• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	void			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
xlog_tic_reset_res(xlog_ticket_t * tic)344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(mp, xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,__uint8_t client,bool permanent,uint t_type)432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent,
439 	uint		 	t_type)
440 {
441 	struct xlog		*log = mp->m_log;
442 	struct xlog_ticket	*tic;
443 	int			need_bytes;
444 	int			error = 0;
445 
446 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447 
448 	if (XLOG_FORCED_SHUTDOWN(log))
449 		return -EIO;
450 
451 	XFS_STATS_INC(mp, xs_try_logspace);
452 
453 	ASSERT(*ticp == NULL);
454 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455 				KM_SLEEP | KM_MAYFAIL);
456 	if (!tic)
457 		return -ENOMEM;
458 
459 	tic->t_trans_type = t_type;
460 	*ticp = tic;
461 
462 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 					    : tic->t_unit_res);
464 
465 	trace_xfs_log_reserve(log, tic);
466 
467 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 				      &need_bytes);
469 	if (error)
470 		goto out_error;
471 
472 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 	trace_xfs_log_reserve_exit(log, tic);
475 	xlog_verify_grant_tail(log);
476 	return 0;
477 
478 out_error:
479 	/*
480 	 * If we are failing, make sure the ticket doesn't have any current
481 	 * reservations.  We don't want to add this back when the ticket/
482 	 * transaction gets cancelled.
483 	 */
484 	tic->t_curr_res = 0;
485 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
486 	return error;
487 }
488 
489 
490 /*
491  * NOTES:
492  *
493  *	1. currblock field gets updated at startup and after in-core logs
494  *		marked as with WANT_SYNC.
495  */
496 
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)512 xfs_log_done(
513 	struct xfs_mount	*mp,
514 	struct xlog_ticket	*ticket,
515 	struct xlog_in_core	**iclog,
516 	bool			regrant)
517 {
518 	struct xlog		*log = mp->m_log;
519 	xfs_lsn_t		lsn = 0;
520 
521 	if (XLOG_FORCED_SHUTDOWN(log) ||
522 	    /*
523 	     * If nothing was ever written, don't write out commit record.
524 	     * If we get an error, just continue and give back the log ticket.
525 	     */
526 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528 		lsn = (xfs_lsn_t) -1;
529 		regrant = false;
530 	}
531 
532 
533 	if (!regrant) {
534 		trace_xfs_log_done_nonperm(log, ticket);
535 
536 		/*
537 		 * Release ticket if not permanent reservation or a specific
538 		 * request has been made to release a permanent reservation.
539 		 */
540 		xlog_ungrant_log_space(log, ticket);
541 	} else {
542 		trace_xfs_log_done_perm(log, ticket);
543 
544 		xlog_regrant_reserve_log_space(log, ticket);
545 		/* If this ticket was a permanent reservation and we aren't
546 		 * trying to release it, reset the inited flags; so next time
547 		 * we write, a start record will be written out.
548 		 */
549 		ticket->t_flags |= XLOG_TIC_INITED;
550 	}
551 
552 	xfs_log_ticket_put(ticket);
553 	return lsn;
554 }
555 
556 /*
557  * Attaches a new iclog I/O completion callback routine during
558  * transaction commit.  If the log is in error state, a non-zero
559  * return code is handed back and the caller is responsible for
560  * executing the callback at an appropriate time.
561  */
562 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)563 xfs_log_notify(
564 	struct xfs_mount	*mp,
565 	struct xlog_in_core	*iclog,
566 	xfs_log_callback_t	*cb)
567 {
568 	int	abortflg;
569 
570 	spin_lock(&iclog->ic_callback_lock);
571 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572 	if (!abortflg) {
573 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575 		cb->cb_next = NULL;
576 		*(iclog->ic_callback_tail) = cb;
577 		iclog->ic_callback_tail = &(cb->cb_next);
578 	}
579 	spin_unlock(&iclog->ic_callback_lock);
580 	return abortflg;
581 }
582 
583 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)584 xfs_log_release_iclog(
585 	struct xfs_mount	*mp,
586 	struct xlog_in_core	*iclog)
587 {
588 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
589 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590 		return -EIO;
591 	}
592 
593 	return 0;
594 }
595 
596 /*
597  * Mount a log filesystem
598  *
599  * mp		- ubiquitous xfs mount point structure
600  * log_target	- buftarg of on-disk log device
601  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
602  * num_bblocks	- Number of BBSIZE blocks in on-disk log
603  *
604  * Return error or zero.
605  */
606 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)607 xfs_log_mount(
608 	xfs_mount_t	*mp,
609 	xfs_buftarg_t	*log_target,
610 	xfs_daddr_t	blk_offset,
611 	int		num_bblks)
612 {
613 	int		error = 0;
614 	int		min_logfsbs;
615 
616 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617 		xfs_notice(mp, "Mounting V%d Filesystem",
618 			   XFS_SB_VERSION_NUM(&mp->m_sb));
619 	} else {
620 		xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 			   XFS_SB_VERSION_NUM(&mp->m_sb));
623 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624 	}
625 
626 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627 	if (IS_ERR(mp->m_log)) {
628 		error = PTR_ERR(mp->m_log);
629 		goto out;
630 	}
631 
632 	/*
633 	 * Validate the given log space and drop a critical message via syslog
634 	 * if the log size is too small that would lead to some unexpected
635 	 * situations in transaction log space reservation stage.
636 	 *
637 	 * Note: we can't just reject the mount if the validation fails.  This
638 	 * would mean that people would have to downgrade their kernel just to
639 	 * remedy the situation as there is no way to grow the log (short of
640 	 * black magic surgery with xfs_db).
641 	 *
642 	 * We can, however, reject mounts for CRC format filesystems, as the
643 	 * mkfs binary being used to make the filesystem should never create a
644 	 * filesystem with a log that is too small.
645 	 */
646 	min_logfsbs = xfs_log_calc_minimum_size(mp);
647 
648 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
649 		xfs_warn(mp,
650 		"Log size %d blocks too small, minimum size is %d blocks",
651 			 mp->m_sb.sb_logblocks, min_logfsbs);
652 		error = -EINVAL;
653 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654 		xfs_warn(mp,
655 		"Log size %d blocks too large, maximum size is %lld blocks",
656 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657 		error = -EINVAL;
658 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659 		xfs_warn(mp,
660 		"log size %lld bytes too large, maximum size is %lld bytes",
661 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662 			 XFS_MAX_LOG_BYTES);
663 		error = -EINVAL;
664 	}
665 	if (error) {
666 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
667 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668 			ASSERT(0);
669 			goto out_free_log;
670 		}
671 		xfs_crit(mp, "Log size out of supported range.");
672 		xfs_crit(mp,
673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
674 	}
675 
676 	/*
677 	 * Initialize the AIL now we have a log.
678 	 */
679 	error = xfs_trans_ail_init(mp);
680 	if (error) {
681 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
682 		goto out_free_log;
683 	}
684 	mp->m_log->l_ailp = mp->m_ail;
685 
686 	/*
687 	 * skip log recovery on a norecovery mount.  pretend it all
688 	 * just worked.
689 	 */
690 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
692 
693 		if (readonly)
694 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
695 
696 		error = xlog_recover(mp->m_log);
697 
698 		if (readonly)
699 			mp->m_flags |= XFS_MOUNT_RDONLY;
700 		if (error) {
701 			xfs_warn(mp, "log mount/recovery failed: error %d",
702 				error);
703 			xlog_recover_cancel(mp->m_log);
704 			goto out_destroy_ail;
705 		}
706 	}
707 
708 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
709 			       "log");
710 	if (error)
711 		goto out_destroy_ail;
712 
713 	/* Normal transactions can now occur */
714 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
715 
716 	/*
717 	 * Now the log has been fully initialised and we know were our
718 	 * space grant counters are, we can initialise the permanent ticket
719 	 * needed for delayed logging to work.
720 	 */
721 	xlog_cil_init_post_recovery(mp->m_log);
722 
723 	return 0;
724 
725 out_destroy_ail:
726 	xfs_trans_ail_destroy(mp);
727 out_free_log:
728 	xlog_dealloc_log(mp->m_log);
729 out:
730 	return error;
731 }
732 
733 /*
734  * Finish the recovery of the file system.  This is separate from the
735  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
736  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737  * here.
738  *
739  * If we finish recovery successfully, start the background log work. If we are
740  * not doing recovery, then we have a RO filesystem and we don't need to start
741  * it.
742  */
743 int
xfs_log_mount_finish(struct xfs_mount * mp)744 xfs_log_mount_finish(
745 	struct xfs_mount	*mp)
746 {
747 	int	error = 0;
748 
749 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751 		return 0;
752 	}
753 
754 	error = xlog_recover_finish(mp->m_log);
755 	if (!error)
756 		xfs_log_work_queue(mp);
757 
758 	return error;
759 }
760 
761 /*
762  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
763  * the log.
764  */
765 int
xfs_log_mount_cancel(struct xfs_mount * mp)766 xfs_log_mount_cancel(
767 	struct xfs_mount	*mp)
768 {
769 	int			error;
770 
771 	error = xlog_recover_cancel(mp->m_log);
772 	xfs_log_unmount(mp);
773 
774 	return error;
775 }
776 
777 /*
778  * Final log writes as part of unmount.
779  *
780  * Mark the filesystem clean as unmount happens.  Note that during relocation
781  * this routine needs to be executed as part of source-bag while the
782  * deallocation must not be done until source-end.
783  */
784 
785 /*
786  * Unmount record used to have a string "Unmount filesystem--" in the
787  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
788  * We just write the magic number now since that particular field isn't
789  * currently architecture converted and "Unmount" is a bit foo.
790  * As far as I know, there weren't any dependencies on the old behaviour.
791  */
792 
793 int
xfs_log_unmount_write(xfs_mount_t * mp)794 xfs_log_unmount_write(xfs_mount_t *mp)
795 {
796 	struct xlog	 *log = mp->m_log;
797 	xlog_in_core_t	 *iclog;
798 #ifdef DEBUG
799 	xlog_in_core_t	 *first_iclog;
800 #endif
801 	xlog_ticket_t	*tic = NULL;
802 	xfs_lsn_t	 lsn;
803 	int		 error;
804 
805 	/*
806 	 * Don't write out unmount record on read-only mounts.
807 	 * Or, if we are doing a forced umount (typically because of IO errors).
808 	 */
809 	if (mp->m_flags & XFS_MOUNT_RDONLY)
810 		return 0;
811 
812 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
813 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
814 
815 #ifdef DEBUG
816 	first_iclog = iclog = log->l_iclog;
817 	do {
818 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
819 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
820 			ASSERT(iclog->ic_offset == 0);
821 		}
822 		iclog = iclog->ic_next;
823 	} while (iclog != first_iclog);
824 #endif
825 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
826 		error = xfs_log_reserve(mp, 600, 1, &tic,
827 					XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
828 		if (!error) {
829 			/* the data section must be 32 bit size aligned */
830 			struct {
831 			    __uint16_t magic;
832 			    __uint16_t pad1;
833 			    __uint32_t pad2; /* may as well make it 64 bits */
834 			} magic = {
835 				.magic = XLOG_UNMOUNT_TYPE,
836 			};
837 			struct xfs_log_iovec reg = {
838 				.i_addr = &magic,
839 				.i_len = sizeof(magic),
840 				.i_type = XLOG_REG_TYPE_UNMOUNT,
841 			};
842 			struct xfs_log_vec vec = {
843 				.lv_niovecs = 1,
844 				.lv_iovecp = &reg,
845 			};
846 
847 			/* remove inited flag, and account for space used */
848 			tic->t_flags = 0;
849 			tic->t_curr_res -= sizeof(magic);
850 			error = xlog_write(log, &vec, tic, &lsn,
851 					   NULL, XLOG_UNMOUNT_TRANS);
852 			/*
853 			 * At this point, we're umounting anyway,
854 			 * so there's no point in transitioning log state
855 			 * to IOERROR. Just continue...
856 			 */
857 		}
858 
859 		if (error)
860 			xfs_alert(mp, "%s: unmount record failed", __func__);
861 
862 
863 		spin_lock(&log->l_icloglock);
864 		iclog = log->l_iclog;
865 		atomic_inc(&iclog->ic_refcnt);
866 		xlog_state_want_sync(log, iclog);
867 		spin_unlock(&log->l_icloglock);
868 		error = xlog_state_release_iclog(log, iclog);
869 
870 		spin_lock(&log->l_icloglock);
871 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
872 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
873 			if (!XLOG_FORCED_SHUTDOWN(log)) {
874 				xlog_wait(&iclog->ic_force_wait,
875 							&log->l_icloglock);
876 			} else {
877 				spin_unlock(&log->l_icloglock);
878 			}
879 		} else {
880 			spin_unlock(&log->l_icloglock);
881 		}
882 		if (tic) {
883 			trace_xfs_log_umount_write(log, tic);
884 			xlog_ungrant_log_space(log, tic);
885 			xfs_log_ticket_put(tic);
886 		}
887 	} else {
888 		/*
889 		 * We're already in forced_shutdown mode, couldn't
890 		 * even attempt to write out the unmount transaction.
891 		 *
892 		 * Go through the motions of sync'ing and releasing
893 		 * the iclog, even though no I/O will actually happen,
894 		 * we need to wait for other log I/Os that may already
895 		 * be in progress.  Do this as a separate section of
896 		 * code so we'll know if we ever get stuck here that
897 		 * we're in this odd situation of trying to unmount
898 		 * a file system that went into forced_shutdown as
899 		 * the result of an unmount..
900 		 */
901 		spin_lock(&log->l_icloglock);
902 		iclog = log->l_iclog;
903 		atomic_inc(&iclog->ic_refcnt);
904 
905 		xlog_state_want_sync(log, iclog);
906 		spin_unlock(&log->l_icloglock);
907 		error =  xlog_state_release_iclog(log, iclog);
908 
909 		spin_lock(&log->l_icloglock);
910 
911 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
912 			|| iclog->ic_state == XLOG_STATE_DIRTY
913 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
914 
915 				xlog_wait(&iclog->ic_force_wait,
916 							&log->l_icloglock);
917 		} else {
918 			spin_unlock(&log->l_icloglock);
919 		}
920 	}
921 
922 	return error;
923 }	/* xfs_log_unmount_write */
924 
925 /*
926  * Empty the log for unmount/freeze.
927  *
928  * To do this, we first need to shut down the background log work so it is not
929  * trying to cover the log as we clean up. We then need to unpin all objects in
930  * the log so we can then flush them out. Once they have completed their IO and
931  * run the callbacks removing themselves from the AIL, we can write the unmount
932  * record.
