1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,gfp_t flags)39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state, gfp_t flags)
41 {
42 struct xhci_segment *seg;
43 dma_addr_t dma;
44 int i;
45
46 seg = kzalloc(sizeof *seg, flags);
47 if (!seg)
48 return NULL;
49
50 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 if (!seg->trbs) {
52 kfree(seg);
53 return NULL;
54 }
55
56 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66 }
67
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg);
75 }
76
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 struct xhci_segment *first)
79 {
80 struct xhci_segment *seg;
81
82 seg = first->next;
83 while (seg != first) {
84 struct xhci_segment *next = seg->next;
85 xhci_segment_free(xhci, seg);
86 seg = next;
87 }
88 xhci_segment_free(xhci, first);
89 }
90
91 /*
92 * Make the prev segment point to the next segment.
93 *
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment. The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
97 */
xhci_link_segments(struct xhci_hcd * xhci,struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type)98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 struct xhci_segment *next, enum xhci_ring_type type)
100 {
101 u32 val;
102
103 if (!prev || !next)
104 return;
105 prev->next = next;
106 if (type != TYPE_EVENT) {
107 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 cpu_to_le64(next->dma);
109
110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 val &= ~TRB_TYPE_BITMASK;
113 val |= TRB_TYPE(TRB_LINK);
114 /* Always set the chain bit with 0.95 hardware */
115 /* Set chain bit for isoc rings on AMD 0.96 host */
116 if (xhci_link_trb_quirk(xhci) ||
117 (type == TYPE_ISOC &&
118 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 val |= TRB_CHAIN;
120 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121 }
122 }
123
124 /*
125 * Link the ring to the new segments.
126 * Set Toggle Cycle for the new ring if needed.
127 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 struct xhci_segment *first, struct xhci_segment *last,
130 unsigned int num_segs)
131 {
132 struct xhci_segment *next;
133
134 if (!ring || !first || !last)
135 return;
136
137 next = ring->enq_seg->next;
138 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 xhci_link_segments(xhci, last, next, ring->type);
140 ring->num_segs += num_segs;
141 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142
143 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 &= ~cpu_to_le32(LINK_TOGGLE);
146 last->trbs[TRBS_PER_SEGMENT-1].link.control
147 |= cpu_to_le32(LINK_TOGGLE);
148 ring->last_seg = last;
149 }
150 }
151
152 /*
153 * We need a radix tree for mapping physical addresses of TRBs to which stream
154 * ID they belong to. We need to do this because the host controller won't tell
155 * us which stream ring the TRB came from. We could store the stream ID in an
156 * event data TRB, but that doesn't help us for the cancellation case, since the
157 * endpoint may stop before it reaches that event data TRB.
158 *
159 * The radix tree maps the upper portion of the TRB DMA address to a ring
160 * segment that has the same upper portion of DMA addresses. For example, say I
161 * have segments of size 1KB, that are always 1KB aligned. A segment may
162 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
163 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
164 * pass the radix tree a key to get the right stream ID:
165 *
166 * 0x10c90fff >> 10 = 0x43243
167 * 0x10c912c0 >> 10 = 0x43244
168 * 0x10c91400 >> 10 = 0x43245
169 *
170 * Obviously, only those TRBs with DMA addresses that are within the segment
171 * will make the radix tree return the stream ID for that ring.
172 *
173 * Caveats for the radix tree:
174 *
175 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
180 * extended systems (where the DMA address can be bigger than 32-bits),
181 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
182 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)183 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184 struct xhci_ring *ring,
185 struct xhci_segment *seg,
186 gfp_t mem_flags)
187 {
188 unsigned long key;
189 int ret;
190
191 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192 /* Skip any segments that were already added. */
193 if (radix_tree_lookup(trb_address_map, key))
194 return 0;
195
196 ret = radix_tree_maybe_preload(mem_flags);
197 if (ret)
198 return ret;
199 ret = radix_tree_insert(trb_address_map,
200 key, ring);
201 radix_tree_preload_end();
202 return ret;
203 }
204
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)205 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206 struct xhci_segment *seg)
207 {
208 unsigned long key;
209
210 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211 if (radix_tree_lookup(trb_address_map, key))
212 radix_tree_delete(trb_address_map, key);
213 }
214
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)215 static int xhci_update_stream_segment_mapping(
216 struct radix_tree_root *trb_address_map,
217 struct xhci_ring *ring,
218 struct xhci_segment *first_seg,
219 struct xhci_segment *last_seg,
220 gfp_t mem_flags)
221 {
222 struct xhci_segment *seg;
223 struct xhci_segment *failed_seg;
224 int ret;
225
226 if (WARN_ON_ONCE(trb_address_map == NULL))
227 return 0;
228
229 seg = first_seg;
230 do {
231 ret = xhci_insert_segment_mapping(trb_address_map,
232 ring, seg, mem_flags);
233 if (ret)
234 goto remove_streams;
235 if (seg == last_seg)
236 return 0;
237 seg = seg->next;
238 } while (seg != first_seg);
239
240 return 0;
241
242 remove_streams:
243 failed_seg = seg;
244 seg = first_seg;
245 do {
246 xhci_remove_segment_mapping(trb_address_map, seg);
247 if (seg == failed_seg)
248 return ret;
249 seg = seg->next;
250 } while (seg != first_seg);
251
252 return ret;
253 }
254
xhci_remove_stream_mapping(struct xhci_ring * ring)255 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 {
257 struct xhci_segment *seg;
258
259 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260 return;
261
262 seg = ring->first_seg;
263 do {
264 xhci_remove_segment_mapping(ring->trb_address_map, seg);
265 seg = seg->next;
266 } while (seg != ring->first_seg);
267 }
268
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)269 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 {
271 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272 ring->first_seg, ring->last_seg, mem_flags);
273 }
274
275 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)276 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277 {
278 if (!ring)
279 return;
280
281 if (ring->first_seg) {
282 if (ring->type == TYPE_STREAM)
283 xhci_remove_stream_mapping(ring);
284 xhci_free_segments_for_ring(xhci, ring->first_seg);
285 }
286
287 kfree(ring);
288 }
289
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)290 static void xhci_initialize_ring_info(struct xhci_ring *ring,
291 unsigned int cycle_state)
292 {
293 /* The ring is empty, so the enqueue pointer == dequeue pointer */
294 ring->enqueue = ring->first_seg->trbs;
295 ring->enq_seg = ring->first_seg;
296 ring->dequeue = ring->enqueue;
297 ring->deq_seg = ring->first_seg;
298 /* The ring is initialized to 0. The producer must write 1 to the cycle
299 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
300 * compare CCS to the cycle bit to check ownership, so CCS = 1.
301 *
302 * New rings are initialized with cycle state equal to 1; if we are
303 * handling ring expansion, set the cycle state equal to the old ring.
304 */
305 ring->cycle_state = cycle_state;
306 /* Not necessary for new rings, but needed for re-initialized rings */
307 ring->enq_updates = 0;
308 ring->deq_updates = 0;
309
310 /*
311 * Each segment has a link TRB, and leave an extra TRB for SW
312 * accounting purpose
313 */
314 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316
317 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319 struct xhci_segment **first, struct xhci_segment **last,
320 unsigned int num_segs, unsigned int cycle_state,
321 enum xhci_ring_type type, gfp_t flags)
322 {
323 struct xhci_segment *prev;
324
325 prev = xhci_segment_alloc(xhci, cycle_state, flags);
326 if (!prev)
327 return -ENOMEM;
328 num_segs--;
329
330 *first = prev;
331 while (num_segs > 0) {
332 struct xhci_segment *next;
333
334 next = xhci_segment_alloc(xhci, cycle_state, flags);
335 if (!next) {
336 prev = *first;
337 while (prev) {
338 next = prev->next;
339 xhci_segment_free(xhci, prev);
340 prev = next;
341 }
342 return -ENOMEM;
343 }
344 xhci_link_segments(xhci, prev, next, type);
345
346 prev = next;
347 num_segs--;
348 }
349 xhci_link_segments(xhci, prev, *first, type);
350 *last = prev;
351
352 return 0;
353 }
354
355 /**
356 * Create a new ring with zero or more segments.
357 *
358 * Link each segment together into a ring.
359 * Set the end flag and the cycle toggle bit on the last segment.
360 * See section 4.9.1 and figures 15 and 16.
361 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,gfp_t flags)362 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363 unsigned int num_segs, unsigned int cycle_state,
364 enum xhci_ring_type type, gfp_t flags)
365 {
366 struct xhci_ring *ring;
367 int ret;
368
369 ring = kzalloc(sizeof *(ring), flags);
370 if (!ring)
371 return NULL;
372
373 ring->num_segs = num_segs;
374 INIT_LIST_HEAD(&ring->td_list);
375 ring->type = type;
376 if (num_segs == 0)
377 return ring;
378
379 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380 &ring->last_seg, num_segs, cycle_state, type, flags);
381 if (ret)
382 goto fail;
383
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 cpu_to_le32(LINK_TOGGLE);
389 }
390 xhci_initialize_ring_info(ring, cycle_state);
391 return ring;
392
393 fail:
394 kfree(ring);
395 return NULL;
396 }
397
xhci_free_or_cache_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399 struct xhci_virt_device *virt_dev,
400 unsigned int ep_index)
401 {
402 int rings_cached;
403
404 rings_cached = virt_dev->num_rings_cached;
405 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406 virt_dev->ring_cache[rings_cached] =
407 virt_dev->eps[ep_index].ring;
408 virt_dev->num_rings_cached++;
409 xhci_dbg(xhci, "Cached old ring, "
410 "%d ring%s cached\n",
411 virt_dev->num_rings_cached,
412 (virt_dev->num_rings_cached > 1) ? "s" : "");
413 } else {
414 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 xhci_dbg(xhci, "Ring cache full (%d rings), "
416 "freeing ring\n",
417 virt_dev->num_rings_cached);
418 }
419 virt_dev->eps[ep_index].ring = NULL;
420 }
421
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423 * pointers to the beginning of the ring.
