• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28 
29 #include "xhci.h"
30 #include "xhci-trace.h"
31 
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,gfp_t flags)39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 					unsigned int cycle_state, gfp_t flags)
41 {
42 	struct xhci_segment *seg;
43 	dma_addr_t	dma;
44 	int		i;
45 
46 	seg = kzalloc(sizeof *seg, flags);
47 	if (!seg)
48 		return NULL;
49 
50 	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 	if (!seg->trbs) {
52 		kfree(seg);
53 		return NULL;
54 	}
55 
56 	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 	if (cycle_state == 0) {
59 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 	}
62 	seg->dma = dma;
63 	seg->next = NULL;
64 
65 	return seg;
66 }
67 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 	if (seg->trbs) {
71 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 		seg->trbs = NULL;
73 	}
74 	kfree(seg);
75 }
76 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 				struct xhci_segment *first)
79 {
80 	struct xhci_segment *seg;
81 
82 	seg = first->next;
83 	while (seg != first) {
84 		struct xhci_segment *next = seg->next;
85 		xhci_segment_free(xhci, seg);
86 		seg = next;
87 	}
88 	xhci_segment_free(xhci, first);
89 }
90 
91 /*
92  * Make the prev segment point to the next segment.
93  *
94  * Change the last TRB in the prev segment to be a Link TRB which points to the
95  * DMA address of the next segment.  The caller needs to set any Link TRB
96  * related flags, such as End TRB, Toggle Cycle, and no snoop.
97  */
xhci_link_segments(struct xhci_hcd * xhci,struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type)98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 		struct xhci_segment *next, enum xhci_ring_type type)
100 {
101 	u32 val;
102 
103 	if (!prev || !next)
104 		return;
105 	prev->next = next;
106 	if (type != TYPE_EVENT) {
107 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 			cpu_to_le64(next->dma);
109 
110 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 		val &= ~TRB_TYPE_BITMASK;
113 		val |= TRB_TYPE(TRB_LINK);
114 		/* Always set the chain bit with 0.95 hardware */
115 		/* Set chain bit for isoc rings on AMD 0.96 host */
116 		if (xhci_link_trb_quirk(xhci) ||
117 				(type == TYPE_ISOC &&
118 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 			val |= TRB_CHAIN;
120 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121 	}
122 }
123 
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 		struct xhci_segment *first, struct xhci_segment *last,
130 		unsigned int num_segs)
131 {
132 	struct xhci_segment *next;
133 
134 	if (!ring || !first || !last)
135 		return;
136 
137 	next = ring->enq_seg->next;
138 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 	xhci_link_segments(xhci, last, next, ring->type);
140 	ring->num_segs += num_segs;
141 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142 
143 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 			&= ~cpu_to_le32(LINK_TOGGLE);
146 		last->trbs[TRBS_PER_SEGMENT-1].link.control
147 			|= cpu_to_le32(LINK_TOGGLE);
148 		ring->last_seg = last;
149 	}
150 }
151 
152 /*
153  * We need a radix tree for mapping physical addresses of TRBs to which stream
154  * ID they belong to.  We need to do this because the host controller won't tell
155  * us which stream ring the TRB came from.  We could store the stream ID in an
156  * event data TRB, but that doesn't help us for the cancellation case, since the
157  * endpoint may stop before it reaches that event data TRB.
158  *
159  * The radix tree maps the upper portion of the TRB DMA address to a ring
160  * segment that has the same upper portion of DMA addresses.  For example, say I
161  * have segments of size 1KB, that are always 1KB aligned.  A segment may
162  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
163  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
164  * pass the radix tree a key to get the right stream ID:
165  *
166  *	0x10c90fff >> 10 = 0x43243
167  *	0x10c912c0 >> 10 = 0x43244
168  *	0x10c91400 >> 10 = 0x43245
169  *
170  * Obviously, only those TRBs with DMA addresses that are within the segment
171  * will make the radix tree return the stream ID for that ring.
172  *
173  * Caveats for the radix tree:
174  *
175  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
176  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
178  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
180  * extended systems (where the DMA address can be bigger than 32-bits),
181  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
182  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)183 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184 		struct xhci_ring *ring,
185 		struct xhci_segment *seg,
186 		gfp_t mem_flags)
187 {
188 	unsigned long key;
189 	int ret;
190 
191 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192 	/* Skip any segments that were already added. */
193 	if (radix_tree_lookup(trb_address_map, key))
194 		return 0;
195 
196 	ret = radix_tree_maybe_preload(mem_flags);
197 	if (ret)
198 		return ret;
199 	ret = radix_tree_insert(trb_address_map,
200 			key, ring);
201 	radix_tree_preload_end();
202 	return ret;
203 }
204 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)205 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206 		struct xhci_segment *seg)
207 {
208 	unsigned long key;
209 
210 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211 	if (radix_tree_lookup(trb_address_map, key))
212 		radix_tree_delete(trb_address_map, key);
213 }
214 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)215 static int xhci_update_stream_segment_mapping(
216 		struct radix_tree_root *trb_address_map,
217 		struct xhci_ring *ring,
218 		struct xhci_segment *first_seg,
219 		struct xhci_segment *last_seg,
220 		gfp_t mem_flags)
221 {
222 	struct xhci_segment *seg;
223 	struct xhci_segment *failed_seg;
224 	int ret;
225 
226 	if (WARN_ON_ONCE(trb_address_map == NULL))
227 		return 0;
228 
229 	seg = first_seg;
230 	do {
231 		ret = xhci_insert_segment_mapping(trb_address_map,
232 				ring, seg, mem_flags);
233 		if (ret)
234 			goto remove_streams;
235 		if (seg == last_seg)
236 			return 0;
237 		seg = seg->next;
238 	} while (seg != first_seg);
239 
240 	return 0;
241 
242 remove_streams:
243 	failed_seg = seg;
244 	seg = first_seg;
245 	do {
246 		xhci_remove_segment_mapping(trb_address_map, seg);
247 		if (seg == failed_seg)
248 			return ret;
249 		seg = seg->next;
250 	} while (seg != first_seg);
251 
252 	return ret;
253 }
254 
xhci_remove_stream_mapping(struct xhci_ring * ring)255 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 {
257 	struct xhci_segment *seg;
258 
259 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260 		return;
261 
262 	seg = ring->first_seg;
263 	do {
264 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
265 		seg = seg->next;
266 	} while (seg != ring->first_seg);
267 }
268 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)269 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 {
271 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272 			ring->first_seg, ring->last_seg, mem_flags);
273 }
274 
275 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)276 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277 {
278 	if (!ring)
279 		return;
280 
281 	if (ring->first_seg) {
282 		if (ring->type == TYPE_STREAM)
283 			xhci_remove_stream_mapping(ring);
284 		xhci_free_segments_for_ring(xhci, ring->first_seg);
285 	}
286 
287 	kfree(ring);
288 }
289 
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)290 static void xhci_initialize_ring_info(struct xhci_ring *ring,
291 					unsigned int cycle_state)
292 {
293 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
294 	ring->enqueue = ring->first_seg->trbs;
295 	ring->enq_seg = ring->first_seg;
296 	ring->dequeue = ring->enqueue;
297 	ring->deq_seg = ring->first_seg;
298 	/* The ring is initialized to 0. The producer must write 1 to the cycle
299 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
300 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
301 	 *
302 	 * New rings are initialized with cycle state equal to 1; if we are
303 	 * handling ring expansion, set the cycle state equal to the old ring.
304 	 */
305 	ring->cycle_state = cycle_state;
306 	/* Not necessary for new rings, but needed for re-initialized rings */
307 	ring->enq_updates = 0;
308 	ring->deq_updates = 0;
309 
310 	/*
311 	 * Each segment has a link TRB, and leave an extra TRB for SW
312 	 * accounting purpose
313 	 */
314 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316 
317 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319 		struct xhci_segment **first, struct xhci_segment **last,
320 		unsigned int num_segs, unsigned int cycle_state,
321 		enum xhci_ring_type type, gfp_t flags)
322 {
323 	struct xhci_segment *prev;
324 
325 	prev = xhci_segment_alloc(xhci, cycle_state, flags);
326 	if (!prev)
327 		return -ENOMEM;
328 	num_segs--;
329 
330 	*first = prev;
331 	while (num_segs > 0) {
332 		struct xhci_segment	*next;
333 
334 		next = xhci_segment_alloc(xhci, cycle_state, flags);
335 		if (!next) {
336 			prev = *first;
337 			while (prev) {
338 				next = prev->next;
339 				xhci_segment_free(xhci, prev);
340 				prev = next;
341 			}
342 			return -ENOMEM;
343 		}
344 		xhci_link_segments(xhci, prev, next, type);
345 
346 		prev = next;
347 		num_segs--;
348 	}
349 	xhci_link_segments(xhci, prev, *first, type);
350 	*last = prev;
351 
352 	return 0;
353 }
354 
355 /**
356  * Create a new ring with zero or more segments.
357  *
358  * Link each segment together into a ring.
359  * Set the end flag and the cycle toggle bit on the last segment.
360  * See section 4.9.1 and figures 15 and 16.
361  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)362 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363 		unsigned int num_segs, unsigned int cycle_state,
364 		enum xhci_ring_type type, gfp_t flags)
365 {
366 	struct xhci_ring	*ring;
367 	int ret;
368 
369 	ring = kzalloc(sizeof *(ring), flags);
370 	if (!ring)
371 		return NULL;
372 
373 	ring->num_segs = num_segs;
374 	INIT_LIST_HEAD(&ring->td_list);
375 	ring->type = type;
376 	if (num_segs == 0)
377 		return ring;
378 
379 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380 			&ring->last_seg, num_segs, cycle_state, type, flags);
381 	if (ret)
382 		goto fail;
383 
384 	/* Only event ring does not use link TRB */
385 	if (type != TYPE_EVENT) {
386 		/* See section 4.9.2.1 and 6.4.4.1 */
387 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 			cpu_to_le32(LINK_TOGGLE);
389 	}
390 	xhci_initialize_ring_info(ring, cycle_state);
391 	return ring;
392 
393 fail:
394 	kfree(ring);
395 	return NULL;
396 }
397 
xhci_free_or_cache_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399 		struct xhci_virt_device *virt_dev,
400 		unsigned int ep_index)
401 {
402 	int rings_cached;
403 
404 	rings_cached = virt_dev->num_rings_cached;
405 	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406 		virt_dev->ring_cache[rings_cached] =
407 			virt_dev->eps[ep_index].ring;
408 		virt_dev->num_rings_cached++;
409 		xhci_dbg(xhci, "Cached old ring, "
410 				"%d ring%s cached\n",
411 				virt_dev->num_rings_cached,
412 				(virt_dev->num_rings_cached > 1) ? "s" : "");
413 	} else {
414 		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 		xhci_dbg(xhci, "Ring cache full (%d rings), "
416 				"freeing ring\n",
417 				virt_dev->num_rings_cached);
418 	}
419 	virt_dev->eps[ep_index].ring = NULL;
420 }
421 
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423  * pointers to the beginning of the ring.