933  */
934 void
xfs_log_quiesce(struct xfs_mount * mp)935 xfs_log_quiesce(
936 	struct xfs_mount	*mp)
937 {
938 	cancel_delayed_work_sync(&mp->m_log->l_work);
939 	xfs_log_force(mp, XFS_LOG_SYNC);
940 
941 	/*
942 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
943 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
944 	 * xfs_buf_iowait() cannot be used because it was pushed with the
945 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
946 	 * the IO to complete.
947 	 */
948 	xfs_ail_push_all_sync(mp->m_ail);
949 	xfs_wait_buftarg(mp->m_ddev_targp);
950 	xfs_buf_lock(mp->m_sb_bp);
951 	xfs_buf_unlock(mp->m_sb_bp);
952 
953 	xfs_log_unmount_write(mp);
954 }
955 
956 /*
957  * Shut down and release the AIL and Log.
958  *
959  * During unmount, we need to ensure we flush all the dirty metadata objects
960  * from the AIL so that the log is empty before we write the unmount record to
961  * the log. Once this is done, we can tear down the AIL and the log.
962  */
963 void
xfs_log_unmount(struct xfs_mount * mp)964 xfs_log_unmount(
965 	struct xfs_mount	*mp)
966 {
967 	xfs_log_quiesce(mp);
968 
969 	xfs_trans_ail_destroy(mp);
970 
971 	xfs_sysfs_del(&mp->m_log->l_kobj);
972 
973 	xlog_dealloc_log(mp->m_log);
974 }
975 
976 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)977 xfs_log_item_init(
978 	struct xfs_mount	*mp,
979 	struct xfs_log_item	*item,
980 	int			type,
981 	const struct xfs_item_ops *ops)
982 {
983 	item->li_mountp = mp;
984 	item->li_ailp = mp->m_ail;
985 	item->li_type = type;
986 	item->li_ops = ops;
987 	item->li_lv = NULL;
988 
989 	INIT_LIST_HEAD(&item->li_ail);
990 	INIT_LIST_HEAD(&item->li_cil);
991 }
992 
993 /*
994  * Wake up processes waiting for log space after we have moved the log tail.
995  */
996 void
xfs_log_space_wake(struct xfs_mount * mp)997 xfs_log_space_wake(
998 	struct xfs_mount	*mp)
999 {
1000 	struct xlog		*log = mp->m_log;
1001 	int			free_bytes;
1002 
1003 	if (XLOG_FORCED_SHUTDOWN(log))
1004 		return;
1005 
1006 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1007 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008 
1009 		spin_lock(&log->l_write_head.lock);
1010 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012 		spin_unlock(&log->l_write_head.lock);
1013 	}
1014 
1015 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017 
1018 		spin_lock(&log->l_reserve_head.lock);
1019 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021 		spin_unlock(&log->l_reserve_head.lock);
1022 	}
1023 }
1024 
1025 /*
1026  * Determine if we have a transaction that has gone to disk that needs to be
1027  * covered. To begin the transition to the idle state firstly the log needs to
1028  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029  * we start attempting to cover the log.
1030  *
1031  * Only if we are then in a state where covering is needed, the caller is
1032  * informed that dummy transactions are required to move the log into the idle
1033  * state.
1034  *
1035  * If there are any items in the AIl or CIL, then we do not want to attempt to
1036  * cover the log as we may be in a situation where there isn't log space
1037  * available to run a dummy transaction and this can lead to deadlocks when the
1038  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1039  * there's no point in running a dummy transaction at this point because we
1040  * can't start trying to idle the log until both the CIL and AIL are empty.
1041  */
1042 int
xfs_log_need_covered(xfs_mount_t * mp)1043 xfs_log_need_covered(xfs_mount_t *mp)
1044 {
1045 	struct xlog	*log = mp->m_log;
1046 	int		needed = 0;
1047 
1048 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049 		return 0;
1050 
1051 	if (!xlog_cil_empty(log))
1052 		return 0;
1053 
1054 	spin_lock(&log->l_icloglock);
1055 	switch (log->l_covered_state) {
1056 	case XLOG_STATE_COVER_DONE:
1057 	case XLOG_STATE_COVER_DONE2:
1058 	case XLOG_STATE_COVER_IDLE:
1059 		break;
1060 	case XLOG_STATE_COVER_NEED:
1061 	case XLOG_STATE_COVER_NEED2:
1062 		if (xfs_ail_min_lsn(log->l_ailp))
1063 			break;
1064 		if (!xlog_iclogs_empty(log))
1065 			break;
1066 
1067 		needed = 1;
1068 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1070 		else
1071 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072 		break;
1073 	default:
1074 		needed = 1;
1075 		break;
1076 	}
1077 	spin_unlock(&log->l_icloglock);
1078 	return needed;
1079 }
1080 
1081 /*
1082  * We may be holding the log iclog lock upon entering this routine.
1083  */
1084 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1085 xlog_assign_tail_lsn_locked(
1086 	struct xfs_mount	*mp)
1087 {
1088 	struct xlog		*log = mp->m_log;
1089 	struct xfs_log_item	*lip;
1090 	xfs_lsn_t		tail_lsn;
1091 
1092 	assert_spin_locked(&mp->m_ail->xa_lock);
1093 
1094 	/*
1095 	 * To make sure we always have a valid LSN for the log tail we keep
1096 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1097 	 * and use that when the AIL was empty.
1098 	 */
1099 	lip = xfs_ail_min(mp->m_ail);
1100 	if (lip)
1101 		tail_lsn = lip->li_lsn;
1102 	else
1103 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1106 	return tail_lsn;
1107 }
1108 
1109 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1110 xlog_assign_tail_lsn(
1111 	struct xfs_mount	*mp)
1112 {
1113 	xfs_lsn_t		tail_lsn;
1114 
1115 	spin_lock(&mp->m_ail->xa_lock);
1116 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117 	spin_unlock(&mp->m_ail->xa_lock);
1118 
1119 	return tail_lsn;
1120 }
1121 
1122 /*
1123  * Return the space in the log between the tail and the head.  The head
1124  * is passed in the cycle/bytes formal parms.  In the special case where
1125  * the reserve head has wrapped passed the tail, this calculation is no
1126  * longer valid.  In this case, just return 0 which means there is no space
1127  * in the log.  This works for all places where this function is called
1128  * with the reserve head.  Of course, if the write head were to ever
1129  * wrap the tail, we should blow up.  Rather than catch this case here,
1130  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1131  *
1132  * This code also handles the case where the reservation head is behind
1133  * the tail.  The details of this case are described below, but the end
1134  * result is that we return the size of the log as the amount of space left.
1135  */
1136 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1137 xlog_space_left(
1138 	struct xlog	*log,
1139 	atomic64_t	*head)
1140 {
1141 	int		free_bytes;
1142 	int		tail_bytes;
1143 	int		tail_cycle;
1144 	int		head_cycle;
1145 	int		head_bytes;
1146 
1147 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149 	tail_bytes = BBTOB(tail_bytes);
1150 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152 	else if (tail_cycle + 1 < head_cycle)
1153 		return 0;
1154 	else if (tail_cycle < head_cycle) {
1155 		ASSERT(tail_cycle == (head_cycle - 1));
1156 		free_bytes = tail_bytes - head_bytes;
1157 	} else {
1158 		/*
1159 		 * The reservation head is behind the tail.
1160 		 * In this case we just want to return the size of the
1161 		 * log as the amount of space left.
1162 		 */
1163 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164 		xfs_alert(log->l_mp,
1165 			  "  tail_cycle = %d, tail_bytes = %d",
1166 			  tail_cycle, tail_bytes);
1167 		xfs_alert(log->l_mp,
1168 			  "  GH   cycle = %d, GH   bytes = %d",
1169 			  head_cycle, head_bytes);
1170 		ASSERT(0);
1171 		free_bytes = log->l_logsize;
1172 	}
1173 	return free_bytes;
1174 }
1175 
1176 
1177 /*
1178  * Log function which is called when an io completes.
1179  *
1180  * The log manager needs its own routine, in order to control what
1181  * happens with the buffer after the write completes.
1182  */
1183 void
xlog_iodone(xfs_buf_t * bp)1184 xlog_iodone(xfs_buf_t *bp)
1185 {
1186 	struct xlog_in_core	*iclog = bp->b_fspriv;
1187 	struct xlog		*l = iclog->ic_log;
1188 	int			aborted = 0;
1189 
1190 	/*
1191 	 * Race to shutdown the filesystem if we see an error.
1192 	 */
1193 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1194 			XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1195 		xfs_buf_ioerror_alert(bp, __func__);
1196 		xfs_buf_stale(bp);
1197 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1198 		/*
1199 		 * This flag will be propagated to the trans-committed
1200 		 * callback routines to let them know that the log-commit
1201 		 * didn't succeed.
1202 		 */
1203 		aborted = XFS_LI_ABORTED;
1204 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1205 		aborted = XFS_LI_ABORTED;
1206 	}
1207 
1208 	/* log I/O is always issued ASYNC */
1209 	ASSERT(XFS_BUF_ISASYNC(bp));
1210 	xlog_state_done_syncing(iclog, aborted);
1211 
1212 	/*
1213 	 * drop the buffer lock now that we are done. Nothing references
1214 	 * the buffer after this, so an unmount waiting on this lock can now
1215 	 * tear it down safely. As such, it is unsafe to reference the buffer
1216 	 * (bp) after the unlock as we could race with it being freed.
1217 	 */
1218 	xfs_buf_unlock(bp);
1219 }
1220 
1221 /*
1222  * Return size of each in-core log record buffer.
1223  *
1224  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1225  *
1226  * If the filesystem blocksize is too large, we may need to choose a
1227  * larger size since the directory code currently logs entire blocks.
1228  */
1229 
1230 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1231 xlog_get_iclog_buffer_size(
1232 	struct xfs_mount	*mp,
1233 	struct xlog		*log)
1234 {
1235 	int size;
1236 	int xhdrs;
1237 
1238 	if (mp->m_logbufs <= 0)
1239 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1240 	else
1241 		log->l_iclog_bufs = mp->m_logbufs;
1242 
1243 	/*
1244 	 * Buffer size passed in from mount system call.
1245 	 */
1246 	if (mp->m_logbsize > 0) {
1247 		size = log->l_iclog_size = mp->m_logbsize;
1248 		log->l_iclog_size_log = 0;
1249 		while (size != 1) {
1250 			log->l_iclog_size_log++;
1251 			size >>= 1;
1252 		}
1253 
1254 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1255 			/* # headers = size / 32k
1256 			 * one header holds cycles from 32k of data
1257 			 */
1258 
1259 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1260 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1261 				xhdrs++;
1262 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1263 			log->l_iclog_heads = xhdrs;
1264 		} else {
1265 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1266 			log->l_iclog_hsize = BBSIZE;
1267 			log->l_iclog_heads = 1;
1268 		}
1269 		goto done;
1270 	}
1271 
1272 	/* All machines use 32kB buffers by default. */
1273 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1274 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1275 
1276 	/* the default log size is 16k or 32k which is one header sector */
1277 	log->l_iclog_hsize = BBSIZE;
1278 	log->l_iclog_heads = 1;
1279 
1280 done:
1281 	/* are we being asked to make the sizes selected above visible? */
1282 	if (mp->m_logbufs == 0)
1283 		mp->m_logbufs = log->l_iclog_bufs;
1284 	if (mp->m_logbsize == 0)
1285 		mp->m_logbsize = log->l_iclog_size;
1286 }	/* xlog_get_iclog_buffer_size */
1287 
1288 
1289 void
xfs_log_work_queue(struct xfs_mount * mp)1290 xfs_log_work_queue(
1291 	struct xfs_mount        *mp)
1292 {
1293 	queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1294 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1295 }
1296 
1297 /*
1298  * Every sync period we need to unpin all items in the AIL and push them to
1299  * disk. If there is nothing dirty, then we might need to cover the log to
1300  * indicate that the filesystem is idle.
1301  */
1302 void
xfs_log_worker(struct work_struct * work)1303 xfs_log_worker(
1304 	struct work_struct	*work)
1305 {
1306 	struct xlog		*log = container_of(to_delayed_work(work),
1307 						struct xlog, l_work);
1308 	struct xfs_mount	*mp = log->l_mp;
1309 
1310 	/* dgc: errors ignored - not fatal and nowhere to report them */
1311 	if (xfs_log_need_covered(mp)) {
1312 		/*
1313 		 * Dump a transaction into the log that contains no real change.
1314 		 * This is needed to stamp the current tail LSN into the log
1315 		 * during the covering operation.
1316 		 *
1317 		 * We cannot use an inode here for this - that will push dirty
1318 		 * state back up into the VFS and then periodic inode flushing
1319 		 * will prevent log covering from making progress. Hence we
1320 		 * synchronously log the superblock instead to ensure the
1321 		 * superblock is immediately unpinned and can be written back.
1322 		 */
1323 		xfs_sync_sb(mp, true);
1324 	} else
1325 		xfs_log_force(mp, 0);
1326 
1327 	/* start pushing all the metadata that is currently dirty */
1328 	xfs_ail_push_all(mp->m_ail);
1329 
1330 	/* queue us up again */
1331 	xfs_log_work_queue(mp);
1332 }
1333 
1334 /*
1335  * This routine initializes some of the log structure for a given mount point.
1336  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1337  * some other stuff may be filled in too.
1338  */
1339 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1340 xlog_alloc_log(
1341 	struct xfs_mount	*mp,
1342 	struct xfs_buftarg	*log_target,
1343 	xfs_daddr_t		blk_offset,
1344 	int			num_bblks)
1345 {
1346 	struct xlog		*log;
1347 	xlog_rec_header_t	*head;
1348 	xlog_in_core_t		**iclogp;
1349 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1350 	xfs_buf_t		*bp;
1351 	int			i;
1352 	int			error = -ENOMEM;
1353 	uint			log2_size = 0;
1354 
1355 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1356 	if (!log) {
1357 		xfs_warn(mp, "Log allocation failed: No memory!");
1358 		goto out;
1359 	}
1360 
1361 	log->l_mp	   = mp;
1362 	log->l_targ	   = log_target;
1363 	log->l_logsize     = BBTOB(num_bblks);
1364 	log->l_logBBstart  = blk_offset;
1365 	log->l_logBBsize   = num_bblks;
1366 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1367 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1368 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1369 
1370 	log->l_prev_block  = -1;
1371 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1372 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1373 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1374 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1375 
1376 	xlog_grant_head_init(&log->l_reserve_head);
1377 	xlog_grant_head_init(&log->l_write_head);
1378 
1379 	error = -EFSCORRUPTED;
1380 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1381 	        log2_size = mp->m_sb.sb_logsectlog;
1382 		if (log2_size < BBSHIFT) {
1383 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1384 				log2_size, BBSHIFT);
1385 			goto out_free_log;
1386 		}
1387 
1388 	        log2_size -= BBSHIFT;
1389 		if (log2_size > mp->m_sectbb_log) {
1390 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1391 				log2_size, mp->m_sectbb_log);
1392 			goto out_free_log;
1393 		}
1394 
1395 		/* for larger sector sizes, must have v2 or external log */
1396 		if (log2_size && log->l_logBBstart > 0 &&
1397 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1398 			xfs_warn(mp,
1399 		"log sector size (0x%x) invalid for configuration.",
1400 				log2_size);
1401 			goto out_free_log;
1402 		}
1403 	}
1404 	log->l_sectBBsize = 1 << log2_size;
1405 
1406 	xlog_get_iclog_buffer_size(mp, log);
1407 
1408 	/*
1409 	 * Use a NULL block for the extra log buffer used during splits so that
1410 	 * it will trigger errors if we ever try to do IO on it without first
1411 	 * having set it up properly.
