• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
120 
121 /*
122  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
123  * redzone above it, so round it up to a PGD boundary.
124  */
125 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
126 
arbitrary_virt_to_mfn(void * vaddr)127 unsigned long arbitrary_virt_to_mfn(void *vaddr)
128 {
129 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
130 
131 	return PFN_DOWN(maddr.maddr);
132 }
133 
arbitrary_virt_to_machine(void * vaddr)134 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
135 {
136 	unsigned long address = (unsigned long)vaddr;
137 	unsigned int level;
138 	pte_t *pte;
139 	unsigned offset;
140 
141 	/*
142 	 * if the PFN is in the linear mapped vaddr range, we can just use
143 	 * the (quick) virt_to_machine() p2m lookup
144 	 */
145 	if (virt_addr_valid(vaddr))
146 		return virt_to_machine(vaddr);
147 
148 	/* otherwise we have to do a (slower) full page-table walk */
149 
150 	pte = lookup_address(address, &level);
151 	BUG_ON(pte == NULL);
152 	offset = address & ~PAGE_MASK;
153 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
154 }
155 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
156 
make_lowmem_page_readonly(void * vaddr)157 void make_lowmem_page_readonly(void *vaddr)
158 {
159 	pte_t *pte, ptev;
160 	unsigned long address = (unsigned long)vaddr;
161 	unsigned int level;
162 
163 	pte = lookup_address(address, &level);
164 	if (pte == NULL)
165 		return;		/* vaddr missing */
166 
167 	ptev = pte_wrprotect(*pte);
168 
169 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
170 		BUG();
171 }
172 
make_lowmem_page_readwrite(void * vaddr)173 void make_lowmem_page_readwrite(void *vaddr)
174 {
175 	pte_t *pte, ptev;
176 	unsigned long address = (unsigned long)vaddr;
177 	unsigned int level;
178 
179 	pte = lookup_address(address, &level);
180 	if (pte == NULL)
181 		return;		/* vaddr missing */
182 
183 	ptev = pte_mkwrite(*pte);
184 
185 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
186 		BUG();
187 }
188 
189 
xen_page_pinned(void * ptr)190 static bool xen_page_pinned(void *ptr)
191 {
192 	struct page *page = virt_to_page(ptr);
193 
194 	return PagePinned(page);
195 }
196 
xen_set_domain_pte(pte_t * ptep,pte_t pteval,unsigned domid)197 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
198 {
199 	struct multicall_space mcs;
200 	struct mmu_update *u;
201 
202 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
203 
204 	mcs = xen_mc_entry(sizeof(*u));
205 	u = mcs.args;
206 
207 	/* ptep might be kmapped when using 32-bit HIGHPTE */
208 	u->ptr = virt_to_machine(ptep).maddr;
209 	u->val = pte_val_ma(pteval);
210 
211 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
212 
213 	xen_mc_issue(PARAVIRT_LAZY_MMU);
214 }
215 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
216 
xen_extend_mmu_update(const struct mmu_update * update)217 static void xen_extend_mmu_update(const struct mmu_update *update)
218 {
219 	struct multicall_space mcs;
220 	struct mmu_update *u;
221 
222 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
223 
224 	if (mcs.mc != NULL) {
225 		mcs.mc->args[1]++;
226 	} else {
227 		mcs = __xen_mc_entry(sizeof(*u));
228 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
229 	}
230 
231 	u = mcs.args;
232 	*u = *update;
233 }
234 
xen_extend_mmuext_op(const struct mmuext_op * op)235 static void xen_extend_mmuext_op(const struct mmuext_op *op)
236 {
237 	struct multicall_space mcs;
238 	struct mmuext_op *u;
239 
240 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
241 
242 	if (mcs.mc != NULL) {
243 		mcs.mc->args[1]++;
244 	} else {
245 		mcs = __xen_mc_entry(sizeof(*u));
246 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
247 	}
248 
249 	u = mcs.args;
250 	*u = *op;
251 }
252 
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)253 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
254 {
255 	struct mmu_update u;
256 
257 	preempt_disable();
258 
259 	xen_mc_batch();
260 
261 	/* ptr may be ioremapped for 64-bit pagetable setup */
262 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
263 	u.val = pmd_val_ma(val);
264 	xen_extend_mmu_update(&u);
265 
266 	xen_mc_issue(PARAVIRT_LAZY_MMU);
267 
268 	preempt_enable();
269 }
270 
xen_set_pmd(pmd_t * ptr,pmd_t val)271 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
272 {
273 	trace_xen_mmu_set_pmd(ptr, val);
274 
275 	/* If page is not pinned, we can just update the entry
276 	   directly */
277 	if (!xen_page_pinned(ptr)) {
278 		*ptr = val;
279 		return;
280 	}
281 
282 	xen_set_pmd_hyper(ptr, val);
283 }
284 
285 /*
286  * Associate a virtual page frame with a given physical page frame
287  * and protection flags for that frame.
288  */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)289 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
290 {
291 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
292 }
293 
xen_batched_set_pte(pte_t * ptep,pte_t pteval)294 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
295 {
296 	struct mmu_update u;
297 
298 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
299 		return false;
300 
301 	xen_mc_batch();
302 
303 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
304 	u.val = pte_val_ma(pteval);
305 	xen_extend_mmu_update(&u);
306 
307 	xen_mc_issue(PARAVIRT_LAZY_MMU);
308 
309 	return true;
310 }
311 
__xen_set_pte(pte_t * ptep,pte_t pteval)312 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
313 {
314 	if (!xen_batched_set_pte(ptep, pteval)) {
315 		/*
316 		 * Could call native_set_pte() here and trap and
317 		 * emulate the PTE write but with 32-bit guests this
318 		 * needs two traps (one for each of the two 32-bit
319 		 * words in the PTE) so do one hypercall directly
320 		 * instead.
321 		 */
322 		struct mmu_update u;
323 
324 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
325 		u.val = pte_val_ma(pteval);
326 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
327 	}
328 }
329 
xen_set_pte(pte_t * ptep,pte_t pteval)330 static void xen_set_pte(pte_t *ptep, pte_t pteval)
331 {
332 	trace_xen_mmu_set_pte(ptep, pteval);
333 	__xen_set_pte(ptep, pteval);
334 }
335 
xen_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)336 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
337 		    pte_t *ptep, pte_t pteval)
338 {
339 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
340 	__xen_set_pte(ptep, pteval);
341 }
342 
xen_ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)343 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
344 				 unsigned long addr, pte_t *ptep)
345 {
346 	/* Just return the pte as-is.  We preserve the bits on commit */
347 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
348 	return *ptep;
349 }
350 
xen_ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)351 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
352 				 pte_t *ptep, pte_t pte)
353 {
354 	struct mmu_update u;
355 
356 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
357 	xen_mc_batch();
358 
359 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
360 	u.val = pte_val_ma(pte);
361 	xen_extend_mmu_update(&u);
362 
363 	xen_mc_issue(PARAVIRT_LAZY_MMU);
364 }
365 
366 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)367 static pteval_t pte_mfn_to_pfn(pteval_t val)
368 {
369 	if (val & _PAGE_PRESENT) {
370 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
371 		unsigned long pfn = mfn_to_pfn(mfn);
372 
373 		pteval_t flags = val & PTE_FLAGS_MASK;
374 		if (unlikely(pfn == ~0))
375 			val = flags & ~_PAGE_PRESENT;
376 		else
377 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
378 	}
379 
380 	return val;
381 }
382 
pte_pfn_to_mfn(pteval_t val)383 static pteval_t pte_pfn_to_mfn(pteval_t val)
384 {
385 	if (val & _PAGE_PRESENT) {
386 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
387 		pteval_t flags = val & PTE_FLAGS_MASK;
388 		unsigned long mfn;
389 
390 		if (!xen_feature(XENFEAT_auto_translated_physmap))
391 			mfn = __pfn_to_mfn(pfn);
392 		else
393 			mfn = pfn;
394 		/*
395 		 * If there's no mfn for the pfn, then just create an
396 		 * empty non-present pte.  Unfortunately this loses
397 		 * information about the original pfn, so
398 		 * pte_mfn_to_pfn is asymmetric.
