• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32 
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 
39 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40 
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45 
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49 
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 	u32	result;
66 	int	ret;
67 
68 	ret = readl_poll_timeout_atomic(ptr, result,
69 					(result & mask) == done ||
70 					result == U32_MAX,
71 					1, usec);
72 	if (result == U32_MAX)		/* card removed */
73 		return -ENODEV;
74 
75 	return ret;
76 }
77 
78 /*
79  * Disable interrupts and begin the xHCI halting process.
80  */
xhci_quiesce(struct xhci_hcd * xhci)81 void xhci_quiesce(struct xhci_hcd *xhci)
82 {
83 	u32 halted;
84 	u32 cmd;
85 	u32 mask;
86 
87 	mask = ~(XHCI_IRQS);
88 	halted = readl(&xhci->op_regs->status) & STS_HALT;
89 	if (!halted)
90 		mask &= ~CMD_RUN;
91 
92 	cmd = readl(&xhci->op_regs->command);
93 	cmd &= mask;
94 	writel(cmd, &xhci->op_regs->command);
95 }
96 
97 /*
98  * Force HC into halt state.
99  *
100  * Disable any IRQs and clear the run/stop bit.
101  * HC will complete any current and actively pipelined transactions, and
102  * should halt within 16 ms of the run/stop bit being cleared.
103  * Read HC Halted bit in the status register to see when the HC is finished.
104  */
xhci_halt(struct xhci_hcd * xhci)105 int xhci_halt(struct xhci_hcd *xhci)
106 {
107 	int ret;
108 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
109 	xhci_quiesce(xhci);
110 
111 	ret = xhci_handshake(&xhci->op_regs->status,
112 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
113 	if (!ret) {
114 		xhci->xhc_state |= XHCI_STATE_HALTED;
115 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
116 	} else
117 		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
118 				XHCI_MAX_HALT_USEC);
119 	return ret;
120 }
121 
122 /*
123  * Set the run bit and wait for the host to be running.
124  */
xhci_start(struct xhci_hcd * xhci)125 static int xhci_start(struct xhci_hcd *xhci)
126 {
127 	u32 temp;
128 	int ret;
129 
130 	temp = readl(&xhci->op_regs->command);
131 	temp |= (CMD_RUN);
132 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
133 			temp);
134 	writel(temp, &xhci->op_regs->command);
135 
136 	/*
137 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
138 	 * running.
139 	 */
140 	ret = xhci_handshake(&xhci->op_regs->status,
141 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
142 	if (ret == -ETIMEDOUT)
143 		xhci_err(xhci, "Host took too long to start, "
144 				"waited %u microseconds.\n",
145 				XHCI_MAX_HALT_USEC);
146 	if (!ret)
147 		/* clear state flags. Including dying, halted or removing */
148 		xhci->xhc_state = 0;
149 
150 	return ret;
151 }
152 
153 /*
154  * Reset a halted HC.
155  *
156  * This resets pipelines, timers, counters, state machines, etc.
157  * Transactions will be terminated immediately, and operational registers
158  * will be set to their defaults.
159  */
xhci_reset(struct xhci_hcd * xhci)160 int xhci_reset(struct xhci_hcd *xhci)
161 {
162 	u32 command;
163 	u32 state;
164 	int ret, i;
165 
166 	state = readl(&xhci->op_regs->status);
167 	if ((state & STS_HALT) == 0) {
168 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
169 		return 0;
170 	}
171 
172 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
173 	command = readl(&xhci->op_regs->command);
174 	command |= CMD_RESET;
175 	writel(command, &xhci->op_regs->command);
176 
177 	/* Existing Intel xHCI controllers require a delay of 1 mS,
178 	 * after setting the CMD_RESET bit, and before accessing any
179 	 * HC registers. This allows the HC to complete the
180 	 * reset operation and be ready for HC register access.
181 	 * Without this delay, the subsequent HC register access,
182 	 * may result in a system hang very rarely.
183 	 */
184 	if (xhci->quirks & XHCI_INTEL_HOST)
185 		udelay(1000);
186 
187 	ret = xhci_handshake(&xhci->op_regs->command,
188 			CMD_RESET, 0, 10 * 1000 * 1000);
189 	if (ret)
190 		return ret;
191 
192 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
193 			 "Wait for controller to be ready for doorbell rings");
194 	/*
195 	 * xHCI cannot write to any doorbells or operational registers other
196 	 * than status until the "Controller Not Ready" flag is cleared.
197 	 */
198 	ret = xhci_handshake(&xhci->op_regs->status,
199 			STS_CNR, 0, 10 * 1000 * 1000);
200 
201 	for (i = 0; i < 2; ++i) {
202 		xhci->bus_state[i].port_c_suspend = 0;
203 		xhci->bus_state[i].suspended_ports = 0;
204 		xhci->bus_state[i].resuming_ports = 0;
205 	}
206 
207 	return ret;
208 }
209 
210 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)211 static int xhci_free_msi(struct xhci_hcd *xhci)
212 {
213 	int i;
214 
215 	if (!xhci->msix_entries)
216 		return -EINVAL;
217 
218 	for (i = 0; i < xhci->msix_count; i++)
219 		if (xhci->msix_entries[i].vector)
220 			free_irq(xhci->msix_entries[i].vector,
221 					xhci_to_hcd(xhci));
222 	return 0;
223 }
224 
225 /*
226  * Set up MSI
227  */
xhci_setup_msi(struct xhci_hcd * xhci)228 static int xhci_setup_msi(struct xhci_hcd *xhci)
229 {
230 	int ret;
231 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
232 
233 	ret = pci_enable_msi(pdev);
234 	if (ret) {
235 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 				"failed to allocate MSI entry");
237 		return ret;
238 	}
239 
240 	ret = request_irq(pdev->irq, xhci_msi_irq,
241 				0, "xhci_hcd", xhci_to_hcd(xhci));
242 	if (ret) {
243 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
244 				"disable MSI interrupt");
245 		pci_disable_msi(pdev);
246 	}
247 
248 	return ret;
249 }
250 
251 /*
252  * Free IRQs
253  * free all IRQs request
254  */
xhci_free_irq(struct xhci_hcd * xhci)255 static void xhci_free_irq(struct xhci_hcd *xhci)
256 {
257 	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
258 	int ret;
259 
260 	/* return if using legacy interrupt */
261 	if (xhci_to_hcd(xhci)->irq > 0)
262 		return;
263 
264 	ret = xhci_free_msi(xhci);
265 	if (!ret)
266 		return;
267 	if (pdev->irq > 0)
268 		free_irq(pdev->irq, xhci_to_hcd(xhci));
269 
270 	return;
271 }
272 
273 /*
274  * Set up MSI-X
275  */
xhci_setup_msix(struct xhci_hcd * xhci)276 static int xhci_setup_msix(struct xhci_hcd *xhci)
277 {
278 	int i, ret = 0;
279 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
280 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
281 
282 	/*
283 	 * calculate number of msi-x vectors supported.
284 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
285 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
286 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
287 	 *   Add additional 1 vector to ensure always available interrupt.
288 	 */
289 	xhci->msix_count = min(num_online_cpus() + 1,
290 				HCS_MAX_INTRS(xhci->hcs_params1));
291 
292 	xhci->msix_entries =
293 		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
294 				GFP_KERNEL);
295 	if (!xhci->msix_entries) {
296 		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
297 		return -ENOMEM;
298 	}
299 
300 	for (i = 0; i < xhci->msix_count; i++) {
301 		xhci->msix_entries[i].entry = i;
302 		xhci->msix_entries[i].vector = 0;
303 	}
304 
305 	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
306 	if (ret) {
307 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 				"Failed to enable MSI-X");
309 		goto free_entries;
310 	}
311 
312 	for (i = 0; i < xhci->msix_count; i++) {
313 		ret = request_irq(xhci->msix_entries[i].vector,
314 				xhci_msi_irq,
315 				0, "xhci_hcd", xhci_to_hcd(xhci));
316 		if (ret)
317 			goto disable_msix;
318 	}
319 
320 	hcd->msix_enabled = 1;
321 	return ret;
322 
323 disable_msix:
324 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
325 	xhci_free_irq(xhci);
326 	pci_disable_msix(pdev);
327 free_entries:
328 	kfree(xhci->msix_entries);
329 	xhci->msix_entries = NULL;
330 	return ret;
331 }
332 
333 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)334 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
335 {
336 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
337 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
338 
339 	if (xhci->quirks & XHCI_PLAT)
340 		return;
341 
342 	xhci_free_irq(xhci);
343 
344 	if (xhci->msix_entries) {
345 		pci_disable_msix(pdev);
346 		kfree(xhci->msix_entries);
347 		xhci->msix_entries = NULL;
348 	} else {
349 		pci_disable_msi(pdev);
350 	}
351 
352 	hcd->msix_enabled = 0;
353 	return;
354 }
355 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)356 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
357 {
358 	int i;
359 
360 	if (xhci->msix_entries) {
361 		for (i = 0; i < xhci->msix_count; i++)
362 			synchronize_irq(xhci->msix_entries[i].vector);
363 	}
364 }
365 
xhci_try_enable_msi(struct usb_hcd * hcd)366 static int xhci_try_enable_msi(struct usb_hcd *hcd)
367 {
368 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
369 	struct pci_dev  *pdev;
370 	int ret;
371 
372 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
373 	if (xhci->quirks & XHCI_PLAT)
374 		return 0;
375 
376 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
377 	/*
378 	 * Some Fresco Logic host controllers advertise MSI, but fail to
379 	 * generate interrupts.  Don't even try to enable MSI.
