1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_error.h"
28 #include "xfs_trace.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31
32
33 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
34
INODE_ITEM(struct xfs_log_item * lip)35 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
36 {
37 return container_of(lip, struct xfs_inode_log_item, ili_item);
38 }
39
40 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)41 xfs_inode_item_data_fork_size(
42 struct xfs_inode_log_item *iip,
43 int *nvecs,
44 int *nbytes)
45 {
46 struct xfs_inode *ip = iip->ili_inode;
47
48 switch (ip->i_d.di_format) {
49 case XFS_DINODE_FMT_EXTENTS:
50 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
51 ip->i_d.di_nextents > 0 &&
52 ip->i_df.if_bytes > 0) {
53 /* worst case, doesn't subtract delalloc extents */
54 *nbytes += XFS_IFORK_DSIZE(ip);
55 *nvecs += 1;
56 }
57 break;
58 case XFS_DINODE_FMT_BTREE:
59 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
60 ip->i_df.if_broot_bytes > 0) {
61 *nbytes += ip->i_df.if_broot_bytes;
62 *nvecs += 1;
63 }
64 break;
65 case XFS_DINODE_FMT_LOCAL:
66 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
67 ip->i_df.if_bytes > 0) {
68 *nbytes += roundup(ip->i_df.if_bytes, 4);
69 *nvecs += 1;
70 }
71 break;
72
73 case XFS_DINODE_FMT_DEV:
74 case XFS_DINODE_FMT_UUID:
75 break;
76 default:
77 ASSERT(0);
78 break;
79 }
80 }
81
82 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)83 xfs_inode_item_attr_fork_size(
84 struct xfs_inode_log_item *iip,
85 int *nvecs,
86 int *nbytes)
87 {
88 struct xfs_inode *ip = iip->ili_inode;
89
90 switch (ip->i_d.di_aformat) {
91 case XFS_DINODE_FMT_EXTENTS:
92 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
93 ip->i_d.di_anextents > 0 &&
94 ip->i_afp->if_bytes > 0) {
95 /* worst case, doesn't subtract unused space */
96 *nbytes += XFS_IFORK_ASIZE(ip);
97 *nvecs += 1;
98 }
99 break;
100 case XFS_DINODE_FMT_BTREE:
101 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
102 ip->i_afp->if_broot_bytes > 0) {
103 *nbytes += ip->i_afp->if_broot_bytes;
104 *nvecs += 1;
105 }
106 break;
107 case XFS_DINODE_FMT_LOCAL:
108 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
109 ip->i_afp->if_bytes > 0) {
110 *nbytes += roundup(ip->i_afp->if_bytes, 4);
111 *nvecs += 1;
112 }
113 break;
114 default:
115 ASSERT(0);
116 break;
117 }
118 }
119
120 /*
121 * This returns the number of iovecs needed to log the given inode item.
122 *
123 * We need one iovec for the inode log format structure, one for the
124 * inode core, and possibly one for the inode data/extents/b-tree root
125 * and one for the inode attribute data/extents/b-tree root.