399 		 */
400 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
401 			mfn = 0;
402 			flags = 0;
403 		} else
404 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
405 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
406 	}
407 
408 	return val;
409 }
410 
xen_pte_val(pte_t pte)411 __visible pteval_t xen_pte_val(pte_t pte)
412 {
413 	pteval_t pteval = pte.pte;
414 
415 	return pte_mfn_to_pfn(pteval);
416 }
417 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
418 
xen_pgd_val(pgd_t pgd)419 __visible pgdval_t xen_pgd_val(pgd_t pgd)
420 {
421 	return pte_mfn_to_pfn(pgd.pgd);
422 }
423 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
424 
xen_make_pte(pteval_t pte)425 __visible pte_t xen_make_pte(pteval_t pte)
426 {
427 	pte = pte_pfn_to_mfn(pte);
428 
429 	return native_make_pte(pte);
430 }
431 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
432 
xen_make_pgd(pgdval_t pgd)433 __visible pgd_t xen_make_pgd(pgdval_t pgd)
434 {
435 	pgd = pte_pfn_to_mfn(pgd);
436 	return native_make_pgd(pgd);
437 }
438 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
439 
xen_pmd_val(pmd_t pmd)440 __visible pmdval_t xen_pmd_val(pmd_t pmd)
441 {
442 	return pte_mfn_to_pfn(pmd.pmd);
443 }
444 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
445 
xen_set_pud_hyper(pud_t * ptr,pud_t val)446 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
447 {
448 	struct mmu_update u;
449 
450 	preempt_disable();
451 
452 	xen_mc_batch();
453 
454 	/* ptr may be ioremapped for 64-bit pagetable setup */
455 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
456 	u.val = pud_val_ma(val);
457 	xen_extend_mmu_update(&u);
458 
459 	xen_mc_issue(PARAVIRT_LAZY_MMU);
460 
461 	preempt_enable();
462 }
463 
xen_set_pud(pud_t * ptr,pud_t val)464 static void xen_set_pud(pud_t *ptr, pud_t val)
465 {
466 	trace_xen_mmu_set_pud(ptr, val);
467 
468 	/* If page is not pinned, we can just update the entry
469 	   directly */
470 	if (!xen_page_pinned(ptr)) {
471 		*ptr = val;
472 		return;
473 	}
474 
475 	xen_set_pud_hyper(ptr, val);
476 }
477 
478 #ifdef CONFIG_X86_PAE
xen_set_pte_atomic(pte_t * ptep,pte_t pte)479 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
480 {
481 	trace_xen_mmu_set_pte_atomic(ptep, pte);
482 	set_64bit((u64 *)ptep, native_pte_val(pte));
483 }
484 
xen_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)485 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
486 {
487 	trace_xen_mmu_pte_clear(mm, addr, ptep);
488 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
489 		native_pte_clear(mm, addr, ptep);
490 }
491 
xen_pmd_clear(pmd_t * pmdp)492 static void xen_pmd_clear(pmd_t *pmdp)
493 {
494 	trace_xen_mmu_pmd_clear(pmdp);
495 	set_pmd(pmdp, __pmd(0));
496 }
497 #endif	/* CONFIG_X86_PAE */
498 
xen_make_pmd(pmdval_t pmd)499 __visible pmd_t xen_make_pmd(pmdval_t pmd)
500 {
501 	pmd = pte_pfn_to_mfn(pmd);
502 	return native_make_pmd(pmd);
503 }
504 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
505 
506 #if CONFIG_PGTABLE_LEVELS == 4
xen_pud_val(pud_t pud)507 __visible pudval_t xen_pud_val(pud_t pud)
508 {
509 	return pte_mfn_to_pfn(pud.pud);
510 }
511 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
512 
xen_make_pud(pudval_t pud)513 __visible pud_t xen_make_pud(pudval_t pud)
514 {
515 	pud = pte_pfn_to_mfn(pud);
516 
517 	return native_make_pud(pud);
518 }
519 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
520 
xen_get_user_pgd(pgd_t * pgd)521 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
522 {
523 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
524 	unsigned offset = pgd - pgd_page;
525 	pgd_t *user_ptr = NULL;
526 
527 	if (offset < pgd_index(USER_LIMIT)) {
528 		struct page *page = virt_to_page(pgd_page);
529 		user_ptr = (pgd_t *)page->private;
530 		if (user_ptr)
531 			user_ptr += offset;
532 	}
533 
534 	return user_ptr;
535 }
536 
__xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)537 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
538 {
539 	struct mmu_update u;
540 
541 	u.ptr = virt_to_machine(ptr).maddr;
542 	u.val = pgd_val_ma(val);
543 	xen_extend_mmu_update(&u);
544 }
545 
546 /*
547  * Raw hypercall-based set_pgd, intended for in early boot before
548  * there's a page structure.  This implies:
549  *  1. The only existing pagetable is the kernel's
550  *  2. It is always pinned
551  *  3. It has no user pagetable attached to it
552  */
xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)553 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
554 {
555 	preempt_disable();
556 
557 	xen_mc_batch();
558 
559 	__xen_set_pgd_hyper(ptr, val);
560 
561 	xen_mc_issue(PARAVIRT_LAZY_MMU);
562 
563 	preempt_enable();
564 }
565 
xen_set_pgd(pgd_t * ptr,pgd_t val)566 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
567 {
568 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
569 
570 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
571 
572 	/* If page is not pinned, we can just update the entry
573 	   directly */
574 	if (!xen_page_pinned(ptr)) {
575 		*ptr = val;
576 		if (user_ptr) {
577 			WARN_ON(xen_page_pinned(user_ptr));
578 			*user_ptr = val;
579 		}
580 		return;
581 	}
582 
583 	/* If it's pinned, then we can at least batch the kernel and
584 	   user updates together. */
585 	xen_mc_batch();
586 
587 	__xen_set_pgd_hyper(ptr, val);
588 	if (user_ptr)
589 		__xen_set_pgd_hyper(user_ptr, val);
590 
591 	xen_mc_issue(PARAVIRT_LAZY_MMU);
592 }
593 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
594 
595 /*
596  * (Yet another) pagetable walker.  This one is intended for pinning a
597  * pagetable.  This means that it walks a pagetable and calls the
598  * callback function on each page it finds making up the page table,
599  * at every level.  It walks the entire pagetable, but it only bothers
600  * pinning pte pages which are below limit.  In the normal case this
601  * will be STACK_TOP_MAX, but at boot we need to pin up to
602  * FIXADDR_TOP.
603  *
604  * For 32-bit the important bit is that we don't pin beyond there,
605  * because then we start getting into Xen's ptes.
606  *
607  * For 64-bit, we must skip the Xen hole in the middle of the address
608  * space, just after the big x86-64 virtual hole.
609  */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)610 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
611 			  int (*func)(struct mm_struct *mm, struct page *,
612 				      enum pt_level),
613 			  unsigned long limit)
614 {
615 	int flush = 0;
616 	unsigned hole_low, hole_high;
617 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
618 	unsigned pgdidx, pudidx, pmdidx;
619 
620 	/* The limit is the last byte to be touched */
621 	limit--;
622 	BUG_ON(limit >= FIXADDR_TOP);
623 
624 	if (xen_feature(XENFEAT_auto_translated_physmap))
625 		return 0;
626 
627 	/*
628 	 * 64-bit has a great big hole in the middle of the address
629 	 * space, which contains the Xen mappings.  On 32-bit these
630 	 * will end up making a zero-sized hole and so is a no-op.
631 	 */
632 	hole_low = pgd_index(USER_LIMIT);
633 	hole_high = pgd_index(PAGE_OFFSET);
634 
635 	pgdidx_limit = pgd_index(limit);
636 #if PTRS_PER_PUD > 1
637 	pudidx_limit = pud_index(limit);
638 #else
639 	pudidx_limit = 0;
640 #endif
641 #if PTRS_PER_PMD > 1
642 	pmdidx_limit = pmd_index(limit);
643 #else
644 	pmdidx_limit = 0;
645 #endif
646 
647 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
648 		pud_t *pud;
649 
650 		if (pgdidx >= hole_low && pgdidx < hole_high)
651 			continue;
652 
653 		if (!pgd_val(pgd[pgdidx]))
654 			continue;
655 
656 		pud = pud_offset(&pgd[pgdidx], 0);
657 
658 		if (PTRS_PER_PUD > 1) /* not folded */
659 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
660 
661 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
662 			pmd_t *pmd;
663 
664 			if (pgdidx == pgdidx_limit &&
665 			    pudidx > pudidx_limit)
666 				goto out;
667 
668 			if (pud_none(pud[pudidx]))
669 				continue;
670 
671 			pmd = pmd_offset(&pud[pudidx], 0);
672 
673 			if (PTRS_PER_PMD > 1) /* not folded */
674 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
675 
676 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
677 				struct page *pte;
678 
679 				if (pgdidx == pgdidx_limit &&
680 				    pudidx == pudidx_limit &&
681 				    pmdidx > pmdidx_limit)
682 					goto out;
683 
684 				if (pmd_none(pmd[pmdidx]))
685 					continue;
686 
687 				pte = pmd_page(pmd[pmdidx]);
688 				flush |= (*func)(mm, pte, PT_PTE);
689 			}
690 		}
691 	}
692 
693 out:
694 	/* Do the top level last, so that the callbacks can use it as
695 	   a cue to do final things like tlb flushes. */
696 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
697 
698 	return flush;
699 }
700 
xen_pgd_walk(struct mm_struct * mm,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)701 static int xen_pgd_walk(struct mm_struct *mm,
702 			int (*func)(struct mm_struct *mm, struct page *,
703 				    enum pt_level),
704 			unsigned long limit)
705 {
706 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
707 }
708 
709 /* If we're using split pte locks, then take the page's lock and
710    return a pointer to it.  Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)711 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
712 {
713 	spinlock_t *ptl = NULL;
714 
715 #if USE_SPLIT_PTE_PTLOCKS
716 	ptl = ptlock_ptr(page);
717 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
718 #endif
719 
720 	return ptl;
721 }
722 
xen_pte_unlock(void * v)723 static void xen_pte_unlock(void *v)
724 {
725 	spinlock_t *ptl = v;
726 	spin_unlock(ptl);
727 }
728 
xen_do_pin(unsigned level,unsigned long pfn)729 static void xen_do_pin(unsigned level, unsigned long pfn)
730 {
731 	struct mmuext_op op;
732 
733 	op.cmd = level;
734 	op.arg1.mfn = pfn_to_mfn(pfn);
735 
736 	xen_extend_mmuext_op(&op);
737 }
738 
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)739 static int xen_pin_page(struct mm_struct *mm, struct page *page,
740 			enum pt_level level)
741 {
742 	unsigned pgfl = TestSetPagePinned(page);
743 	int flush;
744 
745 	if (pgfl)
746 		flush = 0;		/* already pinned */
747 	else if (PageHighMem(page))
748 		/* kmaps need flushing if we found an unpinned
749 		   highpage */
750 		flush = 1;
751 	else {
752 		void *pt = lowmem_page_address(page);
753 		unsigned long pfn = page_to_pfn(page);
754 		struct multicall_space mcs = __xen_mc_entry(0);
755 		spinlock_t *ptl;
756 
757 		flush = 0;
758 
759 		/*
760 		 * We need to hold the pagetable lock between the time
761 		 * we make the pagetable RO and when we actually pin
762 		 * it.  If we don't, then other users may come in and
763 		 * attempt to update the pagetable by writing it,
764 		 * which will fail because the memory is RO but not
765 		 * pinned, so Xen won't do the trap'n'emulate.
766 		 *
767 		 * If we're using split pte locks, we can't hold the
768 		 * entire pagetable's worth of locks during the
769 		 * traverse, because we may wrap the preempt count (8
770 		 * bits).  The solution is to mark RO and pin each PTE
771 		 * page while holding the lock.  This means the number
772 		 * of locks we end up holding is never more than a
773 		 * batch size (~32 entries, at present).
774 		 *
775 		 * If we're not using split pte locks, we needn't pin
776 		 * the PTE pages independently, because we're
777 		 * protected by the overall pagetable lock.
778 		 */
779 		ptl = NULL;
780 		if (level == PT_PTE)
781 			ptl = xen_pte_lock(page, mm);
782 
783 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
784 					pfn_pte(pfn, PAGE_KERNEL_RO),
785 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
786 
787 		if (ptl) {
788 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
789 
790 			/* Queue a deferred unlock for when this batch
791 			   is completed. */
792 			xen_mc_callback(xen_pte_unlock, ptl);
793 		}
794 	}
795 
796 	return flush;
797 }
798 
799 /* This is called just after a mm has been created, but it has not
800    been used yet.  We need to make sure that its pagetable is all
801    read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)802 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
803 {
804 	trace_xen_mmu_pgd_pin(mm, pgd);
805 
806 	xen_mc_batch();
807 
808 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
809 		/* re-enable interrupts for flushing */
810 		xen_mc_issue(0);
811 
812 		kmap_flush_unused();
813 
814 		xen_mc_batch();
815 	}
816 
817 #ifdef CONFIG_X86_64
818 	{
819 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
820 
821 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
822 
823 		if (user_pgd) {
824 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
825 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
826 				   PFN_DOWN(__pa(user_pgd)));
827 		}
828 	}
829 #else /* CONFIG_X86_32 */
830 #ifdef CONFIG_X86_PAE
831 	/* Need to make sure unshared kernel PMD is pinnable */
832 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
833 		     PT_PMD);
834 #endif
835 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
836 #endif /* CONFIG_X86_64 */
837 	xen_mc_issue(0);
838 }
839 
xen_pgd_pin(struct mm_struct * mm)840 static void xen_pgd_pin(struct mm_struct *mm)
841 {
842 	__xen_pgd_pin(mm, mm->pgd);
843 }
844 
845 /*
846  * On save, we need to pin all pagetables to make sure they get their
847  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
848  * them (unpinned pgds are not currently in use, probably because the
849  * process is under construction or destruction).
