1 /******************************************************************************
2 * Client-facing interface for the Xenbus driver. In other words, the
3 * interface between the Xenbus and the device-specific code, be it the
4 * frontend or the backend of that driver.
5 *
6 * Copyright (C) 2005 XenSource Ltd
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
31 */
32
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49
50 #include "xenbus_probe.h"
51
52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53
54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55
56 struct xenbus_map_node {
57 struct list_head next;
58 union {
59 struct {
60 struct vm_struct *area;
61 } pv;
62 struct {
63 struct page *pages[XENBUS_MAX_RING_PAGES];
64 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 void *addr;
66 } hvm;
67 };
68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 unsigned int nr_handles;
70 };
71
72 static DEFINE_SPINLOCK(xenbus_valloc_lock);
73 static LIST_HEAD(xenbus_valloc_pages);
74
75 struct xenbus_ring_ops {
76 int (*map)(struct xenbus_device *dev,
77 grant_ref_t *gnt_refs, unsigned int nr_grefs,
78 void **vaddr);
79 int (*unmap)(struct xenbus_device *dev, void *vaddr);
80 };
81
82 static const struct xenbus_ring_ops *ring_ops __read_mostly;
83
xenbus_strstate(enum xenbus_state state)84 const char *xenbus_strstate(enum xenbus_state state)
85 {
86 static const char *const name[] = {
87 [ XenbusStateUnknown ] = "Unknown",
88 [ XenbusStateInitialising ] = "Initialising",
89 [ XenbusStateInitWait ] = "InitWait",
90 [ XenbusStateInitialised ] = "Initialised",
91 [ XenbusStateConnected ] = "Connected",
92 [ XenbusStateClosing ] = "Closing",
93 [ XenbusStateClosed ] = "Closed",
94 [XenbusStateReconfiguring] = "Reconfiguring",
95 [XenbusStateReconfigured] = "Reconfigured",
96 };
97 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
98 }
99 EXPORT_SYMBOL_GPL(xenbus_strstate);
100
101 /**
102 * xenbus_watch_path - register a watch
103 * @dev: xenbus device
104 * @path: path to watch
105 * @watch: watch to register
106 * @callback: callback to register
107 *
108 * Register a @watch on the given path, using the given xenbus_watch structure
109 * for storage, and the given @callback function as the callback. Return 0 on
110 * success, or -errno on error. On success, the given @path will be saved as
111 * @watch->node, and remains the caller's to free. On error, @watch->node will
112 * be NULL, the device will switch to %XenbusStateClosing, and the error will
113 * be saved in the store.
114 */
xenbus_watch_path(struct xenbus_device * dev,const char * path,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char **,unsigned int),void (* callback)(struct xenbus_watch *,const char **,unsigned int))115 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
116 struct xenbus_watch *watch,
117 bool (*will_handle)(struct xenbus_watch *,
118 const char **, unsigned int),
119 void (*callback)(struct xenbus_watch *,
120 const char **, unsigned int))
121 {
122 int err;
123
124 watch->node = path;
125 watch->will_handle = will_handle;
126 watch->callback = callback;
127
128 err = register_xenbus_watch(watch);
129
130 if (err) {
131 watch->node = NULL;
132 watch->will_handle = NULL;
133 watch->callback = NULL;
134 xenbus_dev_fatal(dev, err, "adding watch on %s", path);
135 }
136
137 return err;
138 }
139 EXPORT_SYMBOL_GPL(xenbus_watch_path);
140
141
142 /**
143 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
144 * @dev: xenbus device
145 * @watch: watch to register
146 * @callback: callback to register
147 * @pathfmt: format of path to watch
148 *
149 * Register a watch on the given @path, using the given xenbus_watch
150 * structure for storage, and the given @callback function as the callback.
151 * Return 0 on success, or -errno on error. On success, the watched path
152 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
153 * kfree(). On error, watch->node will be NULL, so the caller has nothing to
154 * free, the device will switch to %XenbusStateClosing, and the error will be
155 * saved in the store.