380 	 */
381 	if (xhci->quirks & XHCI_BROKEN_MSI)
382 		goto legacy_irq;
383 
384 	/* unregister the legacy interrupt */
385 	if (hcd->irq)
386 		free_irq(hcd->irq, hcd);
387 	hcd->irq = 0;
388 
389 	ret = xhci_setup_msix(xhci);
390 	if (ret)
391 		/* fall back to msi*/
392 		ret = xhci_setup_msi(xhci);
393 
394 	if (!ret)
395 		/* hcd->irq is 0, we have MSI */
396 		return 0;
397 
398 	if (!pdev->irq) {
399 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
400 		return -EINVAL;
401 	}
402 
403  legacy_irq:
404 	if (!strlen(hcd->irq_descr))
405 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
406 			 hcd->driver->description, hcd->self.busnum);
407 
408 	/* fall back to legacy interrupt*/
409 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
410 			hcd->irq_descr, hcd);
411 	if (ret) {
412 		xhci_err(xhci, "request interrupt %d failed\n",
413 				pdev->irq);
414 		return ret;
415 	}
416 	hcd->irq = pdev->irq;
417 	return 0;
418 }
419 
420 #else
421 
xhci_try_enable_msi(struct usb_hcd * hcd)422 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
423 {
424 	return 0;
425 }
426 
xhci_cleanup_msix(struct xhci_hcd * xhci)427 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
428 {
429 }
430 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)431 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
432 {
433 }
434 
435 #endif
436 
compliance_mode_recovery(unsigned long arg)437 static void compliance_mode_recovery(unsigned long arg)
438 {
439 	struct xhci_hcd *xhci;
440 	struct usb_hcd *hcd;
441 	u32 temp;
442 	int i;
443 
444 	xhci = (struct xhci_hcd *)arg;
445 
446 	for (i = 0; i < xhci->num_usb3_ports; i++) {
447 		temp = readl(xhci->usb3_ports[i]);
448 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
449 			/*
450 			 * Compliance Mode Detected. Letting USB Core
451 			 * handle the Warm Reset
452 			 */
453 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 					"Compliance mode detected->port %d",
455 					i + 1);
456 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 					"Attempting compliance mode recovery");
458 			hcd = xhci->shared_hcd;
459 
460 			if (hcd->state == HC_STATE_SUSPENDED)
461 				usb_hcd_resume_root_hub(hcd);
462 
463 			usb_hcd_poll_rh_status(hcd);
464 		}
465 	}
466 
467 	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
468 		mod_timer(&xhci->comp_mode_recovery_timer,
469 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
470 }
471 
472 /*
473  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
474  * that causes ports behind that hardware to enter compliance mode sometimes.
475  * The quirk creates a timer that polls every 2 seconds the link state of
476  * each host controller's port and recovers it by issuing a Warm reset
477  * if Compliance mode is detected, otherwise the port will become "dead" (no
478  * device connections or disconnections will be detected anymore). Becasue no
479  * status event is generated when entering compliance mode (per xhci spec),
480  * this quirk is needed on systems that have the failing hardware installed.
481  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)482 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
483 {
484 	xhci->port_status_u0 = 0;
485 	setup_timer(&xhci->comp_mode_recovery_timer,
486 		    compliance_mode_recovery, (unsigned long)xhci);
487 	xhci->comp_mode_recovery_timer.expires = jiffies +
488 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
489 
490 	set_timer_slack(&xhci->comp_mode_recovery_timer,
491 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
492 	add_timer(&xhci->comp_mode_recovery_timer);
493 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 			"Compliance mode recovery timer initialized");
495 }
496 
497 /*
498  * This function identifies the systems that have installed the SN65LVPE502CP
499  * USB3.0 re-driver and that need the Compliance Mode Quirk.
500  * Systems:
501  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
502  */
xhci_compliance_mode_recovery_timer_quirk_check(void)503 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
504 {
505 	const char *dmi_product_name, *dmi_sys_vendor;
506 
507 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
508 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
509 	if (!dmi_product_name || !dmi_sys_vendor)
510 		return false;
511 
512 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
513 		return false;
514 
515 	if (strstr(dmi_product_name, "Z420") ||
516 			strstr(dmi_product_name, "Z620") ||
517 			strstr(dmi_product_name, "Z820") ||
518 			strstr(dmi_product_name, "Z1 Workstation"))
519 		return true;
520 
521 	return false;
522 }
523 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)524 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
525 {
526 	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
527 }
528 
529 
530 /*
531  * Initialize memory for HCD and xHC (one-time init).
532  *
533  * Program the PAGESIZE register, initialize the device context array, create
534  * device contexts (?), set up a command ring segment (or two?), create event
535  * ring (one for now).
536  */
xhci_init(struct usb_hcd * hcd)537 int xhci_init(struct usb_hcd *hcd)
538 {
539 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540 	int retval = 0;
541 
542 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
543 	spin_lock_init(&xhci->lock);
544 	if (xhci->hci_version == 0x95 && link_quirk) {
545 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
546 				"QUIRK: Not clearing Link TRB chain bits.");
547 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
548 	} else {
549 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550 				"xHCI doesn't need link TRB QUIRK");
551 	}
552 	retval = xhci_mem_init(xhci, GFP_KERNEL);
553 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
554 
555 	/* Initializing Compliance Mode Recovery Data If Needed */
556 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
557 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
558 		compliance_mode_recovery_timer_init(xhci);
559 	}
560 
561 	return retval;
562 }
563 
564 /*-------------------------------------------------------------------------*/
565 
566 
xhci_run_finished(struct xhci_hcd * xhci)567 static int xhci_run_finished(struct xhci_hcd *xhci)
568 {
569 	if (xhci_start(xhci)) {
570 		xhci_halt(xhci);
571 		return -ENODEV;
572 	}
573 	xhci->shared_hcd->state = HC_STATE_RUNNING;
574 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
575 
576 	if (xhci->quirks & XHCI_NEC_HOST)
577 		xhci_ring_cmd_db(xhci);
578 
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 			"Finished xhci_run for USB3 roothub");
581 	return 0;
582 }
583 
584 /*
585  * Start the HC after it was halted.
586  *
587  * This function is called by the USB core when the HC driver is added.
588  * Its opposite is xhci_stop().
589  *
590  * xhci_init() must be called once before this function can be called.
591  * Reset the HC, enable device slot contexts, program DCBAAP, and
592  * set command ring pointer and event ring pointer.
593  *
594  * Setup MSI-X vectors and enable interrupts.
595  */
xhci_run(struct usb_hcd * hcd)596 int xhci_run(struct usb_hcd *hcd)
597 {
598 	u32 temp;
599 	u64 temp_64;
600 	int ret;
601 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
602 
603 	/* Start the xHCI host controller running only after the USB 2.0 roothub
604 	 * is setup.
605 	 */
606 
607 	hcd->uses_new_polling = 1;
608 	if (!usb_hcd_is_primary_hcd(hcd))
609 		return xhci_run_finished(xhci);
610 
611 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
612 
613 	ret = xhci_try_enable_msi(hcd);
614 	if (ret)
615 		return ret;
616 
617 	xhci_dbg(xhci, "Command ring memory map follows:\n");
618 	xhci_debug_ring(xhci, xhci->cmd_ring);
619 	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
620 	xhci_dbg_cmd_ptrs(xhci);
621 
622 	xhci_dbg(xhci, "ERST memory map follows:\n");
623 	xhci_dbg_erst(xhci, &xhci->erst);
624 	xhci_dbg(xhci, "Event ring:\n");
625 	xhci_debug_ring(xhci, xhci->event_ring);
626 	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
627 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
628 	temp_64 &= ~ERST_PTR_MASK;
629 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
631 
632 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 			"// Set the interrupt modulation register");
634 	temp = readl(&xhci->ir_set->irq_control);
635 	temp &= ~ER_IRQ_INTERVAL_MASK;
636 	temp |= (u32) 160;
637 	writel(temp, &xhci->ir_set->irq_control);
638 
639 	/* Set the HCD state before we enable the irqs */
640 	temp = readl(&xhci->op_regs->command);
641 	temp |= (CMD_EIE);
642 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
643 			"// Enable interrupts, cmd = 0x%x.", temp);
644 	writel(temp, &xhci->op_regs->command);
645 
646 	temp = readl(&xhci->ir_set->irq_pending);
647 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
648 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
649 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
650 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
651 	xhci_print_ir_set(xhci, 0);
652 
653 	if (xhci->quirks & XHCI_NEC_HOST) {
654 		struct xhci_command *command;
655 		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
656 		if (!command)
657 			return -ENOMEM;
658 		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
659 				TRB_TYPE(TRB_NEC_GET_FW));
660 	}
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"Finished xhci_run for USB2 roothub");
663 	return 0;
664 }
665 EXPORT_SYMBOL_GPL(xhci_run);
666 
667 /*
668  * Stop xHCI driver.