126 */
127 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)128 xfs_inode_item_size(
129 struct xfs_log_item *lip,
130 int *nvecs,
131 int *nbytes)
132 {
133 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
134 struct xfs_inode *ip = iip->ili_inode;
135
136 *nvecs += 2;
137 *nbytes += sizeof(struct xfs_inode_log_format) +
138 xfs_icdinode_size(ip->i_d.di_version);
139
140 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
141 if (XFS_IFORK_Q(ip))
142 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
143 }
144
145 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)146 xfs_inode_item_format_data_fork(
147 struct xfs_inode_log_item *iip,
148 struct xfs_inode_log_format *ilf,
149 struct xfs_log_vec *lv,
150 struct xfs_log_iovec **vecp)
151 {
152 struct xfs_inode *ip = iip->ili_inode;
153 size_t data_bytes;
154
155 switch (ip->i_d.di_format) {
156 case XFS_DINODE_FMT_EXTENTS:
157 iip->ili_fields &=
158 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
159 XFS_ILOG_DEV | XFS_ILOG_UUID);
160
161 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162 ip->i_d.di_nextents > 0 &&
163 ip->i_df.if_bytes > 0) {
164 struct xfs_bmbt_rec *p;
165
166 ASSERT(ip->i_df.if_u1.if_extents != NULL);
167 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
168
169 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
170 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
171 xlog_finish_iovec(lv, *vecp, data_bytes);
172
173 ASSERT(data_bytes <= ip->i_df.if_bytes);
174
175 ilf->ilf_dsize = data_bytes;
176 ilf->ilf_size++;
177 } else {
178 iip->ili_fields &= ~XFS_ILOG_DEXT;
179 }
180 break;
181 case XFS_DINODE_FMT_BTREE:
182 iip->ili_fields &=
183 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
184 XFS_ILOG_DEV | XFS_ILOG_UUID);
185
186 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
187 ip->i_df.if_broot_bytes > 0) {
188 ASSERT(ip->i_df.if_broot != NULL);
189 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
190 ip->i_df.if_broot,
191 ip->i_df.if_broot_bytes);
192 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
193 ilf->ilf_size++;
194 } else {
195 ASSERT(!(iip->ili_fields &
196 XFS_ILOG_DBROOT));
197 iip->ili_fields &= ~XFS_ILOG_DBROOT;
198 }
199 break;
200 case XFS_DINODE_FMT_LOCAL:
201 iip->ili_fields &=
202 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
203 XFS_ILOG_DEV | XFS_ILOG_UUID);
204 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205 ip->i_df.if_bytes > 0) {
206 /*
207 * Round i_bytes up to a word boundary.
208 * The underlying memory is guaranteed to
209 * to be there by xfs_idata_realloc().
210 */
211 data_bytes = roundup(ip->i_df.if_bytes, 4);
212 ASSERT(ip->i_df.if_real_bytes == 0 ||
213 ip->i_df.if_real_bytes == data_bytes);
214 ASSERT(ip->i_df.if_u1.if_data != NULL);
215 ASSERT(ip->i_d.di_size > 0);
216 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
217 ip->i_df.if_u1.if_data, data_bytes);
218 ilf->ilf_dsize = (unsigned)data_bytes;
219 ilf->ilf_size++;
220 } else {
221 iip->ili_fields &= ~XFS_ILOG_DDATA;
222 }
223 break;
224 case XFS_DINODE_FMT_DEV:
225 iip->ili_fields &=
226 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
227 XFS_ILOG_DEXT | XFS_ILOG_UUID);
228 if (iip->ili_fields & XFS_ILOG_DEV)
229 ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
230 break;
231 case XFS_DINODE_FMT_UUID:
232 iip->ili_fields &=
233 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
234 XFS_ILOG_DEXT | XFS_ILOG_DEV);
235 if (iip->ili_fields & XFS_ILOG_UUID)
236 ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
237 break;
238 default:
239 ASSERT(0);
240 break;
241 }
242 }
243
244 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)245 xfs_inode_item_format_attr_fork(
246 struct xfs_inode_log_item *iip,
247 struct xfs_inode_log_format *ilf,
248 struct xfs_log_vec *lv,
249 struct xfs_log_iovec **vecp)
250 {
251 struct xfs_inode *ip = iip->ili_inode;
252 size_t data_bytes;
253
254 switch (ip->i_d.di_aformat) {
255 case XFS_DINODE_FMT_EXTENTS:
256 iip->ili_fields &=
257 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
258
259 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
260 ip->i_d.di_anextents > 0 &&
261 ip->i_afp->if_bytes > 0) {
262 struct xfs_bmbt_rec *p;
263
264 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
265 ip->i_d.di_anextents);
266 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
267
268 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
269 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
270 xlog_finish_iovec(lv, *vecp, data_bytes);
271
272 ilf->ilf_asize = data_bytes;
273 ilf->ilf_size++;
274 } else {
275 iip->ili_fields &= ~XFS_ILOG_AEXT;
276 }
277 break;
278 case XFS_DINODE_FMT_BTREE:
279 iip->ili_fields &=
280 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
281
282 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
283 ip->i_afp->if_broot_bytes > 0) {
284 ASSERT(ip->i_afp->if_broot != NULL);
285
286 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
287 ip->i_afp->if_broot,
288 ip->i_afp->if_broot_bytes);
289 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
290 ilf->ilf_size++;
291 } else {
292 iip->ili_fields &= ~XFS_ILOG_ABROOT;
293 }
294 break;
295 case XFS_DINODE_FMT_LOCAL:
296 iip->ili_fields &=
297 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
298
299 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
300 ip->i_afp->if_bytes > 0) {
301 /*
302 * Round i_bytes up to a word boundary.
