• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
51 
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate_extents().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 
62 STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63 
64 /*
65  * helper function to extract extent size hint from inode
66  */
67 xfs_extlen_t
xfs_get_extsz_hint(struct xfs_inode * ip)68 xfs_get_extsz_hint(
69 	struct xfs_inode	*ip)
70 {
71 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 		return ip->i_d.di_extsize;
73 	if (XFS_IS_REALTIME_INODE(ip))
74 		return ip->i_mount->m_sb.sb_rextsize;
75 	return 0;
76 }
77 
78 /*
79  * These two are wrapper routines around the xfs_ilock() routine used to
80  * centralize some grungy code.  They are used in places that wish to lock the
81  * inode solely for reading the extents.  The reason these places can't just
82  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83  * bringing in of the extents from disk for a file in b-tree format.  If the
84  * inode is in b-tree format, then we need to lock the inode exclusively until
85  * the extents are read in.  Locking it exclusively all the time would limit
86  * our parallelism unnecessarily, though.  What we do instead is check to see
87  * if the extents have been read in yet, and only lock the inode exclusively
88  * if they have not.
89  *
90  * The functions return a value which should be given to the corresponding
91  * xfs_iunlock() call.
92  */
93 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)94 xfs_ilock_data_map_shared(
95 	struct xfs_inode	*ip)
96 {
97 	uint			lock_mode = XFS_ILOCK_SHARED;
98 
99 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 		lock_mode = XFS_ILOCK_EXCL;
102 	xfs_ilock(ip, lock_mode);
103 	return lock_mode;
104 }
105 
106 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)107 xfs_ilock_attr_map_shared(
108 	struct xfs_inode	*ip)
109 {
110 	uint			lock_mode = XFS_ILOCK_SHARED;
111 
112 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 		lock_mode = XFS_ILOCK_EXCL;
115 	xfs_ilock(ip, lock_mode);
116 	return lock_mode;
117 }
118 
119 /*
120  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121  * the i_lock.  This routine allows various combinations of the locks to be
122  * obtained.
123  *
124  * The 3 locks should always be ordered so that the IO lock is obtained first,
125  * the mmap lock second and the ilock last in order to prevent deadlock.
126  *
127  * Basic locking order:
128  *
129  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130  *
131  * mmap_sem locking order:
132  *
133  * i_iolock -> page lock -> mmap_sem
134  * mmap_sem -> i_mmap_lock -> page_lock
135  *
136  * The difference in mmap_sem locking order mean that we cannot hold the
137  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139  * in get_user_pages() to map the user pages into the kernel address space for
140  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141  * page faults already hold the mmap_sem.
142  *
143  * Hence to serialise fully against both syscall and mmap based IO, we need to
144  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145  * taken in places where we need to invalidate the page cache in a race
146  * free manner (e.g. truncate, hole punch and other extent manipulation
147  * functions).
148  */
149 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)150 xfs_ilock(
151 	xfs_inode_t		*ip,
152 	uint			lock_flags)
153 {
154 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155 
156 	/*
157 	 * You can't set both SHARED and EXCL for the same lock,
158 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 	 */
161 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
168 
169 	if (lock_flags & XFS_IOLOCK_EXCL)
170 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 	else if (lock_flags & XFS_IOLOCK_SHARED)
172 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173 
174 	if (lock_flags & XFS_MMAPLOCK_EXCL)
175 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178 
179 	if (lock_flags & XFS_ILOCK_EXCL)
180 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 	else if (lock_flags & XFS_ILOCK_SHARED)
182 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 }
184 
185 /*
186  * This is just like xfs_ilock(), except that the caller
187  * is guaranteed not to sleep.  It returns 1 if it gets
188  * the requested locks and 0 otherwise.  If the IO lock is
189  * obtained but the inode lock cannot be, then the IO lock
190  * is dropped before returning.
191  *
192  * ip -- the inode being locked
193  * lock_flags -- this parameter indicates the inode's locks to be
194  *       to be locked.  See the comment for xfs_ilock() for a list
195  *	 of valid values.
196  */
197 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)198 xfs_ilock_nowait(
199 	xfs_inode_t		*ip,
200 	uint			lock_flags)
201 {
202 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203 
204 	/*
205 	 * You can't set both SHARED and EXCL for the same lock,
206 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 	 */
209 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
216 
217 	if (lock_flags & XFS_IOLOCK_EXCL) {
218 		if (!mrtryupdate(&ip->i_iolock))
219 			goto out;
220 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
221 		if (!mrtryaccess(&ip->i_iolock))
222 			goto out;
223 	}
224 
225 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 		if (!mrtryupdate(&ip->i_mmaplock))
227 			goto out_undo_iolock;
228 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 		if (!mrtryaccess(&ip->i_mmaplock))
230 			goto out_undo_iolock;
231 	}
232 
233 	if (lock_flags & XFS_ILOCK_EXCL) {
234 		if (!mrtryupdate(&ip->i_lock))
235 			goto out_undo_mmaplock;
236 	} else if (lock_flags & XFS_ILOCK_SHARED) {
237 		if (!mrtryaccess(&ip->i_lock))
238 			goto out_undo_mmaplock;
239 	}
240 	return 1;
241 
242 out_undo_mmaplock:
243 	if (lock_flags & XFS_MMAPLOCK_EXCL)
244 		mrunlock_excl(&ip->i_mmaplock);
245 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 		mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 	if (lock_flags & XFS_IOLOCK_EXCL)
249 		mrunlock_excl(&ip->i_iolock);
250 	else if (lock_flags & XFS_IOLOCK_SHARED)
251 		mrunlock_shared(&ip->i_iolock);
252 out:
253 	return 0;
254 }
255 
256 /*
257  * xfs_iunlock() is used to drop the inode locks acquired with
258  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
259  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260  * that we know which locks to drop.
261  *
262  * ip -- the inode being unlocked
263  * lock_flags -- this parameter indicates the inode's locks to be
264  *       to be unlocked.  See the comment for xfs_ilock() for a list
265  *	 of valid values for this parameter.
266  *
267  */
268 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)269 xfs_iunlock(
270 	xfs_inode_t		*ip,
271 	uint			lock_flags)
272 {
273 	/*
274 	 * You can't set both SHARED and EXCL for the same lock,
275 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 	 */
278 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
285 	ASSERT(lock_flags != 0);
286 
287 	if (lock_flags & XFS_IOLOCK_EXCL)
288 		mrunlock_excl(&ip->i_iolock);
289 	else if (lock_flags & XFS_IOLOCK_SHARED)
290 		mrunlock_shared(&ip->i_iolock);
291 
292 	if (lock_flags & XFS_MMAPLOCK_EXCL)
293 		mrunlock_excl(&ip->i_mmaplock);
294 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 		mrunlock_shared(&ip->i_mmaplock);
296 
297 	if (lock_flags & XFS_ILOCK_EXCL)
298 		mrunlock_excl(&ip->i_lock);
299 	else if (lock_flags & XFS_ILOCK_SHARED)
300 		mrunlock_shared(&ip->i_lock);
301 
302 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303 }
304 
305 /*
306  * give up write locks.  the i/o lock cannot be held nested
307  * if it is being demoted.
308  */
309 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)310 xfs_ilock_demote(
311 	xfs_inode_t		*ip,
312 	uint			lock_flags)
313 {
314 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 	ASSERT((lock_flags &
316 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317 
318 	if (lock_flags & XFS_ILOCK_EXCL)
319 		mrdemote(&ip->i_lock);
320 	if (lock_flags & XFS_MMAPLOCK_EXCL)
321 		mrdemote(&ip->i_mmaplock);
322 	if (lock_flags & XFS_IOLOCK_EXCL)
323 		mrdemote(&ip->i_iolock);
324 
325 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326 }
327 
328 #if defined(DEBUG) || defined(XFS_WARN)
329 int
xfs_isilocked(xfs_inode_t * ip,uint lock_flags)330 xfs_isilocked(
331 	xfs_inode_t		*ip,
332 	uint			lock_flags)
333 {
334 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 		if (!(lock_flags & XFS_ILOCK_SHARED))
336 			return !!ip->i_lock.mr_writer;
337 		return rwsem_is_locked(&ip->i_lock.mr_lock);
338 	}
339 
340 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 			return !!ip->i_mmaplock.mr_writer;
343 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 	}
345 
346 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 		if (!(lock_flags & XFS_IOLOCK_SHARED))
348 			return !!ip->i_iolock.mr_writer;
349 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 	}
351 
352 	ASSERT(0);
353 	return 0;
354 }
355 #endif
356 
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
364 
365 /*
366  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369  * errors and warnings.
370  */
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
372 static bool
xfs_lockdep_subclass_ok(int subclass)373 xfs_lockdep_subclass_ok(
374 	int subclass)
375 {
376 	return subclass < MAX_LOCKDEP_SUBCLASSES;
377 }
378 #else
379 #define xfs_lockdep_subclass_ok(subclass)	(true)
380 #endif
381 
382 /*
383  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384  * value. This can be called for any type of inode lock combination, including
385  * parent locking. Care must be taken to ensure we don't overrun the subclass
386  * storage fields in the class mask we build.
387  */
388 static inline int
xfs_lock_inumorder(int lock_mode,int subclass)389 xfs_lock_inumorder(int lock_mode, int subclass)
390 {
391 	int	class = 0;
392 
393 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 			      XFS_ILOCK_RTSUM)));
395 	ASSERT(xfs_lockdep_subclass_ok(subclass));
396 
397 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
398 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
399 		ASSERT(xfs_lockdep_subclass_ok(subclass +
400 						XFS_IOLOCK_PARENT_VAL));
401 		class += subclass << XFS_IOLOCK_SHIFT;
402 		if (lock_mode & XFS_IOLOCK_PARENT)
403 			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
404 	}
405 
406 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
407 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 		class += subclass << XFS_MMAPLOCK_SHIFT;
409 	}
410 
411 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 		class += subclass << XFS_ILOCK_SHIFT;
414 	}
415 
416 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
417 }
418 
419 /*
420  * The following routine will lock n inodes in exclusive mode.  We assume the
421  * caller calls us with the inodes in i_ino order.
422  *
423  * We need to detect deadlock where an inode that we lock is in the AIL and we
424  * start waiting for another inode that is locked by a thread in a long running
425  * transaction (such as truncate). This can result in deadlock since the long
426  * running trans might need to wait for the inode we just locked in order to
427  * push the tail and free space in the log.
428  *
429  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431  * lock more than one at a time, lockdep will report false positives saying we
432  * have violated locking orders.
433  */
434 void
xfs_lock_inodes(xfs_inode_t ** ips,int inodes,uint lock_mode)435 xfs_lock_inodes(
436 	xfs_inode_t	**ips,
437 	int		inodes,
438 	uint		lock_mode)
439 {
440 	int		attempts = 0, i, j, try_lock;
441 	xfs_log_item_t	*lp;
442 
443 	/*
444 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
445 	 * support an arbitrary depth of locking here, but absolute limits on
446 	 * inodes depend on the the type of locking and the limits placed by
447 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
448 	 * the asserts.
449 	 */
450 	ASSERT(ips && inodes >= 2 && inodes <= 5);
451 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 			    XFS_ILOCK_EXCL));
453 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 			      XFS_ILOCK_SHARED)));
455 	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461 
462 	if (lock_mode & XFS_IOLOCK_EXCL) {
463 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466 
467 	try_lock = 0;
468 	i = 0;
469 again:
470 	for (; i < inodes; i++) {
471 		ASSERT(ips[i]);
472 
473 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
474 			continue;
475 
476 		/*
477 		 * If try_lock is not set yet, make sure all locked inodes are
478 		 * not in the AIL.  If any are, set try_lock to be used later.
479 		 */
480 		if (!try_lock) {
481 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
483 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
484 					try_lock++;
485 			}
486 		}
487 
488 		/*
489 		 * If any of the previous locks we have locked is in the AIL,
490 		 * we must TRY to get the second and subsequent locks. If
491 		 * we can't get any, we must release all we have
492 		 * and try again.
493 		 */
494 		if (!try_lock) {
495 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 			continue;
497 		}
498 
499 		/* try_lock means we have an inode locked that is in the AIL. */
500 		ASSERT(i != 0);
501 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 			continue;
503 
504 		/*
505 		 * Unlock all previous guys and try again.  xfs_iunlock will try
506 		 * to push the tail if the inode is in the AIL.
507 		 */
508 		attempts++;
509 		for (j = i - 1; j >= 0; j--) {
510 			/*
511 			 * Check to see if we've already unlocked this one.  Not
512 			 * the first one going back, and the inode ptr is the
513 			 * same.
514 			 */
515 			if (j != (i - 1) && ips[j] == ips[j + 1])
516 				continue;
517 
518 			xfs_iunlock(ips[j], lock_mode);
519 		}
520 
521 		if ((attempts % 5) == 0) {
522 			delay(1); /* Don't just spin the CPU */
523 #ifdef DEBUG
524 			xfs_lock_delays++;
525 #endif
526 		}
527 		i = 0;
528 		try_lock = 0;
529 		goto again;
530 	}
531 
532 #ifdef DEBUG
533 	if (attempts) {
534 		if (attempts < 5) xfs_small_retries++;
535 		else if (attempts < 100) xfs_middle_retries++;
536 		else xfs_lots_retries++;
537 	} else {
538 		xfs_locked_n++;
539 	}
540 #endif
541 }
542 
543 /*
544  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546  * lock more than one at a time, lockdep will report false positives saying we
547  * have violated locking orders.
548  */
549 void
xfs_lock_two_inodes(xfs_inode_t * ip0,xfs_inode_t * ip1,uint lock_mode)550 xfs_lock_two_inodes(
551 	xfs_inode_t		*ip0,
552 	xfs_inode_t		*ip1,
553 	uint			lock_mode)
554 {
555 	xfs_inode_t		*temp;
556 	int			attempts = 0;
557 	xfs_log_item_t		*lp;
558 
559 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 
565 	ASSERT(ip0->i_ino != ip1->i_ino);
566 
567 	if (ip0->i_ino > ip1->i_ino) {
568 		temp = ip0;
569 		ip0 = ip1;
570 		ip1 = temp;
571 	}
572 
573  again:
574 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575 
576 	/*
577 	 * If the first lock we have locked is in the AIL, we must TRY to get
578 	 * the second lock. If we can't get it, we must release the first one
579 	 * and try again.