669  *
670  * This function is called by the USB core when the HC driver is removed.
671  * Its opposite is xhci_run().
672  *
673  * Disable device contexts, disable IRQs, and quiesce the HC.
674  * Reset the HC, finish any completed transactions, and cleanup memory.
675  */
xhci_stop(struct usb_hcd * hcd)676 void xhci_stop(struct usb_hcd *hcd)
677 {
678 	u32 temp;
679 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
680 
681 	mutex_lock(&xhci->mutex);
682 
683 	if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
684 		spin_lock_irq(&xhci->lock);
685 
686 		xhci->xhc_state |= XHCI_STATE_HALTED;
687 		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
688 		xhci_halt(xhci);
689 		xhci_reset(xhci);
690 
691 		spin_unlock_irq(&xhci->lock);
692 	}
693 
694 	if (!usb_hcd_is_primary_hcd(hcd)) {
695 		mutex_unlock(&xhci->mutex);
696 		return;
697 	}
698 
699 	xhci_cleanup_msix(xhci);
700 
701 	/* Deleting Compliance Mode Recovery Timer */
702 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703 			(!(xhci_all_ports_seen_u0(xhci)))) {
704 		del_timer_sync(&xhci->comp_mode_recovery_timer);
705 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706 				"%s: compliance mode recovery timer deleted",
707 				__func__);
708 	}
709 
710 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
711 		usb_amd_dev_put();
712 
713 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 			"// Disabling event ring interrupts");
715 	temp = readl(&xhci->op_regs->status);
716 	writel(temp & ~STS_EINT, &xhci->op_regs->status);
717 	temp = readl(&xhci->ir_set->irq_pending);
718 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719 	xhci_print_ir_set(xhci, 0);
720 
721 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722 	xhci_mem_cleanup(xhci);
723 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 			"xhci_stop completed - status = %x",
725 			readl(&xhci->op_regs->status));
726 	mutex_unlock(&xhci->mutex);
727 }
728 
729 /*
730  * Shutdown HC (not bus-specific)
731  *
732  * This is called when the machine is rebooting or halting.  We assume that the
733  * machine will be powered off, and the HC's internal state will be reset.
734  * Don't bother to free memory.
735  *
736  * This will only ever be called with the main usb_hcd (the USB3 roothub).
737  */
xhci_shutdown(struct usb_hcd * hcd)738 void xhci_shutdown(struct usb_hcd *hcd)
739 {
740 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
741 
742 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
743 		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
744 
745 	spin_lock_irq(&xhci->lock);
746 	xhci_halt(xhci);
747 	/* Workaround for spurious wakeups at shutdown with HSW */
748 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
749 		xhci_reset(xhci);
750 	spin_unlock_irq(&xhci->lock);
751 
752 	xhci_cleanup_msix(xhci);
753 
754 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
755 			"xhci_shutdown completed - status = %x",
756 			readl(&xhci->op_regs->status));
757 }
758 EXPORT_SYMBOL_GPL(xhci_shutdown);
759 
760 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)761 static void xhci_save_registers(struct xhci_hcd *xhci)
762 {
763 	xhci->s3.command = readl(&xhci->op_regs->command);
764 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
765 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
766 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
767 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
768 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
769 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
770 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
771 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
772 }
773 
xhci_restore_registers(struct xhci_hcd * xhci)774 static void xhci_restore_registers(struct xhci_hcd *xhci)
775 {
776 	writel(xhci->s3.command, &xhci->op_regs->command);
777 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
778 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
779 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
780 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
781 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
782 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
783 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
784 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
785 }
786 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)787 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
788 {
789 	u64	val_64;
790 
791 	/* step 2: initialize command ring buffer */
792 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
793 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
794 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
795 				      xhci->cmd_ring->dequeue) &
796 		 (u64) ~CMD_RING_RSVD_BITS) |
797 		xhci->cmd_ring->cycle_state;
798 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
799 			"// Setting command ring address to 0x%llx",
800 			(long unsigned long) val_64);
801 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
802 }
803 
804 /*
805  * The whole command ring must be cleared to zero when we suspend the host.
806  *
807  * The host doesn't save the command ring pointer in the suspend well, so we
808  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
809  * aligned, because of the reserved bits in the command ring dequeue pointer
810  * register.  Therefore, we can't just set the dequeue pointer back in the
811  * middle of the ring (TRBs are 16-byte aligned).
812  */
xhci_clear_command_ring(struct xhci_hcd * xhci)813 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
814 {
815 	struct xhci_ring *ring;
816 	struct xhci_segment *seg;
817 
818 	ring = xhci->cmd_ring;
819 	seg = ring->deq_seg;
820 	do {
821 		memset(seg->trbs, 0,
822 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
823 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
824 			cpu_to_le32(~TRB_CYCLE);
825 		seg = seg->next;
826 	} while (seg != ring->deq_seg);
827 
828 	/* Reset the software enqueue and dequeue pointers */
829 	ring->deq_seg = ring->first_seg;
830 	ring->dequeue = ring->first_seg->trbs;
831 	ring->enq_seg = ring->deq_seg;
832 	ring->enqueue = ring->dequeue;
833 
834 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
835 	/*
836 	 * Ring is now zeroed, so the HW should look for change of ownership
837 	 * when the cycle bit is set to 1.
838 	 */
839 	ring->cycle_state = 1;
840 
841 	/*
842 	 * Reset the hardware dequeue pointer.
843 	 * Yes, this will need to be re-written after resume, but we're paranoid
844 	 * and want to make sure the hardware doesn't access bogus memory
845 	 * because, say, the BIOS or an SMI started the host without changing
846 	 * the command ring pointers.
847 	 */
848 	xhci_set_cmd_ring_deq(xhci);
849 }
850 
xhci_disable_port_wake_on_bits(struct xhci_hcd * xhci)851 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
852 {
853 	int port_index;
854 	__le32 __iomem **port_array;
855 	unsigned long flags;
856 	u32 t1, t2;
857 
858 	spin_lock_irqsave(&xhci->lock, flags);
859 
860 	/* disble usb3 ports Wake bits*/
861 	port_index = xhci->num_usb3_ports;
862 	port_array = xhci->usb3_ports;
863 	while (port_index--) {
864 		t1 = readl(port_array[port_index]);
865 		t1 = xhci_port_state_to_neutral(t1);
866 		t2 = t1 & ~PORT_WAKE_BITS;
867 		if (t1 != t2)
868 			writel(t2, port_array[port_index]);
869 	}
870 
871 	/* disble usb2 ports Wake bits*/
872 	port_index = xhci->num_usb2_ports;
873 	port_array = xhci->usb2_ports;
874 	while (port_index--) {
875 		t1 = readl(port_array[port_index]);
876 		t1 = xhci_port_state_to_neutral(t1);
877 		t2 = t1 & ~PORT_WAKE_BITS;
878 		if (t1 != t2)
879 			writel(t2, port_array[port_index]);
880 	}
881 
882 	spin_unlock_irqrestore(&xhci->lock, flags);
883 }
884 
xhci_pending_portevent(struct xhci_hcd * xhci)885 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
886 {
887 	__le32 __iomem		**port_array;
888 	int			port_index;
889 	u32			status;
890 	u32			portsc;
891 
892 	status = readl(&xhci->op_regs->status);
893 	if (status & STS_EINT)
894 		return true;
895 	/*
896 	 * Checking STS_EINT is not enough as there is a lag between a change
897 	 * bit being set and the Port Status Change Event that it generated
898 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
899 	 */
900 
901 	port_index = xhci->num_usb2_ports;
902 	port_array = xhci->usb2_ports;
903 	while (port_index--) {
904 		portsc = readl(port_array[port_index]);
905 		if (portsc & PORT_CHANGE_MASK ||
906 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
907 			return true;
908 	}
909 	port_index = xhci->num_usb3_ports;
910 	port_array = xhci->usb3_ports;
911 	while (port_index--) {
912 		portsc = readl(port_array[port_index]);
913 		if (portsc & PORT_CHANGE_MASK ||
914 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
915 			return true;
916 	}
917 	return false;
918 }
919 
920 /*
921  * Stop HC (not bus-specific)
922  *
923  * This is called when the machine transition into S3/S4 mode.