303 * The underlying memory is guaranteed to
304 * to be there by xfs_idata_realloc().
305 */
306 data_bytes = roundup(ip->i_afp->if_bytes, 4);
307 ASSERT(ip->i_afp->if_real_bytes == 0 ||
308 ip->i_afp->if_real_bytes == data_bytes);
309 ASSERT(ip->i_afp->if_u1.if_data != NULL);
310 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
311 ip->i_afp->if_u1.if_data,
312 data_bytes);
313 ilf->ilf_asize = (unsigned)data_bytes;
314 ilf->ilf_size++;
315 } else {
316 iip->ili_fields &= ~XFS_ILOG_ADATA;
317 }
318 break;
319 default:
320 ASSERT(0);
321 break;
322 }
323 }
324
325 /*
326 * This is called to fill in the vector of log iovecs for the given inode
327 * log item. It fills the first item with an inode log format structure,
328 * the second with the on-disk inode structure, and a possible third and/or
329 * fourth with the inode data/extents/b-tree root and inode attributes
330 * data/extents/b-tree root.
331 */
332 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)333 xfs_inode_item_format(
334 struct xfs_log_item *lip,
335 struct xfs_log_vec *lv)
336 {
337 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
338 struct xfs_inode *ip = iip->ili_inode;
339 struct xfs_inode_log_format *ilf;
340 struct xfs_log_iovec *vecp = NULL;
341
342 ASSERT(ip->i_d.di_version > 1);
343
344 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
345 ilf->ilf_type = XFS_LI_INODE;
346 ilf->ilf_ino = ip->i_ino;
347 ilf->ilf_blkno = ip->i_imap.im_blkno;
348 ilf->ilf_len = ip->i_imap.im_len;
349 ilf->ilf_boffset = ip->i_imap.im_boffset;
350 ilf->ilf_fields = XFS_ILOG_CORE;
351 ilf->ilf_size = 2; /* format + core */
352 xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
353
354 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_ICORE,
355 &ip->i_d,
356 xfs_icdinode_size(ip->i_d.di_version));
357
358 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
359 if (XFS_IFORK_Q(ip)) {
360 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
361 } else {
362 iip->ili_fields &=
363 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
364 }
365
366 /* update the format with the exact fields we actually logged */
367 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
368 }
369
370 /*
371 * This is called to pin the inode associated with the inode log
372 * item in memory so it cannot be written out.
373 */
374 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)375 xfs_inode_item_pin(
376 struct xfs_log_item *lip)
377 {
378 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
379
380 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
381
382 trace_xfs_inode_pin(ip, _RET_IP_);
383 atomic_inc(&ip->i_pincount);
384 }
385
386
387 /*
388 * This is called to unpin the inode associated with the inode log
389 * item which was previously pinned with a call to xfs_inode_item_pin().
390 *
391 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
392 */
393 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)394 xfs_inode_item_unpin(
395 struct xfs_log_item *lip,
396 int remove)
397 {
398 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
399
400 trace_xfs_inode_unpin(ip, _RET_IP_);
401 ASSERT(atomic_read(&ip->i_pincount) > 0);
402 if (atomic_dec_and_test(&ip->i_pincount))
403 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
404 }
405
406 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)407 xfs_inode_item_push(
408 struct xfs_log_item *lip,
409 struct list_head *buffer_list)
410 {
411 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
412 struct xfs_inode *ip = iip->ili_inode;
413 struct xfs_buf *bp = NULL;
414 uint rval = XFS_ITEM_SUCCESS;
415 int error;
416
417 if (xfs_ipincount(ip) > 0)
418 return XFS_ITEM_PINNED;
419
420 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
421 return XFS_ITEM_LOCKED;
422
423 /*
424 * Re-check the pincount now that we stabilized the value by
425 * taking the ilock.