424  */
xhci_reinit_cached_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int cycle_state,enum xhci_ring_type type)425 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426 			struct xhci_ring *ring, unsigned int cycle_state,
427 			enum xhci_ring_type type)
428 {
429 	struct xhci_segment	*seg = ring->first_seg;
430 	int i;
431 
432 	do {
433 		memset(seg->trbs, 0,
434 				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435 		if (cycle_state == 0) {
436 			for (i = 0; i < TRBS_PER_SEGMENT; i++)
437 				seg->trbs[i].link.control |=
438 					cpu_to_le32(TRB_CYCLE);
439 		}
440 		/* All endpoint rings have link TRBs */
441 		xhci_link_segments(xhci, seg, seg->next, type);
442 		seg = seg->next;
443 	} while (seg != ring->first_seg);
444 	ring->type = type;
445 	xhci_initialize_ring_info(ring, cycle_state);
446 	/* td list should be empty since all URBs have been cancelled,
447 	 * but just in case...
448 	 */
449 	INIT_LIST_HEAD(&ring->td_list);
450 }
451 
452 /*
453  * Expand an existing ring.
454  * Look for a cached ring or allocate a new ring which has same segment numbers
455  * and link the two rings.
456  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)457 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458 				unsigned int num_trbs, gfp_t flags)
459 {
460 	struct xhci_segment	*first;
461 	struct xhci_segment	*last;
462 	unsigned int		num_segs;
463 	unsigned int		num_segs_needed;
464 	int			ret;
465 
466 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467 				(TRBS_PER_SEGMENT - 1);
468 
469 	/* Allocate number of segments we needed, or double the ring size */
470 	num_segs = ring->num_segs > num_segs_needed ?
471 			ring->num_segs : num_segs_needed;
472 
473 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474 			num_segs, ring->cycle_state, ring->type, flags);
475 	if (ret)
476 		return -ENOMEM;
477 
478 	if (ring->type == TYPE_STREAM)
479 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480 						ring, first, last, flags);
481 	if (ret) {
482 		struct xhci_segment *next;
483 		do {
484 			next = first->next;
485 			xhci_segment_free(xhci, first);
486 			if (first == last)
487 				break;
488 			first = next;
489 		} while (true);
490 		return ret;
491 	}
492 
493 	xhci_link_rings(xhci, ring, first, last, num_segs);
494 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495 			"ring expansion succeed, now has %d segments",
496 			ring->num_segs);
497 
498 	return 0;
499 }
500 
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)503 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504 						    int type, gfp_t flags)
505 {
506 	struct xhci_container_ctx *ctx;
507 
508 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509 		return NULL;
510 
511 	ctx = kzalloc(sizeof(*ctx), flags);
512 	if (!ctx)
513 		return NULL;
514 
515 	ctx->type = type;
516 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517 	if (type == XHCI_CTX_TYPE_INPUT)
518 		ctx->size += CTX_SIZE(xhci->hcc_params);
519 
520 	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521 	if (!ctx->bytes) {
522 		kfree(ctx);
523 		return NULL;
524 	}
525 	memset(ctx->bytes, 0, ctx->size);
526 	return ctx;
527 }
528 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)529 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530 			     struct xhci_container_ctx *ctx)
531 {
532 	if (!ctx)
533 		return;
534 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535 	kfree(ctx);
536 }
537 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)538 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
539 					      struct xhci_container_ctx *ctx)
540 {
541 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
542 		return NULL;
543 
544 	return (struct xhci_input_control_ctx *)ctx->bytes;
545 }
546 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)547 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548 					struct xhci_container_ctx *ctx)
549 {
550 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551 		return (struct xhci_slot_ctx *)ctx->bytes;
552 
553 	return (struct xhci_slot_ctx *)
554 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
555 }
556 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)557 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558 				    struct xhci_container_ctx *ctx,
559 				    unsigned int ep_index)
560 {
561 	/* increment ep index by offset of start of ep ctx array */
562 	ep_index++;
563 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
564 		ep_index++;
565 
566 	return (struct xhci_ep_ctx *)
567 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568 }
569 
570 
571 /***************** Streams structures manipulation *************************/
572 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)573 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574 		unsigned int num_stream_ctxs,
575 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576 {
577 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
578 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579 
580 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
581 		dma_free_coherent(dev, size,
582 				stream_ctx, dma);
583 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
584 		return dma_pool_free(xhci->small_streams_pool,
585 				stream_ctx, dma);
586 	else
587 		return dma_pool_free(xhci->medium_streams_pool,
588 				stream_ctx, dma);
589 }
590 
591 /*
592  * The stream context array for each endpoint with bulk streams enabled can
593  * vary in size, based on:
594  *  - how many streams the endpoint supports,
595  *  - the maximum primary stream array size the host controller supports,
596  *  - and how many streams the device driver asks for.
597  *
598  * The stream context array must be a power of 2, and can be as small as
599  * 64 bytes or as large as 1MB.
600  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)601 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602 		unsigned int num_stream_ctxs, dma_addr_t *dma,
603 		gfp_t mem_flags)
604 {
605 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
606 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607 
608 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
609 		return dma_alloc_coherent(dev, size,
610 				dma, mem_flags);
611 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
612 		return dma_pool_alloc(xhci->small_streams_pool,
613 				mem_flags, dma);
614 	else
615 		return dma_pool_alloc(xhci->medium_streams_pool,
616 				mem_flags, dma);
617 }
618 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)619 struct xhci_ring *xhci_dma_to_transfer_ring(
620 		struct xhci_virt_ep *ep,
621 		u64 address)
622 {
623 	if (ep->ep_state & EP_HAS_STREAMS)
624 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
625 				address >> TRB_SEGMENT_SHIFT);
626 	return ep->ring;
627 }
628 
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)629 struct xhci_ring *xhci_stream_id_to_ring(
630 		struct xhci_virt_device *dev,
631 		unsigned int ep_index,
632 		unsigned int stream_id)
633 {
634 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
635 
636 	if (stream_id == 0)
637 		return ep->ring;
638 	if (!ep->stream_info)
639 		return NULL;
640 
641 	if (stream_id >= ep->stream_info->num_streams)
642 		return NULL;
643 	return ep->stream_info->stream_rings[stream_id];
644 }
645 
646 /*
647  * Change an endpoint's internal structure so it supports stream IDs.  The
648  * number of requested streams includes stream 0, which cannot be used by device
649  * drivers.
650  *
651  * The number of stream contexts in the stream context array may be bigger than
652  * the number of streams the driver wants to use.  This is because the number of
653  * stream context array entries must be a power of two.
654  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,gfp_t mem_flags)655 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656 		unsigned int num_stream_ctxs,
657 		unsigned int num_streams, gfp_t mem_flags)
658 {
659 	struct xhci_stream_info *stream_info;
660 	u32 cur_stream;
661 	struct xhci_ring *cur_ring;
662 	u64 addr;
663 	int ret;
664 
665 	xhci_dbg(xhci, "Allocating %u streams and %u "
666 			"stream context array entries.\n",
667 			num_streams, num_stream_ctxs);
668 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670 		return NULL;
671 	}
672 	xhci->cmd_ring_reserved_trbs++;
673 
674 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675 	if (!stream_info)
676 		goto cleanup_trbs;
677 
678 	stream_info->num_streams = num_streams;
679 	stream_info->num_stream_ctxs = num_stream_ctxs;
680 
681 	/* Initialize the array of virtual pointers to stream rings. */
682 	stream_info->stream_rings = kzalloc(
683 			sizeof(struct xhci_ring *)*num_streams,
684 			mem_flags);
685 	if (!stream_info->stream_rings)
686 		goto cleanup_info;
687 
688 	/* Initialize the array of DMA addresses for stream rings for the HW. */
689 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690 			num_stream_ctxs, &stream_info->ctx_array_dma,
691 			mem_flags);
692 	if (!stream_info->stream_ctx_array)
693 		goto cleanup_ctx;
694 	memset(stream_info->stream_ctx_array, 0,
695 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696 
697 	/* Allocate everything needed to free the stream rings later */
698 	stream_info->free_streams_command =
699 		xhci_alloc_command(xhci, true, true, mem_flags);
700 	if (!stream_info->free_streams_command)
701 		goto cleanup_ctx;
702 
703 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704 
705 	/* Allocate rings for all the streams that the driver will use,
706 	 * and add their segment DMA addresses to the radix tree.
707 	 * Stream 0 is reserved.
708 	 */
709 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710 		stream_info->stream_rings[cur_stream] =
711 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712 		cur_ring = stream_info->stream_rings[cur_stream];
713 		if (!cur_ring)
714 			goto cleanup_rings;
715 		cur_ring->stream_id = cur_stream;
716 		cur_ring->trb_address_map = &stream_info->trb_address_map;
717 		/* Set deq ptr, cycle bit, and stream context type */
718 		addr = cur_ring->first_seg->dma |
719 			SCT_FOR_CTX(SCT_PRI_TR) |
720 			cur_ring->cycle_state;
721 		stream_info->stream_ctx_array[cur_stream].stream_ring =
722 			cpu_to_le64(addr);
723 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724 				cur_stream, (unsigned long long) addr);
725 
726 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727 		if (ret) {
728 			xhci_ring_free(xhci, cur_ring);
729 			stream_info->stream_rings[cur_stream] = NULL;
730 			goto cleanup_rings;
731 		}
732 	}
733 	/* Leave the other unused stream ring pointers in the stream context
734 	 * array initialized to zero.  This will cause the xHC to give us an
735 	 * error if the device asks for a stream ID we don't have setup (if it
736 	 * was any other way, the host controller would assume the ring is
737 	 * "empty" and wait forever for data to be queued to that stream ID).
