• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44 
45 
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49 
50 void
xfs_uuid_table_free(void)51 xfs_uuid_table_free(void)
52 {
53 	if (xfs_uuid_table_size == 0)
54 		return;
55 	kmem_free(xfs_uuid_table);
56 	xfs_uuid_table = NULL;
57 	xfs_uuid_table_size = 0;
58 }
59 
60 /*
61  * See if the UUID is unique among mounted XFS filesystems.
62  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
63  */
64 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)65 xfs_uuid_mount(
66 	struct xfs_mount	*mp)
67 {
68 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
69 	int			hole, i;
70 
71 	if (mp->m_flags & XFS_MOUNT_NOUUID)
72 		return 0;
73 
74 	if (uuid_is_nil(uuid)) {
75 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
76 		return -EINVAL;
77 	}
78 
79 	mutex_lock(&xfs_uuid_table_mutex);
80 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
81 		if (uuid_is_nil(&xfs_uuid_table[i])) {
82 			hole = i;
83 			continue;
84 		}
85 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
86 			goto out_duplicate;
87 	}
88 
89 	if (hole < 0) {
90 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
91 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
92 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
93 			KM_SLEEP);
94 		hole = xfs_uuid_table_size++;
95 	}
96 	xfs_uuid_table[hole] = *uuid;
97 	mutex_unlock(&xfs_uuid_table_mutex);
98 
99 	return 0;
100 
101  out_duplicate:
102 	mutex_unlock(&xfs_uuid_table_mutex);
103 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
104 	return -EINVAL;
105 }
106 
107 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)108 xfs_uuid_unmount(
109 	struct xfs_mount	*mp)
110 {
111 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
112 	int			i;
113 
114 	if (mp->m_flags & XFS_MOUNT_NOUUID)
115 		return;
116 
117 	mutex_lock(&xfs_uuid_table_mutex);
118 	for (i = 0; i < xfs_uuid_table_size; i++) {
119 		if (uuid_is_nil(&xfs_uuid_table[i]))
120 			continue;
121 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
122 			continue;
123 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
124 		break;
125 	}
126 	ASSERT(i < xfs_uuid_table_size);
127 	mutex_unlock(&xfs_uuid_table_mutex);
128 }
129 
130 
131 STATIC void
__xfs_free_perag(struct rcu_head * head)132 __xfs_free_perag(
133 	struct rcu_head	*head)
134 {
135 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
136 
137 	ASSERT(atomic_read(&pag->pag_ref) == 0);
138 	kmem_free(pag);
139 }
140 
141 /*
142  * Free up the per-ag resources associated with the mount structure.
143  */
144 STATIC void
xfs_free_perag(xfs_mount_t * mp)145 xfs_free_perag(
146 	xfs_mount_t	*mp)
147 {
148 	xfs_agnumber_t	agno;
149 	struct xfs_perag *pag;
150 
151 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
152 		spin_lock(&mp->m_perag_lock);
153 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
154 		spin_unlock(&mp->m_perag_lock);
155 		ASSERT(pag);
156 		ASSERT(atomic_read(&pag->pag_ref) == 0);
157 		call_rcu(&pag->rcu_head, __xfs_free_perag);
158 	}
159 }
160 
161 /*
162  * Check size of device based on the (data/realtime) block count.
163  * Note: this check is used by the growfs code as well as mount.
164  */
165 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)166 xfs_sb_validate_fsb_count(
167 	xfs_sb_t	*sbp,
168 	__uint64_t	nblocks)
169 {
170 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
171 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
172 
173 	/* Limited by ULONG_MAX of page cache index */
174 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
175 		return -EFBIG;
176 	return 0;
177 }
178 
179 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)180 xfs_initialize_perag(
181 	xfs_mount_t	*mp,
182 	xfs_agnumber_t	agcount,
183 	xfs_agnumber_t	*maxagi)
184 {
185 	xfs_agnumber_t	index;
186 	xfs_agnumber_t	first_initialised = 0;
187 	xfs_perag_t	*pag;
188 	xfs_agino_t	agino;
189 	xfs_ino_t	ino;
190 	xfs_sb_t	*sbp = &mp->m_sb;
191 	int		error = -ENOMEM;
192 
193 	/*
194 	 * Walk the current per-ag tree so we don't try to initialise AGs
195 	 * that already exist (growfs case). Allocate and insert all the
196 	 * AGs we don't find ready for initialisation.
197 	 */
198 	for (index = 0; index < agcount; index++) {
199 		pag = xfs_perag_get(mp, index);
200 		if (pag) {
201 			xfs_perag_put(pag);
202 			continue;
203 		}
204 		if (!first_initialised)
205 			first_initialised = index;
206 
207 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 		if (!pag)
209 			goto out_unwind;
210 		pag->pag_agno = index;
211 		pag->pag_mount = mp;
212 		spin_lock_init(&pag->pag_ici_lock);
213 		mutex_init(&pag->pag_ici_reclaim_lock);
214 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 		spin_lock_init(&pag->pag_buf_lock);
216 		pag->pag_buf_tree = RB_ROOT;
217 
218 		if (radix_tree_preload(GFP_NOFS))
219 			goto out_unwind;
220 
221 		spin_lock(&mp->m_perag_lock);
222 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
223 			BUG();
224 			spin_unlock(&mp->m_perag_lock);
225 			radix_tree_preload_end();
226 			error = -EEXIST;
227 			goto out_unwind;
228 		}
229 		spin_unlock(&mp->m_perag_lock);
230 		radix_tree_preload_end();
231 	}
232 
233 	/*
234 	 * If we mount with the inode64 option, or no inode overflows
235 	 * the legacy 32-bit address space clear the inode32 option.