426 */
427 if (xfs_ipincount(ip) > 0) {
428 rval = XFS_ITEM_PINNED;
429 goto out_unlock;
430 }
431
432 /*
433 * Stale inode items should force out the iclog.
434 */
435 if (ip->i_flags & XFS_ISTALE) {
436 rval = XFS_ITEM_PINNED;
437 goto out_unlock;
438 }
439
440 /*
441 * Someone else is already flushing the inode. Nothing we can do
442 * here but wait for the flush to finish and remove the item from
443 * the AIL.
444 */
445 if (!xfs_iflock_nowait(ip)) {
446 rval = XFS_ITEM_FLUSHING;
447 goto out_unlock;
448 }
449
450 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
451 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
452
453 spin_unlock(&lip->li_ailp->xa_lock);
454
455 error = xfs_iflush(ip, &bp);
456 if (!error) {
457 if (!xfs_buf_delwri_queue(bp, buffer_list))
458 rval = XFS_ITEM_FLUSHING;
459 xfs_buf_relse(bp);
460 }
461
462 spin_lock(&lip->li_ailp->xa_lock);
463 out_unlock:
464 xfs_iunlock(ip, XFS_ILOCK_SHARED);
465 return rval;
466 }
467
468 /*
469 * Unlock the inode associated with the inode log item.
470 * Clear the fields of the inode and inode log item that
471 * are specific to the current transaction. If the
472 * hold flags is set, do not unlock the inode.
473 */
474 STATIC void
xfs_inode_item_unlock(struct xfs_log_item * lip)475 xfs_inode_item_unlock(
476 struct xfs_log_item *lip)
477 {
478 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
479 struct xfs_inode *ip = iip->ili_inode;
480 unsigned short lock_flags;
481
482 ASSERT(ip->i_itemp != NULL);
483 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
484
485 lock_flags = iip->ili_lock_flags;
486 iip->ili_lock_flags = 0;
487 if (lock_flags)
488 xfs_iunlock(ip, lock_flags);
489 }
490
491 /*
492 * This is called to find out where the oldest active copy of the inode log
493 * item in the on disk log resides now that the last log write of it completed
494 * at the given lsn. Since we always re-log all dirty data in an inode, the
495 * latest copy in the on disk log is the only one that matters. Therefore,
496 * simply return the given lsn.
497 *
498 * If the inode has been marked stale because the cluster is being freed, we
499 * don't want to (re-)insert this inode into the AIL. There is a race condition
500 * where the cluster buffer may be unpinned before the inode is inserted into
501 * the AIL during transaction committed processing. If the buffer is unpinned
502 * before the inode item has been committed and inserted, then it is possible
503 * for the buffer to be written and IO completes before the inode is inserted
504 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
505 * AIL which will never get removed. It will, however, get reclaimed which
506 * triggers an assert in xfs_inode_free() complaining about freein an inode
507 * still in the AIL.
508 *
509 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
510 * transaction committed code knows that it does not need to do any further
511 * processing on the item.
512 */
513 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)514 xfs_inode_item_committed(
515 struct xfs_log_item *lip,
516 xfs_lsn_t lsn)
517 {
518 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
519 struct xfs_inode *ip = iip->ili_inode;
520
521 if (xfs_iflags_test(ip, XFS_ISTALE)) {
522 xfs_inode_item_unpin(lip, 0);
523 return -1;
524 }
525 return lsn;
526 }
527
528 /*
529 * XXX rcc - this one really has to do something. Probably needs
530 * to stamp in a new field in the incore inode.
531 */
532 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_lsn_t lsn)533 xfs_inode_item_committing(
534 struct xfs_log_item *lip,
535 xfs_lsn_t lsn)
536 {
537 INODE_ITEM(lip)->ili_last_lsn = lsn;
538 }
539
540 /*
541 * This is the ops vector shared by all buf log items.