738 	 */
739 
740 	return stream_info;
741 
742 cleanup_rings:
743 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744 		cur_ring = stream_info->stream_rings[cur_stream];
745 		if (cur_ring) {
746 			xhci_ring_free(xhci, cur_ring);
747 			stream_info->stream_rings[cur_stream] = NULL;
748 		}
749 	}
750 	xhci_free_command(xhci, stream_info->free_streams_command);
751 cleanup_ctx:
752 	kfree(stream_info->stream_rings);
753 cleanup_info:
754 	kfree(stream_info);
755 cleanup_trbs:
756 	xhci->cmd_ring_reserved_trbs--;
757 	return NULL;
758 }
759 /*
760  * Sets the MaxPStreams field and the Linear Stream Array field.
761  * Sets the dequeue pointer to the stream context array.
762  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764 		struct xhci_ep_ctx *ep_ctx,
765 		struct xhci_stream_info *stream_info)
766 {
767 	u32 max_primary_streams;
768 	/* MaxPStreams is the number of stream context array entries, not the
769 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
770 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771 	 */
772 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
774 			"Setting number of stream ctx array entries to %u",
775 			1 << (max_primary_streams + 1));
776 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778 				       | EP_HAS_LSA);
779 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
780 }
781 
782 /*
783  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785  * not at the beginning of the ring).
786  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
788 		struct xhci_virt_ep *ep)
789 {
790 	dma_addr_t addr;
791 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
792 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
793 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
794 }
795 
796 /* Frees all stream contexts associated with the endpoint,
797  *
798  * Caller should fix the endpoint context streams fields.
799  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)800 void xhci_free_stream_info(struct xhci_hcd *xhci,
801 		struct xhci_stream_info *stream_info)
802 {
803 	int cur_stream;
804 	struct xhci_ring *cur_ring;
805 
806 	if (!stream_info)
807 		return;
808 
809 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
810 			cur_stream++) {
811 		cur_ring = stream_info->stream_rings[cur_stream];
812 		if (cur_ring) {
813 			xhci_ring_free(xhci, cur_ring);
814 			stream_info->stream_rings[cur_stream] = NULL;
815 		}
816 	}
817 	xhci_free_command(xhci, stream_info->free_streams_command);
818 	xhci->cmd_ring_reserved_trbs--;
819 	if (stream_info->stream_ctx_array)
820 		xhci_free_stream_ctx(xhci,
821 				stream_info->num_stream_ctxs,
822 				stream_info->stream_ctx_array,
823 				stream_info->ctx_array_dma);
824 
825 	kfree(stream_info->stream_rings);
826 	kfree(stream_info);
827 }
828 
829 
830 /***************** Device context manipulation *************************/
831 
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)832 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
833 		struct xhci_virt_ep *ep)
834 {
835 	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
836 		    (unsigned long)ep);
837 	ep->xhci = xhci;
838 }
839 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)840 static void xhci_free_tt_info(struct xhci_hcd *xhci,
841 		struct xhci_virt_device *virt_dev,
842 		int slot_id)
843 {
844 	struct list_head *tt_list_head;
845 	struct xhci_tt_bw_info *tt_info, *next;
846 	bool slot_found = false;
847 
848 	/* If the device never made it past the Set Address stage,
849 	 * it may not have the real_port set correctly.
850 	 */
851 	if (virt_dev->real_port == 0 ||
852 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
853 		xhci_dbg(xhci, "Bad real port.\n");
854 		return;
855 	}
856 
857 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
858 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
859 		/* Multi-TT hubs will have more than one entry */
860 		if (tt_info->slot_id == slot_id) {
861 			slot_found = true;
862 			list_del(&tt_info->tt_list);
863 			kfree(tt_info);
864 		} else if (slot_found) {
865 			break;
866 		}
867 	}
868 }
869 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)870 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
871 		struct xhci_virt_device *virt_dev,
872 		struct usb_device *hdev,
873 		struct usb_tt *tt, gfp_t mem_flags)
874 {
875 	struct xhci_tt_bw_info		*tt_info;
876 	unsigned int			num_ports;
877 	int				i, j;
878 
879 	if (!tt->multi)
880 		num_ports = 1;
881 	else
882 		num_ports = hdev->maxchild;
883 
884 	for (i = 0; i < num_ports; i++, tt_info++) {
885 		struct xhci_interval_bw_table *bw_table;
886 
887 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
888 		if (!tt_info)
889 			goto free_tts;
890 		INIT_LIST_HEAD(&tt_info->tt_list);
891 		list_add(&tt_info->tt_list,
892 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
893 		tt_info->slot_id = virt_dev->udev->slot_id;
894 		if (tt->multi)
895 			tt_info->ttport = i+1;
896 		bw_table = &tt_info->bw_table;
897 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
898 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
899 	}
900 	return 0;
901 
902 free_tts:
903 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
904 	return -ENOMEM;
905 }
906 
907 
908 /* All the xhci_tds in the ring's TD list should be freed at this point.
909  * Should be called with xhci->lock held if there is any chance the TT lists
910  * will be manipulated by the configure endpoint, allocate device, or update
911  * hub functions while this function is removing the TT entries from the list.
912  */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)913 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
914 {
915 	struct xhci_virt_device *dev;
916 	int i;
917 	int old_active_eps = 0;
918 
919 	/* Slot ID 0 is reserved */
920 	if (slot_id == 0 || !xhci->devs[slot_id])
921 		return;
922 
923 	dev = xhci->devs[slot_id];
924 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
925 	if (!dev)
926 		return;
927 
928 	if (dev->tt_info)
929 		old_active_eps = dev->tt_info->active_eps;
930 
931 	for (i = 0; i < 31; ++i) {
932 		if (dev->eps[i].ring)
933 			xhci_ring_free(xhci, dev->eps[i].ring);
934 		if (dev->eps[i].stream_info)
935 			xhci_free_stream_info(xhci,
936 					dev->eps[i].stream_info);
937 		/* Endpoints on the TT/root port lists should have been removed
938 		 * when usb_disable_device() was called for the device.
939 		 * We can't drop them anyway, because the udev might have gone
940 		 * away by this point, and we can't tell what speed it was.
941 		 */
942 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
943 			xhci_warn(xhci, "Slot %u endpoint %u "
944 					"not removed from BW list!\n",
945 					slot_id, i);
946 	}
947 	/* If this is a hub, free the TT(s) from the TT list */
948 	xhci_free_tt_info(xhci, dev, slot_id);
949 	/* If necessary, update the number of active TTs on this root port */
950 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
951 
952 	if (dev->ring_cache) {
953 		for (i = 0; i < dev->num_rings_cached; i++)
954 			xhci_ring_free(xhci, dev->ring_cache[i]);
955 		kfree(dev->ring_cache);
956 	}
957 
958 	if (dev->in_ctx)
959 		xhci_free_container_ctx(xhci, dev->in_ctx);
960 	if (dev->out_ctx)
961 		xhci_free_container_ctx(xhci, dev->out_ctx);
962 
963 	if (dev->udev && dev->udev->slot_id)
964 		dev->udev->slot_id = 0;
965 	kfree(xhci->devs[slot_id]);
966 	xhci->devs[slot_id] = NULL;
967 }
968 
969 /*
970  * Free a virt_device structure.
971  * If the virt_device added a tt_info (a hub) and has children pointing to
972  * that tt_info, then free the child first. Recursive.
973  * We can't rely on udev at this point to find child-parent relationships.
974  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)975 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
976 {
977 	struct xhci_virt_device *vdev;
978 	struct list_head *tt_list_head;
979 	struct xhci_tt_bw_info *tt_info, *next;
980 	int i;
981 
982 	vdev = xhci->devs[slot_id];
983 	if (!vdev)
984 		return;
985 
986 	if (vdev->real_port == 0 ||
987 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
988 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
989 		goto out;
990 	}
991 
992 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
993 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
994 		/* is this a hub device that added a tt_info to the tts list */
995 		if (tt_info->slot_id == slot_id) {
996 			/* are any devices using this tt_info? */
997 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
998 				vdev = xhci->devs[i];
999 				if (vdev && (vdev->tt_info == tt_info))
1000 					xhci_free_virt_devices_depth_first(
1001 						xhci, i);
1002 			}
1003 		}
1004 	}
1005 out:
1006 	/* we are now at a leaf device */
1007 	xhci_free_virt_device(xhci, slot_id);
1008 }
1009 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)1010 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1011 		struct usb_device *udev, gfp_t flags)
1012 {
1013 	struct xhci_virt_device *dev;
1014 	int i;
1015 
1016 	/* Slot ID 0 is reserved */
1017 	if (slot_id == 0 || xhci->devs[slot_id]) {
1018 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1019 		return 0;
1020 	}
1021 
1022 	dev = kzalloc(sizeof(*dev), flags);
1023 	if (!dev)
1024 		return 0;
1025 
1026 	/* Allocate the (output) device context that will be used in the HC. */
1027 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1028 	if (!dev->out_ctx)
1029 		goto fail;
1030 
1031 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1032 			(unsigned long long)dev->out_ctx->dma);
1033 
1034 	/* Allocate the (input) device context for address device command */
1035 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1036 	if (!dev->in_ctx)
1037 		goto fail;
1038 
1039 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1040 			(unsigned long long)dev->in_ctx->dma);
1041 
1042 	/* Initialize the cancellation list and watchdog timers for each ep */
1043 	for (i = 0; i < 31; i++) {
1044 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1045 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1046 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1047 	}
1048 
1049 	/* Allocate endpoint 0 ring */
1050 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1051 	if (!dev->eps[0].ring)
1052 		goto fail;
1053 
1054 	/* Allocate pointers to the ring cache */
1055 	dev->ring_cache = kzalloc(
1056 			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1057 			flags);
1058 	if (!dev->ring_cache)
1059 		goto fail;
1060 	dev->num_rings_cached = 0;
1061 
1062 	init_completion(&dev->cmd_completion);
1063 	dev->udev = udev;
1064 
1065 	/* Point to output device context in dcbaa. */
1066 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1067 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1068 		 slot_id,
1069 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1070 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1071 
1072 	xhci->devs[slot_id] = dev;
1073 
1074 	return 1;
1075 fail:
1076 	if (dev->eps[0].ring)
1077 		xhci_ring_free(xhci, dev->eps[0].ring);
1078 	if (dev->in_ctx)
1079 		xhci_free_container_ctx(xhci, dev->in_ctx);
1080 	if (dev->out_ctx)
1081 		xhci_free_container_ctx(xhci, dev->out_ctx);
1082 	kfree(dev);
1083 
1084 	return 0;
1085 }
1086 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1087 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1088 		struct usb_device *udev)
1089 {
1090 	struct xhci_virt_device *virt_dev;
1091 	struct xhci_ep_ctx	*ep0_ctx;
1092 	struct xhci_ring	*ep_ring;
1093 
1094 	virt_dev = xhci->devs[udev->slot_id];
1095 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1096 	ep_ring = virt_dev->eps[0].ring;
1097 	/*
1098 	 * FIXME we don't keep track of the dequeue pointer very well after a
1099 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1100 	 * host to our enqueue pointer.  This should only be called after a
1101 	 * configured device has reset, so all control transfers should have
1102 	 * been completed or cancelled before the reset.
