1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
137
138 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143 {
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162 }
163
164 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169 {
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191 }
192
193 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
196 {
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200 }
201
202 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205 {
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212 }
213
214 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219 {
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229 }
230
231 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236 {
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251 }
252
253 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
xlog_tic_reset_res(xlog_ticket_t * tic)344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
381
382 XFS_STATS_INC(mp, xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,__uint8_t client,bool permanent,uint t_type)432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent,
439 uint t_type)
440 {
441 struct xlog *log = mp->m_log;
442 struct xlog_ticket *tic;
443 int need_bytes;
444 int error = 0;
445
446 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448 if (XLOG_FORCED_SHUTDOWN(log))
449 return -EIO;
450
451 XFS_STATS_INC(mp, xs_try_logspace);
452
453 ASSERT(*ticp == NULL);
454 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 KM_SLEEP | KM_MAYFAIL);
456 if (!tic)
457 return -ENOMEM;
458
459 tic->t_trans_type = t_type;
460 *ticp = tic;
461
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
464
465 trace_xfs_log_reserve(log, tic);
466
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
471
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
477
478 out_error:
479 /*
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
483 */
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
487 }
488
489
490 /*
491 * NOTES:
492 *
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
495 */
496
497 /*
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
510 */
511 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)512 xfs_log_done(
513 struct xfs_mount *mp,
514 struct xlog_ticket *ticket,
515 struct xlog_in_core **iclog,
516 bool regrant)
517 {
518 struct xlog *log = mp->m_log;
519 xfs_lsn_t lsn = 0;
520
521 if (XLOG_FORCED_SHUTDOWN(log) ||
522 /*
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
525 */
526 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 lsn = (xfs_lsn_t) -1;
529 regrant = false;
530 }
531
532
533 if (!regrant) {
534 trace_xfs_log_done_nonperm(log, ticket);
535
536 /*
537 * Release ticket if not permanent reservation or a specific
538 * request has been made to release a permanent reservation.
539 */
540 xlog_ungrant_log_space(log, ticket);
541 } else {
542 trace_xfs_log_done_perm(log, ticket);
543
544 xlog_regrant_reserve_log_space(log, ticket);
545 /* If this ticket was a permanent reservation and we aren't
546 * trying to release it, reset the inited flags; so next time
547 * we write, a start record will be written out.
548 */
549 ticket->t_flags |= XLOG_TIC_INITED;
550 }
551
552 xfs_log_ticket_put(ticket);
553 return lsn;
554 }
555
556 /*
557 * Attaches a new iclog I/O completion callback routine during
558 * transaction commit. If the log is in error state, a non-zero
559 * return code is handed back and the caller is responsible for
560 * executing the callback at an appropriate time.
561 */
562 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)563 xfs_log_notify(
564 struct xfs_mount *mp,
565 struct xlog_in_core *iclog,
566 xfs_log_callback_t *cb)
567 {
568 int abortflg;
569
570 spin_lock(&iclog->ic_callback_lock);
571 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572 if (!abortflg) {
573 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575 cb->cb_next = NULL;
576 *(iclog->ic_callback_tail) = cb;
577 iclog->ic_callback_tail = &(cb->cb_next);
578 }
579 spin_unlock(&iclog->ic_callback_lock);
580 return abortflg;
581 }
582
583 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)584 xfs_log_release_iclog(
585 struct xfs_mount *mp,
586 struct xlog_in_core *iclog)
587 {
588 if (xlog_state_release_iclog(mp->m_log, iclog)) {
589 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590 return -EIO;
591 }
592
593 return 0;
594 }
595
596 /*
597 * Mount a log filesystem
598 *
599 * mp - ubiquitous xfs mount point structure
600 * log_target - buftarg of on-disk log device
601 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
602 * num_bblocks - Number of BBSIZE blocks in on-disk log
603 *
604 * Return error or zero.
605 */
606 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)607 xfs_log_mount(
608 xfs_mount_t *mp,
609 xfs_buftarg_t *log_target,
610 xfs_daddr_t blk_offset,
611 int num_bblks)
612 {
613 int error = 0;
614 int min_logfsbs;
615
616 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 xfs_notice(mp, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp->m_sb));
619 } else {
620 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp->m_sb));
623 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 }
625
626 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 if (IS_ERR(mp->m_log)) {
628 error = PTR_ERR(mp->m_log);
629 goto out;
630 }
631
632 /*
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
636 *
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
641 *
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
645 */
646 min_logfsbs = xfs_log_calc_minimum_size(mp);
647
648 if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 xfs_warn(mp,
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp->m_sb.sb_logblocks, min_logfsbs);
652 error = -EINVAL;
653 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 xfs_warn(mp,
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 error = -EINVAL;
658 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 xfs_warn(mp,
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 XFS_MAX_LOG_BYTES);
663 error = -EINVAL;
664 }
665 if (error) {
666 if (xfs_sb_version_hascrc(&mp->m_sb)) {
667 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668 ASSERT(0);
669 goto out_free_log;
670 }
671 xfs_crit(mp, "Log size out of supported range.");
672 xfs_crit(mp,
673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
674 }
675
676 /*
677 * Initialize the AIL now we have a log.
678 */
679 error = xfs_trans_ail_init(mp);
680 if (error) {
681 xfs_warn(mp, "AIL initialisation failed: error %d", error);
682 goto out_free_log;
683 }
684 mp->m_log->l_ailp = mp->m_ail;
685
686 /*
687 * skip log recovery on a norecovery mount. pretend it all
688 * just worked.
689 */
690 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
692
693 if (readonly)
694 mp->m_flags &= ~XFS_MOUNT_RDONLY;
695
696 error = xlog_recover(mp->m_log);
697
698 if (readonly)
699 mp->m_flags |= XFS_MOUNT_RDONLY;
700 if (error) {
701 xfs_warn(mp, "log mount/recovery failed: error %d",
702 error);
703 xlog_recover_cancel(mp->m_log);
704 goto out_destroy_ail;
705 }
706 }
707
708 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
709 "log");
710 if (error)
711 goto out_destroy_ail;
712
713 /* Normal transactions can now occur */
714 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
715
716 /*
717 * Now the log has been fully initialised and we know were our
718 * space grant counters are, we can initialise the permanent ticket
719 * needed for delayed logging to work.
720 */
721 xlog_cil_init_post_recovery(mp->m_log);
722
723 return 0;
724
725 out_destroy_ail:
726 xfs_trans_ail_destroy(mp);
727 out_free_log:
728 xlog_dealloc_log(mp->m_log);
729 out:
730 return error;
731 }
732
733 /*
734 * Finish the recovery of the file system. This is separate from the
735 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
736 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737 * here.
738 *
739 * If we finish recovery successfully, start the background log work. If we are
740 * not doing recovery, then we have a RO filesystem and we don't need to start
741 * it.
742 */
743 int
xfs_log_mount_finish(struct xfs_mount * mp)744 xfs_log_mount_finish(
745 struct xfs_mount *mp)
746 {
747 int error = 0;
748
749 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 return 0;
752 }
753
754 error = xlog_recover_finish(mp->m_log);
755 if (!error)
756 xfs_log_work_queue(mp);
757
758 return error;
759 }
760
761 /*
762 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
763 * the log.
764 */
765 int
xfs_log_mount_cancel(struct xfs_mount * mp)766 xfs_log_mount_cancel(
767 struct xfs_mount *mp)
768 {
769 int error;
770
771 error = xlog_recover_cancel(mp->m_log);
772 xfs_log_unmount(mp);
773
774 return error;
775 }
776
777 /*
778 * Final log writes as part of unmount.
779 *
780 * Mark the filesystem clean as unmount happens. Note that during relocation
781 * this routine needs to be executed as part of source-bag while the
782 * deallocation must not be done until source-end.
783 */
784
785 /*
786 * Unmount record used to have a string "Unmount filesystem--" in the
787 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
788 * We just write the magic number now since that particular field isn't
789 * currently architecture converted and "Unmount" is a bit foo.
790 * As far as I know, there weren't any dependencies on the old behaviour.
791 */
792
793 int
xfs_log_unmount_write(xfs_mount_t * mp)794 xfs_log_unmount_write(xfs_mount_t *mp)
795 {
796 struct xlog *log = mp->m_log;
797 xlog_in_core_t *iclog;
798 #ifdef DEBUG
799 xlog_in_core_t *first_iclog;
800 #endif
801 xlog_ticket_t *tic = NULL;
802 xfs_lsn_t lsn;
803 int error;
804
805 /*
806 * Don't write out unmount record on read-only mounts.
807 * Or, if we are doing a forced umount (typically because of IO errors).
808 */
809 if (mp->m_flags & XFS_MOUNT_RDONLY)
810 return 0;
811
812 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
813 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
814
815 #ifdef DEBUG
816 first_iclog = iclog = log->l_iclog;
817 do {
818 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
819 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
820 ASSERT(iclog->ic_offset == 0);
821 }
822 iclog = iclog->ic_next;
823 } while (iclog != first_iclog);
824 #endif
825 if (! (XLOG_FORCED_SHUTDOWN(log))) {
826 error = xfs_log_reserve(mp, 600, 1, &tic,
827 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
828 if (!error) {
829 /* the data section must be 32 bit size aligned */
830 struct {
831 __uint16_t magic;
832 __uint16_t pad1;
833 __uint32_t pad2; /* may as well make it 64 bits */
834 } magic = {
835 .magic = XLOG_UNMOUNT_TYPE,
836 };
837 struct xfs_log_iovec reg = {
838 .i_addr = &magic,
839 .i_len = sizeof(magic),
840 .i_type = XLOG_REG_TYPE_UNMOUNT,
841 };
842 struct xfs_log_vec vec = {
843 .lv_niovecs = 1,
844 .lv_iovecp = ®,
845 };
846
847 /* remove inited flag, and account for space used */
848 tic->t_flags = 0;
849 tic->t_curr_res -= sizeof(magic);
850 error = xlog_write(log, &vec, tic, &lsn,
851 NULL, XLOG_UNMOUNT_TRANS);
852 /*
853 * At this point, we're umounting anyway,
854 * so there's no point in transitioning log state
855 * to IOERROR. Just continue...
856 */
857 }
858
859 if (error)
860 xfs_alert(mp, "%s: unmount record failed", __func__);
861
862
863 spin_lock(&log->l_icloglock);
864 iclog = log->l_iclog;
865 atomic_inc(&iclog->ic_refcnt);
866 xlog_state_want_sync(log, iclog);
867 spin_unlock(&log->l_icloglock);
868 error = xlog_state_release_iclog(log, iclog);
869
870 spin_lock(&log->l_icloglock);
871 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
872 iclog->ic_state == XLOG_STATE_DIRTY)) {
873 if (!XLOG_FORCED_SHUTDOWN(log)) {
874 xlog_wait(&iclog->ic_force_wait,
875 &log->l_icloglock);
876 } else {
877 spin_unlock(&log->l_icloglock);
878 }
879 } else {
880 spin_unlock(&log->l_icloglock);
881 }
882 if (tic) {
883 trace_xfs_log_umount_write(log, tic);
884 xlog_ungrant_log_space(log, tic);
885 xfs_log_ticket_put(tic);
886 }
887 } else {
888 /*
889 * We're already in forced_shutdown mode, couldn't
890 * even attempt to write out the unmount transaction.
891 *
892 * Go through the motions of sync'ing and releasing
893 * the iclog, even though no I/O will actually happen,
894 * we need to wait for other log I/Os that may already
895 * be in progress. Do this as a separate section of
896 * code so we'll know if we ever get stuck here that
897 * we're in this odd situation of trying to unmount
898 * a file system that went into forced_shutdown as
899 * the result of an unmount..
900 */
901 spin_lock(&log->l_icloglock);
902 iclog = log->l_iclog;
903 atomic_inc(&iclog->ic_refcnt);
904
905 xlog_state_want_sync(log, iclog);
906 spin_unlock(&log->l_icloglock);
907 error = xlog_state_release_iclog(log, iclog);
908
909 spin_lock(&log->l_icloglock);
910
911 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
912 || iclog->ic_state == XLOG_STATE_DIRTY
913 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
914
915 xlog_wait(&iclog->ic_force_wait,
916 &log->l_icloglock);
917 } else {
918 spin_unlock(&log->l_icloglock);
919 }
920 }
921
922 return error;
923 } /* xfs_log_unmount_write */
924
925 /*
926 * Empty the log for unmount/freeze.
927 *
928 * To do this, we first need to shut down the background log work so it is not
929 * trying to cover the log as we clean up. We then need to unpin all objects in
930 * the log so we can then flush them out. Once they have completed their IO and
931 * run the callbacks removing themselves from the AIL, we can write the unmount
932 * record.
933 */
934 void
xfs_log_quiesce(struct xfs_mount * mp)935 xfs_log_quiesce(
936 struct xfs_mount *mp)
937 {
938 cancel_delayed_work_sync(&mp->m_log->l_work);
939 xfs_log_force(mp, XFS_LOG_SYNC);
940
941 /*
942 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
943 * will push it, xfs_wait_buftarg() will not wait for it. Further,
944 * xfs_buf_iowait() cannot be used because it was pushed with the
945 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
946 * the IO to complete.
947 */
948 xfs_ail_push_all_sync(mp->m_ail);
949 xfs_wait_buftarg(mp->m_ddev_targp);
950 xfs_buf_lock(mp->m_sb_bp);
951 xfs_buf_unlock(mp->m_sb_bp);
952
953 xfs_log_unmount_write(mp);
954 }
955
956 /*
957 * Shut down and release the AIL and Log.
958 *
959 * During unmount, we need to ensure we flush all the dirty metadata objects
960 * from the AIL so that the log is empty before we write the unmount record to
961 * the log. Once this is done, we can tear down the AIL and the log.