424 */
xhci_reinit_cached_ring(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int cycle_state,enum xhci_ring_type type)425 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426 struct xhci_ring *ring, unsigned int cycle_state,
427 enum xhci_ring_type type)
428 {
429 struct xhci_segment *seg = ring->first_seg;
430 int i;
431
432 do {
433 memset(seg->trbs, 0,
434 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435 if (cycle_state == 0) {
436 for (i = 0; i < TRBS_PER_SEGMENT; i++)
437 seg->trbs[i].link.control |=
438 cpu_to_le32(TRB_CYCLE);
439 }
440 /* All endpoint rings have link TRBs */
441 xhci_link_segments(xhci, seg, seg->next, type);
442 seg = seg->next;
443 } while (seg != ring->first_seg);
444 ring->type = type;
445 xhci_initialize_ring_info(ring, cycle_state);
446 /* td list should be empty since all URBs have been cancelled,
447 * but just in case...
448 */
449 INIT_LIST_HEAD(&ring->td_list);
450 }
451
452 /*
453 * Expand an existing ring.
454 * Look for a cached ring or allocate a new ring which has same segment numbers
455 * and link the two rings.
456 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_trbs,gfp_t flags)457 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458 unsigned int num_trbs, gfp_t flags)
459 {
460 struct xhci_segment *first;
461 struct xhci_segment *last;
462 unsigned int num_segs;
463 unsigned int num_segs_needed;
464 int ret;
465
466 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467 (TRBS_PER_SEGMENT - 1);
468
469 /* Allocate number of segments we needed, or double the ring size */
470 num_segs = ring->num_segs > num_segs_needed ?
471 ring->num_segs : num_segs_needed;
472
473 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474 num_segs, ring->cycle_state, ring->type, flags);
475 if (ret)
476 return -ENOMEM;
477
478 if (ring->type == TYPE_STREAM)
479 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480 ring, first, last, flags);
481 if (ret) {
482 struct xhci_segment *next;
483 do {
484 next = first->next;
485 xhci_segment_free(xhci, first);
486 if (first == last)
487 break;
488 first = next;
489 } while (true);
490 return ret;
491 }
492
493 xhci_link_rings(xhci, ring, first, last, num_segs);
494 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495 "ring expansion succeed, now has %d segments",
496 ring->num_segs);
497
498 return 0;
499 }
500
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)503 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504 int type, gfp_t flags)
505 {
506 struct xhci_container_ctx *ctx;
507
508 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509 return NULL;
510
511 ctx = kzalloc(sizeof(*ctx), flags);
512 if (!ctx)
513 return NULL;
514
515 ctx->type = type;
516 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517 if (type == XHCI_CTX_TYPE_INPUT)
518 ctx->size += CTX_SIZE(xhci->hcc_params);
519
520 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521 if (!ctx->bytes) {
522 kfree(ctx);
523 return NULL;
524 }
525 memset(ctx->bytes, 0, ctx->size);
526 return ctx;
527 }
528
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)529 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530 struct xhci_container_ctx *ctx)
531 {
532 if (!ctx)
533 return;
534 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535 kfree(ctx);
536 }
537
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)538 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
539 struct xhci_container_ctx *ctx)
540 {
541 if (ctx->type != XHCI_CTX_TYPE_INPUT)
542 return NULL;
543
544 return (struct xhci_input_control_ctx *)ctx->bytes;
545 }
546
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)547 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548 struct xhci_container_ctx *ctx)
549 {
550 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551 return (struct xhci_slot_ctx *)ctx->bytes;
552
553 return (struct xhci_slot_ctx *)
554 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
555 }
556
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)557 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558 struct xhci_container_ctx *ctx,
559 unsigned int ep_index)
560 {
561 /* increment ep index by offset of start of ep ctx array */
562 ep_index++;
563 if (ctx->type == XHCI_CTX_TYPE_INPUT)
564 ep_index++;
565
566 return (struct xhci_ep_ctx *)
567 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568 }
569
570
571 /***************** Streams structures manipulation *************************/
572
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)573 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574 unsigned int num_stream_ctxs,
575 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576 {
577 struct device *dev = xhci_to_hcd(xhci)->self.controller;
578 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579
580 if (size > MEDIUM_STREAM_ARRAY_SIZE)
581 dma_free_coherent(dev, size,
582 stream_ctx, dma);
583 else if (size <= SMALL_STREAM_ARRAY_SIZE)
584 return dma_pool_free(xhci->small_streams_pool,
585 stream_ctx, dma);
586 else
587 return dma_pool_free(xhci->medium_streams_pool,
588 stream_ctx, dma);
589 }
590
591 /*
592 * The stream context array for each endpoint with bulk streams enabled can
593 * vary in size, based on:
594 * - how many streams the endpoint supports,
595 * - the maximum primary stream array size the host controller supports,
596 * - and how many streams the device driver asks for.
597 *
598 * The stream context array must be a power of 2, and can be as small as
599 * 64 bytes or as large as 1MB.
600 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)601 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602 unsigned int num_stream_ctxs, dma_addr_t *dma,
603 gfp_t mem_flags)
604 {
605 struct device *dev = xhci_to_hcd(xhci)->self.controller;
606 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607
608 if (size > MEDIUM_STREAM_ARRAY_SIZE)
609 return dma_alloc_coherent(dev, size,
610 dma, mem_flags);
611 else if (size <= SMALL_STREAM_ARRAY_SIZE)
612 return dma_pool_alloc(xhci->small_streams_pool,
613 mem_flags, dma);
614 else
615 return dma_pool_alloc(xhci->medium_streams_pool,
616 mem_flags, dma);
617 }
618
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)619 struct xhci_ring *xhci_dma_to_transfer_ring(
620 struct xhci_virt_ep *ep,
621 u64 address)
622 {
623 if (ep->ep_state & EP_HAS_STREAMS)
624 return radix_tree_lookup(&ep->stream_info->trb_address_map,
625 address >> TRB_SEGMENT_SHIFT);
626 return ep->ring;
627 }
628
xhci_stream_id_to_ring(struct xhci_virt_device * dev,unsigned int ep_index,unsigned int stream_id)629 struct xhci_ring *xhci_stream_id_to_ring(
630 struct xhci_virt_device *dev,
631 unsigned int ep_index,
632 unsigned int stream_id)
633 {
634 struct xhci_virt_ep *ep = &dev->eps[ep_index];
635
636 if (stream_id == 0)
637 return ep->ring;
638 if (!ep->stream_info)
639 return NULL;
640
641 if (stream_id >= ep->stream_info->num_streams)
642 return NULL;
643 return ep->stream_info->stream_rings[stream_id];
644 }
645
646 /*
647 * Change an endpoint's internal structure so it supports stream IDs. The
648 * number of requested streams includes stream 0, which cannot be used by device
649 * drivers.
650 *
651 * The number of stream contexts in the stream context array may be bigger than
652 * the number of streams the driver wants to use. This is because the number of
653 * stream context array entries must be a power of two.
654 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,gfp_t mem_flags)655 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656 unsigned int num_stream_ctxs,
657 unsigned int num_streams, gfp_t mem_flags)
658 {
659 struct xhci_stream_info *stream_info;
660 u32 cur_stream;
661 struct xhci_ring *cur_ring;
662 u64 addr;
663 int ret;
664
665 xhci_dbg(xhci, "Allocating %u streams and %u "
666 "stream context array entries.\n",
667 num_streams, num_stream_ctxs);
668 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670 return NULL;
671 }
672 xhci->cmd_ring_reserved_trbs++;
673
674 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675 if (!stream_info)
676 goto cleanup_trbs;
677
678 stream_info->num_streams = num_streams;
679 stream_info->num_stream_ctxs = num_stream_ctxs;
680
681 /* Initialize the array of virtual pointers to stream rings. */
682 stream_info->stream_rings = kzalloc(
683 sizeof(struct xhci_ring *)*num_streams,
684 mem_flags);
685 if (!stream_info->stream_rings)
686 goto cleanup_info;
687
688 /* Initialize the array of DMA addresses for stream rings for the HW. */
689 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690 num_stream_ctxs, &stream_info->ctx_array_dma,
691 mem_flags);
692 if (!stream_info->stream_ctx_array)
693 goto cleanup_ctx;
694 memset(stream_info->stream_ctx_array, 0,
695 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696
697 /* Allocate everything needed to free the stream rings later */
698 stream_info->free_streams_command =
699 xhci_alloc_command(xhci, true, true, mem_flags);
700 if (!stream_info->free_streams_command)
701 goto cleanup_ctx;
702
703 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704
705 /* Allocate rings for all the streams that the driver will use,
706 * and add their segment DMA addresses to the radix tree.
707 * Stream 0 is reserved.
708 */
709 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710 stream_info->stream_rings[cur_stream] =
711 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712 cur_ring = stream_info->stream_rings[cur_stream];
713 if (!cur_ring)
714 goto cleanup_rings;
715 cur_ring->stream_id = cur_stream;
716 cur_ring->trb_address_map = &stream_info->trb_address_map;
717 /* Set deq ptr, cycle bit, and stream context type */
718 addr = cur_ring->first_seg->dma |
719 SCT_FOR_CTX(SCT_PRI_TR) |
720 cur_ring->cycle_state;
721 stream_info->stream_ctx_array[cur_stream].stream_ring =
722 cpu_to_le64(addr);
723 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724 cur_stream, (unsigned long long) addr);
725
726 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727 if (ret) {
728 xhci_ring_free(xhci, cur_ring);
729 stream_info->stream_rings[cur_stream] = NULL;
730 goto cleanup_rings;
731 }
732 }
733 /* Leave the other unused stream ring pointers in the stream context
734 * array initialized to zero. This will cause the xHC to give us an
735 * error if the device asks for a stream ID we don't have setup (if it
736 * was any other way, the host controller would assume the ring is
737 * "empty" and wait forever for data to be queued to that stream ID).