580 	 */
581 	lp = (xfs_log_item_t *)ip0->i_itemp;
582 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 			xfs_iunlock(ip0, lock_mode);
585 			if ((++attempts % 5) == 0)
586 				delay(1); /* Don't just spin the CPU */
587 			goto again;
588 		}
589 	} else {
590 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 	}
592 }
593 
594 
595 void
__xfs_iflock(struct xfs_inode * ip)596 __xfs_iflock(
597 	struct xfs_inode	*ip)
598 {
599 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601 
602 	do {
603 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 		if (xfs_isiflocked(ip))
605 			io_schedule();
606 	} while (!xfs_iflock_nowait(ip));
607 
608 	finish_wait(wq, &wait.wait);
609 }
610 
611 STATIC uint
_xfs_dic2xflags(__uint16_t di_flags)612 _xfs_dic2xflags(
613 	__uint16_t		di_flags)
614 {
615 	uint			flags = 0;
616 
617 	if (di_flags & XFS_DIFLAG_ANY) {
618 		if (di_flags & XFS_DIFLAG_REALTIME)
619 			flags |= XFS_XFLAG_REALTIME;
620 		if (di_flags & XFS_DIFLAG_PREALLOC)
621 			flags |= XFS_XFLAG_PREALLOC;
622 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
623 			flags |= XFS_XFLAG_IMMUTABLE;
624 		if (di_flags & XFS_DIFLAG_APPEND)
625 			flags |= XFS_XFLAG_APPEND;
626 		if (di_flags & XFS_DIFLAG_SYNC)
627 			flags |= XFS_XFLAG_SYNC;
628 		if (di_flags & XFS_DIFLAG_NOATIME)
629 			flags |= XFS_XFLAG_NOATIME;
630 		if (di_flags & XFS_DIFLAG_NODUMP)
631 			flags |= XFS_XFLAG_NODUMP;
632 		if (di_flags & XFS_DIFLAG_RTINHERIT)
633 			flags |= XFS_XFLAG_RTINHERIT;
634 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
635 			flags |= XFS_XFLAG_PROJINHERIT;
636 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
637 			flags |= XFS_XFLAG_NOSYMLINKS;
638 		if (di_flags & XFS_DIFLAG_EXTSIZE)
639 			flags |= XFS_XFLAG_EXTSIZE;
640 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
641 			flags |= XFS_XFLAG_EXTSZINHERIT;
642 		if (di_flags & XFS_DIFLAG_NODEFRAG)
643 			flags |= XFS_XFLAG_NODEFRAG;
644 		if (di_flags & XFS_DIFLAG_FILESTREAM)
645 			flags |= XFS_XFLAG_FILESTREAM;
646 	}
647 
648 	return flags;
649 }
650 
651 uint
xfs_ip2xflags(xfs_inode_t * ip)652 xfs_ip2xflags(
653 	xfs_inode_t		*ip)
654 {
655 	xfs_icdinode_t		*dic = &ip->i_d;
656 
657 	return _xfs_dic2xflags(dic->di_flags) |
658 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
659 }
660 
661 uint
xfs_dic2xflags(xfs_dinode_t * dip)662 xfs_dic2xflags(
663 	xfs_dinode_t		*dip)
664 {
665 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
666 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
667 }
668 
669 /*
670  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
671  * is allowed, otherwise it has to be an exact match. If a CI match is found,
672  * ci_name->name will point to a the actual name (caller must free) or
673  * will be set to NULL if an exact match is found.
674  */
675 int
xfs_lookup(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t ** ipp,struct xfs_name * ci_name)676 xfs_lookup(
677 	xfs_inode_t		*dp,
678 	struct xfs_name		*name,
679 	xfs_inode_t		**ipp,
680 	struct xfs_name		*ci_name)
681 {
682 	xfs_ino_t		inum;
683 	int			error;
684 
685 	trace_xfs_lookup(dp, name);
686 
687 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
688 		return -EIO;
689 
690 	xfs_ilock(dp, XFS_IOLOCK_SHARED);
691 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
692 	if (error)
693 		goto out_unlock;
694 
695 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
696 	if (error)
697 		goto out_free_name;
698 
699 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
700 	return 0;
701 
702 out_free_name:
703 	if (ci_name)
704 		kmem_free(ci_name->name);
705 out_unlock:
706 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
707 	*ipp = NULL;
708 	return error;
709 }
710 
711 /*
712  * Allocate an inode on disk and return a copy of its in-core version.
713  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
714  * appropriately within the inode.  The uid and gid for the inode are
715  * set according to the contents of the given cred structure.
716  *
717  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
718  * has a free inode available, call xfs_iget() to obtain the in-core
719  * version of the allocated inode.  Finally, fill in the inode and
720  * log its initial contents.  In this case, ialloc_context would be
721  * set to NULL.
722  *
723  * If xfs_dialloc() does not have an available inode, it will replenish
724  * its supply by doing an allocation. Since we can only do one
725  * allocation within a transaction without deadlocks, we must commit
726  * the current transaction before returning the inode itself.
727  * In this case, therefore, we will set ialloc_context and return.
728  * The caller should then commit the current transaction, start a new
729  * transaction, and call xfs_ialloc() again to actually get the inode.
730  *
731  * To ensure that some other process does not grab the inode that
732  * was allocated during the first call to xfs_ialloc(), this routine
733  * also returns the [locked] bp pointing to the head of the freelist
734  * as ialloc_context.  The caller should hold this buffer across
735  * the commit and pass it back into this routine on the second call.
736  *
737  * If we are allocating quota inodes, we do not have a parent inode
738  * to attach to or associate with (i.e. pip == NULL) because they
739  * are not linked into the directory structure - they are attached
740  * directly to the superblock - and so have no parent.
741  */
742 int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,umode_t mode,xfs_nlink_t nlink,xfs_dev_t rdev,prid_t prid,int okalloc,xfs_buf_t ** ialloc_context,xfs_inode_t ** ipp)743 xfs_ialloc(
744 	xfs_trans_t	*tp,
745 	xfs_inode_t	*pip,
746 	umode_t		mode,
747 	xfs_nlink_t	nlink,
748 	xfs_dev_t	rdev,
749 	prid_t		prid,
750 	int		okalloc,
751 	xfs_buf_t	**ialloc_context,
752 	xfs_inode_t	**ipp)
753 {
754 	struct xfs_mount *mp = tp->t_mountp;
755 	xfs_ino_t	ino;
756 	xfs_inode_t	*ip;
757 	uint		flags;
758 	int		error;
759 	struct timespec	tv;
760 
761 	/*
762 	 * Call the space management code to pick
763 	 * the on-disk inode to be allocated.
764 	 */
765 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
766 			    ialloc_context, &ino);
767 	if (error)
768 		return error;
769 	if (*ialloc_context || ino == NULLFSINO) {
770 		*ipp = NULL;
771 		return 0;
772 	}
773 	ASSERT(*ialloc_context == NULL);
774 
775 	/*
776 	 * Get the in-core inode with the lock held exclusively.
777 	 * This is because we're setting fields here we need
778 	 * to prevent others from looking at until we're done.
779 	 */
780 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
781 			 XFS_ILOCK_EXCL, &ip);
782 	if (error)
783 		return error;
784 	ASSERT(ip != NULL);
785 
786 	/*
787 	 * We always convert v1 inodes to v2 now - we only support filesystems
788 	 * with >= v2 inode capability, so there is no reason for ever leaving
789 	 * an inode in v1 format.
790 	 */
791 	if (ip->i_d.di_version == 1)
792 		ip->i_d.di_version = 2;
793 
794 	ip->i_d.di_mode = mode;
795 	ip->i_d.di_onlink = 0;
796 	ip->i_d.di_nlink = nlink;
797 	ASSERT(ip->i_d.di_nlink == nlink);
798 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
799 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
800 	xfs_set_projid(ip, prid);
801 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
802 
803 	if (pip && XFS_INHERIT_GID(pip)) {
804 		ip->i_d.di_gid = pip->i_d.di_gid;
805 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
806 			ip->i_d.di_mode |= S_ISGID;
807 		}
808 	}
809 
810 	/*
811 	 * If the group ID of the new file does not match the effective group
812 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
813 	 * (and only if the irix_sgid_inherit compatibility variable is set).
814 	 */
815 	if ((irix_sgid_inherit) &&
816 	    (ip->i_d.di_mode & S_ISGID) &&
817 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
818 		ip->i_d.di_mode &= ~S_ISGID;
819 	}
820 
821 	ip->i_d.di_size = 0;
822 	ip->i_d.di_nextents = 0;
823 	ASSERT(ip->i_d.di_nblocks == 0);
824 
825 	tv = current_fs_time(mp->m_super);
826 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
827 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
828 	ip->i_d.di_atime = ip->i_d.di_mtime;
829 	ip->i_d.di_ctime = ip->i_d.di_mtime;
830 
831 	/*
832 	 * di_gen will have been taken care of in xfs_iread.
833 	 */
834 	ip->i_d.di_extsize = 0;
835 	ip->i_d.di_dmevmask = 0;
836 	ip->i_d.di_dmstate = 0;
837 	ip->i_d.di_flags = 0;
838 
839 	if (ip->i_d.di_version == 3) {
840 		ASSERT(ip->i_d.di_ino == ino);
841 		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid));
842 		ip->i_d.di_crc = 0;
843 		ip->i_d.di_changecount = 1;
844 		ip->i_d.di_lsn = 0;
845 		ip->i_d.di_flags2 = 0;
846 		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
847 		ip->i_d.di_crtime = ip->i_d.di_mtime;
848 	}
849 
850 
851 	flags = XFS_ILOG_CORE;
852 	switch (mode & S_IFMT) {
853 	case S_IFIFO:
854 	case S_IFCHR:
855 	case S_IFBLK:
856 	case S_IFSOCK:
857 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
858 		ip->i_df.if_u2.if_rdev = rdev;
859 		ip->i_df.if_flags = 0;
860 		flags |= XFS_ILOG_DEV;
861 		break;
862 	case S_IFREG:
863 	case S_IFDIR:
864 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
865 			uint	di_flags = 0;
866 
867 			if (S_ISDIR(mode)) {
868 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
869 					di_flags |= XFS_DIFLAG_RTINHERIT;
870 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
871 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
872 					ip->i_d.di_extsize = pip->i_d.di_extsize;
873 				}
874 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
875 					di_flags |= XFS_DIFLAG_PROJINHERIT;
876 			} else if (S_ISREG(mode)) {
877 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
878 					di_flags |= XFS_DIFLAG_REALTIME;
879 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
880 					di_flags |= XFS_DIFLAG_EXTSIZE;
881 					ip->i_d.di_extsize = pip->i_d.di_extsize;
882 				}
883 			}
884 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
885 			    xfs_inherit_noatime)
886 				di_flags |= XFS_DIFLAG_NOATIME;
887 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
888 			    xfs_inherit_nodump)
889 				di_flags |= XFS_DIFLAG_NODUMP;
890 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
891 			    xfs_inherit_sync)
892 				di_flags |= XFS_DIFLAG_SYNC;
893 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
894 			    xfs_inherit_nosymlinks)
895 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
896 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
897 			    xfs_inherit_nodefrag)
898 				di_flags |= XFS_DIFLAG_NODEFRAG;
899 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
900 				di_flags |= XFS_DIFLAG_FILESTREAM;
901 			ip->i_d.di_flags |= di_flags;
902 		}
903 		/* FALLTHROUGH */
904 	case S_IFLNK:
905 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
906 		ip->i_df.if_flags = XFS_IFEXTENTS;
907 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
908 		ip->i_df.if_u1.if_extents = NULL;
909 		break;
910 	default:
911 		ASSERT(0);
912 	}
913 	/*
914 	 * Attribute fork settings for new inode.
915 	 */
916 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
917 	ip->i_d.di_anextents = 0;
918 
919 	/*
920 	 * Log the new values stuffed into the inode.
921 	 */
922 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
923 	xfs_trans_log_inode(tp, ip, flags);
924 
925 	/* now that we have an i_mode we can setup the inode structure */
926 	xfs_setup_inode(ip);
927 
928 	*ipp = ip;
929 	return 0;
930 }
931 
932 /*
933  * Allocates a new inode from disk and return a pointer to the
934  * incore copy. This routine will internally commit the current
935  * transaction and allocate a new one if the Space Manager needed
936  * to do an allocation to replenish the inode free-list.
937  *
938  * This routine is designed to be called from xfs_create and
939  * xfs_create_dir.
940  *
941  */
942 int
xfs_dir_ialloc(xfs_trans_t ** tpp,xfs_inode_t * dp,umode_t mode,xfs_nlink_t nlink,xfs_dev_t rdev,prid_t prid,int okalloc,xfs_inode_t ** ipp,int * committed)943 xfs_dir_ialloc(
944 	xfs_trans_t	**tpp,		/* input: current transaction;
945 					   output: may be a new transaction. */
946 	xfs_inode_t	*dp,		/* directory within whose allocate
947 					   the inode. */
948 	umode_t		mode,
949 	xfs_nlink_t	nlink,
950 	xfs_dev_t	rdev,
951 	prid_t		prid,		/* project id */
952 	int		okalloc,	/* ok to allocate new space */
953 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
954 					   locked. */
955 	int		*committed)
956 
957 {
958 	xfs_trans_t	*tp;
959 	xfs_inode_t	*ip;
960 	xfs_buf_t	*ialloc_context = NULL;
961 	int		code;
962 	void		*dqinfo;
963 	uint		tflags;
964 
965 	tp = *tpp;
966 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
967 
968 	/*
969 	 * xfs_ialloc will return a pointer to an incore inode if
970 	 * the Space Manager has an available inode on the free
971 	 * list. Otherwise, it will do an allocation and replenish
972 	 * the freelist.  Since we can only do one allocation per
973 	 * transaction without deadlocks, we will need to commit the
974 	 * current transaction and start a new one.  We will then
975 	 * need to call xfs_ialloc again to get the inode.
976 	 *
977 	 * If xfs_ialloc did an allocation to replenish the freelist,
978 	 * it returns the bp containing the head of the freelist as
979 	 * ialloc_context. We will hold a lock on it across the
980 	 * transaction commit so that no other process can steal
981 	 * the inode(s) that we've just allocated.
982 	 */
983 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
984 			  &ialloc_context, &ip);
985 
986 	/*
987 	 * Return an error if we were unable to allocate a new inode.
988 	 * This should only happen if we run out of space on disk or
989 	 * encounter a disk error.