1412 	 */
1413 	error = -ENOMEM;
1414 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1415 			   BTOBB(log->l_iclog_size), 0);
1416 	if (!bp)
1417 		goto out_free_log;
1418 
1419 	/*
1420 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1421 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1422 	 * when appropriately.
1423 	 */
1424 	ASSERT(xfs_buf_islocked(bp));
1425 	xfs_buf_unlock(bp);
1426 
1427 	/* use high priority wq for log I/O completion */
1428 	bp->b_ioend_wq = mp->m_log_workqueue;
1429 	bp->b_iodone = xlog_iodone;
1430 	log->l_xbuf = bp;
1431 
1432 	spin_lock_init(&log->l_icloglock);
1433 	init_waitqueue_head(&log->l_flush_wait);
1434 
1435 	iclogp = &log->l_iclog;
1436 	/*
1437 	 * The amount of memory to allocate for the iclog structure is
1438 	 * rather funky due to the way the structure is defined.  It is
1439 	 * done this way so that we can use different sizes for machines
1440 	 * with different amounts of memory.  See the definition of
1441 	 * xlog_in_core_t in xfs_log_priv.h for details.
1442 	 */
1443 	ASSERT(log->l_iclog_size >= 4096);
1444 	for (i=0; i < log->l_iclog_bufs; i++) {
1445 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1446 		if (!*iclogp)
1447 			goto out_free_iclog;
1448 
1449 		iclog = *iclogp;
1450 		iclog->ic_prev = prev_iclog;
1451 		prev_iclog = iclog;
1452 
1453 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1454 						BTOBB(log->l_iclog_size), 0);
1455 		if (!bp)
1456 			goto out_free_iclog;
1457 
1458 		ASSERT(xfs_buf_islocked(bp));
1459 		xfs_buf_unlock(bp);
1460 
1461 		/* use high priority wq for log I/O completion */
1462 		bp->b_ioend_wq = mp->m_log_workqueue;
1463 		bp->b_iodone = xlog_iodone;
1464 		iclog->ic_bp = bp;
1465 		iclog->ic_data = bp->b_addr;
1466 #ifdef DEBUG
1467 		log->l_iclog_bak[i] = &iclog->ic_header;
1468 #endif
1469 		head = &iclog->ic_header;
1470 		memset(head, 0, sizeof(xlog_rec_header_t));
1471 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1472 		head->h_version = cpu_to_be32(
1473 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1474 		head->h_size = cpu_to_be32(log->l_iclog_size);
1475 		/* new fields */
1476 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1477 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1478 
1479 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1480 		iclog->ic_state = XLOG_STATE_ACTIVE;
1481 		iclog->ic_log = log;
1482 		atomic_set(&iclog->ic_refcnt, 0);
1483 		spin_lock_init(&iclog->ic_callback_lock);
1484 		iclog->ic_callback_tail = &(iclog->ic_callback);
1485 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1486 
1487 		init_waitqueue_head(&iclog->ic_force_wait);
1488 		init_waitqueue_head(&iclog->ic_write_wait);
1489 
1490 		iclogp = &iclog->ic_next;
1491 	}
1492 	*iclogp = log->l_iclog;			/* complete ring */
1493 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1494 
1495 	error = xlog_cil_init(log);
1496 	if (error)
1497 		goto out_free_iclog;
1498 	return log;
1499 
1500 out_free_iclog:
1501 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1502 		prev_iclog = iclog->ic_next;
1503 		if (iclog->ic_bp)
1504 			xfs_buf_free(iclog->ic_bp);
1505 		kmem_free(iclog);
1506 		if (prev_iclog == log->l_iclog)
1507 			break;
1508 	}
1509 	spinlock_destroy(&log->l_icloglock);
1510 	xfs_buf_free(log->l_xbuf);
1511 out_free_log:
1512 	kmem_free(log);
1513 out:
1514 	return ERR_PTR(error);
1515 }	/* xlog_alloc_log */
1516 
1517 
1518 /*
1519  * Write out the commit record of a transaction associated with the given
1520  * ticket.  Return the lsn of the commit record.
1521  */
1522 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1523 xlog_commit_record(
1524 	struct xlog		*log,
1525 	struct xlog_ticket	*ticket,
1526 	struct xlog_in_core	**iclog,
1527 	xfs_lsn_t		*commitlsnp)
1528 {
1529 	struct xfs_mount *mp = log->l_mp;
1530 	int	error;
1531 	struct xfs_log_iovec reg = {
1532 		.i_addr = NULL,
1533 		.i_len = 0,
1534 		.i_type = XLOG_REG_TYPE_COMMIT,
1535 	};
1536 	struct xfs_log_vec vec = {
1537 		.lv_niovecs = 1,
1538 		.lv_iovecp = &reg,
1539 	};
1540 
1541 	ASSERT_ALWAYS(iclog);
1542 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1543 					XLOG_COMMIT_TRANS);
1544 	if (error)
1545 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1546 	return error;
1547 }
1548 
1549 /*
1550  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1551  * log space.  This code pushes on the lsn which would supposedly free up
1552  * the 25% which we want to leave free.  We may need to adopt a policy which
1553  * pushes on an lsn which is further along in the log once we reach the high
1554  * water mark.  In this manner, we would be creating a low water mark.
1555  */
1556 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1557 xlog_grant_push_ail(
1558 	struct xlog	*log,
1559 	int		need_bytes)
1560 {
1561 	xfs_lsn_t	threshold_lsn = 0;
1562 	xfs_lsn_t	last_sync_lsn;
1563 	int		free_blocks;
1564 	int		free_bytes;
1565 	int		threshold_block;
1566 	int		threshold_cycle;
1567 	int		free_threshold;
1568 
1569 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1570 
1571 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1572 	free_blocks = BTOBBT(free_bytes);
1573 
1574 	/*
1575 	 * Set the threshold for the minimum number of free blocks in the
1576 	 * log to the maximum of what the caller needs, one quarter of the
1577 	 * log, and 256 blocks.
1578 	 */
1579 	free_threshold = BTOBB(need_bytes);
1580 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1581 	free_threshold = MAX(free_threshold, 256);
1582 	if (free_blocks >= free_threshold)
1583 		return;
1584 
1585 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1586 						&threshold_block);
1587 	threshold_block += free_threshold;
1588 	if (threshold_block >= log->l_logBBsize) {
1589 		threshold_block -= log->l_logBBsize;
1590 		threshold_cycle += 1;
1591 	}
1592 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1593 					threshold_block);
1594 	/*
1595 	 * Don't pass in an lsn greater than the lsn of the last
1596 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1597 	 * so that it doesn't change between the compare and the set.
1598 	 */
1599 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1600 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1601 		threshold_lsn = last_sync_lsn;
1602 
1603 	/*
1604 	 * Get the transaction layer to kick the dirty buffers out to
1605 	 * disk asynchronously. No point in trying to do this if
1606 	 * the filesystem is shutting down.
1607 	 */
1608 	if (!XLOG_FORCED_SHUTDOWN(log))
1609 		xfs_ail_push(log->l_ailp, threshold_lsn);
1610 }
1611 
1612 /*
1613  * Stamp cycle number in every block
1614  */
1615 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1616 xlog_pack_data(
1617 	struct xlog		*log,
1618 	struct xlog_in_core	*iclog,
1619 	int			roundoff)
1620 {
1621 	int			i, j, k;
1622 	int			size = iclog->ic_offset + roundoff;
1623 	__be32			cycle_lsn;
1624 	char			*dp;
1625 
1626 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1627 
1628 	dp = iclog->ic_datap;
1629 	for (i = 0; i < BTOBB(size); i++) {
1630 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1631 			break;
1632 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1633 		*(__be32 *)dp = cycle_lsn;
1634 		dp += BBSIZE;
1635 	}
1636 
1637 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1638 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1639 
1640 		for ( ; i < BTOBB(size); i++) {
1641 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1642 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1643 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1644 			*(__be32 *)dp = cycle_lsn;
1645 			dp += BBSIZE;
1646 		}
1647 
1648 		for (i = 1; i < log->l_iclog_heads; i++)
1649 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1650 	}
1651 }
1652 
1653 /*
1654  * Calculate the checksum for a log buffer.
1655  *
1656  * This is a little more complicated than it should be because the various
1657  * headers and the actual data are non-contiguous.
1658  */
1659 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1660 xlog_cksum(
1661 	struct xlog		*log,
1662 	struct xlog_rec_header	*rhead,
1663 	char			*dp,
1664 	int			size)
1665 {
1666 	__uint32_t		crc;
1667 
1668 	/* first generate the crc for the record header ... */
1669 	crc = xfs_start_cksum((char *)rhead,
1670 			      sizeof(struct xlog_rec_header),
1671 			      offsetof(struct xlog_rec_header, h_crc));
1672 
1673 	/* ... then for additional cycle data for v2 logs ... */
1674 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1675 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1676 		int		i;
1677 		int		xheads;
1678 
1679 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1680 		if (size % XLOG_HEADER_CYCLE_SIZE)
1681 			xheads++;
1682 
1683 		for (i = 1; i < xheads; i++) {
1684 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1685 				     sizeof(struct xlog_rec_ext_header));
1686 		}
1687 	}
1688 
1689 	/* ... and finally for the payload */
1690 	crc = crc32c(crc, dp, size);
1691 
1692 	return xfs_end_cksum(crc);
1693 }
1694 
1695 /*
1696  * The bdstrat callback function for log bufs. This gives us a central
1697  * place to trap bufs in case we get hit by a log I/O error and need to
1698  * shutdown. Actually, in practice, even when we didn't get a log error,
1699  * we transition the iclogs to IOERROR state *after* flushing all existing
1700  * iclogs to disk. This is because we don't want anymore new transactions to be
1701  * started or completed afterwards.
1702  *
1703  * We lock the iclogbufs here so that we can serialise against IO completion
1704  * during unmount. We might be processing a shutdown triggered during unmount,
1705  * and that can occur asynchronously to the unmount thread, and hence we need to
1706  * ensure that completes before tearing down the iclogbufs. Hence we need to
1707  * hold the buffer lock across the log IO to acheive that.
1708  */
1709 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1710 xlog_bdstrat(
1711 	struct xfs_buf		*bp)
1712 {
1713 	struct xlog_in_core	*iclog = bp->b_fspriv;
1714 
1715 	xfs_buf_lock(bp);
1716 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1717 		xfs_buf_ioerror(bp, -EIO);
1718 		xfs_buf_stale(bp);
1719 		xfs_buf_ioend(bp);
1720 		/*
1721 		 * It would seem logical to return EIO here, but we rely on
1722 		 * the log state machine to propagate I/O errors instead of
1723 		 * doing it here. Similarly, IO completion will unlock the
1724 		 * buffer, so we don't do it here.
1725 		 */
1726 		return 0;
1727 	}
1728 
1729 	xfs_buf_submit(bp);
1730 	return 0;
1731 }
1732 
1733 /*
1734  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1735  * fashion.  Previously, we should have moved the current iclog
1736  * ptr in the log to point to the next available iclog.  This allows further
1737  * write to continue while this code syncs out an iclog ready to go.
1738  * Before an in-core log can be written out, the data section must be scanned
1739  * to save away the 1st word of each BBSIZE block into the header.  We replace
1740  * it with the current cycle count.  Each BBSIZE block is tagged with the
1741  * cycle count because there in an implicit assumption that drives will
1742  * guarantee that entire 512 byte blocks get written at once.  In other words,
1743  * we can't have part of a 512 byte block written and part not written.  By
1744  * tagging each block, we will know which blocks are valid when recovering
1745  * after an unclean shutdown.
1746  *
1747  * This routine is single threaded on the iclog.  No other thread can be in
1748  * this routine with the same iclog.  Changing contents of iclog can there-
1749  * fore be done without grabbing the state machine lock.  Updating the global
1750  * log will require grabbing the lock though.
1751  *
1752  * The entire log manager uses a logical block numbering scheme.  Only
1753  * log_sync (and then only bwrite()) know about the fact that the log may
1754  * not start with block zero on a given device.  The log block start offset
1755  * is added immediately before calling bwrite().
1756  */
1757 
1758 STATIC int
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1759 xlog_sync(
1760 	struct xlog		*log,
1761 	struct xlog_in_core	*iclog)
1762 {
1763 	xfs_buf_t	*bp;
1764 	int		i;
1765 	uint		count;		/* byte count of bwrite */
1766 	uint		count_init;	/* initial count before roundup */
1767 	int		roundoff;       /* roundoff to BB or stripe */
1768 	int		split = 0;	/* split write into two regions */
1769 	int		error;
1770 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1771 	int		size;
1772 
1773 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1774 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1775 
1776 	/* Add for LR header */
1777 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1778 
1779 	/* Round out the log write size */
1780 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1781 		/* we have a v2 stripe unit to use */
1782 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1783 	} else {
1784 		count = BBTOB(BTOBB(count_init));
1785 	}
1786 	roundoff = count - count_init;
1787 	ASSERT(roundoff >= 0);
1788 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1789                 roundoff < log->l_mp->m_sb.sb_logsunit)
1790 		||
1791 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1792 		 roundoff < BBTOB(1)));
1793 
1794 	/* move grant heads by roundoff in sync */
1795 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1796 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1797 
1798 	/* put cycle number in every block */
1799 	xlog_pack_data(log, iclog, roundoff);
1800 
1801 	/* real byte length */
1802 	size = iclog->ic_offset;
1803 	if (v2)
1804 		size += roundoff;
1805 	iclog->ic_header.h_len = cpu_to_be32(size);
1806 
1807 	bp = iclog->ic_bp;
1808 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1809 
1810 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1811 
1812 	/* Do we need to split this write into 2 parts? */
1813 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1814 		char		*dptr;
1815 
1816 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1817 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1818 		iclog->ic_bwritecnt = 2;
1819 
1820 		/*
1821 		 * Bump the cycle numbers at the start of each block in the
1822 		 * part of the iclog that ends up in the buffer that gets
1823 		 * written to the start of the log.
1824 		 *
1825 		 * Watch out for the header magic number case, though.