924  *
925  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)926 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
927 {
928 	int			rc = 0;
929 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
930 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
931 	u32			command;
932 
933 	if (!hcd->state)
934 		return 0;
935 
936 	if (hcd->state != HC_STATE_SUSPENDED ||
937 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
938 		return -EINVAL;
939 
940 	/* Clear root port wake on bits if wakeup not allowed. */
941 	if (!do_wakeup)
942 		xhci_disable_port_wake_on_bits(xhci);
943 
944 	/* Don't poll the roothubs on bus suspend. */
945 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
946 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
947 	del_timer_sync(&hcd->rh_timer);
948 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
949 	del_timer_sync(&xhci->shared_hcd->rh_timer);
950 
951 	spin_lock_irq(&xhci->lock);
952 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
953 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
954 	/* step 1: stop endpoint */
955 	/* skipped assuming that port suspend has done */
956 
957 	/* step 2: clear Run/Stop bit */
958 	command = readl(&xhci->op_regs->command);
959 	command &= ~CMD_RUN;
960 	writel(command, &xhci->op_regs->command);
961 
962 	/* Some chips from Fresco Logic need an extraordinary delay */
963 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
964 
965 	if (xhci_handshake(&xhci->op_regs->status,
966 		      STS_HALT, STS_HALT, delay)) {
967 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
968 		spin_unlock_irq(&xhci->lock);
969 		return -ETIMEDOUT;
970 	}
971 	xhci_clear_command_ring(xhci);
972 
973 	/* step 3: save registers */
974 	xhci_save_registers(xhci);
975 
976 	/* step 4: set CSS flag */
977 	command = readl(&xhci->op_regs->command);
978 	command |= CMD_CSS;
979 	writel(command, &xhci->op_regs->command);
980 	if (xhci_handshake(&xhci->op_regs->status,
981 				STS_SAVE, 0, 20 * 1000)) {
982 		xhci_warn(xhci, "WARN: xHC save state timeout\n");
983 		spin_unlock_irq(&xhci->lock);
984 		return -ETIMEDOUT;
985 	}
986 	spin_unlock_irq(&xhci->lock);
987 
988 	/*
989 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
990 	 * is about to be suspended.
991 	 */
992 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
993 			(!(xhci_all_ports_seen_u0(xhci)))) {
994 		del_timer_sync(&xhci->comp_mode_recovery_timer);
995 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
996 				"%s: compliance mode recovery timer deleted",
997 				__func__);
998 	}
999 
1000 	/* step 5: remove core well power */
1001 	/* synchronize irq when using MSI-X */
1002 	xhci_msix_sync_irqs(xhci);
1003 
1004 	return rc;
1005 }
1006 EXPORT_SYMBOL_GPL(xhci_suspend);
1007 
1008 /*
1009  * start xHC (not bus-specific)
1010  *
1011  * This is called when the machine transition from S3/S4 mode.
1012  *
1013  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1014 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1015 {
1016 	u32			command, temp = 0;
1017 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1018 	struct usb_hcd		*secondary_hcd;
1019 	int			retval = 0;
1020 	bool			comp_timer_running = false;
1021 	bool			pending_portevent = false;
1022 
1023 	if (!hcd->state)
1024 		return 0;
1025 
1026 	/* Wait a bit if either of the roothubs need to settle from the
1027 	 * transition into bus suspend.
1028 	 */
1029 	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1030 			time_before(jiffies,
1031 				xhci->bus_state[1].next_statechange))
1032 		msleep(100);
1033 
1034 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1035 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1036 
1037 	spin_lock_irq(&xhci->lock);
1038 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1039 		hibernated = true;
1040 
1041 	if (!hibernated) {
1042 		/*
1043 		 * Some controllers might lose power during suspend, so wait
1044 		 * for controller not ready bit to clear, just as in xHC init.
1045 		 */
1046 		retval = xhci_handshake(&xhci->op_regs->status,
1047 					STS_CNR, 0, 10 * 1000 * 1000);
1048 		if (retval) {
1049 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1050 				  retval);
1051 			spin_unlock_irq(&xhci->lock);
1052 			return retval;
1053 		}
1054 		/* step 1: restore register */
1055 		xhci_restore_registers(xhci);
1056 		/* step 2: initialize command ring buffer */
1057 		xhci_set_cmd_ring_deq(xhci);
1058 		/* step 3: restore state and start state*/
1059 		/* step 3: set CRS flag */
1060 		command = readl(&xhci->op_regs->command);
1061 		command |= CMD_CRS;
1062 		writel(command, &xhci->op_regs->command);
1063 		/*
1064 		 * Some controllers take up to 55+ ms to complete the controller
1065 		 * restore so setting the timeout to 100ms. Xhci specification
1066 		 * doesn't mention any timeout value.
1067 		 */
1068 		if (xhci_handshake(&xhci->op_regs->status,
1069 			      STS_RESTORE, 0, 100 * 1000)) {
1070 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1071 			spin_unlock_irq(&xhci->lock);
1072 			return -ETIMEDOUT;
1073 		}
1074 		temp = readl(&xhci->op_regs->status);
1075 	}
1076 
1077 	/* If restore operation fails, re-initialize the HC during resume */
1078 	if ((temp & STS_SRE) || hibernated) {
1079 
1080 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1081 				!(xhci_all_ports_seen_u0(xhci))) {
1082 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1083 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1084 				"Compliance Mode Recovery Timer deleted!");
1085 		}
1086 
1087 		/* Let the USB core know _both_ roothubs lost power. */
1088 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1089 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1090 
1091 		xhci_dbg(xhci, "Stop HCD\n");
1092 		xhci_halt(xhci);
1093 		xhci_reset(xhci);
1094 		spin_unlock_irq(&xhci->lock);
1095 		xhci_cleanup_msix(xhci);
1096 
1097 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1098 		temp = readl(&xhci->op_regs->status);
1099 		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1100 		temp = readl(&xhci->ir_set->irq_pending);
1101 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1102 		xhci_print_ir_set(xhci, 0);
1103 
1104 		xhci_dbg(xhci, "cleaning up memory\n");
1105 		xhci_mem_cleanup(xhci);
1106 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1107 			    readl(&xhci->op_regs->status));
1108 
1109 		/* USB core calls the PCI reinit and start functions twice:
1110 		 * first with the primary HCD, and then with the secondary HCD.
1111 		 * If we don't do the same, the host will never be started.
1112 		 */
1113 		if (!usb_hcd_is_primary_hcd(hcd))
1114 			secondary_hcd = hcd;
1115 		else
1116 			secondary_hcd = xhci->shared_hcd;
1117 
1118 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1119 		retval = xhci_init(hcd->primary_hcd);
1120 		if (retval)
1121 			return retval;
1122 		comp_timer_running = true;
1123 
1124 		xhci_dbg(xhci, "Start the primary HCD\n");
1125 		retval = xhci_run(hcd->primary_hcd);
1126 		if (!retval) {
1127 			xhci_dbg(xhci, "Start the secondary HCD\n");
1128 			retval = xhci_run(secondary_hcd);
1129 		}
1130 		hcd->state = HC_STATE_SUSPENDED;
1131 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1132 		goto done;
1133 	}
1134 
1135 	/* step 4: set Run/Stop bit */
1136 	command = readl(&xhci->op_regs->command);
1137 	command |= CMD_RUN;
1138 	writel(command, &xhci->op_regs->command);
1139 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1140 		  0, 250 * 1000);
1141 
1142 	/* step 5: walk topology and initialize portsc,
1143 	 * portpmsc and portli
1144 	 */
1145 	/* this is done in bus_resume */
1146 
1147 	/* step 6: restart each of the previously
1148 	 * Running endpoints by ringing their doorbells
1149 	 */
1150 
1151 	spin_unlock_irq(&xhci->lock);
1152 
1153  done:
1154 	if (retval == 0) {
1155 		/*
1156 		 * Resume roothubs only if there are pending events.
1157 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1158 		 * the first wake signalling failed, give it that chance.
1159 		 */
1160 		pending_portevent = xhci_pending_portevent(xhci);
1161 		if (!pending_portevent) {
1162 			msleep(120);
1163 			pending_portevent = xhci_pending_portevent(xhci);
1164 		}
1165 
1166 		if (pending_portevent) {
1167 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1168 			usb_hcd_resume_root_hub(hcd);
1169 		}
1170 	}
1171 	/*
1172 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1173 	 * be re-initialized Always after a system resume. Ports are subject
1174 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1175 	 * ports have entered previously to U0 before system's suspension.
1176 	 */
1177 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1178 		compliance_mode_recovery_timer_init(xhci);
1179 
1180 	/* Re-enable port polling. */
1181 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1182 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1183 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1184 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1185 	usb_hcd_poll_rh_status(hcd);
1186 
1187 	return retval;
1188 }
1189 EXPORT_SYMBOL_GPL(xhci_resume);
1190 #endif	/* CONFIG_PM */
1191 
1192 /*-------------------------------------------------------------------------*/
1193 
1194 /**
1195  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1196  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1197  * value to right shift 1 for the bitmask.