850  *
851  * Expected to be called in stop_machine() ("equivalent to taking
852  * every spinlock in the system"), so the locking doesn't really
853  * matter all that much.
854  */
xen_mm_pin_all(void)855 void xen_mm_pin_all(void)
856 {
857 	struct page *page;
858 
859 	spin_lock(&pgd_lock);
860 
861 	list_for_each_entry(page, &pgd_list, lru) {
862 		if (!PagePinned(page)) {
863 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
864 			SetPageSavePinned(page);
865 		}
866 	}
867 
868 	spin_unlock(&pgd_lock);
869 }
870 
871 /*
872  * The init_mm pagetable is really pinned as soon as its created, but
873  * that's before we have page structures to store the bits.  So do all
874  * the book-keeping now.
875  */
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)876 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
877 				  enum pt_level level)
878 {
879 	SetPagePinned(page);
880 	return 0;
881 }
882 
xen_mark_init_mm_pinned(void)883 static void __init xen_mark_init_mm_pinned(void)
884 {
885 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
886 }
887 
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)888 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
889 			  enum pt_level level)
890 {
891 	unsigned pgfl = TestClearPagePinned(page);
892 
893 	if (pgfl && !PageHighMem(page)) {
894 		void *pt = lowmem_page_address(page);
895 		unsigned long pfn = page_to_pfn(page);
896 		spinlock_t *ptl = NULL;
897 		struct multicall_space mcs;
898 
899 		/*
900 		 * Do the converse to pin_page.  If we're using split
901 		 * pte locks, we must be holding the lock for while
902 		 * the pte page is unpinned but still RO to prevent
903 		 * concurrent updates from seeing it in this
904 		 * partially-pinned state.
905 		 */
906 		if (level == PT_PTE) {
907 			ptl = xen_pte_lock(page, mm);
908 
909 			if (ptl)
910 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
911 		}
912 
913 		mcs = __xen_mc_entry(0);
914 
915 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
916 					pfn_pte(pfn, PAGE_KERNEL),
917 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
918 
919 		if (ptl) {
920 			/* unlock when batch completed */
921 			xen_mc_callback(xen_pte_unlock, ptl);
922 		}
923 	}
924 
925 	return 0;		/* never need to flush on unpin */
926 }
927 
928 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)929 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
930 {
931 	trace_xen_mmu_pgd_unpin(mm, pgd);
932 
933 	xen_mc_batch();
934 
935 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
936 
937 #ifdef CONFIG_X86_64
938 	{
939 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
940 
941 		if (user_pgd) {
942 			xen_do_pin(MMUEXT_UNPIN_TABLE,
943 				   PFN_DOWN(__pa(user_pgd)));
944 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
945 		}
946 	}
947 #endif
948 
949 #ifdef CONFIG_X86_PAE
950 	/* Need to make sure unshared kernel PMD is unpinned */
951 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
952 		       PT_PMD);
953 #endif
954 
955 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
956 
957 	xen_mc_issue(0);
958 }
959 
xen_pgd_unpin(struct mm_struct * mm)960 static void xen_pgd_unpin(struct mm_struct *mm)
961 {
962 	__xen_pgd_unpin(mm, mm->pgd);
963 }
964 
965 /*
966  * On resume, undo any pinning done at save, so that the rest of the
967  * kernel doesn't see any unexpected pinned pagetables.
968  */
xen_mm_unpin_all(void)969 void xen_mm_unpin_all(void)
970 {
971 	struct page *page;
972 
973 	spin_lock(&pgd_lock);
974 
975 	list_for_each_entry(page, &pgd_list, lru) {
976 		if (PageSavePinned(page)) {
977 			BUG_ON(!PagePinned(page));
978 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
979 			ClearPageSavePinned(page);
980 		}
981 	}
982 
983 	spin_unlock(&pgd_lock);
984 }
985 
xen_activate_mm(struct mm_struct * prev,struct mm_struct * next)986 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
987 {
988 	spin_lock(&next->page_table_lock);
989 	xen_pgd_pin(next);
990 	spin_unlock(&next->page_table_lock);
991 }
992 
xen_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)993 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
994 {
995 	spin_lock(&mm->page_table_lock);
996 	xen_pgd_pin(mm);
997 	spin_unlock(&mm->page_table_lock);
998 }
999 
1000 
1001 #ifdef CONFIG_SMP
1002 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1003    we need to repoint it somewhere else before we can unpin it. */
drop_other_mm_ref(void * info)1004 static void drop_other_mm_ref(void *info)
1005 {
1006 	struct mm_struct *mm = info;
1007 	struct mm_struct *active_mm;
1008 
1009 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1010 
1011 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1012 		leave_mm(smp_processor_id());
1013 
1014 	/* If this cpu still has a stale cr3 reference, then make sure
1015 	   it has been flushed. */
1016 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1017 		load_cr3(swapper_pg_dir);
1018 }
1019 
xen_drop_mm_ref(struct mm_struct * mm)1020 static void xen_drop_mm_ref(struct mm_struct *mm)
1021 {
1022 	cpumask_var_t mask;
1023 	unsigned cpu;
1024 
1025 	if (current->active_mm == mm) {
1026 		if (current->mm == mm)
1027 			load_cr3(swapper_pg_dir);
1028 		else
1029 			leave_mm(smp_processor_id());
1030 	}
1031 
1032 	/* Get the "official" set of cpus referring to our pagetable. */
1033 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1034 		for_each_online_cpu(cpu) {
1035 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1036 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1037 				continue;
1038 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1039 		}
1040 		return;
1041 	}
1042 	cpumask_copy(mask, mm_cpumask(mm));
1043 
1044 	/* It's possible that a vcpu may have a stale reference to our
1045 	   cr3, because its in lazy mode, and it hasn't yet flushed
1046 	   its set of pending hypercalls yet.  In this case, we can
1047 	   look at its actual current cr3 value, and force it to flush
1048 	   if needed. */
1049 	for_each_online_cpu(cpu) {
1050 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1051 			cpumask_set_cpu(cpu, mask);
1052 	}
1053 
1054 	if (!cpumask_empty(mask))
1055 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1056 	free_cpumask_var(mask);
1057 }
1058 #else
xen_drop_mm_ref(struct mm_struct * mm)1059 static void xen_drop_mm_ref(struct mm_struct *mm)
1060 {
1061 	if (current->active_mm == mm)
1062 		load_cr3(swapper_pg_dir);
1063 }
1064 #endif
1065 
1066 /*
1067  * While a process runs, Xen pins its pagetables, which means that the
1068  * hypervisor forces it to be read-only, and it controls all updates
1069  * to it.  This means that all pagetable updates have to go via the
1070  * hypervisor, which is moderately expensive.
1071  *
1072  * Since we're pulling the pagetable down, we switch to use init_mm,
1073  * unpin old process pagetable and mark it all read-write, which
1074  * allows further operations on it to be simple memory accesses.
1075  *
1076  * The only subtle point is that another CPU may be still using the
1077  * pagetable because of lazy tlb flushing.  This means we need need to
1078  * switch all CPUs off this pagetable before we can unpin it.
1079  */
xen_exit_mmap(struct mm_struct * mm)1080 static void xen_exit_mmap(struct mm_struct *mm)
1081 {
1082 	get_cpu();		/* make sure we don't move around */
1083 	xen_drop_mm_ref(mm);
1084 	put_cpu();
1085 
1086 	spin_lock(&mm->page_table_lock);
1087 
1088 	/* pgd may not be pinned in the error exit path of execve */
1089 	if (xen_page_pinned(mm->pgd))
1090 		xen_pgd_unpin(mm);
1091 
1092 	spin_unlock(&mm->page_table_lock);
1093 }
1094 
1095 static void xen_post_allocator_init(void);
1096 
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1097 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1098 {
1099 	struct mmuext_op op;
1100 
1101 	op.cmd = cmd;
1102 	op.arg1.mfn = pfn_to_mfn(pfn);
1103 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1104 		BUG();
1105 }
1106 
1107 #ifdef CONFIG_X86_64
xen_cleanhighmap(unsigned long vaddr,unsigned long vaddr_end)1108 static void __init xen_cleanhighmap(unsigned long vaddr,
1109 				    unsigned long vaddr_end)
1110 {
1111 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1112 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1113 
1114 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1115 	 * We include the PMD passed in on _both_ boundaries. */
1116 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1117 			pmd++, vaddr += PMD_SIZE) {
1118 		if (pmd_none(*pmd))
1119 			continue;
1120 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1121 			set_pmd(pmd, __pmd(0));
1122 	}
1123 	/* In case we did something silly, we should crash in this function
1124 	 * instead of somewhere later and be confusing. */
1125 	xen_mc_flush();
1126 }
1127 
1128 /*
1129  * Make a page range writeable and free it.
1130  */
xen_free_ro_pages(unsigned long paddr,unsigned long size)1131 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1132 {
1133 	void *vaddr = __va(paddr);
1134 	void *vaddr_end = vaddr + size;
1135 
1136 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1137 		make_lowmem_page_readwrite(vaddr);
1138 
1139 	memblock_free(paddr, size);
1140 }
1141 
xen_cleanmfnmap_free_pgtbl(void * pgtbl,bool unpin)1142 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1143 {
1144 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1145 
1146 	if (unpin)
1147 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1148 	ClearPagePinned(virt_to_page(__va(pa)));
1149 	xen_free_ro_pages(pa, PAGE_SIZE);
1150 }
1151 
1152 /*
1153  * Since it is well isolated we can (and since it is perhaps large we should)
1154  * also free the page tables mapping the initial P->M table.