1826 		 */
1827 		dptr = (char *)&iclog->ic_header + count;
1828 		for (i = 0; i < split; i += BBSIZE) {
1829 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1830 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1831 				cycle++;
1832 			*(__be32 *)dptr = cpu_to_be32(cycle);
1833 
1834 			dptr += BBSIZE;
1835 		}
1836 	} else {
1837 		iclog->ic_bwritecnt = 1;
1838 	}
1839 
1840 	/* calculcate the checksum */
1841 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1842 					    iclog->ic_datap, size);
1843 
1844 	bp->b_io_length = BTOBB(count);
1845 	bp->b_fspriv = iclog;
1846 	XFS_BUF_ZEROFLAGS(bp);
1847 	XFS_BUF_ASYNC(bp);
1848 	bp->b_flags |= XBF_SYNCIO;
1849 
1850 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1851 		bp->b_flags |= XBF_FUA;
1852 
1853 		/*
1854 		 * Flush the data device before flushing the log to make
1855 		 * sure all meta data written back from the AIL actually made
1856 		 * it to disk before stamping the new log tail LSN into the
1857 		 * log buffer.  For an external log we need to issue the
1858 		 * flush explicitly, and unfortunately synchronously here;
1859 		 * for an internal log we can simply use the block layer
1860 		 * state machine for preflushes.
1861 		 */
1862 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1863 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1864 		else
1865 			bp->b_flags |= XBF_FLUSH;
1866 	}
1867 
1868 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1869 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1870 
1871 	xlog_verify_iclog(log, iclog, count, true);
1872 
1873 	/* account for log which doesn't start at block #0 */
1874 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1875 	/*
1876 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1877 	 * is shutting down.
1878 	 */
1879 	XFS_BUF_WRITE(bp);
1880 
1881 	error = xlog_bdstrat(bp);
1882 	if (error) {
1883 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1884 		return error;
1885 	}
1886 	if (split) {
1887 		bp = iclog->ic_log->l_xbuf;
1888 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1889 		xfs_buf_associate_memory(bp,
1890 				(char *)&iclog->ic_header + count, split);
1891 		bp->b_fspriv = iclog;
1892 		XFS_BUF_ZEROFLAGS(bp);
1893 		XFS_BUF_ASYNC(bp);
1894 		bp->b_flags |= XBF_SYNCIO;
1895 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1896 			bp->b_flags |= XBF_FUA;
1897 
1898 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1899 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1900 
1901 		/* account for internal log which doesn't start at block #0 */
1902 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1903 		XFS_BUF_WRITE(bp);
1904 		error = xlog_bdstrat(bp);
1905 		if (error) {
1906 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1907 			return error;
1908 		}
1909 	}
1910 	return 0;
1911 }	/* xlog_sync */
1912 
1913 /*
1914  * Deallocate a log structure
1915  */
1916 STATIC void
xlog_dealloc_log(struct xlog * log)1917 xlog_dealloc_log(
1918 	struct xlog	*log)
1919 {
1920 	xlog_in_core_t	*iclog, *next_iclog;
1921 	int		i;
1922 
1923 	xlog_cil_destroy(log);
1924 
1925 	/*
1926 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1927 	 * is done before we tear down these buffers.
1928 	 */
1929 	iclog = log->l_iclog;
1930 	for (i = 0; i < log->l_iclog_bufs; i++) {
1931 		xfs_buf_lock(iclog->ic_bp);
1932 		xfs_buf_unlock(iclog->ic_bp);
1933 		iclog = iclog->ic_next;
1934 	}
1935 
1936 	/*
1937 	 * Always need to ensure that the extra buffer does not point to memory
1938 	 * owned by another log buffer before we free it. Also, cycle the lock
1939 	 * first to ensure we've completed IO on it.
1940 	 */
1941 	xfs_buf_lock(log->l_xbuf);
1942 	xfs_buf_unlock(log->l_xbuf);
1943 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1944 	xfs_buf_free(log->l_xbuf);
1945 
1946 	iclog = log->l_iclog;
1947 	for (i = 0; i < log->l_iclog_bufs; i++) {
1948 		xfs_buf_free(iclog->ic_bp);
1949 		next_iclog = iclog->ic_next;
1950 		kmem_free(iclog);
1951 		iclog = next_iclog;
1952 	}
1953 	spinlock_destroy(&log->l_icloglock);
1954 
1955 	log->l_mp->m_log = NULL;
1956 	kmem_free(log);
1957 }	/* xlog_dealloc_log */
1958 
1959 /*
1960  * Update counters atomically now that memcpy is done.
1961  */
1962 /* ARGSUSED */
1963 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1964 xlog_state_finish_copy(
1965 	struct xlog		*log,
1966 	struct xlog_in_core	*iclog,
1967 	int			record_cnt,
1968 	int			copy_bytes)
1969 {
1970 	spin_lock(&log->l_icloglock);
1971 
1972 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1973 	iclog->ic_offset += copy_bytes;
1974 
1975 	spin_unlock(&log->l_icloglock);
1976 }	/* xlog_state_finish_copy */
1977 
1978 
1979 
1980 
1981 /*
1982  * print out info relating to regions written which consume
1983  * the reservation
1984  */
1985 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1986 xlog_print_tic_res(
1987 	struct xfs_mount	*mp,
1988 	struct xlog_ticket	*ticket)
1989 {
1990 	uint i;
1991 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1992 
1993 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1994 	static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1995 	    "bformat",
1996 	    "bchunk",
1997 	    "efi_format",
1998 	    "efd_format",
1999 	    "iformat",
2000 	    "icore",
2001 	    "iext",
2002 	    "ibroot",
2003 	    "ilocal",
2004 	    "iattr_ext",
2005 	    "iattr_broot",
2006 	    "iattr_local",
2007 	    "qformat",
2008 	    "dquot",
2009 	    "quotaoff",
2010 	    "LR header",
2011 	    "unmount",
2012 	    "commit",
2013 	    "trans header"
2014 	};
2015 	static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2016 	    "SETATTR_NOT_SIZE",
2017 	    "SETATTR_SIZE",
2018 	    "INACTIVE",
2019 	    "CREATE",
2020 	    "CREATE_TRUNC",
2021 	    "TRUNCATE_FILE",
2022 	    "REMOVE",
2023 	    "LINK",
2024 	    "RENAME",
2025 	    "MKDIR",
2026 	    "RMDIR",
2027 	    "SYMLINK",
2028 	    "SET_DMATTRS",
2029 	    "GROWFS",
2030 	    "STRAT_WRITE",
2031 	    "DIOSTRAT",
2032 	    "WRITE_SYNC",
2033 	    "WRITEID",
2034 	    "ADDAFORK",
2035 	    "ATTRINVAL",
2036 	    "ATRUNCATE",
2037 	    "ATTR_SET",
2038 	    "ATTR_RM",
2039 	    "ATTR_FLAG",
2040 	    "CLEAR_AGI_BUCKET",
2041 	    "QM_SBCHANGE",
2042 	    "DUMMY1",
2043 	    "DUMMY2",
2044 	    "QM_QUOTAOFF",
2045 	    "QM_DQALLOC",
2046 	    "QM_SETQLIM",
2047 	    "QM_DQCLUSTER",
2048 	    "QM_QINOCREATE",
2049 	    "QM_QUOTAOFF_END",
2050 	    "SB_UNIT",
2051 	    "FSYNC_TS",
2052 	    "GROWFSRT_ALLOC",
2053 	    "GROWFSRT_ZERO",
2054 	    "GROWFSRT_FREE",
2055 	    "SWAPEXT"
2056 	};
2057 
2058 	xfs_warn(mp, "xlog_write: reservation summary:");
2059 	xfs_warn(mp, "  trans type  = %s (%u)",
2060 		 ((ticket->t_trans_type <= 0 ||
2061 		   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2062 		  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2063 		 ticket->t_trans_type);
2064 	xfs_warn(mp, "  unit res    = %d bytes",
2065 		 ticket->t_unit_res);
2066 	xfs_warn(mp, "  current res = %d bytes",
2067 		 ticket->t_curr_res);
2068 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2069 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2070 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2071 		 ticket->t_res_num_ophdrs, ophdr_spc);
2072 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2073 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2074 	xfs_warn(mp, "  num regions = %u",
2075 		 ticket->t_res_num);
2076 
2077 	for (i = 0; i < ticket->t_res_num; i++) {
2078 		uint r_type = ticket->t_res_arr[i].r_type;
2079 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2080 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2081 			    "bad-rtype" : res_type_str[r_type-1]),
2082 			    ticket->t_res_arr[i].r_len);
2083 	}
2084 
2085 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2086 		"xlog_write: reservation ran out. Need to up reservation");
2087 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2088 }
2089 
2090 /*
2091  * Calculate the potential space needed by the log vector.  Each region gets
2092  * its own xlog_op_header_t and may need to be double word aligned.
2093  */
2094 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2095 xlog_write_calc_vec_length(
2096 	struct xlog_ticket	*ticket,
2097 	struct xfs_log_vec	*log_vector)
2098 {
2099 	struct xfs_log_vec	*lv;
2100 	int			headers = 0;
2101 	int			len = 0;
2102 	int			i;
2103 
2104 	/* acct for start rec of xact */
2105 	if (ticket->t_flags & XLOG_TIC_INITED)
2106 		headers++;
2107 
2108 	for (lv = log_vector; lv; lv = lv->lv_next) {
2109 		/* we don't write ordered log vectors */
2110 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2111 			continue;
2112 
2113 		headers += lv->lv_niovecs;
2114 
2115 		for (i = 0; i < lv->lv_niovecs; i++) {
2116 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2117 
2118 			len += vecp->i_len;
2119 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2120 		}
2121 	}
2122 
2123 	ticket->t_res_num_ophdrs += headers;
2124 	len += headers * sizeof(struct xlog_op_header);
2125 
2126 	return len;
2127 }
2128 
2129 /*
2130  * If first write for transaction, insert start record  We can't be trying to
2131  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2132  */
2133 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2134 xlog_write_start_rec(
2135 	struct xlog_op_header	*ophdr,
2136 	struct xlog_ticket	*ticket)
2137 {
2138 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2139 		return 0;
2140 
2141 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2142 	ophdr->oh_clientid = ticket->t_clientid;
2143 	ophdr->oh_len = 0;
2144 	ophdr->oh_flags = XLOG_START_TRANS;
2145 	ophdr->oh_res2 = 0;
2146 
2147 	ticket->t_flags &= ~XLOG_TIC_INITED;
2148 
2149 	return sizeof(struct xlog_op_header);
2150 }
2151 
2152 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2153 xlog_write_setup_ophdr(
2154 	struct xlog		*log,
2155 	struct xlog_op_header	*ophdr,
2156 	struct xlog_ticket	*ticket,
2157 	uint			flags)
2158 {
2159 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2160 	ophdr->oh_clientid = ticket->t_clientid;
2161 	ophdr->oh_res2 = 0;
2162 
2163 	/* are we copying a commit or unmount record? */
2164 	ophdr->oh_flags = flags;
2165 
2166 	/*
2167 	 * We've seen logs corrupted with bad transaction client ids.  This
2168 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2169 	 * and shut down the filesystem.
2170 	 */
2171 	switch (ophdr->oh_clientid)  {
2172 	case XFS_TRANSACTION:
2173 	case XFS_VOLUME:
2174 	case XFS_LOG:
2175 		break;
2176 	default:
2177 		xfs_warn(log->l_mp,
2178 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2179 			ophdr->oh_clientid, ticket);
2180 		return NULL;
2181 	}
2182 
2183 	return ophdr;
2184 }
2185 
2186 /*
2187  * Set up the parameters of the region copy into the log. This has
2188  * to handle region write split across multiple log buffers - this
2189  * state is kept external to this function so that this code can
2190  * be written in an obvious, self documenting manner.
2191  */
2192 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2193 xlog_write_setup_copy(
2194 	struct xlog_ticket	*ticket,
2195 	struct xlog_op_header	*ophdr,
2196 	int			space_available,
2197 	int			space_required,
2198 	int			*copy_off,
2199 	int			*copy_len,
2200 	int			*last_was_partial_copy,
2201 	int			*bytes_consumed)
2202 {
2203 	int			still_to_copy;
2204 
2205 	still_to_copy = space_required - *bytes_consumed;
2206 	*copy_off = *bytes_consumed;
2207 
2208 	if (still_to_copy <= space_available) {
2209 		/* write of region completes here */
2210 		*copy_len = still_to_copy;
2211 		ophdr->oh_len = cpu_to_be32(*copy_len);
2212 		if (*last_was_partial_copy)
2213 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2214 		*last_was_partial_copy = 0;
2215 		*bytes_consumed = 0;
2216 		return 0;
2217 	}
2218 
2219 	/* partial write of region, needs extra log op header reservation */
2220 	*copy_len = space_available;
2221 	ophdr->oh_len = cpu_to_be32(*copy_len);
2222 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2223 	if (*last_was_partial_copy)
2224 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2225 	*bytes_consumed += *copy_len;
2226 	(*last_was_partial_copy)++;
2227 
2228 	/* account for new log op header */
2229 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2230 	ticket->t_res_num_ophdrs++;
2231 
2232 	return sizeof(struct xlog_op_header);
2233 }
2234 
2235 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2236 xlog_write_copy_finish(
2237 	struct xlog		*log,
2238 	struct xlog_in_core	*iclog,
2239 	uint			flags,
2240 	int			*record_cnt,
2241 	int			*data_cnt,
2242 	int			*partial_copy,
2243 	int			*partial_copy_len,
2244 	int			log_offset,
2245 	struct xlog_in_core	**commit_iclog)
2246 {
2247 	if (*partial_copy) {
2248 		/*
2249 		 * This iclog has already been marked WANT_SYNC by
2250 		 * xlog_state_get_iclog_space.
2251 		 */
2252 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2253 		*record_cnt = 0;
2254 		*data_cnt = 0;
2255 		return xlog_state_release_iclog(log, iclog);
2256 	}
2257 
2258 	*partial_copy = 0;
2259 	*partial_copy_len = 0;
2260 
2261 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2262 		/* no more space in this iclog - push it. */
2263 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2264 		*record_cnt = 0;
2265 		*data_cnt = 0;
2266 
2267 		spin_lock(&log->l_icloglock);
2268 		xlog_state_want_sync(log, iclog);
2269 		spin_unlock(&log->l_icloglock);
2270 
2271 		if (!commit_iclog)
2272 			return xlog_state_release_iclog(log, iclog);
2273 		ASSERT(flags & XLOG_COMMIT_TRANS);
2274 		*commit_iclog = iclog;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 /*
2281  * Write some region out to in-core log
2282  *
2283  * This will be called when writing externally provided regions or when
2284  * writing out a commit record for a given transaction.
2285  *
2286  * General algorithm:
2287  *	1. Find total length of this write.  This may include adding to the
2288  *		lengths passed in.