738 */
739
740 return stream_info;
741
742 cleanup_rings:
743 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744 cur_ring = stream_info->stream_rings[cur_stream];
745 if (cur_ring) {
746 xhci_ring_free(xhci, cur_ring);
747 stream_info->stream_rings[cur_stream] = NULL;
748 }
749 }
750 xhci_free_command(xhci, stream_info->free_streams_command);
751 cleanup_ctx:
752 kfree(stream_info->stream_rings);
753 cleanup_info:
754 kfree(stream_info);
755 cleanup_trbs:
756 xhci->cmd_ring_reserved_trbs--;
757 return NULL;
758 }
759 /*
760 * Sets the MaxPStreams field and the Linear Stream Array field.
761 * Sets the dequeue pointer to the stream context array.
762 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764 struct xhci_ep_ctx *ep_ctx,
765 struct xhci_stream_info *stream_info)
766 {
767 u32 max_primary_streams;
768 /* MaxPStreams is the number of stream context array entries, not the
769 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
770 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771 */
772 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
774 "Setting number of stream ctx array entries to %u",
775 1 << (max_primary_streams + 1));
776 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778 | EP_HAS_LSA);
779 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
780 }
781
782 /*
783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785 * not at the beginning of the ring).
786 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
788 struct xhci_virt_ep *ep)
789 {
790 dma_addr_t addr;
791 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
792 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
793 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
794 }
795
796 /* Frees all stream contexts associated with the endpoint,
797 *
798 * Caller should fix the endpoint context streams fields.
799 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)800 void xhci_free_stream_info(struct xhci_hcd *xhci,
801 struct xhci_stream_info *stream_info)
802 {
803 int cur_stream;
804 struct xhci_ring *cur_ring;
805
806 if (!stream_info)
807 return;
808
809 for (cur_stream = 1; cur_stream < stream_info->num_streams;
810 cur_stream++) {
811 cur_ring = stream_info->stream_rings[cur_stream];
812 if (cur_ring) {
813 xhci_ring_free(xhci, cur_ring);
814 stream_info->stream_rings[cur_stream] = NULL;
815 }
816 }
817 xhci_free_command(xhci, stream_info->free_streams_command);
818 xhci->cmd_ring_reserved_trbs--;
819 if (stream_info->stream_ctx_array)
820 xhci_free_stream_ctx(xhci,
821 stream_info->num_stream_ctxs,
822 stream_info->stream_ctx_array,
823 stream_info->ctx_array_dma);
824
825 kfree(stream_info->stream_rings);
826 kfree(stream_info);
827 }
828
829
830 /***************** Device context manipulation *************************/
831
xhci_init_endpoint_timer(struct xhci_hcd * xhci,struct xhci_virt_ep * ep)832 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
833 struct xhci_virt_ep *ep)
834 {
835 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
836 (unsigned long)ep);
837 ep->xhci = xhci;
838 }
839
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)840 static void xhci_free_tt_info(struct xhci_hcd *xhci,
841 struct xhci_virt_device *virt_dev,
842 int slot_id)
843 {
844 struct list_head *tt_list_head;
845 struct xhci_tt_bw_info *tt_info, *next;
846 bool slot_found = false;
847
848 /* If the device never made it past the Set Address stage,
849 * it may not have the real_port set correctly.
850 */
851 if (virt_dev->real_port == 0 ||
852 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
853 xhci_dbg(xhci, "Bad real port.\n");
854 return;
855 }
856
857 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
858 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
859 /* Multi-TT hubs will have more than one entry */
860 if (tt_info->slot_id == slot_id) {
861 slot_found = true;
862 list_del(&tt_info->tt_list);
863 kfree(tt_info);
864 } else if (slot_found) {
865 break;
866 }
867 }
868 }
869
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)870 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
871 struct xhci_virt_device *virt_dev,
872 struct usb_device *hdev,
873 struct usb_tt *tt, gfp_t mem_flags)
874 {
875 struct xhci_tt_bw_info *tt_info;
876 unsigned int num_ports;
877 int i, j;
878
879 if (!tt->multi)
880 num_ports = 1;
881 else
882 num_ports = hdev->maxchild;
883
884 for (i = 0; i < num_ports; i++, tt_info++) {
885 struct xhci_interval_bw_table *bw_table;
886
887 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
888 if (!tt_info)
889 goto free_tts;
890 INIT_LIST_HEAD(&tt_info->tt_list);
891 list_add(&tt_info->tt_list,
892 &xhci->rh_bw[virt_dev->real_port - 1].tts);
893 tt_info->slot_id = virt_dev->udev->slot_id;
894 if (tt->multi)
895 tt_info->ttport = i+1;
896 bw_table = &tt_info->bw_table;
897 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
898 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
899 }
900 return 0;
901
902 free_tts:
903 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
904 return -ENOMEM;
905 }
906
907
908 /* All the xhci_tds in the ring's TD list should be freed at this point.
909 * Should be called with xhci->lock held if there is any chance the TT lists
910 * will be manipulated by the configure endpoint, allocate device, or update
911 * hub functions while this function is removing the TT entries from the list.
912 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)913 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
914 {
915 struct xhci_virt_device *dev;
916 int i;
917 int old_active_eps = 0;
918
919 /* Slot ID 0 is reserved */
920 if (slot_id == 0 || !xhci->devs[slot_id])
921 return;
922
923 dev = xhci->devs[slot_id];
924 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
925 if (!dev)
926 return;
927
928 if (dev->tt_info)
929 old_active_eps = dev->tt_info->active_eps;
930
931 for (i = 0; i < 31; ++i) {
932 if (dev->eps[i].ring)
933 xhci_ring_free(xhci, dev->eps[i].ring);
934 if (dev->eps[i].stream_info)
935 xhci_free_stream_info(xhci,
936 dev->eps[i].stream_info);
937 /* Endpoints on the TT/root port lists should have been removed
938 * when usb_disable_device() was called for the device.
939 * We can't drop them anyway, because the udev might have gone
940 * away by this point, and we can't tell what speed it was.
941 */
942 if (!list_empty(&dev->eps[i].bw_endpoint_list))
943 xhci_warn(xhci, "Slot %u endpoint %u "
944 "not removed from BW list!\n",
945 slot_id, i);
946 }
947 /* If this is a hub, free the TT(s) from the TT list */
948 xhci_free_tt_info(xhci, dev, slot_id);
949 /* If necessary, update the number of active TTs on this root port */
950 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
951
952 if (dev->ring_cache) {
953 for (i = 0; i < dev->num_rings_cached; i++)
954 xhci_ring_free(xhci, dev->ring_cache[i]);
955 kfree(dev->ring_cache);
956 }
957
958 if (dev->in_ctx)
959 xhci_free_container_ctx(xhci, dev->in_ctx);
960 if (dev->out_ctx)
961 xhci_free_container_ctx(xhci, dev->out_ctx);
962
963 if (dev->udev && dev->udev->slot_id)
964 dev->udev->slot_id = 0;
965 kfree(xhci->devs[slot_id]);
966 xhci->devs[slot_id] = NULL;
967 }
968
969 /*
970 * Free a virt_device structure.
971 * If the virt_device added a tt_info (a hub) and has children pointing to
972 * that tt_info, then free the child first. Recursive.
973 * We can't rely on udev at this point to find child-parent relationships.
974 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)975 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
976 {
977 struct xhci_virt_device *vdev;
978 struct list_head *tt_list_head;
979 struct xhci_tt_bw_info *tt_info, *next;
980 int i;
981
982 vdev = xhci->devs[slot_id];
983 if (!vdev)
984 return;
985
986 if (vdev->real_port == 0 ||
987 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
988 xhci_dbg(xhci, "Bad vdev->real_port.\n");
989 goto out;
990 }
991
992 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
993 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
994 /* is this a hub device that added a tt_info to the tts list */
995 if (tt_info->slot_id == slot_id) {
996 /* are any devices using this tt_info? */
997 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
998 vdev = xhci->devs[i];
999 if (vdev && (vdev->tt_info == tt_info))
1000 xhci_free_virt_devices_depth_first(
1001 xhci, i);
1002 }
1003 }
1004 }
1005 out:
1006 /* we are now at a leaf device */
1007 xhci_free_virt_device(xhci, slot_id);
1008 }
1009
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)1010 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1011 struct usb_device *udev, gfp_t flags)
1012 {
1013 struct xhci_virt_device *dev;
1014 int i;
1015
1016 /* Slot ID 0 is reserved */
1017 if (slot_id == 0 || xhci->devs[slot_id]) {
1018 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1019 return 0;
1020 }
1021
1022 dev = kzalloc(sizeof(*dev), flags);
1023 if (!dev)
1024 return 0;
1025
1026 /* Allocate the (output) device context that will be used in the HC. */
1027 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1028 if (!dev->out_ctx)
1029 goto fail;
1030
1031 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1032 (unsigned long long)dev->out_ctx->dma);
1033
1034 /* Allocate the (input) device context for address device command */
1035 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1036 if (!dev->in_ctx)
1037 goto fail;
1038
1039 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1040 (unsigned long long)dev->in_ctx->dma);
1041
1042 /* Initialize the cancellation list and watchdog timers for each ep */
1043 for (i = 0; i < 31; i++) {
1044 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1045 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1046 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1047 }
1048
1049 /* Allocate endpoint 0 ring */
1050 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1051 if (!dev->eps[0].ring)
1052 goto fail;
1053
1054 /* Allocate pointers to the ring cache */
1055 dev->ring_cache = kzalloc(
1056 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1057 flags);
1058 if (!dev->ring_cache)
1059 goto fail;
1060 dev->num_rings_cached = 0;
1061
1062 init_completion(&dev->cmd_completion);
1063 dev->udev = udev;
1064
1065 /* Point to output device context in dcbaa. */
1066 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1067 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1068 slot_id,
1069 &xhci->dcbaa->dev_context_ptrs[slot_id],
1070 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1071
1072 xhci->devs[slot_id] = dev;
1073
1074 return 1;
1075 fail:
1076 if (dev->eps[0].ring)
1077 xhci_ring_free(xhci, dev->eps[0].ring);
1078 if (dev->in_ctx)
1079 xhci_free_container_ctx(xhci, dev->in_ctx);
1080 if (dev->out_ctx)
1081 xhci_free_container_ctx(xhci, dev->out_ctx);
1082 kfree(dev);
1083
1084 return 0;
1085 }
1086
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1087 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1088 struct usb_device *udev)
1089 {
1090 struct xhci_virt_device *virt_dev;
1091 struct xhci_ep_ctx *ep0_ctx;
1092 struct xhci_ring *ep_ring;
1093
1094 virt_dev = xhci->devs[udev->slot_id];
1095 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1096 ep_ring = virt_dev->eps[0].ring;
1097 /*
1098 * FIXME we don't keep track of the dequeue pointer very well after a
1099 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1100 * host to our enqueue pointer. This should only be called after a
1101 * configured device has reset, so all control transfers should have
1102 * been completed or cancelled before the reset.
