1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_trans.h"
31 #include "xfs_extfree_item.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
38 #include "xfs_quota.h"
39 #include "xfs_trans_space.h"
40 #include "xfs_trace.h"
41 #include "xfs_icache.h"
42 #include "xfs_log.h"
43
44 /* Kernel only BMAP related definitions and functions */
45
46 /*
47 * Convert the given file system block to a disk block. We have to treat it
48 * differently based on whether the file is a real time file or not, because the
49 * bmap code does.
50 */
51 xfs_daddr_t
xfs_fsb_to_db(struct xfs_inode * ip,xfs_fsblock_t fsb)52 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
53 {
54 return (XFS_IS_REALTIME_INODE(ip) ? \
55 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
56 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
57 }
58
59 /*
60 * Routine to zero an extent on disk allocated to the specific inode.
61 *
62 * The VFS functions take a linearised filesystem block offset, so we have to
63 * convert the sparse xfs fsb to the right format first.
64 * VFS types are real funky, too.
65 */
66 int
xfs_zero_extent(struct xfs_inode * ip,xfs_fsblock_t start_fsb,xfs_off_t count_fsb)67 xfs_zero_extent(
68 struct xfs_inode *ip,
69 xfs_fsblock_t start_fsb,
70 xfs_off_t count_fsb)
71 {
72 struct xfs_mount *mp = ip->i_mount;
73 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
74 sector_t block = XFS_BB_TO_FSBT(mp, sector);
75 ssize_t size = XFS_FSB_TO_B(mp, count_fsb);
76
77 if (IS_DAX(VFS_I(ip)))
78 return dax_clear_blocks(VFS_I(ip), block, size);
79
80 /*
81 * let the block layer decide on the fastest method of
82 * implementing the zeroing.
83 */
84 return sb_issue_zeroout(mp->m_super, block, count_fsb, GFP_NOFS);
85
86 }
87
88 /*
89 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi
90 * caller. Frees all the extents that need freeing, which must be done
91 * last due to locking considerations. We never free any extents in
92 * the first transaction.
93 *
94 * Return 1 if the given transaction was committed and a new one
95 * started, and 0 otherwise in the committed parameter.
96 */
97 int /* error */
xfs_bmap_finish(struct xfs_trans ** tp,struct xfs_bmap_free * flist,int * committed)98 xfs_bmap_finish(
99 struct xfs_trans **tp, /* transaction pointer addr */
100 struct xfs_bmap_free *flist, /* i/o: list extents to free */
101 int *committed)/* xact committed or not */
102 {
103 struct xfs_efd_log_item *efd; /* extent free data */
104 struct xfs_efi_log_item *efi; /* extent free intention */
105 int error; /* error return value */
106 struct xfs_bmap_free_item *free; /* free extent item */
107 struct xfs_bmap_free_item *next; /* next item on free list */
108
109 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
110 if (flist->xbf_count == 0) {
111 *committed = 0;
112 return 0;
113 }
114 efi = xfs_trans_get_efi(*tp, flist->xbf_count);
115 for (free = flist->xbf_first; free; free = free->xbfi_next)
116 xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock,
117 free->xbfi_blockcount);
118
119 error = __xfs_trans_roll(tp, NULL, committed);
120 if (error) {
121 /*
122 * If the transaction was committed, drop the EFD reference
123 * since we're bailing out of here. The other reference is
124 * dropped when the EFI hits the AIL.
125 *
126 * If the transaction was not committed, the EFI is freed by the
127 * EFI item unlock handler on abort. Also, we have a new
128 * transaction so we should return committed=1 even though we're
129 * returning an error.
130 */
131 if (*committed) {
132 xfs_efi_release(efi);
133 xfs_force_shutdown((*tp)->t_mountp,
134 (error == -EFSCORRUPTED) ?
135 SHUTDOWN_CORRUPT_INCORE :
136 SHUTDOWN_META_IO_ERROR);
137 } else {
138 *committed = 1;
139 }
140
141 return error;
142 }
143
144 /*
145 * Get an EFD and free each extent in the list, logging to the EFD in
146 * the process. The remaining bmap free list is cleaned up by the caller
147 * on error.
148 */
149 efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count);
150 for (free = flist->xbf_first; free != NULL; free = next) {
151 next = free->xbfi_next;
152
153 error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock,
154 free->xbfi_blockcount);
155 if (error)
156 return error;
157
158 xfs_bmap_del_free(flist, NULL, free);
159 }
160
161 return 0;
162 }
163
164 int
xfs_bmap_rtalloc(struct xfs_bmalloca * ap)165 xfs_bmap_rtalloc(
166 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
167 {
168 xfs_alloctype_t atype = 0; /* type for allocation routines */
169 int error; /* error return value */
170 xfs_mount_t *mp; /* mount point structure */
171 xfs_extlen_t prod = 0; /* product factor for allocators */
172 xfs_extlen_t ralen = 0; /* realtime allocation length */
173 xfs_extlen_t align; /* minimum allocation alignment */
174 xfs_rtblock_t rtb;
175
176 mp = ap->ip->i_mount;
177 align = xfs_get_extsz_hint(ap->ip);
178 prod = align / mp->m_sb.sb_rextsize;
179 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
180 align, 1, ap->eof, 0,
181 ap->conv, &ap->offset, &ap->length);
182 if (error)
183 return error;
184 ASSERT(ap->length);
185 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
186
187 /*
188 * If the offset & length are not perfectly aligned
189 * then kill prod, it will just get us in trouble.
190 */
191 if (do_mod(ap->offset, align) || ap->length % align)
192 prod = 1;
193 /*
194 * Set ralen to be the actual requested length in rtextents.
195 */
196 ralen = ap->length / mp->m_sb.sb_rextsize;
197 /*
198 * If the old value was close enough to MAXEXTLEN that
199 * we rounded up to it, cut it back so it's valid again.
200 * Note that if it's a really large request (bigger than
201 * MAXEXTLEN), we don't hear about that number, and can't
202 * adjust the starting point to match it.
203 */
204 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
205 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
206
207 /*
208 * Lock out other modifications to the RT bitmap inode.
209 */
210 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL);
211 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
212
213 /*
214 * If it's an allocation to an empty file at offset 0,
215 * pick an extent that will space things out in the rt area.
216 */
217 if (ap->eof && ap->offset == 0) {
218 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
219
220 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
221 if (error)
222 return error;
223 ap->blkno = rtx * mp->m_sb.sb_rextsize;
224 } else {
225 ap->blkno = 0;
226 }
227
228 xfs_bmap_adjacent(ap);
229
230 /*
231 * Realtime allocation, done through xfs_rtallocate_extent.
232 */
233 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
234 do_div(ap->blkno, mp->m_sb.sb_rextsize);
235 rtb = ap->blkno;
236 ap->length = ralen;
237 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
238 &ralen, atype, ap->wasdel, prod, &rtb)))
239 return error;
240 if (rtb == NULLFSBLOCK && prod > 1 &&
241 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
242 ap->length, &ralen, atype,
243 ap->wasdel, 1, &rtb)))
244 return error;
245 ap->blkno = rtb;
246 if (ap->blkno != NULLFSBLOCK) {
247 ap->blkno *= mp->m_sb.sb_rextsize;
248 ralen *= mp->m_sb.sb_rextsize;
249 ap->length = ralen;
250 ap->ip->i_d.di_nblocks += ralen;
251 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
252 if (ap->wasdel)
253 ap->ip->i_delayed_blks -= ralen;
254 /*
255 * Adjust the disk quota also. This was reserved
256 * earlier.