990 	 */
991 	if (code) {
992 		*ipp = NULL;
993 		return code;
994 	}
995 	if (!ialloc_context && !ip) {
996 		*ipp = NULL;
997 		return -ENOSPC;
998 	}
999 
1000 	/*
1001 	 * If the AGI buffer is non-NULL, then we were unable to get an
1002 	 * inode in one operation.  We need to commit the current
1003 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1004 	 * to succeed the second time.
1005 	 */
1006 	if (ialloc_context) {
1007 		/*
1008 		 * Normally, xfs_trans_commit releases all the locks.
1009 		 * We call bhold to hang on to the ialloc_context across
1010 		 * the commit.  Holding this buffer prevents any other
1011 		 * processes from doing any allocations in this
1012 		 * allocation group.
1013 		 */
1014 		xfs_trans_bhold(tp, ialloc_context);
1015 
1016 		/*
1017 		 * We want the quota changes to be associated with the next
1018 		 * transaction, NOT this one. So, detach the dqinfo from this
1019 		 * and attach it to the next transaction.
1020 		 */
1021 		dqinfo = NULL;
1022 		tflags = 0;
1023 		if (tp->t_dqinfo) {
1024 			dqinfo = (void *)tp->t_dqinfo;
1025 			tp->t_dqinfo = NULL;
1026 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1027 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1028 		}
1029 
1030 		code = xfs_trans_roll(&tp, 0);
1031 		if (committed != NULL)
1032 			*committed = 1;
1033 
1034 		/*
1035 		 * Re-attach the quota info that we detached from prev trx.
1036 		 */
1037 		if (dqinfo) {
1038 			tp->t_dqinfo = dqinfo;
1039 			tp->t_flags |= tflags;
1040 		}
1041 
1042 		if (code) {
1043 			xfs_buf_relse(ialloc_context);
1044 			*tpp = tp;
1045 			*ipp = NULL;
1046 			return code;
1047 		}
1048 		xfs_trans_bjoin(tp, ialloc_context);
1049 
1050 		/*
1051 		 * Call ialloc again. Since we've locked out all
1052 		 * other allocations in this allocation group,
1053 		 * this call should always succeed.
1054 		 */
1055 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1056 				  okalloc, &ialloc_context, &ip);
1057 
1058 		/*
1059 		 * If we get an error at this point, return to the caller
1060 		 * so that the current transaction can be aborted.
1061 		 */
1062 		if (code) {
1063 			*tpp = tp;
1064 			*ipp = NULL;
1065 			return code;
1066 		}
1067 		ASSERT(!ialloc_context && ip);
1068 
1069 	} else {
1070 		if (committed != NULL)
1071 			*committed = 0;
1072 	}
1073 
1074 	*ipp = ip;
1075 	*tpp = tp;
1076 
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Decrement the link count on an inode & log the change.
1082  * If this causes the link count to go to zero, initiate the
1083  * logging activity required to truncate a file.
1084  */
1085 int				/* error */
xfs_droplink(xfs_trans_t * tp,xfs_inode_t * ip)1086 xfs_droplink(
1087 	xfs_trans_t *tp,
1088 	xfs_inode_t *ip)
1089 {
1090 	int	error;
1091 
1092 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1093 
1094 	ASSERT (ip->i_d.di_nlink > 0);
1095 	ip->i_d.di_nlink--;
1096 	drop_nlink(VFS_I(ip));
1097 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1098 
1099 	error = 0;
1100 	if (ip->i_d.di_nlink == 0) {
1101 		/*
1102 		 * We're dropping the last link to this file.
1103 		 * Move the on-disk inode to the AGI unlinked list.
1104 		 * From xfs_inactive() we will pull the inode from
1105 		 * the list and free it.
1106 		 */
1107 		error = xfs_iunlink(tp, ip);
1108 	}
1109 	return error;
1110 }
1111 
1112 /*
1113  * Increment the link count on an inode & log the change.
1114  */
1115 int
xfs_bumplink(xfs_trans_t * tp,xfs_inode_t * ip)1116 xfs_bumplink(
1117 	xfs_trans_t *tp,
1118 	xfs_inode_t *ip)
1119 {
1120 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1121 
1122 	ASSERT(ip->i_d.di_version > 1);
1123 	ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1124 	ip->i_d.di_nlink++;
1125 	inc_nlink(VFS_I(ip));
1126 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1127 	return 0;
1128 }
1129 
1130 int
xfs_create(xfs_inode_t * dp,struct xfs_name * name,umode_t mode,xfs_dev_t rdev,xfs_inode_t ** ipp)1131 xfs_create(
1132 	xfs_inode_t		*dp,
1133 	struct xfs_name		*name,
1134 	umode_t			mode,
1135 	xfs_dev_t		rdev,
1136 	xfs_inode_t		**ipp)
1137 {
1138 	int			is_dir = S_ISDIR(mode);
1139 	struct xfs_mount	*mp = dp->i_mount;
1140 	struct xfs_inode	*ip = NULL;
1141 	struct xfs_trans	*tp = NULL;
1142 	int			error;
1143 	xfs_bmap_free_t		free_list;
1144 	xfs_fsblock_t		first_block;
1145 	bool                    unlock_dp_on_error = false;
1146 	int			committed;
1147 	prid_t			prid;
1148 	struct xfs_dquot	*udqp = NULL;
1149 	struct xfs_dquot	*gdqp = NULL;
1150 	struct xfs_dquot	*pdqp = NULL;
1151 	struct xfs_trans_res	*tres;
1152 	uint			resblks;
1153 
1154 	trace_xfs_create(dp, name);
1155 
1156 	if (XFS_FORCED_SHUTDOWN(mp))
1157 		return -EIO;
1158 
1159 	prid = xfs_get_initial_prid(dp);
1160 
1161 	/*
1162 	 * Make sure that we have allocated dquot(s) on disk.
1163 	 */
1164 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1165 					xfs_kgid_to_gid(current_fsgid()), prid,
1166 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1167 					&udqp, &gdqp, &pdqp);
1168 	if (error)
1169 		return error;
1170 
1171 	if (is_dir) {
1172 		rdev = 0;
1173 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174 		tres = &M_RES(mp)->tr_mkdir;
1175 		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1176 	} else {
1177 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1178 		tres = &M_RES(mp)->tr_create;
1179 		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1180 	}
1181 
1182 	/*
1183 	 * Initially assume that the file does not exist and
1184 	 * reserve the resources for that case.  If that is not
1185 	 * the case we'll drop the one we have and get a more
1186 	 * appropriate transaction later.
1187 	 */
1188 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1189 	if (error == -ENOSPC) {
1190 		/* flush outstanding delalloc blocks and retry */
1191 		xfs_flush_inodes(mp);
1192 		error = xfs_trans_reserve(tp, tres, resblks, 0);
1193 	}
1194 	if (error == -ENOSPC) {
1195 		/* No space at all so try a "no-allocation" reservation */
1196 		resblks = 0;
1197 		error = xfs_trans_reserve(tp, tres, 0, 0);
1198 	}
1199 	if (error)
1200 		goto out_trans_cancel;
1201 
1202 
1203 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1204 		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1205 	unlock_dp_on_error = true;
1206 
1207 	xfs_bmap_init(&free_list, &first_block);
1208 
1209 	/*
1210 	 * Reserve disk quota and the inode.
1211 	 */
1212 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1213 						pdqp, resblks, 1, 0);
1214 	if (error)
1215 		goto out_trans_cancel;
1216 
1217 	if (!resblks) {
1218 		error = xfs_dir_canenter(tp, dp, name);
1219 		if (error)
1220 			goto out_trans_cancel;
1221 	}
1222 
1223 	/*
1224 	 * A newly created regular or special file just has one directory
1225 	 * entry pointing to them, but a directory also the "." entry
1226 	 * pointing to itself.
1227 	 */
1228 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1229 			       prid, resblks > 0, &ip, &committed);
1230 	if (error)
1231 		goto out_trans_cancel;
1232 
1233 	/*
1234 	 * Now we join the directory inode to the transaction.  We do not do it
1235 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1236 	 * (and release all the locks).  An error from here on will result in
1237 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1238 	 * error path.
1239 	 */
1240 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1241 	unlock_dp_on_error = false;
1242 
1243 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1244 					&first_block, &free_list, resblks ?
1245 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1246 	if (error) {
1247 		ASSERT(error != -ENOSPC);
1248 		goto out_trans_cancel;
1249 	}
1250 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1251 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1252 
1253 	if (is_dir) {
1254 		error = xfs_dir_init(tp, ip, dp);
1255 		if (error)
1256 			goto out_bmap_cancel;
1257 
1258 		error = xfs_bumplink(tp, dp);
1259 		if (error)
1260 			goto out_bmap_cancel;
1261 	}
1262 
1263 	/*
1264 	 * If this is a synchronous mount, make sure that the
1265 	 * create transaction goes to disk before returning to
1266 	 * the user.
1267 	 */
1268 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1269 		xfs_trans_set_sync(tp);
1270 
1271 	/*
1272 	 * Attach the dquot(s) to the inodes and modify them incore.
1273 	 * These ids of the inode couldn't have changed since the new
1274 	 * inode has been locked ever since it was created.
1275 	 */
1276 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1277 
1278 	error = xfs_bmap_finish(&tp, &free_list, &committed);
1279 	if (error)
1280 		goto out_bmap_cancel;
1281 
1282 	error = xfs_trans_commit(tp);
1283 	if (error)
1284 		goto out_release_inode;
1285 
1286 	xfs_qm_dqrele(udqp);
1287 	xfs_qm_dqrele(gdqp);
1288 	xfs_qm_dqrele(pdqp);
1289 
1290 	*ipp = ip;
1291 	return 0;
1292 
1293  out_bmap_cancel:
1294 	xfs_bmap_cancel(&free_list);
1295  out_trans_cancel:
1296 	xfs_trans_cancel(tp);
1297  out_release_inode:
1298 	/*
1299 	 * Wait until after the current transaction is aborted to finish the
1300 	 * setup of the inode and release the inode.  This prevents recursive
1301 	 * transactions and deadlocks from xfs_inactive.
1302 	 */
1303 	if (ip) {
1304 		xfs_finish_inode_setup(ip);
1305 		IRELE(ip);
1306 	}
1307 
1308 	xfs_qm_dqrele(udqp);
1309 	xfs_qm_dqrele(gdqp);
1310 	xfs_qm_dqrele(pdqp);
1311 
1312 	if (unlock_dp_on_error)
1313 		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1314 	return error;
1315 }
1316 
1317 int
xfs_create_tmpfile(struct xfs_inode * dp,struct dentry * dentry,umode_t mode,struct xfs_inode ** ipp)1318 xfs_create_tmpfile(
1319 	struct xfs_inode	*dp,
1320 	struct dentry		*dentry,
1321 	umode_t			mode,
1322 	struct xfs_inode	**ipp)
1323 {
1324 	struct xfs_mount	*mp = dp->i_mount;
1325 	struct xfs_inode	*ip = NULL;
1326 	struct xfs_trans	*tp = NULL;
1327 	int			error;
1328 	prid_t                  prid;
1329 	struct xfs_dquot	*udqp = NULL;
1330 	struct xfs_dquot	*gdqp = NULL;
1331 	struct xfs_dquot	*pdqp = NULL;
1332 	struct xfs_trans_res	*tres;
1333 	uint			resblks;
1334 
1335 	if (XFS_FORCED_SHUTDOWN(mp))
1336 		return -EIO;
1337 
1338 	prid = xfs_get_initial_prid(dp);
1339 
1340 	/*
1341 	 * Make sure that we have allocated dquot(s) on disk.
1342 	 */
1343 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1344 				xfs_kgid_to_gid(current_fsgid()), prid,
1345 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1346 				&udqp, &gdqp, &pdqp);
1347 	if (error)
1348 		return error;
1349 
1350 	resblks = XFS_IALLOC_SPACE_RES(mp);
1351 	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1352 
1353 	tres = &M_RES(mp)->tr_create_tmpfile;
1354 	error = xfs_trans_reserve(tp, tres, resblks, 0);
1355 	if (error == -ENOSPC) {
1356 		/* No space at all so try a "no-allocation" reservation */
1357 		resblks = 0;
1358 		error = xfs_trans_reserve(tp, tres, 0, 0);
1359 	}
1360 	if (error)
1361 		goto out_trans_cancel;
1362 
1363 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1364 						pdqp, resblks, 1, 0);
1365 	if (error)
1366 		goto out_trans_cancel;
1367 
1368 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1369 				prid, resblks > 0, &ip, NULL);
1370 	if (error)
1371 		goto out_trans_cancel;
1372 
1373 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1374 		xfs_trans_set_sync(tp);
1375 
1376 	/*
1377 	 * Attach the dquot(s) to the inodes and modify them incore.
1378 	 * These ids of the inode couldn't have changed since the new
1379 	 * inode has been locked ever since it was created.
1380 	 */
1381 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1382 
1383 	ip->i_d.di_nlink--;
1384 	error = xfs_iunlink(tp, ip);
1385 	if (error)
1386 		goto out_trans_cancel;
1387 
1388 	error = xfs_trans_commit(tp);
1389 	if (error)
1390 		goto out_release_inode;
1391 
1392 	xfs_qm_dqrele(udqp);
1393 	xfs_qm_dqrele(gdqp);
1394 	xfs_qm_dqrele(pdqp);
1395 
1396 	*ipp = ip;
1397 	return 0;
1398 
1399  out_trans_cancel:
1400 	xfs_trans_cancel(tp);
1401  out_release_inode:
1402 	/*
1403 	 * Wait until after the current transaction is aborted to finish the
1404 	 * setup of the inode and release the inode.  This prevents recursive
1405 	 * transactions and deadlocks from xfs_inactive.