1103 */
1104 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1105 ep_ring->enqueue)
1106 | ep_ring->cycle_state);
1107 }
1108
1109 /*
1110 * The xHCI roothub may have ports of differing speeds in any order in the port
1111 * status registers. xhci->port_array provides an array of the port speed for
1112 * each offset into the port status registers.
1113 *
1114 * The xHCI hardware wants to know the roothub port number that the USB device
1115 * is attached to (or the roothub port its ancestor hub is attached to). All we
1116 * know is the index of that port under either the USB 2.0 or the USB 3.0
1117 * roothub, but that doesn't give us the real index into the HW port status
1118 * registers. Call xhci_find_raw_port_number() to get real index.
1119 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1120 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1121 struct usb_device *udev)
1122 {
1123 struct usb_device *top_dev;
1124 struct usb_hcd *hcd;
1125
1126 if (udev->speed >= USB_SPEED_SUPER)
1127 hcd = xhci->shared_hcd;
1128 else
1129 hcd = xhci->main_hcd;
1130
1131 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1132 top_dev = top_dev->parent)
1133 /* Found device below root hub */;
1134
1135 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1136 }
1137
1138 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1139 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1140 {
1141 struct xhci_virt_device *dev;
1142 struct xhci_ep_ctx *ep0_ctx;
1143 struct xhci_slot_ctx *slot_ctx;
1144 u32 port_num;
1145 u32 max_packets;
1146 struct usb_device *top_dev;
1147
1148 dev = xhci->devs[udev->slot_id];
1149 /* Slot ID 0 is reserved */
1150 if (udev->slot_id == 0 || !dev) {
1151 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1152 udev->slot_id);
1153 return -EINVAL;
1154 }
1155 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1156 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1157
1158 /* 3) Only the control endpoint is valid - one endpoint context */
1159 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1160 switch (udev->speed) {
1161 case USB_SPEED_SUPER_PLUS:
1162 case USB_SPEED_SUPER:
1163 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1164 max_packets = MAX_PACKET(512);
1165 break;
1166 case USB_SPEED_HIGH:
1167 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1168 max_packets = MAX_PACKET(64);
1169 break;
1170 /* USB core guesses at a 64-byte max packet first for FS devices */
1171 case USB_SPEED_FULL:
1172 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1173 max_packets = MAX_PACKET(64);
1174 break;
1175 case USB_SPEED_LOW:
1176 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1177 max_packets = MAX_PACKET(8);
1178 break;
1179 case USB_SPEED_WIRELESS:
1180 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1181 return -EINVAL;
1182 break;
1183 default:
1184 /* Speed was set earlier, this shouldn't happen. */
1185 return -EINVAL;
1186 }
1187 /* Find the root hub port this device is under */
1188 port_num = xhci_find_real_port_number(xhci, udev);
1189 if (!port_num)
1190 return -EINVAL;
1191 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1192 /* Set the port number in the virtual_device to the faked port number */
1193 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1194 top_dev = top_dev->parent)
1195 /* Found device below root hub */;
1196 dev->fake_port = top_dev->portnum;
1197 dev->real_port = port_num;
1198 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1199 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1200
1201 /* Find the right bandwidth table that this device will be a part of.
1202 * If this is a full speed device attached directly to a root port (or a
1203 * decendent of one), it counts as a primary bandwidth domain, not a
1204 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1205 * will never be created for the HS root hub.
1206 */
1207 if (!udev->tt || !udev->tt->hub->parent) {
1208 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1209 } else {
1210 struct xhci_root_port_bw_info *rh_bw;
1211 struct xhci_tt_bw_info *tt_bw;
1212
1213 rh_bw = &xhci->rh_bw[port_num - 1];
1214 /* Find the right TT. */
1215 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1216 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1217 continue;
1218
1219 if (!dev->udev->tt->multi ||
1220 (udev->tt->multi &&
1221 tt_bw->ttport == dev->udev->ttport)) {
1222 dev->bw_table = &tt_bw->bw_table;
1223 dev->tt_info = tt_bw;
1224 break;
1225 }
1226 }
1227 if (!dev->tt_info)
1228 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1229 }
1230
1231 /* Is this a LS/FS device under an external HS hub? */
1232 if (udev->tt && udev->tt->hub->parent) {
1233 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1234 (udev->ttport << 8));
1235 if (udev->tt->multi)
1236 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1237 }
1238 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1239 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1240
1241 /* Step 4 - ring already allocated */
1242 /* Step 5 */
1243 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1244
1245 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1246 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1247 max_packets);
1248
1249 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1250 dev->eps[0].ring->cycle_state);
1251
1252 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1253
1254 return 0;
1255 }
1256
1257 /*
1258 * Convert interval expressed as 2^(bInterval - 1) == interval into
1259 * straight exponent value 2^n == interval.
1260 *
1261 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1262 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1263 struct usb_host_endpoint *ep)
1264 {
1265 unsigned int interval;
1266
1267 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1268 if (interval != ep->desc.bInterval - 1)
1269 dev_warn(&udev->dev,
1270 "ep %#x - rounding interval to %d %sframes\n",
1271 ep->desc.bEndpointAddress,
1272 1 << interval,
1273 udev->speed == USB_SPEED_FULL ? "" : "micro");
1274
1275 if (udev->speed == USB_SPEED_FULL) {
1276 /*
1277 * Full speed isoc endpoints specify interval in frames,
1278 * not microframes. We are using microframes everywhere,
1279 * so adjust accordingly.
1280 */
1281 interval += 3; /* 1 frame = 2^3 uframes */
1282 }
1283
1284 return interval;
1285 }
1286
1287 /*
1288 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1289 * microframes, rounded down to nearest power of 2.
1290 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1291 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1292 struct usb_host_endpoint *ep, unsigned int desc_interval,
1293 unsigned int min_exponent, unsigned int max_exponent)
1294 {
1295 unsigned int interval;
1296
1297 interval = fls(desc_interval) - 1;
1298 interval = clamp_val(interval, min_exponent, max_exponent);
1299 if ((1 << interval) != desc_interval)
1300 dev_warn(&udev->dev,
1301 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1302 ep->desc.bEndpointAddress,
1303 1 << interval,
1304 desc_interval);
1305
1306 return interval;
1307 }
1308
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1309 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1310 struct usb_host_endpoint *ep)
1311 {
1312 if (ep->desc.bInterval == 0)
1313 return 0;
1314 return xhci_microframes_to_exponent(udev, ep,
1315 ep->desc.bInterval, 0, 15);
1316 }
1317
1318
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1319 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1320 struct usb_host_endpoint *ep)
1321 {
1322 return xhci_microframes_to_exponent(udev, ep,
1323 ep->desc.bInterval * 8, 3, 10);
1324 }
1325
1326 /* Return the polling or NAK interval.
1327 *
1328 * The polling interval is expressed in "microframes". If xHCI's Interval field
1329 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1330 *
1331 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1332 * is set to 0.
1333 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1334 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1335 struct usb_host_endpoint *ep)
1336 {
1337 unsigned int interval = 0;
1338
1339 switch (udev->speed) {
1340 case USB_SPEED_HIGH:
1341 /* Max NAK rate */
1342 if (usb_endpoint_xfer_control(&ep->desc) ||
1343 usb_endpoint_xfer_bulk(&ep->desc)) {
1344 interval = xhci_parse_microframe_interval(udev, ep);
1345 break;
1346 }
1347 /* Fall through - SS and HS isoc/int have same decoding */
1348
1349 case USB_SPEED_SUPER_PLUS:
1350 case USB_SPEED_SUPER:
1351 if (usb_endpoint_xfer_int(&ep->desc) ||
1352 usb_endpoint_xfer_isoc(&ep->desc)) {
1353 interval = xhci_parse_exponent_interval(udev, ep);
1354 }
1355 break;
1356
1357 case USB_SPEED_FULL:
1358 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1359 interval = xhci_parse_exponent_interval(udev, ep);
1360 break;
1361 }
1362 /*
1363 * Fall through for interrupt endpoint interval decoding
1364 * since it uses the same rules as low speed interrupt
1365 * endpoints.
1366 */
1367
1368 case USB_SPEED_LOW:
1369 if (usb_endpoint_xfer_int(&ep->desc) ||
1370 usb_endpoint_xfer_isoc(&ep->desc)) {
1371
1372 interval = xhci_parse_frame_interval(udev, ep);
1373 }
1374 break;
1375
1376 default:
1377 BUG();
1378 }
1379 return EP_INTERVAL(interval);
1380 }
1381
1382 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1383 * High speed endpoint descriptors can define "the number of additional
1384 * transaction opportunities per microframe", but that goes in the Max Burst
1385 * endpoint context field.
1386 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1387 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1388 struct usb_host_endpoint *ep)
1389 {
1390 if (udev->speed < USB_SPEED_SUPER ||
1391 !usb_endpoint_xfer_isoc(&ep->desc))
1392 return 0;
1393 return ep->ss_ep_comp.bmAttributes;
1394 }
1395
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1396 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1397 {
1398 int in;
1399 u32 type;
1400
1401 in = usb_endpoint_dir_in(&ep->desc);
1402 if (usb_endpoint_xfer_control(&ep->desc)) {
1403 type = EP_TYPE(CTRL_EP);
1404 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1405 if (in)
1406 type = EP_TYPE(BULK_IN_EP);
1407 else
1408 type = EP_TYPE(BULK_OUT_EP);
1409 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1410 if (in)
1411 type = EP_TYPE(ISOC_IN_EP);
1412 else
1413 type = EP_TYPE(ISOC_OUT_EP);
1414 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1415 if (in)
1416 type = EP_TYPE(INT_IN_EP);
1417 else
1418 type = EP_TYPE(INT_OUT_EP);
1419 } else {
1420 type = 0;
1421 }
1422 return type;
1423 }
1424
1425 /* Return the maximum endpoint service interval time (ESIT) payload.