962 */
963 void
xfs_log_unmount(struct xfs_mount * mp)964 xfs_log_unmount(
965 struct xfs_mount *mp)
966 {
967 xfs_log_quiesce(mp);
968
969 xfs_trans_ail_destroy(mp);
970
971 xfs_sysfs_del(&mp->m_log->l_kobj);
972
973 xlog_dealloc_log(mp->m_log);
974 }
975
976 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)977 xfs_log_item_init(
978 struct xfs_mount *mp,
979 struct xfs_log_item *item,
980 int type,
981 const struct xfs_item_ops *ops)
982 {
983 item->li_mountp = mp;
984 item->li_ailp = mp->m_ail;
985 item->li_type = type;
986 item->li_ops = ops;
987 item->li_lv = NULL;
988
989 INIT_LIST_HEAD(&item->li_ail);
990 INIT_LIST_HEAD(&item->li_cil);
991 }
992
993 /*
994 * Wake up processes waiting for log space after we have moved the log tail.
995 */
996 void
xfs_log_space_wake(struct xfs_mount * mp)997 xfs_log_space_wake(
998 struct xfs_mount *mp)
999 {
1000 struct xlog *log = mp->m_log;
1001 int free_bytes;
1002
1003 if (XLOG_FORCED_SHUTDOWN(log))
1004 return;
1005
1006 if (!list_empty_careful(&log->l_write_head.waiters)) {
1007 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008
1009 spin_lock(&log->l_write_head.lock);
1010 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012 spin_unlock(&log->l_write_head.lock);
1013 }
1014
1015 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017
1018 spin_lock(&log->l_reserve_head.lock);
1019 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021 spin_unlock(&log->l_reserve_head.lock);
1022 }
1023 }
1024
1025 /*
1026 * Determine if we have a transaction that has gone to disk that needs to be
1027 * covered. To begin the transition to the idle state firstly the log needs to
1028 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029 * we start attempting to cover the log.
1030 *
1031 * Only if we are then in a state where covering is needed, the caller is
1032 * informed that dummy transactions are required to move the log into the idle
1033 * state.
1034 *
1035 * If there are any items in the AIl or CIL, then we do not want to attempt to
1036 * cover the log as we may be in a situation where there isn't log space
1037 * available to run a dummy transaction and this can lead to deadlocks when the
1038 * tail of the log is pinned by an item that is modified in the CIL. Hence
1039 * there's no point in running a dummy transaction at this point because we
1040 * can't start trying to idle the log until both the CIL and AIL are empty.
1041 */
1042 int
xfs_log_need_covered(xfs_mount_t * mp)1043 xfs_log_need_covered(xfs_mount_t *mp)
1044 {
1045 struct xlog *log = mp->m_log;
1046 int needed = 0;
1047
1048 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049 return 0;
1050
1051 if (!xlog_cil_empty(log))
1052 return 0;
1053
1054 spin_lock(&log->l_icloglock);
1055 switch (log->l_covered_state) {
1056 case XLOG_STATE_COVER_DONE:
1057 case XLOG_STATE_COVER_DONE2:
1058 case XLOG_STATE_COVER_IDLE:
1059 break;
1060 case XLOG_STATE_COVER_NEED:
1061 case XLOG_STATE_COVER_NEED2:
1062 if (xfs_ail_min_lsn(log->l_ailp))
1063 break;
1064 if (!xlog_iclogs_empty(log))
1065 break;
1066
1067 needed = 1;
1068 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069 log->l_covered_state = XLOG_STATE_COVER_DONE;
1070 else
1071 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072 break;
1073 default:
1074 needed = 1;
1075 break;
1076 }
1077 spin_unlock(&log->l_icloglock);
1078 return needed;
1079 }
1080
1081 /*
1082 * We may be holding the log iclog lock upon entering this routine.
1083 */
1084 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1085 xlog_assign_tail_lsn_locked(
1086 struct xfs_mount *mp)
1087 {
1088 struct xlog *log = mp->m_log;
1089 struct xfs_log_item *lip;
1090 xfs_lsn_t tail_lsn;
1091
1092 assert_spin_locked(&mp->m_ail->xa_lock);
1093
1094 /*
1095 * To make sure we always have a valid LSN for the log tail we keep
1096 * track of the last LSN which was committed in log->l_last_sync_lsn,
1097 * and use that when the AIL was empty.
1098 */
1099 lip = xfs_ail_min(mp->m_ail);
1100 if (lip)
1101 tail_lsn = lip->li_lsn;
1102 else
1103 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105 atomic64_set(&log->l_tail_lsn, tail_lsn);
1106 return tail_lsn;
1107 }
1108
1109 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1110 xlog_assign_tail_lsn(
1111 struct xfs_mount *mp)
1112 {
1113 xfs_lsn_t tail_lsn;
1114
1115 spin_lock(&mp->m_ail->xa_lock);
1116 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117 spin_unlock(&mp->m_ail->xa_lock);
1118
1119 return tail_lsn;
1120 }
1121
1122 /*
1123 * Return the space in the log between the tail and the head. The head
1124 * is passed in the cycle/bytes formal parms. In the special case where
1125 * the reserve head has wrapped passed the tail, this calculation is no
1126 * longer valid. In this case, just return 0 which means there is no space
1127 * in the log. This works for all places where this function is called
1128 * with the reserve head. Of course, if the write head were to ever
1129 * wrap the tail, we should blow up. Rather than catch this case here,
1130 * we depend on other ASSERTions in other parts of the code. XXXmiken
1131 *
1132 * This code also handles the case where the reservation head is behind
1133 * the tail. The details of this case are described below, but the end
1134 * result is that we return the size of the log as the amount of space left.
1135 */
1136 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1137 xlog_space_left(
1138 struct xlog *log,
1139 atomic64_t *head)
1140 {
1141 int free_bytes;
1142 int tail_bytes;
1143 int tail_cycle;
1144 int head_cycle;
1145 int head_bytes;
1146
1147 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149 tail_bytes = BBTOB(tail_bytes);
1150 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152 else if (tail_cycle + 1 < head_cycle)
1153 return 0;
1154 else if (tail_cycle < head_cycle) {
1155 ASSERT(tail_cycle == (head_cycle - 1));
1156 free_bytes = tail_bytes - head_bytes;
1157 } else {
1158 /*
1159 * The reservation head is behind the tail.
1160 * In this case we just want to return the size of the
1161 * log as the amount of space left.
1162 */
1163 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164 xfs_alert(log->l_mp,
1165 " tail_cycle = %d, tail_bytes = %d",
1166 tail_cycle, tail_bytes);
1167 xfs_alert(log->l_mp,
1168 " GH cycle = %d, GH bytes = %d",
1169 head_cycle, head_bytes);
1170 ASSERT(0);
1171 free_bytes = log->l_logsize;
1172 }
1173 return free_bytes;
1174 }
1175
1176
1177 /*
1178 * Log function which is called when an io completes.
1179 *
1180 * The log manager needs its own routine, in order to control what
1181 * happens with the buffer after the write completes.
1182 */
1183 void
xlog_iodone(xfs_buf_t * bp)1184 xlog_iodone(xfs_buf_t *bp)
1185 {
1186 struct xlog_in_core *iclog = bp->b_fspriv;
1187 struct xlog *l = iclog->ic_log;
1188 int aborted = 0;
1189
1190 /*
1191 * Race to shutdown the filesystem if we see an error.
1192 */
1193 if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1194 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1195 xfs_buf_ioerror_alert(bp, __func__);
1196 xfs_buf_stale(bp);
1197 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1198 /*
1199 * This flag will be propagated to the trans-committed
1200 * callback routines to let them know that the log-commit
1201 * didn't succeed.
1202 */
1203 aborted = XFS_LI_ABORTED;
1204 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1205 aborted = XFS_LI_ABORTED;
1206 }
1207
1208 /* log I/O is always issued ASYNC */
1209 ASSERT(XFS_BUF_ISASYNC(bp));
1210 xlog_state_done_syncing(iclog, aborted);
1211
1212 /*
1213 * drop the buffer lock now that we are done. Nothing references
1214 * the buffer after this, so an unmount waiting on this lock can now
1215 * tear it down safely. As such, it is unsafe to reference the buffer
1216 * (bp) after the unlock as we could race with it being freed.
1217 */
1218 xfs_buf_unlock(bp);
1219 }
1220
1221 /*
1222 * Return size of each in-core log record buffer.
1223 *
1224 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1225 *
1226 * If the filesystem blocksize is too large, we may need to choose a
1227 * larger size since the directory code currently logs entire blocks.
1228 */
1229
1230 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1231 xlog_get_iclog_buffer_size(
1232 struct xfs_mount *mp,
1233 struct xlog *log)
1234 {
1235 int size;
1236 int xhdrs;
1237
1238 if (mp->m_logbufs <= 0)
1239 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1240 else
1241 log->l_iclog_bufs = mp->m_logbufs;
1242
1243 /*
1244 * Buffer size passed in from mount system call.
1245 */
1246 if (mp->m_logbsize > 0) {
1247 size = log->l_iclog_size = mp->m_logbsize;
1248 log->l_iclog_size_log = 0;
1249 while (size != 1) {
1250 log->l_iclog_size_log++;
1251 size >>= 1;
1252 }
1253
1254 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1255 /* # headers = size / 32k
1256 * one header holds cycles from 32k of data
1257 */
1258
1259 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1260 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1261 xhdrs++;
1262 log->l_iclog_hsize = xhdrs << BBSHIFT;
1263 log->l_iclog_heads = xhdrs;
1264 } else {
1265 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1266 log->l_iclog_hsize = BBSIZE;
1267 log->l_iclog_heads = 1;
1268 }
1269 goto done;
1270 }
1271
1272 /* All machines use 32kB buffers by default. */
1273 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1274 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1275
1276 /* the default log size is 16k or 32k which is one header sector */
1277 log->l_iclog_hsize = BBSIZE;
1278 log->l_iclog_heads = 1;
1279
1280 done:
1281 /* are we being asked to make the sizes selected above visible? */
1282 if (mp->m_logbufs == 0)
1283 mp->m_logbufs = log->l_iclog_bufs;
1284 if (mp->m_logbsize == 0)
1285 mp->m_logbsize = log->l_iclog_size;
1286 } /* xlog_get_iclog_buffer_size */
1287
1288
1289 void
xfs_log_work_queue(struct xfs_mount * mp)1290 xfs_log_work_queue(
1291 struct xfs_mount *mp)
1292 {
1293 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1294 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1295 }
1296
1297 /*
1298 * Every sync period we need to unpin all items in the AIL and push them to
1299 * disk. If there is nothing dirty, then we might need to cover the log to
1300 * indicate that the filesystem is idle.
1301 */
1302 void
xfs_log_worker(struct work_struct * work)1303 xfs_log_worker(
1304 struct work_struct *work)
1305 {
1306 struct xlog *log = container_of(to_delayed_work(work),
1307 struct xlog, l_work);
1308 struct xfs_mount *mp = log->l_mp;
1309
1310 /* dgc: errors ignored - not fatal and nowhere to report them */
1311 if (xfs_log_need_covered(mp)) {
1312 /*
1313 * Dump a transaction into the log that contains no real change.
1314 * This is needed to stamp the current tail LSN into the log
1315 * during the covering operation.
1316 *
1317 * We cannot use an inode here for this - that will push dirty
1318 * state back up into the VFS and then periodic inode flushing
1319 * will prevent log covering from making progress. Hence we
1320 * synchronously log the superblock instead to ensure the
1321 * superblock is immediately unpinned and can be written back.
1322 */
1323 xfs_sync_sb(mp, true);
1324 } else
1325 xfs_log_force(mp, 0);
1326
1327 /* start pushing all the metadata that is currently dirty */
1328 xfs_ail_push_all(mp->m_ail);
1329
1330 /* queue us up again */
1331 xfs_log_work_queue(mp);
1332 }
1333
1334 /*
1335 * This routine initializes some of the log structure for a given mount point.
1336 * Its primary purpose is to fill in enough, so recovery can occur. However,
1337 * some other stuff may be filled in too.
1338 */
1339 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1340 xlog_alloc_log(
1341 struct xfs_mount *mp,
1342 struct xfs_buftarg *log_target,
1343 xfs_daddr_t blk_offset,
1344 int num_bblks)
1345 {
1346 struct xlog *log;
1347 xlog_rec_header_t *head;
1348 xlog_in_core_t **iclogp;
1349 xlog_in_core_t *iclog, *prev_iclog=NULL;
1350 xfs_buf_t *bp;
1351 int i;
1352 int error = -ENOMEM;
1353 uint log2_size = 0;
1354
1355 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1356 if (!log) {
1357 xfs_warn(mp, "Log allocation failed: No memory!");
1358 goto out;
1359 }
1360
1361 log->l_mp = mp;
1362 log->l_targ = log_target;
1363 log->l_logsize = BBTOB(num_bblks);
1364 log->l_logBBstart = blk_offset;
1365 log->l_logBBsize = num_bblks;
1366 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1367 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1368 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1369
1370 log->l_prev_block = -1;
1371 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1372 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1373 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1374 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1375
1376 xlog_grant_head_init(&log->l_reserve_head);
1377 xlog_grant_head_init(&log->l_write_head);
1378
1379 error = -EFSCORRUPTED;
1380 if (xfs_sb_version_hassector(&mp->m_sb)) {
1381 log2_size = mp->m_sb.sb_logsectlog;
1382 if (log2_size < BBSHIFT) {
1383 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1384 log2_size, BBSHIFT);
1385 goto out_free_log;
1386 }
1387
1388 log2_size -= BBSHIFT;
1389 if (log2_size > mp->m_sectbb_log) {
1390 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1391 log2_size, mp->m_sectbb_log);
1392 goto out_free_log;
1393 }
1394
1395 /* for larger sector sizes, must have v2 or external log */
1396 if (log2_size && log->l_logBBstart > 0 &&
1397 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1398 xfs_warn(mp,
1399 "log sector size (0x%x) invalid for configuration.",
1400 log2_size);
1401 goto out_free_log;
1402 }
1403 }
1404 log->l_sectBBsize = 1 << log2_size;
1405
1406 xlog_get_iclog_buffer_size(mp, log);
1407
1408 /*
1409 * Use a NULL block for the extra log buffer used during splits so that
1410 * it will trigger errors if we ever try to do IO on it without first
1411 * having set it up properly.