1406 	 */
1407 	if (ip) {
1408 		xfs_finish_inode_setup(ip);
1409 		IRELE(ip);
1410 	}
1411 
1412 	xfs_qm_dqrele(udqp);
1413 	xfs_qm_dqrele(gdqp);
1414 	xfs_qm_dqrele(pdqp);
1415 
1416 	return error;
1417 }
1418 
1419 int
xfs_link(xfs_inode_t * tdp,xfs_inode_t * sip,struct xfs_name * target_name)1420 xfs_link(
1421 	xfs_inode_t		*tdp,
1422 	xfs_inode_t		*sip,
1423 	struct xfs_name		*target_name)
1424 {
1425 	xfs_mount_t		*mp = tdp->i_mount;
1426 	xfs_trans_t		*tp;
1427 	int			error;
1428 	xfs_bmap_free_t         free_list;
1429 	xfs_fsblock_t           first_block;
1430 	int			committed;
1431 	int			resblks;
1432 
1433 	trace_xfs_link(tdp, target_name);
1434 
1435 	ASSERT(!S_ISDIR(sip->i_d.di_mode));
1436 
1437 	if (XFS_FORCED_SHUTDOWN(mp))
1438 		return -EIO;
1439 
1440 	error = xfs_qm_dqattach(sip, 0);
1441 	if (error)
1442 		goto std_return;
1443 
1444 	error = xfs_qm_dqattach(tdp, 0);
1445 	if (error)
1446 		goto std_return;
1447 
1448 	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1449 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1450 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1451 	if (error == -ENOSPC) {
1452 		resblks = 0;
1453 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1454 	}
1455 	if (error)
1456 		goto error_return;
1457 
1458 	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1459 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1460 
1461 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1462 	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1463 
1464 	/*
1465 	 * If we are using project inheritance, we only allow hard link
1466 	 * creation in our tree when the project IDs are the same; else
1467 	 * the tree quota mechanism could be circumvented.
1468 	 */
1469 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1470 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1471 		error = -EXDEV;
1472 		goto error_return;
1473 	}
1474 
1475 	if (!resblks) {
1476 		error = xfs_dir_canenter(tp, tdp, target_name);
1477 		if (error)
1478 			goto error_return;
1479 	}
1480 
1481 	xfs_bmap_init(&free_list, &first_block);
1482 
1483 	if (sip->i_d.di_nlink == 0) {
1484 		error = xfs_iunlink_remove(tp, sip);
1485 		if (error)
1486 			goto error_return;
1487 	}
1488 
1489 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1490 					&first_block, &free_list, resblks);
1491 	if (error)
1492 		goto error_return;
1493 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1494 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1495 
1496 	error = xfs_bumplink(tp, sip);
1497 	if (error)
1498 		goto error_return;
1499 
1500 	/*
1501 	 * If this is a synchronous mount, make sure that the
1502 	 * link transaction goes to disk before returning to
1503 	 * the user.
1504 	 */
1505 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1506 		xfs_trans_set_sync(tp);
1507 	}
1508 
1509 	error = xfs_bmap_finish (&tp, &free_list, &committed);
1510 	if (error) {
1511 		xfs_bmap_cancel(&free_list);
1512 		goto error_return;
1513 	}
1514 
1515 	return xfs_trans_commit(tp);
1516 
1517  error_return:
1518 	xfs_trans_cancel(tp);
1519  std_return:
1520 	return error;
1521 }
1522 
1523 /*
1524  * Free up the underlying blocks past new_size.  The new size must be smaller
1525  * than the current size.  This routine can be used both for the attribute and
1526  * data fork, and does not modify the inode size, which is left to the caller.
1527  *
1528  * The transaction passed to this routine must have made a permanent log
1529  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1530  * given transaction and start new ones, so make sure everything involved in
1531  * the transaction is tidy before calling here.  Some transaction will be
1532  * returned to the caller to be committed.  The incoming transaction must
1533  * already include the inode, and both inode locks must be held exclusively.
1534  * The inode must also be "held" within the transaction.  On return the inode
1535  * will be "held" within the returned transaction.  This routine does NOT
1536  * require any disk space to be reserved for it within the transaction.
1537  *
1538  * If we get an error, we must return with the inode locked and linked into the
1539  * current transaction. This keeps things simple for the higher level code,
1540  * because it always knows that the inode is locked and held in the transaction
1541  * that returns to it whether errors occur or not.  We don't mark the inode
1542  * dirty on error so that transactions can be easily aborted if possible.
1543  */
1544 int
xfs_itruncate_extents(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size)1545 xfs_itruncate_extents(
1546 	struct xfs_trans	**tpp,
1547 	struct xfs_inode	*ip,
1548 	int			whichfork,
1549 	xfs_fsize_t		new_size)
1550 {
1551 	struct xfs_mount	*mp = ip->i_mount;
1552 	struct xfs_trans	*tp = *tpp;
1553 	xfs_bmap_free_t		free_list;
1554 	xfs_fsblock_t		first_block;
1555 	xfs_fileoff_t		first_unmap_block;
1556 	xfs_fileoff_t		last_block;
1557 	xfs_filblks_t		unmap_len;
1558 	int			committed;
1559 	int			error = 0;
1560 	int			done = 0;
1561 
1562 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1563 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1564 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1565 	ASSERT(new_size <= XFS_ISIZE(ip));
1566 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1567 	ASSERT(ip->i_itemp != NULL);
1568 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1569 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1570 
1571 	trace_xfs_itruncate_extents_start(ip, new_size);
1572 
1573 	/*
1574 	 * Since it is possible for space to become allocated beyond
1575 	 * the end of the file (in a crash where the space is allocated
1576 	 * but the inode size is not yet updated), simply remove any
1577 	 * blocks which show up between the new EOF and the maximum
1578 	 * possible file size.  If the first block to be removed is
1579 	 * beyond the maximum file size (ie it is the same as last_block),
1580 	 * then there is nothing to do.
1581 	 */
1582 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1583 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1584 	if (first_unmap_block == last_block)
1585 		return 0;
1586 
1587 	ASSERT(first_unmap_block < last_block);
1588 	unmap_len = last_block - first_unmap_block + 1;
1589 	while (!done) {
1590 		xfs_bmap_init(&free_list, &first_block);
1591 		error = xfs_bunmapi(tp, ip,
1592 				    first_unmap_block, unmap_len,
1593 				    xfs_bmapi_aflag(whichfork),
1594 				    XFS_ITRUNC_MAX_EXTENTS,
1595 				    &first_block, &free_list,
1596 				    &done);
1597 		if (error)
1598 			goto out_bmap_cancel;
1599 
1600 		/*
1601 		 * Duplicate the transaction that has the permanent
1602 		 * reservation and commit the old transaction.
1603 		 */
1604 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1605 		if (committed)
1606 			xfs_trans_ijoin(tp, ip, 0);
1607 		if (error)
1608 			goto out_bmap_cancel;
1609 
1610 		error = xfs_trans_roll(&tp, ip);
1611 		if (error)
1612 			goto out;
1613 	}
1614 
1615 	/*
1616 	 * Always re-log the inode so that our permanent transaction can keep
1617 	 * on rolling it forward in the log.
1618 	 */
1619 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620 
1621 	trace_xfs_itruncate_extents_end(ip, new_size);
1622 
1623 out:
1624 	*tpp = tp;
1625 	return error;
1626 out_bmap_cancel:
1627 	/*
1628 	 * If the bunmapi call encounters an error, return to the caller where
1629 	 * the transaction can be properly aborted.  We just need to make sure
1630 	 * we're not holding any resources that we were not when we came in.
1631 	 */
1632 	xfs_bmap_cancel(&free_list);
1633 	goto out;
1634 }
1635 
1636 int
xfs_release(xfs_inode_t * ip)1637 xfs_release(
1638 	xfs_inode_t	*ip)
1639 {
1640 	xfs_mount_t	*mp = ip->i_mount;
1641 	int		error;
1642 
1643 	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1644 		return 0;
1645 
1646 	/* If this is a read-only mount, don't do this (would generate I/O) */
1647 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1648 		return 0;
1649 
1650 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1651 		int truncated;
1652 
1653 		/*
1654 		 * If we previously truncated this file and removed old data
1655 		 * in the process, we want to initiate "early" writeout on
1656 		 * the last close.  This is an attempt to combat the notorious
1657 		 * NULL files problem which is particularly noticeable from a
1658 		 * truncate down, buffered (re-)write (delalloc), followed by
1659 		 * a crash.  What we are effectively doing here is
1660 		 * significantly reducing the time window where we'd otherwise
1661 		 * be exposed to that problem.
1662 		 */
1663 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664 		if (truncated) {
1665 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1666 			if (ip->i_delayed_blks > 0) {
1667 				error = filemap_flush(VFS_I(ip)->i_mapping);
1668 				if (error)
1669 					return error;
1670 			}
1671 		}
1672 	}
1673 
1674 	if (ip->i_d.di_nlink == 0)
1675 		return 0;
1676 
1677 	if (xfs_can_free_eofblocks(ip, false)) {
1678 
1679 		/*
1680 		 * If we can't get the iolock just skip truncating the blocks
1681 		 * past EOF because we could deadlock with the mmap_sem
1682 		 * otherwise.  We'll get another chance to drop them once the
1683 		 * last reference to the inode is dropped, so we'll never leak
1684 		 * blocks permanently.
1685 		 *
1686 		 * Further, check if the inode is being opened, written and
1687 		 * closed frequently and we have delayed allocation blocks
1688 		 * outstanding (e.g. streaming writes from the NFS server),
1689 		 * truncating the blocks past EOF will cause fragmentation to
1690 		 * occur.
1691 		 *
1692 		 * In this case don't do the truncation, either, but we have to
1693 		 * be careful how we detect this case. Blocks beyond EOF show
1694 		 * up as i_delayed_blks even when the inode is clean, so we
1695 		 * need to truncate them away first before checking for a dirty
1696 		 * release. Hence on the first dirty close we will still remove
1697 		 * the speculative allocation, but after that we will leave it
1698 		 * in place.
1699 		 */
1700 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1701 			return 0;
1702 
1703 		error = xfs_free_eofblocks(mp, ip, true);
1704 		if (error && error != -EAGAIN)
1705 			return error;
1706 
1707 		/* delalloc blocks after truncation means it really is dirty */
1708 		if (ip->i_delayed_blks)
1709 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1710 	}
1711 	return 0;
1712 }
1713 
1714 /*
1715  * xfs_inactive_truncate
1716  *
1717  * Called to perform a truncate when an inode becomes unlinked.
1718  */
1719 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1720 xfs_inactive_truncate(
1721 	struct xfs_inode *ip)
1722 {
1723 	struct xfs_mount	*mp = ip->i_mount;
1724 	struct xfs_trans	*tp;
1725 	int			error;
1726 
1727 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1728 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1729 	if (error) {
1730 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1731 		xfs_trans_cancel(tp);
1732 		return error;
1733 	}
1734 
1735 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1736 	xfs_trans_ijoin(tp, ip, 0);
1737 
1738 	/*
1739 	 * Log the inode size first to prevent stale data exposure in the event
1740 	 * of a system crash before the truncate completes. See the related
1741 	 * comment in xfs_setattr_size() for details.
1742 	 */
1743 	ip->i_d.di_size = 0;
1744 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745 
1746 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747 	if (error)
1748 		goto error_trans_cancel;
1749 
1750 	ASSERT(ip->i_d.di_nextents == 0);
1751 
1752 	error = xfs_trans_commit(tp);
1753 	if (error)
1754 		goto error_unlock;
1755 
1756 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757 	return 0;
1758 
1759 error_trans_cancel:
1760 	xfs_trans_cancel(tp);
1761 error_unlock:
1762 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763 	return error;
1764 }
1765 
1766 /*
1767  * xfs_inactive_ifree()
1768  *
1769  * Perform the inode free when an inode is unlinked.
1770  */
1771 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1772 xfs_inactive_ifree(
1773 	struct xfs_inode *ip)
1774 {
1775 	xfs_bmap_free_t		free_list;
1776 	xfs_fsblock_t		first_block;
1777 	int			committed;
1778 	struct xfs_mount	*mp = ip->i_mount;
1779 	struct xfs_trans	*tp;
1780 	int			error;
1781 
1782 	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1783 
1784 	/*
1785 	 * The ifree transaction might need to allocate blocks for record
1786 	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1787 	 * allow ifree to dip into the reserved block pool if necessary.
1788 	 *
1789 	 * Freeing large sets of inodes generally means freeing inode chunks,
1790 	 * directory and file data blocks, so this should be relatively safe.
1791 	 * Only under severe circumstances should it be possible to free enough
1792 	 * inodes to exhaust the reserve block pool via finobt expansion while
1793 	 * at the same time not creating free space in the filesystem.
1794 	 *
1795 	 * Send a warning if the reservation does happen to fail, as the inode
1796 	 * now remains allocated and sits on the unlinked list until the fs is
1797 	 * repaired.
1798 	 */
1799 	tp->t_flags |= XFS_TRANS_RESERVE;
1800 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1801 				  XFS_IFREE_SPACE_RES(mp), 0);
1802 	if (error) {
1803 		if (error == -ENOSPC) {
1804 			xfs_warn_ratelimited(mp,
1805 			"Failed to remove inode(s) from unlinked list. "
1806 			"Please free space, unmount and run xfs_repair.");
1807 		} else {
1808 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1809 		}
1810 		xfs_trans_cancel(tp);
1811 		return error;
1812 	}
1813 
1814 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1815 	xfs_trans_ijoin(tp, ip, 0);
1816 
1817 	xfs_bmap_init(&free_list, &first_block);
1818 	error = xfs_ifree(tp, ip, &free_list);
1819 	if (error) {
1820 		/*
1821 		 * If we fail to free the inode, shut down.  The cancel
1822 		 * might do that, we need to make sure.  Otherwise the
1823 		 * inode might be lost for a long time or forever.
1824 		 */
1825 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1826 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1827 				__func__, error);
1828 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1829 		}
1830 		xfs_trans_cancel(tp);
1831 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1832 		return error;
1833 	}
1834 
1835 	/*
1836 	 * Credit the quota account(s). The inode is gone.
1837 	 */
1838 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1839 
1840 	/*
1841 	 * Just ignore errors at this point.  There is nothing we can do except
1842 	 * to try to keep going. Make sure it's not a silent error.
1843 	 */
1844 	error = xfs_bmap_finish(&tp,  &free_list, &committed);
1845 	if (error) {
1846 		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1847 			__func__, error);
1848 		xfs_bmap_cancel(&free_list);
1849 	}
1850 	error = xfs_trans_commit(tp);
1851 	if (error)
1852 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1853 			__func__, error);
1854 
1855 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1856 	return 0;
1857 }
1858 
1859 /*
1860  * xfs_inactive
1861  *
1862  * This is called when the vnode reference count for the vnode
1863  * goes to zero.  If the file has been unlinked, then it must
1864  * now be truncated.  Also, we clear all of the read-ahead state
1865  * kept for the inode here since the file is now closed.