156 */
xenbus_watch_pathfmt(struct xenbus_device * dev,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char **,unsigned int),void (* callback)(struct xenbus_watch *,const char **,unsigned int),const char * pathfmt,...)157 int xenbus_watch_pathfmt(struct xenbus_device *dev,
158 struct xenbus_watch *watch,
159 bool (*will_handle)(struct xenbus_watch *,
160 const char **, unsigned int),
161 void (*callback)(struct xenbus_watch *,
162 const char **, unsigned int),
163 const char *pathfmt, ...)
164 {
165 int err;
166 va_list ap;
167 char *path;
168
169 va_start(ap, pathfmt);
170 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
171 va_end(ap);
172
173 if (!path) {
174 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
175 return -ENOMEM;
176 }
177 err = xenbus_watch_path(dev, path, watch, will_handle, callback);
178
179 if (err)
180 kfree(path);
181 return err;
182 }
183 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
184
185 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
186 const char *, ...);
187
188 static int
__xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state,int depth)189 __xenbus_switch_state(struct xenbus_device *dev,
190 enum xenbus_state state, int depth)
191 {
192 /* We check whether the state is currently set to the given value, and
193 if not, then the state is set. We don't want to unconditionally
194 write the given state, because we don't want to fire watches
195 unnecessarily. Furthermore, if the node has gone, we don't write
196 to it, as the device will be tearing down, and we don't want to
197 resurrect that directory.
198
199 Note that, because of this cached value of our state, this
200 function will not take a caller's Xenstore transaction
201 (something it was trying to in the past) because dev->state
202 would not get reset if the transaction was aborted.
203 */
204
205 struct xenbus_transaction xbt;
206 int current_state;
207 int err, abort;
208
209 if (state == dev->state)
210 return 0;
211
212 again:
213 abort = 1;
214
215 err = xenbus_transaction_start(&xbt);
216 if (err) {
217 xenbus_switch_fatal(dev, depth, err, "starting transaction");
218 return 0;
219 }
220
221 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state);
222 if (err != 1)
223 goto abort;
224
225 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
226 if (err) {
227 xenbus_switch_fatal(dev, depth, err, "writing new state");
228 goto abort;
229 }
230
231 abort = 0;
232 abort:
233 err = xenbus_transaction_end(xbt, abort);
234 if (err) {
235 if (err == -EAGAIN && !abort)
236 goto again;
237 xenbus_switch_fatal(dev, depth, err, "ending transaction");
238 } else
239 dev->state = state;
240
241 return 0;
242 }
243
244 /**
245 * xenbus_switch_state
246 * @dev: xenbus device
247 * @state: new state
248 *
249 * Advertise in the store a change of the given driver to the given new_state.
250 * Return 0 on success, or -errno on error. On error, the device will switch
251 * to XenbusStateClosing, and the error will be saved in the store.
252 */
xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state)253 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
254 {
255 return __xenbus_switch_state(dev, state, 0);
256 }
257
258 EXPORT_SYMBOL_GPL(xenbus_switch_state);
259
xenbus_frontend_closed(struct xenbus_device * dev)260 int xenbus_frontend_closed(struct xenbus_device *dev)
261 {
262 xenbus_switch_state(dev, XenbusStateClosed);
263 complete(&dev->down);
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
267
268 /**
269 * Return the path to the error node for the given device, or NULL on failure.
270 * If the value returned is non-NULL, then it is the caller's to kfree.
271 */
error_path(struct xenbus_device * dev)272 static char *error_path(struct xenbus_device *dev)
273 {
274 return kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
275 }
276
277
xenbus_va_dev_error(struct xenbus_device * dev,int err,const char * fmt,va_list ap)278 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
279 const char *fmt, va_list ap)
280 {
281 unsigned int len;
282 char *printf_buffer = NULL;
283 char *path_buffer = NULL;
284
285 #define PRINTF_BUFFER_SIZE 4096
286 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
287 if (printf_buffer == NULL)
288 goto fail;
289
290 len = sprintf(printf_buffer, "%i ", -err);
291 vsnprintf(printf_buffer+len, PRINTF_BUFFER_SIZE-len, fmt, ap);
292
293 dev_err(&dev->dev, "%s\n", printf_buffer);
294
295 path_buffer = error_path(dev);
296
297 if (path_buffer == NULL) {
298 dev_err(&dev->dev, "failed to write error node for %s (%s)\n",
299 dev->nodename, printf_buffer);
300 goto fail;
301 }
302
303 if (xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer) != 0) {
304 dev_err(&dev->dev, "failed to write error node for %s (%s)\n",
305 dev->nodename, printf_buffer);
306 goto fail;
307 }
308
309 fail:
310 kfree(printf_buffer);
311 kfree(path_buffer);
312 }
313
314
315 /**
316 * xenbus_dev_error
317 * @dev: xenbus device
318 * @err: error to report
319 * @fmt: error message format
320 *
321 * Report the given negative errno into the store, along with the given
322 * formatted message.