1426 * Basically, this is the maxpacket size, multiplied by the burst size
1427 * and mult size.
1428 */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1429 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1430 struct usb_host_endpoint *ep)
1431 {
1432 int max_burst;
1433 int max_packet;
1434
1435 /* Only applies for interrupt or isochronous endpoints */
1436 if (usb_endpoint_xfer_control(&ep->desc) ||
1437 usb_endpoint_xfer_bulk(&ep->desc))
1438 return 0;
1439
1440 if (udev->speed >= USB_SPEED_SUPER)
1441 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1442
1443 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1444 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1445 /* A 0 in max burst means 1 transfer per ESIT */
1446 return max_packet * (max_burst + 1);
1447 }
1448
1449 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1450 * Drivers will have to call usb_alloc_streams() to do that.
1451 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1452 int xhci_endpoint_init(struct xhci_hcd *xhci,
1453 struct xhci_virt_device *virt_dev,
1454 struct usb_device *udev,
1455 struct usb_host_endpoint *ep,
1456 gfp_t mem_flags)
1457 {
1458 unsigned int ep_index;
1459 struct xhci_ep_ctx *ep_ctx;
1460 struct xhci_ring *ep_ring;
1461 unsigned int max_packet;
1462 unsigned int max_burst;
1463 enum xhci_ring_type type;
1464 u32 max_esit_payload;
1465 u32 endpoint_type;
1466
1467 ep_index = xhci_get_endpoint_index(&ep->desc);
1468 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1469
1470 endpoint_type = xhci_get_endpoint_type(ep);
1471 if (!endpoint_type)
1472 return -EINVAL;
1473 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1474
1475 type = usb_endpoint_type(&ep->desc);
1476 /* Set up the endpoint ring */
1477 virt_dev->eps[ep_index].new_ring =
1478 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1479 if (!virt_dev->eps[ep_index].new_ring) {
1480 /* Attempt to use the ring cache */
1481 if (virt_dev->num_rings_cached == 0)
1482 return -ENOMEM;
1483 virt_dev->num_rings_cached--;
1484 virt_dev->eps[ep_index].new_ring =
1485 virt_dev->ring_cache[virt_dev->num_rings_cached];
1486 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1487 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1488 1, type);
1489 }
1490 virt_dev->eps[ep_index].skip = false;
1491 ep_ring = virt_dev->eps[ep_index].new_ring;
1492 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1493
1494 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1495 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1496
1497 /* FIXME dig Mult and streams info out of ep companion desc */
1498
1499 /* Allow 3 retries for everything but isoc;
1500 * CErr shall be set to 0 for Isoch endpoints.
1501 */
1502 if (!usb_endpoint_xfer_isoc(&ep->desc))
1503 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1504 else
1505 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1506
1507 /* Set the max packet size and max burst */
1508 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1509 max_burst = 0;
1510 switch (udev->speed) {
1511 case USB_SPEED_SUPER_PLUS:
1512 case USB_SPEED_SUPER:
1513 /* dig out max burst from ep companion desc */
1514 max_burst = ep->ss_ep_comp.bMaxBurst;
1515 break;
1516 case USB_SPEED_HIGH:
1517 /* Some devices get this wrong */
1518 if (usb_endpoint_xfer_bulk(&ep->desc))
1519 max_packet = 512;
1520 /* bits 11:12 specify the number of additional transaction
1521 * opportunities per microframe (USB 2.0, section 9.6.6)
1522 */
1523 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1524 usb_endpoint_xfer_int(&ep->desc)) {
1525 max_burst = (usb_endpoint_maxp(&ep->desc)
1526 & 0x1800) >> 11;
1527 }
1528 break;
1529 case USB_SPEED_FULL:
1530 case USB_SPEED_LOW:
1531 break;
1532 default:
1533 BUG();
1534 }
1535 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1536 MAX_BURST(max_burst));
1537 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1538 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1539
1540 /*
1541 * XXX no idea how to calculate the average TRB buffer length for bulk
1542 * endpoints, as the driver gives us no clue how big each scatter gather
1543 * list entry (or buffer) is going to be.
1544 *
1545 * For isochronous and interrupt endpoints, we set it to the max
1546 * available, until we have new API in the USB core to allow drivers to
1547 * declare how much bandwidth they actually need.
1548 *
1549 * Normally, it would be calculated by taking the total of the buffer
1550 * lengths in the TD and then dividing by the number of TRBs in a TD,
1551 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1552 * use Event Data TRBs, and we don't chain in a link TRB on short
1553 * transfers, we're basically dividing by 1.
1554 *
1555 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1556 * should be set to 8 for control endpoints.
1557 */
1558 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1559 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1560 else
1561 ep_ctx->tx_info |=
1562 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1563
1564 /* FIXME Debug endpoint context */
1565 return 0;
1566 }
1567
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1568 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1569 struct xhci_virt_device *virt_dev,
1570 struct usb_host_endpoint *ep)
1571 {
1572 unsigned int ep_index;
1573 struct xhci_ep_ctx *ep_ctx;
1574
1575 ep_index = xhci_get_endpoint_index(&ep->desc);
1576 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1577
1578 ep_ctx->ep_info = 0;
1579 ep_ctx->ep_info2 = 0;
1580 ep_ctx->deq = 0;
1581 ep_ctx->tx_info = 0;
1582 /* Don't free the endpoint ring until the set interface or configuration
1583 * request succeeds.
1584 */
1585 }
1586
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1587 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1588 {
1589 bw_info->ep_interval = 0;
1590 bw_info->mult = 0;
1591 bw_info->num_packets = 0;
1592 bw_info->max_packet_size = 0;
1593 bw_info->type = 0;
1594 bw_info->max_esit_payload = 0;
1595 }
1596
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1597 void xhci_update_bw_info(struct xhci_hcd *xhci,
1598 struct xhci_container_ctx *in_ctx,
1599 struct xhci_input_control_ctx *ctrl_ctx,
1600 struct xhci_virt_device *virt_dev)
1601 {
1602 struct xhci_bw_info *bw_info;
1603 struct xhci_ep_ctx *ep_ctx;
1604 unsigned int ep_type;
1605 int i;
1606
1607 for (i = 1; i < 31; ++i) {
1608 bw_info = &virt_dev->eps[i].bw_info;
1609
1610 /* We can't tell what endpoint type is being dropped, but
1611 * unconditionally clearing the bandwidth info for non-periodic
1612 * endpoints should be harmless because the info will never be
1613 * set in the first place.
1614 */
1615 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1616 /* Dropped endpoint */
1617 xhci_clear_endpoint_bw_info(bw_info);
1618 continue;
1619 }
1620
1621 if (EP_IS_ADDED(ctrl_ctx, i)) {
1622 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1623 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1624
1625 /* Ignore non-periodic endpoints */
1626 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1627 ep_type != ISOC_IN_EP &&
1628 ep_type != INT_IN_EP)
1629 continue;
1630
1631 /* Added or changed endpoint */
1632 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1633 le32_to_cpu(ep_ctx->ep_info));
1634 /* Number of packets and mult are zero-based in the
1635 * input context, but we want one-based for the
1636 * interval table.
1637 */
1638 bw_info->mult = CTX_TO_EP_MULT(
1639 le32_to_cpu(ep_ctx->ep_info)) + 1;
1640 bw_info->num_packets = CTX_TO_MAX_BURST(
1641 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1642 bw_info->max_packet_size = MAX_PACKET_DECODED(
1643 le32_to_cpu(ep_ctx->ep_info2));
1644 bw_info->type = ep_type;
1645 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1646 le32_to_cpu(ep_ctx->tx_info));
1647 }
1648 }
1649 }
1650
1651 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1652 * Useful when you want to change one particular aspect of the endpoint and then
1653 * issue a configure endpoint command.
1654 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1655 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1656 struct xhci_container_ctx *in_ctx,
1657 struct xhci_container_ctx *out_ctx,
1658 unsigned int ep_index)
1659 {
1660 struct xhci_ep_ctx *out_ep_ctx;
1661 struct xhci_ep_ctx *in_ep_ctx;
1662
1663 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1664 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1665
1666 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1667 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1668 in_ep_ctx->deq = out_ep_ctx->deq;
1669 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1670 }
1671
1672 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1673 * Useful when you want to change one particular aspect of the endpoint and then
1674 * issue a configure endpoint command. Only the context entries field matters,
1675 * but we'll copy the whole thing anyway.
