312 	/*
313 	 * Mask out inconvenient features, to try and disable as many
314 	 * unsupported kernel subsystems as possible.
315 	 */
316 	switch (*ax) {
317 	case 1:
318 		maskecx = cpuid_leaf1_ecx_mask;
319 		setecx = cpuid_leaf1_ecx_set_mask;
320 		maskedx = cpuid_leaf1_edx_mask;
321 		break;
322 
323 	case CPUID_MWAIT_LEAF:
324 		/* Synthesize the values.. */
325 		*ax = 0;
326 		*bx = 0;
327 		*cx = cpuid_leaf5_ecx_val;
328 		*dx = cpuid_leaf5_edx_val;
329 		return;
330 
331 	case CPUID_THERM_POWER_LEAF:
332 		/* Disabling APERFMPERF for kernel usage */
333 		maskecx = ~(1 << APERFMPERF_PRESENT);
334 		break;
335 
336 	case 0xb:
337 		/* Suppress extended topology stuff */
338 		maskebx = 0;
339 		break;
340 	}
341 
342 	asm(XEN_EMULATE_PREFIX "cpuid"
343 		: "=a" (*ax),
344 		  "=b" (*bx),
345 		  "=c" (*cx),
346 		  "=d" (*dx)
347 		: "0" (*ax), "2" (*cx));
348 
349 	*bx &= maskebx;
350 	*cx &= maskecx;
351 	*cx |= setecx;
352 	*dx &= maskedx;
353 
354 }
355 
xen_check_mwait(void)356 static bool __init xen_check_mwait(void)
357 {
358 #ifdef CONFIG_ACPI
359 	struct xen_platform_op op = {
360 		.cmd			= XENPF_set_processor_pminfo,
361 		.u.set_pminfo.id	= -1,
362 		.u.set_pminfo.type	= XEN_PM_PDC,
363 	};
364 	uint32_t buf[3];
365 	unsigned int ax, bx, cx, dx;
366 	unsigned int mwait_mask;
367 
368 	/* We need to determine whether it is OK to expose the MWAIT
369 	 * capability to the kernel to harvest deeper than C3 states from ACPI
370 	 * _CST using the processor_harvest_xen.c module. For this to work, we
371 	 * need to gather the MWAIT_LEAF values (which the cstate.c code
372 	 * checks against). The hypervisor won't expose the MWAIT flag because
373 	 * it would break backwards compatibility; so we will find out directly
374 	 * from the hardware and hypercall.
375 	 */
376 	if (!xen_initial_domain())
377 		return false;
378 
379 	/*
380 	 * When running under platform earlier than Xen4.2, do not expose
381 	 * mwait, to avoid the risk of loading native acpi pad driver
382 	 */
383 	if (!xen_running_on_version_or_later(4, 2))
384 		return false;
385 
386 	ax = 1;
387 	cx = 0;
388 
389 	native_cpuid(&ax, &bx, &cx, &dx);
390 
391 	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
392 		     (1 << (X86_FEATURE_MWAIT % 32));
393 
394 	if ((cx & mwait_mask) != mwait_mask)
395 		return false;
396 
397 	/* We need to emulate the MWAIT_LEAF and for that we need both
398 	 * ecx and edx. The hypercall provides only partial information.
399 	 */
400 
401 	ax = CPUID_MWAIT_LEAF;
402 	bx = 0;
403 	cx = 0;
404 	dx = 0;
405 
406 	native_cpuid(&ax, &bx, &cx, &dx);
407 
408 	/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
409 	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
410 	 */
411 	buf[0] = ACPI_PDC_REVISION_ID;
412 	buf[1] = 1;
413 	buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
414 
415 	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
416 
417 	if ((HYPERVISOR_dom0_op(&op) == 0) &&
418 	    (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
419 		cpuid_leaf5_ecx_val = cx;
420 		cpuid_leaf5_edx_val = dx;
421 	}
422 	return true;
423 #else
424 	return false;
425 #endif
426 }
xen_init_cpuid_mask(void)427 static void __init xen_init_cpuid_mask(void)
428 {
429 	unsigned int ax, bx, cx, dx;
430 	unsigned int xsave_mask;
431 
432 	cpuid_leaf1_edx_mask =
433 		~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
434 		  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
435 
436 	/*
437 	 * Xen PV would need some work to support PCID: CR3 handling as well
438 	 * as xen_flush_tlb_others() would need updating.
439 	 */
440 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_PCID % 32));  /* disable PCID */
441 
442 	if (!xen_initial_domain())
443 		cpuid_leaf1_edx_mask &=
444 			~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
445 
446 	cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
447 
448 	ax = 1;
449 	cx = 0;
450 	cpuid(1, &ax, &bx, &cx, &dx);
451 
452 	xsave_mask =
453 		(1 << (X86_FEATURE_XSAVE % 32)) |
454 		(1 << (X86_FEATURE_OSXSAVE % 32));
455 
456 	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
457 	if ((cx & xsave_mask) != xsave_mask)
458 		cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
459 	if (xen_check_mwait())
460 		cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
461 }
462 
xen_init_capabilities(void)463 static void __init xen_init_capabilities(void)
464 {
465 	if (xen_pv_domain())
466 		setup_force_cpu_cap(X86_FEATURE_XENPV);
467 }
468 
xen_set_debugreg(int reg,unsigned long val)469 static void xen_set_debugreg(int reg, unsigned long val)
470 {
471 	HYPERVISOR_set_debugreg(reg, val);
472 }
473 
xen_get_debugreg(int reg)474 static unsigned long xen_get_debugreg(int reg)
475 {
476 	return HYPERVISOR_get_debugreg(reg);
477 }
478 
xen_end_context_switch(struct task_struct * next)479 static void xen_end_context_switch(struct task_struct *next)
480 {
481 	xen_mc_flush();
482 	paravirt_end_context_switch(next);
483 }
484 
xen_store_tr(void)485 static unsigned long xen_store_tr(void)
486 {
487 	return 0;
488 }
489 
490 /*
491  * Set the page permissions for a particular virtual address.  If the
492  * address is a vmalloc mapping (or other non-linear mapping), then
493  * find the linear mapping of the page and also set its protections to
494  * match.