1155  */
xen_cleanmfnmap(unsigned long vaddr)1156 static void __init xen_cleanmfnmap(unsigned long vaddr)
1157 {
1158 	unsigned long va = vaddr & PMD_MASK;
1159 	unsigned long pa;
1160 	pgd_t *pgd = pgd_offset_k(va);
1161 	pud_t *pud_page = pud_offset(pgd, 0);
1162 	pud_t *pud;
1163 	pmd_t *pmd;
1164 	pte_t *pte;
1165 	unsigned int i;
1166 	bool unpin;
1167 
1168 	unpin = (vaddr == 2 * PGDIR_SIZE);
1169 	set_pgd(pgd, __pgd(0));
1170 	do {
1171 		pud = pud_page + pud_index(va);
1172 		if (pud_none(*pud)) {
1173 			va += PUD_SIZE;
1174 		} else if (pud_large(*pud)) {
1175 			pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1176 			xen_free_ro_pages(pa, PUD_SIZE);
1177 			va += PUD_SIZE;
1178 		} else {
1179 			pmd = pmd_offset(pud, va);
1180 			if (pmd_large(*pmd)) {
1181 				pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1182 				xen_free_ro_pages(pa, PMD_SIZE);
1183 			} else if (!pmd_none(*pmd)) {
1184 				pte = pte_offset_kernel(pmd, va);
1185 				set_pmd(pmd, __pmd(0));
1186 				for (i = 0; i < PTRS_PER_PTE; ++i) {
1187 					if (pte_none(pte[i]))
1188 						break;
1189 					pa = pte_pfn(pte[i]) << PAGE_SHIFT;
1190 					xen_free_ro_pages(pa, PAGE_SIZE);
1191 				}
1192 				xen_cleanmfnmap_free_pgtbl(pte, unpin);
1193 			}
1194 			va += PMD_SIZE;
1195 			if (pmd_index(va))
1196 				continue;
1197 			set_pud(pud, __pud(0));
1198 			xen_cleanmfnmap_free_pgtbl(pmd, unpin);
1199 		}
1200 
1201 	} while (pud_index(va) || pmd_index(va));
1202 	xen_cleanmfnmap_free_pgtbl(pud_page, unpin);
1203 }
1204 
xen_pagetable_p2m_free(void)1205 static void __init xen_pagetable_p2m_free(void)
1206 {
1207 	unsigned long size;
1208 	unsigned long addr;
1209 
1210 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211 
1212 	/* No memory or already called. */
1213 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1214 		return;
1215 
1216 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1217 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1218 
1219 	addr = xen_start_info->mfn_list;
1220 	/*
1221 	 * We could be in __ka space.
1222 	 * We roundup to the PMD, which means that if anybody at this stage is
1223 	 * using the __ka address of xen_start_info or
1224 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1225 	 * we have already revectored in xen_setup_kernel_pagetable and in
1226 	 * xen_setup_shared_info.
1227 	 */
1228 	size = roundup(size, PMD_SIZE);
1229 
1230 	if (addr >= __START_KERNEL_map) {
1231 		xen_cleanhighmap(addr, addr + size);
1232 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1233 				  sizeof(unsigned long));
1234 		memblock_free(__pa(addr), size);
1235 	} else {
1236 		xen_cleanmfnmap(addr);
1237 	}
1238 }
1239 
xen_pagetable_cleanhighmap(void)1240 static void __init xen_pagetable_cleanhighmap(void)
1241 {
1242 	unsigned long size;
1243 	unsigned long addr;
1244 
1245 	/* At this stage, cleanup_highmap has already cleaned __ka space
1246 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1247 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1248 	 * tables - do note that they are accessible at this stage via __va.
1249 	 * For good measure we also round up to the PMD - which means that if
1250 	 * anybody is using __ka address to the initial boot-stack - and try
1251 	 * to use it - they are going to crash. The xen_start_info has been
1252 	 * taken care of already in xen_setup_kernel_pagetable. */
1253 	addr = xen_start_info->pt_base;
1254 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1255 
1256 	xen_cleanhighmap(addr, addr + size);
1257 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1258 #ifdef DEBUG
1259 	/* This is superflous and is not neccessary, but you know what
1260 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1261 	 * anything at this stage. */
1262 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1263 #endif
1264 }
1265 #endif
1266 
xen_pagetable_p2m_setup(void)1267 static void __init xen_pagetable_p2m_setup(void)
1268 {
1269 	if (xen_feature(XENFEAT_auto_translated_physmap))
1270 		return;
1271 
1272 	xen_vmalloc_p2m_tree();
1273 
1274 #ifdef CONFIG_X86_64
1275 	xen_pagetable_p2m_free();
1276 
1277 	xen_pagetable_cleanhighmap();
1278 #endif
1279 	/* And revector! Bye bye old array */
1280 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1281 }
1282 
xen_pagetable_init(void)1283 static void __init xen_pagetable_init(void)
1284 {
1285 	paging_init();
1286 	xen_post_allocator_init();
1287 
1288 	xen_pagetable_p2m_setup();
1289 
1290 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1291 	xen_build_mfn_list_list();
1292 
1293 	/* Remap memory freed due to conflicts with E820 map */
1294 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1295 		xen_remap_memory();
1296 
1297 	xen_setup_shared_info();
1298 }
xen_write_cr2(unsigned long cr2)1299 static void xen_write_cr2(unsigned long cr2)
1300 {
1301 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1302 }
1303 
xen_read_cr2(void)1304 static unsigned long xen_read_cr2(void)
1305 {
1306 	return this_cpu_read(xen_vcpu)->arch.cr2;
1307 }
1308 
xen_read_cr2_direct(void)1309 unsigned long xen_read_cr2_direct(void)
1310 {
1311 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1312 }
1313 
xen_flush_tlb_all(void)1314 void xen_flush_tlb_all(void)
1315 {
1316 	struct mmuext_op *op;
1317 	struct multicall_space mcs;
1318 
1319 	preempt_disable();
1320 
1321 	mcs = xen_mc_entry(sizeof(*op));
1322 
1323 	op = mcs.args;
1324 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1325 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1326 
1327 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1328 
1329 	preempt_enable();
1330 }
xen_flush_tlb(void)1331 static void xen_flush_tlb(void)
1332 {
1333 	struct mmuext_op *op;
1334 	struct multicall_space mcs;
1335 
1336 	preempt_disable();
1337 
1338 	mcs = xen_mc_entry(sizeof(*op));
1339 
1340 	op = mcs.args;
1341 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1342 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1343 
1344 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1345 
1346 	preempt_enable();
1347 }
1348 
xen_flush_tlb_single(unsigned long addr)1349 static void xen_flush_tlb_single(unsigned long addr)
1350 {
1351 	struct mmuext_op *op;
1352 	struct multicall_space mcs;
1353 
1354 	trace_xen_mmu_flush_tlb_single(addr);
1355 
1356 	preempt_disable();
1357 
1358 	mcs = xen_mc_entry(sizeof(*op));
1359 	op = mcs.args;
1360 	op->cmd = MMUEXT_INVLPG_LOCAL;
1361 	op->arg1.linear_addr = addr & PAGE_MASK;
1362 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1363 
1364 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1365 
1366 	preempt_enable();
1367 }
1368 
xen_flush_tlb_others(const struct cpumask * cpus,struct mm_struct * mm,unsigned long start,unsigned long end)1369 static void xen_flush_tlb_others(const struct cpumask *cpus,
1370 				 struct mm_struct *mm, unsigned long start,
1371 				 unsigned long end)
1372 {
1373 	struct {
1374 		struct mmuext_op op;
1375 #ifdef CONFIG_SMP
1376 		DECLARE_BITMAP(mask, num_processors);
1377 #else
1378 		DECLARE_BITMAP(mask, NR_CPUS);
1379 #endif
1380 	} *args;
1381 	struct multicall_space mcs;
1382 
1383 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1384 
1385 	if (cpumask_empty(cpus))
1386 		return;		/* nothing to do */
1387 
1388 	mcs = xen_mc_entry(sizeof(*args));
1389 	args = mcs.args;
1390 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1391 
1392 	/* Remove us, and any offline CPUS. */
1393 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1394 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1395 
1396 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1397 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1398 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1399 		args->op.arg1.linear_addr = start;
1400 	}
1401 
1402 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1403 
1404 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1405 }
1406 
xen_read_cr3(void)1407 static unsigned long xen_read_cr3(void)
1408 {
1409 	return this_cpu_read(xen_cr3);
1410 }
1411 
set_current_cr3(void * v)1412 static void set_current_cr3(void *v)
1413 {
1414 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1415 }
1416 
__xen_write_cr3(bool kernel,unsigned long cr3)1417 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1418 {
1419 	struct mmuext_op op;
1420 	unsigned long mfn;
1421 
1422 	trace_xen_mmu_write_cr3(kernel, cr3);
1423 
1424 	if (cr3)
1425 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1426 	else
1427 		mfn = 0;
1428 
1429 	WARN_ON(mfn == 0 && kernel);
1430 
1431 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1432 	op.arg1.mfn = mfn;
1433 
1434 	xen_extend_mmuext_op(&op);
1435 
1436 	if (kernel) {
1437 		this_cpu_write(xen_cr3, cr3);
1438 
1439 		/* Update xen_current_cr3 once the batch has actually
1440 		   been submitted. */
1441 		xen_mc_callback(set_current_cr3, (void *)cr3);
1442 	}
1443 }
xen_write_cr3(unsigned long cr3)1444 static void xen_write_cr3(unsigned long cr3)
1445 {
1446 	BUG_ON(preemptible());
1447 
1448 	xen_mc_batch();  /* disables interrupts */
1449 
1450 	/* Update while interrupts are disabled, so its atomic with
1451 	   respect to ipis */
1452 	this_cpu_write(xen_cr3, cr3);
1453 
1454 	__xen_write_cr3(true, cr3);
1455 
1456 #ifdef CONFIG_X86_64
1457 	{
1458 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1459 		if (user_pgd)
1460 			__xen_write_cr3(false, __pa(user_pgd));
1461 		else
1462 			__xen_write_cr3(false, 0);
1463 	}
1464 #endif
1465 
1466 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1467 }
1468 
1469 #ifdef CONFIG_X86_64
1470 /*
1471  * At the start of the day - when Xen launches a guest, it has already
1472  * built pagetables for the guest. We diligently look over them
1473  * in xen_setup_kernel_pagetable and graft as appropiate them in the
1474  * init_level4_pgt and its friends. Then when we are happy we load
1475  * the new init_level4_pgt - and continue on.
1476  *
1477  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1478  * up the rest of the pagetables. When it has completed it loads the cr3.
1479  * N.B. that baremetal would start at 'start_kernel' (and the early
1480  * #PF handler would create bootstrap pagetables) - so we are running
1481  * with the same assumptions as what to do when write_cr3 is executed
1482  * at this point.
1483  *
1484  * Since there are no user-page tables at all, we have two variants
1485  * of xen_write_cr3 - the early bootup (this one), and the late one
1486  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1487  * the Linux kernel and user-space are both in ring 3 while the
1488  * hypervisor is in ring 0.