1412 */
1413 error = -ENOMEM;
1414 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1415 BTOBB(log->l_iclog_size), 0);
1416 if (!bp)
1417 goto out_free_log;
1418
1419 /*
1420 * The iclogbuf buffer locks are held over IO but we are not going to do
1421 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1422 * when appropriately.
1423 */
1424 ASSERT(xfs_buf_islocked(bp));
1425 xfs_buf_unlock(bp);
1426
1427 /* use high priority wq for log I/O completion */
1428 bp->b_ioend_wq = mp->m_log_workqueue;
1429 bp->b_iodone = xlog_iodone;
1430 log->l_xbuf = bp;
1431
1432 spin_lock_init(&log->l_icloglock);
1433 init_waitqueue_head(&log->l_flush_wait);
1434
1435 iclogp = &log->l_iclog;
1436 /*
1437 * The amount of memory to allocate for the iclog structure is
1438 * rather funky due to the way the structure is defined. It is
1439 * done this way so that we can use different sizes for machines
1440 * with different amounts of memory. See the definition of
1441 * xlog_in_core_t in xfs_log_priv.h for details.
1442 */
1443 ASSERT(log->l_iclog_size >= 4096);
1444 for (i=0; i < log->l_iclog_bufs; i++) {
1445 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1446 if (!*iclogp)
1447 goto out_free_iclog;
1448
1449 iclog = *iclogp;
1450 iclog->ic_prev = prev_iclog;
1451 prev_iclog = iclog;
1452
1453 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1454 BTOBB(log->l_iclog_size), 0);
1455 if (!bp)
1456 goto out_free_iclog;
1457
1458 ASSERT(xfs_buf_islocked(bp));
1459 xfs_buf_unlock(bp);
1460
1461 /* use high priority wq for log I/O completion */
1462 bp->b_ioend_wq = mp->m_log_workqueue;
1463 bp->b_iodone = xlog_iodone;
1464 iclog->ic_bp = bp;
1465 iclog->ic_data = bp->b_addr;
1466 #ifdef DEBUG
1467 log->l_iclog_bak[i] = &iclog->ic_header;
1468 #endif
1469 head = &iclog->ic_header;
1470 memset(head, 0, sizeof(xlog_rec_header_t));
1471 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1472 head->h_version = cpu_to_be32(
1473 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1474 head->h_size = cpu_to_be32(log->l_iclog_size);
1475 /* new fields */
1476 head->h_fmt = cpu_to_be32(XLOG_FMT);
1477 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1478
1479 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1480 iclog->ic_state = XLOG_STATE_ACTIVE;
1481 iclog->ic_log = log;
1482 atomic_set(&iclog->ic_refcnt, 0);
1483 spin_lock_init(&iclog->ic_callback_lock);
1484 iclog->ic_callback_tail = &(iclog->ic_callback);
1485 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1486
1487 init_waitqueue_head(&iclog->ic_force_wait);
1488 init_waitqueue_head(&iclog->ic_write_wait);
1489
1490 iclogp = &iclog->ic_next;
1491 }
1492 *iclogp = log->l_iclog; /* complete ring */
1493 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1494
1495 error = xlog_cil_init(log);
1496 if (error)
1497 goto out_free_iclog;
1498 return log;
1499
1500 out_free_iclog:
1501 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1502 prev_iclog = iclog->ic_next;
1503 if (iclog->ic_bp)
1504 xfs_buf_free(iclog->ic_bp);
1505 kmem_free(iclog);
1506 if (prev_iclog == log->l_iclog)
1507 break;
1508 }
1509 spinlock_destroy(&log->l_icloglock);
1510 xfs_buf_free(log->l_xbuf);
1511 out_free_log:
1512 kmem_free(log);
1513 out:
1514 return ERR_PTR(error);
1515 } /* xlog_alloc_log */
1516
1517
1518 /*
1519 * Write out the commit record of a transaction associated with the given
1520 * ticket. Return the lsn of the commit record.
1521 */
1522 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1523 xlog_commit_record(
1524 struct xlog *log,
1525 struct xlog_ticket *ticket,
1526 struct xlog_in_core **iclog,
1527 xfs_lsn_t *commitlsnp)
1528 {
1529 struct xfs_mount *mp = log->l_mp;
1530 int error;
1531 struct xfs_log_iovec reg = {
1532 .i_addr = NULL,
1533 .i_len = 0,
1534 .i_type = XLOG_REG_TYPE_COMMIT,
1535 };
1536 struct xfs_log_vec vec = {
1537 .lv_niovecs = 1,
1538 .lv_iovecp = ®,
1539 };
1540
1541 ASSERT_ALWAYS(iclog);
1542 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1543 XLOG_COMMIT_TRANS);
1544 if (error)
1545 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1546 return error;
1547 }
1548
1549 /*
1550 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1551 * log space. This code pushes on the lsn which would supposedly free up
1552 * the 25% which we want to leave free. We may need to adopt a policy which
1553 * pushes on an lsn which is further along in the log once we reach the high
1554 * water mark. In this manner, we would be creating a low water mark.
1555 */
1556 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1557 xlog_grant_push_ail(
1558 struct xlog *log,
1559 int need_bytes)
1560 {
1561 xfs_lsn_t threshold_lsn = 0;
1562 xfs_lsn_t last_sync_lsn;
1563 int free_blocks;
1564 int free_bytes;
1565 int threshold_block;
1566 int threshold_cycle;
1567 int free_threshold;
1568
1569 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1570
1571 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1572 free_blocks = BTOBBT(free_bytes);
1573
1574 /*
1575 * Set the threshold for the minimum number of free blocks in the
1576 * log to the maximum of what the caller needs, one quarter of the
1577 * log, and 256 blocks.
1578 */
1579 free_threshold = BTOBB(need_bytes);
1580 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1581 free_threshold = MAX(free_threshold, 256);
1582 if (free_blocks >= free_threshold)
1583 return;
1584
1585 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1586 &threshold_block);
1587 threshold_block += free_threshold;
1588 if (threshold_block >= log->l_logBBsize) {
1589 threshold_block -= log->l_logBBsize;
1590 threshold_cycle += 1;
1591 }
1592 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1593 threshold_block);
1594 /*
1595 * Don't pass in an lsn greater than the lsn of the last
1596 * log record known to be on disk. Use a snapshot of the last sync lsn
1597 * so that it doesn't change between the compare and the set.
1598 */
1599 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1600 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1601 threshold_lsn = last_sync_lsn;
1602
1603 /*
1604 * Get the transaction layer to kick the dirty buffers out to
1605 * disk asynchronously. No point in trying to do this if
1606 * the filesystem is shutting down.
1607 */
1608 if (!XLOG_FORCED_SHUTDOWN(log))
1609 xfs_ail_push(log->l_ailp, threshold_lsn);
1610 }
1611
1612 /*
1613 * Stamp cycle number in every block
1614 */
1615 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1616 xlog_pack_data(
1617 struct xlog *log,
1618 struct xlog_in_core *iclog,
1619 int roundoff)
1620 {
1621 int i, j, k;
1622 int size = iclog->ic_offset + roundoff;
1623 __be32 cycle_lsn;
1624 char *dp;
1625
1626 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1627
1628 dp = iclog->ic_datap;
1629 for (i = 0; i < BTOBB(size); i++) {
1630 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1631 break;
1632 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1633 *(__be32 *)dp = cycle_lsn;
1634 dp += BBSIZE;
1635 }
1636
1637 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1638 xlog_in_core_2_t *xhdr = iclog->ic_data;
1639
1640 for ( ; i < BTOBB(size); i++) {
1641 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1642 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1643 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1644 *(__be32 *)dp = cycle_lsn;
1645 dp += BBSIZE;
1646 }
1647
1648 for (i = 1; i < log->l_iclog_heads; i++)
1649 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1650 }
1651 }
1652
1653 /*
1654 * Calculate the checksum for a log buffer.
1655 *
1656 * This is a little more complicated than it should be because the various
1657 * headers and the actual data are non-contiguous.
1658 */
1659 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1660 xlog_cksum(
1661 struct xlog *log,
1662 struct xlog_rec_header *rhead,
1663 char *dp,
1664 int size)
1665 {
1666 __uint32_t crc;
1667
1668 /* first generate the crc for the record header ... */
1669 crc = xfs_start_cksum((char *)rhead,
1670 sizeof(struct xlog_rec_header),
1671 offsetof(struct xlog_rec_header, h_crc));
1672
1673 /* ... then for additional cycle data for v2 logs ... */
1674 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1675 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1676 int i;
1677 int xheads;
1678
1679 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1680 if (size % XLOG_HEADER_CYCLE_SIZE)
1681 xheads++;
1682
1683 for (i = 1; i < xheads; i++) {
1684 crc = crc32c(crc, &xhdr[i].hic_xheader,
1685 sizeof(struct xlog_rec_ext_header));
1686 }
1687 }
1688
1689 /* ... and finally for the payload */
1690 crc = crc32c(crc, dp, size);
1691
1692 return xfs_end_cksum(crc);
1693 }
1694
1695 /*
1696 * The bdstrat callback function for log bufs. This gives us a central
1697 * place to trap bufs in case we get hit by a log I/O error and need to
1698 * shutdown. Actually, in practice, even when we didn't get a log error,
1699 * we transition the iclogs to IOERROR state *after* flushing all existing
1700 * iclogs to disk. This is because we don't want anymore new transactions to be
1701 * started or completed afterwards.
1702 *
1703 * We lock the iclogbufs here so that we can serialise against IO completion
1704 * during unmount. We might be processing a shutdown triggered during unmount,
1705 * and that can occur asynchronously to the unmount thread, and hence we need to
1706 * ensure that completes before tearing down the iclogbufs. Hence we need to
1707 * hold the buffer lock across the log IO to acheive that.
1708 */
1709 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1710 xlog_bdstrat(
1711 struct xfs_buf *bp)
1712 {
1713 struct xlog_in_core *iclog = bp->b_fspriv;
1714
1715 xfs_buf_lock(bp);
1716 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1717 xfs_buf_ioerror(bp, -EIO);
1718 xfs_buf_stale(bp);
1719 xfs_buf_ioend(bp);
1720 /*
1721 * It would seem logical to return EIO here, but we rely on
1722 * the log state machine to propagate I/O errors instead of
1723 * doing it here. Similarly, IO completion will unlock the
1724 * buffer, so we don't do it here.
1725 */
1726 return 0;
1727 }
1728
1729 xfs_buf_submit(bp);
1730 return 0;
1731 }
1732
1733 /*
1734 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1735 * fashion. Previously, we should have moved the current iclog
1736 * ptr in the log to point to the next available iclog. This allows further
1737 * write to continue while this code syncs out an iclog ready to go.
1738 * Before an in-core log can be written out, the data section must be scanned
1739 * to save away the 1st word of each BBSIZE block into the header. We replace
1740 * it with the current cycle count. Each BBSIZE block is tagged with the
1741 * cycle count because there in an implicit assumption that drives will
1742 * guarantee that entire 512 byte blocks get written at once. In other words,
1743 * we can't have part of a 512 byte block written and part not written. By
1744 * tagging each block, we will know which blocks are valid when recovering
1745 * after an unclean shutdown.
1746 *
1747 * This routine is single threaded on the iclog. No other thread can be in
1748 * this routine with the same iclog. Changing contents of iclog can there-
1749 * fore be done without grabbing the state machine lock. Updating the global
1750 * log will require grabbing the lock though.
1751 *
1752 * The entire log manager uses a logical block numbering scheme. Only
1753 * log_sync (and then only bwrite()) know about the fact that the log may
1754 * not start with block zero on a given device. The log block start offset
1755 * is added immediately before calling bwrite().
1756 */
1757
1758 STATIC int
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1759 xlog_sync(
1760 struct xlog *log,
1761 struct xlog_in_core *iclog)
1762 {
1763 xfs_buf_t *bp;
1764 int i;
1765 uint count; /* byte count of bwrite */
1766 uint count_init; /* initial count before roundup */
1767 int roundoff; /* roundoff to BB or stripe */
1768 int split = 0; /* split write into two regions */
1769 int error;
1770 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1771 int size;
1772
1773 XFS_STATS_INC(log->l_mp, xs_log_writes);
1774 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1775
1776 /* Add for LR header */
1777 count_init = log->l_iclog_hsize + iclog->ic_offset;
1778
1779 /* Round out the log write size */
1780 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1781 /* we have a v2 stripe unit to use */
1782 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1783 } else {
1784 count = BBTOB(BTOBB(count_init));
1785 }
1786 roundoff = count - count_init;
1787 ASSERT(roundoff >= 0);
1788 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1789 roundoff < log->l_mp->m_sb.sb_logsunit)
1790 ||
1791 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1792 roundoff < BBTOB(1)));
1793
1794 /* move grant heads by roundoff in sync */
1795 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1796 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1797
1798 /* put cycle number in every block */
1799 xlog_pack_data(log, iclog, roundoff);
1800
1801 /* real byte length */
1802 size = iclog->ic_offset;
1803 if (v2)
1804 size += roundoff;
1805 iclog->ic_header.h_len = cpu_to_be32(size);
1806
1807 bp = iclog->ic_bp;
1808 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1809
1810 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1811
1812 /* Do we need to split this write into 2 parts? */
1813 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1814 char *dptr;
1815
1816 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1817 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1818 iclog->ic_bwritecnt = 2;
1819
1820 /*
1821 * Bump the cycle numbers at the start of each block in the
1822 * part of the iclog that ends up in the buffer that gets
1823 * written to the start of the log.
1824 *
1825 * Watch out for the header magic number case, though.