1103 	 */
1104 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1105 							ep_ring->enqueue)
1106 				   | ep_ring->cycle_state);
1107 }
1108 
1109 /*
1110  * The xHCI roothub may have ports of differing speeds in any order in the port
1111  * status registers.  xhci->port_array provides an array of the port speed for
1112  * each offset into the port status registers.
1113  *
1114  * The xHCI hardware wants to know the roothub port number that the USB device
1115  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1116  * know is the index of that port under either the USB 2.0 or the USB 3.0
1117  * roothub, but that doesn't give us the real index into the HW port status
1118  * registers. Call xhci_find_raw_port_number() to get real index.
1119  */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1120 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1121 		struct usb_device *udev)
1122 {
1123 	struct usb_device *top_dev;
1124 	struct usb_hcd *hcd;
1125 
1126 	if (udev->speed >= USB_SPEED_SUPER)
1127 		hcd = xhci->shared_hcd;
1128 	else
1129 		hcd = xhci->main_hcd;
1130 
1131 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1132 			top_dev = top_dev->parent)
1133 		/* Found device below root hub */;
1134 
1135 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1136 }
1137 
1138 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1139 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1140 {
1141 	struct xhci_virt_device *dev;
1142 	struct xhci_ep_ctx	*ep0_ctx;
1143 	struct xhci_slot_ctx    *slot_ctx;
1144 	u32			port_num;
1145 	u32			max_packets;
1146 	struct usb_device *top_dev;
1147 
1148 	dev = xhci->devs[udev->slot_id];
1149 	/* Slot ID 0 is reserved */
1150 	if (udev->slot_id == 0 || !dev) {
1151 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1152 				udev->slot_id);
1153 		return -EINVAL;
1154 	}
1155 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1156 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1157 
1158 	/* 3) Only the control endpoint is valid - one endpoint context */
1159 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1160 	switch (udev->speed) {
1161 	case USB_SPEED_SUPER_PLUS:
1162 	case USB_SPEED_SUPER:
1163 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1164 		max_packets = MAX_PACKET(512);
1165 		break;
1166 	case USB_SPEED_HIGH:
1167 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1168 		max_packets = MAX_PACKET(64);
1169 		break;
1170 	/* USB core guesses at a 64-byte max packet first for FS devices */
1171 	case USB_SPEED_FULL:
1172 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1173 		max_packets = MAX_PACKET(64);
1174 		break;
1175 	case USB_SPEED_LOW:
1176 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1177 		max_packets = MAX_PACKET(8);
1178 		break;
1179 	case USB_SPEED_WIRELESS:
1180 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1181 		return -EINVAL;
1182 		break;
1183 	default:
1184 		/* Speed was set earlier, this shouldn't happen. */
1185 		return -EINVAL;
1186 	}
1187 	/* Find the root hub port this device is under */
1188 	port_num = xhci_find_real_port_number(xhci, udev);
1189 	if (!port_num)
1190 		return -EINVAL;
1191 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1192 	/* Set the port number in the virtual_device to the faked port number */
1193 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1194 			top_dev = top_dev->parent)
1195 		/* Found device below root hub */;
1196 	dev->fake_port = top_dev->portnum;
1197 	dev->real_port = port_num;
1198 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1199 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1200 
1201 	/* Find the right bandwidth table that this device will be a part of.
1202 	 * If this is a full speed device attached directly to a root port (or a
1203 	 * decendent of one), it counts as a primary bandwidth domain, not a
1204 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1205 	 * will never be created for the HS root hub.
1206 	 */
1207 	if (!udev->tt || !udev->tt->hub->parent) {
1208 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1209 	} else {
1210 		struct xhci_root_port_bw_info *rh_bw;
1211 		struct xhci_tt_bw_info *tt_bw;
1212 
1213 		rh_bw = &xhci->rh_bw[port_num - 1];
1214 		/* Find the right TT. */
1215 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1216 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1217 				continue;
1218 
1219 			if (!dev->udev->tt->multi ||
1220 					(udev->tt->multi &&
1221 					 tt_bw->ttport == dev->udev->ttport)) {
1222 				dev->bw_table = &tt_bw->bw_table;
1223 				dev->tt_info = tt_bw;
1224 				break;
1225 			}
1226 		}
1227 		if (!dev->tt_info)
1228 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1229 	}
1230 
1231 	/* Is this a LS/FS device under an external HS hub? */
1232 	if (udev->tt && udev->tt->hub->parent) {
1233 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1234 						(udev->ttport << 8));
1235 		if (udev->tt->multi)
1236 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1237 	}
1238 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1239 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1240 
1241 	/* Step 4 - ring already allocated */
1242 	/* Step 5 */
1243 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1244 
1245 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1246 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1247 					 max_packets);
1248 
1249 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1250 				   dev->eps[0].ring->cycle_state);
1251 
1252 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  * Convert interval expressed as 2^(bInterval - 1) == interval into
1259  * straight exponent value 2^n == interval.
1260  *
1261  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1262 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1263 		struct usb_host_endpoint *ep)
1264 {
1265 	unsigned int interval;
1266 
1267 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1268 	if (interval != ep->desc.bInterval - 1)
1269 		dev_warn(&udev->dev,
1270 			 "ep %#x - rounding interval to %d %sframes\n",
1271 			 ep->desc.bEndpointAddress,
1272 			 1 << interval,
1273 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1274 
1275 	if (udev->speed == USB_SPEED_FULL) {
1276 		/*
1277 		 * Full speed isoc endpoints specify interval in frames,
1278 		 * not microframes. We are using microframes everywhere,
1279 		 * so adjust accordingly.
1280 		 */
1281 		interval += 3;	/* 1 frame = 2^3 uframes */
1282 	}
1283 
1284 	return interval;
1285 }
1286 
1287 /*
1288  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1289  * microframes, rounded down to nearest power of 2.
1290  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1291 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1292 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1293 		unsigned int min_exponent, unsigned int max_exponent)
1294 {
1295 	unsigned int interval;
1296 
1297 	interval = fls(desc_interval) - 1;
1298 	interval = clamp_val(interval, min_exponent, max_exponent);
1299 	if ((1 << interval) != desc_interval)
1300 		dev_warn(&udev->dev,
1301 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1302 			 ep->desc.bEndpointAddress,
1303 			 1 << interval,
1304 			 desc_interval);
1305 
1306 	return interval;
1307 }
1308 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1309 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1310 		struct usb_host_endpoint *ep)
1311 {
1312 	if (ep->desc.bInterval == 0)
1313 		return 0;
1314 	return xhci_microframes_to_exponent(udev, ep,
1315 			ep->desc.bInterval, 0, 15);
1316 }
1317 
1318 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1319 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1320 		struct usb_host_endpoint *ep)
1321 {
1322 	return xhci_microframes_to_exponent(udev, ep,
1323 			ep->desc.bInterval * 8, 3, 10);
1324 }
1325 
1326 /* Return the polling or NAK interval.
1327  *
1328  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1329  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1330  *
1331  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1332  * is set to 0.
1333  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1334 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1335 		struct usb_host_endpoint *ep)
1336 {
1337 	unsigned int interval = 0;
1338 
1339 	switch (udev->speed) {
1340 	case USB_SPEED_HIGH:
1341 		/* Max NAK rate */
1342 		if (usb_endpoint_xfer_control(&ep->desc) ||
1343 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1344 			interval = xhci_parse_microframe_interval(udev, ep);
1345 			break;
1346 		}
1347 		/* Fall through - SS and HS isoc/int have same decoding */
1348 
1349 	case USB_SPEED_SUPER_PLUS:
1350 	case USB_SPEED_SUPER:
1351 		if (usb_endpoint_xfer_int(&ep->desc) ||
1352 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1353 			interval = xhci_parse_exponent_interval(udev, ep);
1354 		}
1355 		break;
1356 
1357 	case USB_SPEED_FULL:
1358 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1359 			interval = xhci_parse_exponent_interval(udev, ep);
1360 			break;
1361 		}
1362 		/*
1363 		 * Fall through for interrupt endpoint interval decoding
1364 		 * since it uses the same rules as low speed interrupt
1365 		 * endpoints.
1366 		 */
1367 
1368 	case USB_SPEED_LOW:
1369 		if (usb_endpoint_xfer_int(&ep->desc) ||
1370 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1371 
1372 			interval = xhci_parse_frame_interval(udev, ep);
1373 		}
1374 		break;
1375 
1376 	default:
1377 		BUG();
1378 	}
1379 	return EP_INTERVAL(interval);
1380 }
1381 
1382 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1383  * High speed endpoint descriptors can define "the number of additional
1384  * transaction opportunities per microframe", but that goes in the Max Burst
1385  * endpoint context field.
1386  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1387 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1388 		struct usb_host_endpoint *ep)
1389 {
1390 	if (udev->speed < USB_SPEED_SUPER ||
1391 			!usb_endpoint_xfer_isoc(&ep->desc))
1392 		return 0;
1393 	return ep->ss_ep_comp.bmAttributes;
1394 }
1395 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1396 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1397 {
1398 	int in;
1399 	u32 type;
1400 
1401 	in = usb_endpoint_dir_in(&ep->desc);
1402 	if (usb_endpoint_xfer_control(&ep->desc)) {
1403 		type = EP_TYPE(CTRL_EP);
1404 	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1405 		if (in)
1406 			type = EP_TYPE(BULK_IN_EP);
1407 		else
1408 			type = EP_TYPE(BULK_OUT_EP);
1409 	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1410 		if (in)
1411 			type = EP_TYPE(ISOC_IN_EP);
1412 		else
1413 			type = EP_TYPE(ISOC_OUT_EP);
1414 	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1415 		if (in)
1416 			type = EP_TYPE(INT_IN_EP);
1417 		else
1418 			type = EP_TYPE(INT_OUT_EP);
1419 	} else {
1420 		type = 0;
1421 	}
1422 	return type;
1423 }
1424 
1425 /* Return the maximum endpoint service interval time (ESIT) payload.