495  */
set_aliased_prot(void * v,pgprot_t prot)496 static void set_aliased_prot(void *v, pgprot_t prot)
497 {
498 	int level;
499 	pte_t *ptep;
500 	pte_t pte;
501 	unsigned long pfn;
502 	struct page *page;
503 	unsigned char dummy;
504 
505 	ptep = lookup_address((unsigned long)v, &level);
506 	BUG_ON(ptep == NULL);
507 
508 	pfn = pte_pfn(*ptep);
509 	page = pfn_to_page(pfn);
510 
511 	pte = pfn_pte(pfn, prot);
512 
513 	/*
514 	 * Careful: update_va_mapping() will fail if the virtual address
515 	 * we're poking isn't populated in the page tables.  We don't
516 	 * need to worry about the direct map (that's always in the page
517 	 * tables), but we need to be careful about vmap space.  In
518 	 * particular, the top level page table can lazily propagate
519 	 * entries between processes, so if we've switched mms since we
520 	 * vmapped the target in the first place, we might not have the
521 	 * top-level page table entry populated.
522 	 *
523 	 * We disable preemption because we want the same mm active when
524 	 * we probe the target and when we issue the hypercall.  We'll
525 	 * have the same nominal mm, but if we're a kernel thread, lazy
526 	 * mm dropping could change our pgd.
527 	 *
528 	 * Out of an abundance of caution, this uses __get_user() to fault
529 	 * in the target address just in case there's some obscure case
530 	 * in which the target address isn't readable.
531 	 */
532 
533 	preempt_disable();
534 
535 	pagefault_disable();	/* Avoid warnings due to being atomic. */
536 	__get_user(dummy, (unsigned char __user __force *)v);
537 	pagefault_enable();
538 
539 	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
540 		BUG();
541 
542 	if (!PageHighMem(page)) {
543 		void *av = __va(PFN_PHYS(pfn));
544 
545 		if (av != v)
546 			if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
547 				BUG();
548 	} else
549 		kmap_flush_unused();
550 
551 	preempt_enable();
552 }
553 
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)554 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
555 {
556 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
557 	int i;
558 
559 	/*
560 	 * We need to mark the all aliases of the LDT pages RO.  We
561 	 * don't need to call vm_flush_aliases(), though, since that's
562 	 * only responsible for flushing aliases out the TLBs, not the
563 	 * page tables, and Xen will flush the TLB for us if needed.
564 	 *
565 	 * To avoid confusing future readers: none of this is necessary
566 	 * to load the LDT.  The hypervisor only checks this when the
567 	 * LDT is faulted in due to subsequent descriptor access.
568 	 */
569 
570 	for(i = 0; i < entries; i += entries_per_page)
571 		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
572 }
573 
xen_free_ldt(struct desc_struct * ldt,unsigned entries)574 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
575 {
576 	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
577 	int i;
578 
579 	for(i = 0; i < entries; i += entries_per_page)
580 		set_aliased_prot(ldt + i, PAGE_KERNEL);
581 }
582 
xen_set_ldt(const void * addr,unsigned entries)583 static void xen_set_ldt(const void *addr, unsigned entries)
584 {
585 	struct mmuext_op *op;
586 	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
587 
588 	trace_xen_cpu_set_ldt(addr, entries);
589 
590 	op = mcs.args;
591 	op->cmd = MMUEXT_SET_LDT;
592 	op->arg1.linear_addr = (unsigned long)addr;
593 	op->arg2.nr_ents = entries;
594 
595 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
596 
597 	xen_mc_issue(PARAVIRT_LAZY_CPU);
598 }
599 
xen_load_gdt(const struct desc_ptr * dtr)600 static void xen_load_gdt(const struct desc_ptr *dtr)
601 {
602 	unsigned long va = dtr->address;
603 	unsigned int size = dtr->size + 1;
604 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
605 	unsigned long frames[pages];
606 	int f;
607 
608 	/*
609 	 * A GDT can be up to 64k in size, which corresponds to 8192
610 	 * 8-byte entries, or 16 4k pages..
611 	 */
612 
613 	BUG_ON(size > 65536);
614 	BUG_ON(va & ~PAGE_MASK);
615 
616 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
617 		int level;
618 		pte_t *ptep;
619 		unsigned long pfn, mfn;
620 		void *virt;
621 
622 		/*
623 		 * The GDT is per-cpu and is in the percpu data area.
624 		 * That can be virtually mapped, so we need to do a
625 		 * page-walk to get the underlying MFN for the
626 		 * hypercall.  The page can also be in the kernel's
627 		 * linear range, so we need to RO that mapping too.
628 		 */
629 		ptep = lookup_address(va, &level);
630 		BUG_ON(ptep == NULL);
631 
632 		pfn = pte_pfn(*ptep);
633 		mfn = pfn_to_mfn(pfn);
634 		virt = __va(PFN_PHYS(pfn));
635 
636 		frames[f] = mfn;
637 
638 		make_lowmem_page_readonly((void *)va);
639 		make_lowmem_page_readonly(virt);
640 	}
641 
642 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
643 		BUG();
644 }
645 
646 /*
647  * load_gdt for early boot, when the gdt is only mapped once
648  */
xen_load_gdt_boot(const struct desc_ptr * dtr)649 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
650 {
651 	unsigned long va = dtr->address;
652 	unsigned int size = dtr->size + 1;
653 	unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
654 	unsigned long frames[pages];
655 	int f;
656 
657 	/*
658 	 * A GDT can be up to 64k in size, which corresponds to 8192
659 	 * 8-byte entries, or 16 4k pages..
660 	 */
661 
662 	BUG_ON(size > 65536);
663 	BUG_ON(va & ~PAGE_MASK);
664 
665 	for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
666 		pte_t pte;
667 		unsigned long pfn, mfn;
668 
669 		pfn = virt_to_pfn(va);
670 		mfn = pfn_to_mfn(pfn);
671 
672 		pte = pfn_pte(pfn, PAGE_KERNEL_RO);
673 
674 		if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
675 			BUG();
676 
677 		frames[f] = mfn;
678 	}
679 
680 	if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
681 		BUG();
682 }
683 
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)684 static inline bool desc_equal(const struct desc_struct *d1,
685 			      const struct desc_struct *d2)
686 {
687 	return d1->a == d2->a && d1->b == d2->b;
688 }
689 
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)690 static void load_TLS_descriptor(struct thread_struct *t,
691 				unsigned int cpu, unsigned int i)
692 {
693 	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
694 	struct desc_struct *gdt;
695 	xmaddr_t maddr;
696 	struct multicall_space mc;
697 
698 	if (desc_equal(shadow, &t->tls_array[i]))
699 		return;
700 
701 	*shadow = t->tls_array[i];
702 
703 	gdt = get_cpu_gdt_table(cpu);
704 	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
705 	mc = __xen_mc_entry(0);
706 
707 	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
708 }
709 
xen_load_tls(struct thread_struct * t,unsigned int cpu)710 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
711 {
712 	/*
713 	 * XXX sleazy hack: If we're being called in a lazy-cpu zone
714 	 * and lazy gs handling is enabled, it means we're in a
715 	 * context switch, and %gs has just been saved.  This means we
716 	 * can zero it out to prevent faults on exit from the
717 	 * hypervisor if the next process has no %gs.  Either way, it
718 	 * has been saved, and the new value will get loaded properly.