1826 */
1827 dptr = (char *)&iclog->ic_header + count;
1828 for (i = 0; i < split; i += BBSIZE) {
1829 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1830 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1831 cycle++;
1832 *(__be32 *)dptr = cpu_to_be32(cycle);
1833
1834 dptr += BBSIZE;
1835 }
1836 } else {
1837 iclog->ic_bwritecnt = 1;
1838 }
1839
1840 /* calculcate the checksum */
1841 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1842 iclog->ic_datap, size);
1843
1844 bp->b_io_length = BTOBB(count);
1845 bp->b_fspriv = iclog;
1846 XFS_BUF_ZEROFLAGS(bp);
1847 XFS_BUF_ASYNC(bp);
1848 bp->b_flags |= XBF_SYNCIO;
1849
1850 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1851 bp->b_flags |= XBF_FUA;
1852
1853 /*
1854 * Flush the data device before flushing the log to make
1855 * sure all meta data written back from the AIL actually made
1856 * it to disk before stamping the new log tail LSN into the
1857 * log buffer. For an external log we need to issue the
1858 * flush explicitly, and unfortunately synchronously here;
1859 * for an internal log we can simply use the block layer
1860 * state machine for preflushes.
1861 */
1862 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1863 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1864 else
1865 bp->b_flags |= XBF_FLUSH;
1866 }
1867
1868 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1869 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1870
1871 xlog_verify_iclog(log, iclog, count, true);
1872
1873 /* account for log which doesn't start at block #0 */
1874 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1875 /*
1876 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1877 * is shutting down.
1878 */
1879 XFS_BUF_WRITE(bp);
1880
1881 error = xlog_bdstrat(bp);
1882 if (error) {
1883 xfs_buf_ioerror_alert(bp, "xlog_sync");
1884 return error;
1885 }
1886 if (split) {
1887 bp = iclog->ic_log->l_xbuf;
1888 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1889 xfs_buf_associate_memory(bp,
1890 (char *)&iclog->ic_header + count, split);
1891 bp->b_fspriv = iclog;
1892 XFS_BUF_ZEROFLAGS(bp);
1893 XFS_BUF_ASYNC(bp);
1894 bp->b_flags |= XBF_SYNCIO;
1895 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1896 bp->b_flags |= XBF_FUA;
1897
1898 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1899 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1900
1901 /* account for internal log which doesn't start at block #0 */
1902 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1903 XFS_BUF_WRITE(bp);
1904 error = xlog_bdstrat(bp);
1905 if (error) {
1906 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1907 return error;
1908 }
1909 }
1910 return 0;
1911 } /* xlog_sync */
1912
1913 /*
1914 * Deallocate a log structure
1915 */
1916 STATIC void
xlog_dealloc_log(struct xlog * log)1917 xlog_dealloc_log(
1918 struct xlog *log)
1919 {
1920 xlog_in_core_t *iclog, *next_iclog;
1921 int i;
1922
1923 xlog_cil_destroy(log);
1924
1925 /*
1926 * Cycle all the iclogbuf locks to make sure all log IO completion
1927 * is done before we tear down these buffers.
1928 */
1929 iclog = log->l_iclog;
1930 for (i = 0; i < log->l_iclog_bufs; i++) {
1931 xfs_buf_lock(iclog->ic_bp);
1932 xfs_buf_unlock(iclog->ic_bp);
1933 iclog = iclog->ic_next;
1934 }
1935
1936 /*
1937 * Always need to ensure that the extra buffer does not point to memory
1938 * owned by another log buffer before we free it. Also, cycle the lock
1939 * first to ensure we've completed IO on it.
1940 */
1941 xfs_buf_lock(log->l_xbuf);
1942 xfs_buf_unlock(log->l_xbuf);
1943 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1944 xfs_buf_free(log->l_xbuf);
1945
1946 iclog = log->l_iclog;
1947 for (i = 0; i < log->l_iclog_bufs; i++) {
1948 xfs_buf_free(iclog->ic_bp);
1949 next_iclog = iclog->ic_next;
1950 kmem_free(iclog);
1951 iclog = next_iclog;
1952 }
1953 spinlock_destroy(&log->l_icloglock);
1954
1955 log->l_mp->m_log = NULL;
1956 kmem_free(log);
1957 } /* xlog_dealloc_log */
1958
1959 /*
1960 * Update counters atomically now that memcpy is done.
1961 */
1962 /* ARGSUSED */
1963 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1964 xlog_state_finish_copy(
1965 struct xlog *log,
1966 struct xlog_in_core *iclog,
1967 int record_cnt,
1968 int copy_bytes)
1969 {
1970 spin_lock(&log->l_icloglock);
1971
1972 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1973 iclog->ic_offset += copy_bytes;
1974
1975 spin_unlock(&log->l_icloglock);
1976 } /* xlog_state_finish_copy */
1977
1978
1979
1980
1981 /*
1982 * print out info relating to regions written which consume
1983 * the reservation
1984 */
1985 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1986 xlog_print_tic_res(
1987 struct xfs_mount *mp,
1988 struct xlog_ticket *ticket)
1989 {
1990 uint i;
1991 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1992
1993 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1994 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1995 "bformat",
1996 "bchunk",
1997 "efi_format",
1998 "efd_format",
1999 "iformat",
2000 "icore",
2001 "iext",
2002 "ibroot",
2003 "ilocal",
2004 "iattr_ext",
2005 "iattr_broot",
2006 "iattr_local",
2007 "qformat",
2008 "dquot",
2009 "quotaoff",
2010 "LR header",
2011 "unmount",
2012 "commit",
2013 "trans header"
2014 };
2015 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2016 "SETATTR_NOT_SIZE",
2017 "SETATTR_SIZE",
2018 "INACTIVE",
2019 "CREATE",
2020 "CREATE_TRUNC",
2021 "TRUNCATE_FILE",
2022 "REMOVE",
2023 "LINK",
2024 "RENAME",
2025 "MKDIR",
2026 "RMDIR",
2027 "SYMLINK",
2028 "SET_DMATTRS",
2029 "GROWFS",
2030 "STRAT_WRITE",
2031 "DIOSTRAT",
2032 "WRITE_SYNC",
2033 "WRITEID",
2034 "ADDAFORK",
2035 "ATTRINVAL",
2036 "ATRUNCATE",
2037 "ATTR_SET",
2038 "ATTR_RM",
2039 "ATTR_FLAG",
2040 "CLEAR_AGI_BUCKET",
2041 "QM_SBCHANGE",
2042 "DUMMY1",
2043 "DUMMY2",
2044 "QM_QUOTAOFF",
2045 "QM_DQALLOC",
2046 "QM_SETQLIM",
2047 "QM_DQCLUSTER",
2048 "QM_QINOCREATE",
2049 "QM_QUOTAOFF_END",
2050 "SB_UNIT",
2051 "FSYNC_TS",
2052 "GROWFSRT_ALLOC",
2053 "GROWFSRT_ZERO",
2054 "GROWFSRT_FREE",
2055 "SWAPEXT"
2056 };
2057
2058 xfs_warn(mp, "xlog_write: reservation summary:");
2059 xfs_warn(mp, " trans type = %s (%u)",
2060 ((ticket->t_trans_type <= 0 ||
2061 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2062 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2063 ticket->t_trans_type);
2064 xfs_warn(mp, " unit res = %d bytes",
2065 ticket->t_unit_res);
2066 xfs_warn(mp, " current res = %d bytes",
2067 ticket->t_curr_res);
2068 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2069 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2070 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2071 ticket->t_res_num_ophdrs, ophdr_spc);
2072 xfs_warn(mp, " ophdr + reg = %u bytes",
2073 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2074 xfs_warn(mp, " num regions = %u",
2075 ticket->t_res_num);
2076
2077 for (i = 0; i < ticket->t_res_num; i++) {
2078 uint r_type = ticket->t_res_arr[i].r_type;
2079 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2080 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2081 "bad-rtype" : res_type_str[r_type-1]),
2082 ticket->t_res_arr[i].r_len);
2083 }
2084
2085 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2086 "xlog_write: reservation ran out. Need to up reservation");
2087 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2088 }
2089
2090 /*
2091 * Calculate the potential space needed by the log vector. Each region gets
2092 * its own xlog_op_header_t and may need to be double word aligned.
2093 */
2094 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2095 xlog_write_calc_vec_length(
2096 struct xlog_ticket *ticket,
2097 struct xfs_log_vec *log_vector)
2098 {
2099 struct xfs_log_vec *lv;
2100 int headers = 0;
2101 int len = 0;
2102 int i;
2103
2104 /* acct for start rec of xact */
2105 if (ticket->t_flags & XLOG_TIC_INITED)
2106 headers++;
2107
2108 for (lv = log_vector; lv; lv = lv->lv_next) {
2109 /* we don't write ordered log vectors */
2110 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2111 continue;
2112
2113 headers += lv->lv_niovecs;
2114
2115 for (i = 0; i < lv->lv_niovecs; i++) {
2116 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2117
2118 len += vecp->i_len;
2119 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2120 }
2121 }
2122
2123 ticket->t_res_num_ophdrs += headers;
2124 len += headers * sizeof(struct xlog_op_header);
2125
2126 return len;
2127 }
2128
2129 /*
2130 * If first write for transaction, insert start record We can't be trying to
2131 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2132 */
2133 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2134 xlog_write_start_rec(
2135 struct xlog_op_header *ophdr,
2136 struct xlog_ticket *ticket)
2137 {
2138 if (!(ticket->t_flags & XLOG_TIC_INITED))
2139 return 0;
2140
2141 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2142 ophdr->oh_clientid = ticket->t_clientid;
2143 ophdr->oh_len = 0;
2144 ophdr->oh_flags = XLOG_START_TRANS;
2145 ophdr->oh_res2 = 0;
2146
2147 ticket->t_flags &= ~XLOG_TIC_INITED;
2148
2149 return sizeof(struct xlog_op_header);
2150 }
2151
2152 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2153 xlog_write_setup_ophdr(
2154 struct xlog *log,
2155 struct xlog_op_header *ophdr,
2156 struct xlog_ticket *ticket,
2157 uint flags)
2158 {
2159 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2160 ophdr->oh_clientid = ticket->t_clientid;
2161 ophdr->oh_res2 = 0;
2162
2163 /* are we copying a commit or unmount record? */
2164 ophdr->oh_flags = flags;
2165
2166 /*
2167 * We've seen logs corrupted with bad transaction client ids. This
2168 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2169 * and shut down the filesystem.
2170 */
2171 switch (ophdr->oh_clientid) {
2172 case XFS_TRANSACTION:
2173 case XFS_VOLUME:
2174 case XFS_LOG:
2175 break;
2176 default:
2177 xfs_warn(log->l_mp,
2178 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2179 ophdr->oh_clientid, ticket);
2180 return NULL;
2181 }
2182
2183 return ophdr;
2184 }
2185
2186 /*
2187 * Set up the parameters of the region copy into the log. This has
2188 * to handle region write split across multiple log buffers - this
2189 * state is kept external to this function so that this code can
2190 * be written in an obvious, self documenting manner.
2191 */
2192 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2193 xlog_write_setup_copy(
2194 struct xlog_ticket *ticket,
2195 struct xlog_op_header *ophdr,
2196 int space_available,
2197 int space_required,
2198 int *copy_off,
2199 int *copy_len,
2200 int *last_was_partial_copy,
2201 int *bytes_consumed)
2202 {
2203 int still_to_copy;
2204
2205 still_to_copy = space_required - *bytes_consumed;
2206 *copy_off = *bytes_consumed;
2207
2208 if (still_to_copy <= space_available) {
2209 /* write of region completes here */
2210 *copy_len = still_to_copy;
2211 ophdr->oh_len = cpu_to_be32(*copy_len);
2212 if (*last_was_partial_copy)
2213 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2214 *last_was_partial_copy = 0;
2215 *bytes_consumed = 0;
2216 return 0;
2217 }
2218
2219 /* partial write of region, needs extra log op header reservation */
2220 *copy_len = space_available;
2221 ophdr->oh_len = cpu_to_be32(*copy_len);
2222 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2223 if (*last_was_partial_copy)
2224 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2225 *bytes_consumed += *copy_len;
2226 (*last_was_partial_copy)++;
2227
2228 /* account for new log op header */
2229 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2230 ticket->t_res_num_ophdrs++;
2231
2232 return sizeof(struct xlog_op_header);
2233 }
2234
2235 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2236 xlog_write_copy_finish(
2237 struct xlog *log,
2238 struct xlog_in_core *iclog,
2239 uint flags,
2240 int *record_cnt,
2241 int *data_cnt,
2242 int *partial_copy,
2243 int *partial_copy_len,
2244 int log_offset,
2245 struct xlog_in_core **commit_iclog)
2246 {
2247 if (*partial_copy) {
2248 /*
2249 * This iclog has already been marked WANT_SYNC by
2250 * xlog_state_get_iclog_space.
2251 */
2252 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2253 *record_cnt = 0;
2254 *data_cnt = 0;
2255 return xlog_state_release_iclog(log, iclog);
2256 }
2257
2258 *partial_copy = 0;
2259 *partial_copy_len = 0;
2260
2261 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2262 /* no more space in this iclog - push it. */
2263 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2264 *record_cnt = 0;
2265 *data_cnt = 0;
2266
2267 spin_lock(&log->l_icloglock);
2268 xlog_state_want_sync(log, iclog);
2269 spin_unlock(&log->l_icloglock);
2270
2271 if (!commit_iclog)
2272 return xlog_state_release_iclog(log, iclog);
2273 ASSERT(flags & XLOG_COMMIT_TRANS);
2274 *commit_iclog = iclog;
2275 }
2276
2277 return 0;
2278 }
2279
2280 /*
2281 * Write some region out to in-core log
2282 *
2283 * This will be called when writing externally provided regions or when
2284 * writing out a commit record for a given transaction.
2285 *
2286 * General algorithm:
2287 * 1. Find total length of this write. This may include adding to the
2288 * lengths passed in.
2289 * 2. Check whether we violate the tickets reservation.
2290 * 3. While writing to this iclog
2291 * A. Reserve as much space in this iclog as can get
2292 * B. If this is first write, save away start lsn
2293 * C. While writing this region:
2294 * 1. If first write of transaction, write start record
2295 * 2. Write log operation header (header per region)
2296 * 3. Find out if we can fit entire region into this iclog
2297 * 4. Potentially, verify destination memcpy ptr
2298 * 5. Memcpy (partial) region
2299 * 6. If partial copy, release iclog; otherwise, continue
2300 * copying more regions into current iclog
2301 * 4. Mark want sync bit (in simulation mode)
2302 * 5. Release iclog for potential flush to on-disk log.