236 	 */
237 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
238 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
239 
240 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
241 		mp->m_flags |= XFS_MOUNT_32BITINODES;
242 	else
243 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
244 
245 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
246 		index = xfs_set_inode32(mp, agcount);
247 	else
248 		index = xfs_set_inode64(mp, agcount);
249 
250 	if (maxagi)
251 		*maxagi = index;
252 	return 0;
253 
254 out_unwind:
255 	kmem_free(pag);
256 	for (; index > first_initialised; index--) {
257 		pag = radix_tree_delete(&mp->m_perag_tree, index);
258 		kmem_free(pag);
259 	}
260 	return error;
261 }
262 
263 /*
264  * xfs_readsb
265  *
266  * Does the initial read of the superblock.
267  */
268 int
xfs_readsb(struct xfs_mount * mp,int flags)269 xfs_readsb(
270 	struct xfs_mount *mp,
271 	int		flags)
272 {
273 	unsigned int	sector_size;
274 	struct xfs_buf	*bp;
275 	struct xfs_sb	*sbp = &mp->m_sb;
276 	int		error;
277 	int		loud = !(flags & XFS_MFSI_QUIET);
278 	const struct xfs_buf_ops *buf_ops;
279 
280 	ASSERT(mp->m_sb_bp == NULL);
281 	ASSERT(mp->m_ddev_targp != NULL);
282 
283 	/*
284 	 * For the initial read, we must guess at the sector
285 	 * size based on the block device.  It's enough to
286 	 * get the sb_sectsize out of the superblock and
287 	 * then reread with the proper length.
288 	 * We don't verify it yet, because it may not be complete.
289 	 */
290 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
291 	buf_ops = NULL;
292 
293 	/*
294 	 * Allocate a (locked) buffer to hold the superblock.
295 	 * This will be kept around at all times to optimize
296 	 * access to the superblock.
297 	 */
298 reread:
299 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
300 				   BTOBB(sector_size), 0, &bp, buf_ops);
301 	if (error) {
302 		if (loud)
303 			xfs_warn(mp, "SB validate failed with error %d.", error);
304 		/* bad CRC means corrupted metadata */
305 		if (error == -EFSBADCRC)
306 			error = -EFSCORRUPTED;
307 		return error;
308 	}
309 
310 	/*
311 	 * Initialize the mount structure from the superblock.
312 	 */
313 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314 
315 	/*
316 	 * If we haven't validated the superblock, do so now before we try
317 	 * to check the sector size and reread the superblock appropriately.
318 	 */
319 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 		if (loud)
321 			xfs_warn(mp, "Invalid superblock magic number");
322 		error = -EINVAL;
323 		goto release_buf;
324 	}
325 
326 	/*
327 	 * We must be able to do sector-sized and sector-aligned IO.
328 	 */
329 	if (sector_size > sbp->sb_sectsize) {
330 		if (loud)
331 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 				sector_size, sbp->sb_sectsize);
333 		error = -ENOSYS;
334 		goto release_buf;
335 	}
336 
337 	if (buf_ops == NULL) {
338 		/*
339 		 * Re-read the superblock so the buffer is correctly sized,
340 		 * and properly verified.
341 		 */
342 		xfs_buf_relse(bp);
343 		sector_size = sbp->sb_sectsize;
344 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 		goto reread;
346 	}
347 
348 	xfs_reinit_percpu_counters(mp);
349 
350 	/* no need to be quiet anymore, so reset the buf ops */
351 	bp->b_ops = &xfs_sb_buf_ops;
352 
353 	mp->m_sb_bp = bp;
354 	xfs_buf_unlock(bp);
355 	return 0;
356 
357 release_buf:
358 	xfs_buf_relse(bp);
359 	return error;
360 }
361 
362 /*
363  * Update alignment values based on mount options and sb values
364  */
365 STATIC int
xfs_update_alignment(xfs_mount_t * mp)366 xfs_update_alignment(xfs_mount_t *mp)
367 {
368 	xfs_sb_t	*sbp = &(mp->m_sb);
369 
370 	if (mp->m_dalign) {
371 		/*
372 		 * If stripe unit and stripe width are not multiples
373 		 * of the fs blocksize turn off alignment.
374 		 */
375 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 			xfs_warn(mp,
378 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
379 				sbp->sb_blocksize);
380 			return -EINVAL;
381 		} else {
382 			/*
383 			 * Convert the stripe unit and width to FSBs.