719 	 * This will go away as soon as Xen has been modified to not
720 	 * save/restore %gs for normal hypercalls.
721 	 *
722 	 * On x86_64, this hack is not used for %gs, because gs points
723 	 * to KERNEL_GS_BASE (and uses it for PDA references), so we
724 	 * must not zero %gs on x86_64
725 	 *
726 	 * For x86_64, we need to zero %fs, otherwise we may get an
727 	 * exception between the new %fs descriptor being loaded and
728 	 * %fs being effectively cleared at __switch_to().
729 	 */
730 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
731 #ifdef CONFIG_X86_32
732 		lazy_load_gs(0);
733 #else
734 		loadsegment(fs, 0);
735 #endif
736 	}
737 
738 	xen_mc_batch();
739 
740 	load_TLS_descriptor(t, cpu, 0);
741 	load_TLS_descriptor(t, cpu, 1);
742 	load_TLS_descriptor(t, cpu, 2);
743 
744 	xen_mc_issue(PARAVIRT_LAZY_CPU);
745 }
746 
747 #ifdef CONFIG_X86_64
xen_load_gs_index(unsigned int idx)748 static void xen_load_gs_index(unsigned int idx)
749 {
750 	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
751 		BUG();
752 }
753 #endif
754 
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)755 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
756 				const void *ptr)
757 {
758 	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
759 	u64 entry = *(u64 *)ptr;
760 
761 	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
762 
763 	preempt_disable();
764 
765 	xen_mc_flush();
766 	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
767 		BUG();
768 
769 	preempt_enable();
770 }
771 
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)772 static int cvt_gate_to_trap(int vector, const gate_desc *val,
773 			    struct trap_info *info)
774 {
775 	unsigned long addr;
776 
777 	if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
778 		return 0;
779 
780 	info->vector = vector;
781 
782 	addr = gate_offset(*val);
783 #ifdef CONFIG_X86_64
784 	/*
785 	 * Look for known traps using IST, and substitute them
786 	 * appropriately.  The debugger ones are the only ones we care
787 	 * about.  Xen will handle faults like double_fault,
788 	 * so we should never see them.  Warn if
789 	 * there's an unexpected IST-using fault handler.
790 	 */
791 	if (addr == (unsigned long)debug)
792 		addr = (unsigned long)xen_debug;
793 	else if (addr == (unsigned long)int3)
794 		addr = (unsigned long)xen_int3;
795 	else if (addr == (unsigned long)stack_segment)
796 		addr = (unsigned long)xen_stack_segment;
797 	else if (addr == (unsigned long)double_fault) {
798 		/* Don't need to handle these */
799 		return 0;
800 #ifdef CONFIG_X86_MCE
801 	} else if (addr == (unsigned long)machine_check) {
802 		/*
803 		 * when xen hypervisor inject vMCE to guest,
804 		 * use native mce handler to handle it
805 		 */
806 		;
807 #endif
808 	} else if (addr == (unsigned long)nmi)
809 		/*
810 		 * Use the native version as well.
811 		 */
812 		;
813 	else {
814 		/* Some other trap using IST? */
815 		if (WARN_ON(val->ist != 0))
816 			return 0;
817 	}
818 #endif	/* CONFIG_X86_64 */
819 	info->address = addr;
820 
821 	info->cs = gate_segment(*val);
822 	info->flags = val->dpl;
823 	/* interrupt gates clear IF */
824 	if (val->type == GATE_INTERRUPT)
825 		info->flags |= 1 << 2;
826 
827 	return 1;
828 }
829 
830 /* Locations of each CPU's IDT */
831 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
832 
833 /* Set an IDT entry.  If the entry is part of the current IDT, then
834    also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)835 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
836 {
837 	unsigned long p = (unsigned long)&dt[entrynum];
838 	unsigned long start, end;
839 
840 	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
841 
842 	preempt_disable();
843 
844 	start = __this_cpu_read(idt_desc.address);
845 	end = start + __this_cpu_read(idt_desc.size) + 1;
846 
847 	xen_mc_flush();
848 
849 	native_write_idt_entry(dt, entrynum, g);
850 
851 	if (p >= start && (p + 8) <= end) {
852 		struct trap_info info[2];
853 
854 		info[1].address = 0;
855 
856 		if (cvt_gate_to_trap(entrynum, g, &info[0]))
857 			if (HYPERVISOR_set_trap_table(info))
858 				BUG();
859 	}
860 
861 	preempt_enable();
862 }
863 
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)864 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
865 				      struct trap_info *traps, bool full)
866 {
867 	unsigned in, out, count;
868 
869 	count = (desc->size+1) / sizeof(gate_desc);
870 	BUG_ON(count > 256);
871 
872 	for (in = out = 0; in < count; in++) {
873 		gate_desc *entry = (gate_desc*)(desc->address) + in;
874 
875 		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
876 			out++;
877 	}
878 
879 	return out;
880 }
881 
xen_copy_trap_info(struct trap_info * traps)882 void xen_copy_trap_info(struct trap_info *traps)
883 {
884 	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
885 
886 	xen_convert_trap_info(desc, traps, true);
887 }
888 
889 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
890    hold a spinlock to protect the static traps[] array (static because
891    it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)892 static void xen_load_idt(const struct desc_ptr *desc)
893 {
894 	static DEFINE_SPINLOCK(lock);
895 	static struct trap_info traps[257];
896 	unsigned out;
897 
898 	trace_xen_cpu_load_idt(desc);
899 
900 	spin_lock(&lock);
901 
902 	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
903 
904 	out = xen_convert_trap_info(desc, traps, false);
905 	memset(&traps[out], 0, sizeof(traps[0]));
906 
907 	xen_mc_flush();
908 	if (HYPERVISOR_set_trap_table(traps))
909 		BUG();
910 
911 	spin_unlock(&lock);
912 }
913 
914 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
915    they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)916 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
917 				const void *desc, int type)
918 {
919 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
920 
921 	preempt_disable();
922 
923 	switch (type) {
924 	case DESC_LDT:
925 	case DESC_TSS:
926 		/* ignore */
927 		break;
928 
929 	default: {
930 		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
931 
932 		xen_mc_flush();
933 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
934 			BUG();
935 	}
936 
937 	}
938 
939 	preempt_enable();
940 }
941 
942 /*
943  * Version of write_gdt_entry for use at early boot-time needed to
944  * update an entry as simply as possible.