1489  */
xen_write_cr3_init(unsigned long cr3)1490 static void __init xen_write_cr3_init(unsigned long cr3)
1491 {
1492 	BUG_ON(preemptible());
1493 
1494 	xen_mc_batch();  /* disables interrupts */
1495 
1496 	/* Update while interrupts are disabled, so its atomic with
1497 	   respect to ipis */
1498 	this_cpu_write(xen_cr3, cr3);
1499 
1500 	__xen_write_cr3(true, cr3);
1501 
1502 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1503 }
1504 #endif
1505 
xen_pgd_alloc(struct mm_struct * mm)1506 static int xen_pgd_alloc(struct mm_struct *mm)
1507 {
1508 	pgd_t *pgd = mm->pgd;
1509 	int ret = 0;
1510 
1511 	BUG_ON(PagePinned(virt_to_page(pgd)));
1512 
1513 #ifdef CONFIG_X86_64
1514 	{
1515 		struct page *page = virt_to_page(pgd);
1516 		pgd_t *user_pgd;
1517 
1518 		BUG_ON(page->private != 0);
1519 
1520 		ret = -ENOMEM;
1521 
1522 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1523 		page->private = (unsigned long)user_pgd;
1524 
1525 		if (user_pgd != NULL) {
1526 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1527 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1528 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1529 #endif
1530 			ret = 0;
1531 		}
1532 
1533 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1534 	}
1535 #endif
1536 
1537 	return ret;
1538 }
1539 
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1540 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1541 {
1542 #ifdef CONFIG_X86_64
1543 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1544 
1545 	if (user_pgd)
1546 		free_page((unsigned long)user_pgd);
1547 #endif
1548 }
1549 
1550 #ifdef CONFIG_X86_32
mask_rw_pte(pte_t * ptep,pte_t pte)1551 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1552 {
1553 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1554 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1555 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1556 			       pte_val_ma(pte));
1557 
1558 	return pte;
1559 }
1560 #else /* CONFIG_X86_64 */
mask_rw_pte(pte_t * ptep,pte_t pte)1561 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1562 {
1563 	unsigned long pfn;
1564 
1565 	if (xen_feature(XENFEAT_writable_page_tables) ||
1566 	    xen_feature(XENFEAT_auto_translated_physmap) ||
1567 	    xen_start_info->mfn_list >= __START_KERNEL_map)
1568 		return pte;
1569 
1570 	/*
1571 	 * Pages belonging to the initial p2m list mapped outside the default
1572 	 * address range must be mapped read-only. This region contains the
1573 	 * page tables for mapping the p2m list, too, and page tables MUST be
1574 	 * mapped read-only.
1575 	 */
1576 	pfn = pte_pfn(pte);
1577 	if (pfn >= xen_start_info->first_p2m_pfn &&
1578 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1579 		pte = __pte_ma(pte_val_ma(pte) & ~_PAGE_RW);
1580 
1581 	return pte;
1582 }
1583 #endif /* CONFIG_X86_64 */
1584 
1585 /*
1586  * Init-time set_pte while constructing initial pagetables, which
1587  * doesn't allow RO page table pages to be remapped RW.
1588  *
1589  * If there is no MFN for this PFN then this page is initially
1590  * ballooned out so clear the PTE (as in decrease_reservation() in
1591  * drivers/xen/balloon.c).
1592  *
1593  * Many of these PTE updates are done on unpinned and writable pages
1594  * and doing a hypercall for these is unnecessary and expensive.  At
1595  * this point it is not possible to tell if a page is pinned or not,
1596  * so always write the PTE directly and rely on Xen trapping and
1597  * emulating any updates as necessary.
1598  */
xen_set_pte_init(pte_t * ptep,pte_t pte)1599 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1600 {
1601 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1602 		pte = mask_rw_pte(ptep, pte);
1603 	else
1604 		pte = __pte_ma(0);
1605 
1606 	native_set_pte(ptep, pte);
1607 }
1608 
1609 /* Early in boot, while setting up the initial pagetable, assume
1610    everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1611 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1612 {
1613 #ifdef CONFIG_FLATMEM
1614 	BUG_ON(mem_map);	/* should only be used early */
1615 #endif
1616 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1617 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1618 }
1619 
1620 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1621 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1622 {
1623 #ifdef CONFIG_FLATMEM
1624 	BUG_ON(mem_map);	/* should only be used early */
1625 #endif
1626 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1627 }
1628 
1629 /* Early release_pte assumes that all pts are pinned, since there's
1630    only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1631 static void __init xen_release_pte_init(unsigned long pfn)
1632 {
1633 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1634 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1635 }
1636 
xen_release_pmd_init(unsigned long pfn)1637 static void __init xen_release_pmd_init(unsigned long pfn)
1638 {
1639 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1640 }
1641 
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1642 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1643 {
1644 	struct multicall_space mcs;
1645 	struct mmuext_op *op;
1646 
1647 	mcs = __xen_mc_entry(sizeof(*op));
1648 	op = mcs.args;
1649 	op->cmd = cmd;
1650 	op->arg1.mfn = pfn_to_mfn(pfn);
1651 
1652 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1653 }
1654 
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1655 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1656 {
1657 	struct multicall_space mcs;
1658 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1659 
1660 	mcs = __xen_mc_entry(0);
1661 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1662 				pfn_pte(pfn, prot), 0);
1663 }
1664 
1665 /* This needs to make sure the new pte page is pinned iff its being
1666    attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1667 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1668 				    unsigned level)
1669 {
1670 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1671 
1672 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1673 
1674 	if (pinned) {
1675 		struct page *page = pfn_to_page(pfn);
1676 
1677 		SetPagePinned(page);
1678 
1679 		if (!PageHighMem(page)) {
1680 			xen_mc_batch();
1681 
1682 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1683 
1684 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1685 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1686 
1687 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1688 		} else {
1689 			/* make sure there are no stray mappings of
1690 			   this page */
1691 			kmap_flush_unused();
1692 		}
1693 	}
1694 }
1695 
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1696 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1697 {
1698 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1699 }
1700 
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1701 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1702 {
1703 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1704 }
1705 
1706 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1707 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1708 {
1709 	struct page *page = pfn_to_page(pfn);
1710 	bool pinned = PagePinned(page);
1711 
1712 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1713 
1714 	if (pinned) {
1715 		if (!PageHighMem(page)) {
1716 			xen_mc_batch();
1717 
1718 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1719 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1720 
1721 			__set_pfn_prot(pfn, PAGE_KERNEL);
1722 
1723 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1724 		}
1725 		ClearPagePinned(page);
1726 	}
1727 }
1728 
xen_release_pte(unsigned long pfn)1729 static void xen_release_pte(unsigned long pfn)
1730 {
1731 	xen_release_ptpage(pfn, PT_PTE);
1732 }
1733 
xen_release_pmd(unsigned long pfn)1734 static void xen_release_pmd(unsigned long pfn)
1735 {
1736 	xen_release_ptpage(pfn, PT_PMD);
1737 }
1738 
1739 #if CONFIG_PGTABLE_LEVELS == 4
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1740 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1741 {
1742 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1743 }
1744 
xen_release_pud(unsigned long pfn)1745 static void xen_release_pud(unsigned long pfn)
1746 {
1747 	xen_release_ptpage(pfn, PT_PUD);
1748 }
1749 #endif
1750 
xen_reserve_top(void)1751 void __init xen_reserve_top(void)
1752 {
1753 #ifdef CONFIG_X86_32
1754 	unsigned long top = HYPERVISOR_VIRT_START;
1755 	struct xen_platform_parameters pp;
1756 
1757 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1758 		top = pp.virt_start;
1759 
1760 	reserve_top_address(-top);
1761 #endif	/* CONFIG_X86_32 */
1762 }
1763 
1764 /*
1765  * Like __va(), but returns address in the kernel mapping (which is
1766  * all we have until the physical memory mapping has been set up.
1767  */
__ka(phys_addr_t paddr)1768 static void * __init __ka(phys_addr_t paddr)
1769 {
1770 #ifdef CONFIG_X86_64
1771 	return (void *)(paddr + __START_KERNEL_map);
1772 #else
1773 	return __va(paddr);
1774 #endif
1775 }
1776 
1777 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1778 static unsigned long __init m2p(phys_addr_t maddr)
1779 {
1780 	phys_addr_t paddr;
1781 
1782 	maddr &= PTE_PFN_MASK;
1783 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1784 
1785 	return paddr;
1786 }
1787 
1788 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1789 static void * __init m2v(phys_addr_t maddr)
1790 {
1791 	return __ka(m2p(maddr));
1792 }
1793 
1794 /* Set the page permissions on an identity-mapped pages */
set_page_prot_flags(void * addr,pgprot_t prot,unsigned long flags)1795 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1796 				       unsigned long flags)
1797 {
1798 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1799 	pte_t pte = pfn_pte(pfn, prot);
1800 
1801 	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1802 	if (xen_feature(XENFEAT_auto_translated_physmap))
1803 		return;
1804 
1805 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1806 		BUG();
1807 }
set_page_prot(void * addr,pgprot_t prot)1808 static void __init set_page_prot(void *addr, pgprot_t prot)
1809 {
1810 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1811 }
1812 #ifdef CONFIG_X86_32
xen_map_identity_early(pmd_t * pmd,unsigned long max_pfn)1813 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1814 {
1815 	unsigned pmdidx, pteidx;
1816 	unsigned ident_pte;
1817 	unsigned long pfn;
1818 
1819 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1820 				      PAGE_SIZE);
1821 
1822 	ident_pte = 0;
1823 	pfn = 0;
1824 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1825 		pte_t *pte_page;
1826 
1827 		/* Reuse or allocate a page of ptes */
1828 		if (pmd_present(pmd[pmdidx]))
1829 			pte_page = m2v(pmd[pmdidx].pmd);
1830 		else {
1831 			/* Check for free pte pages */
1832 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1833 				break;
1834 
1835 			pte_page = &level1_ident_pgt[ident_pte];
1836 			ident_pte += PTRS_PER_PTE;
1837 
1838 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1839 		}
1840 
1841 		/* Install mappings */
1842 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1843 			pte_t pte;
1844 
1845 			if (pfn > max_pfn_mapped)
1846 				max_pfn_mapped = pfn;
1847 
1848 			if (!pte_none(pte_page[pteidx]))
1849 				continue;
1850 
1851 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1852 			pte_page[pteidx] = pte;
1853 		}
1854 	}
1855 
1856 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1857 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1858 
1859 	set_page_prot(pmd, PAGE_KERNEL_RO);
1860 }
1861 #endif
xen_setup_machphys_mapping(void)1862 void __init xen_setup_machphys_mapping(void)
1863 {
1864 	struct xen_machphys_mapping mapping;
1865 
1866 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1867 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1868 		machine_to_phys_nr = mapping.max_mfn + 1;
1869 	} else {
1870 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1871 	}
1872 #ifdef CONFIG_X86_32
1873 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1874 		< machine_to_phys_mapping);
1875 #endif
1876 }
1877 
1878 #ifdef CONFIG_X86_64
convert_pfn_mfn(void * v)1879 static void __init convert_pfn_mfn(void *v)
1880 {
1881 	pte_t *pte = v;
1882 	int i;
1883 
1884 	/* All levels are converted the same way, so just treat them
1885 	   as ptes. */
1886 	for (i = 0; i < PTRS_PER_PTE; i++)
1887 		pte[i] = xen_make_pte(pte[i].pte);
1888 }
check_pt_base(unsigned long * pt_base,unsigned long * pt_end,unsigned long addr)1889 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1890 				 unsigned long addr)
1891 {
1892 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1893 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1894 		clear_page((void *)addr);
1895 		(*pt_base)++;
1896 	}
1897 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1898 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1899 		clear_page((void *)addr);
1900 		(*pt_end)--;
1901 	}
1902 }
1903 /*
1904  * Set up the initial kernel pagetable.
1905  *
1906  * We can construct this by grafting the Xen provided pagetable into
1907  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1908  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1909  * kernel has a physical mapping to start with - but that's enough to
1910  * get __va working.  We need to fill in the rest of the physical
1911  * mapping once some sort of allocator has been set up.  NOTE: for
1912  * PVH, the page tables are native.