384 			 */
385 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 				xfs_warn(mp,
388 			"alignment check failed: sunit/swidth vs. agsize(%d)",
389 					 sbp->sb_agblocks);
390 				return -EINVAL;
391 			} else if (mp->m_dalign) {
392 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 			} else {
394 				xfs_warn(mp,
395 			"alignment check failed: sunit(%d) less than bsize(%d)",
396 					 mp->m_dalign, sbp->sb_blocksize);
397 				return -EINVAL;
398 			}
399 		}
400 
401 		/*
402 		 * Update superblock with new values
403 		 * and log changes
404 		 */
405 		if (xfs_sb_version_hasdalign(sbp)) {
406 			if (sbp->sb_unit != mp->m_dalign) {
407 				sbp->sb_unit = mp->m_dalign;
408 				mp->m_update_sb = true;
409 			}
410 			if (sbp->sb_width != mp->m_swidth) {
411 				sbp->sb_width = mp->m_swidth;
412 				mp->m_update_sb = true;
413 			}
414 		} else {
415 			xfs_warn(mp,
416 	"cannot change alignment: superblock does not support data alignment");
417 			return -EINVAL;
418 		}
419 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
421 			mp->m_dalign = sbp->sb_unit;
422 			mp->m_swidth = sbp->sb_width;
423 	}
424 
425 	return 0;
426 }
427 
428 /*
429  * Set the maximum inode count for this filesystem
430  */
431 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)432 xfs_set_maxicount(xfs_mount_t *mp)
433 {
434 	xfs_sb_t	*sbp = &(mp->m_sb);
435 	__uint64_t	icount;
436 
437 	if (sbp->sb_imax_pct) {
438 		/*
439 		 * Make sure the maximum inode count is a multiple
440 		 * of the units we allocate inodes in.
441 		 */
442 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
443 		do_div(icount, 100);
444 		do_div(icount, mp->m_ialloc_blks);
445 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
446 				   sbp->sb_inopblog;
447 	} else {
448 		mp->m_maxicount = 0;
449 	}
450 }
451 
452 /*
453  * Set the default minimum read and write sizes unless
454  * already specified in a mount option.
455  * We use smaller I/O sizes when the file system
456  * is being used for NFS service (wsync mount option).
457  */
458 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)459 xfs_set_rw_sizes(xfs_mount_t *mp)
460 {
461 	xfs_sb_t	*sbp = &(mp->m_sb);
462 	int		readio_log, writeio_log;
463 
464 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
465 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
466 			readio_log = XFS_WSYNC_READIO_LOG;
467 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
468 		} else {
469 			readio_log = XFS_READIO_LOG_LARGE;
470 			writeio_log = XFS_WRITEIO_LOG_LARGE;
471 		}
472 	} else {
473 		readio_log = mp->m_readio_log;
474 		writeio_log = mp->m_writeio_log;
475 	}
476 
477 	if (sbp->sb_blocklog > readio_log) {
478 		mp->m_readio_log = sbp->sb_blocklog;
479 	} else {
480 		mp->m_readio_log = readio_log;
481 	}
482 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
483 	if (sbp->sb_blocklog > writeio_log) {
484 		mp->m_writeio_log = sbp->sb_blocklog;
485 	} else {
486 		mp->m_writeio_log = writeio_log;
487 	}
488 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
489 }
490 
491 /*
492  * precalculate the low space thresholds for dynamic speculative preallocation.
493  */
494 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)495 xfs_set_low_space_thresholds(
496 	struct xfs_mount	*mp)
497 {
498 	int i;
499 
500 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
501 		__uint64_t space = mp->m_sb.sb_dblocks;
502 
503 		do_div(space, 100);
504 		mp->m_low_space[i] = space * (i + 1);
505 	}
506 }
507 
508 
509 /*
510  * Set whether we're using inode alignment.
511  */
512 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)513 xfs_set_inoalignment(xfs_mount_t *mp)
514 {
515 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
516 	    mp->m_sb.sb_inoalignmt >=
517 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
518 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
519 	else
520 		mp->m_inoalign_mask = 0;
521 	/*
522 	 * If we are using stripe alignment, check whether
523 	 * the stripe unit is a multiple of the inode alignment
524 	 */
525 	if (mp->m_dalign && mp->m_inoalign_mask &&
526 	    !(mp->m_dalign & mp->m_inoalign_mask))
527 		mp->m_sinoalign = mp->m_dalign;
528 	else
529 		mp->m_sinoalign = 0;
530 }
531 
532 /*
533  * Check that the data (and log if separate) is an ok size.