945  */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)946 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
947 					    const void *desc, int type)
948 {
949 	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
950 
951 	switch (type) {
952 	case DESC_LDT:
953 	case DESC_TSS:
954 		/* ignore */
955 		break;
956 
957 	default: {
958 		xmaddr_t maddr = virt_to_machine(&dt[entry]);
959 
960 		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
961 			dt[entry] = *(struct desc_struct *)desc;
962 	}
963 
964 	}
965 }
966 
xen_load_sp0(struct tss_struct * tss,struct thread_struct * thread)967 static void xen_load_sp0(struct tss_struct *tss,
968 			 struct thread_struct *thread)
969 {
970 	struct multicall_space mcs;
971 
972 	mcs = xen_mc_entry(0);
973 	MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
974 	xen_mc_issue(PARAVIRT_LAZY_CPU);
975 	tss->x86_tss.sp0 = thread->sp0;
976 }
977 
xen_set_iopl_mask(unsigned mask)978 void xen_set_iopl_mask(unsigned mask)
979 {
980 	struct physdev_set_iopl set_iopl;
981 
982 	/* Force the change at ring 0. */
983 	set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
984 	HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
985 }
986 
xen_io_delay(void)987 static void xen_io_delay(void)
988 {
989 }
990 
xen_clts(void)991 static void xen_clts(void)
992 {
993 	struct multicall_space mcs;
994 
995 	mcs = xen_mc_entry(0);
996 
997 	MULTI_fpu_taskswitch(mcs.mc, 0);
998 
999 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1000 }
1001 
1002 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1003 
xen_read_cr0(void)1004 static unsigned long xen_read_cr0(void)
1005 {
1006 	unsigned long cr0 = this_cpu_read(xen_cr0_value);
1007 
1008 	if (unlikely(cr0 == 0)) {
1009 		cr0 = native_read_cr0();
1010 		this_cpu_write(xen_cr0_value, cr0);
1011 	}
1012 
1013 	return cr0;
1014 }
1015 
xen_write_cr0(unsigned long cr0)1016 static void xen_write_cr0(unsigned long cr0)
1017 {
1018 	struct multicall_space mcs;
1019 
1020 	this_cpu_write(xen_cr0_value, cr0);
1021 
1022 	/* Only pay attention to cr0.TS; everything else is
1023 	   ignored. */
1024 	mcs = xen_mc_entry(0);
1025 
1026 	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1027 
1028 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1029 }
1030 
xen_write_cr4(unsigned long cr4)1031 static void xen_write_cr4(unsigned long cr4)
1032 {
1033 	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1034 
1035 	native_write_cr4(cr4);
1036 }
1037 #ifdef CONFIG_X86_64
xen_read_cr8(void)1038 static inline unsigned long xen_read_cr8(void)
1039 {
1040 	return 0;
1041 }
xen_write_cr8(unsigned long val)1042 static inline void xen_write_cr8(unsigned long val)
1043 {
1044 	BUG_ON(val);
1045 }
1046 #endif
1047 
xen_read_msr_safe(unsigned int msr,int * err)1048 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1049 {
1050 	u64 val;
1051 
1052 	if (pmu_msr_read(msr, &val, err))
1053 		return val;
1054 
1055 	val = native_read_msr_safe(msr, err);
1056 	switch (msr) {
1057 	case MSR_IA32_APICBASE:
1058 #ifdef CONFIG_X86_X2APIC
1059 		if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1060 #endif
1061 			val &= ~X2APIC_ENABLE;
1062 		break;
1063 	}
1064 	return val;
1065 }
1066 
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)1067 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1068 {
1069 	int ret;
1070 
1071 	ret = 0;
1072 
1073 	switch (msr) {
1074 #ifdef CONFIG_X86_64
1075 		unsigned which;
1076 		u64 base;
1077 
1078 	case MSR_FS_BASE:		which = SEGBASE_FS; goto set;
1079 	case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set;
1080 	case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set;
1081 
1082 	set:
1083 		base = ((u64)high << 32) | low;
1084 		if (HYPERVISOR_set_segment_base(which, base) != 0)
1085 			ret = -EIO;
1086 		break;
1087 #endif
1088 
1089 	case MSR_STAR:
1090 	case MSR_CSTAR:
1091 	case MSR_LSTAR:
1092 	case MSR_SYSCALL_MASK:
1093 	case MSR_IA32_SYSENTER_CS:
1094 	case MSR_IA32_SYSENTER_ESP:
1095 	case MSR_IA32_SYSENTER_EIP:
1096 		/* Fast syscall setup is all done in hypercalls, so
1097 		   these are all ignored.  Stub them out here to stop
1098 		   Xen console noise. */
1099 		break;
1100 
1101 	default:
1102 		if (!pmu_msr_write(msr, low, high, &ret))
1103 			ret = native_write_msr_safe(msr, low, high);
1104 	}
1105 
1106 	return ret;
1107 }
1108 
xen_setup_shared_info(void)1109 void xen_setup_shared_info(void)
1110 {
1111 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1112 		set_fixmap(FIX_PARAVIRT_BOOTMAP,
1113 			   xen_start_info->shared_info);
1114 
1115 		HYPERVISOR_shared_info =
1116 			(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1117 	} else
1118 		HYPERVISOR_shared_info =
1119 			(struct shared_info *)__va(xen_start_info->shared_info);
1120 
1121 #ifndef CONFIG_SMP
1122 	/* In UP this is as good a place as any to set up shared info */
1123 	xen_setup_vcpu_info_placement();
1124 #endif
1125 
1126 	xen_setup_mfn_list_list();
1127 }
1128 
1129 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)1130 void xen_setup_vcpu_info_placement(void)
1131 {
1132 	int cpu;
1133 
1134 	for_each_possible_cpu(cpu)
1135 		xen_vcpu_setup(cpu);
1136 
1137 	/* xen_vcpu_setup managed to place the vcpu_info within the
1138 	 * percpu area for all cpus, so make use of it. Note that for
1139 	 * PVH we want to use native IRQ mechanism. */
1140 	if (have_vcpu_info_placement && !xen_pvh_domain()) {
1141 		pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1142 		pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1143 		pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1144 		pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1145 		pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1146 	}
1147 }
1148 
xen_patch(u8 type,u16 clobbers,void * insnbuf,unsigned long addr,unsigned len)1149 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1150 			  unsigned long addr, unsigned len)
1151 {
1152 	char *start, *end, *reloc;
1153 	unsigned ret;
1154 
1155 	start = end = reloc = NULL;
1156 
1157 #define SITE(op, x)							\