1676 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1677 void xhci_slot_copy(struct xhci_hcd *xhci,
1678 struct xhci_container_ctx *in_ctx,
1679 struct xhci_container_ctx *out_ctx)
1680 {
1681 struct xhci_slot_ctx *in_slot_ctx;
1682 struct xhci_slot_ctx *out_slot_ctx;
1683
1684 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1685 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1686
1687 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1688 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1689 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1690 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1691 }
1692
1693 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1694 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1695 {
1696 int i;
1697 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1698 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1699
1700 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1701 "Allocating %d scratchpad buffers", num_sp);
1702
1703 if (!num_sp)
1704 return 0;
1705
1706 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1707 if (!xhci->scratchpad)
1708 goto fail_sp;
1709
1710 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1711 num_sp * sizeof(u64),
1712 &xhci->scratchpad->sp_dma, flags);
1713 if (!xhci->scratchpad->sp_array)
1714 goto fail_sp2;
1715
1716 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1717 if (!xhci->scratchpad->sp_buffers)
1718 goto fail_sp3;
1719
1720 xhci->scratchpad->sp_dma_buffers =
1721 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1722
1723 if (!xhci->scratchpad->sp_dma_buffers)
1724 goto fail_sp4;
1725
1726 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1727 for (i = 0; i < num_sp; i++) {
1728 dma_addr_t dma;
1729 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1730 flags);
1731 if (!buf)
1732 goto fail_sp5;
1733
1734 xhci->scratchpad->sp_array[i] = dma;
1735 xhci->scratchpad->sp_buffers[i] = buf;
1736 xhci->scratchpad->sp_dma_buffers[i] = dma;
1737 }
1738
1739 return 0;
1740
1741 fail_sp5:
1742 for (i = i - 1; i >= 0; i--) {
1743 dma_free_coherent(dev, xhci->page_size,
1744 xhci->scratchpad->sp_buffers[i],
1745 xhci->scratchpad->sp_dma_buffers[i]);
1746 }
1747 kfree(xhci->scratchpad->sp_dma_buffers);
1748
1749 fail_sp4:
1750 kfree(xhci->scratchpad->sp_buffers);
1751
1752 fail_sp3:
1753 dma_free_coherent(dev, num_sp * sizeof(u64),
1754 xhci->scratchpad->sp_array,
1755 xhci->scratchpad->sp_dma);
1756
1757 fail_sp2:
1758 kfree(xhci->scratchpad);
1759 xhci->scratchpad = NULL;
1760
1761 fail_sp:
1762 return -ENOMEM;
1763 }
1764
scratchpad_free(struct xhci_hcd * xhci)1765 static void scratchpad_free(struct xhci_hcd *xhci)
1766 {
1767 int num_sp;
1768 int i;
1769 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1770
1771 if (!xhci->scratchpad)
1772 return;
1773
1774 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1775
1776 for (i = 0; i < num_sp; i++) {
1777 dma_free_coherent(dev, xhci->page_size,
1778 xhci->scratchpad->sp_buffers[i],
1779 xhci->scratchpad->sp_dma_buffers[i]);
1780 }
1781 kfree(xhci->scratchpad->sp_dma_buffers);
1782 kfree(xhci->scratchpad->sp_buffers);
1783 dma_free_coherent(dev, num_sp * sizeof(u64),
1784 xhci->scratchpad->sp_array,
1785 xhci->scratchpad->sp_dma);
1786 kfree(xhci->scratchpad);
1787 xhci->scratchpad = NULL;
1788 }
1789
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_in_ctx,bool allocate_completion,gfp_t mem_flags)1790 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1791 bool allocate_in_ctx, bool allocate_completion,
1792 gfp_t mem_flags)
1793 {
1794 struct xhci_command *command;
1795
1796 command = kzalloc(sizeof(*command), mem_flags);
1797 if (!command)
1798 return NULL;
1799
1800 if (allocate_in_ctx) {
1801 command->in_ctx =
1802 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1803 mem_flags);
1804 if (!command->in_ctx) {
1805 kfree(command);
1806 return NULL;
1807 }
1808 }
1809
1810 if (allocate_completion) {
1811 command->completion =
1812 kzalloc(sizeof(struct completion), mem_flags);
1813 if (!command->completion) {
1814 xhci_free_container_ctx(xhci, command->in_ctx);
1815 kfree(command);
1816 return NULL;
1817 }
1818 init_completion(command->completion);
1819 }
1820
1821 command->status = 0;
1822 INIT_LIST_HEAD(&command->cmd_list);
1823 return command;
1824 }
1825
xhci_urb_free_priv(struct urb_priv * urb_priv)1826 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1827 {
1828 if (urb_priv) {
1829 kfree(urb_priv->td[0]);
1830 kfree(urb_priv);
1831 }
1832 }
1833
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1834 void xhci_free_command(struct xhci_hcd *xhci,
1835 struct xhci_command *command)
1836 {
1837 xhci_free_container_ctx(xhci,
1838 command->in_ctx);
1839 kfree(command->completion);
1840 kfree(command);
1841 }
1842
xhci_mem_cleanup(struct xhci_hcd * xhci)1843 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1844 {
1845 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1846 int size;
1847 int i, j, num_ports;
1848
1849 cancel_delayed_work_sync(&xhci->cmd_timer);
1850
1851 /* Free the Event Ring Segment Table and the actual Event Ring */
1852 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1853 if (xhci->erst.entries)
1854 dma_free_coherent(dev, size,
1855 xhci->erst.entries, xhci->erst.erst_dma_addr);
1856 xhci->erst.entries = NULL;
1857 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1858 if (xhci->event_ring)
1859 xhci_ring_free(xhci, xhci->event_ring);
1860 xhci->event_ring = NULL;
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862
1863 if (xhci->lpm_command)
1864 xhci_free_command(xhci, xhci->lpm_command);
1865 xhci->lpm_command = NULL;
1866 if (xhci->cmd_ring)
1867 xhci_ring_free(xhci, xhci->cmd_ring);
1868 xhci->cmd_ring = NULL;
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870 xhci_cleanup_command_queue(xhci);
1871
1872 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877 while (!list_empty(ep))
1878 list_del_init(ep->next);
1879 }
1880 }
1881
1882 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883 xhci_free_virt_devices_depth_first(xhci, i);
1884
1885 dma_pool_destroy(xhci->segment_pool);
1886 xhci->segment_pool = NULL;
1887 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888
1889 dma_pool_destroy(xhci->device_pool);
1890 xhci->device_pool = NULL;
1891 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892
1893 dma_pool_destroy(xhci->small_streams_pool);
1894 xhci->small_streams_pool = NULL;
1895 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896 "Freed small stream array pool");
1897
1898 dma_pool_destroy(xhci->medium_streams_pool);
1899 xhci->medium_streams_pool = NULL;
1900 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901 "Freed medium stream array pool");
1902
1903 if (xhci->dcbaa)
1904 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905 xhci->dcbaa, xhci->dcbaa->dma);
1906 xhci->dcbaa = NULL;
1907
1908 scratchpad_free(xhci);
1909
1910 if (!xhci->rh_bw)
1911 goto no_bw;
1912
1913 for (i = 0; i < num_ports; i++) {
1914 struct xhci_tt_bw_info *tt, *n;
1915 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916 list_del(&tt->tt_list);
1917 kfree(tt);
1918 }
1919 }
1920
1921 no_bw:
1922 xhci->cmd_ring_reserved_trbs = 0;
1923 xhci->num_usb2_ports = 0;
1924 xhci->num_usb3_ports = 0;
1925 xhci->num_active_eps = 0;
1926 kfree(xhci->usb2_ports);
1927 kfree(xhci->usb3_ports);
1928 kfree(xhci->port_array);
1929 kfree(xhci->rh_bw);
1930 kfree(xhci->ext_caps);
1931 kfree(xhci->usb2_rhub.psi);
1932 kfree(xhci->usb3_rhub.psi);
1933
1934 xhci->usb2_ports = NULL;
1935 xhci->usb3_ports = NULL;
1936 xhci->port_array = NULL;
1937 xhci->usb2_rhub.psi = NULL;
1938 xhci->usb3_rhub.psi = NULL;
1939 xhci->rh_bw = NULL;
1940 xhci->ext_caps = NULL;
1941
1942 xhci->page_size = 0;
1943 xhci->page_shift = 0;
1944 xhci->bus_state[0].bus_suspended = 0;
1945 xhci->bus_state[1].bus_suspended = 0;
1946 }
1947
xhci_test_trb_in_td(struct xhci_hcd * xhci,struct xhci_segment * input_seg,union xhci_trb * start_trb,union xhci_trb * end_trb,dma_addr_t input_dma,struct xhci_segment * result_seg,char * test_name,int test_number)1948 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949 struct xhci_segment *input_seg,
1950 union xhci_trb *start_trb,
1951 union xhci_trb *end_trb,
1952 dma_addr_t input_dma,
1953 struct xhci_segment *result_seg,
1954 char *test_name, int test_number)
1955 {
1956 unsigned long long start_dma;
1957 unsigned long long end_dma;
1958 struct xhci_segment *seg;
1959
1960 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962
1963 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964 if (seg != result_seg) {
1965 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966 test_name, test_number);
1967 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968 "input DMA 0x%llx\n",
1969 input_seg,
1970 (unsigned long long) input_dma);
1971 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972 "ending TRB %p (0x%llx DMA)\n",
1973 start_trb, start_dma,
1974 end_trb, end_dma);
1975 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1976 result_seg, seg);
1977 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1978 true);
1979 return -1;
1980 }
1981 return 0;
1982 }
1983
1984 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
xhci_check_trb_in_td_math(struct xhci_hcd * xhci)1985 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986 {
1987 struct {
1988 dma_addr_t input_dma;
1989 struct xhci_segment *result_seg;
1990 } simple_test_vector [] = {
1991 /* A zeroed DMA field should fail */
1992 { 0, NULL },
1993 /* One TRB before the ring start should fail */
1994 { xhci->event_ring->first_seg->dma - 16, NULL },
1995 /* One byte before the ring start should fail */
1996 { xhci->event_ring->first_seg->dma - 1, NULL },
1997 /* Starting TRB should succeed */
1998 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999 /* Ending TRB should succeed */
2000 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001 xhci->event_ring->first_seg },
2002 /* One byte after the ring end should fail */
2003 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004 /* One TRB after the ring end should fail */
2005 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006 /* An address of all ones should fail */
2007 { (dma_addr_t) (~0), NULL },
2008 };
2009 struct {
2010 struct xhci_segment *input_seg;
2011 union xhci_trb *start_trb;
2012 union xhci_trb *end_trb;
2013 dma_addr_t input_dma;
2014 struct xhci_segment *result_seg;
2015 } complex_test_vector [] = {
2016 /* Test feeding a valid DMA address from a different ring */
2017 { .input_seg = xhci->event_ring->first_seg,
2018 .start_trb = xhci->event_ring->first_seg->trbs,
2019 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020 .input_dma = xhci->cmd_ring->first_seg->dma,
2021 .result_seg = NULL,
2022 },
2023 /* Test feeding a valid end TRB from a different ring */
2024 { .input_seg = xhci->event_ring->first_seg,
2025 .start_trb = xhci->event_ring->first_seg->trbs,