1198  *
1199  * Index  = (epnum * 2) + direction - 1,
1200  * where direction = 0 for OUT, 1 for IN.
1201  * For control endpoints, the IN index is used (OUT index is unused), so
1202  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1203  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1204 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1205 {
1206 	unsigned int index;
1207 	if (usb_endpoint_xfer_control(desc))
1208 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1209 	else
1210 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1211 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1212 	return index;
1213 }
1214 
1215 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1216  * address from the XHCI endpoint index.
1217  */
xhci_get_endpoint_address(unsigned int ep_index)1218 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1219 {
1220 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1221 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1222 	return direction | number;
1223 }
1224 
1225 /* Find the flag for this endpoint (for use in the control context).  Use the
1226  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1227  * bit 1, etc.
1228  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1229 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1230 {
1231 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1232 }
1233 
1234 /* Find the flag for this endpoint (for use in the control context).  Use the
1235  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1236  * bit 1, etc.
1237  */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1238 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1239 {
1240 	return 1 << (ep_index + 1);
1241 }
1242 
1243 /* Compute the last valid endpoint context index.  Basically, this is the
1244  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1245  * we find the most significant bit set in the added contexts flags.
1246  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1247  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1248  */
xhci_last_valid_endpoint(u32 added_ctxs)1249 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1250 {
1251 	return fls(added_ctxs) - 1;
1252 }
1253 
1254 /* Returns 1 if the arguments are OK;
1255  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1256  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1257 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1258 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1259 		const char *func) {
1260 	struct xhci_hcd	*xhci;
1261 	struct xhci_virt_device	*virt_dev;
1262 
1263 	if (!hcd || (check_ep && !ep) || !udev) {
1264 		pr_debug("xHCI %s called with invalid args\n", func);
1265 		return -EINVAL;
1266 	}
1267 	if (!udev->parent) {
1268 		pr_debug("xHCI %s called for root hub\n", func);
1269 		return 0;
1270 	}
1271 
1272 	xhci = hcd_to_xhci(hcd);
1273 	if (check_virt_dev) {
1274 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1275 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1276 					func);
1277 			return -EINVAL;
1278 		}
1279 
1280 		virt_dev = xhci->devs[udev->slot_id];
1281 		if (virt_dev->udev != udev) {
1282 			xhci_dbg(xhci, "xHCI %s called with udev and "
1283 					  "virt_dev does not match\n", func);
1284 			return -EINVAL;
1285 		}
1286 	}
1287 
1288 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1289 		return -ENODEV;
1290 
1291 	return 1;
1292 }
1293 
1294 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1295 		struct usb_device *udev, struct xhci_command *command,
1296 		bool ctx_change, bool must_succeed);
1297 
1298 /*
1299  * Full speed devices may have a max packet size greater than 8 bytes, but the
1300  * USB core doesn't know that until it reads the first 8 bytes of the
1301  * descriptor.  If the usb_device's max packet size changes after that point,
1302  * we need to issue an evaluate context command and wait on it.
1303  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1304 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1305 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1306 {
1307 	struct xhci_container_ctx *out_ctx;
1308 	struct xhci_input_control_ctx *ctrl_ctx;
1309 	struct xhci_ep_ctx *ep_ctx;
1310 	struct xhci_command *command;
1311 	int max_packet_size;
1312 	int hw_max_packet_size;
1313 	int ret = 0;
1314 
1315 	out_ctx = xhci->devs[slot_id]->out_ctx;
1316 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1317 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1318 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1319 	if (hw_max_packet_size != max_packet_size) {
1320 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1321 				"Max Packet Size for ep 0 changed.");
1322 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1323 				"Max packet size in usb_device = %d",
1324 				max_packet_size);
1325 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1326 				"Max packet size in xHCI HW = %d",
1327 				hw_max_packet_size);
1328 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1329 				"Issuing evaluate context command.");
1330 
1331 		/* Set up the input context flags for the command */
1332 		/* FIXME: This won't work if a non-default control endpoint
1333 		 * changes max packet sizes.
1334 		 */
1335 
1336 		command = xhci_alloc_command(xhci, false, true, mem_flags);
1337 		if (!command)
1338 			return -ENOMEM;
1339 
1340 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1341 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1342 		if (!ctrl_ctx) {
1343 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1344 					__func__);
1345 			ret = -ENOMEM;
1346 			goto command_cleanup;
1347 		}
1348 		/* Set up the modified control endpoint 0 */
1349 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1350 				xhci->devs[slot_id]->out_ctx, ep_index);
1351 
1352 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1353 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1354 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1355 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1356 
1357 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1358 		ctrl_ctx->drop_flags = 0;
1359 
1360 		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1361 		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1362 		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1363 		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1364 
1365 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1366 				true, false);
1367 
1368 		/* Clean up the input context for later use by bandwidth
1369 		 * functions.
1370 		 */
1371 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1372 command_cleanup:
1373 		kfree(command->completion);
1374 		kfree(command);
1375 	}
1376 	return ret;
1377 }
1378 
1379 /*
1380  * non-error returns are a promise to giveback() the urb later
1381  * we drop ownership so next owner (or urb unlink) can get it
1382  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1383 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1384 {
1385 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1386 	struct xhci_td *buffer;
1387 	unsigned long flags;
1388 	int ret = 0;
1389 	unsigned int slot_id, ep_index;
1390 	struct urb_priv	*urb_priv;
1391 	int size, i;
1392 
1393 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1394 					true, true, __func__) <= 0)
1395 		return -EINVAL;
1396 
1397 	slot_id = urb->dev->slot_id;
1398 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399 
1400 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1401 		if (!in_interrupt())
1402 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1403 		ret = -ESHUTDOWN;
1404 		goto exit;
1405 	}
1406 
1407 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1408 		size = urb->number_of_packets;
1409 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1410 	    urb->transfer_buffer_length > 0 &&
1411 	    urb->transfer_flags & URB_ZERO_PACKET &&
1412 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1413 		size = 2;
1414 	else
1415 		size = 1;
1416 
1417 	urb_priv = kzalloc(sizeof(struct urb_priv) +
1418 				  size * sizeof(struct xhci_td *), mem_flags);
1419 	if (!urb_priv)
1420 		return -ENOMEM;
1421 
1422 	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1423 	if (!buffer) {
1424 		kfree(urb_priv);
1425 		return -ENOMEM;
1426 	}
1427 
1428 	for (i = 0; i < size; i++) {
1429 		urb_priv->td[i] = buffer;
1430 		buffer++;
1431 	}
1432 
1433 	urb_priv->length = size;
1434 	urb_priv->td_cnt = 0;
1435 	urb->hcpriv = urb_priv;
1436 
1437 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1438 		/* Check to see if the max packet size for the default control
1439 		 * endpoint changed during FS device enumeration
1440 		 */
1441 		if (urb->dev->speed == USB_SPEED_FULL) {
1442 			ret = xhci_check_maxpacket(xhci, slot_id,
1443 					ep_index, urb, mem_flags);
1444 			if (ret < 0) {
1445 				xhci_urb_free_priv(urb_priv);
1446 				urb->hcpriv = NULL;
1447 				return ret;
1448 			}
1449 		}
1450 
1451 		/* We have a spinlock and interrupts disabled, so we must pass
1452 		 * atomic context to this function, which may allocate memory.
1453 		 */
1454 		spin_lock_irqsave(&xhci->lock, flags);
1455 		if (xhci->xhc_state & XHCI_STATE_DYING)
1456 			goto dying;
1457 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1458 				slot_id, ep_index);
1459 		if (ret)
1460 			goto free_priv;
1461 		spin_unlock_irqrestore(&xhci->lock, flags);
1462 	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1463 		spin_lock_irqsave(&xhci->lock, flags);
1464 		if (xhci->xhc_state & XHCI_STATE_DYING)
1465 			goto dying;
1466 		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1467 				EP_GETTING_STREAMS) {
1468 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1469 					"is transitioning to using streams.\n");
1470 			ret = -EINVAL;
1471 		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1472 				EP_GETTING_NO_STREAMS) {
1473 			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1474 					"is transitioning to "
1475 					"not having streams.\n");
1476 			ret = -EINVAL;
1477 		} else {
1478 			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1479 					slot_id, ep_index);
1480 		}
1481 		if (ret)
1482 			goto free_priv;
1483 		spin_unlock_irqrestore(&xhci->lock, flags);
1484 	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1485 		spin_lock_irqsave(&xhci->lock, flags);
1486 		if (xhci->xhc_state & XHCI_STATE_DYING)
1487 			goto dying;
1488 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1489 				slot_id, ep_index);
1490 		if (ret)
1491 			goto free_priv;
1492 		spin_unlock_irqrestore(&xhci->lock, flags);
1493 	} else {
1494 		spin_lock_irqsave(&xhci->lock, flags);
1495 		if (xhci->xhc_state & XHCI_STATE_DYING)
1496 			goto dying;
1497 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1498 				slot_id, ep_index);
1499 		if (ret)
1500 			goto free_priv;
1501 		spin_unlock_irqrestore(&xhci->lock, flags);
1502 	}
1503 exit:
1504 	return ret;
1505 dying:
1506 	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1507 			"non-responsive xHCI host.\n",
1508 			urb->ep->desc.bEndpointAddress, urb);
1509 	ret = -ESHUTDOWN;
1510 free_priv:
1511 	xhci_urb_free_priv(urb_priv);
1512 	urb->hcpriv = NULL;
1513 	spin_unlock_irqrestore(&xhci->lock, flags);
1514 	return ret;
1515 }
1516 
1517 /* Get the right ring for the given URB.