1158 	case PARAVIRT_PATCH(op.x):					\
1159 	if (have_vcpu_info_placement) {					\
1160 		start = (char *)xen_##x##_direct;			\
1161 		end = xen_##x##_direct_end;				\
1162 		reloc = xen_##x##_direct_reloc;				\
1163 	}								\
1164 	goto patch_site
1165 
1166 	switch (type) {
1167 		SITE(pv_irq_ops, irq_enable);
1168 		SITE(pv_irq_ops, irq_disable);
1169 		SITE(pv_irq_ops, save_fl);
1170 		SITE(pv_irq_ops, restore_fl);
1171 #undef SITE
1172 
1173 	patch_site:
1174 		if (start == NULL || (end-start) > len)
1175 			goto default_patch;
1176 
1177 		ret = paravirt_patch_insns(insnbuf, len, start, end);
1178 
1179 		/* Note: because reloc is assigned from something that
1180 		   appears to be an array, gcc assumes it's non-null,
1181 		   but doesn't know its relationship with start and
1182 		   end. */
1183 		if (reloc > start && reloc < end) {
1184 			int reloc_off = reloc - start;
1185 			long *relocp = (long *)(insnbuf + reloc_off);
1186 			long delta = start - (char *)addr;
1187 
1188 			*relocp += delta;
1189 		}
1190 		break;
1191 
1192 	default_patch:
1193 	default:
1194 		ret = paravirt_patch_default(type, clobbers, insnbuf,
1195 					     addr, len);
1196 		break;
1197 	}
1198 
1199 	return ret;
1200 }
1201 
1202 static const struct pv_info xen_info __initconst = {
1203 	.paravirt_enabled = 1,
1204 	.shared_kernel_pmd = 0,
1205 
1206 #ifdef CONFIG_X86_64
1207 	.extra_user_64bit_cs = FLAT_USER_CS64,
1208 #endif
1209 	.features = 0,
1210 	.name = "Xen",
1211 };
1212 
1213 static const struct pv_init_ops xen_init_ops __initconst = {
1214 	.patch = xen_patch,
1215 };
1216 
1217 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1218 	.cpuid = xen_cpuid,
1219 
1220 	.set_debugreg = xen_set_debugreg,
1221 	.get_debugreg = xen_get_debugreg,
1222 
1223 	.clts = xen_clts,
1224 
1225 	.read_cr0 = xen_read_cr0,
1226 	.write_cr0 = xen_write_cr0,
1227 
1228 	.read_cr4 = native_read_cr4,
1229 	.read_cr4_safe = native_read_cr4_safe,
1230 	.write_cr4 = xen_write_cr4,
1231 
1232 #ifdef CONFIG_X86_64
1233 	.read_cr8 = xen_read_cr8,
1234 	.write_cr8 = xen_write_cr8,
1235 #endif
1236 
1237 	.wbinvd = native_wbinvd,
1238 
1239 	.read_msr = xen_read_msr_safe,
1240 	.write_msr = xen_write_msr_safe,
1241 
1242 	.read_pmc = xen_read_pmc,
1243 
1244 	.iret = xen_iret,
1245 #ifdef CONFIG_X86_64
1246 	.usergs_sysret64 = xen_sysret64,
1247 #endif
1248 
1249 	.load_tr_desc = paravirt_nop,
1250 	.set_ldt = xen_set_ldt,
1251 	.load_gdt = xen_load_gdt,
1252 	.load_idt = xen_load_idt,
1253 	.load_tls = xen_load_tls,
1254 #ifdef CONFIG_X86_64
1255 	.load_gs_index = xen_load_gs_index,
1256 #endif
1257 
1258 	.alloc_ldt = xen_alloc_ldt,
1259 	.free_ldt = xen_free_ldt,
1260 
1261 	.store_idt = native_store_idt,
1262 	.store_tr = xen_store_tr,
1263 
1264 	.write_ldt_entry = xen_write_ldt_entry,
1265 	.write_gdt_entry = xen_write_gdt_entry,
1266 	.write_idt_entry = xen_write_idt_entry,
1267 	.load_sp0 = xen_load_sp0,
1268 
1269 	.set_iopl_mask = xen_set_iopl_mask,
1270 	.io_delay = xen_io_delay,
1271 
1272 	/* Xen takes care of %gs when switching to usermode for us */
1273 	.swapgs = paravirt_nop,
1274 
1275 	.start_context_switch = paravirt_start_context_switch,
1276 	.end_context_switch = xen_end_context_switch,
1277 };
1278 
1279 static const struct pv_apic_ops xen_apic_ops __initconst = {
1280 #ifdef CONFIG_X86_LOCAL_APIC
1281 	.startup_ipi_hook = paravirt_nop,
1282 #endif
1283 };
1284 
xen_reboot(int reason)1285 static void xen_reboot(int reason)
1286 {
1287 	struct sched_shutdown r = { .reason = reason };
1288 	int cpu;
1289 
1290 	for_each_online_cpu(cpu)
1291 		xen_pmu_finish(cpu);
1292 
1293 	if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1294 		BUG();
1295 }
1296 
xen_restart(char * msg)1297 static void xen_restart(char *msg)
1298 {
1299 	xen_reboot(SHUTDOWN_reboot);
1300 }
1301 
xen_emergency_restart(void)1302 static void xen_emergency_restart(void)
1303 {
1304 	xen_reboot(SHUTDOWN_reboot);
1305 }
1306 
xen_machine_halt(void)1307 static void xen_machine_halt(void)
1308 {
1309 	xen_reboot(SHUTDOWN_poweroff);
1310 }
1311 
xen_machine_power_off(void)1312 static void xen_machine_power_off(void)
1313 {
1314 	if (pm_power_off)
1315 		pm_power_off();
1316 	xen_reboot(SHUTDOWN_poweroff);
1317 }
1318 
xen_crash_shutdown(struct pt_regs * regs)1319 static void xen_crash_shutdown(struct pt_regs *regs)
1320 {
1321 	xen_reboot(SHUTDOWN_crash);
1322 }
1323 
1324 static int
xen_panic_event(struct notifier_block * this,unsigned long event,void * ptr)1325 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1326 {
1327 	xen_reboot(SHUTDOWN_crash);
1328 	return NOTIFY_DONE;
1329 }
1330 
1331 static struct notifier_block xen_panic_block = {
1332 	.notifier_call= xen_panic_event,
1333 	.priority = INT_MIN
1334 };
1335 
xen_panic_handler_init(void)1336 int xen_panic_handler_init(void)
1337 {
1338 	atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1339 	return 0;
1340 }
1341 
1342 static const struct machine_ops xen_machine_ops __initconst = {
1343 	.restart = xen_restart,
1344 	.halt = xen_machine_halt,
1345 	.power_off = xen_machine_power_off,
1346 	.shutdown = xen_machine_halt,
1347 	.crash_shutdown = xen_crash_shutdown,
1348 	.emergency_restart = xen_emergency_restart,
1349 };
1350 
xen_get_nmi_reason(void)1351 static unsigned char xen_get_nmi_reason(void)
1352 {
1353 	unsigned char reason = 0;
1354 
1355 	/* Construct a value which looks like it came from port 0x61. */
1356 	if (test_bit(_XEN_NMIREASON_io_error,
1357 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1358 		reason |= NMI_REASON_IOCHK;
1359 	if (test_bit(_XEN_NMIREASON_pci_serr,
1360 		     &HYPERVISOR_shared_info->arch.nmi_reason))
1361 		reason |= NMI_REASON_SERR;
1362 
1363 	return reason;
1364 }
1365 
xen_boot_params_init_edd(void)1366 static void __init xen_boot_params_init_edd(void)
1367 {
1368 #if IS_ENABLED(CONFIG_EDD)
1369 	struct xen_platform_op op;
1370 	struct edd_info *edd_info;
1371 	u32 *mbr_signature;
1372 	unsigned nr;
1373 	int ret;
1374 
1375 	edd_info = boot_params.eddbuf;