2289  *	2. Check whether we violate the tickets reservation.
2290  *	3. While writing to this iclog
2291  *	    A. Reserve as much space in this iclog as can get
2292  *	    B. If this is first write, save away start lsn
2293  *	    C. While writing this region:
2294  *		1. If first write of transaction, write start record
2295  *		2. Write log operation header (header per region)
2296  *		3. Find out if we can fit entire region into this iclog
2297  *		4. Potentially, verify destination memcpy ptr
2298  *		5. Memcpy (partial) region
2299  *		6. If partial copy, release iclog; otherwise, continue
2300  *			copying more regions into current iclog
2301  *	4. Mark want sync bit (in simulation mode)
2302  *	5. Release iclog for potential flush to on-disk log.
2303  *
2304  * ERRORS:
2305  * 1.	Panic if reservation is overrun.  This should never happen since
2306  *	reservation amounts are generated internal to the filesystem.
2307  * NOTES:
2308  * 1. Tickets are single threaded data structures.
2309  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2310  *	syncing routine.  When a single log_write region needs to span
2311  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2312  *	on all log operation writes which don't contain the end of the
2313  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2314  *	operation which contains the end of the continued log_write region.
2315  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2316  *	we don't really know exactly how much space will be used.  As a result,
2317  *	we don't update ic_offset until the end when we know exactly how many
2318  *	bytes have been written out.
2319  */
2320 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2321 xlog_write(
2322 	struct xlog		*log,
2323 	struct xfs_log_vec	*log_vector,
2324 	struct xlog_ticket	*ticket,
2325 	xfs_lsn_t		*start_lsn,
2326 	struct xlog_in_core	**commit_iclog,
2327 	uint			flags)
2328 {
2329 	struct xlog_in_core	*iclog = NULL;
2330 	struct xfs_log_iovec	*vecp;
2331 	struct xfs_log_vec	*lv;
2332 	int			len;
2333 	int			index;
2334 	int			partial_copy = 0;
2335 	int			partial_copy_len = 0;
2336 	int			contwr = 0;
2337 	int			record_cnt = 0;
2338 	int			data_cnt = 0;
2339 	int			error;
2340 
2341 	*start_lsn = 0;
2342 
2343 	len = xlog_write_calc_vec_length(ticket, log_vector);
2344 
2345 	/*
2346 	 * Region headers and bytes are already accounted for.
2347 	 * We only need to take into account start records and
2348 	 * split regions in this function.
2349 	 */
2350 	if (ticket->t_flags & XLOG_TIC_INITED)
2351 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2352 
2353 	/*
2354 	 * Commit record headers need to be accounted for. These
2355 	 * come in as separate writes so are easy to detect.
2356 	 */
2357 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2358 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2359 
2360 	if (ticket->t_curr_res < 0)
2361 		xlog_print_tic_res(log->l_mp, ticket);
2362 
2363 	index = 0;
2364 	lv = log_vector;
2365 	vecp = lv->lv_iovecp;
2366 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2367 		void		*ptr;
2368 		int		log_offset;
2369 
2370 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2371 						   &contwr, &log_offset);
2372 		if (error)
2373 			return error;
2374 
2375 		ASSERT(log_offset <= iclog->ic_size - 1);
2376 		ptr = iclog->ic_datap + log_offset;
2377 
2378 		/* start_lsn is the first lsn written to. That's all we need. */
2379 		if (!*start_lsn)
2380 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2381 
2382 		/*
2383 		 * This loop writes out as many regions as can fit in the amount
2384 		 * of space which was allocated by xlog_state_get_iclog_space().
2385 		 */
2386 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2387 			struct xfs_log_iovec	*reg;
2388 			struct xlog_op_header	*ophdr;
2389 			int			start_rec_copy;
2390 			int			copy_len;
2391 			int			copy_off;
2392 			bool			ordered = false;
2393 
2394 			/* ordered log vectors have no regions to write */
2395 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2396 				ASSERT(lv->lv_niovecs == 0);
2397 				ordered = true;
2398 				goto next_lv;
2399 			}
2400 
2401 			reg = &vecp[index];
2402 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2403 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2404 
2405 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2406 			if (start_rec_copy) {
2407 				record_cnt++;
2408 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2409 						   start_rec_copy);
2410 			}
2411 
2412 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2413 			if (!ophdr)
2414 				return -EIO;
2415 
2416 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2417 					   sizeof(struct xlog_op_header));
2418 
2419 			len += xlog_write_setup_copy(ticket, ophdr,
2420 						     iclog->ic_size-log_offset,
2421 						     reg->i_len,
2422 						     &copy_off, &copy_len,
2423 						     &partial_copy,
2424 						     &partial_copy_len);
2425 			xlog_verify_dest_ptr(log, ptr);
2426 
2427 			/*
2428 			 * Copy region.
2429 			 *
2430 			 * Unmount records just log an opheader, so can have
2431 			 * empty payloads with no data region to copy. Hence we
2432 			 * only copy the payload if the vector says it has data
2433 			 * to copy.
2434 			 */
2435 			ASSERT(copy_len >= 0);
2436 			if (copy_len > 0) {
2437 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2438 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2439 						   copy_len);
2440 			}
2441 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2442 			record_cnt++;
2443 			data_cnt += contwr ? copy_len : 0;
2444 
2445 			error = xlog_write_copy_finish(log, iclog, flags,
2446 						       &record_cnt, &data_cnt,
2447 						       &partial_copy,
2448 						       &partial_copy_len,
2449 						       log_offset,
2450 						       commit_iclog);
2451 			if (error)
2452 				return error;
2453 
2454 			/*
2455 			 * if we had a partial copy, we need to get more iclog
2456 			 * space but we don't want to increment the region
2457 			 * index because there is still more is this region to
2458 			 * write.
2459 			 *
2460 			 * If we completed writing this region, and we flushed
2461 			 * the iclog (indicated by resetting of the record
2462 			 * count), then we also need to get more log space. If
2463 			 * this was the last record, though, we are done and
2464 			 * can just return.
2465 			 */
2466 			if (partial_copy)
2467 				break;
2468 
2469 			if (++index == lv->lv_niovecs) {
2470 next_lv:
2471 				lv = lv->lv_next;
2472 				index = 0;
2473 				if (lv)
2474 					vecp = lv->lv_iovecp;
2475 			}
2476 			if (record_cnt == 0 && ordered == false) {
2477 				if (!lv)
2478 					return 0;
2479 				break;
2480 			}
2481 		}
2482 	}
2483 
2484 	ASSERT(len == 0);
2485 
2486 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2487 	if (!commit_iclog)
2488 		return xlog_state_release_iclog(log, iclog);
2489 
2490 	ASSERT(flags & XLOG_COMMIT_TRANS);
2491 	*commit_iclog = iclog;
2492 	return 0;
2493 }
2494 
2495 
2496 /*****************************************************************************
2497  *
2498  *		State Machine functions
2499  *
2500  *****************************************************************************
2501  */
2502 
2503 /* Clean iclogs starting from the head.  This ordering must be
2504  * maintained, so an iclog doesn't become ACTIVE beyond one that
2505  * is SYNCING.  This is also required to maintain the notion that we use
2506  * a ordered wait queue to hold off would be writers to the log when every
2507  * iclog is trying to sync to disk.
2508  *
2509  * State Change: DIRTY -> ACTIVE
2510  */
2511 STATIC void
xlog_state_clean_log(struct xlog * log)2512 xlog_state_clean_log(
2513 	struct xlog *log)
2514 {
2515 	xlog_in_core_t	*iclog;
2516 	int changed = 0;
2517 
2518 	iclog = log->l_iclog;
2519 	do {
2520 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2521 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2522 			iclog->ic_offset       = 0;
2523 			ASSERT(iclog->ic_callback == NULL);
2524 			/*
2525 			 * If the number of ops in this iclog indicate it just
2526 			 * contains the dummy transaction, we can
2527 			 * change state into IDLE (the second time around).
2528 			 * Otherwise we should change the state into
2529 			 * NEED a dummy.
2530 			 * We don't need to cover the dummy.
2531 			 */
2532 			if (!changed &&
2533 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2534 			   		XLOG_COVER_OPS)) {
2535 				changed = 1;
2536 			} else {
2537 				/*
2538 				 * We have two dirty iclogs so start over
2539 				 * This could also be num of ops indicates
2540 				 * this is not the dummy going out.
2541 				 */
2542 				changed = 2;
2543 			}
2544 			iclog->ic_header.h_num_logops = 0;
2545 			memset(iclog->ic_header.h_cycle_data, 0,
2546 			      sizeof(iclog->ic_header.h_cycle_data));
2547 			iclog->ic_header.h_lsn = 0;
2548 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2549 			/* do nothing */;
2550 		else
2551 			break;	/* stop cleaning */
2552 		iclog = iclog->ic_next;
2553 	} while (iclog != log->l_iclog);
2554 
2555 	/* log is locked when we are called */
2556 	/*
2557 	 * Change state for the dummy log recording.
2558 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2559 	 * we are done writing the dummy record.
2560 	 * If we are done with the second dummy recored (DONE2), then
2561 	 * we go to IDLE.
2562 	 */
2563 	if (changed) {
2564 		switch (log->l_covered_state) {
2565 		case XLOG_STATE_COVER_IDLE:
2566 		case XLOG_STATE_COVER_NEED:
2567 		case XLOG_STATE_COVER_NEED2:
2568 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2569 			break;
2570 
2571 		case XLOG_STATE_COVER_DONE:
2572 			if (changed == 1)
2573 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2574 			else
2575 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2576 			break;
2577 
2578 		case XLOG_STATE_COVER_DONE2:
2579 			if (changed == 1)
2580 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2581 			else
2582 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2583 			break;
2584 
2585 		default:
2586 			ASSERT(0);
2587 		}
2588 	}
2589 }	/* xlog_state_clean_log */
2590 
2591 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2592 xlog_get_lowest_lsn(
2593 	struct xlog	*log)
2594 {
2595 	xlog_in_core_t  *lsn_log;
2596 	xfs_lsn_t	lowest_lsn, lsn;
2597 
2598 	lsn_log = log->l_iclog;
2599 	lowest_lsn = 0;
2600 	do {
2601 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2602 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2603 		if ((lsn && !lowest_lsn) ||
2604 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2605 			lowest_lsn = lsn;
2606 		}
2607 	    }
2608 	    lsn_log = lsn_log->ic_next;
2609 	} while (lsn_log != log->l_iclog);
2610 	return lowest_lsn;
2611 }
2612 
2613 
2614 STATIC void
xlog_state_do_callback(struct xlog * log,int aborted,struct xlog_in_core * ciclog)2615 xlog_state_do_callback(
2616 	struct xlog		*log,
2617 	int			aborted,
2618 	struct xlog_in_core	*ciclog)
2619 {
2620 	xlog_in_core_t	   *iclog;
2621 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2622 						 * processed all iclogs once */
2623 	xfs_log_callback_t *cb, *cb_next;
2624 	int		   flushcnt = 0;
2625 	xfs_lsn_t	   lowest_lsn;
2626 	int		   ioerrors;	/* counter: iclogs with errors */
2627 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2628 	int		   funcdidcallbacks; /* flag: function did callbacks */
2629 	int		   repeats;	/* for issuing console warnings if
2630 					 * looping too many times */
2631 	int		   wake = 0;
2632 
2633 	spin_lock(&log->l_icloglock);
2634 	first_iclog = iclog = log->l_iclog;
2635 	ioerrors = 0;
2636 	funcdidcallbacks = 0;
2637 	repeats = 0;
2638 
2639 	do {
2640 		/*
2641 		 * Scan all iclogs starting with the one pointed to by the
2642 		 * log.  Reset this starting point each time the log is
2643 		 * unlocked (during callbacks).
2644 		 *
2645 		 * Keep looping through iclogs until one full pass is made
2646 		 * without running any callbacks.
2647 		 */
2648 		first_iclog = log->l_iclog;
2649 		iclog = log->l_iclog;
2650 		loopdidcallbacks = 0;
2651 		repeats++;
2652 
2653 		do {
2654 
2655 			/* skip all iclogs in the ACTIVE & DIRTY states */
2656 			if (iclog->ic_state &
2657 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2658 				iclog = iclog->ic_next;
2659 				continue;
2660 			}
2661 
2662 			/*
2663 			 * Between marking a filesystem SHUTDOWN and stopping
2664 			 * the log, we do flush all iclogs to disk (if there
2665 			 * wasn't a log I/O error). So, we do want things to
2666 			 * go smoothly in case of just a SHUTDOWN  w/o a
2667 			 * LOG_IO_ERROR.
2668 			 */
2669 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2670 				/*
2671 				 * Can only perform callbacks in order.  Since
2672 				 * this iclog is not in the DONE_SYNC/
2673 				 * DO_CALLBACK state, we skip the rest and
2674 				 * just try to clean up.  If we set our iclog
2675 				 * to DO_CALLBACK, we will not process it when
2676 				 * we retry since a previous iclog is in the
2677 				 * CALLBACK and the state cannot change since
2678 				 * we are holding the l_icloglock.
2679 				 */
2680 				if (!(iclog->ic_state &
2681 					(XLOG_STATE_DONE_SYNC |
2682 						 XLOG_STATE_DO_CALLBACK))) {
2683 					if (ciclog && (ciclog->ic_state ==
2684 							XLOG_STATE_DONE_SYNC)) {
2685 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2686 					}
2687 					break;
2688 				}
2689 				/*
2690 				 * We now have an iclog that is in either the
2691 				 * DO_CALLBACK or DONE_SYNC states. The other
2692 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2693 				 * caught by the above if and are going to
2694 				 * clean (i.e. we aren't doing their callbacks)
2695 				 * see the above if.
2696 				 */
2697 
2698 				/*
2699 				 * We will do one more check here to see if we
2700 				 * have chased our tail around.
2701 				 */
2702 
2703 				lowest_lsn = xlog_get_lowest_lsn(log);
2704 				if (lowest_lsn &&
2705 				    XFS_LSN_CMP(lowest_lsn,
2706 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2707 					iclog = iclog->ic_next;
2708 					continue; /* Leave this iclog for
2709 						   * another thread */
2710 				}
2711 
2712 				iclog->ic_state = XLOG_STATE_CALLBACK;
2713 
2714 
2715 				/*
2716 				 * Completion of a iclog IO does not imply that
2717 				 * a transaction has completed, as transactions
2718 				 * can be large enough to span many iclogs. We
2719 				 * cannot change the tail of the log half way
2720 				 * through a transaction as this may be the only
2721 				 * transaction in the log and moving th etail to
2722 				 * point to the middle of it will prevent
2723 				 * recovery from finding the start of the
2724 				 * transaction. Hence we should only update the
2725 				 * last_sync_lsn if this iclog contains
2726 				 * transaction completion callbacks on it.