323 */
xenbus_dev_error(struct xenbus_device * dev,int err,const char * fmt,...)324 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
325 {
326 va_list ap;
327
328 va_start(ap, fmt);
329 xenbus_va_dev_error(dev, err, fmt, ap);
330 va_end(ap);
331 }
332 EXPORT_SYMBOL_GPL(xenbus_dev_error);
333
334 /**
335 * xenbus_dev_fatal
336 * @dev: xenbus device
337 * @err: error to report
338 * @fmt: error message format
339 *
340 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
341 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
342 * closedown of this driver and its peer.
343 */
344
xenbus_dev_fatal(struct xenbus_device * dev,int err,const char * fmt,...)345 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
346 {
347 va_list ap;
348
349 va_start(ap, fmt);
350 xenbus_va_dev_error(dev, err, fmt, ap);
351 va_end(ap);
352
353 xenbus_switch_state(dev, XenbusStateClosing);
354 }
355 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
356
357 /**
358 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
359 * avoiding recursion within xenbus_switch_state.
360 */
xenbus_switch_fatal(struct xenbus_device * dev,int depth,int err,const char * fmt,...)361 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
362 const char *fmt, ...)
363 {
364 va_list ap;
365
366 va_start(ap, fmt);
367 xenbus_va_dev_error(dev, err, fmt, ap);
368 va_end(ap);
369
370 if (!depth)
371 __xenbus_switch_state(dev, XenbusStateClosing, 1);
372 }
373
374 /**
375 * xenbus_grant_ring
376 * @dev: xenbus device
377 * @vaddr: starting virtual address of the ring
378 * @nr_pages: number of pages to be granted
379 * @grefs: grant reference array to be filled in
380 *
381 * Grant access to the given @vaddr to the peer of the given device.
382 * Then fill in @grefs with grant references. Return 0 on success, or
383 * -errno on error. On error, the device will switch to
384 * XenbusStateClosing, and the error will be saved in the store.
385 */
xenbus_grant_ring(struct xenbus_device * dev,void * vaddr,unsigned int nr_pages,grant_ref_t * grefs)386 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
387 unsigned int nr_pages, grant_ref_t *grefs)
388 {
389 int err;
390 int i, j;
391
392 for (i = 0; i < nr_pages; i++) {
393 unsigned long gfn;
394
395 if (is_vmalloc_addr(vaddr))
396 gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr));
397 else
398 gfn = virt_to_gfn(vaddr);
399
400 err = gnttab_grant_foreign_access(dev->otherend_id, gfn, 0);
401 if (err < 0) {
402 xenbus_dev_fatal(dev, err,
403 "granting access to ring page");
404 goto fail;
405 }
406 grefs[i] = err;
407
408 vaddr = vaddr + XEN_PAGE_SIZE;
409 }
410
411 return 0;
412
413 fail:
414 for (j = 0; j < i; j++)
415 gnttab_end_foreign_access_ref(grefs[j], 0);
416 return err;
417 }
418 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
419
420
421 /**
422 * Allocate an event channel for the given xenbus_device, assigning the newly
423 * created local port to *port. Return 0 on success, or -errno on error. On
424 * error, the device will switch to XenbusStateClosing, and the error will be
425 * saved in the store.