1866  */
1867 void
xfs_inactive(xfs_inode_t * ip)1868 xfs_inactive(
1869 	xfs_inode_t	*ip)
1870 {
1871 	struct xfs_mount	*mp;
1872 	int			error;
1873 	int			truncate = 0;
1874 
1875 	/*
1876 	 * If the inode is already free, then there can be nothing
1877 	 * to clean up here.
1878 	 */
1879 	if (ip->i_d.di_mode == 0) {
1880 		ASSERT(ip->i_df.if_real_bytes == 0);
1881 		ASSERT(ip->i_df.if_broot_bytes == 0);
1882 		return;
1883 	}
1884 
1885 	mp = ip->i_mount;
1886 
1887 	/* If this is a read-only mount, don't do this (would generate I/O) */
1888 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1889 		return;
1890 
1891 	if (ip->i_d.di_nlink != 0) {
1892 		/*
1893 		 * force is true because we are evicting an inode from the
1894 		 * cache. Post-eof blocks must be freed, lest we end up with
1895 		 * broken free space accounting.
1896 		 */
1897 		if (xfs_can_free_eofblocks(ip, true))
1898 			xfs_free_eofblocks(mp, ip, false);
1899 
1900 		return;
1901 	}
1902 
1903 	if (S_ISREG(ip->i_d.di_mode) &&
1904 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1905 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1906 		truncate = 1;
1907 
1908 	error = xfs_qm_dqattach(ip, 0);
1909 	if (error)
1910 		return;
1911 
1912 	if (S_ISLNK(ip->i_d.di_mode))
1913 		error = xfs_inactive_symlink(ip);
1914 	else if (truncate)
1915 		error = xfs_inactive_truncate(ip);
1916 	if (error)
1917 		return;
1918 
1919 	/*
1920 	 * If there are attributes associated with the file then blow them away
1921 	 * now.  The code calls a routine that recursively deconstructs the
1922 	 * attribute fork. If also blows away the in-core attribute fork.
1923 	 */
1924 	if (XFS_IFORK_Q(ip)) {
1925 		error = xfs_attr_inactive(ip);
1926 		if (error)
1927 			return;
1928 	}
1929 
1930 	ASSERT(!ip->i_afp);
1931 	ASSERT(ip->i_d.di_anextents == 0);
1932 	ASSERT(ip->i_d.di_forkoff == 0);
1933 
1934 	/*
1935 	 * Free the inode.
1936 	 */
1937 	error = xfs_inactive_ifree(ip);
1938 	if (error)
1939 		return;
1940 
1941 	/*
1942 	 * Release the dquots held by inode, if any.
1943 	 */
1944 	xfs_qm_dqdetach(ip);
1945 }
1946 
1947 /*
1948  * This is called when the inode's link count goes to 0.
1949  * We place the on-disk inode on a list in the AGI.  It
1950  * will be pulled from this list when the inode is freed.
1951  */
1952 int
xfs_iunlink(xfs_trans_t * tp,xfs_inode_t * ip)1953 xfs_iunlink(
1954 	xfs_trans_t	*tp,
1955 	xfs_inode_t	*ip)
1956 {
1957 	xfs_mount_t	*mp;
1958 	xfs_agi_t	*agi;
1959 	xfs_dinode_t	*dip;
1960 	xfs_buf_t	*agibp;
1961 	xfs_buf_t	*ibp;
1962 	xfs_agino_t	agino;
1963 	short		bucket_index;
1964 	int		offset;
1965 	int		error;
1966 
1967 	ASSERT(ip->i_d.di_nlink == 0);
1968 	ASSERT(ip->i_d.di_mode != 0);
1969 
1970 	mp = tp->t_mountp;
1971 
1972 	/*
1973 	 * Get the agi buffer first.  It ensures lock ordering
1974 	 * on the list.
1975 	 */
1976 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1977 	if (error)
1978 		return error;
1979 	agi = XFS_BUF_TO_AGI(agibp);
1980 
1981 	/*
1982 	 * Get the index into the agi hash table for the
1983 	 * list this inode will go on.
1984 	 */
1985 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1986 	ASSERT(agino != 0);
1987 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1988 	ASSERT(agi->agi_unlinked[bucket_index]);
1989 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1990 
1991 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1992 		/*
1993 		 * There is already another inode in the bucket we need
1994 		 * to add ourselves to.  Add us at the front of the list.
1995 		 * Here we put the head pointer into our next pointer,
1996 		 * and then we fall through to point the head at us.
1997 		 */
1998 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1999 				       0, 0);
2000 		if (error)
2001 			return error;
2002 
2003 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2004 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2005 		offset = ip->i_imap.im_boffset +
2006 			offsetof(xfs_dinode_t, di_next_unlinked);
2007 
2008 		/* need to recalc the inode CRC if appropriate */
2009 		xfs_dinode_calc_crc(mp, dip);
2010 
2011 		xfs_trans_inode_buf(tp, ibp);
2012 		xfs_trans_log_buf(tp, ibp, offset,
2013 				  (offset + sizeof(xfs_agino_t) - 1));
2014 		xfs_inobp_check(mp, ibp);
2015 	}
2016 
2017 	/*
2018 	 * Point the bucket head pointer at the inode being inserted.
2019 	 */
2020 	ASSERT(agino != 0);
2021 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2022 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2023 		(sizeof(xfs_agino_t) * bucket_index);
2024 	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2025 	xfs_trans_log_buf(tp, agibp, offset,
2026 			  (offset + sizeof(xfs_agino_t) - 1));
2027 	return 0;
2028 }
2029 
2030 /*
2031  * Pull the on-disk inode from the AGI unlinked list.
2032  */
2033 STATIC int
xfs_iunlink_remove(xfs_trans_t * tp,xfs_inode_t * ip)2034 xfs_iunlink_remove(
2035 	xfs_trans_t	*tp,
2036 	xfs_inode_t	*ip)
2037 {
2038 	xfs_ino_t	next_ino;
2039 	xfs_mount_t	*mp;
2040 	xfs_agi_t	*agi;
2041 	xfs_dinode_t	*dip;
2042 	xfs_buf_t	*agibp;
2043 	xfs_buf_t	*ibp;
2044 	xfs_agnumber_t	agno;
2045 	xfs_agino_t	agino;
2046 	xfs_agino_t	next_agino;
2047 	xfs_buf_t	*last_ibp;
2048 	xfs_dinode_t	*last_dip = NULL;
2049 	short		bucket_index;
2050 	int		offset, last_offset = 0;
2051 	int		error;
2052 
2053 	mp = tp->t_mountp;
2054 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2055 
2056 	/*
2057 	 * Get the agi buffer first.  It ensures lock ordering
2058 	 * on the list.
2059 	 */
2060 	error = xfs_read_agi(mp, tp, agno, &agibp);
2061 	if (error)
2062 		return error;
2063 
2064 	agi = XFS_BUF_TO_AGI(agibp);
2065 
2066 	/*
2067 	 * Get the index into the agi hash table for the
2068 	 * list this inode will go on.
2069 	 */
2070 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2071 	ASSERT(agino != 0);
2072 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2073 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2074 	ASSERT(agi->agi_unlinked[bucket_index]);
2075 
2076 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2077 		/*
2078 		 * We're at the head of the list.  Get the inode's on-disk
2079 		 * buffer to see if there is anyone after us on the list.
2080 		 * Only modify our next pointer if it is not already NULLAGINO.
2081 		 * This saves us the overhead of dealing with the buffer when
2082 		 * there is no need to change it.
2083 		 */
2084 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2085 				       0, 0);
2086 		if (error) {
2087 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2088 				__func__, error);
2089 			return error;
2090 		}
2091 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2092 		ASSERT(next_agino != 0);
2093 		if (next_agino != NULLAGINO) {
2094 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2095 			offset = ip->i_imap.im_boffset +
2096 				offsetof(xfs_dinode_t, di_next_unlinked);
2097 
2098 			/* need to recalc the inode CRC if appropriate */
2099 			xfs_dinode_calc_crc(mp, dip);
2100 
2101 			xfs_trans_inode_buf(tp, ibp);
2102 			xfs_trans_log_buf(tp, ibp, offset,
2103 					  (offset + sizeof(xfs_agino_t) - 1));
2104 			xfs_inobp_check(mp, ibp);
2105 		} else {
2106 			xfs_trans_brelse(tp, ibp);
2107 		}
2108 		/*
2109 		 * Point the bucket head pointer at the next inode.
2110 		 */
2111 		ASSERT(next_agino != 0);
2112 		ASSERT(next_agino != agino);
2113 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2114 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2115 			(sizeof(xfs_agino_t) * bucket_index);
2116 		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2117 		xfs_trans_log_buf(tp, agibp, offset,
2118 				  (offset + sizeof(xfs_agino_t) - 1));
2119 	} else {
2120 		/*
2121 		 * We need to search the list for the inode being freed.
2122 		 */
2123 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2124 		last_ibp = NULL;
2125 		while (next_agino != agino) {
2126 			struct xfs_imap	imap;
2127 
2128 			if (last_ibp)
2129 				xfs_trans_brelse(tp, last_ibp);
2130 
2131 			imap.im_blkno = 0;
2132 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2133 
2134 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2135 			if (error) {
2136 				xfs_warn(mp,
2137 	"%s: xfs_imap returned error %d.",
2138 					 __func__, error);
2139 				return error;
2140 			}
2141 
2142 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2143 					       &last_ibp, 0, 0);
2144 			if (error) {
2145 				xfs_warn(mp,
2146 	"%s: xfs_imap_to_bp returned error %d.",
2147 					__func__, error);
2148 				return error;
2149 			}
2150 
2151 			last_offset = imap.im_boffset;
2152 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2153 			ASSERT(next_agino != NULLAGINO);
2154 			ASSERT(next_agino != 0);
2155 		}
2156 
2157 		/*
2158 		 * Now last_ibp points to the buffer previous to us on the
2159 		 * unlinked list.  Pull us from the list.
2160 		 */
2161 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2162 				       0, 0);
2163 		if (error) {
2164 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2165 				__func__, error);
2166 			return error;
2167 		}
2168 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2169 		ASSERT(next_agino != 0);
2170 		ASSERT(next_agino != agino);
2171 		if (next_agino != NULLAGINO) {
2172 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2173 			offset = ip->i_imap.im_boffset +
2174 				offsetof(xfs_dinode_t, di_next_unlinked);
2175 
2176 			/* need to recalc the inode CRC if appropriate */
2177 			xfs_dinode_calc_crc(mp, dip);
2178 
2179 			xfs_trans_inode_buf(tp, ibp);
2180 			xfs_trans_log_buf(tp, ibp, offset,
2181 					  (offset + sizeof(xfs_agino_t) - 1));
2182 			xfs_inobp_check(mp, ibp);
2183 		} else {
2184 			xfs_trans_brelse(tp, ibp);
2185 		}
2186 		/*
2187 		 * Point the previous inode on the list to the next inode.
2188 		 */
2189 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2190 		ASSERT(next_agino != 0);
2191 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2192 
2193 		/* need to recalc the inode CRC if appropriate */
2194 		xfs_dinode_calc_crc(mp, last_dip);
2195 
2196 		xfs_trans_inode_buf(tp, last_ibp);
2197 		xfs_trans_log_buf(tp, last_ibp, offset,
2198 				  (offset + sizeof(xfs_agino_t) - 1));
2199 		xfs_inobp_check(mp, last_ibp);
2200 	}
2201 	return 0;
2202 }
2203 
2204 /*
2205  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2206  * inodes that are in memory - they all must be marked stale and attached to
2207  * the cluster buffer.
2208  */
2209 STATIC int
xfs_ifree_cluster(xfs_inode_t * free_ip,xfs_trans_t * tp,struct xfs_icluster * xic)2210 xfs_ifree_cluster(
2211 	xfs_inode_t		*free_ip,
2212 	xfs_trans_t		*tp,
2213 	struct xfs_icluster	*xic)
2214 {
2215 	xfs_mount_t		*mp = free_ip->i_mount;
2216 	int			blks_per_cluster;
2217 	int			inodes_per_cluster;
2218 	int			nbufs;
2219 	int			i, j;
2220 	int			ioffset;
2221 	xfs_daddr_t		blkno;
2222 	xfs_buf_t		*bp;
2223 	xfs_inode_t		*ip;
2224 	xfs_inode_log_item_t	*iip;
2225 	xfs_log_item_t		*lip;
2226 	struct xfs_perag	*pag;
2227 	xfs_ino_t		inum;
2228 
2229 	inum = xic->first_ino;
2230 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2231 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2232 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2233 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2234 
2235 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2236 		/*
2237 		 * The allocation bitmap tells us which inodes of the chunk were
2238 		 * physically allocated. Skip the cluster if an inode falls into
2239 		 * a sparse region.
2240 		 */
2241 		ioffset = inum - xic->first_ino;
2242 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2243 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2244 			continue;
2245 		}
2246 
2247 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2248 					 XFS_INO_TO_AGBNO(mp, inum));
2249 
2250 		/*
2251 		 * We obtain and lock the backing buffer first in the process
2252 		 * here, as we have to ensure that any dirty inode that we
2253 		 * can't get the flush lock on is attached to the buffer.
2254 		 * If we scan the in-memory inodes first, then buffer IO can
2255 		 * complete before we get a lock on it, and hence we may fail
2256 		 * to mark all the active inodes on the buffer stale.
2257 		 */
2258 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2259 					mp->m_bsize * blks_per_cluster,
2260 					XBF_UNMAPPED);
2261 
2262 		if (!bp)
2263 			return -ENOMEM;
2264 
2265 		/*
2266 		 * This buffer may not have been correctly initialised as we
2267 		 * didn't read it from disk. That's not important because we are
2268 		 * only using to mark the buffer as stale in the log, and to
2269 		 * attach stale cached inodes on it. That means it will never be
2270 		 * dispatched for IO. If it is, we want to know about it, and we
2271 		 * want it to fail. We can acheive this by adding a write
2272 		 * verifier to the buffer.
2273 		 */
2274 		 bp->b_ops = &xfs_inode_buf_ops;
2275 
2276 		/*
2277 		 * Walk the inodes already attached to the buffer and mark them
2278 		 * stale. These will all have the flush locks held, so an
2279 		 * in-memory inode walk can't lock them. By marking them all
2280 		 * stale first, we will not attempt to lock them in the loop
2281 		 * below as the XFS_ISTALE flag will be set.