534  */
535 STATIC int
xfs_check_sizes(struct xfs_mount * mp)536 xfs_check_sizes(
537 	struct xfs_mount *mp)
538 {
539 	struct xfs_buf	*bp;
540 	xfs_daddr_t	d;
541 	int		error;
542 
543 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
544 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
545 		xfs_warn(mp, "filesystem size mismatch detected");
546 		return -EFBIG;
547 	}
548 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
549 					d - XFS_FSS_TO_BB(mp, 1),
550 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
551 	if (error) {
552 		xfs_warn(mp, "last sector read failed");
553 		return error;
554 	}
555 	xfs_buf_relse(bp);
556 
557 	if (mp->m_logdev_targp == mp->m_ddev_targp)
558 		return 0;
559 
560 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
561 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
562 		xfs_warn(mp, "log size mismatch detected");
563 		return -EFBIG;
564 	}
565 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
566 					d - XFS_FSB_TO_BB(mp, 1),
567 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
568 	if (error) {
569 		xfs_warn(mp, "log device read failed");
570 		return error;
571 	}
572 	xfs_buf_relse(bp);
573 	return 0;
574 }
575 
576 /*
577  * Clear the quotaflags in memory and in the superblock.
578  */
579 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)580 xfs_mount_reset_sbqflags(
581 	struct xfs_mount	*mp)
582 {
583 	mp->m_qflags = 0;
584 
585 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
586 	if (mp->m_sb.sb_qflags == 0)
587 		return 0;
588 	spin_lock(&mp->m_sb_lock);
589 	mp->m_sb.sb_qflags = 0;
590 	spin_unlock(&mp->m_sb_lock);
591 
592 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
593 		return 0;
594 
595 	return xfs_sync_sb(mp, false);
596 }
597 
598 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)599 xfs_default_resblks(xfs_mount_t *mp)
600 {
601 	__uint64_t resblks;
602 
603 	/*
604 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
605 	 * smaller.  This is intended to cover concurrent allocation
606 	 * transactions when we initially hit enospc. These each require a 4
607 	 * block reservation. Hence by default we cover roughly 2000 concurrent
608 	 * allocation reservations.
609 	 */
610 	resblks = mp->m_sb.sb_dblocks;
611 	do_div(resblks, 20);
612 	resblks = min_t(__uint64_t, resblks, 8192);
613 	return resblks;
614 }
615 
616 /*
617  * This function does the following on an initial mount of a file system:
618  *	- reads the superblock from disk and init the mount struct
619  *	- if we're a 32-bit kernel, do a size check on the superblock
620  *		so we don't mount terabyte filesystems
621  *	- init mount struct realtime fields
622  *	- allocate inode hash table for fs
623  *	- init directory manager
624  *	- perform recovery and init the log manager
625  */
626 int
xfs_mountfs(struct xfs_mount * mp)627 xfs_mountfs(
628 	struct xfs_mount	*mp)
629 {
630 	struct xfs_sb		*sbp = &(mp->m_sb);
631 	struct xfs_inode	*rip;
632 	__uint64_t		resblks;
633 	uint			quotamount = 0;
634 	uint			quotaflags = 0;
635 	int			error = 0;
636 
637 	xfs_sb_mount_common(mp, sbp);
638 
639 	/*
640 	 * Check for a mismatched features2 values.  Older kernels read & wrote
641 	 * into the wrong sb offset for sb_features2 on some platforms due to
642 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
643 	 * which made older superblock reading/writing routines swap it as a
644 	 * 64-bit value.
645 	 *
646 	 * For backwards compatibility, we make both slots equal.
647 	 *
648 	 * If we detect a mismatched field, we OR the set bits into the existing
649 	 * features2 field in case it has already been modified; we don't want
650 	 * to lose any features.  We then update the bad location with the ORed
651 	 * value so that older kernels will see any features2 flags. The
652 	 * superblock writeback code ensures the new sb_features2 is copied to
653 	 * sb_bad_features2 before it is logged or written to disk.
654 	 */
655 	if (xfs_sb_has_mismatched_features2(sbp)) {
656 		xfs_warn(mp, "correcting sb_features alignment problem");
657 		sbp->sb_features2 |= sbp->sb_bad_features2;
658 		mp->m_update_sb = true;
659 
660 		/*
661 		 * Re-check for ATTR2 in case it was found in bad_features2
662 		 * slot.
663 		 */
664 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
665 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
666 			mp->m_flags |= XFS_MOUNT_ATTR2;
667 	}
668 
669 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
671 		xfs_sb_version_removeattr2(&mp->m_sb);
672 		mp->m_update_sb = true;
673 
674 		/* update sb_versionnum for the clearing of the morebits */
675 		if (!sbp->sb_features2)
676 			mp->m_update_sb = true;
677 	}
678 
679 	/* always use v2 inodes by default now */
680 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
681 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
682 		mp->m_update_sb = true;
683 	}
684 
685 	/*
686 	 * Check if sb_agblocks is aligned at stripe boundary
687 	 * If sb_agblocks is NOT aligned turn off m_dalign since
688 	 * allocator alignment is within an ag, therefore ag has
689 	 * to be aligned at stripe boundary.