1913  */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1914 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1915 {
1916 	pud_t *l3;
1917 	pmd_t *l2;
1918 	unsigned long addr[3];
1919 	unsigned long pt_base, pt_end;
1920 	unsigned i;
1921 
1922 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1923 	 * mappings. Considering that on Xen after the kernel mappings we
1924 	 * have the mappings of some pages that don't exist in pfn space, we
1925 	 * set max_pfn_mapped to the last real pfn mapped. */
1926 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1927 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1928 	else
1929 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1930 
1931 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1932 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1933 
1934 	/* Zap identity mapping */
1935 	init_level4_pgt[0] = __pgd(0);
1936 
1937 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1938 		/* Pre-constructed entries are in pfn, so convert to mfn */
1939 		/* L4[272] -> level3_ident_pgt
1940 		 * L4[511] -> level3_kernel_pgt */
1941 		convert_pfn_mfn(init_level4_pgt);
1942 
1943 		/* L3_i[0] -> level2_ident_pgt */
1944 		convert_pfn_mfn(level3_ident_pgt);
1945 		/* L3_k[510] -> level2_kernel_pgt
1946 		 * L3_k[511] -> level2_fixmap_pgt */
1947 		convert_pfn_mfn(level3_kernel_pgt);
1948 
1949 		/* L3_k[511][506] -> level1_fixmap_pgt */
1950 		convert_pfn_mfn(level2_fixmap_pgt);
1951 	}
1952 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1953 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1954 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1955 
1956 	addr[0] = (unsigned long)pgd;
1957 	addr[1] = (unsigned long)l3;
1958 	addr[2] = (unsigned long)l2;
1959 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1960 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1961 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1962 	 * it will be also modified in the __ka space! (But if you just
1963 	 * modify the PMD table to point to other PTE's or none, then you
1964 	 * are OK - which is what cleanup_highmap does) */
1965 	copy_page(level2_ident_pgt, l2);
1966 	/* Graft it onto L4[511][510] */
1967 	copy_page(level2_kernel_pgt, l2);
1968 
1969 	/* Copy the initial P->M table mappings if necessary. */
1970 	i = pgd_index(xen_start_info->mfn_list);
1971 	if (i && i < pgd_index(__START_KERNEL_map))
1972 		init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1973 
1974 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1975 		/* Make pagetable pieces RO */
1976 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1977 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1978 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1979 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1980 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1981 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1982 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1983 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1984 
1985 		/* Pin down new L4 */
1986 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1987 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1988 
1989 		/* Unpin Xen-provided one */
1990 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1991 
1992 		/*
1993 		 * At this stage there can be no user pgd, and no page
1994 		 * structure to attach it to, so make sure we just set kernel
1995 		 * pgd.
1996 		 */
1997 		xen_mc_batch();
1998 		__xen_write_cr3(true, __pa(init_level4_pgt));
1999 		xen_mc_issue(PARAVIRT_LAZY_CPU);
2000 	} else
2001 		native_write_cr3(__pa(init_level4_pgt));
2002 
2003 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
2004 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
2005 	 * the initial domain. For guests using the toolstack, they are in:
2006 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
2007 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
2008 	 */
2009 	for (i = 0; i < ARRAY_SIZE(addr); i++)
2010 		check_pt_base(&pt_base, &pt_end, addr[i]);
2011 
2012 	/* Our (by three pages) smaller Xen pagetable that we are using */
2013 	xen_pt_base = PFN_PHYS(pt_base);
2014 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2015 	memblock_reserve(xen_pt_base, xen_pt_size);
2016 
2017 	/* Revector the xen_start_info */
2018 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2019 }
2020 
2021 /*
2022  * Read a value from a physical address.
2023  */
xen_read_phys_ulong(phys_addr_t addr)2024 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2025 {
2026 	unsigned long *vaddr;
2027 	unsigned long val;
2028 
2029 	vaddr = early_memremap_ro(addr, sizeof(val));
2030 	val = *vaddr;
2031 	early_memunmap(vaddr, sizeof(val));
2032 	return val;
2033 }
2034 
2035 /*
2036  * Translate a virtual address to a physical one without relying on mapped
2037  * page tables. Don't rely on big pages being aligned in (guest) physical
2038  * space!
2039  */
xen_early_virt_to_phys(unsigned long vaddr)2040 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2041 {
2042 	phys_addr_t pa;
2043 	pgd_t pgd;
2044 	pud_t pud;
2045 	pmd_t pmd;
2046 	pte_t pte;
2047 
2048 	pa = read_cr3();
2049 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2050 						       sizeof(pgd)));
2051 	if (!pgd_present(pgd))
2052 		return 0;
2053 
2054 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2055 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2056 						       sizeof(pud)));
2057 	if (!pud_present(pud))
2058 		return 0;
2059 	pa = pud_val(pud) & PTE_PFN_MASK;
2060 	if (pud_large(pud))
2061 		return pa + (vaddr & ~PUD_MASK);
2062 
2063 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2064 						       sizeof(pmd)));
2065 	if (!pmd_present(pmd))
2066 		return 0;
2067 	pa = pmd_val(pmd) & PTE_PFN_MASK;
2068 	if (pmd_large(pmd))
2069 		return pa + (vaddr & ~PMD_MASK);
2070 
2071 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2072 						       sizeof(pte)));
2073 	if (!pte_present(pte))
2074 		return 0;
2075 	pa = pte_pfn(pte) << PAGE_SHIFT;
2076 
2077 	return pa | (vaddr & ~PAGE_MASK);
2078 }
2079 
2080 /*
2081  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2082  * this area.
2083  */
xen_relocate_p2m(void)2084 void __init xen_relocate_p2m(void)
2085 {
2086 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2087 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2088 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2089 	pte_t *pt;
2090 	pmd_t *pmd;
2091 	pud_t *pud;
2092 	pgd_t *pgd;
2093 	unsigned long *new_p2m;
2094 
2095 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2096 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2097 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2098 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2099 	n_pud = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2100 	n_frames = n_pte + n_pt + n_pmd + n_pud;
2101 
2102 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2103 	if (!new_area) {
2104 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2105 		BUG();
2106 	}
2107 
2108 	/*
2109 	 * Setup the page tables for addressing the new p2m list.
2110 	 * We have asked the hypervisor to map the p2m list at the user address
2111 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2112 	 * address depending on the Xen version.
2113 	 * To avoid any possible virtual address collision, just use
2114 	 * 2 * PUD_SIZE for the new area.
2115 	 */
2116 	pud_phys = new_area;
2117 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2118 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2119 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2120 
2121 	pgd = __va(read_cr3());
2122 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2123 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2124 		pud = early_memremap(pud_phys, PAGE_SIZE);
2125 		clear_page(pud);
2126 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2127 		     idx_pmd++) {
2128 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
2129 			clear_page(pmd);
2130 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2131 			     idx_pt++) {
2132 				pt = early_memremap(pt_phys, PAGE_SIZE);
2133 				clear_page(pt);
2134 				for (idx_pte = 0;
2135 				     idx_pte < min(n_pte, PTRS_PER_PTE);
2136 				     idx_pte++) {
2137 					set_pte(pt + idx_pte,
2138 						pfn_pte(p2m_pfn, PAGE_KERNEL));
2139 					p2m_pfn++;
2140 				}
2141 				n_pte -= PTRS_PER_PTE;
2142 				early_memunmap(pt, PAGE_SIZE);
2143 				make_lowmem_page_readonly(__va(pt_phys));
2144 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2145 						  PFN_DOWN(pt_phys));
2146 				set_pmd(pmd + idx_pt,
2147 					__pmd(_PAGE_TABLE | pt_phys));
2148 				pt_phys += PAGE_SIZE;
2149 			}
2150 			n_pt -= PTRS_PER_PMD;
2151 			early_memunmap(pmd, PAGE_SIZE);
2152 			make_lowmem_page_readonly(__va(pmd_phys));
2153 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2154 					  PFN_DOWN(pmd_phys));
2155 			set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2156 			pmd_phys += PAGE_SIZE;
2157 		}
2158 		n_pmd -= PTRS_PER_PUD;
2159 		early_memunmap(pud, PAGE_SIZE);
2160 		make_lowmem_page_readonly(__va(pud_phys));
2161 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2162 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2163 		pud_phys += PAGE_SIZE;
2164 	}
2165 
2166 	/* Now copy the old p2m info to the new area. */
2167 	memcpy(new_p2m, xen_p2m_addr, size);
2168 	xen_p2m_addr = new_p2m;
2169 
2170 	/* Release the old p2m list and set new list info. */
2171 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2172 	BUG_ON(!p2m_pfn);
2173 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2174 
2175 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2176 		pfn = xen_start_info->first_p2m_pfn;
2177 		pfn_end = xen_start_info->first_p2m_pfn +
2178 			  xen_start_info->nr_p2m_frames;
2179 		set_pgd(pgd + 1, __pgd(0));
2180 	} else {
2181 		pfn = p2m_pfn;
2182 		pfn_end = p2m_pfn_end;
2183 	}
2184 
2185 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2186 	while (pfn < pfn_end) {
2187 		if (pfn == p2m_pfn) {
2188 			pfn = p2m_pfn_end;
2189 			continue;
2190 		}
2191 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2192 		pfn++;
2193 	}
2194 
2195 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2196 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2197 	xen_start_info->nr_p2m_frames = n_frames;
2198 }
2199 
2200 #else	/* !CONFIG_X86_64 */
2201 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2202 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2203 
xen_write_cr3_init(unsigned long cr3)2204 static void __init xen_write_cr3_init(unsigned long cr3)
2205 {
2206 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2207 
2208 	BUG_ON(read_cr3() != __pa(initial_page_table));
2209 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2210 
2211 	/*
2212 	 * We are switching to swapper_pg_dir for the first time (from
2213 	 * initial_page_table) and therefore need to mark that page
2214 	 * read-only and then pin it.
2215 	 *
2216 	 * Xen disallows sharing of kernel PMDs for PAE
2217 	 * guests. Therefore we must copy the kernel PMD from
2218 	 * initial_page_table into a new kernel PMD to be used in
2219 	 * swapper_pg_dir.
2220 	 */
2221 	swapper_kernel_pmd =
2222 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2223 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2224 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2225 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2226 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2227 
2228 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2229 	xen_write_cr3(cr3);
2230 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2231 
2232 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2233 			  PFN_DOWN(__pa(initial_page_table)));
2234 	set_page_prot(initial_page_table, PAGE_KERNEL);
2235 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2236 
2237 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2238 }
2239 
2240 /*
2241  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2242  * not the first page table in the page table pool.
2243  * Iterate through the initial page tables to find the real page table base.