2282 		 */
2283 		lip = bp->b_fspriv;
2284 		while (lip) {
2285 			if (lip->li_type == XFS_LI_INODE) {
2286 				iip = (xfs_inode_log_item_t *)lip;
2287 				ASSERT(iip->ili_logged == 1);
2288 				lip->li_cb = xfs_istale_done;
2289 				xfs_trans_ail_copy_lsn(mp->m_ail,
2290 							&iip->ili_flush_lsn,
2291 							&iip->ili_item.li_lsn);
2292 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2293 			}
2294 			lip = lip->li_bio_list;
2295 		}
2296 
2297 
2298 		/*
2299 		 * For each inode in memory attempt to add it to the inode
2300 		 * buffer and set it up for being staled on buffer IO
2301 		 * completion.  This is safe as we've locked out tail pushing
2302 		 * and flushing by locking the buffer.
2303 		 *
2304 		 * We have already marked every inode that was part of a
2305 		 * transaction stale above, which means there is no point in
2306 		 * even trying to lock them.
2307 		 */
2308 		for (i = 0; i < inodes_per_cluster; i++) {
2309 retry:
2310 			rcu_read_lock();
2311 			ip = radix_tree_lookup(&pag->pag_ici_root,
2312 					XFS_INO_TO_AGINO(mp, (inum + i)));
2313 
2314 			/* Inode not in memory, nothing to do */
2315 			if (!ip) {
2316 				rcu_read_unlock();
2317 				continue;
2318 			}
2319 
2320 			/*
2321 			 * because this is an RCU protected lookup, we could
2322 			 * find a recently freed or even reallocated inode
2323 			 * during the lookup. We need to check under the
2324 			 * i_flags_lock for a valid inode here. Skip it if it
2325 			 * is not valid, the wrong inode or stale.
2326 			 */
2327 			spin_lock(&ip->i_flags_lock);
2328 			if (ip->i_ino != inum + i ||
2329 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2330 				spin_unlock(&ip->i_flags_lock);
2331 				rcu_read_unlock();
2332 				continue;
2333 			}
2334 			spin_unlock(&ip->i_flags_lock);
2335 
2336 			/*
2337 			 * Don't try to lock/unlock the current inode, but we
2338 			 * _cannot_ skip the other inodes that we did not find
2339 			 * in the list attached to the buffer and are not
2340 			 * already marked stale. If we can't lock it, back off
2341 			 * and retry.
2342 			 */
2343 			if (ip != free_ip &&
2344 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2345 				rcu_read_unlock();
2346 				delay(1);
2347 				goto retry;
2348 			}
2349 			rcu_read_unlock();
2350 
2351 			xfs_iflock(ip);
2352 			xfs_iflags_set(ip, XFS_ISTALE);
2353 
2354 			/*
2355 			 * we don't need to attach clean inodes or those only
2356 			 * with unlogged changes (which we throw away, anyway).
2357 			 */
2358 			iip = ip->i_itemp;
2359 			if (!iip || xfs_inode_clean(ip)) {
2360 				ASSERT(ip != free_ip);
2361 				xfs_ifunlock(ip);
2362 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2363 				continue;
2364 			}
2365 
2366 			iip->ili_last_fields = iip->ili_fields;
2367 			iip->ili_fields = 0;
2368 			iip->ili_fsync_fields = 0;
2369 			iip->ili_logged = 1;
2370 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2371 						&iip->ili_item.li_lsn);
2372 
2373 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2374 						  &iip->ili_item);
2375 
2376 			if (ip != free_ip)
2377 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2378 		}
2379 
2380 		xfs_trans_stale_inode_buf(tp, bp);
2381 		xfs_trans_binval(tp, bp);
2382 	}
2383 
2384 	xfs_perag_put(pag);
2385 	return 0;
2386 }
2387 
2388 /*
2389  * This is called to return an inode to the inode free list.
2390  * The inode should already be truncated to 0 length and have
2391  * no pages associated with it.  This routine also assumes that
2392  * the inode is already a part of the transaction.
2393  *
2394  * The on-disk copy of the inode will have been added to the list
2395  * of unlinked inodes in the AGI. We need to remove the inode from
2396  * that list atomically with respect to freeing it here.
2397  */
2398 int
xfs_ifree(xfs_trans_t * tp,xfs_inode_t * ip,xfs_bmap_free_t * flist)2399 xfs_ifree(
2400 	xfs_trans_t	*tp,
2401 	xfs_inode_t	*ip,
2402 	xfs_bmap_free_t	*flist)
2403 {
2404 	int			error;
2405 	struct xfs_icluster	xic = { 0 };
2406 
2407 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2408 	ASSERT(ip->i_d.di_nlink == 0);
2409 	ASSERT(ip->i_d.di_nextents == 0);
2410 	ASSERT(ip->i_d.di_anextents == 0);
2411 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2412 	ASSERT(ip->i_d.di_nblocks == 0);
2413 
2414 	/*
2415 	 * Pull the on-disk inode from the AGI unlinked list.
2416 	 */
2417 	error = xfs_iunlink_remove(tp, ip);
2418 	if (error)
2419 		return error;
2420 
2421 	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2422 	if (error)
2423 		return error;
2424 
2425 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2426 	ip->i_d.di_flags = 0;
2427 	ip->i_d.di_dmevmask = 0;
2428 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2429 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2430 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2431 	/*
2432 	 * Bump the generation count so no one will be confused
2433 	 * by reincarnations of this inode.
2434 	 */
2435 	ip->i_d.di_gen++;
2436 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2437 
2438 	if (xic.deleted)
2439 		error = xfs_ifree_cluster(ip, tp, &xic);
2440 
2441 	return error;
2442 }
2443 
2444 /*
2445  * This is called to unpin an inode.  The caller must have the inode locked
2446  * in at least shared mode so that the buffer cannot be subsequently pinned
2447  * once someone is waiting for it to be unpinned.
2448  */
2449 static void
xfs_iunpin(struct xfs_inode * ip)2450 xfs_iunpin(
2451 	struct xfs_inode	*ip)
2452 {
2453 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2454 
2455 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2456 
2457 	/* Give the log a push to start the unpinning I/O */
2458 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2459 
2460 }
2461 
2462 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2463 __xfs_iunpin_wait(
2464 	struct xfs_inode	*ip)
2465 {
2466 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2467 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2468 
2469 	xfs_iunpin(ip);
2470 
2471 	do {
2472 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2473 		if (xfs_ipincount(ip))
2474 			io_schedule();
2475 	} while (xfs_ipincount(ip));
2476 	finish_wait(wq, &wait.wait);
2477 }
2478 
2479 void
xfs_iunpin_wait(struct xfs_inode * ip)2480 xfs_iunpin_wait(
2481 	struct xfs_inode	*ip)
2482 {
2483 	if (xfs_ipincount(ip))
2484 		__xfs_iunpin_wait(ip);
2485 }
2486 
2487 /*
2488  * Removing an inode from the namespace involves removing the directory entry
2489  * and dropping the link count on the inode. Removing the directory entry can
2490  * result in locking an AGF (directory blocks were freed) and removing a link
2491  * count can result in placing the inode on an unlinked list which results in
2492  * locking an AGI.
2493  *
2494  * The big problem here is that we have an ordering constraint on AGF and AGI
2495  * locking - inode allocation locks the AGI, then can allocate a new extent for
2496  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2497  * removes the inode from the unlinked list, requiring that we lock the AGI
2498  * first, and then freeing the inode can result in an inode chunk being freed
2499  * and hence freeing disk space requiring that we lock an AGF.
2500  *
2501  * Hence the ordering that is imposed by other parts of the code is AGI before
2502  * AGF. This means we cannot remove the directory entry before we drop the inode
2503  * reference count and put it on the unlinked list as this results in a lock
2504  * order of AGF then AGI, and this can deadlock against inode allocation and
2505  * freeing. Therefore we must drop the link counts before we remove the
2506  * directory entry.
2507  *
2508  * This is still safe from a transactional point of view - it is not until we
2509  * get to xfs_bmap_finish() that we have the possibility of multiple
2510  * transactions in this operation. Hence as long as we remove the directory
2511  * entry and drop the link count in the first transaction of the remove
2512  * operation, there are no transactional constraints on the ordering here.
2513  */
2514 int
xfs_remove(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t * ip)2515 xfs_remove(
2516 	xfs_inode_t             *dp,
2517 	struct xfs_name		*name,
2518 	xfs_inode_t		*ip)
2519 {
2520 	xfs_mount_t		*mp = dp->i_mount;
2521 	xfs_trans_t             *tp = NULL;
2522 	int			is_dir = S_ISDIR(ip->i_d.di_mode);
2523 	int                     error = 0;
2524 	xfs_bmap_free_t         free_list;
2525 	xfs_fsblock_t           first_block;
2526 	int			committed;
2527 	uint			resblks;
2528 
2529 	trace_xfs_remove(dp, name);
2530 
2531 	if (XFS_FORCED_SHUTDOWN(mp))
2532 		return -EIO;
2533 
2534 	error = xfs_qm_dqattach(dp, 0);
2535 	if (error)
2536 		goto std_return;
2537 
2538 	error = xfs_qm_dqattach(ip, 0);
2539 	if (error)
2540 		goto std_return;
2541 
2542 	if (is_dir)
2543 		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2544 	else
2545 		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2546 
2547 	/*
2548 	 * We try to get the real space reservation first,
2549 	 * allowing for directory btree deletion(s) implying
2550 	 * possible bmap insert(s).  If we can't get the space
2551 	 * reservation then we use 0 instead, and avoid the bmap
2552 	 * btree insert(s) in the directory code by, if the bmap
2553 	 * insert tries to happen, instead trimming the LAST
2554 	 * block from the directory.
2555 	 */
2556 	resblks = XFS_REMOVE_SPACE_RES(mp);
2557 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2558 	if (error == -ENOSPC) {
2559 		resblks = 0;
2560 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2561 	}
2562 	if (error) {
2563 		ASSERT(error != -ENOSPC);
2564 		goto out_trans_cancel;
2565 	}
2566 
2567 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2568 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2569 
2570 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2571 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2572 
2573 	/*
2574 	 * If we're removing a directory perform some additional validation.
2575 	 */
2576 	if (is_dir) {
2577 		ASSERT(ip->i_d.di_nlink >= 2);
2578 		if (ip->i_d.di_nlink != 2) {
2579 			error = -ENOTEMPTY;
2580 			goto out_trans_cancel;
2581 		}
2582 		if (!xfs_dir_isempty(ip)) {
2583 			error = -ENOTEMPTY;
2584 			goto out_trans_cancel;
2585 		}
2586 
2587 		/* Drop the link from ip's "..".  */
2588 		error = xfs_droplink(tp, dp);
2589 		if (error)
2590 			goto out_trans_cancel;
2591 
2592 		/* Drop the "." link from ip to self.  */
2593 		error = xfs_droplink(tp, ip);
2594 		if (error)
2595 			goto out_trans_cancel;
2596 	} else {
2597 		/*
2598 		 * When removing a non-directory we need to log the parent
2599 		 * inode here.  For a directory this is done implicitly
2600 		 * by the xfs_droplink call for the ".." entry.
2601 		 */
2602 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2603 	}
2604 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2605 
2606 	/* Drop the link from dp to ip. */
2607 	error = xfs_droplink(tp, ip);
2608 	if (error)
2609 		goto out_trans_cancel;
2610 
2611 	xfs_bmap_init(&free_list, &first_block);
2612 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2613 					&first_block, &free_list, resblks);
2614 	if (error) {
2615 		ASSERT(error != -ENOENT);
2616 		goto out_bmap_cancel;
2617 	}
2618 
2619 	/*
2620 	 * If this is a synchronous mount, make sure that the
2621 	 * remove transaction goes to disk before returning to
2622 	 * the user.
2623 	 */
2624 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2625 		xfs_trans_set_sync(tp);
2626 
2627 	error = xfs_bmap_finish(&tp, &free_list, &committed);
2628 	if (error)
2629 		goto out_bmap_cancel;
2630 
2631 	error = xfs_trans_commit(tp);
2632 	if (error)
2633 		goto std_return;
2634 
2635 	if (is_dir && xfs_inode_is_filestream(ip))
2636 		xfs_filestream_deassociate(ip);
2637 
2638 	return 0;
2639 
2640  out_bmap_cancel:
2641 	xfs_bmap_cancel(&free_list);
2642  out_trans_cancel:
2643 	xfs_trans_cancel(tp);
2644  std_return:
2645 	return error;
2646 }
2647 
2648 /*
2649  * Enter all inodes for a rename transaction into a sorted array.
2650  */
2651 #define __XFS_SORT_INODES	5
2652 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2653 xfs_sort_for_rename(
2654 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2655 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2656 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2657 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2658 	struct xfs_inode	*wip,	/* in: whiteout inode */
2659 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2660 	int			*num_inodes)  /* in/out: inodes in array */
2661 {
2662 	int			i, j;
2663 
2664 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2665 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2666 
2667 	/*
2668 	 * i_tab contains a list of pointers to inodes.  We initialize
2669 	 * the table here & we'll sort it.  We will then use it to
2670 	 * order the acquisition of the inode locks.
2671 	 *
2672 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2673 	 */
2674 	i = 0;
2675 	i_tab[i++] = dp1;
2676 	i_tab[i++] = dp2;
2677 	i_tab[i++] = ip1;
2678 	if (ip2)
2679 		i_tab[i++] = ip2;
2680 	if (wip)
2681 		i_tab[i++] = wip;
2682 	*num_inodes = i;
2683 
2684 	/*
2685 	 * Sort the elements via bubble sort.  (Remember, there are at
2686 	 * most 5 elements to sort, so this is adequate.)
2687 	 */
2688 	for (i = 0; i < *num_inodes; i++) {
2689 		for (j = 1; j < *num_inodes; j++) {
2690 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2691 				struct xfs_inode *temp = i_tab[j];
2692 				i_tab[j] = i_tab[j-1];
2693 				i_tab[j-1] = temp;
2694 			}
2695 		}
2696 	}
2697 }
2698 
2699 static int
xfs_finish_rename(struct xfs_trans * tp,struct xfs_bmap_free * free_list)2700 xfs_finish_rename(
2701 	struct xfs_trans	*tp,
2702 	struct xfs_bmap_free	*free_list)
2703 {
2704 	int			committed = 0;
2705 	int			error;
2706 
2707 	/*
2708 	 * If this is a synchronous mount, make sure that the rename transaction
2709 	 * goes to disk before returning to the user.