2727 				 *
2728 				 * We have to do this before we drop the
2729 				 * icloglock to ensure we are the only one that
2730 				 * can update it.
2731 				 */
2732 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2733 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2734 				if (iclog->ic_callback)
2735 					atomic64_set(&log->l_last_sync_lsn,
2736 						be64_to_cpu(iclog->ic_header.h_lsn));
2737 
2738 			} else
2739 				ioerrors++;
2740 
2741 			spin_unlock(&log->l_icloglock);
2742 
2743 			/*
2744 			 * Keep processing entries in the callback list until
2745 			 * we come around and it is empty.  We need to
2746 			 * atomically see that the list is empty and change the
2747 			 * state to DIRTY so that we don't miss any more
2748 			 * callbacks being added.
2749 			 */
2750 			spin_lock(&iclog->ic_callback_lock);
2751 			cb = iclog->ic_callback;
2752 			while (cb) {
2753 				iclog->ic_callback_tail = &(iclog->ic_callback);
2754 				iclog->ic_callback = NULL;
2755 				spin_unlock(&iclog->ic_callback_lock);
2756 
2757 				/* perform callbacks in the order given */
2758 				for (; cb; cb = cb_next) {
2759 					cb_next = cb->cb_next;
2760 					cb->cb_func(cb->cb_arg, aborted);
2761 				}
2762 				spin_lock(&iclog->ic_callback_lock);
2763 				cb = iclog->ic_callback;
2764 			}
2765 
2766 			loopdidcallbacks++;
2767 			funcdidcallbacks++;
2768 
2769 			spin_lock(&log->l_icloglock);
2770 			ASSERT(iclog->ic_callback == NULL);
2771 			spin_unlock(&iclog->ic_callback_lock);
2772 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2773 				iclog->ic_state = XLOG_STATE_DIRTY;
2774 
2775 			/*
2776 			 * Transition from DIRTY to ACTIVE if applicable.
2777 			 * NOP if STATE_IOERROR.
2778 			 */
2779 			xlog_state_clean_log(log);
2780 
2781 			/* wake up threads waiting in xfs_log_force() */
2782 			wake_up_all(&iclog->ic_force_wait);
2783 
2784 			iclog = iclog->ic_next;
2785 		} while (first_iclog != iclog);
2786 
2787 		if (repeats > 5000) {
2788 			flushcnt += repeats;
2789 			repeats = 0;
2790 			xfs_warn(log->l_mp,
2791 				"%s: possible infinite loop (%d iterations)",
2792 				__func__, flushcnt);
2793 		}
2794 	} while (!ioerrors && loopdidcallbacks);
2795 
2796 	/*
2797 	 * make one last gasp attempt to see if iclogs are being left in
2798 	 * limbo..
2799 	 */
2800 #ifdef DEBUG
2801 	if (funcdidcallbacks) {
2802 		first_iclog = iclog = log->l_iclog;
2803 		do {
2804 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2805 			/*
2806 			 * Terminate the loop if iclogs are found in states
2807 			 * which will cause other threads to clean up iclogs.
2808 			 *
2809 			 * SYNCING - i/o completion will go through logs
2810 			 * DONE_SYNC - interrupt thread should be waiting for
2811 			 *              l_icloglock
2812 			 * IOERROR - give up hope all ye who enter here
2813 			 */
2814 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2815 			    iclog->ic_state == XLOG_STATE_SYNCING ||
2816 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2817 			    iclog->ic_state == XLOG_STATE_IOERROR )
2818 				break;
2819 			iclog = iclog->ic_next;
2820 		} while (first_iclog != iclog);
2821 	}
2822 #endif
2823 
2824 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2825 		wake = 1;
2826 	spin_unlock(&log->l_icloglock);
2827 
2828 	if (wake)
2829 		wake_up_all(&log->l_flush_wait);
2830 }
2831 
2832 
2833 /*
2834  * Finish transitioning this iclog to the dirty state.
2835  *
2836  * Make sure that we completely execute this routine only when this is
2837  * the last call to the iclog.  There is a good chance that iclog flushes,
2838  * when we reach the end of the physical log, get turned into 2 separate
2839  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2840  * routine.  By using the reference count bwritecnt, we guarantee that only
2841  * the second completion goes through.
2842  *
2843  * Callbacks could take time, so they are done outside the scope of the
2844  * global state machine log lock.
2845  */
2846 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2847 xlog_state_done_syncing(
2848 	xlog_in_core_t	*iclog,
2849 	int		aborted)
2850 {
2851 	struct xlog	   *log = iclog->ic_log;
2852 
2853 	spin_lock(&log->l_icloglock);
2854 
2855 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2856 	       iclog->ic_state == XLOG_STATE_IOERROR);
2857 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2858 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2859 
2860 
2861 	/*
2862 	 * If we got an error, either on the first buffer, or in the case of
2863 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2864 	 * and none should ever be attempted to be written to disk
2865 	 * again.
2866 	 */
2867 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2868 		if (--iclog->ic_bwritecnt == 1) {
2869 			spin_unlock(&log->l_icloglock);
2870 			return;
2871 		}
2872 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2873 	}
2874 
2875 	/*
2876 	 * Someone could be sleeping prior to writing out the next
2877 	 * iclog buffer, we wake them all, one will get to do the
2878 	 * I/O, the others get to wait for the result.
2879 	 */
2880 	wake_up_all(&iclog->ic_write_wait);
2881 	spin_unlock(&log->l_icloglock);
2882 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2883 }	/* xlog_state_done_syncing */
2884 
2885 
2886 /*
2887  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2888  * sleep.  We wait on the flush queue on the head iclog as that should be
2889  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2890  * we will wait here and all new writes will sleep until a sync completes.
2891  *
2892  * The in-core logs are used in a circular fashion. They are not used
2893  * out-of-order even when an iclog past the head is free.
2894  *
2895  * return:
2896  *	* log_offset where xlog_write() can start writing into the in-core
2897  *		log's data space.
2898  *	* in-core log pointer to which xlog_write() should write.
2899  *	* boolean indicating this is a continued write to an in-core log.
2900  *		If this is the last write, then the in-core log's offset field
2901  *		needs to be incremented, depending on the amount of data which
2902  *		is copied.
2903  */
2904 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2905 xlog_state_get_iclog_space(
2906 	struct xlog		*log,
2907 	int			len,
2908 	struct xlog_in_core	**iclogp,
2909 	struct xlog_ticket	*ticket,
2910 	int			*continued_write,
2911 	int			*logoffsetp)
2912 {
2913 	int		  log_offset;
2914 	xlog_rec_header_t *head;
2915 	xlog_in_core_t	  *iclog;
2916 	int		  error;
2917 
2918 restart:
2919 	spin_lock(&log->l_icloglock);
2920 	if (XLOG_FORCED_SHUTDOWN(log)) {
2921 		spin_unlock(&log->l_icloglock);
2922 		return -EIO;
2923 	}
2924 
2925 	iclog = log->l_iclog;
2926 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2927 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2928 
2929 		/* Wait for log writes to have flushed */
2930 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2931 		goto restart;
2932 	}
2933 
2934 	head = &iclog->ic_header;
2935 
2936 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2937 	log_offset = iclog->ic_offset;
2938 
2939 	/* On the 1st write to an iclog, figure out lsn.  This works
2940 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2941 	 * committing to.  If the offset is set, that's how many blocks
2942 	 * must be written.
2943 	 */
2944 	if (log_offset == 0) {
2945 		ticket->t_curr_res -= log->l_iclog_hsize;
2946 		xlog_tic_add_region(ticket,
2947 				    log->l_iclog_hsize,
2948 				    XLOG_REG_TYPE_LRHEADER);
2949 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2950 		head->h_lsn = cpu_to_be64(
2951 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2952 		ASSERT(log->l_curr_block >= 0);
2953 	}
2954 
2955 	/* If there is enough room to write everything, then do it.  Otherwise,
2956 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2957 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2958 	 * until you know exactly how many bytes get copied.  Therefore, wait
2959 	 * until later to update ic_offset.
2960 	 *
2961 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2962 	 * can fit into remaining data section.
2963 	 */
2964 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2965 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2966 
2967 		/*
2968 		 * If I'm the only one writing to this iclog, sync it to disk.
2969 		 * We need to do an atomic compare and decrement here to avoid
2970 		 * racing with concurrent atomic_dec_and_lock() calls in
2971 		 * xlog_state_release_iclog() when there is more than one
2972 		 * reference to the iclog.
2973 		 */
2974 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2975 			/* we are the only one */
2976 			spin_unlock(&log->l_icloglock);
2977 			error = xlog_state_release_iclog(log, iclog);
2978 			if (error)
2979 				return error;
2980 		} else {
2981 			spin_unlock(&log->l_icloglock);
2982 		}
2983 		goto restart;
2984 	}
2985 
2986 	/* Do we have enough room to write the full amount in the remainder
2987 	 * of this iclog?  Or must we continue a write on the next iclog and
2988 	 * mark this iclog as completely taken?  In the case where we switch
2989 	 * iclogs (to mark it taken), this particular iclog will release/sync
2990 	 * to disk in xlog_write().
2991 	 */
2992 	if (len <= iclog->ic_size - iclog->ic_offset) {
2993 		*continued_write = 0;
2994 		iclog->ic_offset += len;
2995 	} else {
2996 		*continued_write = 1;
2997 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2998 	}
2999 	*iclogp = iclog;
3000 
3001 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3002 	spin_unlock(&log->l_icloglock);
3003 
3004 	*logoffsetp = log_offset;
3005 	return 0;
3006 }	/* xlog_state_get_iclog_space */
3007 
3008 /* The first cnt-1 times through here we don't need to
3009  * move the grant write head because the permanent
3010  * reservation has reserved cnt times the unit amount.
3011  * Release part of current permanent unit reservation and
3012  * reset current reservation to be one units worth.  Also
3013  * move grant reservation head forward.
3014  */
3015 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3016 xlog_regrant_reserve_log_space(
3017 	struct xlog		*log,
3018 	struct xlog_ticket	*ticket)
3019 {
3020 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3021 
3022 	if (ticket->t_cnt > 0)
3023 		ticket->t_cnt--;
3024 
3025 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3026 					ticket->t_curr_res);
3027 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3028 					ticket->t_curr_res);
3029 	ticket->t_curr_res = ticket->t_unit_res;
3030 	xlog_tic_reset_res(ticket);
3031 
3032 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3033 
3034 	/* just return if we still have some of the pre-reserved space */
3035 	if (ticket->t_cnt > 0)
3036 		return;
3037 
3038 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3039 					ticket->t_unit_res);
3040 
3041 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3042 
3043 	ticket->t_curr_res = ticket->t_unit_res;
3044 	xlog_tic_reset_res(ticket);
3045 }	/* xlog_regrant_reserve_log_space */
3046 
3047 
3048 /*
3049  * Give back the space left from a reservation.
3050  *
3051  * All the information we need to make a correct determination of space left
3052  * is present.  For non-permanent reservations, things are quite easy.  The
3053  * count should have been decremented to zero.  We only need to deal with the
3054  * space remaining in the current reservation part of the ticket.  If the
3055  * ticket contains a permanent reservation, there may be left over space which
3056  * needs to be released.  A count of N means that N-1 refills of the current
3057  * reservation can be done before we need to ask for more space.  The first
3058  * one goes to fill up the first current reservation.  Once we run out of
3059  * space, the count will stay at zero and the only space remaining will be
3060  * in the current reservation field.
3061  */
3062 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3063 xlog_ungrant_log_space(
3064 	struct xlog		*log,
3065 	struct xlog_ticket	*ticket)
3066 {
3067 	int	bytes;
3068 
3069 	if (ticket->t_cnt > 0)
3070 		ticket->t_cnt--;
3071 
3072 	trace_xfs_log_ungrant_enter(log, ticket);
3073 	trace_xfs_log_ungrant_sub(log, ticket);
3074 
3075 	/*
3076 	 * If this is a permanent reservation ticket, we may be able to free
3077 	 * up more space based on the remaining count.
3078 	 */
3079 	bytes = ticket->t_curr_res;
3080 	if (ticket->t_cnt > 0) {
3081 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3082 		bytes += ticket->t_unit_res*ticket->t_cnt;
3083 	}
3084 
3085 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3086 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3087 
3088 	trace_xfs_log_ungrant_exit(log, ticket);
3089 
3090 	xfs_log_space_wake(log->l_mp);
3091 }
3092 
3093 /*
3094  * Flush iclog to disk if this is the last reference to the given iclog and
3095  * the WANT_SYNC bit is set.
3096  *
3097  * When this function is entered, the iclog is not necessarily in the
3098  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3099  *
3100  *
3101  */
3102 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3103 xlog_state_release_iclog(
3104 	struct xlog		*log,
3105 	struct xlog_in_core	*iclog)
3106 {
3107 	int		sync = 0;	/* do we sync? */
3108 
3109 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3110 		return -EIO;
3111 
3112 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3113 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3114 		return 0;
3115 
3116 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3117 		spin_unlock(&log->l_icloglock);
3118 		return -EIO;
3119 	}
3120 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3121 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3122 
3123 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3124 		/* update tail before writing to iclog */
3125 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3126 		sync++;
3127 		iclog->ic_state = XLOG_STATE_SYNCING;
3128 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3129 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3130 		/* cycle incremented when incrementing curr_block */
3131 	}
3132 	spin_unlock(&log->l_icloglock);
3133 
3134 	/*
3135 	 * We let the log lock go, so it's possible that we hit a log I/O
3136 	 * error or some other SHUTDOWN condition that marks the iclog
3137 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3138 	 * this iclog has consistent data, so we ignore IOERROR
3139 	 * flags after this point.
3140 	 */
3141 	if (sync)
3142 		return xlog_sync(log, iclog);
3143 	return 0;
3144 }	/* xlog_state_release_iclog */
3145 
3146 
3147 /*
3148  * This routine will mark the current iclog in the ring as WANT_SYNC
3149  * and move the current iclog pointer to the next iclog in the ring.
3150  * When this routine is called from xlog_state_get_iclog_space(), the
3151  * exact size of the iclog has not yet been determined.  All we know is
3152  * that every data block.  We have run out of space in this log record.
3153  */
3154 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3155 xlog_state_switch_iclogs(
3156 	struct xlog		*log,
3157 	struct xlog_in_core	*iclog,
3158 	int			eventual_size)
3159 {
3160 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3161 	if (!eventual_size)
3162 		eventual_size = iclog->ic_offset;
3163 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3164 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3165 	log->l_prev_block = log->l_curr_block;
3166 	log->l_prev_cycle = log->l_curr_cycle;
3167 
3168 	/* roll log?: ic_offset changed later */
3169 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3170 
3171 	/* Round up to next log-sunit */
3172 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3173 	    log->l_mp->m_sb.sb_logsunit > 1) {
3174 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3175 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3176 	}
3177 
3178 	if (log->l_curr_block >= log->l_logBBsize) {
3179 		/*
3180 		 * Rewind the current block before the cycle is bumped to make
3181 		 * sure that the combined LSN never transiently moves forward
3182 		 * when the log wraps to the next cycle. This is to support the
3183 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3184 		 * other cases should acquire l_icloglock.