2026 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027 .input_dma = xhci->cmd_ring->first_seg->dma,
2028 .result_seg = NULL,
2029 },
2030 /* Test feeding a valid start and end TRB from a different ring */
2031 { .input_seg = xhci->event_ring->first_seg,
2032 .start_trb = xhci->cmd_ring->first_seg->trbs,
2033 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034 .input_dma = xhci->cmd_ring->first_seg->dma,
2035 .result_seg = NULL,
2036 },
2037 /* TRB in this ring, but after this TD */
2038 { .input_seg = xhci->event_ring->first_seg,
2039 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2040 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2041 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2042 .result_seg = NULL,
2043 },
2044 /* TRB in this ring, but before this TD */
2045 { .input_seg = xhci->event_ring->first_seg,
2046 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2047 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2048 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2049 .result_seg = NULL,
2050 },
2051 /* TRB in this ring, but after this wrapped TD */
2052 { .input_seg = xhci->event_ring->first_seg,
2053 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2055 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2056 .result_seg = NULL,
2057 },
2058 /* TRB in this ring, but before this wrapped TD */
2059 { .input_seg = xhci->event_ring->first_seg,
2060 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2062 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2063 .result_seg = NULL,
2064 },
2065 /* TRB not in this ring, and we have a wrapped TD */
2066 { .input_seg = xhci->event_ring->first_seg,
2067 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2070 .result_seg = NULL,
2071 },
2072 };
2073
2074 unsigned int num_tests;
2075 int i, ret;
2076
2077 num_tests = ARRAY_SIZE(simple_test_vector);
2078 for (i = 0; i < num_tests; i++) {
2079 ret = xhci_test_trb_in_td(xhci,
2080 xhci->event_ring->first_seg,
2081 xhci->event_ring->first_seg->trbs,
2082 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083 simple_test_vector[i].input_dma,
2084 simple_test_vector[i].result_seg,
2085 "Simple", i);
2086 if (ret < 0)
2087 return ret;
2088 }
2089
2090 num_tests = ARRAY_SIZE(complex_test_vector);
2091 for (i = 0; i < num_tests; i++) {
2092 ret = xhci_test_trb_in_td(xhci,
2093 complex_test_vector[i].input_seg,
2094 complex_test_vector[i].start_trb,
2095 complex_test_vector[i].end_trb,
2096 complex_test_vector[i].input_dma,
2097 complex_test_vector[i].result_seg,
2098 "Complex", i);
2099 if (ret < 0)
2100 return ret;
2101 }
2102 xhci_dbg(xhci, "TRB math tests passed.\n");
2103 return 0;
2104 }
2105
xhci_set_hc_event_deq(struct xhci_hcd * xhci)2106 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107 {
2108 u64 temp;
2109 dma_addr_t deq;
2110
2111 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112 xhci->event_ring->dequeue);
2113 if (deq == 0 && !in_interrupt())
2114 xhci_warn(xhci, "WARN something wrong with SW event ring "
2115 "dequeue ptr.\n");
2116 /* Update HC event ring dequeue pointer */
2117 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118 temp &= ERST_PTR_MASK;
2119 /* Don't clear the EHB bit (which is RW1C) because
2120 * there might be more events to service.
2121 */
2122 temp &= ~ERST_EHB;
2123 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124 "// Write event ring dequeue pointer, "
2125 "preserving EHB bit");
2126 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127 &xhci->ir_set->erst_dequeue);
2128 }
2129
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,u8 major_revision,int max_caps)2130 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131 __le32 __iomem *addr, u8 major_revision, int max_caps)
2132 {
2133 u32 temp, port_offset, port_count;
2134 int i;
2135 struct xhci_hub *rhub;
2136
2137 temp = readl(addr);
2138
2139 if (XHCI_EXT_PORT_MAJOR(temp) == 0x03) {
2140 rhub = &xhci->usb3_rhub;
2141 } else if (XHCI_EXT_PORT_MAJOR(temp) <= 0x02) {
2142 rhub = &xhci->usb2_rhub;
2143 } else {
2144 xhci_warn(xhci, "Ignoring unknown port speed, "
2145 "Ext Cap %p, revision = 0x%x\n",
2146 addr, major_revision);
2147 /* Ignoring port protocol we can't understand. FIXME */
2148 return;
2149 }
2150 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2151 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2152
2153 /* Port offset and count in the third dword, see section 7.2 */
2154 temp = readl(addr + 2);
2155 port_offset = XHCI_EXT_PORT_OFF(temp);
2156 port_count = XHCI_EXT_PORT_COUNT(temp);
2157 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2158 "Ext Cap %p, port offset = %u, "
2159 "count = %u, revision = 0x%x",
2160 addr, port_offset, port_count, major_revision);
2161 /* Port count includes the current port offset */
2162 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2163 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2164 return;
2165
2166 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2167 if (rhub->psi_count) {
2168 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2169 GFP_KERNEL);
2170 if (!rhub->psi)
2171 rhub->psi_count = 0;
2172
2173 rhub->psi_uid_count++;
2174 for (i = 0; i < rhub->psi_count; i++) {
2175 rhub->psi[i] = readl(addr + 4 + i);
2176
2177 /* count unique ID values, two consecutive entries can
2178 * have the same ID if link is assymetric
2179 */
2180 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2181 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2182 rhub->psi_uid_count++;
2183
2184 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2185 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2186 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2187 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2188 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2189 XHCI_EXT_PORT_LP(rhub->psi[i]),
2190 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2191 }
2192 }
2193 /* cache usb2 port capabilities */
2194 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2195 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2196
2197 /* Check the host's USB2 LPM capability */
2198 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2199 (temp & XHCI_L1C)) {
2200 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2201 "xHCI 0.96: support USB2 software lpm");
2202 xhci->sw_lpm_support = 1;
2203 }
2204
2205 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2206 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2207 "xHCI 1.0: support USB2 software lpm");
2208 xhci->sw_lpm_support = 1;
2209 if (temp & XHCI_HLC) {
2210 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2211 "xHCI 1.0: support USB2 hardware lpm");
2212 xhci->hw_lpm_support = 1;
2213 }
2214 }
2215
2216 port_offset--;
2217 for (i = port_offset; i < (port_offset + port_count); i++) {
2218 /* Duplicate entry. Ignore the port if the revisions differ. */
2219 if (xhci->port_array[i] != 0) {
2220 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2221 " port %u\n", addr, i);
2222 xhci_warn(xhci, "Port was marked as USB %u, "
2223 "duplicated as USB %u\n",
2224 xhci->port_array[i], major_revision);
2225 /* Only adjust the roothub port counts if we haven't
2226 * found a similar duplicate.
2227 */
2228 if (xhci->port_array[i] != major_revision &&
2229 xhci->port_array[i] != DUPLICATE_ENTRY) {
2230 if (xhci->port_array[i] == 0x03)
2231 xhci->num_usb3_ports--;
2232 else
2233 xhci->num_usb2_ports--;
2234 xhci->port_array[i] = DUPLICATE_ENTRY;
2235 }
2236 /* FIXME: Should we disable the port? */
2237 continue;
2238 }
2239 xhci->port_array[i] = major_revision;
2240 if (major_revision == 0x03)
2241 xhci->num_usb3_ports++;
2242 else
2243 xhci->num_usb2_ports++;
2244 }
2245 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2246 }
2247
2248 /*
2249 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2250 * specify what speeds each port is supposed to be. We can't count on the port
2251 * speed bits in the PORTSC register being correct until a device is connected,
2252 * but we need to set up the two fake roothubs with the correct number of USB
2253 * 3.0 and USB 2.0 ports at host controller initialization time.
2254 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2255 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2256 {
2257 __le32 __iomem *addr, *tmp_addr;
2258 u32 offset, tmp_offset;
2259 unsigned int num_ports;
2260 int i, j, port_index;
2261 int cap_count = 0;
2262
2263 addr = &xhci->cap_regs->hcc_params;
2264 offset = XHCI_HCC_EXT_CAPS(readl(addr));
2265 if (offset == 0) {
2266 xhci_err(xhci, "No Extended Capability registers, "
2267 "unable to set up roothub.\n");
2268 return -ENODEV;
2269 }
2270
2271 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2272 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2273 if (!xhci->port_array)
2274 return -ENOMEM;
2275
2276 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2277 if (!xhci->rh_bw)
2278 return -ENOMEM;
2279 for (i = 0; i < num_ports; i++) {
2280 struct xhci_interval_bw_table *bw_table;
2281
2282 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2283 bw_table = &xhci->rh_bw[i].bw_table;
2284 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2285 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2286 }
2287
2288 /*
2289 * For whatever reason, the first capability offset is from the
2290 * capability register base, not from the HCCPARAMS register.
2291 * See section 5.3.6 for offset calculation.
2292 */
2293 addr = &xhci->cap_regs->hc_capbase + offset;
2294
2295 tmp_addr = addr;
2296 tmp_offset = offset;
2297
2298 /* count extended protocol capability entries for later caching */
2299 do {
2300 u32 cap_id;
2301 cap_id = readl(tmp_addr);
2302 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2303 cap_count++;
2304 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2305 tmp_addr += tmp_offset;
2306 } while (tmp_offset);
2307
2308 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2309 if (!xhci->ext_caps)
2310 return -ENOMEM;
2311
2312 while (1) {
2313 u32 cap_id;
2314
2315 cap_id = readl(addr);
2316 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2317 xhci_add_in_port(xhci, num_ports, addr,
2318 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2319 cap_count);
2320 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2321 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2322 == num_ports)
2323 break;
2324 /*
2325 * Once you're into the Extended Capabilities, the offset is
2326 * always relative to the register holding the offset.
2327 */
2328 addr += offset;
2329 }
2330
2331 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2332 xhci_warn(xhci, "No ports on the roothubs?\n");
2333 return -ENODEV;
2334 }
2335 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2337 xhci->num_usb2_ports, xhci->num_usb3_ports);
2338
2339 /* Place limits on the number of roothub ports so that the hub
2340 * descriptors aren't longer than the USB core will allocate.