257 */
258 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
259 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
260 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
261
262 /* Zero the extent if we were asked to do so */
263 if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) {
264 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
265 if (error)
266 return error;
267 }
268 } else {
269 ap->length = 0;
270 }
271 return 0;
272 }
273
274 /*
275 * Check if the endoff is outside the last extent. If so the caller will grow
276 * the allocation to a stripe unit boundary. All offsets are considered outside
277 * the end of file for an empty fork, so 1 is returned in *eof in that case.
278 */
279 int
xfs_bmap_eof(struct xfs_inode * ip,xfs_fileoff_t endoff,int whichfork,int * eof)280 xfs_bmap_eof(
281 struct xfs_inode *ip,
282 xfs_fileoff_t endoff,
283 int whichfork,
284 int *eof)
285 {
286 struct xfs_bmbt_irec rec;
287 int error;
288
289 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
290 if (error || *eof)
291 return error;
292
293 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
294 return 0;
295 }
296
297 /*
298 * Extent tree block counting routines.
299 */
300
301 /*
302 * Count leaf blocks given a range of extent records.
303 */
304 STATIC void
xfs_bmap_count_leaves(xfs_ifork_t * ifp,xfs_extnum_t idx,int numrecs,int * count)305 xfs_bmap_count_leaves(
306 xfs_ifork_t *ifp,
307 xfs_extnum_t idx,
308 int numrecs,
309 int *count)
310 {
311 int b;
312
313 for (b = 0; b < numrecs; b++) {
314 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
315 *count += xfs_bmbt_get_blockcount(frp);
316 }
317 }
318
319 /*
320 * Count leaf blocks given a range of extent records originally
321 * in btree format.
322 */
323 STATIC void
xfs_bmap_disk_count_leaves(struct xfs_mount * mp,struct xfs_btree_block * block,int numrecs,int * count)324 xfs_bmap_disk_count_leaves(
325 struct xfs_mount *mp,
326 struct xfs_btree_block *block,
327 int numrecs,
328 int *count)
329 {
330 int b;
331 xfs_bmbt_rec_t *frp;
332
333 for (b = 1; b <= numrecs; b++) {
334 frp = XFS_BMBT_REC_ADDR(mp, block, b);
335 *count += xfs_bmbt_disk_get_blockcount(frp);
336 }
337 }
338
339 /*
340 * Recursively walks each level of a btree
341 * to count total fsblocks in use.
342 */
343 STATIC int /* error */
xfs_bmap_count_tree(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ifork_t * ifp,xfs_fsblock_t blockno,int levelin,int * count)344 xfs_bmap_count_tree(
345 xfs_mount_t *mp, /* file system mount point */
346 xfs_trans_t *tp, /* transaction pointer */
347 xfs_ifork_t *ifp, /* inode fork pointer */
348 xfs_fsblock_t blockno, /* file system block number */
349 int levelin, /* level in btree */
350 int *count) /* Count of blocks */
351 {
352 int error;
353 xfs_buf_t *bp, *nbp;
354 int level = levelin;
355 __be64 *pp;
356 xfs_fsblock_t bno = blockno;
357 xfs_fsblock_t nextbno;
358 struct xfs_btree_block *block, *nextblock;
359 int numrecs;
360
361 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
362 &xfs_bmbt_buf_ops);
363 if (error)
364 return error;
365 *count += 1;
366 block = XFS_BUF_TO_BLOCK(bp);
367
368 if (--level) {
369 /* Not at node above leaves, count this level of nodes */
370 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
371 while (nextbno != NULLFSBLOCK) {
372 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
373 XFS_BMAP_BTREE_REF,
374 &xfs_bmbt_buf_ops);
375 if (error)
376 return error;
377 *count += 1;
378 nextblock = XFS_BUF_TO_BLOCK(nbp);
379 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
380 xfs_trans_brelse(tp, nbp);
381 }
382
383 /* Dive to the next level */
384 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
385 bno = be64_to_cpu(*pp);
386 if (unlikely((error =
387 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
388 xfs_trans_brelse(tp, bp);
389 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
390 XFS_ERRLEVEL_LOW, mp);
391 return -EFSCORRUPTED;
392 }
393 xfs_trans_brelse(tp, bp);
394 } else {
395 /* count all level 1 nodes and their leaves */
396 for (;;) {
397 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
398 numrecs = be16_to_cpu(block->bb_numrecs);
399 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
400 xfs_trans_brelse(tp, bp);
401 if (nextbno == NULLFSBLOCK)
402 break;
403 bno = nextbno;
404 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
405 XFS_BMAP_BTREE_REF,
406 &xfs_bmbt_buf_ops);
407 if (error)
408 return error;
409 *count += 1;
410 block = XFS_BUF_TO_BLOCK(bp);
411 }
412 }
413 return 0;
414 }
415
416 /*
417 * Count fsblocks of the given fork.
418 */
419 int /* error */
xfs_bmap_count_blocks(xfs_trans_t * tp,xfs_inode_t * ip,int whichfork,int * count)420 xfs_bmap_count_blocks(
421 xfs_trans_t *tp, /* transaction pointer */
422 xfs_inode_t *ip, /* incore inode */
423 int whichfork, /* data or attr fork */
424 int *count) /* out: count of blocks */
425 {
426 struct xfs_btree_block *block; /* current btree block */
427 xfs_fsblock_t bno; /* block # of "block" */
428 xfs_ifork_t *ifp; /* fork structure */
429 int level; /* btree level, for checking */
430 xfs_mount_t *mp; /* file system mount structure */
431 __be64 *pp; /* pointer to block address */
432
433 bno = NULLFSBLOCK;
434 mp = ip->i_mount;
435 ifp = XFS_IFORK_PTR(ip, whichfork);
436 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
437 xfs_bmap_count_leaves(ifp, 0,
438 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t),
439 count);
440 return 0;
441 }
442
443 /*
444 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
445 */
446 block = ifp->if_broot;
447 level = be16_to_cpu(block->bb_level);
448 ASSERT(level > 0);
449 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
450 bno = be64_to_cpu(*pp);
451 ASSERT(bno != NULLFSBLOCK);
452 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
453 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
454
455 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
456 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
457 mp);
458 return -EFSCORRUPTED;
459 }
460
461 return 0;
462 }
463
464 /*
465 * returns 1 for success, 0 if we failed to map the extent.
466 */
467 STATIC int
xfs_getbmapx_fix_eof_hole(xfs_inode_t * ip,struct getbmapx * out,int prealloced,__int64_t end,xfs_fsblock_t startblock)468 xfs_getbmapx_fix_eof_hole(
469 xfs_inode_t *ip, /* xfs incore inode pointer */
470 struct getbmapx *out, /* output structure */
471 int prealloced, /* this is a file with
472 * preallocated data space */
473 __int64_t end, /* last block requested */
474 xfs_fsblock_t startblock)
475 {
476 __int64_t fixlen;
477 xfs_mount_t *mp; /* file system mount point */
478 xfs_ifork_t *ifp; /* inode fork pointer */
479 xfs_extnum_t lastx; /* last extent pointer */
480 xfs_fileoff_t fileblock;
481
482 if (startblock == HOLESTARTBLOCK) {
483 mp = ip->i_mount;
484 out->bmv_block = -1;
485 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
486 fixlen -= out->bmv_offset;
487 if (prealloced && out->bmv_offset + out->bmv_length == end) {
488 /* Came to hole at EOF. Trim it. */
489 if (fixlen <= 0)
490 return 0;
491 out->bmv_length = fixlen;
492 }
493 } else {
494 if (startblock == DELAYSTARTBLOCK)
495 out->bmv_block = -2;
496 else
497 out->bmv_block = xfs_fsb_to_db(ip, startblock);
498 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
499 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
500 if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
501 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1))
502 out->bmv_oflags |= BMV_OF_LAST;
503 }
504
505 return 1;
506 }
507
508 /*
509 * Get inode's extents as described in bmv, and format for output.