542 */
543 static const struct xfs_item_ops xfs_inode_item_ops = {
544 .iop_size = xfs_inode_item_size,
545 .iop_format = xfs_inode_item_format,
546 .iop_pin = xfs_inode_item_pin,
547 .iop_unpin = xfs_inode_item_unpin,
548 .iop_unlock = xfs_inode_item_unlock,
549 .iop_committed = xfs_inode_item_committed,
550 .iop_push = xfs_inode_item_push,
551 .iop_committing = xfs_inode_item_committing
552 };
553
554
555 /*
556 * Initialize the inode log item for a newly allocated (in-core) inode.
557 */
558 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)559 xfs_inode_item_init(
560 struct xfs_inode *ip,
561 struct xfs_mount *mp)
562 {
563 struct xfs_inode_log_item *iip;
564
565 ASSERT(ip->i_itemp == NULL);
566 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
567
568 iip->ili_inode = ip;
569 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
570 &xfs_inode_item_ops);
571 }
572
573 /*
574 * Free the inode log item and any memory hanging off of it.
575 */
576 void
xfs_inode_item_destroy(xfs_inode_t * ip)577 xfs_inode_item_destroy(
578 xfs_inode_t *ip)
579 {
580 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
581 }
582
583
584 /*
585 * This is the inode flushing I/O completion routine. It is called
586 * from interrupt level when the buffer containing the inode is
587 * flushed to disk. It is responsible for removing the inode item
588 * from the AIL if it has not been re-logged, and unlocking the inode's
589 * flush lock.
590 *
591 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
592 * list for other inodes that will run this function. We remove them from the
593 * buffer list so we can process all the inode IO completions in one AIL lock
594 * traversal.
595 */
596 void
xfs_iflush_done(struct xfs_buf * bp,struct xfs_log_item * lip)597 xfs_iflush_done(
598 struct xfs_buf *bp,
599 struct xfs_log_item *lip)
600 {
601 struct xfs_inode_log_item *iip;
602 struct xfs_log_item *blip;
603 struct xfs_log_item *next;
604 struct xfs_log_item *prev;
605 struct xfs_ail *ailp = lip->li_ailp;
606 int need_ail = 0;
607
608 /*
609 * Scan the buffer IO completions for other inodes being completed and
610 * attach them to the current inode log item.
611 */
612 blip = bp->b_fspriv;
613 prev = NULL;
614 while (blip != NULL) {
615 if (blip->li_cb != xfs_iflush_done) {
616 prev = blip;
617 blip = blip->li_bio_list;
618 continue;
619 }
620
621 /* remove from list */
622 next = blip->li_bio_list;
623 if (!prev) {
624 bp->b_fspriv = next;
625 } else {
626 prev->li_bio_list = next;
627 }
628
629 /* add to current list */
630 blip->li_bio_list = lip->li_bio_list;
631 lip->li_bio_list = blip;
632
633 /*
634 * while we have the item, do the unlocked check for needing
635 * the AIL lock.
636 */
637 iip = INODE_ITEM(blip);
638 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
639 need_ail++;
640
641 blip = next;
642 }
643
644 /* make sure we capture the state of the initial inode. */
645 iip = INODE_ITEM(lip);
646 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
647 need_ail++;
648
649 /*
650 * We only want to pull the item from the AIL if it is
651 * actually there and its location in the log has not
652 * changed since we started the flush. Thus, we only bother
653 * if the ili_logged flag is set and the inode's lsn has not
654 * changed. First we check the lsn outside
655 * the lock since it's cheaper, and then we recheck while
656 * holding the lock before removing the inode from the AIL.
657 */
658 if (need_ail) {
659 struct xfs_log_item *log_items[need_ail];
660 int i = 0;
661 spin_lock(&ailp->xa_lock);
662 for (blip = lip; blip; blip = blip->li_bio_list) {
663 iip = INODE_ITEM(blip);
664 if (iip->ili_logged &&
665 blip->li_lsn == iip->ili_flush_lsn) {
666 log_items[i++] = blip;
667 }
668 ASSERT(i <= need_ail);
669 }
670 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
671 xfs_trans_ail_delete_bulk(ailp, log_items, i,
672 SHUTDOWN_CORRUPT_INCORE);
673 }
674
675
676 /*
677 * clean up and unlock the flush lock now we are done. We can clear the
678 * ili_last_fields bits now that we know that the data corresponding to
679 * them is safely on disk.