1426  * Basically, this is the maxpacket size, multiplied by the burst size
1427  * and mult size.
1428  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1429 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1430 		struct usb_host_endpoint *ep)
1431 {
1432 	int max_burst;
1433 	int max_packet;
1434 
1435 	/* Only applies for interrupt or isochronous endpoints */
1436 	if (usb_endpoint_xfer_control(&ep->desc) ||
1437 			usb_endpoint_xfer_bulk(&ep->desc))
1438 		return 0;
1439 
1440 	if (udev->speed >= USB_SPEED_SUPER)
1441 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1442 
1443 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1444 	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1445 	/* A 0 in max burst means 1 transfer per ESIT */
1446 	return max_packet * (max_burst + 1);
1447 }
1448 
1449 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1450  * Drivers will have to call usb_alloc_streams() to do that.
1451  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1452 int xhci_endpoint_init(struct xhci_hcd *xhci,
1453 		struct xhci_virt_device *virt_dev,
1454 		struct usb_device *udev,
1455 		struct usb_host_endpoint *ep,
1456 		gfp_t mem_flags)
1457 {
1458 	unsigned int ep_index;
1459 	struct xhci_ep_ctx *ep_ctx;
1460 	struct xhci_ring *ep_ring;
1461 	unsigned int max_packet;
1462 	unsigned int max_burst;
1463 	enum xhci_ring_type type;
1464 	u32 max_esit_payload;
1465 	u32 endpoint_type;
1466 
1467 	ep_index = xhci_get_endpoint_index(&ep->desc);
1468 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1469 
1470 	endpoint_type = xhci_get_endpoint_type(ep);
1471 	if (!endpoint_type)
1472 		return -EINVAL;
1473 	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1474 
1475 	type = usb_endpoint_type(&ep->desc);
1476 	/* Set up the endpoint ring */
1477 	virt_dev->eps[ep_index].new_ring =
1478 		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1479 	if (!virt_dev->eps[ep_index].new_ring) {
1480 		/* Attempt to use the ring cache */
1481 		if (virt_dev->num_rings_cached == 0)
1482 			return -ENOMEM;
1483 		virt_dev->num_rings_cached--;
1484 		virt_dev->eps[ep_index].new_ring =
1485 			virt_dev->ring_cache[virt_dev->num_rings_cached];
1486 		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1487 		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1488 					1, type);
1489 	}
1490 	virt_dev->eps[ep_index].skip = false;
1491 	ep_ring = virt_dev->eps[ep_index].new_ring;
1492 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1493 
1494 	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1495 				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1496 
1497 	/* FIXME dig Mult and streams info out of ep companion desc */
1498 
1499 	/* Allow 3 retries for everything but isoc;
1500 	 * CErr shall be set to 0 for Isoch endpoints.
1501 	 */
1502 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1503 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1504 	else
1505 		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1506 
1507 	/* Set the max packet size and max burst */
1508 	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1509 	max_burst = 0;
1510 	switch (udev->speed) {
1511 	case USB_SPEED_SUPER_PLUS:
1512 	case USB_SPEED_SUPER:
1513 		/* dig out max burst from ep companion desc */
1514 		max_burst = ep->ss_ep_comp.bMaxBurst;
1515 		break;
1516 	case USB_SPEED_HIGH:
1517 		/* Some devices get this wrong */
1518 		if (usb_endpoint_xfer_bulk(&ep->desc))
1519 			max_packet = 512;
1520 		/* bits 11:12 specify the number of additional transaction
1521 		 * opportunities per microframe (USB 2.0, section 9.6.6)
1522 		 */
1523 		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1524 				usb_endpoint_xfer_int(&ep->desc)) {
1525 			max_burst = (usb_endpoint_maxp(&ep->desc)
1526 				     & 0x1800) >> 11;
1527 		}
1528 		break;
1529 	case USB_SPEED_FULL:
1530 	case USB_SPEED_LOW:
1531 		break;
1532 	default:
1533 		BUG();
1534 	}
1535 	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1536 			MAX_BURST(max_burst));
1537 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1538 	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1539 
1540 	/*
1541 	 * XXX no idea how to calculate the average TRB buffer length for bulk
1542 	 * endpoints, as the driver gives us no clue how big each scatter gather
1543 	 * list entry (or buffer) is going to be.
1544 	 *
1545 	 * For isochronous and interrupt endpoints, we set it to the max
1546 	 * available, until we have new API in the USB core to allow drivers to
1547 	 * declare how much bandwidth they actually need.
1548 	 *
1549 	 * Normally, it would be calculated by taking the total of the buffer
1550 	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1551 	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1552 	 * use Event Data TRBs, and we don't chain in a link TRB on short
1553 	 * transfers, we're basically dividing by 1.
1554 	 *
1555 	 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1556 	 * should be set to 8 for control endpoints.
1557 	 */
1558 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1559 		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1560 	else
1561 		ep_ctx->tx_info |=
1562 			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1563 
1564 	/* FIXME Debug endpoint context */
1565 	return 0;
1566 }
1567 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1568 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1569 		struct xhci_virt_device *virt_dev,
1570 		struct usb_host_endpoint *ep)
1571 {
1572 	unsigned int ep_index;
1573 	struct xhci_ep_ctx *ep_ctx;
1574 
1575 	ep_index = xhci_get_endpoint_index(&ep->desc);
1576 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1577 
1578 	ep_ctx->ep_info = 0;
1579 	ep_ctx->ep_info2 = 0;
1580 	ep_ctx->deq = 0;
1581 	ep_ctx->tx_info = 0;
1582 	/* Don't free the endpoint ring until the set interface or configuration
1583 	 * request succeeds.
1584 	 */
1585 }
1586 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1587 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1588 {
1589 	bw_info->ep_interval = 0;
1590 	bw_info->mult = 0;
1591 	bw_info->num_packets = 0;
1592 	bw_info->max_packet_size = 0;
1593 	bw_info->type = 0;
1594 	bw_info->max_esit_payload = 0;
1595 }
1596 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1597 void xhci_update_bw_info(struct xhci_hcd *xhci,
1598 		struct xhci_container_ctx *in_ctx,
1599 		struct xhci_input_control_ctx *ctrl_ctx,
1600 		struct xhci_virt_device *virt_dev)
1601 {
1602 	struct xhci_bw_info *bw_info;
1603 	struct xhci_ep_ctx *ep_ctx;
1604 	unsigned int ep_type;
1605 	int i;
1606 
1607 	for (i = 1; i < 31; ++i) {
1608 		bw_info = &virt_dev->eps[i].bw_info;
1609 
1610 		/* We can't tell what endpoint type is being dropped, but
1611 		 * unconditionally clearing the bandwidth info for non-periodic
1612 		 * endpoints should be harmless because the info will never be
1613 		 * set in the first place.
1614 		 */
1615 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1616 			/* Dropped endpoint */
1617 			xhci_clear_endpoint_bw_info(bw_info);
1618 			continue;
1619 		}
1620 
1621 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1622 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1623 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1624 
1625 			/* Ignore non-periodic endpoints */
1626 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1627 					ep_type != ISOC_IN_EP &&
1628 					ep_type != INT_IN_EP)
1629 				continue;
1630 
1631 			/* Added or changed endpoint */
1632 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1633 					le32_to_cpu(ep_ctx->ep_info));
1634 			/* Number of packets and mult are zero-based in the
1635 			 * input context, but we want one-based for the
1636 			 * interval table.
1637 			 */
1638 			bw_info->mult = CTX_TO_EP_MULT(
1639 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1640 			bw_info->num_packets = CTX_TO_MAX_BURST(
1641 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1642 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1643 					le32_to_cpu(ep_ctx->ep_info2));
1644 			bw_info->type = ep_type;
1645 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1646 					le32_to_cpu(ep_ctx->tx_info));
1647 		}
1648 	}
1649 }
1650 
1651 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1652  * Useful when you want to change one particular aspect of the endpoint and then
1653  * issue a configure endpoint command.
1654  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1655 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1656 		struct xhci_container_ctx *in_ctx,
1657 		struct xhci_container_ctx *out_ctx,
1658 		unsigned int ep_index)
1659 {
1660 	struct xhci_ep_ctx *out_ep_ctx;
1661 	struct xhci_ep_ctx *in_ep_ctx;
1662 
1663 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1664 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1665 
1666 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1667 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1668 	in_ep_ctx->deq = out_ep_ctx->deq;
1669 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1670 }
1671 
1672 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1673  * Useful when you want to change one particular aspect of the endpoint and then
1674  * issue a configure endpoint command.  Only the context entries field matters,
1675  * but we'll copy the whole thing anyway.