2710 	 */
2711 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2712 		xfs_trans_set_sync(tp);
2713 
2714 	error = xfs_bmap_finish(&tp, free_list, &committed);
2715 	if (error) {
2716 		xfs_bmap_cancel(free_list);
2717 		xfs_trans_cancel(tp);
2718 		return error;
2719 	}
2720 
2721 	return xfs_trans_commit(tp);
2722 }
2723 
2724 /*
2725  * xfs_cross_rename()
2726  *
2727  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2728  */
2729 STATIC int
xfs_cross_rename(struct xfs_trans * tp,struct xfs_inode * dp1,struct xfs_name * name1,struct xfs_inode * ip1,struct xfs_inode * dp2,struct xfs_name * name2,struct xfs_inode * ip2,struct xfs_bmap_free * free_list,xfs_fsblock_t * first_block,int spaceres)2730 xfs_cross_rename(
2731 	struct xfs_trans	*tp,
2732 	struct xfs_inode	*dp1,
2733 	struct xfs_name		*name1,
2734 	struct xfs_inode	*ip1,
2735 	struct xfs_inode	*dp2,
2736 	struct xfs_name		*name2,
2737 	struct xfs_inode	*ip2,
2738 	struct xfs_bmap_free	*free_list,
2739 	xfs_fsblock_t		*first_block,
2740 	int			spaceres)
2741 {
2742 	int		error = 0;
2743 	int		ip1_flags = 0;
2744 	int		ip2_flags = 0;
2745 	int		dp2_flags = 0;
2746 
2747 	/* Swap inode number for dirent in first parent */
2748 	error = xfs_dir_replace(tp, dp1, name1,
2749 				ip2->i_ino,
2750 				first_block, free_list, spaceres);
2751 	if (error)
2752 		goto out_trans_abort;
2753 
2754 	/* Swap inode number for dirent in second parent */
2755 	error = xfs_dir_replace(tp, dp2, name2,
2756 				ip1->i_ino,
2757 				first_block, free_list, spaceres);
2758 	if (error)
2759 		goto out_trans_abort;
2760 
2761 	/*
2762 	 * If we're renaming one or more directories across different parents,
2763 	 * update the respective ".." entries (and link counts) to match the new
2764 	 * parents.
2765 	 */
2766 	if (dp1 != dp2) {
2767 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2768 
2769 		if (S_ISDIR(ip2->i_d.di_mode)) {
2770 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2771 						dp1->i_ino, first_block,
2772 						free_list, spaceres);
2773 			if (error)
2774 				goto out_trans_abort;
2775 
2776 			/* transfer ip2 ".." reference to dp1 */
2777 			if (!S_ISDIR(ip1->i_d.di_mode)) {
2778 				error = xfs_droplink(tp, dp2);
2779 				if (error)
2780 					goto out_trans_abort;
2781 				error = xfs_bumplink(tp, dp1);
2782 				if (error)
2783 					goto out_trans_abort;
2784 			}
2785 
2786 			/*
2787 			 * Although ip1 isn't changed here, userspace needs
2788 			 * to be warned about the change, so that applications
2789 			 * relying on it (like backup ones), will properly
2790 			 * notify the change
2791 			 */
2792 			ip1_flags |= XFS_ICHGTIME_CHG;
2793 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2794 		}
2795 
2796 		if (S_ISDIR(ip1->i_d.di_mode)) {
2797 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2798 						dp2->i_ino, first_block,
2799 						free_list, spaceres);
2800 			if (error)
2801 				goto out_trans_abort;
2802 
2803 			/* transfer ip1 ".." reference to dp2 */
2804 			if (!S_ISDIR(ip2->i_d.di_mode)) {
2805 				error = xfs_droplink(tp, dp1);
2806 				if (error)
2807 					goto out_trans_abort;
2808 				error = xfs_bumplink(tp, dp2);
2809 				if (error)
2810 					goto out_trans_abort;
2811 			}
2812 
2813 			/*
2814 			 * Although ip2 isn't changed here, userspace needs
2815 			 * to be warned about the change, so that applications
2816 			 * relying on it (like backup ones), will properly
2817 			 * notify the change
2818 			 */
2819 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2820 			ip2_flags |= XFS_ICHGTIME_CHG;
2821 		}
2822 	}
2823 
2824 	if (ip1_flags) {
2825 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2826 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2827 	}
2828 	if (ip2_flags) {
2829 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2830 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2831 	}
2832 	if (dp2_flags) {
2833 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2834 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2835 	}
2836 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2837 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2838 	return xfs_finish_rename(tp, free_list);
2839 
2840 out_trans_abort:
2841 	xfs_bmap_cancel(free_list);
2842 	xfs_trans_cancel(tp);
2843 	return error;
2844 }
2845 
2846 /*
2847  * xfs_rename_alloc_whiteout()
2848  *
2849  * Return a referenced, unlinked, unlocked inode that that can be used as a
2850  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2851  * crash between allocating the inode and linking it into the rename transaction
2852  * recovery will free the inode and we won't leak it.
2853  */
2854 static int
xfs_rename_alloc_whiteout(struct xfs_inode * dp,struct xfs_inode ** wip)2855 xfs_rename_alloc_whiteout(
2856 	struct xfs_inode	*dp,
2857 	struct xfs_inode	**wip)
2858 {
2859 	struct xfs_inode	*tmpfile;
2860 	int			error;
2861 
2862 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2863 	if (error)
2864 		return error;
2865 
2866 	/*
2867 	 * Prepare the tmpfile inode as if it were created through the VFS.
2868 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2869 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2870 	 * and flag it as linkable.
2871 	 */
2872 	drop_nlink(VFS_I(tmpfile));
2873 	xfs_finish_inode_setup(tmpfile);
2874 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2875 
2876 	*wip = tmpfile;
2877 	return 0;
2878 }
2879 
2880 /*
2881  * xfs_rename
2882  */
2883 int
xfs_rename(struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2884 xfs_rename(
2885 	struct xfs_inode	*src_dp,
2886 	struct xfs_name		*src_name,
2887 	struct xfs_inode	*src_ip,
2888 	struct xfs_inode	*target_dp,
2889 	struct xfs_name		*target_name,
2890 	struct xfs_inode	*target_ip,
2891 	unsigned int		flags)
2892 {
2893 	struct xfs_mount	*mp = src_dp->i_mount;
2894 	struct xfs_trans	*tp;
2895 	struct xfs_bmap_free	free_list;
2896 	xfs_fsblock_t		first_block;
2897 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2898 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2899 	int			num_inodes = __XFS_SORT_INODES;
2900 	bool			new_parent = (src_dp != target_dp);
2901 	bool			src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2902 	int			spaceres;
2903 	int			error;
2904 
2905 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2906 
2907 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2908 		return -EINVAL;
2909 
2910 	/*
2911 	 * If we are doing a whiteout operation, allocate the whiteout inode
2912 	 * we will be placing at the target and ensure the type is set
2913 	 * appropriately.
2914 	 */
2915 	if (flags & RENAME_WHITEOUT) {
2916 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2917 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2918 		if (error)
2919 			return error;
2920 
2921 		/* setup target dirent info as whiteout */
2922 		src_name->type = XFS_DIR3_FT_CHRDEV;
2923 	}
2924 
2925 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2926 				inodes, &num_inodes);
2927 
2928 	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2929 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2930 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2931 	if (error == -ENOSPC) {
2932 		spaceres = 0;
2933 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2934 	}
2935 	if (error)
2936 		goto out_trans_cancel;
2937 
2938 	/*
2939 	 * Attach the dquots to the inodes
2940 	 */
2941 	error = xfs_qm_vop_rename_dqattach(inodes);
2942 	if (error)
2943 		goto out_trans_cancel;
2944 
2945 	/*
2946 	 * Lock all the participating inodes. Depending upon whether
2947 	 * the target_name exists in the target directory, and
2948 	 * whether the target directory is the same as the source
2949 	 * directory, we can lock from 2 to 4 inodes.
2950 	 */
2951 	if (!new_parent)
2952 		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2953 	else
2954 		xfs_lock_two_inodes(src_dp, target_dp,
2955 				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2956 
2957 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2958 
2959 	/*
2960 	 * Join all the inodes to the transaction. From this point on,
2961 	 * we can rely on either trans_commit or trans_cancel to unlock
2962 	 * them.
2963 	 */
2964 	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2965 	if (new_parent)
2966 		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2967 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2968 	if (target_ip)
2969 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2970 	if (wip)
2971 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2972 
2973 	/*
2974 	 * If we are using project inheritance, we only allow renames
2975 	 * into our tree when the project IDs are the same; else the
2976 	 * tree quota mechanism would be circumvented.
2977 	 */
2978 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2979 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2980 		error = -EXDEV;
2981 		goto out_trans_cancel;
2982 	}
2983 
2984 	xfs_bmap_init(&free_list, &first_block);
2985 
2986 	/* RENAME_EXCHANGE is unique from here on. */
2987 	if (flags & RENAME_EXCHANGE)
2988 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2989 					target_dp, target_name, target_ip,
2990 					&free_list, &first_block, spaceres);
2991 
2992 	/*
2993 	 * Set up the target.
2994 	 */
2995 	if (target_ip == NULL) {
2996 		/*
2997 		 * If there's no space reservation, check the entry will
2998 		 * fit before actually inserting it.
2999 		 */
3000 		if (!spaceres) {
3001 			error = xfs_dir_canenter(tp, target_dp, target_name);
3002 			if (error)
3003 				goto out_trans_cancel;
3004 		}
3005 		/*
3006 		 * If target does not exist and the rename crosses
3007 		 * directories, adjust the target directory link count
3008 		 * to account for the ".." reference from the new entry.
3009 		 */
3010 		error = xfs_dir_createname(tp, target_dp, target_name,
3011 						src_ip->i_ino, &first_block,
3012 						&free_list, spaceres);
3013 		if (error)
3014 			goto out_bmap_cancel;
3015 
3016 		xfs_trans_ichgtime(tp, target_dp,
3017 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3018 
3019 		if (new_parent && src_is_directory) {
3020 			error = xfs_bumplink(tp, target_dp);
3021 			if (error)
3022 				goto out_bmap_cancel;
3023 		}
3024 	} else { /* target_ip != NULL */
3025 		/*
3026 		 * If target exists and it's a directory, check that both
3027 		 * target and source are directories and that target can be
3028 		 * destroyed, or that neither is a directory.
3029 		 */
3030 		if (S_ISDIR(target_ip->i_d.di_mode)) {
3031 			/*
3032 			 * Make sure target dir is empty.
3033 			 */
3034 			if (!(xfs_dir_isempty(target_ip)) ||
3035 			    (target_ip->i_d.di_nlink > 2)) {
3036 				error = -EEXIST;
3037 				goto out_trans_cancel;
3038 			}
3039 		}
3040 
3041 		/*
3042 		 * Link the source inode under the target name.
3043 		 * If the source inode is a directory and we are moving
3044 		 * it across directories, its ".." entry will be
3045 		 * inconsistent until we replace that down below.
3046 		 *
3047 		 * In case there is already an entry with the same
3048 		 * name at the destination directory, remove it first.
3049 		 */
3050 		error = xfs_dir_replace(tp, target_dp, target_name,
3051 					src_ip->i_ino,
3052 					&first_block, &free_list, spaceres);
3053 		if (error)
3054 			goto out_bmap_cancel;
3055 
3056 		xfs_trans_ichgtime(tp, target_dp,
3057 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3058 
3059 		/*
3060 		 * Decrement the link count on the target since the target
3061 		 * dir no longer points to it.
3062 		 */
3063 		error = xfs_droplink(tp, target_ip);
3064 		if (error)
3065 			goto out_bmap_cancel;
3066 
3067 		if (src_is_directory) {
3068 			/*
3069 			 * Drop the link from the old "." entry.
3070 			 */
3071 			error = xfs_droplink(tp, target_ip);
3072 			if (error)
3073 				goto out_bmap_cancel;
3074 		}
3075 	} /* target_ip != NULL */
3076 
3077 	/*
3078 	 * Remove the source.
3079 	 */
3080 	if (new_parent && src_is_directory) {
3081 		/*
3082 		 * Rewrite the ".." entry to point to the new
3083 		 * directory.
3084 		 */
3085 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3086 					target_dp->i_ino,
3087 					&first_block, &free_list, spaceres);
3088 		ASSERT(error != -EEXIST);
3089 		if (error)
3090 			goto out_bmap_cancel;
3091 	}
3092 
3093 	/*
3094 	 * We always want to hit the ctime on the source inode.
3095 	 *
3096 	 * This isn't strictly required by the standards since the source
3097 	 * inode isn't really being changed, but old unix file systems did
3098 	 * it and some incremental backup programs won't work without it.
3099 	 */
3100 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3101 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3102 
3103 	/*
3104 	 * Adjust the link count on src_dp.  This is necessary when
3105 	 * renaming a directory, either within one parent when
3106 	 * the target existed, or across two parent directories.
3107 	 */
3108 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3109 
3110 		/*
3111 		 * Decrement link count on src_directory since the
3112 		 * entry that's moved no longer points to it.
3113 		 */
3114 		error = xfs_droplink(tp, src_dp);
3115 		if (error)
3116 			goto out_bmap_cancel;
3117 	}
3118 
3119 	/*
3120 	 * For whiteouts, we only need to update the source dirent with the
3121 	 * inode number of the whiteout inode rather than removing it
3122 	 * altogether.
3123 	 */
3124 	if (wip) {
3125 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3126 					&first_block, &free_list, spaceres);
3127 	} else
3128 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3129 					   &first_block, &free_list, spaceres);
3130 	if (error)
3131 		goto out_bmap_cancel;
3132 
3133 	/*
3134 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3135 	 * This means that failures all the way up to this point leave the inode
3136 	 * on the unlinked list and so cleanup is a simple matter of dropping
3137 	 * the remaining reference to it. If we fail here after bumping the link
3138 	 * count, we're shutting down the filesystem so we'll never see the
3139 	 * intermediate state on disk.
3140 	 */
3141 	if (wip) {
3142 		ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3143 		error = xfs_bumplink(tp, wip);
3144 		if (error)
3145 			goto out_bmap_cancel;
3146 		error = xfs_iunlink_remove(tp, wip);
3147 		if (error)
3148 			goto out_bmap_cancel;
3149 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3150 
3151 		/*
3152 		 * Now we have a real link, clear the "I'm a tmpfile" state
3153 		 * flag from the inode so it doesn't accidentally get misused in
3154 		 * future.