510 * Calls formatter to fill the user's buffer until all extents
511 * are mapped, until the passed-in bmv->bmv_count slots have
512 * been filled, or until the formatter short-circuits the loop,
513 * if it is tracking filled-in extents on its own.
514 */
515 int /* error code */
xfs_getbmap(xfs_inode_t * ip,struct getbmapx * bmv,xfs_bmap_format_t formatter,void * arg)516 xfs_getbmap(
517 xfs_inode_t *ip,
518 struct getbmapx *bmv, /* user bmap structure */
519 xfs_bmap_format_t formatter, /* format to user */
520 void *arg) /* formatter arg */
521 {
522 __int64_t bmvend; /* last block requested */
523 int error = 0; /* return value */
524 __int64_t fixlen; /* length for -1 case */
525 int i; /* extent number */
526 int lock; /* lock state */
527 xfs_bmbt_irec_t *map; /* buffer for user's data */
528 xfs_mount_t *mp; /* file system mount point */
529 int nex; /* # of user extents can do */
530 int nexleft; /* # of user extents left */
531 int subnex; /* # of bmapi's can do */
532 int nmap; /* number of map entries */
533 struct getbmapx *out; /* output structure */
534 int whichfork; /* data or attr fork */
535 int prealloced; /* this is a file with
536 * preallocated data space */
537 int iflags; /* interface flags */
538 int bmapi_flags; /* flags for xfs_bmapi */
539 int cur_ext = 0;
540
541 mp = ip->i_mount;
542 iflags = bmv->bmv_iflags;
543 whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;
544
545 if (whichfork == XFS_ATTR_FORK) {
546 if (XFS_IFORK_Q(ip)) {
547 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
548 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
549 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
550 return -EINVAL;
551 } else if (unlikely(
552 ip->i_d.di_aformat != 0 &&
553 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
554 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
555 ip->i_mount);
556 return -EFSCORRUPTED;
557 }
558
559 prealloced = 0;
560 fixlen = 1LL << 32;
561 } else {
562 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
563 ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
564 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
565 return -EINVAL;
566
567 if (xfs_get_extsz_hint(ip) ||
568 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
569 prealloced = 1;
570 fixlen = mp->m_super->s_maxbytes;
571 } else {
572 prealloced = 0;
573 fixlen = XFS_ISIZE(ip);
574 }
575 }
576
577 if (bmv->bmv_length == -1) {
578 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
579 bmv->bmv_length =
580 max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
581 } else if (bmv->bmv_length == 0) {
582 bmv->bmv_entries = 0;
583 return 0;
584 } else if (bmv->bmv_length < 0) {
585 return -EINVAL;
586 }
587
588 nex = bmv->bmv_count - 1;
589 if (nex <= 0)
590 return -EINVAL;
591 bmvend = bmv->bmv_offset + bmv->bmv_length;
592
593
594 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
595 return -ENOMEM;
596 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
597 if (!out)
598 return -ENOMEM;
599
600 xfs_ilock(ip, XFS_IOLOCK_SHARED);
601 if (whichfork == XFS_DATA_FORK) {
602 if (!(iflags & BMV_IF_DELALLOC) &&
603 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
604 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
605 if (error)
606 goto out_unlock_iolock;
607
608 /*
609 * Even after flushing the inode, there can still be
610 * delalloc blocks on the inode beyond EOF due to
611 * speculative preallocation. These are not removed
612 * until the release function is called or the inode
613 * is inactivated. Hence we cannot assert here that
614 * ip->i_delayed_blks == 0.
615 */
616 }
617
618 lock = xfs_ilock_data_map_shared(ip);
619 } else {
620 lock = xfs_ilock_attr_map_shared(ip);
621 }
622
623 /*
624 * Don't let nex be bigger than the number of extents
625 * we can have assuming alternating holes and real extents.
626 */
627 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
628 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
629
630 bmapi_flags = xfs_bmapi_aflag(whichfork);
631 if (!(iflags & BMV_IF_PREALLOC))
632 bmapi_flags |= XFS_BMAPI_IGSTATE;
633
634 /*
635 * Allocate enough space to handle "subnex" maps at a time.
636 */
637 error = -ENOMEM;
638 subnex = 16;
639 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
640 if (!map)
641 goto out_unlock_ilock;
642
643 bmv->bmv_entries = 0;
644
645 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
646 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
647 error = 0;
648 goto out_free_map;
649 }
650
651 nexleft = nex;
652
653 do {
654 nmap = (nexleft > subnex) ? subnex : nexleft;
655 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
656 XFS_BB_TO_FSB(mp, bmv->bmv_length),
657 map, &nmap, bmapi_flags);
658 if (error)
659 goto out_free_map;
660 ASSERT(nmap <= subnex);
661
662 for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
663 out[cur_ext].bmv_oflags = 0;
664 if (map[i].br_state == XFS_EXT_UNWRITTEN)
665 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
666 else if (map[i].br_startblock == DELAYSTARTBLOCK)
667 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
668 out[cur_ext].bmv_offset =
669 XFS_FSB_TO_BB(mp, map[i].br_startoff);
670 out[cur_ext].bmv_length =
671 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
672 out[cur_ext].bmv_unused1 = 0;
673 out[cur_ext].bmv_unused2 = 0;
674
675 /*
676 * delayed allocation extents that start beyond EOF can
677 * occur due to speculative EOF allocation when the
678 * delalloc extent is larger than the largest freespace
679 * extent at conversion time. These extents cannot be
680 * converted by data writeback, so can exist here even
681 * if we are not supposed to be finding delalloc
682 * extents.
683 */
684 if (map[i].br_startblock == DELAYSTARTBLOCK &&
685 map[i].br_startoff < XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
686 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
687
688 if (map[i].br_startblock == HOLESTARTBLOCK &&
689 whichfork == XFS_ATTR_FORK) {
690 /* came to the end of attribute fork */
691 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
692 goto out_free_map;
693 }
694
695 if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
696 prealloced, bmvend,
697 map[i].br_startblock))
698 goto out_free_map;
699
700 bmv->bmv_offset =
701 out[cur_ext].bmv_offset +
702 out[cur_ext].bmv_length;
703 bmv->bmv_length =
704 max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
705
706 /*
707 * In case we don't want to return the hole,
708 * don't increase cur_ext so that we can reuse
709 * it in the next loop.
710 */
711 if ((iflags & BMV_IF_NO_HOLES) &&
712 map[i].br_startblock == HOLESTARTBLOCK) {
713 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
714 continue;
715 }
716
717 nexleft--;
718 bmv->bmv_entries++;
719 cur_ext++;
720 }
721 } while (nmap && nexleft && bmv->bmv_length);
722
723 out_free_map:
724 kmem_free(map);
725 out_unlock_ilock:
726 xfs_iunlock(ip, lock);
727 out_unlock_iolock:
728 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
729
730 for (i = 0; i < cur_ext; i++) {
731 int full = 0; /* user array is full */
732
733 /* format results & advance arg */
734 error = formatter(&arg, &out[i], &full);
735 if (error || full)
736 break;
737 }
738
739 kmem_free(out);
740 return error;
741 }
742
743 /*
744 * dead simple method of punching delalyed allocation blocks from a range in
745 * the inode. Walks a block at a time so will be slow, but is only executed in
746 * rare error cases so the overhead is not critical. This will always punch out
747 * both the start and end blocks, even if the ranges only partially overlap
748 * them, so it is up to the caller to ensure that partial blocks are not
749 * passed in.