1376 	mbr_signature = boot_params.edd_mbr_sig_buffer;
1377 
1378 	op.cmd = XENPF_firmware_info;
1379 
1380 	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1381 	for (nr = 0; nr < EDDMAXNR; nr++) {
1382 		struct edd_info *info = edd_info + nr;
1383 
1384 		op.u.firmware_info.index = nr;
1385 		info->params.length = sizeof(info->params);
1386 		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1387 				     &info->params);
1388 		ret = HYPERVISOR_dom0_op(&op);
1389 		if (ret)
1390 			break;
1391 
1392 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1393 		C(device);
1394 		C(version);
1395 		C(interface_support);
1396 		C(legacy_max_cylinder);
1397 		C(legacy_max_head);
1398 		C(legacy_sectors_per_track);
1399 #undef C
1400 	}
1401 	boot_params.eddbuf_entries = nr;
1402 
1403 	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1404 	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1405 		op.u.firmware_info.index = nr;
1406 		ret = HYPERVISOR_dom0_op(&op);
1407 		if (ret)
1408 			break;
1409 		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1410 	}
1411 	boot_params.edd_mbr_sig_buf_entries = nr;
1412 #endif
1413 }
1414 
1415 /*
1416  * Set up the GDT and segment registers for -fstack-protector.  Until
1417  * we do this, we have to be careful not to call any stack-protected
1418  * function, which is most of the kernel.
1419  *
1420  * Note, that it is __ref because the only caller of this after init
1421  * is PVH which is not going to use xen_load_gdt_boot or other
1422  * __init functions.
1423  */
xen_setup_gdt(int cpu)1424 static void __ref xen_setup_gdt(int cpu)
1425 {
1426 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
1427 #ifdef CONFIG_X86_64
1428 		unsigned long dummy;
1429 
1430 		load_percpu_segment(cpu); /* We need to access per-cpu area */
1431 		switch_to_new_gdt(cpu); /* GDT and GS set */
1432 
1433 		/* We are switching of the Xen provided GDT to our HVM mode
1434 		 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1435 		 * and we are jumping to reload it.
1436 		 */
1437 		asm volatile ("pushq %0\n"
1438 			      "leaq 1f(%%rip),%0\n"
1439 			      "pushq %0\n"
1440 			      "lretq\n"
1441 			      "1:\n"
1442 			      : "=&r" (dummy) : "0" (__KERNEL_CS));
1443 
1444 		/*
1445 		 * While not needed, we also set the %es, %ds, and %fs
1446 		 * to zero. We don't care about %ss as it is NULL.
1447 		 * Strictly speaking this is not needed as Xen zeros those
1448 		 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1449 		 *
1450 		 * Linux zeros them in cpu_init() and in secondary_startup_64
1451 		 * (for BSP).
1452 		 */
1453 		loadsegment(es, 0);
1454 		loadsegment(ds, 0);
1455 		loadsegment(fs, 0);
1456 #else
1457 		/* PVH: TODO Implement. */
1458 		BUG();
1459 #endif
1460 		return; /* PVH does not need any PV GDT ops. */
1461 	}
1462 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1463 	pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1464 
1465 	setup_stack_canary_segment(0);
1466 	switch_to_new_gdt(0);
1467 
1468 	pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1469 	pv_cpu_ops.load_gdt = xen_load_gdt;
1470 }
1471 
1472 #ifdef CONFIG_XEN_PVH
1473 /*
1474  * A PV guest starts with default flags that are not set for PVH, set them
1475  * here asap.
1476  */
xen_pvh_set_cr_flags(int cpu)1477 static void xen_pvh_set_cr_flags(int cpu)
1478 {
1479 
1480 	/* Some of these are setup in 'secondary_startup_64'. The others:
1481 	 * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1482 	 * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1483 	write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1484 
1485 	if (!cpu)
1486 		return;
1487 	/*
1488 	 * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1489 	 * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1490 	*/
1491 	if (cpu_has_pse)
1492 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
1493 
1494 	if (cpu_has_pge)
1495 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
1496 }
1497 
1498 /*
1499  * Note, that it is ref - because the only caller of this after init
1500  * is PVH which is not going to use xen_load_gdt_boot or other
1501  * __init functions.
1502  */
xen_pvh_secondary_vcpu_init(int cpu)1503 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1504 {
1505 	xen_setup_gdt(cpu);
1506 	xen_pvh_set_cr_flags(cpu);
1507 }
1508 
xen_pvh_early_guest_init(void)1509 static void __init xen_pvh_early_guest_init(void)
1510 {
1511 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1512 		return;
1513 
1514 	if (!xen_feature(XENFEAT_hvm_callback_vector))
1515 		return;
1516 
1517 	xen_have_vector_callback = 1;
1518 
1519 	xen_pvh_early_cpu_init(0, false);
1520 	xen_pvh_set_cr_flags(0);
1521 
1522 #ifdef CONFIG_X86_32
1523 	BUG(); /* PVH: Implement proper support. */
1524 #endif
1525 }
1526 #endif    /* CONFIG_XEN_PVH */
1527 
1528 /* First C function to be called on Xen boot */
xen_start_kernel(void)1529 asmlinkage __visible void __init xen_start_kernel(void)
1530 {
1531 	struct physdev_set_iopl set_iopl;
1532 	unsigned long initrd_start = 0;
1533 	int rc;
1534 
1535 	if (!xen_start_info)
1536 		return;
1537 
1538 	xen_domain_type = XEN_PV_DOMAIN;
1539 
1540 	xen_setup_features();
1541 #ifdef CONFIG_XEN_PVH
1542 	xen_pvh_early_guest_init();
1543 #endif
1544 	xen_setup_machphys_mapping();
1545 
1546 	/* Install Xen paravirt ops */
1547 	pv_info = xen_info;
1548 	if (xen_initial_domain())
1549 		pv_info.features |= PV_SUPPORTED_RTC;
1550 	pv_init_ops = xen_init_ops;
1551 	pv_apic_ops = xen_apic_ops;
1552 	if (!xen_pvh_domain()) {
1553 		pv_cpu_ops = xen_cpu_ops;
1554 
1555 		x86_platform.get_nmi_reason = xen_get_nmi_reason;
1556 	}
1557 
1558 	if (xen_feature(XENFEAT_auto_translated_physmap))
1559 		x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1560 	else
1561 		x86_init.resources.memory_setup = xen_memory_setup;
1562 	x86_init.oem.arch_setup = xen_arch_setup;
1563 	x86_init.oem.banner = xen_banner;
1564 
1565 	xen_init_time_ops();
1566 
1567 	/*
1568 	 * Set up some pagetable state before starting to set any ptes.