426 */
xenbus_alloc_evtchn(struct xenbus_device * dev,int * port)427 int xenbus_alloc_evtchn(struct xenbus_device *dev, int *port)
428 {
429 struct evtchn_alloc_unbound alloc_unbound;
430 int err;
431
432 alloc_unbound.dom = DOMID_SELF;
433 alloc_unbound.remote_dom = dev->otherend_id;
434
435 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
436 &alloc_unbound);
437 if (err)
438 xenbus_dev_fatal(dev, err, "allocating event channel");
439 else
440 *port = alloc_unbound.port;
441
442 return err;
443 }
444 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
445
446
447 /**
448 * Free an existing event channel. Returns 0 on success or -errno on error.
449 */
xenbus_free_evtchn(struct xenbus_device * dev,int port)450 int xenbus_free_evtchn(struct xenbus_device *dev, int port)
451 {
452 struct evtchn_close close;
453 int err;
454
455 close.port = port;
456
457 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
458 if (err)
459 xenbus_dev_error(dev, err, "freeing event channel %d", port);
460
461 return err;
462 }
463 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
464
465
466 /**
467 * xenbus_map_ring_valloc
468 * @dev: xenbus device
469 * @gnt_refs: grant reference array
470 * @nr_grefs: number of grant references
471 * @vaddr: pointer to address to be filled out by mapping
472 *
473 * Map @nr_grefs pages of memory into this domain from another
474 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs
475 * pages of virtual address space, maps the pages to that address, and
476 * sets *vaddr to that address. Returns 0 on success, and GNTST_*
477 * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on
478 * error. If an error is returned, device will switch to
479 * XenbusStateClosing and the error message will be saved in XenStore.
480 */
xenbus_map_ring_valloc(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)481 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
482 unsigned int nr_grefs, void **vaddr)
483 {
484 int err;
485
486 err = ring_ops->map(dev, gnt_refs, nr_grefs, vaddr);
487 /* Some hypervisors are buggy and can return 1. */
488 if (err > 0)
489 err = GNTST_general_error;
490
491 return err;
492 }
493 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
494
495 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
496 * long), e.g. 32-on-64. Caller is responsible for preparing the
497 * right array to feed into this function */
__xenbus_map_ring(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,grant_handle_t * handles,phys_addr_t * addrs,unsigned int flags,bool * leaked)498 static int __xenbus_map_ring(struct xenbus_device *dev,
499 grant_ref_t *gnt_refs,
500 unsigned int nr_grefs,
501 grant_handle_t *handles,
502 phys_addr_t *addrs,
503 unsigned int flags,
504 bool *leaked)
505 {
506 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
507 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
508 int i, j;
509 int err = GNTST_okay;
510
511 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
512 return -EINVAL;
513
514 for (i = 0; i < nr_grefs; i++) {
515 memset(&map[i], 0, sizeof(map[i]));
516 gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i],
517 dev->otherend_id);
518 handles[i] = INVALID_GRANT_HANDLE;
519 }
520
521 gnttab_batch_map(map, i);
522
523 for (i = 0; i < nr_grefs; i++) {
524 if (map[i].status != GNTST_okay) {
525 err = map[i].status;
526 xenbus_dev_fatal(dev, map[i].status,
527 "mapping in shared page %d from domain %d",
528 gnt_refs[i], dev->otherend_id);
529 goto fail;
530 } else
531 handles[i] = map[i].handle;
532 }
533
534 return GNTST_okay;
535
536 fail:
537 for (i = j = 0; i < nr_grefs; i++) {
538 if (handles[i] != INVALID_GRANT_HANDLE) {
539 memset(&unmap[j], 0, sizeof(unmap[j]));
540 gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i],
541 GNTMAP_host_map, handles[i]);
542 j++;
543 }
544 }
545
546 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j))
547 BUG();
548
549 *leaked = false;
550 for (i = 0; i < j; i++) {
551 if (unmap[i].status != GNTST_okay) {
552 *leaked = true;
553 break;
554 }
555 }
556
557 return err;
558 }
559
xenbus_map_ring_valloc_pv(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)560 static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev,