750 */
751 int
xfs_bmap_punch_delalloc_range(struct xfs_inode * ip,xfs_fileoff_t start_fsb,xfs_fileoff_t length)752 xfs_bmap_punch_delalloc_range(
753 struct xfs_inode *ip,
754 xfs_fileoff_t start_fsb,
755 xfs_fileoff_t length)
756 {
757 xfs_fileoff_t remaining = length;
758 int error = 0;
759
760 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
761
762 do {
763 int done;
764 xfs_bmbt_irec_t imap;
765 int nimaps = 1;
766 xfs_fsblock_t firstblock;
767 xfs_bmap_free_t flist;
768
769 /*
770 * Map the range first and check that it is a delalloc extent
771 * before trying to unmap the range. Otherwise we will be
772 * trying to remove a real extent (which requires a
773 * transaction) or a hole, which is probably a bad idea...
774 */
775 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
776 XFS_BMAPI_ENTIRE);
777
778 if (error) {
779 /* something screwed, just bail */
780 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 xfs_alert(ip->i_mount,
782 "Failed delalloc mapping lookup ino %lld fsb %lld.",
783 ip->i_ino, start_fsb);
784 }
785 break;
786 }
787 if (!nimaps) {
788 /* nothing there */
789 goto next_block;
790 }
791 if (imap.br_startblock != DELAYSTARTBLOCK) {
792 /* been converted, ignore */
793 goto next_block;
794 }
795 WARN_ON(imap.br_blockcount == 0);
796
797 /*
798 * Note: while we initialise the firstblock/flist pair, they
799 * should never be used because blocks should never be
800 * allocated or freed for a delalloc extent and hence we need
801 * don't cancel or finish them after the xfs_bunmapi() call.
802 */
803 xfs_bmap_init(&flist, &firstblock);
804 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
805 &flist, &done);
806 if (error)
807 break;
808
809 ASSERT(!flist.xbf_count && !flist.xbf_first);
810 next_block:
811 start_fsb++;
812 remaining--;
813 } while(remaining > 0);
814
815 return error;
816 }
817
818 /*
819 * Test whether it is appropriate to check an inode for and free post EOF
820 * blocks. The 'force' parameter determines whether we should also consider
821 * regular files that are marked preallocated or append-only.
822 */
823 bool
xfs_can_free_eofblocks(struct xfs_inode * ip,bool force)824 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
825 {
826 /* prealloc/delalloc exists only on regular files */
827 if (!S_ISREG(ip->i_d.di_mode))
828 return false;
829
830 /*
831 * Zero sized files with no cached pages and delalloc blocks will not
832 * have speculative prealloc/delalloc blocks to remove.
833 */
834 if (VFS_I(ip)->i_size == 0 &&
835 VFS_I(ip)->i_mapping->nrpages == 0 &&
836 ip->i_delayed_blks == 0)
837 return false;
838
839 /* If we haven't read in the extent list, then don't do it now. */
840 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
841 return false;
842
843 /*
844 * Do not free real preallocated or append-only files unless the file
845 * has delalloc blocks and we are forced to remove them.
846 */
847 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
848 if (!force || ip->i_delayed_blks == 0)
849 return false;
850
851 return true;
852 }
853
854 /*
855 * This is called by xfs_inactive to free any blocks beyond eof
856 * when the link count isn't zero and by xfs_dm_punch_hole() when
857 * punching a hole to EOF.
858 */
859 int
xfs_free_eofblocks(xfs_mount_t * mp,xfs_inode_t * ip,bool need_iolock)860 xfs_free_eofblocks(
861 xfs_mount_t *mp,
862 xfs_inode_t *ip,
863 bool need_iolock)
864 {
865 xfs_trans_t *tp;
866 int error;
867 xfs_fileoff_t end_fsb;
868 xfs_fileoff_t last_fsb;
869 xfs_filblks_t map_len;
870 int nimaps;
871 xfs_bmbt_irec_t imap;
872
873 /*
874 * Figure out if there are any blocks beyond the end
875 * of the file. If not, then there is nothing to do.
876 */
877 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
878 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
879 if (last_fsb <= end_fsb)
880 return 0;
881 map_len = last_fsb - end_fsb;
882
883 nimaps = 1;
884 xfs_ilock(ip, XFS_ILOCK_SHARED);
885 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
886 xfs_iunlock(ip, XFS_ILOCK_SHARED);
887
888 if (!error && (nimaps != 0) &&
889 (imap.br_startblock != HOLESTARTBLOCK ||
890 ip->i_delayed_blks)) {
891 /*
892 * Attach the dquots to the inode up front.
893 */
894 error = xfs_qm_dqattach(ip, 0);
895 if (error)
896 return error;
897
898 /*
899 * There are blocks after the end of file.
900 * Free them up now by truncating the file to
901 * its current size.
902 */
903 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
904
905 if (need_iolock) {
906 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
907 xfs_trans_cancel(tp);
908 return -EAGAIN;
909 }
910 }
911
912 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
913 if (error) {
914 ASSERT(XFS_FORCED_SHUTDOWN(mp));
915 xfs_trans_cancel(tp);
916 if (need_iolock)
917 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
918 return error;
919 }
920
921 xfs_ilock(ip, XFS_ILOCK_EXCL);
922 xfs_trans_ijoin(tp, ip, 0);
923
924 /*
925 * Do not update the on-disk file size. If we update the
926 * on-disk file size and then the system crashes before the
927 * contents of the file are flushed to disk then the files
928 * may be full of holes (ie NULL files bug).
929 */
930 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
931 XFS_ISIZE(ip));
932 if (error) {
933 /*
934 * If we get an error at this point we simply don't
935 * bother truncating the file.
936 */
937 xfs_trans_cancel(tp);
938 } else {
939 error = xfs_trans_commit(tp);
940 if (!error)
941 xfs_inode_clear_eofblocks_tag(ip);
942 }
943
944 xfs_iunlock(ip, XFS_ILOCK_EXCL);
945 if (need_iolock)
946 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
947 }
948 return error;
949 }
950
951 int
xfs_alloc_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len,int alloc_type)952 xfs_alloc_file_space(
953 struct xfs_inode *ip,
954 xfs_off_t offset,
955 xfs_off_t len,
956 int alloc_type)
957 {
958 xfs_mount_t *mp = ip->i_mount;
959 xfs_off_t count;
960 xfs_filblks_t allocated_fsb;
961 xfs_filblks_t allocatesize_fsb;
962 xfs_extlen_t extsz, temp;
963 xfs_fileoff_t startoffset_fsb;
964 xfs_fsblock_t firstfsb;
965 int nimaps;
966 int quota_flag;
967 int rt;
968 xfs_trans_t *tp;
969 xfs_bmbt_irec_t imaps[1], *imapp;
970 xfs_bmap_free_t free_list;
971 uint qblocks, resblks, resrtextents;
972 int committed;
973 int error;
974
975 trace_xfs_alloc_file_space(ip);
976
977 if (XFS_FORCED_SHUTDOWN(mp))
978 return -EIO;
979
980 error = xfs_qm_dqattach(ip, 0);
981 if (error)
982 return error;
983
984 if (len <= 0)
985 return -EINVAL;
986
987 rt = XFS_IS_REALTIME_INODE(ip);
988 extsz = xfs_get_extsz_hint(ip);
989
990 count = len;
991 imapp = &imaps[0];
992 nimaps = 1;
993 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
994 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
995
996 /*
997 * Allocate file space until done or until there is an error
998 */
999 while (allocatesize_fsb && !error) {
1000 xfs_fileoff_t s, e;
1001
1002 /*
1003 * Determine space reservations for data/realtime.