1569 	 */
1570 
1571 	xen_init_mmu_ops();
1572 
1573 	/* Prevent unwanted bits from being set in PTEs. */
1574 	__supported_pte_mask &= ~_PAGE_GLOBAL;
1575 
1576 	/*
1577 	 * Prevent page tables from being allocated in highmem, even
1578 	 * if CONFIG_HIGHPTE is enabled.
1579 	 */
1580 	__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1581 
1582 	/* Work out if we support NX */
1583 	x86_configure_nx();
1584 
1585 	/* Get mfn list */
1586 	xen_build_dynamic_phys_to_machine();
1587 
1588 	/*
1589 	 * Set up kernel GDT and segment registers, mainly so that
1590 	 * -fstack-protector code can be executed.
1591 	 */
1592 	xen_setup_gdt(0);
1593 
1594 	xen_init_irq_ops();
1595 	xen_init_cpuid_mask();
1596 	xen_init_capabilities();
1597 
1598 #ifdef CONFIG_X86_LOCAL_APIC
1599 	/*
1600 	 * set up the basic apic ops.
1601 	 */
1602 	xen_init_apic();
1603 #endif
1604 
1605 	if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1606 		pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1607 		pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1608 	}
1609 
1610 	machine_ops = xen_machine_ops;
1611 
1612 	/*
1613 	 * The only reliable way to retain the initial address of the
1614 	 * percpu gdt_page is to remember it here, so we can go and
1615 	 * mark it RW later, when the initial percpu area is freed.
1616 	 */
1617 	xen_initial_gdt = &per_cpu(gdt_page, 0);
1618 
1619 	xen_smp_init();
1620 
1621 #ifdef CONFIG_ACPI_NUMA
1622 	/*
1623 	 * The pages we from Xen are not related to machine pages, so
1624 	 * any NUMA information the kernel tries to get from ACPI will
1625 	 * be meaningless.  Prevent it from trying.
1626 	 */
1627 	acpi_numa = -1;
1628 #endif
1629 	/* Don't do the full vcpu_info placement stuff until we have a
1630 	   possible map and a non-dummy shared_info. */
1631 	per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1632 
1633 	local_irq_disable();
1634 	early_boot_irqs_disabled = true;
1635 
1636 	xen_raw_console_write("mapping kernel into physical memory\n");
1637 	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1638 				   xen_start_info->nr_pages);
1639 	xen_reserve_special_pages();
1640 
1641 	/* keep using Xen gdt for now; no urgent need to change it */
1642 
1643 #ifdef CONFIG_X86_32
1644 	pv_info.kernel_rpl = 1;
1645 	if (xen_feature(XENFEAT_supervisor_mode_kernel))
1646 		pv_info.kernel_rpl = 0;
1647 #else
1648 	pv_info.kernel_rpl = 0;
1649 #endif
1650 	/* set the limit of our address space */
1651 	xen_reserve_top();
1652 
1653 	/* PVH: runs at default kernel iopl of 0 */
1654 	if (!xen_pvh_domain()) {
1655 		/*
1656 		 * We used to do this in xen_arch_setup, but that is too late
1657 		 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1658 		 * early_amd_init which pokes 0xcf8 port.
1659 		 */
1660 		set_iopl.iopl = 1;
1661 		rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1662 		if (rc != 0)
1663 			xen_raw_printk("physdev_op failed %d\n", rc);
1664 	}
1665 
1666 #ifdef CONFIG_X86_32
1667 	/* set up basic CPUID stuff */
1668 	cpu_detect(&new_cpu_data);
1669 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1670 	new_cpu_data.wp_works_ok = 1;
1671 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1672 #endif
1673 
1674 	if (xen_start_info->mod_start) {
1675 	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1676 		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1677 	    else
1678 		initrd_start = __pa(xen_start_info->mod_start);
1679 	}
1680 
1681 	/* Poke various useful things into boot_params */
1682 	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1683 	boot_params.hdr.ramdisk_image = initrd_start;
1684 	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1685 	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1686 
1687 	if (!xen_initial_domain()) {
1688 		add_preferred_console("xenboot", 0, NULL);
1689 		add_preferred_console("tty", 0, NULL);
1690 		add_preferred_console("hvc", 0, NULL);
1691 		if (pci_xen)
1692 			x86_init.pci.arch_init = pci_xen_init;
1693 	} else {
1694 		const struct dom0_vga_console_info *info =
1695 			(void *)((char *)xen_start_info +
1696 				 xen_start_info->console.dom0.info_off);
1697 		struct xen_platform_op op = {
1698 			.cmd = XENPF_firmware_info,
1699 			.interface_version = XENPF_INTERFACE_VERSION,
1700 			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1701 		};
1702 
1703 		xen_init_vga(info, xen_start_info->console.dom0.info_size);
1704 		xen_start_info->console.domU.mfn = 0;
1705 		xen_start_info->console.domU.evtchn = 0;
1706 
1707 		if (HYPERVISOR_dom0_op(&op) == 0)
1708 			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1709 
1710 		/* Make sure ACS will be enabled */
1711 		pci_request_acs();
1712 
1713 		xen_acpi_sleep_register();
1714 
1715 		/* Avoid searching for BIOS MP tables */
1716 		x86_init.mpparse.find_smp_config = x86_init_noop;
1717 		x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1718 
1719 		xen_boot_params_init_edd();
1720 	}
1721 #ifdef CONFIG_PCI
1722 	/* PCI BIOS service won't work from a PV guest. */
1723 	pci_probe &= ~PCI_PROBE_BIOS;
1724 #endif
1725 	xen_raw_console_write("about to get started...\n");
1726 
1727 	xen_setup_runstate_info(0);
1728 
1729 	xen_efi_init();
1730 
1731 	/* Start the world */
1732 #ifdef CONFIG_X86_32
1733 	i386_start_kernel();
1734 #else
1735 	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1736 	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1737 #endif
1738 }
1739 
xen_hvm_init_shared_info(void)1740 void __ref xen_hvm_init_shared_info(void)
1741 {
1742 	int cpu;
1743 	struct xen_add_to_physmap xatp;
1744 	static struct shared_info *shared_info_page = 0;
1745 
1746 	if (!shared_info_page)
1747 		shared_info_page = (struct shared_info *)
1748 			extend_brk(PAGE_SIZE, PAGE_SIZE);
1749 	xatp.domid = DOMID_SELF;
1750 	xatp.idx = 0;
1751 	xatp.space = XENMAPSPACE_shared_info;
1752 	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1753 	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1754 		BUG();
1755 
1756 	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1757 
1758 	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1759 	 * page, we use it in the event channel upcall and in some pvclock
1760 	 * related functions. We don't need the vcpu_info placement
1761 	 * optimizations because we don't use any pv_mmu or pv_irq op on
1762 	 * HVM.