2303 *
2304 * ERRORS:
2305 * 1. Panic if reservation is overrun. This should never happen since
2306 * reservation amounts are generated internal to the filesystem.
2307 * NOTES:
2308 * 1. Tickets are single threaded data structures.
2309 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2310 * syncing routine. When a single log_write region needs to span
2311 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2312 * on all log operation writes which don't contain the end of the
2313 * region. The XLOG_END_TRANS bit is used for the in-core log
2314 * operation which contains the end of the continued log_write region.
2315 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2316 * we don't really know exactly how much space will be used. As a result,
2317 * we don't update ic_offset until the end when we know exactly how many
2318 * bytes have been written out.
2319 */
2320 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2321 xlog_write(
2322 struct xlog *log,
2323 struct xfs_log_vec *log_vector,
2324 struct xlog_ticket *ticket,
2325 xfs_lsn_t *start_lsn,
2326 struct xlog_in_core **commit_iclog,
2327 uint flags)
2328 {
2329 struct xlog_in_core *iclog = NULL;
2330 struct xfs_log_iovec *vecp;
2331 struct xfs_log_vec *lv;
2332 int len;
2333 int index;
2334 int partial_copy = 0;
2335 int partial_copy_len = 0;
2336 int contwr = 0;
2337 int record_cnt = 0;
2338 int data_cnt = 0;
2339 int error;
2340
2341 *start_lsn = 0;
2342
2343 len = xlog_write_calc_vec_length(ticket, log_vector);
2344
2345 /*
2346 * Region headers and bytes are already accounted for.
2347 * We only need to take into account start records and
2348 * split regions in this function.
2349 */
2350 if (ticket->t_flags & XLOG_TIC_INITED)
2351 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2352
2353 /*
2354 * Commit record headers need to be accounted for. These
2355 * come in as separate writes so are easy to detect.
2356 */
2357 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2358 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2359
2360 if (ticket->t_curr_res < 0)
2361 xlog_print_tic_res(log->l_mp, ticket);
2362
2363 index = 0;
2364 lv = log_vector;
2365 vecp = lv->lv_iovecp;
2366 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2367 void *ptr;
2368 int log_offset;
2369
2370 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2371 &contwr, &log_offset);
2372 if (error)
2373 return error;
2374
2375 ASSERT(log_offset <= iclog->ic_size - 1);
2376 ptr = iclog->ic_datap + log_offset;
2377
2378 /* start_lsn is the first lsn written to. That's all we need. */
2379 if (!*start_lsn)
2380 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2381
2382 /*
2383 * This loop writes out as many regions as can fit in the amount
2384 * of space which was allocated by xlog_state_get_iclog_space().
2385 */
2386 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2387 struct xfs_log_iovec *reg;
2388 struct xlog_op_header *ophdr;
2389 int start_rec_copy;
2390 int copy_len;
2391 int copy_off;
2392 bool ordered = false;
2393
2394 /* ordered log vectors have no regions to write */
2395 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2396 ASSERT(lv->lv_niovecs == 0);
2397 ordered = true;
2398 goto next_lv;
2399 }
2400
2401 reg = &vecp[index];
2402 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2403 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2404
2405 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2406 if (start_rec_copy) {
2407 record_cnt++;
2408 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2409 start_rec_copy);
2410 }
2411
2412 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2413 if (!ophdr)
2414 return -EIO;
2415
2416 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2417 sizeof(struct xlog_op_header));
2418
2419 len += xlog_write_setup_copy(ticket, ophdr,
2420 iclog->ic_size-log_offset,
2421 reg->i_len,
2422 ©_off, ©_len,
2423 &partial_copy,
2424 &partial_copy_len);
2425 xlog_verify_dest_ptr(log, ptr);
2426
2427 /*
2428 * Copy region.
2429 *
2430 * Unmount records just log an opheader, so can have
2431 * empty payloads with no data region to copy. Hence we
2432 * only copy the payload if the vector says it has data
2433 * to copy.
2434 */
2435 ASSERT(copy_len >= 0);
2436 if (copy_len > 0) {
2437 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2438 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2439 copy_len);
2440 }
2441 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2442 record_cnt++;
2443 data_cnt += contwr ? copy_len : 0;
2444
2445 error = xlog_write_copy_finish(log, iclog, flags,
2446 &record_cnt, &data_cnt,
2447 &partial_copy,
2448 &partial_copy_len,
2449 log_offset,
2450 commit_iclog);
2451 if (error)
2452 return error;
2453
2454 /*
2455 * if we had a partial copy, we need to get more iclog
2456 * space but we don't want to increment the region
2457 * index because there is still more is this region to
2458 * write.
2459 *
2460 * If we completed writing this region, and we flushed
2461 * the iclog (indicated by resetting of the record
2462 * count), then we also need to get more log space. If
2463 * this was the last record, though, we are done and
2464 * can just return.
2465 */
2466 if (partial_copy)
2467 break;
2468
2469 if (++index == lv->lv_niovecs) {
2470 next_lv:
2471 lv = lv->lv_next;
2472 index = 0;
2473 if (lv)
2474 vecp = lv->lv_iovecp;
2475 }
2476 if (record_cnt == 0 && ordered == false) {
2477 if (!lv)
2478 return 0;
2479 break;
2480 }
2481 }
2482 }
2483
2484 ASSERT(len == 0);
2485
2486 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2487 if (!commit_iclog)
2488 return xlog_state_release_iclog(log, iclog);
2489
2490 ASSERT(flags & XLOG_COMMIT_TRANS);
2491 *commit_iclog = iclog;
2492 return 0;
2493 }
2494
2495
2496 /*****************************************************************************
2497 *
2498 * State Machine functions
2499 *
2500 *****************************************************************************
2501 */
2502
2503 /* Clean iclogs starting from the head. This ordering must be
2504 * maintained, so an iclog doesn't become ACTIVE beyond one that
2505 * is SYNCING. This is also required to maintain the notion that we use
2506 * a ordered wait queue to hold off would be writers to the log when every
2507 * iclog is trying to sync to disk.
2508 *
2509 * State Change: DIRTY -> ACTIVE
2510 */
2511 STATIC void
xlog_state_clean_log(struct xlog * log)2512 xlog_state_clean_log(
2513 struct xlog *log)
2514 {
2515 xlog_in_core_t *iclog;
2516 int changed = 0;
2517
2518 iclog = log->l_iclog;
2519 do {
2520 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2521 iclog->ic_state = XLOG_STATE_ACTIVE;
2522 iclog->ic_offset = 0;
2523 ASSERT(iclog->ic_callback == NULL);
2524 /*
2525 * If the number of ops in this iclog indicate it just
2526 * contains the dummy transaction, we can
2527 * change state into IDLE (the second time around).
2528 * Otherwise we should change the state into
2529 * NEED a dummy.
2530 * We don't need to cover the dummy.
2531 */
2532 if (!changed &&
2533 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2534 XLOG_COVER_OPS)) {
2535 changed = 1;
2536 } else {
2537 /*
2538 * We have two dirty iclogs so start over
2539 * This could also be num of ops indicates
2540 * this is not the dummy going out.
2541 */
2542 changed = 2;
2543 }
2544 iclog->ic_header.h_num_logops = 0;
2545 memset(iclog->ic_header.h_cycle_data, 0,
2546 sizeof(iclog->ic_header.h_cycle_data));
2547 iclog->ic_header.h_lsn = 0;
2548 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2549 /* do nothing */;
2550 else
2551 break; /* stop cleaning */
2552 iclog = iclog->ic_next;
2553 } while (iclog != log->l_iclog);
2554
2555 /* log is locked when we are called */
2556 /*
2557 * Change state for the dummy log recording.
2558 * We usually go to NEED. But we go to NEED2 if the changed indicates
2559 * we are done writing the dummy record.
2560 * If we are done with the second dummy recored (DONE2), then
2561 * we go to IDLE.
2562 */
2563 if (changed) {
2564 switch (log->l_covered_state) {
2565 case XLOG_STATE_COVER_IDLE:
2566 case XLOG_STATE_COVER_NEED:
2567 case XLOG_STATE_COVER_NEED2:
2568 log->l_covered_state = XLOG_STATE_COVER_NEED;
2569 break;
2570
2571 case XLOG_STATE_COVER_DONE:
2572 if (changed == 1)
2573 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2574 else
2575 log->l_covered_state = XLOG_STATE_COVER_NEED;
2576 break;
2577
2578 case XLOG_STATE_COVER_DONE2:
2579 if (changed == 1)
2580 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2581 else
2582 log->l_covered_state = XLOG_STATE_COVER_NEED;
2583 break;
2584
2585 default:
2586 ASSERT(0);
2587 }
2588 }
2589 } /* xlog_state_clean_log */
2590
2591 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2592 xlog_get_lowest_lsn(
2593 struct xlog *log)
2594 {
2595 xlog_in_core_t *lsn_log;
2596 xfs_lsn_t lowest_lsn, lsn;
2597
2598 lsn_log = log->l_iclog;
2599 lowest_lsn = 0;
2600 do {
2601 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2602 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2603 if ((lsn && !lowest_lsn) ||
2604 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2605 lowest_lsn = lsn;
2606 }
2607 }
2608 lsn_log = lsn_log->ic_next;
2609 } while (lsn_log != log->l_iclog);
2610 return lowest_lsn;
2611 }
2612
2613
2614 STATIC void
xlog_state_do_callback(struct xlog * log,int aborted,struct xlog_in_core * ciclog)2615 xlog_state_do_callback(
2616 struct xlog *log,
2617 int aborted,
2618 struct xlog_in_core *ciclog)
2619 {
2620 xlog_in_core_t *iclog;
2621 xlog_in_core_t *first_iclog; /* used to know when we've
2622 * processed all iclogs once */
2623 xfs_log_callback_t *cb, *cb_next;
2624 int flushcnt = 0;
2625 xfs_lsn_t lowest_lsn;
2626 int ioerrors; /* counter: iclogs with errors */
2627 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2628 int funcdidcallbacks; /* flag: function did callbacks */
2629 int repeats; /* for issuing console warnings if
2630 * looping too many times */
2631 int wake = 0;
2632
2633 spin_lock(&log->l_icloglock);
2634 first_iclog = iclog = log->l_iclog;
2635 ioerrors = 0;
2636 funcdidcallbacks = 0;
2637 repeats = 0;
2638
2639 do {
2640 /*
2641 * Scan all iclogs starting with the one pointed to by the
2642 * log. Reset this starting point each time the log is
2643 * unlocked (during callbacks).
2644 *
2645 * Keep looping through iclogs until one full pass is made
2646 * without running any callbacks.
2647 */
2648 first_iclog = log->l_iclog;
2649 iclog = log->l_iclog;
2650 loopdidcallbacks = 0;
2651 repeats++;
2652
2653 do {
2654
2655 /* skip all iclogs in the ACTIVE & DIRTY states */
2656 if (iclog->ic_state &
2657 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2658 iclog = iclog->ic_next;
2659 continue;
2660 }
2661
2662 /*
2663 * Between marking a filesystem SHUTDOWN and stopping
2664 * the log, we do flush all iclogs to disk (if there
2665 * wasn't a log I/O error). So, we do want things to
2666 * go smoothly in case of just a SHUTDOWN w/o a
2667 * LOG_IO_ERROR.
2668 */
2669 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2670 /*
2671 * Can only perform callbacks in order. Since
2672 * this iclog is not in the DONE_SYNC/
2673 * DO_CALLBACK state, we skip the rest and
2674 * just try to clean up. If we set our iclog
2675 * to DO_CALLBACK, we will not process it when
2676 * we retry since a previous iclog is in the
2677 * CALLBACK and the state cannot change since
2678 * we are holding the l_icloglock.
2679 */
2680 if (!(iclog->ic_state &
2681 (XLOG_STATE_DONE_SYNC |
2682 XLOG_STATE_DO_CALLBACK))) {
2683 if (ciclog && (ciclog->ic_state ==
2684 XLOG_STATE_DONE_SYNC)) {
2685 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2686 }
2687 break;
2688 }
2689 /*
2690 * We now have an iclog that is in either the
2691 * DO_CALLBACK or DONE_SYNC states. The other
2692 * states (WANT_SYNC, SYNCING, or CALLBACK were
2693 * caught by the above if and are going to
2694 * clean (i.e. we aren't doing their callbacks)
2695 * see the above if.
2696 */
2697
2698 /*
2699 * We will do one more check here to see if we
2700 * have chased our tail around.
2701 */
2702
2703 lowest_lsn = xlog_get_lowest_lsn(log);
2704 if (lowest_lsn &&
2705 XFS_LSN_CMP(lowest_lsn,
2706 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2707 iclog = iclog->ic_next;
2708 continue; /* Leave this iclog for
2709 * another thread */
2710 }
2711
2712 iclog->ic_state = XLOG_STATE_CALLBACK;
2713
2714
2715 /*
2716 * Completion of a iclog IO does not imply that
2717 * a transaction has completed, as transactions
2718 * can be large enough to span many iclogs. We
2719 * cannot change the tail of the log half way
2720 * through a transaction as this may be the only
2721 * transaction in the log and moving th etail to
2722 * point to the middle of it will prevent
2723 * recovery from finding the start of the
2724 * transaction. Hence we should only update the
2725 * last_sync_lsn if this iclog contains
2726 * transaction completion callbacks on it.
2727 *
2728 * We have to do this before we drop the
2729 * icloglock to ensure we are the only one that
2730 * can update it.
2731 */
2732 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2733 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2734 if (iclog->ic_callback)
2735 atomic64_set(&log->l_last_sync_lsn,
2736 be64_to_cpu(iclog->ic_header.h_lsn));
2737
2738 } else
2739 ioerrors++;
2740
2741 spin_unlock(&log->l_icloglock);
2742
2743 /*
2744 * Keep processing entries in the callback list until
2745 * we come around and it is empty. We need to
2746 * atomically see that the list is empty and change the
2747 * state to DIRTY so that we don't miss any more
2748 * callbacks being added.