690 	 */
691 	error = xfs_update_alignment(mp);
692 	if (error)
693 		goto out;
694 
695 	xfs_alloc_compute_maxlevels(mp);
696 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
697 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
698 	xfs_ialloc_compute_maxlevels(mp);
699 
700 	xfs_set_maxicount(mp);
701 
702 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
703 	if (error)
704 		goto out;
705 
706 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
707 			       &mp->m_kobj, "stats");
708 	if (error)
709 		goto out_remove_sysfs;
710 
711 	error = xfs_uuid_mount(mp);
712 	if (error)
713 		goto out_del_stats;
714 
715 	/*
716 	 * Set the minimum read and write sizes
717 	 */
718 	xfs_set_rw_sizes(mp);
719 
720 	/* set the low space thresholds for dynamic preallocation */
721 	xfs_set_low_space_thresholds(mp);
722 
723 	/*
724 	 * Set the inode cluster size.
725 	 * This may still be overridden by the file system
726 	 * block size if it is larger than the chosen cluster size.
727 	 *
728 	 * For v5 filesystems, scale the cluster size with the inode size to
729 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
730 	 * has set the inode alignment value appropriately for larger cluster
731 	 * sizes.
732 	 */
733 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
734 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
735 		int	new_size = mp->m_inode_cluster_size;
736 
737 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
738 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
739 			mp->m_inode_cluster_size = new_size;
740 	}
741 
742 	/*
743 	 * If enabled, sparse inode chunk alignment is expected to match the
744 	 * cluster size. Full inode chunk alignment must match the chunk size,
745 	 * but that is checked on sb read verification...
746 	 */
747 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
748 	    mp->m_sb.sb_spino_align !=
749 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
750 		xfs_warn(mp,
751 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
752 			 mp->m_sb.sb_spino_align,
753 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
754 		error = -EINVAL;
755 		goto out_remove_uuid;
756 	}
757 
758 	/*
759 	 * Set inode alignment fields
760 	 */
761 	xfs_set_inoalignment(mp);
762 
763 	/*
764 	 * Check that the data (and log if separate) is an ok size.
765 	 */
766 	error = xfs_check_sizes(mp);
767 	if (error)
768 		goto out_remove_uuid;
769 
770 	/*
771 	 * Initialize realtime fields in the mount structure
772 	 */
773 	error = xfs_rtmount_init(mp);
774 	if (error) {
775 		xfs_warn(mp, "RT mount failed");
776 		goto out_remove_uuid;
777 	}
778 
779 	/*
780 	 *  Copies the low order bits of the timestamp and the randomly
781 	 *  set "sequence" number out of a UUID.
782 	 */
783 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
784 
785 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
786 
787 	error = xfs_da_mount(mp);
788 	if (error) {
789 		xfs_warn(mp, "Failed dir/attr init: %d", error);
790 		goto out_remove_uuid;
791 	}
792 
793 	/*
794 	 * Initialize the precomputed transaction reservations values.
795 	 */
796 	xfs_trans_init(mp);
797 
798 	/*
799 	 * Allocate and initialize the per-ag data.
800 	 */
801 	spin_lock_init(&mp->m_perag_lock);
802 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
803 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
804 	if (error) {
805 		xfs_warn(mp, "Failed per-ag init: %d", error);
806 		goto out_free_dir;
807 	}
808 
809 	if (!sbp->sb_logblocks) {
810 		xfs_warn(mp, "no log defined");
811 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
812 		error = -EFSCORRUPTED;
813 		goto out_free_perag;
814 	}
815 
816 	/*
817 	 * Log's mount-time initialization. The first part of recovery can place
818 	 * some items on the AIL, to be handled when recovery is finished or
819 	 * cancelled.
820 	 */
821 	error = xfs_log_mount(mp, mp->m_logdev_targp,
822 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
823 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
824 	if (error) {
825 		xfs_warn(mp, "log mount failed");
826 		goto out_fail_wait;
827 	}
828 
829 	/*
830 	 * Now the log is mounted, we know if it was an unclean shutdown or
831 	 * not. If it was, with the first phase of recovery has completed, we
832 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
833 	 * but they are recovered transactionally in the second recovery phase
834 	 * later.
835 	 *
836 	 * Hence we can safely re-initialise incore superblock counters from
837 	 * the per-ag data. These may not be correct if the filesystem was not
838 	 * cleanly unmounted, so we need to wait for recovery to finish before
839 	 * doing this.
840 	 *
841 	 * If the filesystem was cleanly unmounted, then we can trust the
842 	 * values in the superblock to be correct and we don't need to do
843 	 * anything here.
844 	 *
845 	 * If we are currently making the filesystem, the initialisation will
846 	 * fail as the perag data is in an undefined state.
847 	 */
848 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
849 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
850 	     !mp->m_sb.sb_inprogress) {
851 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
852 		if (error)
853 			goto out_log_dealloc;
854 	}
855 
856 	/*
857 	 * Get and sanity-check the root inode.
858 	 * Save the pointer to it in the mount structure.
859 	 */
860 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
861 	if (error) {
862 		xfs_warn(mp, "failed to read root inode");
863 		goto out_log_dealloc;
864 	}
865 
866 	ASSERT(rip != NULL);
867 
868 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
869 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
870 			(unsigned long long)rip->i_ino);
871 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
872 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
873 				 mp);
874 		error = -EFSCORRUPTED;
875 		goto out_rele_rip;
876 	}
877 	mp->m_rootip = rip;	/* save it */
878 
879 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
880 
881 	/*
882 	 * Initialize realtime inode pointers in the mount structure
883 	 */
884 	error = xfs_rtmount_inodes(mp);
885 	if (error) {
886 		/*
887 		 * Free up the root inode.