1763 	 * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1764 	 * online but xen_hvm_init_shared_info is run at resume time too and
1765 	 * in that case multiple vcpus might be online. */
1766 	for_each_online_cpu(cpu) {
1767 		/* Leave it to be NULL. */
1768 		if (cpu >= MAX_VIRT_CPUS)
1769 			continue;
1770 		per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1771 	}
1772 }
1773 
1774 #ifdef CONFIG_XEN_PVHVM
init_hvm_pv_info(void)1775 static void __init init_hvm_pv_info(void)
1776 {
1777 	int major, minor;
1778 	uint32_t eax, ebx, ecx, edx, pages, msr, base;
1779 	u64 pfn;
1780 
1781 	base = xen_cpuid_base();
1782 	cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1783 
1784 	major = eax >> 16;
1785 	minor = eax & 0xffff;
1786 	printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1787 
1788 	cpuid(base + 2, &pages, &msr, &ecx, &edx);
1789 
1790 	pfn = __pa(hypercall_page);
1791 	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1792 
1793 	xen_setup_features();
1794 
1795 	pv_info.name = "Xen HVM";
1796 
1797 	xen_domain_type = XEN_HVM_DOMAIN;
1798 }
1799 
xen_hvm_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1800 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1801 			      void *hcpu)
1802 {
1803 	int cpu = (long)hcpu;
1804 	switch (action) {
1805 	case CPU_UP_PREPARE:
1806 		xen_vcpu_setup(cpu);
1807 		if (xen_have_vector_callback) {
1808 			if (xen_feature(XENFEAT_hvm_safe_pvclock))
1809 				xen_setup_timer(cpu);
1810 		}
1811 		break;
1812 	default:
1813 		break;
1814 	}
1815 	return NOTIFY_OK;
1816 }
1817 
1818 static struct notifier_block xen_hvm_cpu_notifier = {
1819 	.notifier_call	= xen_hvm_cpu_notify,
1820 };
1821 
1822 #ifdef CONFIG_KEXEC_CORE
xen_hvm_shutdown(void)1823 static void xen_hvm_shutdown(void)
1824 {
1825 	native_machine_shutdown();
1826 	if (kexec_in_progress)
1827 		xen_reboot(SHUTDOWN_soft_reset);
1828 }
1829 
xen_hvm_crash_shutdown(struct pt_regs * regs)1830 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1831 {
1832 	native_machine_crash_shutdown(regs);
1833 	xen_reboot(SHUTDOWN_soft_reset);
1834 }
1835 #endif
1836 
xen_hvm_guest_init(void)1837 static void __init xen_hvm_guest_init(void)
1838 {
1839 	if (xen_pv_domain())
1840 		return;
1841 
1842 	init_hvm_pv_info();
1843 
1844 	xen_hvm_init_shared_info();
1845 
1846 	xen_panic_handler_init();
1847 
1848 	if (xen_feature(XENFEAT_hvm_callback_vector))
1849 		xen_have_vector_callback = 1;
1850 	xen_hvm_smp_init();
1851 	register_cpu_notifier(&xen_hvm_cpu_notifier);
1852 	xen_unplug_emulated_devices();
1853 	x86_init.irqs.intr_init = xen_init_IRQ;
1854 	xen_hvm_init_time_ops();
1855 	xen_hvm_init_mmu_ops();
1856 #ifdef CONFIG_KEXEC_CORE
1857 	machine_ops.shutdown = xen_hvm_shutdown;
1858 	machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1859 #endif
1860 }
1861 #endif
1862 
1863 static bool xen_nopv = false;
xen_parse_nopv(char * arg)1864 static __init int xen_parse_nopv(char *arg)
1865 {
1866        xen_nopv = true;
1867        return 0;
1868 }
1869 early_param("xen_nopv", xen_parse_nopv);
1870 
xen_platform(void)1871 static uint32_t __init xen_platform(void)
1872 {
1873 	if (xen_nopv)
1874 		return 0;
1875 
1876 	return xen_cpuid_base();
1877 }
1878 
xen_hvm_need_lapic(void)1879 bool xen_hvm_need_lapic(void)
1880 {
1881 	if (xen_nopv)
1882 		return false;
1883 	if (xen_pv_domain())
1884 		return false;
1885 	if (!xen_hvm_domain())
1886 		return false;
1887 	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1888 		return false;
1889 	return true;
1890 }
1891 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1892 
1893 const struct hypervisor_x86 x86_hyper_xen = {
1894 	.name			= "Xen",
1895 	.detect			= xen_platform,
1896 #ifdef CONFIG_XEN_PVHVM
1897 	.init_platform		= xen_hvm_guest_init,
1898 #endif
1899 	.x2apic_available	= xen_x2apic_para_available,
1900 };
1901 EXPORT_SYMBOL(x86_hyper_xen);
1902 
1903 #ifdef CONFIG_HOTPLUG_CPU
xen_arch_register_cpu(int num)1904 void xen_arch_register_cpu(int num)
1905 {
1906 	arch_register_cpu(num);
1907 }
1908 EXPORT_SYMBOL(xen_arch_register_cpu);
1909 
xen_arch_unregister_cpu(int num)1910 void xen_arch_unregister_cpu(int num)
1911 {
1912 	arch_unregister_cpu(num);
1913 }
1914 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1915 #endif
1916