2341 */
2342 if (xhci->num_usb3_ports > 15) {
2343 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344 "Limiting USB 3.0 roothub ports to 15.");
2345 xhci->num_usb3_ports = 15;
2346 }
2347 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2348 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2349 "Limiting USB 2.0 roothub ports to %u.",
2350 USB_MAXCHILDREN);
2351 xhci->num_usb2_ports = USB_MAXCHILDREN;
2352 }
2353
2354 /*
2355 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2356 * Not sure how the USB core will handle a hub with no ports...
2357 */
2358 if (xhci->num_usb2_ports) {
2359 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2360 xhci->num_usb2_ports, flags);
2361 if (!xhci->usb2_ports)
2362 return -ENOMEM;
2363
2364 port_index = 0;
2365 for (i = 0; i < num_ports; i++) {
2366 if (xhci->port_array[i] == 0x03 ||
2367 xhci->port_array[i] == 0 ||
2368 xhci->port_array[i] == DUPLICATE_ENTRY)
2369 continue;
2370
2371 xhci->usb2_ports[port_index] =
2372 &xhci->op_regs->port_status_base +
2373 NUM_PORT_REGS*i;
2374 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375 "USB 2.0 port at index %u, "
2376 "addr = %p", i,
2377 xhci->usb2_ports[port_index]);
2378 port_index++;
2379 if (port_index == xhci->num_usb2_ports)
2380 break;
2381 }
2382 }
2383 if (xhci->num_usb3_ports) {
2384 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2385 xhci->num_usb3_ports, flags);
2386 if (!xhci->usb3_ports)
2387 return -ENOMEM;
2388
2389 port_index = 0;
2390 for (i = 0; i < num_ports; i++)
2391 if (xhci->port_array[i] == 0x03) {
2392 xhci->usb3_ports[port_index] =
2393 &xhci->op_regs->port_status_base +
2394 NUM_PORT_REGS*i;
2395 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2396 "USB 3.0 port at index %u, "
2397 "addr = %p", i,
2398 xhci->usb3_ports[port_index]);
2399 port_index++;
2400 if (port_index == xhci->num_usb3_ports)
2401 break;
2402 }
2403 }
2404 return 0;
2405 }
2406
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2407 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2408 {
2409 dma_addr_t dma;
2410 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2411 unsigned int val, val2;
2412 u64 val_64;
2413 struct xhci_segment *seg;
2414 u32 page_size, temp;
2415 int i;
2416
2417 INIT_LIST_HEAD(&xhci->cmd_list);
2418
2419 /* init command timeout work */
2420 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2421 init_completion(&xhci->cmd_ring_stop_completion);
2422
2423 page_size = readl(&xhci->op_regs->page_size);
2424 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425 "Supported page size register = 0x%x", page_size);
2426 for (i = 0; i < 16; i++) {
2427 if ((0x1 & page_size) != 0)
2428 break;
2429 page_size = page_size >> 1;
2430 }
2431 if (i < 16)
2432 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2433 "Supported page size of %iK", (1 << (i+12)) / 1024);
2434 else
2435 xhci_warn(xhci, "WARN: no supported page size\n");
2436 /* Use 4K pages, since that's common and the minimum the HC supports */
2437 xhci->page_shift = 12;
2438 xhci->page_size = 1 << xhci->page_shift;
2439 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2440 "HCD page size set to %iK", xhci->page_size / 1024);
2441
2442 /*
2443 * Program the Number of Device Slots Enabled field in the CONFIG
2444 * register with the max value of slots the HC can handle.
2445 */
2446 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2447 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2448 "// xHC can handle at most %d device slots.", val);
2449 val2 = readl(&xhci->op_regs->config_reg);
2450 val |= (val2 & ~HCS_SLOTS_MASK);
2451 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452 "// Setting Max device slots reg = 0x%x.", val);
2453 writel(val, &xhci->op_regs->config_reg);
2454
2455 /*
2456 * Section 5.4.8 - doorbell array must be
2457 * "physically contiguous and 64-byte (cache line) aligned".
2458 */
2459 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2460 flags);
2461 if (!xhci->dcbaa)
2462 goto fail;
2463 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2464 xhci->dcbaa->dma = dma;
2465 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2466 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2467 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2468 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2469
2470 /*
2471 * Initialize the ring segment pool. The ring must be a contiguous
2472 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2473 * however, the command ring segment needs 64-byte aligned segments
2474 * and our use of dma addresses in the trb_address_map radix tree needs
2475 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2476 */
2477 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2478 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2479
2480 /* See Table 46 and Note on Figure 55 */
2481 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2482 2112, 64, xhci->page_size);
2483 if (!xhci->segment_pool || !xhci->device_pool)
2484 goto fail;
2485
2486 /* Linear stream context arrays don't have any boundary restrictions,
2487 * and only need to be 16-byte aligned.
2488 */
2489 xhci->small_streams_pool =
2490 dma_pool_create("xHCI 256 byte stream ctx arrays",
2491 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2492 xhci->medium_streams_pool =
2493 dma_pool_create("xHCI 1KB stream ctx arrays",
2494 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2495 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2496 * will be allocated with dma_alloc_coherent()
2497 */
2498
2499 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2500 goto fail;
2501
2502 /* Set up the command ring to have one segments for now. */
2503 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2504 if (!xhci->cmd_ring)
2505 goto fail;
2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 "Allocated command ring at %p", xhci->cmd_ring);
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2509 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2510
2511 /* Set the address in the Command Ring Control register */
2512 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2513 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2514 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2515 xhci->cmd_ring->cycle_state;
2516 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517 "// Setting command ring address to 0x%016llx", val_64);
2518 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2519 xhci_dbg_cmd_ptrs(xhci);
2520
2521 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2522 if (!xhci->lpm_command)
2523 goto fail;
2524
2525 /* Reserve one command ring TRB for disabling LPM.
2526 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2527 * disabling LPM, we only need to reserve one TRB for all devices.
2528 */
2529 xhci->cmd_ring_reserved_trbs++;
2530
2531 val = readl(&xhci->cap_regs->db_off);
2532 val &= DBOFF_MASK;
2533 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2534 "// Doorbell array is located at offset 0x%x"
2535 " from cap regs base addr", val);
2536 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2537 xhci_dbg_regs(xhci);
2538 xhci_print_run_regs(xhci);
2539 /* Set ir_set to interrupt register set 0 */
2540 xhci->ir_set = &xhci->run_regs->ir_set[0];
2541
2542 /*
2543 * Event ring setup: Allocate a normal ring, but also setup
2544 * the event ring segment table (ERST). Section 4.9.3.
2545 */
2546 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2547 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2548 flags);
2549 if (!xhci->event_ring)
2550 goto fail;
2551 if (xhci_check_trb_in_td_math(xhci) < 0)
2552 goto fail;
2553
2554 xhci->erst.entries = dma_alloc_coherent(dev,
2555 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2556 flags);
2557 if (!xhci->erst.entries)
2558 goto fail;
2559 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2560 "// Allocated event ring segment table at 0x%llx",
2561 (unsigned long long)dma);
2562
2563 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2564 xhci->erst.num_entries = ERST_NUM_SEGS;
2565 xhci->erst.erst_dma_addr = dma;
2566 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2567 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2568 xhci->erst.num_entries,
2569 xhci->erst.entries,
2570 (unsigned long long)xhci->erst.erst_dma_addr);
2571
2572 /* set ring base address and size for each segment table entry */
2573 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2574 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2575 entry->seg_addr = cpu_to_le64(seg->dma);
2576 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2577 entry->rsvd = 0;
2578 seg = seg->next;
2579 }
2580
2581 /* set ERST count with the number of entries in the segment table */
2582 val = readl(&xhci->ir_set->erst_size);
2583 val &= ERST_SIZE_MASK;
2584 val |= ERST_NUM_SEGS;
2585 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2586 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2587 val);
2588 writel(val, &xhci->ir_set->erst_size);
2589
2590 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2591 "// Set ERST entries to point to event ring.");
2592 /* set the segment table base address */
2593 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2594 "// Set ERST base address for ir_set 0 = 0x%llx",
2595 (unsigned long long)xhci->erst.erst_dma_addr);
2596 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2597 val_64 &= ERST_PTR_MASK;
2598 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2599 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2600
2601 /* Set the event ring dequeue address */
2602 xhci_set_hc_event_deq(xhci);
2603 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2604 "Wrote ERST address to ir_set 0.");
2605 xhci_print_ir_set(xhci, 0);
2606
2607 /*
2608 * XXX: Might need to set the Interrupter Moderation Register to
2609 * something other than the default (~1ms minimum between interrupts).
2610 * See section 5.5.1.2.
2611 */
2612 init_completion(&xhci->addr_dev);
2613 for (i = 0; i < MAX_HC_SLOTS; ++i)
2614 xhci->devs[i] = NULL;
2615 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2616 xhci->bus_state[0].resume_done[i] = 0;
2617 xhci->bus_state[1].resume_done[i] = 0;
2618 /* Only the USB 2.0 completions will ever be used. */
2619 init_completion(&xhci->bus_state[1].rexit_done[i]);
2620 }
2621
2622 if (scratchpad_alloc(xhci, flags))
2623 goto fail;
2624 if (xhci_setup_port_arrays(xhci, flags))
2625 goto fail;
2626
2627 /* Enable USB 3.0 device notifications for function remote wake, which
2628 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2629 * U3 (device suspend).
2630 */
2631 temp = readl(&xhci->op_regs->dev_notification);
2632 temp &= ~DEV_NOTE_MASK;
2633 temp |= DEV_NOTE_FWAKE;
2634 writel(temp, &xhci->op_regs->dev_notification);
2635
2636 return 0;
2637
2638 fail:
2639 xhci_warn(xhci, "Couldn't initialize memory\n");
2640 xhci_halt(xhci);
2641 xhci_reset(xhci);
2642 xhci_mem_cleanup(xhci);
2643 return -ENOMEM;
2644 }
2645