1518  * If the endpoint supports streams, boundary check the URB's stream ID.
1519  * If the endpoint doesn't support streams, return the singular endpoint ring.
1520  */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1521 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1522 		struct urb *urb)
1523 {
1524 	unsigned int slot_id;
1525 	unsigned int ep_index;
1526 	unsigned int stream_id;
1527 	struct xhci_virt_ep *ep;
1528 
1529 	slot_id = urb->dev->slot_id;
1530 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1531 	stream_id = urb->stream_id;
1532 	ep = &xhci->devs[slot_id]->eps[ep_index];
1533 	/* Common case: no streams */
1534 	if (!(ep->ep_state & EP_HAS_STREAMS))
1535 		return ep->ring;
1536 
1537 	if (stream_id == 0) {
1538 		xhci_warn(xhci,
1539 				"WARN: Slot ID %u, ep index %u has streams, "
1540 				"but URB has no stream ID.\n",
1541 				slot_id, ep_index);
1542 		return NULL;
1543 	}
1544 
1545 	if (stream_id < ep->stream_info->num_streams)
1546 		return ep->stream_info->stream_rings[stream_id];
1547 
1548 	xhci_warn(xhci,
1549 			"WARN: Slot ID %u, ep index %u has "
1550 			"stream IDs 1 to %u allocated, "
1551 			"but stream ID %u is requested.\n",
1552 			slot_id, ep_index,
1553 			ep->stream_info->num_streams - 1,
1554 			stream_id);
1555 	return NULL;
1556 }
1557 
1558 /*
1559  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1560  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1561  * should pick up where it left off in the TD, unless a Set Transfer Ring
1562  * Dequeue Pointer is issued.
1563  *
1564  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1565  * the ring.  Since the ring is a contiguous structure, they can't be physically
1566  * removed.  Instead, there are two options:
1567  *
1568  *  1) If the HC is in the middle of processing the URB to be canceled, we
1569  *     simply move the ring's dequeue pointer past those TRBs using the Set
1570  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1571  *     when drivers timeout on the last submitted URB and attempt to cancel.
1572  *
1573  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1574  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1575  *     HC will need to invalidate the any TRBs it has cached after the stop
1576  *     endpoint command, as noted in the xHCI 0.95 errata.
1577  *
1578  *  3) The TD may have completed by the time the Stop Endpoint Command
1579  *     completes, so software needs to handle that case too.
1580  *
1581  * This function should protect against the TD enqueueing code ringing the
1582  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1583  * It also needs to account for multiple cancellations on happening at the same
1584  * time for the same endpoint.
1585  *
1586  * Note that this function can be called in any context, or so says
1587  * usb_hcd_unlink_urb()
1588  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1589 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1590 {
1591 	unsigned long flags;
1592 	int ret, i;
1593 	u32 temp;
1594 	struct xhci_hcd *xhci;
1595 	struct urb_priv	*urb_priv;
1596 	struct xhci_td *td;
1597 	unsigned int ep_index;
1598 	struct xhci_ring *ep_ring;
1599 	struct xhci_virt_ep *ep;
1600 	struct xhci_command *command;
1601 
1602 	xhci = hcd_to_xhci(hcd);
1603 	spin_lock_irqsave(&xhci->lock, flags);
1604 	/* Make sure the URB hasn't completed or been unlinked already */
1605 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1606 	if (ret || !urb->hcpriv)
1607 		goto done;
1608 	temp = readl(&xhci->op_regs->status);
1609 	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1610 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1611 				"HW died, freeing TD.");
1612 		urb_priv = urb->hcpriv;
1613 		for (i = urb_priv->td_cnt;
1614 		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1615 		     i++) {
1616 			td = urb_priv->td[i];
1617 			if (!list_empty(&td->td_list))
1618 				list_del_init(&td->td_list);
1619 			if (!list_empty(&td->cancelled_td_list))
1620 				list_del_init(&td->cancelled_td_list);
1621 		}
1622 
1623 		usb_hcd_unlink_urb_from_ep(hcd, urb);
1624 		spin_unlock_irqrestore(&xhci->lock, flags);
1625 		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1626 		xhci_urb_free_priv(urb_priv);
1627 		return ret;
1628 	}
1629 
1630 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631 	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1632 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633 	if (!ep_ring) {
1634 		ret = -EINVAL;
1635 		goto done;
1636 	}
1637 
1638 	urb_priv = urb->hcpriv;
1639 	i = urb_priv->td_cnt;
1640 	if (i < urb_priv->length)
1641 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1642 				"Cancel URB %p, dev %s, ep 0x%x, "
1643 				"starting at offset 0x%llx",
1644 				urb, urb->dev->devpath,
1645 				urb->ep->desc.bEndpointAddress,
1646 				(unsigned long long) xhci_trb_virt_to_dma(
1647 					urb_priv->td[i]->start_seg,
1648 					urb_priv->td[i]->first_trb));
1649 
1650 	for (; i < urb_priv->length; i++) {
1651 		td = urb_priv->td[i];
1652 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1653 	}
1654 
1655 	/* Queue a stop endpoint command, but only if this is
1656 	 * the first cancellation to be handled.
1657 	 */
1658 	if (!(ep->ep_state & EP_HALT_PENDING)) {
1659 		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1660 		if (!command) {
1661 			ret = -ENOMEM;
1662 			goto done;
1663 		}
1664 		ep->ep_state |= EP_HALT_PENDING;
1665 		ep->stop_cmds_pending++;
1666 		ep->stop_cmd_timer.expires = jiffies +
1667 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1668 		add_timer(&ep->stop_cmd_timer);
1669 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1670 					 ep_index, 0);
1671 		xhci_ring_cmd_db(xhci);
1672 	}
1673 done:
1674 	spin_unlock_irqrestore(&xhci->lock, flags);
1675 	return ret;
1676 }
1677 
1678 /* Drop an endpoint from a new bandwidth configuration for this device.
1679  * Only one call to this function is allowed per endpoint before
1680  * check_bandwidth() or reset_bandwidth() must be called.
1681  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1682  * add the endpoint to the schedule with possibly new parameters denoted by a
1683  * different endpoint descriptor in usb_host_endpoint.
1684  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1685  * not allowed.
1686  *
1687  * The USB core will not allow URBs to be queued to an endpoint that is being
1688  * disabled, so there's no need for mutual exclusion to protect
1689  * the xhci->devs[slot_id] structure.
1690  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1691 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1692 		struct usb_host_endpoint *ep)
1693 {
1694 	struct xhci_hcd *xhci;
1695 	struct xhci_container_ctx *in_ctx, *out_ctx;
1696 	struct xhci_input_control_ctx *ctrl_ctx;
1697 	unsigned int ep_index;
1698 	struct xhci_ep_ctx *ep_ctx;
1699 	u32 drop_flag;
1700 	u32 new_add_flags, new_drop_flags;
1701 	int ret;
1702 
1703 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1704 	if (ret <= 0)
1705 		return ret;
1706 	xhci = hcd_to_xhci(hcd);
1707 	if (xhci->xhc_state & XHCI_STATE_DYING)
1708 		return -ENODEV;
1709 
1710 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1711 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1712 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1713 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1714 				__func__, drop_flag);
1715 		return 0;
1716 	}
1717 
1718 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1719 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1720 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1721 	if (!ctrl_ctx) {
1722 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1723 				__func__);
1724 		return 0;
1725 	}
1726 
1727 	ep_index = xhci_get_endpoint_index(&ep->desc);
1728 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1729 	/* If the HC already knows the endpoint is disabled,
1730 	 * or the HCD has noted it is disabled, ignore this request
1731 	 */
1732 	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1733 	     cpu_to_le32(EP_STATE_DISABLED)) ||
1734 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1735 	    xhci_get_endpoint_flag(&ep->desc)) {
1736 		/* Do not warn when called after a usb_device_reset */
1737 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1738 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1739 				  __func__, ep);
1740 		return 0;
1741 	}
1742 
1743 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1744 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745 
1746 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1747 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1748 
1749 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1750 
1751 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1752 			(unsigned int) ep->desc.bEndpointAddress,
1753 			udev->slot_id,
1754 			(unsigned int) new_drop_flags,
1755 			(unsigned int) new_add_flags);
1756 	return 0;
1757 }
1758 
1759 /* Add an endpoint to a new possible bandwidth configuration for this device.