561 grant_ref_t *gnt_refs,
562 unsigned int nr_grefs,
563 void **vaddr)
564 {
565 struct xenbus_map_node *node;
566 struct vm_struct *area;
567 pte_t *ptes[XENBUS_MAX_RING_GRANTS];
568 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
569 int err = GNTST_okay;
570 int i;
571 bool leaked;
572
573 *vaddr = NULL;
574
575 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
576 return -EINVAL;
577
578 node = kzalloc(sizeof(*node), GFP_KERNEL);
579 if (!node)
580 return -ENOMEM;
581
582 area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes);
583 if (!area) {
584 kfree(node);
585 return -ENOMEM;
586 }
587
588 for (i = 0; i < nr_grefs; i++)
589 phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr;
590
591 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
592 phys_addrs,
593 GNTMAP_host_map | GNTMAP_contains_pte,
594 &leaked);
595 if (err)
596 goto failed;
597
598 node->nr_handles = nr_grefs;
599 node->pv.area = area;
600
601 spin_lock(&xenbus_valloc_lock);
602 list_add(&node->next, &xenbus_valloc_pages);
603 spin_unlock(&xenbus_valloc_lock);
604
605 *vaddr = area->addr;
606 return 0;
607
608 failed:
609 if (!leaked)
610 free_vm_area(area);
611 else
612 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
613
614 kfree(node);
615 return err;
616 }
617
618 struct map_ring_valloc_hvm
619 {
620 unsigned int idx;
621
622 /* Why do we need two arrays? See comment of __xenbus_map_ring */
623 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
624 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
625 };
626
xenbus_map_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)627 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
628 unsigned int goffset,
629 unsigned int len,
630 void *data)
631 {
632 struct map_ring_valloc_hvm *info = data;
633 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
634
635 info->phys_addrs[info->idx] = vaddr;
636 info->addrs[info->idx] = vaddr;
637
638 info->idx++;
639 }
640
xenbus_map_ring_valloc_hvm(struct xenbus_device * dev,grant_ref_t * gnt_ref,unsigned int nr_grefs,void ** vaddr)641 static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev,
642 grant_ref_t *gnt_ref,
643 unsigned int nr_grefs,
644 void **vaddr)
645 {
646 struct xenbus_map_node *node;
647 int err;
648 void *addr;
649 bool leaked = false;
650 struct map_ring_valloc_hvm info = {
651 .idx = 0,
652 };
653 unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
654
655 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
656 return -EINVAL;
657
658 *vaddr = NULL;
659
660 node = kzalloc(sizeof(*node), GFP_KERNEL);
661 if (!node)
662 return -ENOMEM;
663
664 err = alloc_xenballooned_pages(nr_pages, node->hvm.pages);
665 if (err)
666 goto out_err;
667
668 gnttab_foreach_grant(node->hvm.pages, nr_grefs,
669 xenbus_map_ring_setup_grant_hvm,
670 &info);
671
672 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
673 info.phys_addrs, GNTMAP_host_map, &leaked);
674 node->nr_handles = nr_grefs;
675
676 if (err)
677 goto out_free_ballooned_pages;
678
679 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
680 PAGE_KERNEL);
681 if (!addr) {
682 err = -ENOMEM;
683 goto out_xenbus_unmap_ring;
684 }
685
686 node->hvm.addr = addr;
687
688 spin_lock(&xenbus_valloc_lock);
689 list_add(&node->next, &xenbus_valloc_pages);
690 spin_unlock(&xenbus_valloc_lock);
691
692 *vaddr = addr;
693 return 0;
694
695 out_xenbus_unmap_ring:
696 if (!leaked)
697 xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs);
698 else
699 pr_alert("leaking %p size %u page(s)",
700 addr, nr_pages);
701 out_free_ballooned_pages:
702 if (!leaked)
703 free_xenballooned_pages(nr_pages, node->hvm.pages);
704 out_err:
705 kfree(node);
706 return err;
707 }
708
709
710 /**
711 * xenbus_map_ring
712 * @dev: xenbus device
713 * @gnt_refs: grant reference array
714 * @nr_grefs: number of grant reference
715 * @handles: pointer to grant handle to be filled
716 * @vaddrs: addresses to be mapped to
717 * @leaked: fail to clean up a failed map, caller should not free vaddr
718 *
719 * Map pages of memory into this domain from another domain's grant table.
720 * xenbus_map_ring does not allocate the virtual address space (you must do
721 * this yourself!). It only maps in the pages to the specified address.