2244  */
xen_find_pt_base(pmd_t * pmd)2245 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2246 {
2247 	phys_addr_t pt_base, paddr;
2248 	unsigned pmdidx;
2249 
2250 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2251 
2252 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2253 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2254 			paddr = m2p(pmd[pmdidx].pmd);
2255 			pt_base = min(pt_base, paddr);
2256 		}
2257 
2258 	return pt_base;
2259 }
2260 
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)2261 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2262 {
2263 	pmd_t *kernel_pmd;
2264 
2265 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2266 
2267 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2268 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2269 
2270 	initial_kernel_pmd =
2271 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2272 
2273 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2274 
2275 	copy_page(initial_kernel_pmd, kernel_pmd);
2276 
2277 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2278 
2279 	copy_page(initial_page_table, pgd);
2280 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2281 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2282 
2283 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2284 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2285 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2286 
2287 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2288 
2289 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2290 			  PFN_DOWN(__pa(initial_page_table)));
2291 	xen_write_cr3(__pa(initial_page_table));
2292 
2293 	memblock_reserve(xen_pt_base, xen_pt_size);
2294 }
2295 #endif	/* CONFIG_X86_64 */
2296 
xen_reserve_special_pages(void)2297 void __init xen_reserve_special_pages(void)
2298 {
2299 	phys_addr_t paddr;
2300 
2301 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2302 	if (xen_start_info->store_mfn) {
2303 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2304 		memblock_reserve(paddr, PAGE_SIZE);
2305 	}
2306 	if (!xen_initial_domain()) {
2307 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2308 		memblock_reserve(paddr, PAGE_SIZE);
2309 	}
2310 }
2311 
xen_pt_check_e820(void)2312 void __init xen_pt_check_e820(void)
2313 {
2314 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2315 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2316 		BUG();
2317 	}
2318 }
2319 
2320 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2321 
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)2322 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2323 {
2324 	pte_t pte;
2325 
2326 	phys >>= PAGE_SHIFT;
2327 
2328 	switch (idx) {
2329 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2330 	case FIX_RO_IDT:
2331 #ifdef CONFIG_X86_32
2332 	case FIX_WP_TEST:
2333 # ifdef CONFIG_HIGHMEM
2334 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2335 # endif
2336 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2337 	case VSYSCALL_PAGE:
2338 #endif
2339 	case FIX_TEXT_POKE0:
2340 	case FIX_TEXT_POKE1:
2341 		/* All local page mappings */
2342 		pte = pfn_pte(phys, prot);
2343 		break;
2344 
2345 #ifdef CONFIG_X86_LOCAL_APIC
2346 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2347 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2348 		break;
2349 #endif
2350 
2351 #ifdef CONFIG_X86_IO_APIC
2352 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2353 		/*
2354 		 * We just don't map the IO APIC - all access is via
2355 		 * hypercalls.  Keep the address in the pte for reference.
2356 		 */
2357 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2358 		break;
2359 #endif
2360 
2361 	case FIX_PARAVIRT_BOOTMAP:
2362 		/* This is an MFN, but it isn't an IO mapping from the
2363 		   IO domain */
2364 		pte = mfn_pte(phys, prot);
2365 		break;
2366 
2367 	default:
2368 		/* By default, set_fixmap is used for hardware mappings */
2369 		pte = mfn_pte(phys, prot);
2370 		break;
2371 	}
2372 
2373 	__native_set_fixmap(idx, pte);
2374 
2375 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2376 	/* Replicate changes to map the vsyscall page into the user
2377 	   pagetable vsyscall mapping. */
2378 	if (idx == VSYSCALL_PAGE) {
2379 		unsigned long vaddr = __fix_to_virt(idx);
2380 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2381 	}
2382 #endif
2383 }
2384 
xen_post_allocator_init(void)2385 static void __init xen_post_allocator_init(void)
2386 {
2387 	if (xen_feature(XENFEAT_auto_translated_physmap))
2388 		return;
2389 
2390 	pv_mmu_ops.set_pte = xen_set_pte;
2391 	pv_mmu_ops.set_pmd = xen_set_pmd;
2392 	pv_mmu_ops.set_pud = xen_set_pud;
2393 #if CONFIG_PGTABLE_LEVELS == 4
2394 	pv_mmu_ops.set_pgd = xen_set_pgd;
2395 #endif
2396 
2397 	/* This will work as long as patching hasn't happened yet
2398 	   (which it hasn't) */
2399 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2400 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2401 	pv_mmu_ops.release_pte = xen_release_pte;
2402 	pv_mmu_ops.release_pmd = xen_release_pmd;
2403 #if CONFIG_PGTABLE_LEVELS == 4
2404 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2405 	pv_mmu_ops.release_pud = xen_release_pud;
2406 #endif
2407 
2408 #ifdef CONFIG_X86_64
2409 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2410 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2411 #endif
2412 	xen_mark_init_mm_pinned();
2413 }
2414 
xen_leave_lazy_mmu(void)2415 static void xen_leave_lazy_mmu(void)
2416 {
2417 	preempt_disable();
2418 	xen_mc_flush();
2419 	paravirt_leave_lazy_mmu();
2420 	preempt_enable();
2421 }
2422 
2423 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2424 	.read_cr2 = xen_read_cr2,
2425 	.write_cr2 = xen_write_cr2,
2426 
2427 	.read_cr3 = xen_read_cr3,
2428 	.write_cr3 = xen_write_cr3_init,
2429 
2430 	.flush_tlb_user = xen_flush_tlb,
2431 	.flush_tlb_kernel = xen_flush_tlb,
2432 	.flush_tlb_single = xen_flush_tlb_single,
2433 	.flush_tlb_others = xen_flush_tlb_others,
2434 
2435 	.pte_update = paravirt_nop,
2436 	.pte_update_defer = paravirt_nop,
2437 
2438 	.pgd_alloc = xen_pgd_alloc,
2439 	.pgd_free = xen_pgd_free,
2440 
2441 	.alloc_pte = xen_alloc_pte_init,
2442 	.release_pte = xen_release_pte_init,
2443 	.alloc_pmd = xen_alloc_pmd_init,
2444 	.release_pmd = xen_release_pmd_init,
2445 
2446 	.set_pte = xen_set_pte_init,
2447 	.set_pte_at = xen_set_pte_at,
2448 	.set_pmd = xen_set_pmd_hyper,
2449 
2450 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2451 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2452 
2453 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2454 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2455 
2456 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2457 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2458 
2459 #ifdef CONFIG_X86_PAE
2460 	.set_pte_atomic = xen_set_pte_atomic,
2461 	.pte_clear = xen_pte_clear,
2462 	.pmd_clear = xen_pmd_clear,
2463 #endif	/* CONFIG_X86_PAE */
2464 	.set_pud = xen_set_pud_hyper,
2465 
2466 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2467 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2468 
2469 #if CONFIG_PGTABLE_LEVELS == 4
2470 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2471 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2472 	.set_pgd = xen_set_pgd_hyper,
2473 
2474 	.alloc_pud = xen_alloc_pmd_init,
2475 	.release_pud = xen_release_pmd_init,
2476 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2477 
2478 	.activate_mm = xen_activate_mm,
2479 	.dup_mmap = xen_dup_mmap,
2480 	.exit_mmap = xen_exit_mmap,
2481 
2482 	.lazy_mode = {
2483 		.enter = paravirt_enter_lazy_mmu,
2484 		.leave = xen_leave_lazy_mmu,
2485 		.flush = paravirt_flush_lazy_mmu,
2486 	},
2487 
2488 	.set_fixmap = xen_set_fixmap,
2489 };
2490 
xen_init_mmu_ops(void)2491 void __init xen_init_mmu_ops(void)
2492 {
2493 	x86_init.paging.pagetable_init = xen_pagetable_init;
2494 
2495 	if (xen_feature(XENFEAT_auto_translated_physmap))
2496 		return;
2497 
2498 	pv_mmu_ops = xen_mmu_ops;
2499 
2500 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2501 }
2502 
2503 /* Protected by xen_reservation_lock. */
2504 #define MAX_CONTIG_ORDER 9 /* 2MB */
2505 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2506 
2507 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2508 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2509 				unsigned long *in_frames,
2510 				unsigned long *out_frames)
2511 {
2512 	int i;
2513 	struct multicall_space mcs;
2514 
2515 	xen_mc_batch();
2516 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2517 		mcs = __xen_mc_entry(0);
2518 
2519 		if (in_frames)
2520 			in_frames[i] = virt_to_mfn(vaddr);
2521 
2522 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2523 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2524 
2525 		if (out_frames)
2526 			out_frames[i] = virt_to_pfn(vaddr);
2527 	}
2528 	xen_mc_issue(0);
2529 }
2530 
2531 /*
2532  * Update the pfn-to-mfn mappings for a virtual address range, either to
2533  * point to an array of mfns, or contiguously from a single starting
2534  * mfn.
2535  */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2536 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2537 				     unsigned long *mfns,
2538 				     unsigned long first_mfn)
2539 {
2540 	unsigned i, limit;
2541 	unsigned long mfn;
2542 
2543 	xen_mc_batch();
2544 
2545 	limit = 1u << order;
2546 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2547 		struct multicall_space mcs;
2548 		unsigned flags;
2549 
2550 		mcs = __xen_mc_entry(0);
2551 		if (mfns)
2552 			mfn = mfns[i];
2553 		else
2554 			mfn = first_mfn + i;
2555 
2556 		if (i < (limit - 1))
2557 			flags = 0;
2558 		else {
2559 			if (order == 0)
2560 				flags = UVMF_INVLPG | UVMF_ALL;
2561 			else
2562 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2563 		}
2564 
2565 		MULTI_update_va_mapping(mcs.mc, vaddr,
2566 				mfn_pte(mfn, PAGE_KERNEL), flags);
2567 
2568 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2569 	}
2570 
2571 	xen_mc_issue(0);
2572 }
2573 
2574 /*
2575  * Perform the hypercall to exchange a region of our pfns to point to
2576  * memory with the required contiguous alignment.  Takes the pfns as
2577  * input, and populates mfns as output.
2578  *
2579  * Returns a success code indicating whether the hypervisor was able to
2580  * satisfy the request or not.
2581  */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2582 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2583 			       unsigned long *pfns_in,
2584 			       unsigned long extents_out,
2585 			       unsigned int order_out,
2586 			       unsigned long *mfns_out,
2587 			       unsigned int address_bits)
2588 {
2589 	long rc;
2590 	int success;
2591 
2592 	struct xen_memory_exchange exchange = {
2593 		.in = {
2594 			.nr_extents   = extents_in,
2595 			.extent_order = order_in,
2596 			.extent_start = pfns_in,
2597 			.domid        = DOMID_SELF
2598 		},
2599 		.out = {
2600 			.nr_extents   = extents_out,
2601 			.extent_order = order_out,
2602 			.extent_start = mfns_out,
2603 			.address_bits = address_bits,
2604 			.domid        = DOMID_SELF
2605 		}
2606 	};
2607 
2608 	BUG_ON(extents_in << order_in != extents_out << order_out);
2609 
2610 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2611 	success = (exchange.nr_exchanged == extents_in);
2612 
2613 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2614 	BUG_ON(success && (rc != 0));
2615 
2616 	return success;
2617 }
2618 
xen_create_contiguous_region(phys_addr_t pstart,unsigned int order,unsigned int address_bits,dma_addr_t * dma_handle)2619 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2620 				 unsigned int address_bits,
2621 				 dma_addr_t *dma_handle)
2622 {
2623 	unsigned long *in_frames = discontig_frames, out_frame;
2624 	unsigned long  flags;
2625 	int            success;
2626 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2627 
2628 	/*
2629 	 * Currently an auto-translated guest will not perform I/O, nor will
2630 	 * it require PAE page directories below 4GB. Therefore any calls to
2631 	 * this function are redundant and can be ignored.