1004 */
1005 if (unlikely(extsz)) {
1006 s = startoffset_fsb;
1007 do_div(s, extsz);
1008 s *= extsz;
1009 e = startoffset_fsb + allocatesize_fsb;
1010 if ((temp = do_mod(startoffset_fsb, extsz)))
1011 e += temp;
1012 if ((temp = do_mod(e, extsz)))
1013 e += extsz - temp;
1014 } else {
1015 s = 0;
1016 e = allocatesize_fsb;
1017 }
1018
1019 /*
1020 * The transaction reservation is limited to a 32-bit block
1021 * count, hence we need to limit the number of blocks we are
1022 * trying to reserve to avoid an overflow. We can't allocate
1023 * more than @nimaps extents, and an extent is limited on disk
1024 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1025 */
1026 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1027 if (unlikely(rt)) {
1028 resrtextents = qblocks = resblks;
1029 resrtextents /= mp->m_sb.sb_rextsize;
1030 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1031 quota_flag = XFS_QMOPT_RES_RTBLKS;
1032 } else {
1033 resrtextents = 0;
1034 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1035 quota_flag = XFS_QMOPT_RES_REGBLKS;
1036 }
1037
1038 /*
1039 * Allocate and setup the transaction.
1040 */
1041 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1042 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1043 resblks, resrtextents);
1044 /*
1045 * Check for running out of space
1046 */
1047 if (error) {
1048 /*
1049 * Free the transaction structure.
1050 */
1051 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1052 xfs_trans_cancel(tp);
1053 break;
1054 }
1055 xfs_ilock(ip, XFS_ILOCK_EXCL);
1056 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1057 0, quota_flag);
1058 if (error)
1059 goto error1;
1060
1061 xfs_trans_ijoin(tp, ip, 0);
1062
1063 xfs_bmap_init(&free_list, &firstfsb);
1064 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1065 allocatesize_fsb, alloc_type, &firstfsb,
1066 resblks, imapp, &nimaps, &free_list);
1067 if (error) {
1068 goto error0;
1069 }
1070
1071 /*
1072 * Complete the transaction
1073 */
1074 error = xfs_bmap_finish(&tp, &free_list, &committed);
1075 if (error) {
1076 goto error0;
1077 }
1078
1079 error = xfs_trans_commit(tp);
1080 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1081 if (error) {
1082 break;
1083 }
1084
1085 allocated_fsb = imapp->br_blockcount;
1086
1087 if (nimaps == 0) {
1088 error = -ENOSPC;
1089 break;
1090 }
1091
1092 startoffset_fsb += allocated_fsb;
1093 allocatesize_fsb -= allocated_fsb;
1094 }
1095
1096 return error;
1097
1098 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1099 xfs_bmap_cancel(&free_list);
1100 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1101
1102 error1: /* Just cancel transaction */
1103 xfs_trans_cancel(tp);
1104 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1105 return error;
1106 }
1107
1108 /*
1109 * Zero file bytes between startoff and endoff inclusive.
1110 * The iolock is held exclusive and no blocks are buffered.
1111 *
1112 * This function is used by xfs_free_file_space() to zero
1113 * partial blocks when the range to free is not block aligned.
1114 * When unreserving space with boundaries that are not block
1115 * aligned we round up the start and round down the end
1116 * boundaries and then use this function to zero the parts of
1117 * the blocks that got dropped during the rounding.
1118 */
1119 STATIC int
xfs_zero_remaining_bytes(xfs_inode_t * ip,xfs_off_t startoff,xfs_off_t endoff)1120 xfs_zero_remaining_bytes(
1121 xfs_inode_t *ip,
1122 xfs_off_t startoff,
1123 xfs_off_t endoff)
1124 {
1125 xfs_bmbt_irec_t imap;
1126 xfs_fileoff_t offset_fsb;
1127 xfs_off_t lastoffset;
1128 xfs_off_t offset;
1129 xfs_buf_t *bp;
1130 xfs_mount_t *mp = ip->i_mount;
1131 int nimap;
1132 int error = 0;
1133
1134 /*
1135 * Avoid doing I/O beyond eof - it's not necessary
1136 * since nothing can read beyond eof. The space will
1137 * be zeroed when the file is extended anyway.
1138 */
1139 if (startoff >= XFS_ISIZE(ip))
1140 return 0;
1141
1142 if (endoff > XFS_ISIZE(ip))
1143 endoff = XFS_ISIZE(ip);
1144
1145 for (offset = startoff; offset <= endoff; offset = lastoffset + 1) {
1146 uint lock_mode;
1147
1148 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1149 nimap = 1;
1150
1151 lock_mode = xfs_ilock_data_map_shared(ip);
1152 error = xfs_bmapi_read(ip, offset_fsb, 1, &imap, &nimap, 0);
1153 xfs_iunlock(ip, lock_mode);
1154
1155 if (error || nimap < 1)
1156 break;
1157 ASSERT(imap.br_blockcount >= 1);
1158 ASSERT(imap.br_startoff == offset_fsb);
1159 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1160
1161 if (imap.br_startblock == HOLESTARTBLOCK ||
1162 imap.br_state == XFS_EXT_UNWRITTEN) {
1163 /* skip the entire extent */
1164 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff +
1165 imap.br_blockcount) - 1;
1166 continue;
1167 }
1168
1169 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1) - 1;
1170 if (lastoffset > endoff)
1171 lastoffset = endoff;
1172
1173 /* DAX can just zero the backing device directly */
1174 if (IS_DAX(VFS_I(ip))) {
1175 error = dax_zero_page_range(VFS_I(ip), offset,
1176 lastoffset - offset + 1,
1177 xfs_get_blocks_direct);
1178 if (error)
1179 return error;
1180 continue;
1181 }
1182
1183 error = xfs_buf_read_uncached(XFS_IS_REALTIME_INODE(ip) ?
1184 mp->m_rtdev_targp : mp->m_ddev_targp,
1185 xfs_fsb_to_db(ip, imap.br_startblock),
1186 BTOBB(mp->m_sb.sb_blocksize),
1187 0, &bp, NULL);
1188 if (error)
1189 return error;
1190
1191 memset(bp->b_addr +
1192 (offset - XFS_FSB_TO_B(mp, imap.br_startoff)),
1193 0, lastoffset - offset + 1);
1194
1195 error = xfs_bwrite(bp);
1196 xfs_buf_relse(bp);
1197 if (error)
1198 return error;
1199 }
1200 return error;
1201 }
1202
1203 int
xfs_free_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1204 xfs_free_file_space(
1205 struct xfs_inode *ip,
1206 xfs_off_t offset,
1207 xfs_off_t len)
1208 {
1209 int committed;
1210 int done;
1211 xfs_fileoff_t endoffset_fsb;
1212 int error;
1213 xfs_fsblock_t firstfsb;
1214 xfs_bmap_free_t free_list;
1215 xfs_bmbt_irec_t imap;
1216 xfs_off_t ioffset;
1217 xfs_off_t iendoffset;
1218 xfs_extlen_t mod=0;
1219 xfs_mount_t *mp;
1220 int nimap;
1221 uint resblks;
1222 xfs_off_t rounding;
1223 int rt;
1224 xfs_fileoff_t startoffset_fsb;
1225 xfs_trans_t *tp;
1226
1227 mp = ip->i_mount;
1228
1229 trace_xfs_free_file_space(ip);
1230
1231 error = xfs_qm_dqattach(ip, 0);
1232 if (error)
1233 return error;
1234
1235 error = 0;
1236 if (len <= 0) /* if nothing being freed */
1237 return error;
1238 rt = XFS_IS_REALTIME_INODE(ip);
1239 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1240 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1241
1242 /* wait for the completion of any pending DIOs */
1243 inode_dio_wait(VFS_I(ip));
1244
1245 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_CACHE_SIZE);
1246 ioffset = round_down(offset, rounding);
1247 iendoffset = round_up(offset + len, rounding) - 1;
1248 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, ioffset,
1249 iendoffset);
1250 if (error)
1251 goto out;
1252 truncate_pagecache_range(VFS_I(ip), ioffset, iendoffset);
1253
1254 /*
1255 * Need to zero the stuff we're not freeing, on disk.