2749 */
2750 spin_lock(&iclog->ic_callback_lock);
2751 cb = iclog->ic_callback;
2752 while (cb) {
2753 iclog->ic_callback_tail = &(iclog->ic_callback);
2754 iclog->ic_callback = NULL;
2755 spin_unlock(&iclog->ic_callback_lock);
2756
2757 /* perform callbacks in the order given */
2758 for (; cb; cb = cb_next) {
2759 cb_next = cb->cb_next;
2760 cb->cb_func(cb->cb_arg, aborted);
2761 }
2762 spin_lock(&iclog->ic_callback_lock);
2763 cb = iclog->ic_callback;
2764 }
2765
2766 loopdidcallbacks++;
2767 funcdidcallbacks++;
2768
2769 spin_lock(&log->l_icloglock);
2770 ASSERT(iclog->ic_callback == NULL);
2771 spin_unlock(&iclog->ic_callback_lock);
2772 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2773 iclog->ic_state = XLOG_STATE_DIRTY;
2774
2775 /*
2776 * Transition from DIRTY to ACTIVE if applicable.
2777 * NOP if STATE_IOERROR.
2778 */
2779 xlog_state_clean_log(log);
2780
2781 /* wake up threads waiting in xfs_log_force() */
2782 wake_up_all(&iclog->ic_force_wait);
2783
2784 iclog = iclog->ic_next;
2785 } while (first_iclog != iclog);
2786
2787 if (repeats > 5000) {
2788 flushcnt += repeats;
2789 repeats = 0;
2790 xfs_warn(log->l_mp,
2791 "%s: possible infinite loop (%d iterations)",
2792 __func__, flushcnt);
2793 }
2794 } while (!ioerrors && loopdidcallbacks);
2795
2796 /*
2797 * make one last gasp attempt to see if iclogs are being left in
2798 * limbo..
2799 */
2800 #ifdef DEBUG
2801 if (funcdidcallbacks) {
2802 first_iclog = iclog = log->l_iclog;
2803 do {
2804 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2805 /*
2806 * Terminate the loop if iclogs are found in states
2807 * which will cause other threads to clean up iclogs.
2808 *
2809 * SYNCING - i/o completion will go through logs
2810 * DONE_SYNC - interrupt thread should be waiting for
2811 * l_icloglock
2812 * IOERROR - give up hope all ye who enter here
2813 */
2814 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2815 iclog->ic_state == XLOG_STATE_SYNCING ||
2816 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2817 iclog->ic_state == XLOG_STATE_IOERROR )
2818 break;
2819 iclog = iclog->ic_next;
2820 } while (first_iclog != iclog);
2821 }
2822 #endif
2823
2824 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2825 wake = 1;
2826 spin_unlock(&log->l_icloglock);
2827
2828 if (wake)
2829 wake_up_all(&log->l_flush_wait);
2830 }
2831
2832
2833 /*
2834 * Finish transitioning this iclog to the dirty state.
2835 *
2836 * Make sure that we completely execute this routine only when this is
2837 * the last call to the iclog. There is a good chance that iclog flushes,
2838 * when we reach the end of the physical log, get turned into 2 separate
2839 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2840 * routine. By using the reference count bwritecnt, we guarantee that only
2841 * the second completion goes through.
2842 *
2843 * Callbacks could take time, so they are done outside the scope of the
2844 * global state machine log lock.
2845 */
2846 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2847 xlog_state_done_syncing(
2848 xlog_in_core_t *iclog,
2849 int aborted)
2850 {
2851 struct xlog *log = iclog->ic_log;
2852
2853 spin_lock(&log->l_icloglock);
2854
2855 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2856 iclog->ic_state == XLOG_STATE_IOERROR);
2857 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2858 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2859
2860
2861 /*
2862 * If we got an error, either on the first buffer, or in the case of
2863 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2864 * and none should ever be attempted to be written to disk
2865 * again.
2866 */
2867 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2868 if (--iclog->ic_bwritecnt == 1) {
2869 spin_unlock(&log->l_icloglock);
2870 return;
2871 }
2872 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2873 }
2874
2875 /*
2876 * Someone could be sleeping prior to writing out the next
2877 * iclog buffer, we wake them all, one will get to do the
2878 * I/O, the others get to wait for the result.
2879 */
2880 wake_up_all(&iclog->ic_write_wait);
2881 spin_unlock(&log->l_icloglock);
2882 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2883 } /* xlog_state_done_syncing */
2884
2885
2886 /*
2887 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2888 * sleep. We wait on the flush queue on the head iclog as that should be
2889 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2890 * we will wait here and all new writes will sleep until a sync completes.
2891 *
2892 * The in-core logs are used in a circular fashion. They are not used
2893 * out-of-order even when an iclog past the head is free.
2894 *
2895 * return:
2896 * * log_offset where xlog_write() can start writing into the in-core
2897 * log's data space.
2898 * * in-core log pointer to which xlog_write() should write.
2899 * * boolean indicating this is a continued write to an in-core log.
2900 * If this is the last write, then the in-core log's offset field
2901 * needs to be incremented, depending on the amount of data which
2902 * is copied.
2903 */
2904 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2905 xlog_state_get_iclog_space(
2906 struct xlog *log,
2907 int len,
2908 struct xlog_in_core **iclogp,
2909 struct xlog_ticket *ticket,
2910 int *continued_write,
2911 int *logoffsetp)
2912 {
2913 int log_offset;
2914 xlog_rec_header_t *head;
2915 xlog_in_core_t *iclog;
2916 int error;
2917
2918 restart:
2919 spin_lock(&log->l_icloglock);
2920 if (XLOG_FORCED_SHUTDOWN(log)) {
2921 spin_unlock(&log->l_icloglock);
2922 return -EIO;
2923 }
2924
2925 iclog = log->l_iclog;
2926 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2927 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2928
2929 /* Wait for log writes to have flushed */
2930 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2931 goto restart;
2932 }
2933
2934 head = &iclog->ic_header;
2935
2936 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2937 log_offset = iclog->ic_offset;
2938
2939 /* On the 1st write to an iclog, figure out lsn. This works
2940 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2941 * committing to. If the offset is set, that's how many blocks
2942 * must be written.
2943 */
2944 if (log_offset == 0) {
2945 ticket->t_curr_res -= log->l_iclog_hsize;
2946 xlog_tic_add_region(ticket,
2947 log->l_iclog_hsize,
2948 XLOG_REG_TYPE_LRHEADER);
2949 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2950 head->h_lsn = cpu_to_be64(
2951 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2952 ASSERT(log->l_curr_block >= 0);
2953 }
2954
2955 /* If there is enough room to write everything, then do it. Otherwise,
2956 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2957 * bit is on, so this will get flushed out. Don't update ic_offset
2958 * until you know exactly how many bytes get copied. Therefore, wait
2959 * until later to update ic_offset.
2960 *
2961 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2962 * can fit into remaining data section.
2963 */
2964 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2965 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2966
2967 /*
2968 * If I'm the only one writing to this iclog, sync it to disk.
2969 * We need to do an atomic compare and decrement here to avoid
2970 * racing with concurrent atomic_dec_and_lock() calls in
2971 * xlog_state_release_iclog() when there is more than one
2972 * reference to the iclog.
2973 */
2974 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2975 /* we are the only one */
2976 spin_unlock(&log->l_icloglock);
2977 error = xlog_state_release_iclog(log, iclog);
2978 if (error)
2979 return error;
2980 } else {
2981 spin_unlock(&log->l_icloglock);
2982 }
2983 goto restart;
2984 }
2985
2986 /* Do we have enough room to write the full amount in the remainder
2987 * of this iclog? Or must we continue a write on the next iclog and
2988 * mark this iclog as completely taken? In the case where we switch
2989 * iclogs (to mark it taken), this particular iclog will release/sync
2990 * to disk in xlog_write().
2991 */
2992 if (len <= iclog->ic_size - iclog->ic_offset) {
2993 *continued_write = 0;
2994 iclog->ic_offset += len;
2995 } else {
2996 *continued_write = 1;
2997 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2998 }
2999 *iclogp = iclog;
3000
3001 ASSERT(iclog->ic_offset <= iclog->ic_size);
3002 spin_unlock(&log->l_icloglock);
3003
3004 *logoffsetp = log_offset;
3005 return 0;
3006 } /* xlog_state_get_iclog_space */
3007
3008 /* The first cnt-1 times through here we don't need to
3009 * move the grant write head because the permanent
3010 * reservation has reserved cnt times the unit amount.
3011 * Release part of current permanent unit reservation and
3012 * reset current reservation to be one units worth. Also
3013 * move grant reservation head forward.
3014 */
3015 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3016 xlog_regrant_reserve_log_space(
3017 struct xlog *log,
3018 struct xlog_ticket *ticket)
3019 {
3020 trace_xfs_log_regrant_reserve_enter(log, ticket);
3021
3022 if (ticket->t_cnt > 0)
3023 ticket->t_cnt--;
3024
3025 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3026 ticket->t_curr_res);
3027 xlog_grant_sub_space(log, &log->l_write_head.grant,
3028 ticket->t_curr_res);
3029 ticket->t_curr_res = ticket->t_unit_res;
3030 xlog_tic_reset_res(ticket);
3031
3032 trace_xfs_log_regrant_reserve_sub(log, ticket);
3033
3034 /* just return if we still have some of the pre-reserved space */
3035 if (ticket->t_cnt > 0)
3036 return;
3037
3038 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3039 ticket->t_unit_res);
3040
3041 trace_xfs_log_regrant_reserve_exit(log, ticket);
3042
3043 ticket->t_curr_res = ticket->t_unit_res;
3044 xlog_tic_reset_res(ticket);
3045 } /* xlog_regrant_reserve_log_space */
3046
3047
3048 /*
3049 * Give back the space left from a reservation.
3050 *
3051 * All the information we need to make a correct determination of space left
3052 * is present. For non-permanent reservations, things are quite easy. The
3053 * count should have been decremented to zero. We only need to deal with the
3054 * space remaining in the current reservation part of the ticket. If the
3055 * ticket contains a permanent reservation, there may be left over space which
3056 * needs to be released. A count of N means that N-1 refills of the current
3057 * reservation can be done before we need to ask for more space. The first
3058 * one goes to fill up the first current reservation. Once we run out of
3059 * space, the count will stay at zero and the only space remaining will be
3060 * in the current reservation field.
3061 */
3062 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3063 xlog_ungrant_log_space(
3064 struct xlog *log,
3065 struct xlog_ticket *ticket)
3066 {
3067 int bytes;
3068
3069 if (ticket->t_cnt > 0)
3070 ticket->t_cnt--;
3071
3072 trace_xfs_log_ungrant_enter(log, ticket);
3073 trace_xfs_log_ungrant_sub(log, ticket);
3074
3075 /*
3076 * If this is a permanent reservation ticket, we may be able to free
3077 * up more space based on the remaining count.
3078 */
3079 bytes = ticket->t_curr_res;
3080 if (ticket->t_cnt > 0) {
3081 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3082 bytes += ticket->t_unit_res*ticket->t_cnt;
3083 }
3084
3085 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3086 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3087
3088 trace_xfs_log_ungrant_exit(log, ticket);
3089
3090 xfs_log_space_wake(log->l_mp);
3091 }
3092
3093 /*
3094 * Flush iclog to disk if this is the last reference to the given iclog and
3095 * the WANT_SYNC bit is set.
3096 *
3097 * When this function is entered, the iclog is not necessarily in the
3098 * WANT_SYNC state. It may be sitting around waiting to get filled.
3099 *
3100 *
3101 */
3102 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3103 xlog_state_release_iclog(
3104 struct xlog *log,
3105 struct xlog_in_core *iclog)
3106 {
3107 int sync = 0; /* do we sync? */
3108
3109 if (iclog->ic_state & XLOG_STATE_IOERROR)
3110 return -EIO;
3111
3112 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3113 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3114 return 0;
3115
3116 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3117 spin_unlock(&log->l_icloglock);
3118 return -EIO;
3119 }
3120 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3121 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3122
3123 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3124 /* update tail before writing to iclog */
3125 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3126 sync++;
3127 iclog->ic_state = XLOG_STATE_SYNCING;
3128 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3129 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3130 /* cycle incremented when incrementing curr_block */
3131 }
3132 spin_unlock(&log->l_icloglock);
3133
3134 /*
3135 * We let the log lock go, so it's possible that we hit a log I/O
3136 * error or some other SHUTDOWN condition that marks the iclog
3137 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3138 * this iclog has consistent data, so we ignore IOERROR
3139 * flags after this point.
3140 */
3141 if (sync)
3142 return xlog_sync(log, iclog);
3143 return 0;
3144 } /* xlog_state_release_iclog */
3145
3146
3147 /*
3148 * This routine will mark the current iclog in the ring as WANT_SYNC
3149 * and move the current iclog pointer to the next iclog in the ring.
3150 * When this routine is called from xlog_state_get_iclog_space(), the
3151 * exact size of the iclog has not yet been determined. All we know is
3152 * that every data block. We have run out of space in this log record.
3153 */
3154 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3155 xlog_state_switch_iclogs(
3156 struct xlog *log,
3157 struct xlog_in_core *iclog,
3158 int eventual_size)
3159 {
3160 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3161 if (!eventual_size)
3162 eventual_size = iclog->ic_offset;
3163 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3164 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3165 log->l_prev_block = log->l_curr_block;
3166 log->l_prev_cycle = log->l_curr_cycle;
3167
3168 /* roll log?: ic_offset changed later */
3169 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3170
3171 /* Round up to next log-sunit */
3172 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3173 log->l_mp->m_sb.sb_logsunit > 1) {
3174 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3175 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3176 }
3177
3178 if (log->l_curr_block >= log->l_logBBsize) {
3179 /*
3180 * Rewind the current block before the cycle is bumped to make
3181 * sure that the combined LSN never transiently moves forward
3182 * when the log wraps to the next cycle. This is to support the
3183 * unlocked sample of these fields from xlog_valid_lsn(). Most
3184 * other cases should acquire l_icloglock.