722 * Returns 0 on success, and GNTST_* (see xen/include/interface/grant_table.h)
723 * or -ENOMEM / -EINVAL on error. If an error is returned, device will switch to
724 * XenbusStateClosing and the first error message will be saved in XenStore.
725 * Further more if we fail to map the ring, caller should check @leaked.
726 * If @leaked is not zero it means xenbus_map_ring fails to clean up, caller
727 * should not free the address space of @vaddr.
728 */
xenbus_map_ring(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,grant_handle_t * handles,unsigned long * vaddrs,bool * leaked)729 int xenbus_map_ring(struct xenbus_device *dev, grant_ref_t *gnt_refs,
730 unsigned int nr_grefs, grant_handle_t *handles,
731 unsigned long *vaddrs, bool *leaked)
732 {
733 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
734 int i;
735
736 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
737 return -EINVAL;
738
739 for (i = 0; i < nr_grefs; i++)
740 phys_addrs[i] = (unsigned long)vaddrs[i];
741
742 return __xenbus_map_ring(dev, gnt_refs, nr_grefs, handles,
743 phys_addrs, GNTMAP_host_map, leaked);
744 }
745 EXPORT_SYMBOL_GPL(xenbus_map_ring);
746
747
748 /**
749 * xenbus_unmap_ring_vfree
750 * @dev: xenbus device
751 * @vaddr: addr to unmap
752 *
753 * Based on Rusty Russell's skeleton driver's unmap_page.
754 * Unmap a page of memory in this domain that was imported from another domain.
755 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
756 * xenbus_map_ring_valloc (it will free the virtual address space).
757 * Returns 0 on success and returns GNTST_* on error
758 * (see xen/include/interface/grant_table.h).
759 */
xenbus_unmap_ring_vfree(struct xenbus_device * dev,void * vaddr)760 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
761 {
762 return ring_ops->unmap(dev, vaddr);
763 }
764 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
765
xenbus_unmap_ring_vfree_pv(struct xenbus_device * dev,void * vaddr)766 static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr)
767 {
768 struct xenbus_map_node *node;
769 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
770 unsigned int level;
771 int i;
772 bool leaked = false;
773 int err;
774
775 spin_lock(&xenbus_valloc_lock);
776 list_for_each_entry(node, &xenbus_valloc_pages, next) {
777 if (node->pv.area->addr == vaddr) {
778 list_del(&node->next);
779 goto found;
780 }
781 }
782 node = NULL;
783 found:
784 spin_unlock(&xenbus_valloc_lock);
785
786 if (!node) {
787 xenbus_dev_error(dev, -ENOENT,
788 "can't find mapped virtual address %p", vaddr);
789 return GNTST_bad_virt_addr;
790 }
791
792 for (i = 0; i < node->nr_handles; i++) {
793 unsigned long addr;
794
795 memset(&unmap[i], 0, sizeof(unmap[i]));
796 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
797 unmap[i].host_addr = arbitrary_virt_to_machine(
798 lookup_address(addr, &level)).maddr;
799 unmap[i].dev_bus_addr = 0;
800 unmap[i].handle = node->handles[i];
801 }
802
803 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
804 BUG();
805
806 err = GNTST_okay;
807 leaked = false;
808 for (i = 0; i < node->nr_handles; i++) {
809 if (unmap[i].status != GNTST_okay) {
810 leaked = true;
811 xenbus_dev_error(dev, unmap[i].status,
812 "unmapping page at handle %d error %d",
813 node->handles[i], unmap[i].status);
814 err = unmap[i].status;
815 break;
816 }
817 }
818
819 if (!leaked)
820 free_vm_area(node->pv.area);
821 else
822 pr_alert("leaking VM area %p size %u page(s)",
823 node->pv.area, node->nr_handles);
824
825 kfree(node);
826 return err;
827 }
828
829 struct unmap_ring_vfree_hvm
830 {
831 unsigned int idx;
832 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
833 };
834
xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)835 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