1256 * If it's a realtime file & can't use unwritten extents then we
1257 * actually need to zero the extent edges. Otherwise xfs_bunmapi
1258 * will take care of it for us.
1259 */
1260 if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1261 nimap = 1;
1262 error = xfs_bmapi_read(ip, startoffset_fsb, 1,
1263 &imap, &nimap, 0);
1264 if (error)
1265 goto out;
1266 ASSERT(nimap == 0 || nimap == 1);
1267 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1268 xfs_daddr_t block;
1269
1270 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1271 block = imap.br_startblock;
1272 mod = do_div(block, mp->m_sb.sb_rextsize);
1273 if (mod)
1274 startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1275 }
1276 nimap = 1;
1277 error = xfs_bmapi_read(ip, endoffset_fsb - 1, 1,
1278 &imap, &nimap, 0);
1279 if (error)
1280 goto out;
1281 ASSERT(nimap == 0 || nimap == 1);
1282 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1283 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1284 mod++;
1285 if (mod && (mod != mp->m_sb.sb_rextsize))
1286 endoffset_fsb -= mod;
1287 }
1288 }
1289 if ((done = (endoffset_fsb <= startoffset_fsb)))
1290 /*
1291 * One contiguous piece to clear
1292 */
1293 error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1);
1294 else {
1295 /*
1296 * Some full blocks, possibly two pieces to clear
1297 */
1298 if (offset < XFS_FSB_TO_B(mp, startoffset_fsb))
1299 error = xfs_zero_remaining_bytes(ip, offset,
1300 XFS_FSB_TO_B(mp, startoffset_fsb) - 1);
1301 if (!error &&
1302 XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len)
1303 error = xfs_zero_remaining_bytes(ip,
1304 XFS_FSB_TO_B(mp, endoffset_fsb),
1305 offset + len - 1);
1306 }
1307
1308 /*
1309 * free file space until done or until there is an error
1310 */
1311 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1312 while (!error && !done) {
1313
1314 /*
1315 * allocate and setup the transaction. Allow this
1316 * transaction to dip into the reserve blocks to ensure
1317 * the freeing of the space succeeds at ENOSPC.
1318 */
1319 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1320 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, 0);
1321
1322 /*
1323 * check for running out of space
1324 */
1325 if (error) {
1326 /*
1327 * Free the transaction structure.
1328 */
1329 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1330 xfs_trans_cancel(tp);
1331 break;
1332 }
1333 xfs_ilock(ip, XFS_ILOCK_EXCL);
1334 error = xfs_trans_reserve_quota(tp, mp,
1335 ip->i_udquot, ip->i_gdquot, ip->i_pdquot,
1336 resblks, 0, XFS_QMOPT_RES_REGBLKS);
1337 if (error)
1338 goto error1;
1339
1340 xfs_trans_ijoin(tp, ip, 0);
1341
1342 /*
1343 * issue the bunmapi() call to free the blocks
1344 */
1345 xfs_bmap_init(&free_list, &firstfsb);
1346 error = xfs_bunmapi(tp, ip, startoffset_fsb,
1347 endoffset_fsb - startoffset_fsb,
1348 0, 2, &firstfsb, &free_list, &done);
1349 if (error) {
1350 goto error0;
1351 }
1352
1353 /*
1354 * complete the transaction
1355 */
1356 error = xfs_bmap_finish(&tp, &free_list, &committed);
1357 if (error) {
1358 goto error0;
1359 }
1360
1361 error = xfs_trans_commit(tp);
1362 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1363 }
1364
1365 out:
1366 return error;
1367
1368 error0:
1369 xfs_bmap_cancel(&free_list);
1370 error1:
1371 xfs_trans_cancel(tp);
1372 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1373 goto out;
1374 }
1375
1376 /*
1377 * Preallocate and zero a range of a file. This mechanism has the allocation
1378 * semantics of fallocate and in addition converts data in the range to zeroes.
1379 */
1380 int
xfs_zero_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1381 xfs_zero_file_space(
1382 struct xfs_inode *ip,
1383 xfs_off_t offset,
1384 xfs_off_t len)
1385 {
1386 struct xfs_mount *mp = ip->i_mount;
1387 uint blksize;
1388 int error;
1389
1390 trace_xfs_zero_file_space(ip);
1391
1392 blksize = 1 << mp->m_sb.sb_blocklog;
1393
1394 /*
1395 * Punch a hole and prealloc the range. We use hole punch rather than
1396 * unwritten extent conversion for two reasons:
1397 *
1398 * 1.) Hole punch handles partial block zeroing for us.
1399 *
1400 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1401 * by virtue of the hole punch.
1402 */
1403 error = xfs_free_file_space(ip, offset, len);
1404 if (error)
1405 goto out;
1406
1407 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1408 round_up(offset + len, blksize) -
1409 round_down(offset, blksize),
1410 XFS_BMAPI_PREALLOC);
1411 out:
1412 return error;
1413
1414 }
1415
1416 /*
1417 * @next_fsb will keep track of the extent currently undergoing shift.
1418 * @stop_fsb will keep track of the extent at which we have to stop.
1419 * If we are shifting left, we will start with block (offset + len) and
1420 * shift each extent till last extent.
1421 * If we are shifting right, we will start with last extent inside file space
1422 * and continue until we reach the block corresponding to offset.
1423 */
1424 static int
xfs_shift_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len,enum shift_direction direction)1425 xfs_shift_file_space(
1426 struct xfs_inode *ip,
1427 xfs_off_t offset,
1428 xfs_off_t len,
1429 enum shift_direction direction)
1430 {
1431 int done = 0;
1432 struct xfs_mount *mp = ip->i_mount;
1433 struct xfs_trans *tp;
1434 int error;
1435 struct xfs_bmap_free free_list;
1436 xfs_fsblock_t first_block;
1437 int committed;
1438 xfs_fileoff_t stop_fsb;
1439 xfs_fileoff_t next_fsb;
1440 xfs_fileoff_t shift_fsb;
1441
1442 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1443
1444 if (direction == SHIFT_LEFT) {
1445 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1446 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1447 } else {
1448 /*
1449 * If right shift, delegate the work of initialization of
1450 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1451 */
1452 next_fsb = NULLFSBLOCK;
1453 stop_fsb = XFS_B_TO_FSB(mp, offset);
1454 }
1455
1456 shift_fsb = XFS_B_TO_FSB(mp, len);
1457
1458 /*
1459 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1460 * into the accessible region of the file.
1461 */
1462 if (xfs_can_free_eofblocks(ip, true)) {
1463 error = xfs_free_eofblocks(mp, ip, false);
1464 if (error)
1465 return error;
1466 }
1467
1468 /*
1469 * Writeback and invalidate cache for the remainder of the file as we're
1470 * about to shift down every extent from offset to EOF.
1471 */
1472 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1473 offset, -1);
1474 if (error)
1475 return error;
1476 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1477 offset >> PAGE_CACHE_SHIFT, -1);
1478 if (error)
1479 return error;
1480
1481 /*
1482 * The extent shiting code works on extent granularity. So, if
1483 * stop_fsb is not the starting block of extent, we need to split
1484 * the extent at stop_fsb.
1485 */
1486 if (direction == SHIFT_RIGHT) {
1487 error = xfs_bmap_split_extent(ip, stop_fsb);
1488 if (error)
1489 return error;
1490 }
1491
1492 while (!error && !done) {
1493 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1494 /*
1495 * We would need to reserve permanent block for transaction.