3185 		 */
3186 		log->l_curr_block -= log->l_logBBsize;
3187 		ASSERT(log->l_curr_block >= 0);
3188 		smp_wmb();
3189 		log->l_curr_cycle++;
3190 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3191 			log->l_curr_cycle++;
3192 	}
3193 	ASSERT(iclog == log->l_iclog);
3194 	log->l_iclog = iclog->ic_next;
3195 }	/* xlog_state_switch_iclogs */
3196 
3197 /*
3198  * Write out all data in the in-core log as of this exact moment in time.
3199  *
3200  * Data may be written to the in-core log during this call.  However,
3201  * we don't guarantee this data will be written out.  A change from past
3202  * implementation means this routine will *not* write out zero length LRs.
3203  *
3204  * Basically, we try and perform an intelligent scan of the in-core logs.
3205  * If we determine there is no flushable data, we just return.  There is no
3206  * flushable data if:
3207  *
3208  *	1. the current iclog is active and has no data; the previous iclog
3209  *		is in the active or dirty state.
3210  *	2. the current iclog is drity, and the previous iclog is in the
3211  *		active or dirty state.
3212  *
3213  * We may sleep if:
3214  *
3215  *	1. the current iclog is not in the active nor dirty state.
3216  *	2. the current iclog dirty, and the previous iclog is not in the
3217  *		active nor dirty state.
3218  *	3. the current iclog is active, and there is another thread writing
3219  *		to this particular iclog.
3220  *	4. a) the current iclog is active and has no other writers
3221  *	   b) when we return from flushing out this iclog, it is still
3222  *		not in the active nor dirty state.
3223  */
3224 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)3225 _xfs_log_force(
3226 	struct xfs_mount	*mp,
3227 	uint			flags,
3228 	int			*log_flushed)
3229 {
3230 	struct xlog		*log = mp->m_log;
3231 	struct xlog_in_core	*iclog;
3232 	xfs_lsn_t		lsn;
3233 
3234 	XFS_STATS_INC(mp, xs_log_force);
3235 
3236 	xlog_cil_force(log);
3237 
3238 	spin_lock(&log->l_icloglock);
3239 
3240 	iclog = log->l_iclog;
3241 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3242 		spin_unlock(&log->l_icloglock);
3243 		return -EIO;
3244 	}
3245 
3246 	/* If the head iclog is not active nor dirty, we just attach
3247 	 * ourselves to the head and go to sleep.
3248 	 */
3249 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3250 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3251 		/*
3252 		 * If the head is dirty or (active and empty), then
3253 		 * we need to look at the previous iclog.  If the previous
3254 		 * iclog is active or dirty we are done.  There is nothing
3255 		 * to sync out.  Otherwise, we attach ourselves to the
3256 		 * previous iclog and go to sleep.
3257 		 */
3258 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3259 		    (atomic_read(&iclog->ic_refcnt) == 0
3260 		     && iclog->ic_offset == 0)) {
3261 			iclog = iclog->ic_prev;
3262 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3263 			    iclog->ic_state == XLOG_STATE_DIRTY)
3264 				goto no_sleep;
3265 			else
3266 				goto maybe_sleep;
3267 		} else {
3268 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3269 				/* We are the only one with access to this
3270 				 * iclog.  Flush it out now.  There should
3271 				 * be a roundoff of zero to show that someone
3272 				 * has already taken care of the roundoff from
3273 				 * the previous sync.
3274 				 */
3275 				atomic_inc(&iclog->ic_refcnt);
3276 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3277 				xlog_state_switch_iclogs(log, iclog, 0);
3278 				spin_unlock(&log->l_icloglock);
3279 
3280 				if (xlog_state_release_iclog(log, iclog))
3281 					return -EIO;
3282 
3283 				if (log_flushed)
3284 					*log_flushed = 1;
3285 				spin_lock(&log->l_icloglock);
3286 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3287 				    iclog->ic_state != XLOG_STATE_DIRTY)
3288 					goto maybe_sleep;
3289 				else
3290 					goto no_sleep;
3291 			} else {
3292 				/* Someone else is writing to this iclog.
3293 				 * Use its call to flush out the data.  However,
3294 				 * the other thread may not force out this LR,
3295 				 * so we mark it WANT_SYNC.
3296 				 */
3297 				xlog_state_switch_iclogs(log, iclog, 0);
3298 				goto maybe_sleep;
3299 			}
3300 		}
3301 	}
3302 
3303 	/* By the time we come around again, the iclog could've been filled
3304 	 * which would give it another lsn.  If we have a new lsn, just
3305 	 * return because the relevant data has been flushed.
3306 	 */
3307 maybe_sleep:
3308 	if (flags & XFS_LOG_SYNC) {
3309 		/*
3310 		 * We must check if we're shutting down here, before
3311 		 * we wait, while we're holding the l_icloglock.
3312 		 * Then we check again after waking up, in case our
3313 		 * sleep was disturbed by a bad news.
3314 		 */
3315 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3316 			spin_unlock(&log->l_icloglock);
3317 			return -EIO;
3318 		}
3319 		XFS_STATS_INC(mp, xs_log_force_sleep);
3320 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3321 		/*
3322 		 * No need to grab the log lock here since we're
3323 		 * only deciding whether or not to return EIO
3324 		 * and the memory read should be atomic.
3325 		 */
3326 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3327 			return -EIO;
3328 	} else {
3329 
3330 no_sleep:
3331 		spin_unlock(&log->l_icloglock);
3332 	}
3333 	return 0;
3334 }
3335 
3336 /*
3337  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3338  * about errors or whether the log was flushed or not. This is the normal
3339  * interface to use when trying to unpin items or move the log forward.
3340  */
3341 void
xfs_log_force(xfs_mount_t * mp,uint flags)3342 xfs_log_force(
3343 	xfs_mount_t	*mp,
3344 	uint		flags)
3345 {
3346 	int	error;
3347 
3348 	trace_xfs_log_force(mp, 0);
3349 	error = _xfs_log_force(mp, flags, NULL);
3350 	if (error)
3351 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3352 }
3353 
3354 /*
3355  * Force the in-core log to disk for a specific LSN.
3356  *
3357  * Find in-core log with lsn.
3358  *	If it is in the DIRTY state, just return.
3359  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3360  *		state and go to sleep or return.
3361  *	If it is in any other state, go to sleep or return.
3362  *
3363  * Synchronous forces are implemented with a signal variable. All callers
3364  * to force a given lsn to disk will wait on a the sv attached to the
3365  * specific in-core log.  When given in-core log finally completes its
3366  * write to disk, that thread will wake up all threads waiting on the
3367  * sv.
3368  */
3369 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3370 _xfs_log_force_lsn(
3371 	struct xfs_mount	*mp,
3372 	xfs_lsn_t		lsn,
3373 	uint			flags,
3374 	int			*log_flushed)
3375 {
3376 	struct xlog		*log = mp->m_log;
3377 	struct xlog_in_core	*iclog;
3378 	int			already_slept = 0;
3379 
3380 	ASSERT(lsn != 0);
3381 
3382 	XFS_STATS_INC(mp, xs_log_force);
3383 
3384 	lsn = xlog_cil_force_lsn(log, lsn);
3385 	if (lsn == NULLCOMMITLSN)
3386 		return 0;
3387 
3388 try_again:
3389 	spin_lock(&log->l_icloglock);
3390 	iclog = log->l_iclog;
3391 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3392 		spin_unlock(&log->l_icloglock);
3393 		return -EIO;
3394 	}
3395 
3396 	do {
3397 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3398 			iclog = iclog->ic_next;
3399 			continue;
3400 		}
3401 
3402 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3403 			spin_unlock(&log->l_icloglock);
3404 			return 0;
3405 		}
3406 
3407 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3408 			/*
3409 			 * We sleep here if we haven't already slept (e.g.
3410 			 * this is the first time we've looked at the correct
3411 			 * iclog buf) and the buffer before us is going to
3412 			 * be sync'ed. The reason for this is that if we
3413 			 * are doing sync transactions here, by waiting for
3414 			 * the previous I/O to complete, we can allow a few
3415 			 * more transactions into this iclog before we close
3416 			 * it down.
3417 			 *
3418 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3419 			 * up the refcnt so we can release the log (which
3420 			 * drops the ref count).  The state switch keeps new
3421 			 * transaction commits from using this buffer.  When
3422 			 * the current commits finish writing into the buffer,
3423 			 * the refcount will drop to zero and the buffer will
3424 			 * go out then.
3425 			 */
3426 			if (!already_slept &&
3427 			    (iclog->ic_prev->ic_state &
3428 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3429 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3430 
3431 				XFS_STATS_INC(mp, xs_log_force_sleep);
3432 
3433 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3434 							&log->l_icloglock);
3435 				already_slept = 1;
3436 				goto try_again;
3437 			}
3438 			atomic_inc(&iclog->ic_refcnt);
3439 			xlog_state_switch_iclogs(log, iclog, 0);
3440 			spin_unlock(&log->l_icloglock);
3441 			if (xlog_state_release_iclog(log, iclog))
3442 				return -EIO;
3443 			if (log_flushed)
3444 				*log_flushed = 1;
3445 			spin_lock(&log->l_icloglock);
3446 		}
3447 
3448 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3449 		    !(iclog->ic_state &
3450 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3451 			/*
3452 			 * Don't wait on completion if we know that we've
3453 			 * gotten a log write error.
3454 			 */
3455 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3456 				spin_unlock(&log->l_icloglock);
3457 				return -EIO;
3458 			}
3459 			XFS_STATS_INC(mp, xs_log_force_sleep);
3460 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3461 			/*
3462 			 * No need to grab the log lock here since we're
3463 			 * only deciding whether or not to return EIO
3464 			 * and the memory read should be atomic.
3465 			 */
3466 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3467 				return -EIO;
3468 		} else {		/* just return */
3469 			spin_unlock(&log->l_icloglock);
3470 		}
3471 
3472 		return 0;
3473 	} while (iclog != log->l_iclog);
3474 
3475 	spin_unlock(&log->l_icloglock);
3476 	return 0;
3477 }
3478 
3479 /*
3480  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3481  * about errors or whether the log was flushed or not. This is the normal
3482  * interface to use when trying to unpin items or move the log forward.
3483  */
3484 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3485 xfs_log_force_lsn(
3486 	xfs_mount_t	*mp,
3487 	xfs_lsn_t	lsn,
3488 	uint		flags)
3489 {
3490 	int	error;
3491 
3492 	trace_xfs_log_force(mp, lsn);
3493 	error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3494 	if (error)
3495 		xfs_warn(mp, "%s: error %d returned.", __func__, error);
3496 }
3497 
3498 /*
3499  * Called when we want to mark the current iclog as being ready to sync to
3500  * disk.
3501  */
3502 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3503 xlog_state_want_sync(
3504 	struct xlog		*log,
3505 	struct xlog_in_core	*iclog)
3506 {
3507 	assert_spin_locked(&log->l_icloglock);
3508 
3509 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3510 		xlog_state_switch_iclogs(log, iclog, 0);
3511 	} else {
3512 		ASSERT(iclog->ic_state &
3513 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3514 	}
3515 }
3516 
3517 
3518 /*****************************************************************************
3519  *
3520  *		TICKET functions
3521  *
3522  *****************************************************************************
3523  */
3524 
3525 /*
3526  * Free a used ticket when its refcount falls to zero.
3527  */
3528 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3529 xfs_log_ticket_put(
3530 	xlog_ticket_t	*ticket)
3531 {
3532 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3533 	if (atomic_dec_and_test(&ticket->t_ref))
3534 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3535 }
3536 
3537 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3538 xfs_log_ticket_get(
3539 	xlog_ticket_t	*ticket)
3540 {
3541 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3542 	atomic_inc(&ticket->t_ref);
3543 	return ticket;
3544 }
3545 
3546 /*
3547  * Figure out the total log space unit (in bytes) that would be
3548  * required for a log ticket.
3549  */
3550 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3551 xfs_log_calc_unit_res(
3552 	struct xfs_mount	*mp,
3553 	int			unit_bytes)
3554 {
3555 	struct xlog		*log = mp->m_log;
3556 	int			iclog_space;
3557 	uint			num_headers;
3558 
3559 	/*
3560 	 * Permanent reservations have up to 'cnt'-1 active log operations
3561 	 * in the log.  A unit in this case is the amount of space for one
3562 	 * of these log operations.  Normal reservations have a cnt of 1
3563 	 * and their unit amount is the total amount of space required.
3564 	 *
3565 	 * The following lines of code account for non-transaction data
3566 	 * which occupy space in the on-disk log.
3567 	 *
3568 	 * Normal form of a transaction is:
3569 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3570 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3571 	 *
3572 	 * We need to account for all the leadup data and trailer data
3573 	 * around the transaction data.
3574 	 * And then we need to account for the worst case in terms of using
3575 	 * more space.
3576 	 * The worst case will happen if:
3577 	 * - the placement of the transaction happens to be such that the
3578 	 *   roundoff is at its maximum
3579 	 * - the transaction data is synced before the commit record is synced
3580 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3581 	 *   Therefore the commit record is in its own Log Record.
3582 	 *   This can happen as the commit record is called with its
3583 	 *   own region to xlog_write().
3584 	 *   This then means that in the worst case, roundoff can happen for
3585 	 *   the commit-rec as well.
3586 	 *   The commit-rec is smaller than padding in this scenario and so it is
3587 	 *   not added separately.
3588 	 */
3589 
3590 	/* for trans header */
3591 	unit_bytes += sizeof(xlog_op_header_t);
3592 	unit_bytes += sizeof(xfs_trans_header_t);
3593 
3594 	/* for start-rec */
3595 	unit_bytes += sizeof(xlog_op_header_t);
3596 
3597 	/*
3598 	 * for LR headers - the space for data in an iclog is the size minus
3599 	 * the space used for the headers. If we use the iclog size, then we
3600 	 * undercalculate the number of headers required.
3601 	 *
3602 	 * Furthermore - the addition of op headers for split-recs might
3603 	 * increase the space required enough to require more log and op
3604 	 * headers, so take that into account too.
3605 	 *
3606 	 * IMPORTANT: This reservation makes the assumption that if this
3607 	 * transaction is the first in an iclog and hence has the LR headers
3608 	 * accounted to it, then the remaining space in the iclog is
3609 	 * exclusively for this transaction.  i.e. if the transaction is larger
3610 	 * than the iclog, it will be the only thing in that iclog.