1676  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1677 void xhci_slot_copy(struct xhci_hcd *xhci,
1678 		struct xhci_container_ctx *in_ctx,
1679 		struct xhci_container_ctx *out_ctx)
1680 {
1681 	struct xhci_slot_ctx *in_slot_ctx;
1682 	struct xhci_slot_ctx *out_slot_ctx;
1683 
1684 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1685 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1686 
1687 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1688 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1689 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1690 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1691 }
1692 
1693 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1694 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1695 {
1696 	int i;
1697 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1698 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1699 
1700 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1701 			"Allocating %d scratchpad buffers", num_sp);
1702 
1703 	if (!num_sp)
1704 		return 0;
1705 
1706 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1707 	if (!xhci->scratchpad)
1708 		goto fail_sp;
1709 
1710 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1711 				     num_sp * sizeof(u64),
1712 				     &xhci->scratchpad->sp_dma, flags);
1713 	if (!xhci->scratchpad->sp_array)
1714 		goto fail_sp2;
1715 
1716 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1717 	if (!xhci->scratchpad->sp_buffers)
1718 		goto fail_sp3;
1719 
1720 	xhci->scratchpad->sp_dma_buffers =
1721 		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1722 
1723 	if (!xhci->scratchpad->sp_dma_buffers)
1724 		goto fail_sp4;
1725 
1726 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1727 	for (i = 0; i < num_sp; i++) {
1728 		dma_addr_t dma;
1729 		void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1730 				flags);
1731 		if (!buf)
1732 			goto fail_sp5;
1733 
1734 		xhci->scratchpad->sp_array[i] = dma;
1735 		xhci->scratchpad->sp_buffers[i] = buf;
1736 		xhci->scratchpad->sp_dma_buffers[i] = dma;
1737 	}
1738 
1739 	return 0;
1740 
1741  fail_sp5:
1742 	for (i = i - 1; i >= 0; i--) {
1743 		dma_free_coherent(dev, xhci->page_size,
1744 				    xhci->scratchpad->sp_buffers[i],
1745 				    xhci->scratchpad->sp_dma_buffers[i]);
1746 	}
1747 	kfree(xhci->scratchpad->sp_dma_buffers);
1748 
1749  fail_sp4:
1750 	kfree(xhci->scratchpad->sp_buffers);
1751 
1752  fail_sp3:
1753 	dma_free_coherent(dev, num_sp * sizeof(u64),
1754 			    xhci->scratchpad->sp_array,
1755 			    xhci->scratchpad->sp_dma);
1756 
1757  fail_sp2:
1758 	kfree(xhci->scratchpad);
1759 	xhci->scratchpad = NULL;
1760 
1761  fail_sp:
1762 	return -ENOMEM;
1763 }
1764 
scratchpad_free(struct xhci_hcd * xhci)1765 static void scratchpad_free(struct xhci_hcd *xhci)
1766 {
1767 	int num_sp;
1768 	int i;
1769 	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1770 
1771 	if (!xhci->scratchpad)
1772 		return;
1773 
1774 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1775 
1776 	for (i = 0; i < num_sp; i++) {
1777 		dma_free_coherent(dev, xhci->page_size,
1778 				    xhci->scratchpad->sp_buffers[i],
1779 				    xhci->scratchpad->sp_dma_buffers[i]);
1780 	}
1781 	kfree(xhci->scratchpad->sp_dma_buffers);
1782 	kfree(xhci->scratchpad->sp_buffers);
1783 	dma_free_coherent(dev, num_sp * sizeof(u64),
1784 			    xhci->scratchpad->sp_array,
1785 			    xhci->scratchpad->sp_dma);
1786 	kfree(xhci->scratchpad);
1787 	xhci->scratchpad = NULL;
1788 }
1789 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_in_ctx,bool allocate_completion,gfp_t mem_flags)1790 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1791 		bool allocate_in_ctx, bool allocate_completion,
1792 		gfp_t mem_flags)
1793 {
1794 	struct xhci_command *command;
1795 
1796 	command = kzalloc(sizeof(*command), mem_flags);
1797 	if (!command)
1798 		return NULL;
1799 
1800 	if (allocate_in_ctx) {
1801 		command->in_ctx =
1802 			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1803 					mem_flags);
1804 		if (!command->in_ctx) {
1805 			kfree(command);
1806 			return NULL;
1807 		}
1808 	}
1809 
1810 	if (allocate_completion) {
1811 		command->completion =
1812 			kzalloc(sizeof(struct completion), mem_flags);
1813 		if (!command->completion) {
1814 			xhci_free_container_ctx(xhci, command->in_ctx);
1815 			kfree(command);
1816 			return NULL;
1817 		}
1818 		init_completion(command->completion);
1819 	}
1820 
1821 	command->status = 0;
1822 	INIT_LIST_HEAD(&command->cmd_list);
1823 	return command;
1824 }
1825 
xhci_urb_free_priv(struct urb_priv * urb_priv)1826 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1827 {
1828 	if (urb_priv) {
1829 		kfree(urb_priv->td[0]);
1830 		kfree(urb_priv);
1831 	}
1832 }
1833 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1834 void xhci_free_command(struct xhci_hcd *xhci,
1835 		struct xhci_command *command)
1836 {
1837 	xhci_free_container_ctx(xhci,
1838 			command->in_ctx);
1839 	kfree(command->completion);
1840 	kfree(command);
1841 }
1842 
xhci_mem_cleanup(struct xhci_hcd * xhci)1843 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1844 {
1845 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1846 	int size;
1847 	int i, j, num_ports;
1848 
1849 	cancel_delayed_work_sync(&xhci->cmd_timer);
1850 
1851 	/* Free the Event Ring Segment Table and the actual Event Ring */
1852 	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1853 	if (xhci->erst.entries)
1854 		dma_free_coherent(dev, size,
1855 				xhci->erst.entries, xhci->erst.erst_dma_addr);
1856 	xhci->erst.entries = NULL;
1857 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1858 	if (xhci->event_ring)
1859 		xhci_ring_free(xhci, xhci->event_ring);
1860 	xhci->event_ring = NULL;
1861 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862 
1863 	if (xhci->lpm_command)
1864 		xhci_free_command(xhci, xhci->lpm_command);
1865 	xhci->lpm_command = NULL;
1866 	if (xhci->cmd_ring)
1867 		xhci_ring_free(xhci, xhci->cmd_ring);
1868 	xhci->cmd_ring = NULL;
1869 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870 	xhci_cleanup_command_queue(xhci);
1871 
1872 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877 			while (!list_empty(ep))
1878 				list_del_init(ep->next);
1879 		}
1880 	}
1881 
1882 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883 		xhci_free_virt_devices_depth_first(xhci, i);
1884 
1885 	dma_pool_destroy(xhci->segment_pool);
1886 	xhci->segment_pool = NULL;
1887 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888 
1889 	dma_pool_destroy(xhci->device_pool);
1890 	xhci->device_pool = NULL;
1891 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892 
1893 	dma_pool_destroy(xhci->small_streams_pool);
1894 	xhci->small_streams_pool = NULL;
1895 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896 			"Freed small stream array pool");
1897 
1898 	dma_pool_destroy(xhci->medium_streams_pool);
1899 	xhci->medium_streams_pool = NULL;
1900 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901 			"Freed medium stream array pool");
1902 
1903 	if (xhci->dcbaa)
1904 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905 				xhci->dcbaa, xhci->dcbaa->dma);
1906 	xhci->dcbaa = NULL;
1907 
1908 	scratchpad_free(xhci);
1909 
1910 	if (!xhci->rh_bw)
1911 		goto no_bw;
1912 
1913 	for (i = 0; i < num_ports; i++) {
1914 		struct xhci_tt_bw_info *tt, *n;
1915 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916 			list_del(&tt->tt_list);
1917 			kfree(tt);
1918 		}
1919 	}
1920 
1921 no_bw:
1922 	xhci->cmd_ring_reserved_trbs = 0;
1923 	xhci->num_usb2_ports = 0;
1924 	xhci->num_usb3_ports = 0;
1925 	xhci->num_active_eps = 0;
1926 	kfree(xhci->usb2_ports);
1927 	kfree(xhci->usb3_ports);
1928 	kfree(xhci->port_array);
1929 	kfree(xhci->rh_bw);
1930 	kfree(xhci->ext_caps);
1931 	kfree(xhci->usb2_rhub.psi);
1932 	kfree(xhci->usb3_rhub.psi);
1933 
1934 	xhci->usb2_ports = NULL;
1935 	xhci->usb3_ports = NULL;
1936 	xhci->port_array = NULL;
1937 	xhci->usb2_rhub.psi = NULL;
1938 	xhci->usb3_rhub.psi = NULL;
1939 	xhci->rh_bw = NULL;
1940 	xhci->ext_caps = NULL;
1941 
1942 	xhci->page_size = 0;
1943 	xhci->page_shift = 0;
1944 	xhci->bus_state[0].bus_suspended = 0;
1945 	xhci->bus_state[1].bus_suspended = 0;
1946 }
1947 
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1948 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949 		struct xhci_segment *input_seg,
1950 		union xhci_trb *start_trb,
1951 		union xhci_trb *end_trb,
1952 		dma_addr_t input_dma,
1953 		struct xhci_segment *result_seg,
1954 		char *test_name, int test_number)
1955 {
1956 	unsigned long long start_dma;
1957 	unsigned long long end_dma;
1958 	struct xhci_segment *seg;
1959 
1960 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962 
1963 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964 	if (seg != result_seg) {
1965 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966 				test_name, test_number);
1967 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968 				"input DMA 0x%llx\n",
1969 				input_seg,
1970 				(unsigned long long) input_dma);
1971 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972 				"ending TRB %p (0x%llx DMA)\n",
1973 				start_trb, start_dma,
1974 				end_trb, end_dma);
1975 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1976 				result_seg, seg);
1977 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1978 			  true);
1979 		return -1;
1980 	}
1981 	return 0;
1982 }
1983 
1984 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)1985 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986 {
1987 	struct {
1988 		dma_addr_t		input_dma;
1989 		struct xhci_segment	*result_seg;
1990 	} simple_test_vector [] = {
1991 		/* A zeroed DMA field should fail */
1992 		{ 0, NULL },
1993 		/* One TRB before the ring start should fail */
1994 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1995 		/* One byte before the ring start should fail */
1996 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1997 		/* Starting TRB should succeed */
1998 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999 		/* Ending TRB should succeed */
2000 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001 			xhci->event_ring->first_seg },
2002 		/* One byte after the ring end should fail */
2003 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004 		/* One TRB after the ring end should fail */
2005 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006 		/* An address of all ones should fail */
2007 		{ (dma_addr_t) (~0), NULL },
2008 	};
2009 	struct {
2010 		struct xhci_segment	*input_seg;
2011 		union xhci_trb		*start_trb;
2012 		union xhci_trb		*end_trb;
2013 		dma_addr_t		input_dma;
2014 		struct xhci_segment	*result_seg;
2015 	} complex_test_vector [] = {
2016 		/* Test feeding a valid DMA address from a different ring */
2017 		{	.input_seg = xhci->event_ring->first_seg,
2018 			.start_trb = xhci->event_ring->first_seg->trbs,
2019 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020 			.input_dma = xhci->cmd_ring->first_seg->dma,
2021 			.result_seg = NULL,
2022 		},
2023 		/* Test feeding a valid end TRB from a different ring */
2024 		{	.input_seg = xhci->event_ring->first_seg,
2025 			.start_trb = xhci->event_ring->first_seg->trbs,
2026 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027 			.input_dma = xhci->cmd_ring->first_seg->dma,
2028 			.result_seg = NULL,