1760  * Only one call to this function is allowed per endpoint before
1761  * check_bandwidth() or reset_bandwidth() must be called.
1762  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1763  * add the endpoint to the schedule with possibly new parameters denoted by a
1764  * different endpoint descriptor in usb_host_endpoint.
1765  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1766  * not allowed.
1767  *
1768  * The USB core will not allow URBs to be queued to an endpoint until the
1769  * configuration or alt setting is installed in the device, so there's no need
1770  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1771  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1772 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1773 		struct usb_host_endpoint *ep)
1774 {
1775 	struct xhci_hcd *xhci;
1776 	struct xhci_container_ctx *in_ctx;
1777 	unsigned int ep_index;
1778 	struct xhci_input_control_ctx *ctrl_ctx;
1779 	u32 added_ctxs;
1780 	u32 new_add_flags, new_drop_flags;
1781 	struct xhci_virt_device *virt_dev;
1782 	int ret = 0;
1783 
1784 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1785 	if (ret <= 0) {
1786 		/* So we won't queue a reset ep command for a root hub */
1787 		ep->hcpriv = NULL;
1788 		return ret;
1789 	}
1790 	xhci = hcd_to_xhci(hcd);
1791 	if (xhci->xhc_state & XHCI_STATE_DYING)
1792 		return -ENODEV;
1793 
1794 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1795 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1796 		/* FIXME when we have to issue an evaluate endpoint command to
1797 		 * deal with ep0 max packet size changing once we get the
1798 		 * descriptors
1799 		 */
1800 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1801 				__func__, added_ctxs);
1802 		return 0;
1803 	}
1804 
1805 	virt_dev = xhci->devs[udev->slot_id];
1806 	in_ctx = virt_dev->in_ctx;
1807 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1808 	if (!ctrl_ctx) {
1809 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1810 				__func__);
1811 		return 0;
1812 	}
1813 
1814 	ep_index = xhci_get_endpoint_index(&ep->desc);
1815 	/* If this endpoint is already in use, and the upper layers are trying
1816 	 * to add it again without dropping it, reject the addition.
1817 	 */
1818 	if (virt_dev->eps[ep_index].ring &&
1819 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1820 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1821 				"without dropping it.\n",
1822 				(unsigned int) ep->desc.bEndpointAddress);
1823 		return -EINVAL;
1824 	}
1825 
1826 	/* If the HCD has already noted the endpoint is enabled,
1827 	 * ignore this request.
1828 	 */
1829 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1830 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1831 				__func__, ep);
1832 		return 0;
1833 	}
1834 
1835 	/*
1836 	 * Configuration and alternate setting changes must be done in
1837 	 * process context, not interrupt context (or so documenation
1838 	 * for usb_set_interface() and usb_set_configuration() claim).
1839 	 */
1840 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1841 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1842 				__func__, ep->desc.bEndpointAddress);
1843 		return -ENOMEM;
1844 	}
1845 
1846 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1847 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1848 
1849 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1850 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1851 	 * this re-adds a new state for the endpoint from the new endpoint
1852 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1853 	 * drop flags alone.
1854 	 */
1855 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1856 
1857 	/* Store the usb_device pointer for later use */
1858 	ep->hcpriv = udev;
1859 
1860 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1861 			(unsigned int) ep->desc.bEndpointAddress,
1862 			udev->slot_id,
1863 			(unsigned int) new_drop_flags,
1864 			(unsigned int) new_add_flags);
1865 	return 0;
1866 }
1867 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1868 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1869 {
1870 	struct xhci_input_control_ctx *ctrl_ctx;
1871 	struct xhci_ep_ctx *ep_ctx;
1872 	struct xhci_slot_ctx *slot_ctx;
1873 	int i;
1874 
1875 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1876 	if (!ctrl_ctx) {
1877 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1878 				__func__);
1879 		return;
1880 	}
1881 
1882 	/* When a device's add flag and drop flag are zero, any subsequent
1883 	 * configure endpoint command will leave that endpoint's state
1884 	 * untouched.  Make sure we don't leave any old state in the input
1885 	 * endpoint contexts.
1886 	 */
1887 	ctrl_ctx->drop_flags = 0;
1888 	ctrl_ctx->add_flags = 0;
1889 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1890 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1891 	/* Endpoint 0 is always valid */
1892 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1893 	for (i = 1; i < 31; ++i) {
1894 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1895 		ep_ctx->ep_info = 0;
1896 		ep_ctx->ep_info2 = 0;
1897 		ep_ctx->deq = 0;
1898 		ep_ctx->tx_info = 0;
1899 	}
1900 }
1901 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1902 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1903 		struct usb_device *udev, u32 *cmd_status)
1904 {
1905 	int ret;
1906 
1907 	switch (*cmd_status) {
1908 	case COMP_CMD_ABORT:
1909 	case COMP_CMD_STOP:
1910 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1911 		ret = -ETIME;
1912 		break;
1913 	case COMP_ENOMEM:
1914 		dev_warn(&udev->dev,
1915 			 "Not enough host controller resources for new device state.\n");
1916 		ret = -ENOMEM;
1917 		/* FIXME: can we allocate more resources for the HC? */
1918 		break;
1919 	case COMP_BW_ERR:
1920 	case COMP_2ND_BW_ERR:
1921 		dev_warn(&udev->dev,
1922 			 "Not enough bandwidth for new device state.\n");
1923 		ret = -ENOSPC;
1924 		/* FIXME: can we go back to the old state? */
1925 		break;
1926 	case COMP_TRB_ERR:
1927 		/* the HCD set up something wrong */
1928 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1929 				"add flag = 1, "
1930 				"and endpoint is not disabled.\n");
1931 		ret = -EINVAL;
1932 		break;
1933 	case COMP_DEV_ERR:
1934 		dev_warn(&udev->dev,
1935 			 "ERROR: Incompatible device for endpoint configure command.\n");
1936 		ret = -ENODEV;
1937 		break;
1938 	case COMP_SUCCESS:
1939 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1940 				"Successful Endpoint Configure command");
1941 		ret = 0;
1942 		break;
1943 	default:
1944 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1945 				*cmd_status);
1946 		ret = -EINVAL;
1947 		break;
1948 	}
1949 	return ret;
1950 }
1951 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1952 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1953 		struct usb_device *udev, u32 *cmd_status)
1954 {
1955 	int ret;
1956 	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1957 
1958 	switch (*cmd_status) {
1959 	case COMP_CMD_ABORT:
1960 	case COMP_CMD_STOP:
1961 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1962 		ret = -ETIME;
1963 		break;
1964 	case COMP_EINVAL:
1965 		dev_warn(&udev->dev,
1966 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1967 		ret = -EINVAL;
1968 		break;
1969 	case COMP_EBADSLT:
1970 		dev_warn(&udev->dev,
1971 			"WARN: slot not enabled for evaluate context command.\n");
1972 		ret = -EINVAL;
1973 		break;
1974 	case COMP_CTX_STATE:
1975 		dev_warn(&udev->dev,
1976 			"WARN: invalid context state for evaluate context command.\n");
1977 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1978 		ret = -EINVAL;
1979 		break;
1980 	case COMP_DEV_ERR:
1981 		dev_warn(&udev->dev,
1982 			"ERROR: Incompatible device for evaluate context command.\n");
1983 		ret = -ENODEV;
1984 		break;
1985 	case COMP_MEL_ERR:
1986 		/* Max Exit Latency too large error */
1987 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1988 		ret = -EINVAL;
1989 		break;
1990 	case COMP_SUCCESS:
1991 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1992 				"Successful evaluate context command");
1993 		ret = 0;
1994 		break;
1995 	default:
1996 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1997 			*cmd_status);
1998 		ret = -EINVAL;
1999 		break;
2000 	}
2001 	return ret;
2002 }
2003 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2004 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2005 		struct xhci_input_control_ctx *ctrl_ctx)
2006 {
2007 	u32 valid_add_flags;
2008 	u32 valid_drop_flags;
2009 
2010 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2011 	 * (bit 1).  The default control endpoint is added during the Address
2012 	 * Device command and is never removed until the slot is disabled.
2013 	 */
2014 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2015 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2016 
2017 	/* Use hweight32 to count the number of ones in the add flags, or
2018 	 * number of endpoints added.  Don't count endpoints that are changed
2019 	 * (both added and dropped).
2020 	 */
2021 	return hweight32(valid_add_flags) -
2022 		hweight32(valid_add_flags & valid_drop_flags);
2023 }
2024 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2025 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2026 		struct xhci_input_control_ctx *ctrl_ctx)
2027 {
2028 	u32 valid_add_flags;
2029 	u32 valid_drop_flags;
2030 
2031 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2032 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2033 
2034 	return hweight32(valid_drop_flags) -
2035 		hweight32(valid_add_flags & valid_drop_flags);
2036 }
2037 
2038 /*
2039  * We need to reserve the new number of endpoints before the configure endpoint
2040  * command completes.  We can't subtract the dropped endpoints from the number
2041  * of active endpoints until the command completes because we can oversubscribe
2042  * the host in this case:
2043  *
2044  *  - the first configure endpoint command drops more endpoints than it adds
2045  *  - a second configure endpoint command that adds more endpoints is queued
2046  *  - the first configure endpoint command fails, so the config is unchanged
2047  *  - the second command may succeed, even though there isn't enough resources
2048  *
2049  * Must be called with xhci->lock held.