3611 	 * Fundamentally, this means we must pass the entire log vector to
3612 	 * xlog_write to guarantee this.
3613 	 */
3614 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3615 	num_headers = howmany(unit_bytes, iclog_space);
3616 
3617 	/* for split-recs - ophdrs added when data split over LRs */
3618 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3619 
3620 	/* add extra header reservations if we overrun */
3621 	while (!num_headers ||
3622 	       howmany(unit_bytes, iclog_space) > num_headers) {
3623 		unit_bytes += sizeof(xlog_op_header_t);
3624 		num_headers++;
3625 	}
3626 	unit_bytes += log->l_iclog_hsize * num_headers;
3627 
3628 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3629 	unit_bytes += log->l_iclog_hsize;
3630 
3631 	/* for roundoff padding for transaction data and one for commit record */
3632 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3633 		/* log su roundoff */
3634 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3635 	} else {
3636 		/* BB roundoff */
3637 		unit_bytes += 2 * BBSIZE;
3638         }
3639 
3640 	return unit_bytes;
3641 }
3642 
3643 /*
3644  * Allocate and initialise a new log ticket.
3645  */
3646 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3647 xlog_ticket_alloc(
3648 	struct xlog		*log,
3649 	int			unit_bytes,
3650 	int			cnt,
3651 	char			client,
3652 	bool			permanent,
3653 	xfs_km_flags_t		alloc_flags)
3654 {
3655 	struct xlog_ticket	*tic;
3656 	int			unit_res;
3657 
3658 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3659 	if (!tic)
3660 		return NULL;
3661 
3662 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3663 
3664 	atomic_set(&tic->t_ref, 1);
3665 	tic->t_task		= current;
3666 	INIT_LIST_HEAD(&tic->t_queue);
3667 	tic->t_unit_res		= unit_res;
3668 	tic->t_curr_res		= unit_res;
3669 	tic->t_cnt		= cnt;
3670 	tic->t_ocnt		= cnt;
3671 	tic->t_tid		= prandom_u32();
3672 	tic->t_clientid		= client;
3673 	tic->t_flags		= XLOG_TIC_INITED;
3674 	tic->t_trans_type	= 0;
3675 	if (permanent)
3676 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3677 
3678 	xlog_tic_reset_res(tic);
3679 
3680 	return tic;
3681 }
3682 
3683 
3684 /******************************************************************************
3685  *
3686  *		Log debug routines
3687  *
3688  ******************************************************************************
3689  */
3690 #if defined(DEBUG)
3691 /*
3692  * Make sure that the destination ptr is within the valid data region of
3693  * one of the iclogs.  This uses backup pointers stored in a different
3694  * part of the log in case we trash the log structure.
3695  */
3696 void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3697 xlog_verify_dest_ptr(
3698 	struct xlog	*log,
3699 	void		*ptr)
3700 {
3701 	int i;
3702 	int good_ptr = 0;
3703 
3704 	for (i = 0; i < log->l_iclog_bufs; i++) {
3705 		if (ptr >= log->l_iclog_bak[i] &&
3706 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3707 			good_ptr++;
3708 	}
3709 
3710 	if (!good_ptr)
3711 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3712 }
3713 
3714 /*
3715  * Check to make sure the grant write head didn't just over lap the tail.  If
3716  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3717  * the cycles differ by exactly one and check the byte count.
3718  *
3719  * This check is run unlocked, so can give false positives. Rather than assert
3720  * on failures, use a warn-once flag and a panic tag to allow the admin to
3721  * determine if they want to panic the machine when such an error occurs. For
3722  * debug kernels this will have the same effect as using an assert but, unlinke
3723  * an assert, it can be turned off at runtime.
3724  */
3725 STATIC void
xlog_verify_grant_tail(struct xlog * log)3726 xlog_verify_grant_tail(
3727 	struct xlog	*log)
3728 {
3729 	int		tail_cycle, tail_blocks;
3730 	int		cycle, space;
3731 
3732 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3733 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3734 	if (tail_cycle != cycle) {
3735 		if (cycle - 1 != tail_cycle &&
3736 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3737 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3738 				"%s: cycle - 1 != tail_cycle", __func__);
3739 			log->l_flags |= XLOG_TAIL_WARN;
3740 		}
3741 
3742 		if (space > BBTOB(tail_blocks) &&
3743 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3744 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3745 				"%s: space > BBTOB(tail_blocks)", __func__);
3746 			log->l_flags |= XLOG_TAIL_WARN;
3747 		}
3748 	}
3749 }
3750 
3751 /* check if it will fit */
3752 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3753 xlog_verify_tail_lsn(
3754 	struct xlog		*log,
3755 	struct xlog_in_core	*iclog,
3756 	xfs_lsn_t		tail_lsn)
3757 {
3758     int blocks;
3759 
3760     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3761 	blocks =
3762 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3763 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3764 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3765     } else {
3766 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3767 
3768 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3769 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3770 
3771 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3772 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3773 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3774     }
3775 }	/* xlog_verify_tail_lsn */
3776 
3777 /*
3778  * Perform a number of checks on the iclog before writing to disk.
3779  *
3780  * 1. Make sure the iclogs are still circular
3781  * 2. Make sure we have a good magic number
3782  * 3. Make sure we don't have magic numbers in the data
3783  * 4. Check fields of each log operation header for:
3784  *	A. Valid client identifier
3785  *	B. tid ptr value falls in valid ptr space (user space code)
3786  *	C. Length in log record header is correct according to the
3787  *		individual operation headers within record.
3788  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3789  *	log, check the preceding blocks of the physical log to make sure all
3790  *	the cycle numbers agree with the current cycle number.
3791  */
3792 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count,bool syncing)3793 xlog_verify_iclog(
3794 	struct xlog		*log,
3795 	struct xlog_in_core	*iclog,
3796 	int			count,
3797 	bool                    syncing)
3798 {
3799 	xlog_op_header_t	*ophead;
3800 	xlog_in_core_t		*icptr;
3801 	xlog_in_core_2_t	*xhdr;
3802 	void			*base_ptr, *ptr, *p;
3803 	ptrdiff_t		field_offset;
3804 	__uint8_t		clientid;
3805 	int			len, i, j, k, op_len;
3806 	int			idx;
3807 
3808 	/* check validity of iclog pointers */
3809 	spin_lock(&log->l_icloglock);
3810 	icptr = log->l_iclog;
3811 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3812 		ASSERT(icptr);
3813 
3814 	if (icptr != log->l_iclog)
3815 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3816 	spin_unlock(&log->l_icloglock);
3817 
3818 	/* check log magic numbers */
3819 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3820 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3821 
3822 	base_ptr = ptr = &iclog->ic_header;
3823 	p = &iclog->ic_header;
3824 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3825 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3826 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3827 				__func__);
3828 	}
3829 
3830 	/* check fields */
3831 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3832 	base_ptr = ptr = iclog->ic_datap;
3833 	ophead = ptr;
3834 	xhdr = iclog->ic_data;
3835 	for (i = 0; i < len; i++) {
3836 		ophead = ptr;
3837 
3838 		/* clientid is only 1 byte */
3839 		p = &ophead->oh_clientid;
3840 		field_offset = p - base_ptr;
3841 		if (!syncing || (field_offset & 0x1ff)) {
3842 			clientid = ophead->oh_clientid;
3843 		} else {
3844 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3845 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3846 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3847 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3848 				clientid = xlog_get_client_id(
3849 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3850 			} else {
3851 				clientid = xlog_get_client_id(
3852 					iclog->ic_header.h_cycle_data[idx]);
3853 			}
3854 		}
3855 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3856 			xfs_warn(log->l_mp,
3857 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3858 				__func__, clientid, ophead,
3859 				(unsigned long)field_offset);
3860 
3861 		/* check length */
3862 		p = &ophead->oh_len;
3863 		field_offset = p - base_ptr;
3864 		if (!syncing || (field_offset & 0x1ff)) {
3865 			op_len = be32_to_cpu(ophead->oh_len);
3866 		} else {
3867 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3868 				    (uintptr_t)iclog->ic_datap);
3869 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3870 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3871 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3872 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3873 			} else {
3874 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3875 			}
3876 		}
3877 		ptr += sizeof(xlog_op_header_t) + op_len;
3878 	}
3879 }	/* xlog_verify_iclog */
3880 #endif
3881 
3882 /*
3883  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3884  */
3885 STATIC int
xlog_state_ioerror(struct xlog * log)3886 xlog_state_ioerror(
3887 	struct xlog	*log)
3888 {
3889 	xlog_in_core_t	*iclog, *ic;
3890 
3891 	iclog = log->l_iclog;
3892 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3893 		/*
3894 		 * Mark all the incore logs IOERROR.
3895 		 * From now on, no log flushes will result.
3896 		 */
3897 		ic = iclog;
3898 		do {
3899 			ic->ic_state = XLOG_STATE_IOERROR;
3900 			ic = ic->ic_next;
3901 		} while (ic != iclog);
3902 		return 0;
3903 	}
3904 	/*
3905 	 * Return non-zero, if state transition has already happened.
3906 	 */
3907 	return 1;
3908 }
3909 
3910 /*
3911  * This is called from xfs_force_shutdown, when we're forcibly
3912  * shutting down the filesystem, typically because of an IO error.
3913  * Our main objectives here are to make sure that:
3914  *	a. if !logerror, flush the logs to disk. Anything modified
3915  *	   after this is ignored.
3916  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3917  *	   parties to find out, 'atomically'.
3918  *	c. those who're sleeping on log reservations, pinned objects and
3919  *	    other resources get woken up, and be told the bad news.
3920  *	d. nothing new gets queued up after (b) and (c) are done.
3921  *
3922  * Note: for the !logerror case we need to flush the regions held in memory out
3923  * to disk first. This needs to be done before the log is marked as shutdown,
3924  * otherwise the iclog writes will fail.
3925  */
3926 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3927 xfs_log_force_umount(
3928 	struct xfs_mount	*mp,
3929 	int			logerror)
3930 {
3931 	struct xlog	*log;
3932 	int		retval;
3933 
3934 	log = mp->m_log;
3935 
3936 	/*
3937 	 * If this happens during log recovery, don't worry about
3938 	 * locking; the log isn't open for business yet.
3939 	 */
3940 	if (!log ||
3941 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3942 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943 		if (mp->m_sb_bp)
3944 			XFS_BUF_DONE(mp->m_sb_bp);
3945 		return 0;
3946 	}
3947 
3948 	/*
3949 	 * Somebody could've already done the hard work for us.
3950 	 * No need to get locks for this.
3951 	 */
3952 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3953 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3954 		return 1;
3955 	}
3956 
3957 	/*
3958 	 * Flush all the completed transactions to disk before marking the log
3959 	 * being shut down. We need to do it in this order to ensure that
3960 	 * completed operations are safely on disk before we shut down, and that
3961 	 * we don't have to issue any buffer IO after the shutdown flags are set
3962 	 * to guarantee this.
3963 	 */
3964 	if (!logerror)
3965 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3966 
3967 	/*
3968 	 * mark the filesystem and the as in a shutdown state and wake
3969 	 * everybody up to tell them the bad news.
3970 	 */
3971 	spin_lock(&log->l_icloglock);
3972 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3973 	if (mp->m_sb_bp)
3974 		XFS_BUF_DONE(mp->m_sb_bp);
3975 
3976 	/*
3977 	 * Mark the log and the iclogs with IO error flags to prevent any
3978 	 * further log IO from being issued or completed.
3979 	 */
3980 	log->l_flags |= XLOG_IO_ERROR;
3981 	retval = xlog_state_ioerror(log);
3982 	spin_unlock(&log->l_icloglock);
3983 
3984 	/*
3985 	 * We don't want anybody waiting for log reservations after this. That
3986 	 * means we have to wake up everybody queued up on reserveq as well as
3987 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3988 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3989 	 * action is protected by the grant locks.
3990 	 */
3991 	xlog_grant_head_wake_all(&log->l_reserve_head);
3992 	xlog_grant_head_wake_all(&log->l_write_head);
3993 
3994 	/*
3995 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3996 	 * as if the log writes were completed. The abort handling in the log
3997 	 * item committed callback functions will do this again under lock to
3998 	 * avoid races.
3999 	 */
4000 	wake_up_all(&log->l_cilp->xc_commit_wait);
4001 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4002 
4003 #ifdef XFSERRORDEBUG
4004 	{
4005 		xlog_in_core_t	*iclog;
4006 
4007 		spin_lock(&log->l_icloglock);
4008 		iclog = log->l_iclog;
4009 		do {
4010 			ASSERT(iclog->ic_callback == 0);
4011 			iclog = iclog->ic_next;
4012 		} while (iclog != log->l_iclog);
4013 		spin_unlock(&log->l_icloglock);
4014 	}
4015 #endif
4016 	/* return non-zero if log IOERROR transition had already happened */
4017 	return retval;
4018 }
4019 
4020 STATIC int
xlog_iclogs_empty(struct xlog * log)4021 xlog_iclogs_empty(
4022 	struct xlog	*log)
4023 {
4024 	xlog_in_core_t	*iclog;
4025 
4026 	iclog = log->l_iclog;
4027 	do {
4028 		/* endianness does not matter here, zero is zero in
4029 		 * any language.
4030 		 */
4031 		if (iclog->ic_header.h_num_logops)
4032 			return 0;
4033 		iclog = iclog->ic_next;
4034 	} while (iclog != log->l_iclog);
4035 	return 1;
4036 }
4037 
4038 /*
4039  * Verify that an LSN stamped into a piece of metadata is valid. This is
4040  * intended for use in read verifiers on v5 superblocks.
4041  */
4042 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4043 xfs_log_check_lsn(
4044 	struct xfs_mount	*mp,
4045 	xfs_lsn_t		lsn)
4046 {
4047 	struct xlog		*log = mp->m_log;
4048 	bool			valid;
4049 
4050 	/*
4051 	 * norecovery mode skips mount-time log processing and unconditionally
4052 	 * resets the in-core LSN. We can't validate in this mode, but
4053 	 * modifications are not allowed anyways so just return true.
4054 	 */
4055 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4056 		return true;
4057 
4058 	/*
4059 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4060 	 * handled by recovery and thus safe to ignore here.
4061 	 */
4062 	if (lsn == NULLCOMMITLSN)
4063 		return true;
4064 
4065 	valid = xlog_valid_lsn(mp->m_log, lsn);
4066 
4067 	/* warn the user about what's gone wrong before verifier failure */
4068 	if (!valid) {
4069 		spin_lock(&log->l_icloglock);
4070 		xfs_warn(mp,
4071 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4072 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4073 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4074 			 log->l_curr_cycle, log->l_curr_block);
4075 		spin_unlock(&log->l_icloglock);
4076 	}
4077 
4078 	return valid;
4079 }
4080