2029 		},
2030 		/* Test feeding a valid start and end TRB from a different ring */
2031 		{	.input_seg = xhci->event_ring->first_seg,
2032 			.start_trb = xhci->cmd_ring->first_seg->trbs,
2033 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034 			.input_dma = xhci->cmd_ring->first_seg->dma,
2035 			.result_seg = NULL,
2036 		},
2037 		/* TRB in this ring, but after this TD */
2038 		{	.input_seg = xhci->event_ring->first_seg,
2039 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2040 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2041 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2042 			.result_seg = NULL,
2043 		},
2044 		/* TRB in this ring, but before this TD */
2045 		{	.input_seg = xhci->event_ring->first_seg,
2046 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2047 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2048 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2049 			.result_seg = NULL,
2050 		},
2051 		/* TRB in this ring, but after this wrapped TD */
2052 		{	.input_seg = xhci->event_ring->first_seg,
2053 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2055 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2056 			.result_seg = NULL,
2057 		},
2058 		/* TRB in this ring, but before this wrapped TD */
2059 		{	.input_seg = xhci->event_ring->first_seg,
2060 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2062 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2063 			.result_seg = NULL,
2064 		},
2065 		/* TRB not in this ring, and we have a wrapped TD */
2066 		{	.input_seg = xhci->event_ring->first_seg,
2067 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2069 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2070 			.result_seg = NULL,
2071 		},
2072 	};
2073 
2074 	unsigned int num_tests;
2075 	int i, ret;
2076 
2077 	num_tests = ARRAY_SIZE(simple_test_vector);
2078 	for (i = 0; i < num_tests; i++) {
2079 		ret = xhci_test_trb_in_td(xhci,
2080 				xhci->event_ring->first_seg,
2081 				xhci->event_ring->first_seg->trbs,
2082 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083 				simple_test_vector[i].input_dma,
2084 				simple_test_vector[i].result_seg,
2085 				"Simple", i);
2086 		if (ret < 0)
2087 			return ret;
2088 	}
2089 
2090 	num_tests = ARRAY_SIZE(complex_test_vector);
2091 	for (i = 0; i < num_tests; i++) {
2092 		ret = xhci_test_trb_in_td(xhci,
2093 				complex_test_vector[i].input_seg,
2094 				complex_test_vector[i].start_trb,
2095 				complex_test_vector[i].end_trb,
2096 				complex_test_vector[i].input_dma,
2097 				complex_test_vector[i].result_seg,
2098 				"Complex", i);
2099 		if (ret < 0)
2100 			return ret;
2101 	}
2102 	xhci_dbg(xhci, "TRB math tests passed.\n");
2103 	return 0;
2104 }
2105 
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2106 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107 {
2108 	u64 temp;
2109 	dma_addr_t deq;
2110 
2111 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112 			xhci->event_ring->dequeue);
2113 	if (deq == 0 && !in_interrupt())
2114 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2115 				"dequeue ptr.\n");
2116 	/* Update HC event ring dequeue pointer */
2117 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118 	temp &= ERST_PTR_MASK;
2119 	/* Don't clear the EHB bit (which is RW1C) because
2120 	 * there might be more events to service.
2121 	 */
2122 	temp &= ~ERST_EHB;
2123 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124 			"// Write event ring dequeue pointer, "
2125 			"preserving EHB bit");
2126 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127 			&xhci->ir_set->erst_dequeue);
2128 }
2129 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,u8 major_revision,int max_caps)2130 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131 		__le32 __iomem *addr, u8 major_revision, int max_caps)
2132 {
2133 	u32 temp, port_offset, port_count;
2134 	int i;
2135 	struct xhci_hub *rhub;
2136 
2137 	temp = readl(addr);
2138 
2139 	if (XHCI_EXT_PORT_MAJOR(temp) == 0x03) {
2140 		rhub = &xhci->usb3_rhub;
2141 	} else if (XHCI_EXT_PORT_MAJOR(temp) <= 0x02) {
2142 		rhub = &xhci->usb2_rhub;
2143 	} else {
2144 		xhci_warn(xhci, "Ignoring unknown port speed, "
2145 				"Ext Cap %p, revision = 0x%x\n",
2146 				addr, major_revision);
2147 		/* Ignoring port protocol we can't understand. FIXME */
2148 		return;
2149 	}
2150 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2151 	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2152 
2153 	/* Port offset and count in the third dword, see section 7.2 */
2154 	temp = readl(addr + 2);
2155 	port_offset = XHCI_EXT_PORT_OFF(temp);
2156 	port_count = XHCI_EXT_PORT_COUNT(temp);
2157 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2158 			"Ext Cap %p, port offset = %u, "
2159 			"count = %u, revision = 0x%x",
2160 			addr, port_offset, port_count, major_revision);
2161 	/* Port count includes the current port offset */
2162 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2163 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2164 		return;
2165 
2166 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2167 	if (rhub->psi_count) {
2168 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2169 				    GFP_KERNEL);
2170 		if (!rhub->psi)
2171 			rhub->psi_count = 0;
2172 
2173 		rhub->psi_uid_count++;
2174 		for (i = 0; i < rhub->psi_count; i++) {
2175 			rhub->psi[i] = readl(addr + 4 + i);
2176 
2177 			/* count unique ID values, two consecutive entries can
2178 			 * have the same ID if link is assymetric
2179 			 */
2180 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2181 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2182 				rhub->psi_uid_count++;
2183 
2184 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2185 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2186 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2187 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2188 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2189 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2190 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2191 		}
2192 	}
2193 	/* cache usb2 port capabilities */
2194 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2195 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2196 
2197 	/* Check the host's USB2 LPM capability */
2198 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2199 			(temp & XHCI_L1C)) {
2200 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2201 				"xHCI 0.96: support USB2 software lpm");
2202 		xhci->sw_lpm_support = 1;
2203 	}
2204 
2205 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2206 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2207 				"xHCI 1.0: support USB2 software lpm");
2208 		xhci->sw_lpm_support = 1;
2209 		if (temp & XHCI_HLC) {
2210 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2211 					"xHCI 1.0: support USB2 hardware lpm");
2212 			xhci->hw_lpm_support = 1;
2213 		}
2214 	}
2215 
2216 	port_offset--;
2217 	for (i = port_offset; i < (port_offset + port_count); i++) {
2218 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2219 		if (xhci->port_array[i] != 0) {
2220 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2221 					" port %u\n", addr, i);
2222 			xhci_warn(xhci, "Port was marked as USB %u, "
2223 					"duplicated as USB %u\n",
2224 					xhci->port_array[i], major_revision);
2225 			/* Only adjust the roothub port counts if we haven't
2226 			 * found a similar duplicate.
2227 			 */
2228 			if (xhci->port_array[i] != major_revision &&
2229 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2230 				if (xhci->port_array[i] == 0x03)
2231 					xhci->num_usb3_ports--;
2232 				else
2233 					xhci->num_usb2_ports--;
2234 				xhci->port_array[i] = DUPLICATE_ENTRY;
2235 			}
2236 			/* FIXME: Should we disable the port? */
2237 			continue;
2238 		}
2239 		xhci->port_array[i] = major_revision;
2240 		if (major_revision == 0x03)
2241 			xhci->num_usb3_ports++;
2242 		else
2243 			xhci->num_usb2_ports++;
2244 	}
2245 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2246 }
2247 
2248 /*
2249  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2250  * specify what speeds each port is supposed to be.  We can't count on the port
2251  * speed bits in the PORTSC register being correct until a device is connected,
2252  * but we need to set up the two fake roothubs with the correct number of USB
2253  * 3.0 and USB 2.0 ports at host controller initialization time.
2254  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2255 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2256 {
2257 	__le32 __iomem *addr, *tmp_addr;
2258 	u32 offset, tmp_offset;
2259 	unsigned int num_ports;
2260 	int i, j, port_index;
2261 	int cap_count = 0;
2262 
2263 	addr = &xhci->cap_regs->hcc_params;
2264 	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2265 	if (offset == 0) {
2266 		xhci_err(xhci, "No Extended Capability registers, "
2267 				"unable to set up roothub.\n");
2268 		return -ENODEV;
2269 	}
2270 
2271 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2272 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2273 	if (!xhci->port_array)
2274 		return -ENOMEM;
2275 
2276 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2277 	if (!xhci->rh_bw)
2278 		return -ENOMEM;
2279 	for (i = 0; i < num_ports; i++) {
2280 		struct xhci_interval_bw_table *bw_table;
2281 
2282 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2283 		bw_table = &xhci->rh_bw[i].bw_table;
2284 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2285 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2286 	}
2287 
2288 	/*
2289 	 * For whatever reason, the first capability offset is from the
2290 	 * capability register base, not from the HCCPARAMS register.
2291 	 * See section 5.3.6 for offset calculation.
2292 	 */
2293 	addr = &xhci->cap_regs->hc_capbase + offset;
2294 
2295 	tmp_addr = addr;
2296 	tmp_offset = offset;
2297 
2298 	/* count extended protocol capability entries for later caching */
2299 	do {
2300 		u32 cap_id;
2301 		cap_id = readl(tmp_addr);
2302 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2303 			cap_count++;
2304 		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2305 		tmp_addr += tmp_offset;
2306 	} while (tmp_offset);
2307 
2308 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2309 	if (!xhci->ext_caps)
2310 		return -ENOMEM;
2311 
2312 	while (1) {
2313 		u32 cap_id;
2314 
2315 		cap_id = readl(addr);
2316 		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2317 			xhci_add_in_port(xhci, num_ports, addr,
2318 					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2319 					cap_count);
2320 		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2321 		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2322 				== num_ports)
2323 			break;
2324 		/*
2325 		 * Once you're into the Extended Capabilities, the offset is
2326 		 * always relative to the register holding the offset.
2327 		 */
2328 		addr += offset;
2329 	}
2330 
2331 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2332 		xhci_warn(xhci, "No ports on the roothubs?\n");
2333 		return -ENODEV;
2334 	}
2335 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2337 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2338 
2339 	/* Place limits on the number of roothub ports so that the hub
2340 	 * descriptors aren't longer than the USB core will allocate.