1496 * This will come into picture when after shifting extent into
1497 * hole we found that adjacent extents can be merged which
1498 * may lead to freeing of a block during record update.
1499 */
1500 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1501 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0);
1502 if (error) {
1503 xfs_trans_cancel(tp);
1504 break;
1505 }
1506
1507 xfs_ilock(ip, XFS_ILOCK_EXCL);
1508 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1509 ip->i_gdquot, ip->i_pdquot,
1510 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0,
1511 XFS_QMOPT_RES_REGBLKS);
1512 if (error)
1513 goto out_trans_cancel;
1514
1515 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1516
1517 xfs_bmap_init(&free_list, &first_block);
1518
1519 /*
1520 * We are using the write transaction in which max 2 bmbt
1521 * updates are allowed
1522 */
1523 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1524 &done, stop_fsb, &first_block, &free_list,
1525 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1526 if (error)
1527 goto out_bmap_cancel;
1528
1529 error = xfs_bmap_finish(&tp, &free_list, &committed);
1530 if (error)
1531 goto out_bmap_cancel;
1532
1533 error = xfs_trans_commit(tp);
1534 }
1535
1536 return error;
1537
1538 out_bmap_cancel:
1539 xfs_bmap_cancel(&free_list);
1540 out_trans_cancel:
1541 xfs_trans_cancel(tp);
1542 return error;
1543 }
1544
1545 /*
1546 * xfs_collapse_file_space()
1547 * This routine frees disk space and shift extent for the given file.
1548 * The first thing we do is to free data blocks in the specified range
1549 * by calling xfs_free_file_space(). It would also sync dirty data
1550 * and invalidate page cache over the region on which collapse range
1551 * is working. And Shift extent records to the left to cover a hole.
1552 * RETURNS:
1553 * 0 on success
1554 * errno on error
1555 *
1556 */
1557 int
xfs_collapse_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1558 xfs_collapse_file_space(
1559 struct xfs_inode *ip,
1560 xfs_off_t offset,
1561 xfs_off_t len)
1562 {
1563 int error;
1564
1565 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1566 trace_xfs_collapse_file_space(ip);
1567
1568 error = xfs_free_file_space(ip, offset, len);
1569 if (error)
1570 return error;
1571
1572 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1573 }
1574
1575 /*
1576 * xfs_insert_file_space()
1577 * This routine create hole space by shifting extents for the given file.
1578 * The first thing we do is to sync dirty data and invalidate page cache
1579 * over the region on which insert range is working. And split an extent
1580 * to two extents at given offset by calling xfs_bmap_split_extent.
1581 * And shift all extent records which are laying between [offset,
1582 * last allocated extent] to the right to reserve hole range.
1583 * RETURNS:
1584 * 0 on success
1585 * errno on error
1586 */
1587 int
xfs_insert_file_space(struct xfs_inode * ip,loff_t offset,loff_t len)1588 xfs_insert_file_space(
1589 struct xfs_inode *ip,
1590 loff_t offset,
1591 loff_t len)
1592 {
1593 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1594 trace_xfs_insert_file_space(ip);
1595
1596 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1597 }
1598
1599 /*
1600 * We need to check that the format of the data fork in the temporary inode is
1601 * valid for the target inode before doing the swap. This is not a problem with
1602 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1603 * data fork depending on the space the attribute fork is taking so we can get
1604 * invalid formats on the target inode.
1605 *
1606 * E.g. target has space for 7 extents in extent format, temp inode only has
1607 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1608 * btree, but when swapped it needs to be in extent format. Hence we can't just
1609 * blindly swap data forks on attr2 filesystems.
1610 *
1611 * Note that we check the swap in both directions so that we don't end up with
1612 * a corrupt temporary inode, either.
1613 *
1614 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1615 * inode will prevent this situation from occurring, so all we do here is
1616 * reject and log the attempt. basically we are putting the responsibility on
1617 * userspace to get this right.
1618 */
1619 static int
xfs_swap_extents_check_format(xfs_inode_t * ip,xfs_inode_t * tip)1620 xfs_swap_extents_check_format(
1621 xfs_inode_t *ip, /* target inode */
1622 xfs_inode_t *tip) /* tmp inode */
1623 {
1624
1625 /* Should never get a local format */
1626 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1627 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1628 return -EINVAL;
1629
1630 /*
1631 * if the target inode has less extents that then temporary inode then
1632 * why did userspace call us?
1633 */
1634 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1635 return -EINVAL;
1636
1637 /*
1638 * if the target inode is in extent form and the temp inode is in btree
1639 * form then we will end up with the target inode in the wrong format
1640 * as we already know there are less extents in the temp inode.
1641 */
1642 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1643 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1644 return -EINVAL;
1645
1646 /* Check temp in extent form to max in target */
1647 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1648 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1649 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1650 return -EINVAL;
1651
1652 /* Check target in extent form to max in temp */
1653 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1654 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1655 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1656 return -EINVAL;
1657
1658 /*
1659 * If we are in a btree format, check that the temp root block will fit
1660 * in the target and that it has enough extents to be in btree format
1661 * in the target.
1662 *
1663 * Note that we have to be careful to allow btree->extent conversions
1664 * (a common defrag case) which will occur when the temp inode is in
1665 * extent format...
1666 */
1667 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1668 if (XFS_IFORK_BOFF(ip) &&
1669 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1670 return -EINVAL;
1671 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1672 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1673 return -EINVAL;
1674 }
1675
1676 /* Reciprocal target->temp btree format checks */
1677 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1678 if (XFS_IFORK_BOFF(tip) &&
1679 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1680 return -EINVAL;
1681 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1682 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1683 return -EINVAL;
1684 }
1685
1686 return 0;
1687 }
1688
1689 static int
xfs_swap_extent_flush(struct xfs_inode * ip)1690 xfs_swap_extent_flush(
1691 struct xfs_inode *ip)
1692 {
1693 int error;
1694
1695 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1696 if (error)
1697 return error;
1698 truncate_pagecache_range(VFS_I(ip), 0, -1);
1699
1700 /* Verify O_DIRECT for ftmp */
1701 if (VFS_I(ip)->i_mapping->nrpages)
1702 return -EINVAL;
1703 return 0;
1704 }
1705
1706 int
xfs_swap_extents(xfs_inode_t * ip,xfs_inode_t * tip,xfs_swapext_t * sxp)1707 xfs_swap_extents(
1708 xfs_inode_t *ip, /* target inode */
1709 xfs_inode_t *tip, /* tmp inode */
1710 xfs_swapext_t *sxp)
1711 {
1712 xfs_mount_t *mp = ip->i_mount;
1713 xfs_trans_t *tp;
1714 xfs_bstat_t *sbp = &sxp->sx_stat;
1715 xfs_ifork_t *tempifp, *ifp, *tifp;
1716 xfs_extnum_t nextents;
1717 int src_log_flags, target_log_flags;
1718 int error = 0;
1719 int aforkblks = 0;
1720 int taforkblks = 0;
1721 __uint64_t tmp;
1722 int lock_flags;
1723
1724 tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL);
1725 if (!tempifp) {
1726 error = -ENOMEM;
1727 goto out;
1728 }
1729
1730 /*
1731 * Lock the inodes against other IO, page faults and truncate to
1732 * begin with. Then we can ensure the inodes are flushed and have no
1733 * page cache safely. Once we have done this we can take the ilocks and
1734 * do the rest of the checks.