888 		 */
889 		xfs_warn(mp, "failed to read RT inodes");
890 		goto out_rele_rip;
891 	}
892 
893 	/*
894 	 * If this is a read-only mount defer the superblock updates until
895 	 * the next remount into writeable mode.  Otherwise we would never
896 	 * perform the update e.g. for the root filesystem.
897 	 */
898 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
899 		error = xfs_sync_sb(mp, false);
900 		if (error) {
901 			xfs_warn(mp, "failed to write sb changes");
902 			goto out_rtunmount;
903 		}
904 	}
905 
906 	/*
907 	 * Initialise the XFS quota management subsystem for this mount
908 	 */
909 	if (XFS_IS_QUOTA_RUNNING(mp)) {
910 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
911 		if (error)
912 			goto out_rtunmount;
913 	} else {
914 		ASSERT(!XFS_IS_QUOTA_ON(mp));
915 
916 		/*
917 		 * If a file system had quotas running earlier, but decided to
918 		 * mount without -o uquota/pquota/gquota options, revoke the
919 		 * quotachecked license.
920 		 */
921 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
922 			xfs_notice(mp, "resetting quota flags");
923 			error = xfs_mount_reset_sbqflags(mp);
924 			if (error)
925 				goto out_rtunmount;
926 		}
927 	}
928 
929 	/*
930 	 * Finish recovering the file system.  This part needed to be delayed
931 	 * until after the root and real-time bitmap inodes were consistently
932 	 * read in.
933 	 */
934 	error = xfs_log_mount_finish(mp);
935 	if (error) {
936 		xfs_warn(mp, "log mount finish failed");
937 		goto out_rtunmount;
938 	}
939 
940 	/*
941 	 * Complete the quota initialisation, post-log-replay component.
942 	 */
943 	if (quotamount) {
944 		ASSERT(mp->m_qflags == 0);
945 		mp->m_qflags = quotaflags;
946 
947 		xfs_qm_mount_quotas(mp);
948 	}
949 
950 	/*
951 	 * Now we are mounted, reserve a small amount of unused space for
952 	 * privileged transactions. This is needed so that transaction
953 	 * space required for critical operations can dip into this pool
954 	 * when at ENOSPC. This is needed for operations like create with
955 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
956 	 * are not allowed to use this reserved space.
957 	 *
958 	 * This may drive us straight to ENOSPC on mount, but that implies
959 	 * we were already there on the last unmount. Warn if this occurs.
960 	 */
961 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
962 		resblks = xfs_default_resblks(mp);
963 		error = xfs_reserve_blocks(mp, &resblks, NULL);
964 		if (error)
965 			xfs_warn(mp,
966 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
967 	}
968 
969 	return 0;
970 
971  out_rtunmount:
972 	xfs_rtunmount_inodes(mp);
973  out_rele_rip:
974 	IRELE(rip);
975 	cancel_delayed_work_sync(&mp->m_reclaim_work);
976 	xfs_reclaim_inodes(mp, SYNC_WAIT);
977  out_log_dealloc:
978 	xfs_log_mount_cancel(mp);
979  out_fail_wait:
980 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
981 		xfs_wait_buftarg(mp->m_logdev_targp);
982 	xfs_wait_buftarg(mp->m_ddev_targp);
983  out_free_perag:
984 	xfs_free_perag(mp);
985  out_free_dir:
986 	xfs_da_unmount(mp);
987  out_remove_uuid:
988 	xfs_uuid_unmount(mp);
989  out_del_stats:
990 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
991  out_remove_sysfs:
992 	xfs_sysfs_del(&mp->m_kobj);
993  out:
994 	return error;
995 }
996 
997 /*
998  * This flushes out the inodes,dquots and the superblock, unmounts the
999  * log and makes sure that incore structures are freed.
1000  */
1001 void
xfs_unmountfs(struct xfs_mount * mp)1002 xfs_unmountfs(
1003 	struct xfs_mount	*mp)
1004 {
1005 	__uint64_t		resblks;
1006 	int			error;
1007 
1008 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1009 
1010 	xfs_qm_unmount_quotas(mp);
1011 	xfs_rtunmount_inodes(mp);
1012 	IRELE(mp->m_rootip);
1013 
1014 	/*
1015 	 * We can potentially deadlock here if we have an inode cluster
1016 	 * that has been freed has its buffer still pinned in memory because
1017 	 * the transaction is still sitting in a iclog. The stale inodes
1018 	 * on that buffer will have their flush locks held until the
1019 	 * transaction hits the disk and the callbacks run. the inode
1020 	 * flush takes the flush lock unconditionally and with nothing to
1021 	 * push out the iclog we will never get that unlocked. hence we
1022 	 * need to force the log first.
1023 	 */
1024 	xfs_log_force(mp, XFS_LOG_SYNC);
1025 
1026 	/*
1027 	 * Flush all pending changes from the AIL.