680 */
681 for (blip = lip; blip; blip = next) {
682 next = blip->li_bio_list;
683 blip->li_bio_list = NULL;
684
685 iip = INODE_ITEM(blip);
686 iip->ili_logged = 0;
687 iip->ili_last_fields = 0;
688 xfs_ifunlock(iip->ili_inode);
689 }
690 }
691
692 /*
693 * This is the inode flushing abort routine. It is called from xfs_iflush when
694 * the filesystem is shutting down to clean up the inode state. It is
695 * responsible for removing the inode item from the AIL if it has not been
696 * re-logged, and unlocking the inode's flush lock.
697 */
698 void
xfs_iflush_abort(xfs_inode_t * ip,bool stale)699 xfs_iflush_abort(
700 xfs_inode_t *ip,
701 bool stale)
702 {
703 xfs_inode_log_item_t *iip = ip->i_itemp;
704
705 if (iip) {
706 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
707 xfs_trans_ail_remove(&iip->ili_item,
708 stale ? SHUTDOWN_LOG_IO_ERROR :
709 SHUTDOWN_CORRUPT_INCORE);
710 }
711 iip->ili_logged = 0;
712 /*
713 * Clear the ili_last_fields bits now that we know that the
714 * data corresponding to them is safely on disk.
715 */
716 iip->ili_last_fields = 0;
717 /*
718 * Clear the inode logging fields so no more flushes are
719 * attempted.
720 */
721 iip->ili_fields = 0;
722 iip->ili_fsync_fields = 0;
723 }
724 /*
725 * Release the inode's flush lock since we're done with it.
726 */
727 xfs_ifunlock(ip);
728 }
729
730 void
xfs_istale_done(struct xfs_buf * bp,struct xfs_log_item * lip)731 xfs_istale_done(
732 struct xfs_buf *bp,
733 struct xfs_log_item *lip)
734 {
735 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
736 }
737
738 /*
739 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
740 * (which can have different field alignments) to the native version
741 */
742 int
xfs_inode_item_format_convert(xfs_log_iovec_t * buf,xfs_inode_log_format_t * in_f)743 xfs_inode_item_format_convert(
744 xfs_log_iovec_t *buf,
745 xfs_inode_log_format_t *in_f)
746 {
747 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
748 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
749
750 in_f->ilf_type = in_f32->ilf_type;
751 in_f->ilf_size = in_f32->ilf_size;
752 in_f->ilf_fields = in_f32->ilf_fields;
753 in_f->ilf_asize = in_f32->ilf_asize;
754 in_f->ilf_dsize = in_f32->ilf_dsize;
755 in_f->ilf_ino = in_f32->ilf_ino;
756 /* copy biggest field of ilf_u */
757 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
758 in_f32->ilf_u.ilfu_uuid.__u_bits,
759 sizeof(uuid_t));
760 in_f->ilf_blkno = in_f32->ilf_blkno;
761 in_f->ilf_len = in_f32->ilf_len;
762 in_f->ilf_boffset = in_f32->ilf_boffset;
763 return 0;
764 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
765 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
766
767 in_f->ilf_type = in_f64->ilf_type;
768 in_f->ilf_size = in_f64->ilf_size;
769 in_f->ilf_fields = in_f64->ilf_fields;
770 in_f->ilf_asize = in_f64->ilf_asize;
771 in_f->ilf_dsize = in_f64->ilf_dsize;
772 in_f->ilf_ino = in_f64->ilf_ino;
773 /* copy biggest field of ilf_u */
774 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
775 in_f64->ilf_u.ilfu_uuid.__u_bits,
776 sizeof(uuid_t));
777 in_f->ilf_blkno = in_f64->ilf_blkno;
778 in_f->ilf_len = in_f64->ilf_len;
779 in_f->ilf_boffset = in_f64->ilf_boffset;
780 return 0;
781 }
782 return -EFSCORRUPTED;
783 }
784