3185 */
3186 log->l_curr_block -= log->l_logBBsize;
3187 ASSERT(log->l_curr_block >= 0);
3188 smp_wmb();
3189 log->l_curr_cycle++;
3190 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3191 log->l_curr_cycle++;
3192 }
3193 ASSERT(iclog == log->l_iclog);
3194 log->l_iclog = iclog->ic_next;
3195 } /* xlog_state_switch_iclogs */
3196
3197 /*
3198 * Write out all data in the in-core log as of this exact moment in time.
3199 *
3200 * Data may be written to the in-core log during this call. However,
3201 * we don't guarantee this data will be written out. A change from past
3202 * implementation means this routine will *not* write out zero length LRs.
3203 *
3204 * Basically, we try and perform an intelligent scan of the in-core logs.
3205 * If we determine there is no flushable data, we just return. There is no
3206 * flushable data if:
3207 *
3208 * 1. the current iclog is active and has no data; the previous iclog
3209 * is in the active or dirty state.
3210 * 2. the current iclog is drity, and the previous iclog is in the
3211 * active or dirty state.
3212 *
3213 * We may sleep if:
3214 *
3215 * 1. the current iclog is not in the active nor dirty state.
3216 * 2. the current iclog dirty, and the previous iclog is not in the
3217 * active nor dirty state.
3218 * 3. the current iclog is active, and there is another thread writing
3219 * to this particular iclog.
3220 * 4. a) the current iclog is active and has no other writers
3221 * b) when we return from flushing out this iclog, it is still
3222 * not in the active nor dirty state.
3223 */
3224 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)3225 _xfs_log_force(
3226 struct xfs_mount *mp,
3227 uint flags,
3228 int *log_flushed)
3229 {
3230 struct xlog *log = mp->m_log;
3231 struct xlog_in_core *iclog;
3232 xfs_lsn_t lsn;
3233
3234 XFS_STATS_INC(mp, xs_log_force);
3235
3236 xlog_cil_force(log);
3237
3238 spin_lock(&log->l_icloglock);
3239
3240 iclog = log->l_iclog;
3241 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3242 spin_unlock(&log->l_icloglock);
3243 return -EIO;
3244 }
3245
3246 /* If the head iclog is not active nor dirty, we just attach
3247 * ourselves to the head and go to sleep.
3248 */
3249 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3250 iclog->ic_state == XLOG_STATE_DIRTY) {
3251 /*
3252 * If the head is dirty or (active and empty), then
3253 * we need to look at the previous iclog. If the previous
3254 * iclog is active or dirty we are done. There is nothing
3255 * to sync out. Otherwise, we attach ourselves to the
3256 * previous iclog and go to sleep.
3257 */
3258 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3259 (atomic_read(&iclog->ic_refcnt) == 0
3260 && iclog->ic_offset == 0)) {
3261 iclog = iclog->ic_prev;
3262 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3263 iclog->ic_state == XLOG_STATE_DIRTY)
3264 goto no_sleep;
3265 else
3266 goto maybe_sleep;
3267 } else {
3268 if (atomic_read(&iclog->ic_refcnt) == 0) {
3269 /* We are the only one with access to this
3270 * iclog. Flush it out now. There should
3271 * be a roundoff of zero to show that someone
3272 * has already taken care of the roundoff from
3273 * the previous sync.
3274 */
3275 atomic_inc(&iclog->ic_refcnt);
3276 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3277 xlog_state_switch_iclogs(log, iclog, 0);
3278 spin_unlock(&log->l_icloglock);
3279
3280 if (xlog_state_release_iclog(log, iclog))
3281 return -EIO;
3282
3283 if (log_flushed)
3284 *log_flushed = 1;
3285 spin_lock(&log->l_icloglock);
3286 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3287 iclog->ic_state != XLOG_STATE_DIRTY)
3288 goto maybe_sleep;
3289 else
3290 goto no_sleep;
3291 } else {
3292 /* Someone else is writing to this iclog.
3293 * Use its call to flush out the data. However,
3294 * the other thread may not force out this LR,
3295 * so we mark it WANT_SYNC.
3296 */
3297 xlog_state_switch_iclogs(log, iclog, 0);
3298 goto maybe_sleep;
3299 }
3300 }
3301 }
3302
3303 /* By the time we come around again, the iclog could've been filled
3304 * which would give it another lsn. If we have a new lsn, just
3305 * return because the relevant data has been flushed.
3306 */
3307 maybe_sleep:
3308 if (flags & XFS_LOG_SYNC) {
3309 /*
3310 * We must check if we're shutting down here, before
3311 * we wait, while we're holding the l_icloglock.
3312 * Then we check again after waking up, in case our
3313 * sleep was disturbed by a bad news.
3314 */
3315 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3316 spin_unlock(&log->l_icloglock);
3317 return -EIO;
3318 }
3319 XFS_STATS_INC(mp, xs_log_force_sleep);
3320 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3321 /*
3322 * No need to grab the log lock here since we're
3323 * only deciding whether or not to return EIO
3324 * and the memory read should be atomic.
3325 */
3326 if (iclog->ic_state & XLOG_STATE_IOERROR)
3327 return -EIO;
3328 } else {
3329
3330 no_sleep:
3331 spin_unlock(&log->l_icloglock);
3332 }
3333 return 0;
3334 }
3335
3336 /*
3337 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3338 * about errors or whether the log was flushed or not. This is the normal
3339 * interface to use when trying to unpin items or move the log forward.
3340 */
3341 void
xfs_log_force(xfs_mount_t * mp,uint flags)3342 xfs_log_force(
3343 xfs_mount_t *mp,
3344 uint flags)
3345 {
3346 int error;
3347
3348 trace_xfs_log_force(mp, 0);
3349 error = _xfs_log_force(mp, flags, NULL);
3350 if (error)
3351 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3352 }
3353
3354 /*
3355 * Force the in-core log to disk for a specific LSN.
3356 *
3357 * Find in-core log with lsn.
3358 * If it is in the DIRTY state, just return.
3359 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3360 * state and go to sleep or return.
3361 * If it is in any other state, go to sleep or return.
3362 *
3363 * Synchronous forces are implemented with a signal variable. All callers
3364 * to force a given lsn to disk will wait on a the sv attached to the
3365 * specific in-core log. When given in-core log finally completes its
3366 * write to disk, that thread will wake up all threads waiting on the
3367 * sv.
3368 */
3369 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3370 _xfs_log_force_lsn(
3371 struct xfs_mount *mp,
3372 xfs_lsn_t lsn,
3373 uint flags,
3374 int *log_flushed)
3375 {
3376 struct xlog *log = mp->m_log;
3377 struct xlog_in_core *iclog;
3378 int already_slept = 0;
3379
3380 ASSERT(lsn != 0);
3381
3382 XFS_STATS_INC(mp, xs_log_force);
3383
3384 lsn = xlog_cil_force_lsn(log, lsn);
3385 if (lsn == NULLCOMMITLSN)
3386 return 0;
3387
3388 try_again:
3389 spin_lock(&log->l_icloglock);
3390 iclog = log->l_iclog;
3391 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3392 spin_unlock(&log->l_icloglock);
3393 return -EIO;
3394 }
3395
3396 do {
3397 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3398 iclog = iclog->ic_next;
3399 continue;
3400 }
3401
3402 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3403 spin_unlock(&log->l_icloglock);
3404 return 0;
3405 }
3406
3407 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3408 /*
3409 * We sleep here if we haven't already slept (e.g.
3410 * this is the first time we've looked at the correct
3411 * iclog buf) and the buffer before us is going to
3412 * be sync'ed. The reason for this is that if we
3413 * are doing sync transactions here, by waiting for
3414 * the previous I/O to complete, we can allow a few
3415 * more transactions into this iclog before we close
3416 * it down.
3417 *
3418 * Otherwise, we mark the buffer WANT_SYNC, and bump
3419 * up the refcnt so we can release the log (which
3420 * drops the ref count). The state switch keeps new
3421 * transaction commits from using this buffer. When
3422 * the current commits finish writing into the buffer,
3423 * the refcount will drop to zero and the buffer will
3424 * go out then.
3425 */
3426 if (!already_slept &&
3427 (iclog->ic_prev->ic_state &
3428 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3429 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3430
3431 XFS_STATS_INC(mp, xs_log_force_sleep);
3432
3433 xlog_wait(&iclog->ic_prev->ic_write_wait,
3434 &log->l_icloglock);
3435 already_slept = 1;
3436 goto try_again;
3437 }
3438 atomic_inc(&iclog->ic_refcnt);
3439 xlog_state_switch_iclogs(log, iclog, 0);
3440 spin_unlock(&log->l_icloglock);
3441 if (xlog_state_release_iclog(log, iclog))
3442 return -EIO;
3443 if (log_flushed)
3444 *log_flushed = 1;
3445 spin_lock(&log->l_icloglock);
3446 }
3447
3448 if ((flags & XFS_LOG_SYNC) && /* sleep */
3449 !(iclog->ic_state &
3450 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3451 /*
3452 * Don't wait on completion if we know that we've
3453 * gotten a log write error.
3454 */
3455 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3456 spin_unlock(&log->l_icloglock);
3457 return -EIO;
3458 }
3459 XFS_STATS_INC(mp, xs_log_force_sleep);
3460 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3461 /*
3462 * No need to grab the log lock here since we're
3463 * only deciding whether or not to return EIO
3464 * and the memory read should be atomic.
3465 */
3466 if (iclog->ic_state & XLOG_STATE_IOERROR)
3467 return -EIO;
3468 } else { /* just return */
3469 spin_unlock(&log->l_icloglock);
3470 }
3471
3472 return 0;
3473 } while (iclog != log->l_iclog);
3474
3475 spin_unlock(&log->l_icloglock);
3476 return 0;
3477 }
3478
3479 /*
3480 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3481 * about errors or whether the log was flushed or not. This is the normal
3482 * interface to use when trying to unpin items or move the log forward.
3483 */
3484 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3485 xfs_log_force_lsn(
3486 xfs_mount_t *mp,
3487 xfs_lsn_t lsn,
3488 uint flags)
3489 {
3490 int error;
3491
3492 trace_xfs_log_force(mp, lsn);
3493 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3494 if (error)
3495 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3496 }
3497
3498 /*
3499 * Called when we want to mark the current iclog as being ready to sync to
3500 * disk.
3501 */
3502 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3503 xlog_state_want_sync(
3504 struct xlog *log,
3505 struct xlog_in_core *iclog)
3506 {
3507 assert_spin_locked(&log->l_icloglock);
3508
3509 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3510 xlog_state_switch_iclogs(log, iclog, 0);
3511 } else {
3512 ASSERT(iclog->ic_state &
3513 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3514 }
3515 }
3516
3517
3518 /*****************************************************************************
3519 *
3520 * TICKET functions
3521 *
3522 *****************************************************************************
3523 */
3524
3525 /*
3526 * Free a used ticket when its refcount falls to zero.
3527 */
3528 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3529 xfs_log_ticket_put(
3530 xlog_ticket_t *ticket)
3531 {
3532 ASSERT(atomic_read(&ticket->t_ref) > 0);
3533 if (atomic_dec_and_test(&ticket->t_ref))
3534 kmem_zone_free(xfs_log_ticket_zone, ticket);
3535 }
3536
3537 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3538 xfs_log_ticket_get(
3539 xlog_ticket_t *ticket)
3540 {
3541 ASSERT(atomic_read(&ticket->t_ref) > 0);
3542 atomic_inc(&ticket->t_ref);
3543 return ticket;
3544 }
3545
3546 /*
3547 * Figure out the total log space unit (in bytes) that would be
3548 * required for a log ticket.
3549 */
3550 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3551 xfs_log_calc_unit_res(
3552 struct xfs_mount *mp,
3553 int unit_bytes)
3554 {
3555 struct xlog *log = mp->m_log;
3556 int iclog_space;
3557 uint num_headers;
3558
3559 /*
3560 * Permanent reservations have up to 'cnt'-1 active log operations
3561 * in the log. A unit in this case is the amount of space for one
3562 * of these log operations. Normal reservations have a cnt of 1
3563 * and their unit amount is the total amount of space required.
3564 *
3565 * The following lines of code account for non-transaction data
3566 * which occupy space in the on-disk log.
3567 *
3568 * Normal form of a transaction is:
3569 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3570 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3571 *
3572 * We need to account for all the leadup data and trailer data
3573 * around the transaction data.
3574 * And then we need to account for the worst case in terms of using
3575 * more space.
3576 * The worst case will happen if:
3577 * - the placement of the transaction happens to be such that the
3578 * roundoff is at its maximum
3579 * - the transaction data is synced before the commit record is synced
3580 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3581 * Therefore the commit record is in its own Log Record.
3582 * This can happen as the commit record is called with its
3583 * own region to xlog_write().
3584 * This then means that in the worst case, roundoff can happen for
3585 * the commit-rec as well.
3586 * The commit-rec is smaller than padding in this scenario and so it is
3587 * not added separately.
3588 */
3589
3590 /* for trans header */
3591 unit_bytes += sizeof(xlog_op_header_t);
3592 unit_bytes += sizeof(xfs_trans_header_t);
3593
3594 /* for start-rec */
3595 unit_bytes += sizeof(xlog_op_header_t);
3596
3597 /*
3598 * for LR headers - the space for data in an iclog is the size minus
3599 * the space used for the headers. If we use the iclog size, then we
3600 * undercalculate the number of headers required.
3601 *
3602 * Furthermore - the addition of op headers for split-recs might
3603 * increase the space required enough to require more log and op
3604 * headers, so take that into account too.
3605 *
3606 * IMPORTANT: This reservation makes the assumption that if this
3607 * transaction is the first in an iclog and hence has the LR headers
3608 * accounted to it, then the remaining space in the iclog is
3609 * exclusively for this transaction. i.e. if the transaction is larger
3610 * than the iclog, it will be the only thing in that iclog.