1028 	 */
1029 	xfs_ail_push_all_sync(mp->m_ail);
1030 
1031 	/*
1032 	 * And reclaim all inodes.  At this point there should be no dirty
1033 	 * inodes and none should be pinned or locked, but use synchronous
1034 	 * reclaim just to be sure. We can stop background inode reclaim
1035 	 * here as well if it is still running.
1036 	 */
1037 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1038 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1039 
1040 	xfs_qm_unmount(mp);
1041 
1042 	/*
1043 	 * Unreserve any blocks we have so that when we unmount we don't account
1044 	 * the reserved free space as used. This is really only necessary for
1045 	 * lazy superblock counting because it trusts the incore superblock
1046 	 * counters to be absolutely correct on clean unmount.
1047 	 *
1048 	 * We don't bother correcting this elsewhere for lazy superblock
1049 	 * counting because on mount of an unclean filesystem we reconstruct the
1050 	 * correct counter value and this is irrelevant.
1051 	 *
1052 	 * For non-lazy counter filesystems, this doesn't matter at all because
1053 	 * we only every apply deltas to the superblock and hence the incore
1054 	 * value does not matter....
1055 	 */
1056 	resblks = 0;
1057 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1058 	if (error)
1059 		xfs_warn(mp, "Unable to free reserved block pool. "
1060 				"Freespace may not be correct on next mount.");
1061 
1062 	error = xfs_log_sbcount(mp);
1063 	if (error)
1064 		xfs_warn(mp, "Unable to update superblock counters. "
1065 				"Freespace may not be correct on next mount.");
1066 
1067 
1068 	xfs_log_unmount(mp);
1069 	xfs_da_unmount(mp);
1070 	xfs_uuid_unmount(mp);
1071 
1072 #if defined(DEBUG)
1073 	xfs_errortag_clearall(mp, 0);
1074 #endif
1075 	xfs_free_perag(mp);
1076 
1077 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1078 	xfs_sysfs_del(&mp->m_kobj);
1079 }
1080 
1081 /*
1082  * Determine whether modifications can proceed. The caller specifies the minimum
1083  * freeze level for which modifications should not be allowed. This allows
1084  * certain operations to proceed while the freeze sequence is in progress, if
1085  * necessary.
1086  */
1087 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1088 xfs_fs_writable(
1089 	struct xfs_mount	*mp,
1090 	int			level)
1091 {
1092 	ASSERT(level > SB_UNFROZEN);
1093 	if ((mp->m_super->s_writers.frozen >= level) ||
1094 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1095 		return false;
1096 
1097 	return true;
1098 }
1099 
1100 /*
1101  * xfs_log_sbcount
1102  *
1103  * Sync the superblock counters to disk.
1104  *
1105  * Note this code can be called during the process of freezing, so we use the
1106  * transaction allocator that does not block when the transaction subsystem is
1107  * in its frozen state.
1108  */
1109 int
xfs_log_sbcount(xfs_mount_t * mp)1110 xfs_log_sbcount(xfs_mount_t *mp)
1111 {
1112 	/* allow this to proceed during the freeze sequence... */
1113 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1114 		return 0;
1115 
1116 	/*
1117 	 * we don't need to do this if we are updating the superblock
1118 	 * counters on every modification.
1119 	 */
1120 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1121 		return 0;
1122 
1123 	return xfs_sync_sb(mp, true);
1124 }
1125 
1126 /*
1127  * Deltas for the inode count are +/-64, hence we use a large batch size
1128  * of 128 so we don't need to take the counter lock on every update.
1129  */
1130 #define XFS_ICOUNT_BATCH	128
1131 int
xfs_mod_icount(struct xfs_mount * mp,int64_t delta)1132 xfs_mod_icount(
1133 	struct xfs_mount	*mp,
1134 	int64_t			delta)
1135 {
1136 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1137 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1138 		ASSERT(0);
1139 		percpu_counter_add(&mp->m_icount, -delta);
1140 		return -EINVAL;
1141 	}
1142 	return 0;
1143 }
1144 
1145 int
xfs_mod_ifree(struct xfs_mount * mp,int64_t delta)1146 xfs_mod_ifree(
1147 	struct xfs_mount	*mp,
1148 	int64_t			delta)
1149 {
1150 	percpu_counter_add(&mp->m_ifree, delta);
1151 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1152 		ASSERT(0);
1153 		percpu_counter_add(&mp->m_ifree, -delta);
1154 		return -EINVAL;
1155 	}
1156 	return 0;
1157 }
1158 
1159 /*
1160  * Deltas for the block count can vary from 1 to very large, but lock contention
1161  * only occurs on frequent small block count updates such as in the delayed
1162  * allocation path for buffered writes (page a time updates). Hence we set
1163  * a large batch count (1024) to minimise global counter updates except when
1164  * we get near to ENOSPC and we have to be very accurate with our updates.