3155 		 */
3156 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3157 	}
3158 
3159 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3160 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3161 	if (new_parent)
3162 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3163 
3164 	error = xfs_finish_rename(tp, &free_list);
3165 	if (wip)
3166 		IRELE(wip);
3167 	return error;
3168 
3169 out_bmap_cancel:
3170 	xfs_bmap_cancel(&free_list);
3171 out_trans_cancel:
3172 	xfs_trans_cancel(tp);
3173 	if (wip)
3174 		IRELE(wip);
3175 	return error;
3176 }
3177 
3178 STATIC int
xfs_iflush_cluster(xfs_inode_t * ip,xfs_buf_t * bp)3179 xfs_iflush_cluster(
3180 	xfs_inode_t	*ip,
3181 	xfs_buf_t	*bp)
3182 {
3183 	xfs_mount_t		*mp = ip->i_mount;
3184 	struct xfs_perag	*pag;
3185 	unsigned long		first_index, mask;
3186 	unsigned long		inodes_per_cluster;
3187 	int			ilist_size;
3188 	xfs_inode_t		**ilist;
3189 	xfs_inode_t		*iq;
3190 	int			nr_found;
3191 	int			clcount = 0;
3192 	int			bufwasdelwri;
3193 	int			i;
3194 
3195 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3196 
3197 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3198 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3199 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3200 	if (!ilist)
3201 		goto out_put;
3202 
3203 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3204 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3205 	rcu_read_lock();
3206 	/* really need a gang lookup range call here */
3207 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3208 					first_index, inodes_per_cluster);
3209 	if (nr_found == 0)
3210 		goto out_free;
3211 
3212 	for (i = 0; i < nr_found; i++) {
3213 		iq = ilist[i];
3214 		if (iq == ip)
3215 			continue;
3216 
3217 		/*
3218 		 * because this is an RCU protected lookup, we could find a
3219 		 * recently freed or even reallocated inode during the lookup.
3220 		 * We need to check under the i_flags_lock for a valid inode
3221 		 * here. Skip it if it is not valid or the wrong inode.
3222 		 */
3223 		spin_lock(&iq->i_flags_lock);
3224 		if (!iq->i_ino ||
3225 		    __xfs_iflags_test(iq, XFS_ISTALE) ||
3226 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3227 			spin_unlock(&iq->i_flags_lock);
3228 			continue;
3229 		}
3230 		spin_unlock(&iq->i_flags_lock);
3231 
3232 		/*
3233 		 * Do an un-protected check to see if the inode is dirty and
3234 		 * is a candidate for flushing.  These checks will be repeated
3235 		 * later after the appropriate locks are acquired.
3236 		 */
3237 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3238 			continue;
3239 
3240 		/*
3241 		 * Try to get locks.  If any are unavailable or it is pinned,
3242 		 * then this inode cannot be flushed and is skipped.
3243 		 */
3244 
3245 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3246 			continue;
3247 		if (!xfs_iflock_nowait(iq)) {
3248 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3249 			continue;
3250 		}
3251 		if (xfs_ipincount(iq)) {
3252 			xfs_ifunlock(iq);
3253 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3254 			continue;
3255 		}
3256 
3257 		/*
3258 		 * arriving here means that this inode can be flushed.  First
3259 		 * re-check that it's dirty before flushing.
3260 		 */
3261 		if (!xfs_inode_clean(iq)) {
3262 			int	error;
3263 			error = xfs_iflush_int(iq, bp);
3264 			if (error) {
3265 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3266 				goto cluster_corrupt_out;
3267 			}
3268 			clcount++;
3269 		} else {
3270 			xfs_ifunlock(iq);
3271 		}
3272 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3273 	}
3274 
3275 	if (clcount) {
3276 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3277 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3278 	}
3279 
3280 out_free:
3281 	rcu_read_unlock();
3282 	kmem_free(ilist);
3283 out_put:
3284 	xfs_perag_put(pag);
3285 	return 0;
3286 
3287 
3288 cluster_corrupt_out:
3289 	/*
3290 	 * Corruption detected in the clustering loop.  Invalidate the
3291 	 * inode buffer and shut down the filesystem.
3292 	 */
3293 	rcu_read_unlock();
3294 	/*
3295 	 * Clean up the buffer.  If it was delwri, just release it --
3296 	 * brelse can handle it with no problems.  If not, shut down the
3297 	 * filesystem before releasing the buffer.
3298 	 */
3299 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3300 	if (bufwasdelwri)
3301 		xfs_buf_relse(bp);
3302 
3303 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3304 
3305 	if (!bufwasdelwri) {
3306 		/*
3307 		 * Just like incore_relse: if we have b_iodone functions,
3308 		 * mark the buffer as an error and call them.  Otherwise
3309 		 * mark it as stale and brelse.
3310 		 */
3311 		if (bp->b_iodone) {
3312 			XFS_BUF_UNDONE(bp);
3313 			xfs_buf_stale(bp);
3314 			xfs_buf_ioerror(bp, -EIO);
3315 			xfs_buf_ioend(bp);
3316 		} else {
3317 			xfs_buf_stale(bp);
3318 			xfs_buf_relse(bp);
3319 		}
3320 	}
3321 
3322 	/*
3323 	 * Unlocks the flush lock
3324 	 */
3325 	xfs_iflush_abort(iq, false);
3326 	kmem_free(ilist);
3327 	xfs_perag_put(pag);
3328 	return -EFSCORRUPTED;
3329 }
3330 
3331 /*
3332  * Flush dirty inode metadata into the backing buffer.
3333  *
3334  * The caller must have the inode lock and the inode flush lock held.  The
3335  * inode lock will still be held upon return to the caller, and the inode
3336  * flush lock will be released after the inode has reached the disk.
3337  *
3338  * The caller must write out the buffer returned in *bpp and release it.
3339  */
3340 int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf ** bpp)3341 xfs_iflush(
3342 	struct xfs_inode	*ip,
3343 	struct xfs_buf		**bpp)
3344 {
3345 	struct xfs_mount	*mp = ip->i_mount;
3346 	struct xfs_buf		*bp = NULL;
3347 	struct xfs_dinode	*dip;
3348 	int			error;
3349 
3350 	XFS_STATS_INC(mp, xs_iflush_count);
3351 
3352 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3353 	ASSERT(xfs_isiflocked(ip));
3354 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3355 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3356 
3357 	*bpp = NULL;
3358 
3359 	xfs_iunpin_wait(ip);
3360 
3361 	/*
3362 	 * For stale inodes we cannot rely on the backing buffer remaining
3363 	 * stale in cache for the remaining life of the stale inode and so
3364 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3365 	 * inodes below. We have to check this after ensuring the inode is
3366 	 * unpinned so that it is safe to reclaim the stale inode after the
3367 	 * flush call.
3368 	 */
3369 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3370 		xfs_ifunlock(ip);
3371 		return 0;
3372 	}
3373 
3374 	/*
3375 	 * This may have been unpinned because the filesystem is shutting
3376 	 * down forcibly. If that's the case we must not write this inode
3377 	 * to disk, because the log record didn't make it to disk.
3378 	 *
3379 	 * We also have to remove the log item from the AIL in this case,
3380 	 * as we wait for an empty AIL as part of the unmount process.
3381 	 */
3382 	if (XFS_FORCED_SHUTDOWN(mp)) {
3383 		error = -EIO;
3384 		goto abort_out;
3385 	}
3386 
3387 	/*
3388 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3389 	 * operation here, so we may get  an EAGAIN error. In that case, we
3390 	 * simply want to return with the inode still dirty.
3391 	 *
3392 	 * If we get any other error, we effectively have a corruption situation
3393 	 * and we cannot flush the inode, so we treat it the same as failing
3394 	 * xfs_iflush_int().
3395 	 */
3396 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3397 			       0);
3398 	if (error == -EAGAIN) {
3399 		xfs_ifunlock(ip);
3400 		return error;
3401 	}
3402 	if (error)
3403 		goto corrupt_out;
3404 
3405 	/*
3406 	 * First flush out the inode that xfs_iflush was called with.
3407 	 */
3408 	error = xfs_iflush_int(ip, bp);
3409 	if (error)
3410 		goto corrupt_out;
3411 
3412 	/*
3413 	 * If the buffer is pinned then push on the log now so we won't
3414 	 * get stuck waiting in the write for too long.
3415 	 */
3416 	if (xfs_buf_ispinned(bp))
3417 		xfs_log_force(mp, 0);
3418 
3419 	/*
3420 	 * inode clustering:
3421 	 * see if other inodes can be gathered into this write
3422 	 */
3423 	error = xfs_iflush_cluster(ip, bp);
3424 	if (error)
3425 		goto cluster_corrupt_out;
3426 
3427 	*bpp = bp;
3428 	return 0;
3429 
3430 corrupt_out:
3431 	if (bp)
3432 		xfs_buf_relse(bp);
3433 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3434 cluster_corrupt_out:
3435 	error = -EFSCORRUPTED;
3436 abort_out:
3437 	/*
3438 	 * Unlocks the flush lock
3439 	 */
3440 	xfs_iflush_abort(ip, false);
3441 	return error;
3442 }
3443 
3444 STATIC int
xfs_iflush_int(struct xfs_inode * ip,struct xfs_buf * bp)3445 xfs_iflush_int(
3446 	struct xfs_inode	*ip,
3447 	struct xfs_buf		*bp)
3448 {
3449 	struct xfs_inode_log_item *iip = ip->i_itemp;
3450 	struct xfs_dinode	*dip;
3451 	struct xfs_mount	*mp = ip->i_mount;
3452 
3453 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3454 	ASSERT(xfs_isiflocked(ip));
3455 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3456 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3457 	ASSERT(iip != NULL && iip->ili_fields != 0);
3458 	ASSERT(ip->i_d.di_version > 1);
3459 
3460 	/* set *dip = inode's place in the buffer */
3461 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3462 
3463 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3464 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3465 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3466 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3467 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3468 		goto corrupt_out;
3469 	}
3470 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3471 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3472 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3473 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3474 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
3475 		goto corrupt_out;
3476 	}
3477 	if (S_ISREG(ip->i_d.di_mode)) {
3478 		if (XFS_TEST_ERROR(
3479 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3480 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3481 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3482 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3483 				"%s: Bad regular inode %Lu, ptr 0x%p",
3484 				__func__, ip->i_ino, ip);
3485 			goto corrupt_out;
3486 		}
3487 	} else if (S_ISDIR(ip->i_d.di_mode)) {
3488 		if (XFS_TEST_ERROR(
3489 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3490 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3491 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3492 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3493 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3494 				"%s: Bad directory inode %Lu, ptr 0x%p",
3495 				__func__, ip->i_ino, ip);
3496 			goto corrupt_out;
3497 		}
3498 	}
3499 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3500 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3501 				XFS_RANDOM_IFLUSH_5)) {
3502 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3503 			"%s: detected corrupt incore inode %Lu, "
3504 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3505 			__func__, ip->i_ino,
3506 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3507 			ip->i_d.di_nblocks, ip);
3508 		goto corrupt_out;
3509 	}
3510 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3511 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3512 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3513 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3514 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3515 		goto corrupt_out;
3516 	}
3517 
3518 	/*
3519 	 * Inode item log recovery for v2 inodes are dependent on the
3520 	 * di_flushiter count for correct sequencing. We bump the flush
3521 	 * iteration count so we can detect flushes which postdate a log record
3522 	 * during recovery. This is redundant as we now log every change and
3523 	 * hence this can't happen but we need to still do it to ensure
3524 	 * backwards compatibility with old kernels that predate logging all
3525 	 * inode changes.
3526 	 */
3527 	if (ip->i_d.di_version < 3)
3528 		ip->i_d.di_flushiter++;
3529 
3530 	/*
3531 	 * Copy the dirty parts of the inode into the on-disk
3532 	 * inode.  We always copy out the core of the inode,
3533 	 * because if the inode is dirty at all the core must
3534 	 * be.
3535 	 */
3536 	xfs_dinode_to_disk(dip, &ip->i_d);
3537 
3538 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3539 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3540 		ip->i_d.di_flushiter = 0;
3541 
3542 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3543 	if (XFS_IFORK_Q(ip))
3544 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3545 	xfs_inobp_check(mp, bp);
3546 
3547 	/*
3548 	 * We've recorded everything logged in the inode, so we'd like to clear
3549 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3550 	 * However, we can't stop logging all this information until the data
3551 	 * we've copied into the disk buffer is written to disk.  If we did we
3552 	 * might overwrite the copy of the inode in the log with all the data
3553 	 * after re-logging only part of it, and in the face of a crash we
3554 	 * wouldn't have all the data we need to recover.
3555 	 *
3556 	 * What we do is move the bits to the ili_last_fields field.  When
3557 	 * logging the inode, these bits are moved back to the ili_fields field.
3558 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3559 	 * know that the information those bits represent is permanently on
3560 	 * disk.  As long as the flush completes before the inode is logged
3561 	 * again, then both ili_fields and ili_last_fields will be cleared.
3562 	 *
3563 	 * We can play with the ili_fields bits here, because the inode lock
3564 	 * must be held exclusively in order to set bits there and the flush
3565 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3566 	 * done routine can tell whether or not to look in the AIL.  Also, store
3567 	 * the current LSN of the inode so that we can tell whether the item has
3568 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3569 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3570 	 * atomically.
3571 	 */
3572 	iip->ili_last_fields = iip->ili_fields;
3573 	iip->ili_fields = 0;
3574 	iip->ili_fsync_fields = 0;
3575 	iip->ili_logged = 1;
3576 
3577 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3578 				&iip->ili_item.li_lsn);
3579 
3580 	/*
3581 	 * Attach the function xfs_iflush_done to the inode's
3582 	 * buffer.  This will remove the inode from the AIL
3583 	 * and unlock the inode's flush lock when the inode is
3584 	 * completely written to disk.
3585 	 */
3586 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3587 
3588 	/* update the lsn in the on disk inode if required */
3589 	if (ip->i_d.di_version == 3)
3590 		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3591 
3592 	/* generate the checksum. */
3593 	xfs_dinode_calc_crc(mp, dip);
3594 
3595 	ASSERT(bp->b_fspriv != NULL);
3596 	ASSERT(bp->b_iodone != NULL);
3597 	return 0;
3598 
3599 corrupt_out:
3600 	return -EFSCORRUPTED;
3601 }
3602