2341 	 */
2342 	if (xhci->num_usb3_ports > 15) {
2343 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344 				"Limiting USB 3.0 roothub ports to 15.");
2345 		xhci->num_usb3_ports = 15;
2346 	}
2347 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2348 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2349 				"Limiting USB 2.0 roothub ports to %u.",
2350 				USB_MAXCHILDREN);
2351 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2352 	}
2353 
2354 	/*
2355 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2356 	 * Not sure how the USB core will handle a hub with no ports...
2357 	 */
2358 	if (xhci->num_usb2_ports) {
2359 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2360 				xhci->num_usb2_ports, flags);
2361 		if (!xhci->usb2_ports)
2362 			return -ENOMEM;
2363 
2364 		port_index = 0;
2365 		for (i = 0; i < num_ports; i++) {
2366 			if (xhci->port_array[i] == 0x03 ||
2367 					xhci->port_array[i] == 0 ||
2368 					xhci->port_array[i] == DUPLICATE_ENTRY)
2369 				continue;
2370 
2371 			xhci->usb2_ports[port_index] =
2372 				&xhci->op_regs->port_status_base +
2373 				NUM_PORT_REGS*i;
2374 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375 					"USB 2.0 port at index %u, "
2376 					"addr = %p", i,
2377 					xhci->usb2_ports[port_index]);
2378 			port_index++;
2379 			if (port_index == xhci->num_usb2_ports)
2380 				break;
2381 		}
2382 	}
2383 	if (xhci->num_usb3_ports) {
2384 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2385 				xhci->num_usb3_ports, flags);
2386 		if (!xhci->usb3_ports)
2387 			return -ENOMEM;
2388 
2389 		port_index = 0;
2390 		for (i = 0; i < num_ports; i++)
2391 			if (xhci->port_array[i] == 0x03) {
2392 				xhci->usb3_ports[port_index] =
2393 					&xhci->op_regs->port_status_base +
2394 					NUM_PORT_REGS*i;
2395 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2396 						"USB 3.0 port at index %u, "
2397 						"addr = %p", i,
2398 						xhci->usb3_ports[port_index]);
2399 				port_index++;
2400 				if (port_index == xhci->num_usb3_ports)
2401 					break;
2402 			}
2403 	}
2404 	return 0;
2405 }
2406 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2407 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2408 {
2409 	dma_addr_t	dma;
2410 	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2411 	unsigned int	val, val2;
2412 	u64		val_64;
2413 	struct xhci_segment	*seg;
2414 	u32 page_size, temp;
2415 	int i;
2416 
2417 	INIT_LIST_HEAD(&xhci->cmd_list);
2418 
2419 	/* init command timeout work */
2420 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2421 	init_completion(&xhci->cmd_ring_stop_completion);
2422 
2423 	page_size = readl(&xhci->op_regs->page_size);
2424 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425 			"Supported page size register = 0x%x", page_size);
2426 	for (i = 0; i < 16; i++) {
2427 		if ((0x1 & page_size) != 0)
2428 			break;
2429 		page_size = page_size >> 1;
2430 	}
2431 	if (i < 16)
2432 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2433 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2434 	else
2435 		xhci_warn(xhci, "WARN: no supported page size\n");
2436 	/* Use 4K pages, since that's common and the minimum the HC supports */
2437 	xhci->page_shift = 12;
2438 	xhci->page_size = 1 << xhci->page_shift;
2439 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2440 			"HCD page size set to %iK", xhci->page_size / 1024);
2441 
2442 	/*
2443 	 * Program the Number of Device Slots Enabled field in the CONFIG
2444 	 * register with the max value of slots the HC can handle.
2445 	 */
2446 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2447 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2448 			"// xHC can handle at most %d device slots.", val);
2449 	val2 = readl(&xhci->op_regs->config_reg);
2450 	val |= (val2 & ~HCS_SLOTS_MASK);
2451 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452 			"// Setting Max device slots reg = 0x%x.", val);
2453 	writel(val, &xhci->op_regs->config_reg);
2454 
2455 	/*
2456 	 * Section 5.4.8 - doorbell array must be
2457 	 * "physically contiguous and 64-byte (cache line) aligned".
2458 	 */
2459 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2460 			flags);
2461 	if (!xhci->dcbaa)
2462 		goto fail;
2463 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2464 	xhci->dcbaa->dma = dma;
2465 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2466 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2467 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2468 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2469 
2470 	/*
2471 	 * Initialize the ring segment pool.  The ring must be a contiguous
2472 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2473 	 * however, the command ring segment needs 64-byte aligned segments
2474 	 * and our use of dma addresses in the trb_address_map radix tree needs
2475 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2476 	 */
2477 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2478 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2479 
2480 	/* See Table 46 and Note on Figure 55 */
2481 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2482 			2112, 64, xhci->page_size);
2483 	if (!xhci->segment_pool || !xhci->device_pool)
2484 		goto fail;
2485 
2486 	/* Linear stream context arrays don't have any boundary restrictions,
2487 	 * and only need to be 16-byte aligned.
2488 	 */
2489 	xhci->small_streams_pool =
2490 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2491 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2492 	xhci->medium_streams_pool =
2493 		dma_pool_create("xHCI 1KB stream ctx arrays",
2494 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2495 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2496 	 * will be allocated with dma_alloc_coherent()
2497 	 */
2498 
2499 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2500 		goto fail;
2501 
2502 	/* Set up the command ring to have one segments for now. */
2503 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2504 	if (!xhci->cmd_ring)
2505 		goto fail;
2506 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 			"Allocated command ring at %p", xhci->cmd_ring);
2508 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2509 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2510 
2511 	/* Set the address in the Command Ring Control register */
2512 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2513 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2514 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2515 		xhci->cmd_ring->cycle_state;
2516 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517 			"// Setting command ring address to 0x%016llx", val_64);
2518 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2519 	xhci_dbg_cmd_ptrs(xhci);
2520 
2521 	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2522 	if (!xhci->lpm_command)
2523 		goto fail;
2524 
2525 	/* Reserve one command ring TRB for disabling LPM.
2526 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2527 	 * disabling LPM, we only need to reserve one TRB for all devices.
2528 	 */
2529 	xhci->cmd_ring_reserved_trbs++;
2530 
2531 	val = readl(&xhci->cap_regs->db_off);
2532 	val &= DBOFF_MASK;
2533 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2534 			"// Doorbell array is located at offset 0x%x"
2535 			" from cap regs base addr", val);
2536 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2537 	xhci_dbg_regs(xhci);
2538 	xhci_print_run_regs(xhci);
2539 	/* Set ir_set to interrupt register set 0 */
2540 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2541 
2542 	/*
2543 	 * Event ring setup: Allocate a normal ring, but also setup
2544 	 * the event ring segment table (ERST).  Section 4.9.3.
2545 	 */
2546 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2547 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2548 						flags);
2549 	if (!xhci->event_ring)
2550 		goto fail;
2551 	if (xhci_check_trb_in_td_math(xhci) < 0)
2552 		goto fail;
2553 
2554 	xhci->erst.entries = dma_alloc_coherent(dev,
2555 			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2556 			flags);
2557 	if (!xhci->erst.entries)
2558 		goto fail;
2559 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2560 			"// Allocated event ring segment table at 0x%llx",
2561 			(unsigned long long)dma);
2562 
2563 	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2564 	xhci->erst.num_entries = ERST_NUM_SEGS;
2565 	xhci->erst.erst_dma_addr = dma;
2566 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2567 			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2568 			xhci->erst.num_entries,
2569 			xhci->erst.entries,
2570 			(unsigned long long)xhci->erst.erst_dma_addr);
2571 
2572 	/* set ring base address and size for each segment table entry */
2573 	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2574 		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2575 		entry->seg_addr = cpu_to_le64(seg->dma);
2576 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2577 		entry->rsvd = 0;
2578 		seg = seg->next;
2579 	}
2580 
2581 	/* set ERST count with the number of entries in the segment table */
2582 	val = readl(&xhci->ir_set->erst_size);
2583 	val &= ERST_SIZE_MASK;
2584 	val |= ERST_NUM_SEGS;
2585 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2586 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2587 			val);
2588 	writel(val, &xhci->ir_set->erst_size);
2589 
2590 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2591 			"// Set ERST entries to point to event ring.");
2592 	/* set the segment table base address */
2593 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2594 			"// Set ERST base address for ir_set 0 = 0x%llx",
2595 			(unsigned long long)xhci->erst.erst_dma_addr);
2596 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2597 	val_64 &= ERST_PTR_MASK;
2598 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2599 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2600 
2601 	/* Set the event ring dequeue address */
2602 	xhci_set_hc_event_deq(xhci);
2603 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2604 			"Wrote ERST address to ir_set 0.");
2605 	xhci_print_ir_set(xhci, 0);
2606 
2607 	/*
2608 	 * XXX: Might need to set the Interrupter Moderation Register to
2609 	 * something other than the default (~1ms minimum between interrupts).
2610 	 * See section 5.5.1.2.
2611 	 */
2612 	init_completion(&xhci->addr_dev);
2613 	for (i = 0; i < MAX_HC_SLOTS; ++i)
2614 		xhci->devs[i] = NULL;
2615 	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2616 		xhci->bus_state[0].resume_done[i] = 0;
2617 		xhci->bus_state[1].resume_done[i] = 0;
2618 		/* Only the USB 2.0 completions will ever be used. */
2619 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2620 	}
2621 
2622 	if (scratchpad_alloc(xhci, flags))
2623 		goto fail;
2624 	if (xhci_setup_port_arrays(xhci, flags))
2625 		goto fail;
2626 
2627 	/* Enable USB 3.0 device notifications for function remote wake, which
2628 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2629 	 * U3 (device suspend).
2630 	 */
2631 	temp = readl(&xhci->op_regs->dev_notification);
2632 	temp &= ~DEV_NOTE_MASK;
2633 	temp |= DEV_NOTE_FWAKE;
2634 	writel(temp, &xhci->op_regs->dev_notification);
2635 
2636 	return 0;
2637 
2638 fail:
2639 	xhci_warn(xhci, "Couldn't initialize memory\n");
2640 	xhci_halt(xhci);
2641 	xhci_reset(xhci);
2642 	xhci_mem_cleanup(xhci);
2643 	return -ENOMEM;
2644 }
2645