1735 */
1736 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1737 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1738 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1739
1740 /* Verify that both files have the same format */
1741 if ((ip->i_d.di_mode & S_IFMT) != (tip->i_d.di_mode & S_IFMT)) {
1742 error = -EINVAL;
1743 goto out_unlock;
1744 }
1745
1746 /* Verify both files are either real-time or non-realtime */
1747 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1748 error = -EINVAL;
1749 goto out_unlock;
1750 }
1751
1752 error = xfs_swap_extent_flush(ip);
1753 if (error)
1754 goto out_unlock;
1755 error = xfs_swap_extent_flush(tip);
1756 if (error)
1757 goto out_unlock;
1758
1759 tp = xfs_trans_alloc(mp, XFS_TRANS_SWAPEXT);
1760 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0);
1761 if (error) {
1762 xfs_trans_cancel(tp);
1763 goto out_unlock;
1764 }
1765
1766 /*
1767 * Lock and join the inodes to the tansaction so that transaction commit
1768 * or cancel will unlock the inodes from this point onwards.
1769 */
1770 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1771 lock_flags |= XFS_ILOCK_EXCL;
1772 xfs_trans_ijoin(tp, ip, lock_flags);
1773 xfs_trans_ijoin(tp, tip, lock_flags);
1774
1775
1776 /* Verify all data are being swapped */
1777 if (sxp->sx_offset != 0 ||
1778 sxp->sx_length != ip->i_d.di_size ||
1779 sxp->sx_length != tip->i_d.di_size) {
1780 error = -EFAULT;
1781 goto out_trans_cancel;
1782 }
1783
1784 trace_xfs_swap_extent_before(ip, 0);
1785 trace_xfs_swap_extent_before(tip, 1);
1786
1787 /* check inode formats now that data is flushed */
1788 error = xfs_swap_extents_check_format(ip, tip);
1789 if (error) {
1790 xfs_notice(mp,
1791 "%s: inode 0x%llx format is incompatible for exchanging.",
1792 __func__, ip->i_ino);
1793 goto out_trans_cancel;
1794 }
1795
1796 /*
1797 * Compare the current change & modify times with that
1798 * passed in. If they differ, we abort this swap.
1799 * This is the mechanism used to ensure the calling
1800 * process that the file was not changed out from
1801 * under it.
1802 */
1803 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1804 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1805 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1806 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1807 error = -EBUSY;
1808 goto out_trans_cancel;
1809 }
1810 /*
1811 * Count the number of extended attribute blocks
1812 */
1813 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1814 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1815 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks);
1816 if (error)
1817 goto out_trans_cancel;
1818 }
1819 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1820 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1821 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1822 &taforkblks);
1823 if (error)
1824 goto out_trans_cancel;
1825 }
1826
1827 /*
1828 * Before we've swapped the forks, lets set the owners of the forks
1829 * appropriately. We have to do this as we are demand paging the btree
1830 * buffers, and so the validation done on read will expect the owner
1831 * field to be correctly set. Once we change the owners, we can swap the
1832 * inode forks.
1833 *
1834 * Note the trickiness in setting the log flags - we set the owner log
1835 * flag on the opposite inode (i.e. the inode we are setting the new
1836 * owner to be) because once we swap the forks and log that, log
1837 * recovery is going to see the fork as owned by the swapped inode,
1838 * not the pre-swapped inodes.
1839 */
1840 src_log_flags = XFS_ILOG_CORE;
1841 target_log_flags = XFS_ILOG_CORE;
1842 if (ip->i_d.di_version == 3 &&
1843 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1844 target_log_flags |= XFS_ILOG_DOWNER;
1845 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1846 tip->i_ino, NULL);
1847 if (error)
1848 goto out_trans_cancel;
1849 }
1850
1851 if (tip->i_d.di_version == 3 &&
1852 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1853 src_log_flags |= XFS_ILOG_DOWNER;
1854 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1855 ip->i_ino, NULL);
1856 if (error)
1857 goto out_trans_cancel;
1858 }
1859
1860 /*
1861 * Swap the data forks of the inodes
1862 */
1863 ifp = &ip->i_df;
1864 tifp = &tip->i_df;
1865 *tempifp = *ifp; /* struct copy */
1866 *ifp = *tifp; /* struct copy */
1867 *tifp = *tempifp; /* struct copy */
1868
1869 /*
1870 * Fix the on-disk inode values
1871 */
1872 tmp = (__uint64_t)ip->i_d.di_nblocks;
1873 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1874 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1875
1876 tmp = (__uint64_t) ip->i_d.di_nextents;
1877 ip->i_d.di_nextents = tip->i_d.di_nextents;
1878 tip->i_d.di_nextents = tmp;
1879
1880 tmp = (__uint64_t) ip->i_d.di_format;
1881 ip->i_d.di_format = tip->i_d.di_format;
1882 tip->i_d.di_format = tmp;
1883
1884 /*
1885 * The extents in the source inode could still contain speculative
1886 * preallocation beyond EOF (e.g. the file is open but not modified
1887 * while defrag is in progress). In that case, we need to copy over the
1888 * number of delalloc blocks the data fork in the source inode is
1889 * tracking beyond EOF so that when the fork is truncated away when the
1890 * temporary inode is unlinked we don't underrun the i_delayed_blks
1891 * counter on that inode.
1892 */
1893 ASSERT(tip->i_delayed_blks == 0);
1894 tip->i_delayed_blks = ip->i_delayed_blks;
1895 ip->i_delayed_blks = 0;
1896
1897 switch (ip->i_d.di_format) {
1898 case XFS_DINODE_FMT_EXTENTS:
1899 /* If the extents fit in the inode, fix the
1900 * pointer. Otherwise it's already NULL or
1901 * pointing to the extent.
1902 */
1903 nextents = ip->i_df.if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
1904 if (nextents <= XFS_INLINE_EXTS) {
1905 ifp->if_u1.if_extents =
1906 ifp->if_u2.if_inline_ext;
1907 }
1908 src_log_flags |= XFS_ILOG_DEXT;
1909 break;
1910 case XFS_DINODE_FMT_BTREE:
1911 ASSERT(ip->i_d.di_version < 3 ||
1912 (src_log_flags & XFS_ILOG_DOWNER));
1913 src_log_flags |= XFS_ILOG_DBROOT;
1914 break;
1915 }
1916
1917 switch (tip->i_d.di_format) {
1918 case XFS_DINODE_FMT_EXTENTS:
1919 /* If the extents fit in the inode, fix the
1920 * pointer. Otherwise it's already NULL or
1921 * pointing to the extent.
1922 */
1923 nextents = tip->i_df.if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
1924 if (nextents <= XFS_INLINE_EXTS) {
1925 tifp->if_u1.if_extents =
1926 tifp->if_u2.if_inline_ext;
1927 }
1928 target_log_flags |= XFS_ILOG_DEXT;
1929 break;
1930 case XFS_DINODE_FMT_BTREE:
1931 target_log_flags |= XFS_ILOG_DBROOT;
1932 ASSERT(tip->i_d.di_version < 3 ||
1933 (target_log_flags & XFS_ILOG_DOWNER));
1934 break;
1935 }
1936
1937 xfs_trans_log_inode(tp, ip, src_log_flags);
1938 xfs_trans_log_inode(tp, tip, target_log_flags);
1939
1940 /*
1941 * If this is a synchronous mount, make sure that the
1942 * transaction goes to disk before returning to the user.
1943 */
1944 if (mp->m_flags & XFS_MOUNT_WSYNC)
1945 xfs_trans_set_sync(tp);
1946
1947 error = xfs_trans_commit(tp);
1948
1949 trace_xfs_swap_extent_after(ip, 0);
1950 trace_xfs_swap_extent_after(tip, 1);
1951 out:
1952 kmem_free(tempifp);
1953 return error;
1954
1955 out_unlock:
1956 xfs_iunlock(ip, lock_flags);
1957 xfs_iunlock(tip, lock_flags);
1958 goto out;
1959
1960 out_trans_cancel:
1961 xfs_trans_cancel(tp);
1962 goto out;
1963 }
1964