3611 * Fundamentally, this means we must pass the entire log vector to
3612 * xlog_write to guarantee this.
3613 */
3614 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3615 num_headers = howmany(unit_bytes, iclog_space);
3616
3617 /* for split-recs - ophdrs added when data split over LRs */
3618 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3619
3620 /* add extra header reservations if we overrun */
3621 while (!num_headers ||
3622 howmany(unit_bytes, iclog_space) > num_headers) {
3623 unit_bytes += sizeof(xlog_op_header_t);
3624 num_headers++;
3625 }
3626 unit_bytes += log->l_iclog_hsize * num_headers;
3627
3628 /* for commit-rec LR header - note: padding will subsume the ophdr */
3629 unit_bytes += log->l_iclog_hsize;
3630
3631 /* for roundoff padding for transaction data and one for commit record */
3632 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3633 /* log su roundoff */
3634 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3635 } else {
3636 /* BB roundoff */
3637 unit_bytes += 2 * BBSIZE;
3638 }
3639
3640 return unit_bytes;
3641 }
3642
3643 /*
3644 * Allocate and initialise a new log ticket.
3645 */
3646 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3647 xlog_ticket_alloc(
3648 struct xlog *log,
3649 int unit_bytes,
3650 int cnt,
3651 char client,
3652 bool permanent,
3653 xfs_km_flags_t alloc_flags)
3654 {
3655 struct xlog_ticket *tic;
3656 int unit_res;
3657
3658 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3659 if (!tic)
3660 return NULL;
3661
3662 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3663
3664 atomic_set(&tic->t_ref, 1);
3665 tic->t_task = current;
3666 INIT_LIST_HEAD(&tic->t_queue);
3667 tic->t_unit_res = unit_res;
3668 tic->t_curr_res = unit_res;
3669 tic->t_cnt = cnt;
3670 tic->t_ocnt = cnt;
3671 tic->t_tid = prandom_u32();
3672 tic->t_clientid = client;
3673 tic->t_flags = XLOG_TIC_INITED;
3674 tic->t_trans_type = 0;
3675 if (permanent)
3676 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3677
3678 xlog_tic_reset_res(tic);
3679
3680 return tic;
3681 }
3682
3683
3684 /******************************************************************************
3685 *
3686 * Log debug routines
3687 *
3688 ******************************************************************************
3689 */
3690 #if defined(DEBUG)
3691 /*
3692 * Make sure that the destination ptr is within the valid data region of
3693 * one of the iclogs. This uses backup pointers stored in a different
3694 * part of the log in case we trash the log structure.
3695 */
3696 void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3697 xlog_verify_dest_ptr(
3698 struct xlog *log,
3699 void *ptr)
3700 {
3701 int i;
3702 int good_ptr = 0;
3703
3704 for (i = 0; i < log->l_iclog_bufs; i++) {
3705 if (ptr >= log->l_iclog_bak[i] &&
3706 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3707 good_ptr++;
3708 }
3709
3710 if (!good_ptr)
3711 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3712 }
3713
3714 /*
3715 * Check to make sure the grant write head didn't just over lap the tail. If
3716 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3717 * the cycles differ by exactly one and check the byte count.
3718 *
3719 * This check is run unlocked, so can give false positives. Rather than assert
3720 * on failures, use a warn-once flag and a panic tag to allow the admin to
3721 * determine if they want to panic the machine when such an error occurs. For
3722 * debug kernels this will have the same effect as using an assert but, unlinke
3723 * an assert, it can be turned off at runtime.
3724 */
3725 STATIC void
xlog_verify_grant_tail(struct xlog * log)3726 xlog_verify_grant_tail(
3727 struct xlog *log)
3728 {
3729 int tail_cycle, tail_blocks;
3730 int cycle, space;
3731
3732 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3733 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3734 if (tail_cycle != cycle) {
3735 if (cycle - 1 != tail_cycle &&
3736 !(log->l_flags & XLOG_TAIL_WARN)) {
3737 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3738 "%s: cycle - 1 != tail_cycle", __func__);
3739 log->l_flags |= XLOG_TAIL_WARN;
3740 }
3741
3742 if (space > BBTOB(tail_blocks) &&
3743 !(log->l_flags & XLOG_TAIL_WARN)) {
3744 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3745 "%s: space > BBTOB(tail_blocks)", __func__);
3746 log->l_flags |= XLOG_TAIL_WARN;
3747 }
3748 }
3749 }
3750
3751 /* check if it will fit */
3752 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3753 xlog_verify_tail_lsn(
3754 struct xlog *log,
3755 struct xlog_in_core *iclog,
3756 xfs_lsn_t tail_lsn)
3757 {
3758 int blocks;
3759
3760 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3761 blocks =
3762 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3763 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3764 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3765 } else {
3766 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3767
3768 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3769 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3770
3771 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3772 if (blocks < BTOBB(iclog->ic_offset) + 1)
3773 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3774 }
3775 } /* xlog_verify_tail_lsn */
3776
3777 /*
3778 * Perform a number of checks on the iclog before writing to disk.
3779 *
3780 * 1. Make sure the iclogs are still circular
3781 * 2. Make sure we have a good magic number
3782 * 3. Make sure we don't have magic numbers in the data
3783 * 4. Check fields of each log operation header for:
3784 * A. Valid client identifier
3785 * B. tid ptr value falls in valid ptr space (user space code)
3786 * C. Length in log record header is correct according to the
3787 * individual operation headers within record.
3788 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3789 * log, check the preceding blocks of the physical log to make sure all
3790 * the cycle numbers agree with the current cycle number.
3791 */
3792 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count,bool syncing)3793 xlog_verify_iclog(
3794 struct xlog *log,
3795 struct xlog_in_core *iclog,
3796 int count,
3797 bool syncing)
3798 {
3799 xlog_op_header_t *ophead;
3800 xlog_in_core_t *icptr;
3801 xlog_in_core_2_t *xhdr;
3802 void *base_ptr, *ptr, *p;
3803 ptrdiff_t field_offset;
3804 __uint8_t clientid;
3805 int len, i, j, k, op_len;
3806 int idx;
3807
3808 /* check validity of iclog pointers */
3809 spin_lock(&log->l_icloglock);
3810 icptr = log->l_iclog;
3811 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3812 ASSERT(icptr);
3813
3814 if (icptr != log->l_iclog)
3815 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3816 spin_unlock(&log->l_icloglock);
3817
3818 /* check log magic numbers */
3819 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3820 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3821
3822 base_ptr = ptr = &iclog->ic_header;
3823 p = &iclog->ic_header;
3824 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3825 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3826 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3827 __func__);
3828 }
3829
3830 /* check fields */
3831 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3832 base_ptr = ptr = iclog->ic_datap;
3833 ophead = ptr;
3834 xhdr = iclog->ic_data;
3835 for (i = 0; i < len; i++) {
3836 ophead = ptr;
3837
3838 /* clientid is only 1 byte */
3839 p = &ophead->oh_clientid;
3840 field_offset = p - base_ptr;
3841 if (!syncing || (field_offset & 0x1ff)) {
3842 clientid = ophead->oh_clientid;
3843 } else {
3844 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3845 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3846 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3847 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3848 clientid = xlog_get_client_id(
3849 xhdr[j].hic_xheader.xh_cycle_data[k]);
3850 } else {
3851 clientid = xlog_get_client_id(
3852 iclog->ic_header.h_cycle_data[idx]);
3853 }
3854 }
3855 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3856 xfs_warn(log->l_mp,
3857 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3858 __func__, clientid, ophead,
3859 (unsigned long)field_offset);
3860
3861 /* check length */
3862 p = &ophead->oh_len;
3863 field_offset = p - base_ptr;
3864 if (!syncing || (field_offset & 0x1ff)) {
3865 op_len = be32_to_cpu(ophead->oh_len);
3866 } else {
3867 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3868 (uintptr_t)iclog->ic_datap);
3869 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3870 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3871 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3872 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3873 } else {
3874 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3875 }
3876 }
3877 ptr += sizeof(xlog_op_header_t) + op_len;
3878 }
3879 } /* xlog_verify_iclog */
3880 #endif
3881
3882 /*
3883 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3884 */
3885 STATIC int
xlog_state_ioerror(struct xlog * log)3886 xlog_state_ioerror(
3887 struct xlog *log)
3888 {
3889 xlog_in_core_t *iclog, *ic;
3890
3891 iclog = log->l_iclog;
3892 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3893 /*
3894 * Mark all the incore logs IOERROR.
3895 * From now on, no log flushes will result.
3896 */
3897 ic = iclog;
3898 do {
3899 ic->ic_state = XLOG_STATE_IOERROR;
3900 ic = ic->ic_next;
3901 } while (ic != iclog);
3902 return 0;
3903 }
3904 /*
3905 * Return non-zero, if state transition has already happened.
3906 */
3907 return 1;
3908 }
3909
3910 /*
3911 * This is called from xfs_force_shutdown, when we're forcibly
3912 * shutting down the filesystem, typically because of an IO error.
3913 * Our main objectives here are to make sure that:
3914 * a. if !logerror, flush the logs to disk. Anything modified
3915 * after this is ignored.
3916 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3917 * parties to find out, 'atomically'.
3918 * c. those who're sleeping on log reservations, pinned objects and
3919 * other resources get woken up, and be told the bad news.
3920 * d. nothing new gets queued up after (b) and (c) are done.
3921 *
3922 * Note: for the !logerror case we need to flush the regions held in memory out
3923 * to disk first. This needs to be done before the log is marked as shutdown,
3924 * otherwise the iclog writes will fail.
3925 */
3926 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3927 xfs_log_force_umount(
3928 struct xfs_mount *mp,
3929 int logerror)
3930 {
3931 struct xlog *log;
3932 int retval;
3933
3934 log = mp->m_log;
3935
3936 /*
3937 * If this happens during log recovery, don't worry about
3938 * locking; the log isn't open for business yet.
3939 */
3940 if (!log ||
3941 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3942 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943 if (mp->m_sb_bp)
3944 XFS_BUF_DONE(mp->m_sb_bp);
3945 return 0;
3946 }
3947
3948 /*
3949 * Somebody could've already done the hard work for us.
3950 * No need to get locks for this.
3951 */
3952 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3953 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3954 return 1;
3955 }
3956
3957 /*
3958 * Flush all the completed transactions to disk before marking the log
3959 * being shut down. We need to do it in this order to ensure that
3960 * completed operations are safely on disk before we shut down, and that
3961 * we don't have to issue any buffer IO after the shutdown flags are set
3962 * to guarantee this.
3963 */
3964 if (!logerror)
3965 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3966
3967 /*
3968 * mark the filesystem and the as in a shutdown state and wake
3969 * everybody up to tell them the bad news.
3970 */
3971 spin_lock(&log->l_icloglock);
3972 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3973 if (mp->m_sb_bp)
3974 XFS_BUF_DONE(mp->m_sb_bp);
3975
3976 /*
3977 * Mark the log and the iclogs with IO error flags to prevent any
3978 * further log IO from being issued or completed.
3979 */
3980 log->l_flags |= XLOG_IO_ERROR;
3981 retval = xlog_state_ioerror(log);
3982 spin_unlock(&log->l_icloglock);
3983
3984 /*
3985 * We don't want anybody waiting for log reservations after this. That
3986 * means we have to wake up everybody queued up on reserveq as well as
3987 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3988 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3989 * action is protected by the grant locks.
3990 */
3991 xlog_grant_head_wake_all(&log->l_reserve_head);
3992 xlog_grant_head_wake_all(&log->l_write_head);
3993
3994 /*
3995 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3996 * as if the log writes were completed. The abort handling in the log
3997 * item committed callback functions will do this again under lock to
3998 * avoid races.
3999 */
4000 wake_up_all(&log->l_cilp->xc_commit_wait);
4001 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4002
4003 #ifdef XFSERRORDEBUG
4004 {
4005 xlog_in_core_t *iclog;
4006
4007 spin_lock(&log->l_icloglock);
4008 iclog = log->l_iclog;
4009 do {
4010 ASSERT(iclog->ic_callback == 0);
4011 iclog = iclog->ic_next;
4012 } while (iclog != log->l_iclog);
4013 spin_unlock(&log->l_icloglock);
4014 }
4015 #endif
4016 /* return non-zero if log IOERROR transition had already happened */
4017 return retval;
4018 }
4019
4020 STATIC int
xlog_iclogs_empty(struct xlog * log)4021 xlog_iclogs_empty(
4022 struct xlog *log)
4023 {
4024 xlog_in_core_t *iclog;
4025
4026 iclog = log->l_iclog;
4027 do {
4028 /* endianness does not matter here, zero is zero in
4029 * any language.
4030 */
4031 if (iclog->ic_header.h_num_logops)
4032 return 0;
4033 iclog = iclog->ic_next;
4034 } while (iclog != log->l_iclog);
4035 return 1;
4036 }
4037
4038 /*
4039 * Verify that an LSN stamped into a piece of metadata is valid. This is
4040 * intended for use in read verifiers on v5 superblocks.
4041 */
4042 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4043 xfs_log_check_lsn(
4044 struct xfs_mount *mp,
4045 xfs_lsn_t lsn)
4046 {
4047 struct xlog *log = mp->m_log;
4048 bool valid;
4049
4050 /*
4051 * norecovery mode skips mount-time log processing and unconditionally
4052 * resets the in-core LSN. We can't validate in this mode, but
4053 * modifications are not allowed anyways so just return true.
4054 */
4055 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4056 return true;
4057
4058 /*
4059 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4060 * handled by recovery and thus safe to ignore here.
4061 */
4062 if (lsn == NULLCOMMITLSN)
4063 return true;
4064
4065 valid = xlog_valid_lsn(mp->m_log, lsn);
4066
4067 /* warn the user about what's gone wrong before verifier failure */
4068 if (!valid) {
4069 spin_lock(&log->l_icloglock);
4070 xfs_warn(mp,
4071 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4072 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4073 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4074 log->l_curr_cycle, log->l_curr_block);
4075 spin_unlock(&log->l_icloglock);
4076 }
4077
4078 return valid;
4079 }
4080