1165  */
1166 #define XFS_FDBLOCKS_BATCH	1024
1167 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1168 xfs_mod_fdblocks(
1169 	struct xfs_mount	*mp,
1170 	int64_t			delta,
1171 	bool			rsvd)
1172 {
1173 	int64_t			lcounter;
1174 	long long		res_used;
1175 	s32			batch;
1176 
1177 	if (delta > 0) {
1178 		/*
1179 		 * If the reserve pool is depleted, put blocks back into it
1180 		 * first. Most of the time the pool is full.
1181 		 */
1182 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1183 			percpu_counter_add(&mp->m_fdblocks, delta);
1184 			return 0;
1185 		}
1186 
1187 		spin_lock(&mp->m_sb_lock);
1188 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1189 
1190 		if (res_used > delta) {
1191 			mp->m_resblks_avail += delta;
1192 		} else {
1193 			delta -= res_used;
1194 			mp->m_resblks_avail = mp->m_resblks;
1195 			percpu_counter_add(&mp->m_fdblocks, delta);
1196 		}
1197 		spin_unlock(&mp->m_sb_lock);
1198 		return 0;
1199 	}
1200 
1201 	/*
1202 	 * Taking blocks away, need to be more accurate the closer we
1203 	 * are to zero.
1204 	 *
1205 	 * If the counter has a value of less than 2 * max batch size,
1206 	 * then make everything serialise as we are real close to
1207 	 * ENOSPC.
1208 	 */
1209 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1210 				     XFS_FDBLOCKS_BATCH) < 0)
1211 		batch = 1;
1212 	else
1213 		batch = XFS_FDBLOCKS_BATCH;
1214 
1215 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1216 	if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1217 				     XFS_FDBLOCKS_BATCH) >= 0) {
1218 		/* we had space! */
1219 		return 0;
1220 	}
1221 
1222 	/*
1223 	 * lock up the sb for dipping into reserves before releasing the space
1224 	 * that took us to ENOSPC.
1225 	 */
1226 	spin_lock(&mp->m_sb_lock);
1227 	percpu_counter_add(&mp->m_fdblocks, -delta);
1228 	if (!rsvd)
1229 		goto fdblocks_enospc;
1230 
1231 	lcounter = (long long)mp->m_resblks_avail + delta;
1232 	if (lcounter >= 0) {
1233 		mp->m_resblks_avail = lcounter;
1234 		spin_unlock(&mp->m_sb_lock);
1235 		return 0;
1236 	}
1237 	printk_once(KERN_WARNING
1238 		"Filesystem \"%s\": reserve blocks depleted! "
1239 		"Consider increasing reserve pool size.",
1240 		mp->m_fsname);
1241 fdblocks_enospc:
1242 	spin_unlock(&mp->m_sb_lock);
1243 	return -ENOSPC;
1244 }
1245 
1246 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1247 xfs_mod_frextents(
1248 	struct xfs_mount	*mp,
1249 	int64_t			delta)
1250 {
1251 	int64_t			lcounter;
1252 	int			ret = 0;
1253 
1254 	spin_lock(&mp->m_sb_lock);
1255 	lcounter = mp->m_sb.sb_frextents + delta;
1256 	if (lcounter < 0)
1257 		ret = -ENOSPC;
1258 	else
1259 		mp->m_sb.sb_frextents = lcounter;
1260 	spin_unlock(&mp->m_sb_lock);
1261 	return ret;
1262 }
1263 
1264 /*
1265  * xfs_getsb() is called to obtain the buffer for the superblock.
1266  * The buffer is returned locked and read in from disk.
1267  * The buffer should be released with a call to xfs_brelse().
1268  *
1269  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1270  * the superblock buffer if it can be locked without sleeping.
1271  * If it can't then we'll return NULL.
1272  */
1273 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)1274 xfs_getsb(
1275 	struct xfs_mount	*mp,
1276 	int			flags)
1277 {
1278 	struct xfs_buf		*bp = mp->m_sb_bp;
1279 
1280 	if (!xfs_buf_trylock(bp)) {
1281 		if (flags & XBF_TRYLOCK)
1282 			return NULL;
1283 		xfs_buf_lock(bp);
1284 	}
1285 
1286 	xfs_buf_hold(bp);
1287 	ASSERT(XFS_BUF_ISDONE(bp));
1288 	return bp;
1289 }
1290 
1291 /*
1292  * Used to free the superblock along various error paths.
1293  */
1294 void
xfs_freesb(struct xfs_mount * mp)1295 xfs_freesb(
1296 	struct xfs_mount	*mp)
1297 {
1298 	struct xfs_buf		*bp = mp->m_sb_bp;
1299 
1300 	xfs_buf_lock(bp);
1301 	mp->m_sb_bp = NULL;
1302 	xfs_buf_relse(bp);
1303 }
1304 
1305 /*
1306  * If the underlying (data/log/rt) device is readonly, there are some
1307  * operations that cannot proceed.
1308  */
1309 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1310 xfs_dev_is_read_only(
1311 	struct xfs_mount	*mp,
1312 	char			*message)
1313 {
1314 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1315 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1316 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1317 		xfs_notice(mp, "%s required on read-only device.", message);
1318 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1319 		return -EROFS;
1320 	}
1321 	return 0;
1322 }
1323