836 unsigned int goffset,
837 unsigned int len,
838 void *data)
839 {
840 struct unmap_ring_vfree_hvm *info = data;
841
842 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
843
844 info->idx++;
845 }
846
xenbus_unmap_ring_vfree_hvm(struct xenbus_device * dev,void * vaddr)847 static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr)
848 {
849 int rv;
850 struct xenbus_map_node *node;
851 void *addr;
852 struct unmap_ring_vfree_hvm info = {
853 .idx = 0,
854 };
855 unsigned int nr_pages;
856
857 spin_lock(&xenbus_valloc_lock);
858 list_for_each_entry(node, &xenbus_valloc_pages, next) {
859 addr = node->hvm.addr;
860 if (addr == vaddr) {
861 list_del(&node->next);
862 goto found;
863 }
864 }
865 node = addr = NULL;
866 found:
867 spin_unlock(&xenbus_valloc_lock);
868
869 if (!node) {
870 xenbus_dev_error(dev, -ENOENT,
871 "can't find mapped virtual address %p", vaddr);
872 return GNTST_bad_virt_addr;
873 }
874
875 nr_pages = XENBUS_PAGES(node->nr_handles);
876
877 gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
878 xenbus_unmap_ring_setup_grant_hvm,
879 &info);
880
881 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
882 info.addrs);
883 if (!rv) {
884 vunmap(vaddr);
885 free_xenballooned_pages(nr_pages, node->hvm.pages);
886 }
887 else
888 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
889
890 kfree(node);
891 return rv;
892 }
893
894 /**
895 * xenbus_unmap_ring
896 * @dev: xenbus device
897 * @handles: grant handle array
898 * @nr_handles: number of handles in the array
899 * @vaddrs: addresses to unmap
900 *
901 * Unmap memory in this domain that was imported from another domain.
902 * Returns 0 on success and returns GNTST_* on error
903 * (see xen/include/interface/grant_table.h).
904 */
xenbus_unmap_ring(struct xenbus_device * dev,grant_handle_t * handles,unsigned int nr_handles,unsigned long * vaddrs)905 int xenbus_unmap_ring(struct xenbus_device *dev,
906 grant_handle_t *handles, unsigned int nr_handles,
907 unsigned long *vaddrs)
908 {
909 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
910 int i;
911 int err;
912
913 if (nr_handles > XENBUS_MAX_RING_GRANTS)
914 return -EINVAL;
915
916 for (i = 0; i < nr_handles; i++)
917 gnttab_set_unmap_op(&unmap[i], vaddrs[i],
918 GNTMAP_host_map, handles[i]);
919
920 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
921 BUG();
922
923 err = GNTST_okay;
924 for (i = 0; i < nr_handles; i++) {
925 if (unmap[i].status != GNTST_okay) {
926 xenbus_dev_error(dev, unmap[i].status,
927 "unmapping page at handle %d error %d",
928 handles[i], unmap[i].status);
929 err = unmap[i].status;
930 break;
931 }
932 }
933
934 return err;
935 }
936 EXPORT_SYMBOL_GPL(xenbus_unmap_ring);
937
938
939 /**
940 * xenbus_read_driver_state
941 * @path: path for driver
942 *
943 * Return the state of the driver rooted at the given store path, or
944 * XenbusStateUnknown if no state can be read.
945 */
xenbus_read_driver_state(const char * path)946 enum xenbus_state xenbus_read_driver_state(const char *path)
947 {
948 enum xenbus_state result;
949 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
950 if (err)
951 result = XenbusStateUnknown;
952
953 return result;
954 }
955 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
956
957 static const struct xenbus_ring_ops ring_ops_pv = {
958 .map = xenbus_map_ring_valloc_pv,
959 .unmap = xenbus_unmap_ring_vfree_pv,
960 };
961
962 static const struct xenbus_ring_ops ring_ops_hvm = {
963 .map = xenbus_map_ring_valloc_hvm,
964 .unmap = xenbus_unmap_ring_vfree_hvm,
965 };
966
xenbus_ring_ops_init(void)967 void __init xenbus_ring_ops_init(void)
968 {
969 if (!xen_feature(XENFEAT_auto_translated_physmap))
970 ring_ops = &ring_ops_pv;
971 else
972 ring_ops = &ring_ops_hvm;
973 }
974