2632 	 */
2633 
2634 	if (xen_feature(XENFEAT_auto_translated_physmap))
2635 		return 0;
2636 
2637 	if (unlikely(order > MAX_CONTIG_ORDER))
2638 		return -ENOMEM;
2639 
2640 	memset((void *) vstart, 0, PAGE_SIZE << order);
2641 
2642 	spin_lock_irqsave(&xen_reservation_lock, flags);
2643 
2644 	/* 1. Zap current PTEs, remembering MFNs. */
2645 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2646 
2647 	/* 2. Get a new contiguous memory extent. */
2648 	out_frame = virt_to_pfn(vstart);
2649 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2650 				      1, order, &out_frame,
2651 				      address_bits);
2652 
2653 	/* 3. Map the new extent in place of old pages. */
2654 	if (success)
2655 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2656 	else
2657 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2658 
2659 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2660 
2661 	*dma_handle = virt_to_machine(vstart).maddr;
2662 	return success ? 0 : -ENOMEM;
2663 }
2664 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2665 
xen_destroy_contiguous_region(phys_addr_t pstart,unsigned int order)2666 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2667 {
2668 	unsigned long *out_frames = discontig_frames, in_frame;
2669 	unsigned long  flags;
2670 	int success;
2671 	unsigned long vstart;
2672 
2673 	if (xen_feature(XENFEAT_auto_translated_physmap))
2674 		return;
2675 
2676 	if (unlikely(order > MAX_CONTIG_ORDER))
2677 		return;
2678 
2679 	vstart = (unsigned long)phys_to_virt(pstart);
2680 	memset((void *) vstart, 0, PAGE_SIZE << order);
2681 
2682 	spin_lock_irqsave(&xen_reservation_lock, flags);
2683 
2684 	/* 1. Find start MFN of contiguous extent. */
2685 	in_frame = virt_to_mfn(vstart);
2686 
2687 	/* 2. Zap current PTEs. */
2688 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2689 
2690 	/* 3. Do the exchange for non-contiguous MFNs. */
2691 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2692 					0, out_frames, 0);
2693 
2694 	/* 4. Map new pages in place of old pages. */
2695 	if (success)
2696 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2697 	else
2698 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2699 
2700 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2701 }
2702 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2703 
2704 #ifdef CONFIG_XEN_PVHVM
2705 #ifdef CONFIG_PROC_VMCORE
2706 /*
2707  * This function is used in two contexts:
2708  * - the kdump kernel has to check whether a pfn of the crashed kernel
2709  *   was a ballooned page. vmcore is using this function to decide
2710  *   whether to access a pfn of the crashed kernel.
2711  * - the kexec kernel has to check whether a pfn was ballooned by the
2712  *   previous kernel. If the pfn is ballooned, handle it properly.
2713  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2714  * handle the pfn special in this case.
2715  */
xen_oldmem_pfn_is_ram(unsigned long pfn)2716 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2717 {
2718 	struct xen_hvm_get_mem_type a = {
2719 		.domid = DOMID_SELF,
2720 		.pfn = pfn,
2721 	};
2722 	int ram;
2723 
2724 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2725 		return -ENXIO;
2726 
2727 	switch (a.mem_type) {
2728 		case HVMMEM_mmio_dm:
2729 			ram = 0;
2730 			break;
2731 		case HVMMEM_ram_rw:
2732 		case HVMMEM_ram_ro:
2733 		default:
2734 			ram = 1;
2735 			break;
2736 	}
2737 
2738 	return ram;
2739 }
2740 #endif
2741 
xen_hvm_exit_mmap(struct mm_struct * mm)2742 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2743 {
2744 	struct xen_hvm_pagetable_dying a;
2745 	int rc;
2746 
2747 	a.domid = DOMID_SELF;
2748 	a.gpa = __pa(mm->pgd);
2749 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2750 	WARN_ON_ONCE(rc < 0);
2751 }
2752 
is_pagetable_dying_supported(void)2753 static int is_pagetable_dying_supported(void)
2754 {
2755 	struct xen_hvm_pagetable_dying a;
2756 	int rc = 0;
2757 
2758 	a.domid = DOMID_SELF;
2759 	a.gpa = 0x00;
2760 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2761 	if (rc < 0) {
2762 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2763 		return 0;
2764 	}
2765 	return 1;
2766 }
2767 
xen_hvm_init_mmu_ops(void)2768 void __init xen_hvm_init_mmu_ops(void)
2769 {
2770 	if (is_pagetable_dying_supported())
2771 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2772 #ifdef CONFIG_PROC_VMCORE
2773 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2774 #endif
2775 }
2776 #endif
2777 
2778 #define REMAP_BATCH_SIZE 16
2779 
2780 struct remap_data {
2781 	xen_pfn_t *mfn;
2782 	bool contiguous;
2783 	pgprot_t prot;
2784 	struct mmu_update *mmu_update;
2785 };
2786 
remap_area_mfn_pte_fn(pte_t * ptep,pgtable_t token,unsigned long addr,void * data)2787 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2788 				 unsigned long addr, void *data)
2789 {
2790 	struct remap_data *rmd = data;
2791 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->mfn, rmd->prot));
2792 
2793 	/* If we have a contigious range, just update the mfn itself,
2794 	   else update pointer to be "next mfn". */
2795 	if (rmd->contiguous)
2796 		(*rmd->mfn)++;
2797 	else
2798 		rmd->mfn++;
2799 
2800 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2801 	rmd->mmu_update->val = pte_val_ma(pte);
2802 	rmd->mmu_update++;
2803 
2804 	return 0;
2805 }
2806 
do_remap_gfn(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t * gfn,int nr,int * err_ptr,pgprot_t prot,unsigned domid,struct page ** pages)2807 static int do_remap_gfn(struct vm_area_struct *vma,
2808 			unsigned long addr,
2809 			xen_pfn_t *gfn, int nr,
2810 			int *err_ptr, pgprot_t prot,
2811 			unsigned domid,
2812 			struct page **pages)
2813 {
2814 	int err = 0;
2815 	struct remap_data rmd;
2816 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2817 	unsigned long range;
2818 	int mapped = 0;
2819 
2820 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2821 
2822 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2823 #ifdef CONFIG_XEN_PVH
2824 		/* We need to update the local page tables and the xen HAP */
2825 		return xen_xlate_remap_gfn_array(vma, addr, gfn, nr, err_ptr,
2826 						 prot, domid, pages);
2827 #else
2828 		return -EINVAL;
2829 #endif
2830         }
2831 
2832 	rmd.mfn = gfn;
2833 	rmd.prot = prot;
2834 	/* We use the err_ptr to indicate if there we are doing a contigious
2835 	 * mapping or a discontigious mapping. */
2836 	rmd.contiguous = !err_ptr;
2837 
2838 	while (nr) {
2839 		int index = 0;
2840 		int done = 0;
2841 		int batch = min(REMAP_BATCH_SIZE, nr);
2842 		int batch_left = batch;
2843 		range = (unsigned long)batch << PAGE_SHIFT;
2844 
2845 		rmd.mmu_update = mmu_update;
2846 		err = apply_to_page_range(vma->vm_mm, addr, range,
2847 					  remap_area_mfn_pte_fn, &rmd);
2848 		if (err)
2849 			goto out;
2850 
2851 		/* We record the error for each page that gives an error, but
2852 		 * continue mapping until the whole set is done */
2853 		do {
2854 			int i;
2855 
2856 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2857 						    batch_left, &done, domid);
2858 
2859 			/*
2860 			 * @err_ptr may be the same buffer as @gfn, so
2861 			 * only clear it after each chunk of @gfn is
2862 			 * used.
2863 			 */
2864 			if (err_ptr) {
2865 				for (i = index; i < index + done; i++)
2866 					err_ptr[i] = 0;
2867 			}
2868 			if (err < 0) {
2869 				if (!err_ptr)
2870 					goto out;
2871 				err_ptr[i] = err;
2872 				done++; /* Skip failed frame. */
2873 			} else
2874 				mapped += done;
2875 			batch_left -= done;
2876 			index += done;
2877 		} while (batch_left);
2878 
2879 		nr -= batch;
2880 		addr += range;
2881 		if (err_ptr)
2882 			err_ptr += batch;
2883 		cond_resched();
2884 	}
2885 out:
2886 
2887 	xen_flush_tlb_all();
2888 
2889 	return err < 0 ? err : mapped;
2890 }
2891 
xen_remap_domain_gfn_range(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t gfn,int nr,pgprot_t prot,unsigned domid,struct page ** pages)2892 int xen_remap_domain_gfn_range(struct vm_area_struct *vma,
2893 			       unsigned long addr,
2894 			       xen_pfn_t gfn, int nr,
2895 			       pgprot_t prot, unsigned domid,
2896 			       struct page **pages)
2897 {
2898 	return do_remap_gfn(vma, addr, &gfn, nr, NULL, prot, domid, pages);
2899 }
2900 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_range);
2901 
xen_remap_domain_gfn_array(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t * gfn,int nr,int * err_ptr,pgprot_t prot,unsigned domid,struct page ** pages)2902 int xen_remap_domain_gfn_array(struct vm_area_struct *vma,
2903 			       unsigned long addr,
2904 			       xen_pfn_t *gfn, int nr,
2905 			       int *err_ptr, pgprot_t prot,
2906 			       unsigned domid, struct page **pages)
2907 {
2908 	/* We BUG_ON because it's a programmer error to pass a NULL err_ptr,
2909 	 * and the consequences later is quite hard to detect what the actual
2910 	 * cause of "wrong memory was mapped in".
2911 	 */
2912 	BUG_ON(err_ptr == NULL);
2913 	return do_remap_gfn(vma, addr, gfn, nr, err_ptr, prot, domid, pages);
2914 }
2915 EXPORT_SYMBOL_GPL(xen_remap_domain_gfn_array);
2916 
2917 
2918 /* Returns: 0 success */
xen_unmap_domain_gfn_range(struct vm_area_struct * vma,int numpgs,struct page ** pages)2919 int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
2920 			       int numpgs, struct page **pages)
2921 {
2922 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2923 		return 0;
2924 
2925 #ifdef CONFIG_XEN_PVH
2926 	return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2927 #else
2928 	return -EINVAL;
2929 #endif
2930 }
2931 EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
2932