2050  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2051 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2052 		struct xhci_input_control_ctx *ctrl_ctx)
2053 {
2054 	u32 added_eps;
2055 
2056 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2057 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2058 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059 				"Not enough ep ctxs: "
2060 				"%u active, need to add %u, limit is %u.",
2061 				xhci->num_active_eps, added_eps,
2062 				xhci->limit_active_eps);
2063 		return -ENOMEM;
2064 	}
2065 	xhci->num_active_eps += added_eps;
2066 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2067 			"Adding %u ep ctxs, %u now active.", added_eps,
2068 			xhci->num_active_eps);
2069 	return 0;
2070 }
2071 
2072 /*
2073  * The configure endpoint was failed by the xHC for some other reason, so we
2074  * need to revert the resources that failed configuration would have used.
2075  *
2076  * Must be called with xhci->lock held.
2077  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2078 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2079 		struct xhci_input_control_ctx *ctrl_ctx)
2080 {
2081 	u32 num_failed_eps;
2082 
2083 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2084 	xhci->num_active_eps -= num_failed_eps;
2085 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2086 			"Removing %u failed ep ctxs, %u now active.",
2087 			num_failed_eps,
2088 			xhci->num_active_eps);
2089 }
2090 
2091 /*
2092  * Now that the command has completed, clean up the active endpoint count by
2093  * subtracting out the endpoints that were dropped (but not changed).
2094  *
2095  * Must be called with xhci->lock held.
2096  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2097 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2098 		struct xhci_input_control_ctx *ctrl_ctx)
2099 {
2100 	u32 num_dropped_eps;
2101 
2102 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2103 	xhci->num_active_eps -= num_dropped_eps;
2104 	if (num_dropped_eps)
2105 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2106 				"Removing %u dropped ep ctxs, %u now active.",
2107 				num_dropped_eps,
2108 				xhci->num_active_eps);
2109 }
2110 
xhci_get_block_size(struct usb_device * udev)2111 static unsigned int xhci_get_block_size(struct usb_device *udev)
2112 {
2113 	switch (udev->speed) {
2114 	case USB_SPEED_LOW:
2115 	case USB_SPEED_FULL:
2116 		return FS_BLOCK;
2117 	case USB_SPEED_HIGH:
2118 		return HS_BLOCK;
2119 	case USB_SPEED_SUPER:
2120 	case USB_SPEED_SUPER_PLUS:
2121 		return SS_BLOCK;
2122 	case USB_SPEED_UNKNOWN:
2123 	case USB_SPEED_WIRELESS:
2124 	default:
2125 		/* Should never happen */
2126 		return 1;
2127 	}
2128 }
2129 
2130 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2131 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2132 {
2133 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2134 		return LS_OVERHEAD;
2135 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2136 		return FS_OVERHEAD;
2137 	return HS_OVERHEAD;
2138 }
2139 
2140 /* If we are changing a LS/FS device under a HS hub,
2141  * make sure (if we are activating a new TT) that the HS bus has enough
2142  * bandwidth for this new TT.
2143  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2144 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2145 		struct xhci_virt_device *virt_dev,
2146 		int old_active_eps)
2147 {
2148 	struct xhci_interval_bw_table *bw_table;
2149 	struct xhci_tt_bw_info *tt_info;
2150 
2151 	/* Find the bandwidth table for the root port this TT is attached to. */
2152 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2153 	tt_info = virt_dev->tt_info;
2154 	/* If this TT already had active endpoints, the bandwidth for this TT
2155 	 * has already been added.  Removing all periodic endpoints (and thus
2156 	 * making the TT enactive) will only decrease the bandwidth used.
2157 	 */
2158 	if (old_active_eps)
2159 		return 0;
2160 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2161 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2162 			return -ENOMEM;
2163 		return 0;
2164 	}
2165 	/* Not sure why we would have no new active endpoints...
2166 	 *
2167 	 * Maybe because of an Evaluate Context change for a hub update or a
2168 	 * control endpoint 0 max packet size change?
2169 	 * FIXME: skip the bandwidth calculation in that case.
2170 	 */
2171 	return 0;
2172 }
2173 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2174 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2175 		struct xhci_virt_device *virt_dev)
2176 {
2177 	unsigned int bw_reserved;
2178 
2179 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2180 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2181 		return -ENOMEM;
2182 
2183 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2184 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2185 		return -ENOMEM;
2186 
2187 	return 0;
2188 }
2189 
2190 /*
2191  * This algorithm is a very conservative estimate of the worst-case scheduling
2192  * scenario for any one interval.  The hardware dynamically schedules the
2193  * packets, so we can't tell which microframe could be the limiting factor in
2194  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2195  *
2196  * Obviously, we can't solve an NP complete problem to find the minimum worst
2197  * case scenario.  Instead, we come up with an estimate that is no less than
2198  * the worst case bandwidth used for any one microframe, but may be an
2199  * over-estimate.
2200  *
2201  * We walk the requirements for each endpoint by interval, starting with the
2202  * smallest interval, and place packets in the schedule where there is only one
2203  * possible way to schedule packets for that interval.  In order to simplify
2204  * this algorithm, we record the largest max packet size for each interval, and
2205  * assume all packets will be that size.
2206  *
2207  * For interval 0, we obviously must schedule all packets for each interval.
2208  * The bandwidth for interval 0 is just the amount of data to be transmitted
2209  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2210  * the number of packets).
2211  *
2212  * For interval 1, we have two possible microframes to schedule those packets
2213  * in.  For this algorithm, if we can schedule the same number of packets for
2214  * each possible scheduling opportunity (each microframe), we will do so.  The
2215  * remaining number of packets will be saved to be transmitted in the gaps in
2216  * the next interval's scheduling sequence.
2217  *
2218  * As we move those remaining packets to be scheduled with interval 2 packets,
2219  * we have to double the number of remaining packets to transmit.  This is
2220  * because the intervals are actually powers of 2, and we would be transmitting
2221  * the previous interval's packets twice in this interval.  We also have to be
2222  * sure that when we look at the largest max packet size for this interval, we
2223  * also look at the largest max packet size for the remaining packets and take
2224  * the greater of the two.
2225  *
2226  * The algorithm continues to evenly distribute packets in each scheduling
2227  * opportunity, and push the remaining packets out, until we get to the last
2228  * interval.  Then those packets and their associated overhead are just added
2229  * to the bandwidth used.
2230  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2231 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2232 		struct xhci_virt_device *virt_dev,
2233 		int old_active_eps)
2234 {
2235 	unsigned int bw_reserved;
2236 	unsigned int max_bandwidth;
2237 	unsigned int bw_used;
2238 	unsigned int block_size;
2239 	struct xhci_interval_bw_table *bw_table;
2240 	unsigned int packet_size = 0;
2241 	unsigned int overhead = 0;
2242 	unsigned int packets_transmitted = 0;
2243 	unsigned int packets_remaining = 0;
2244 	unsigned int i;
2245 
2246 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2247 		return xhci_check_ss_bw(xhci, virt_dev);
2248 
2249 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2250 		max_bandwidth = HS_BW_LIMIT;
2251 		/* Convert percent of bus BW reserved to blocks reserved */
2252 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2253 	} else {
2254 		max_bandwidth = FS_BW_LIMIT;
2255 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2256 	}
2257 
2258 	bw_table = virt_dev->bw_table;
2259 	/* We need to translate the max packet size and max ESIT payloads into
2260 	 * the units the hardware uses.
2261 	 */
2262 	block_size = xhci_get_block_size(virt_dev->udev);
2263 
2264 	/* If we are manipulating a LS/FS device under a HS hub, double check
2265 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2266 	 */
2267 	if (virt_dev->tt_info) {
2268 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269 				"Recalculating BW for rootport %u",
2270 				virt_dev->real_port);
2271 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2272 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2273 					"newly activated TT.\n");
2274 			return -ENOMEM;
2275 		}
2276 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2277 				"Recalculating BW for TT slot %u port %u",
2278 				virt_dev->tt_info->slot_id,
2279 				virt_dev->tt_info->ttport);
2280 	} else {
2281 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2282 				"Recalculating BW for rootport %u",
2283 				virt_dev->real_port);
2284 	}
2285 
2286 	/* Add in how much bandwidth will be used for interval zero, or the
2287 	 * rounded max ESIT payload + number of packets * largest overhead.
2288 	 */
2289 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2290 		bw_table->interval_bw[0].num_packets *
2291 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2292 
2293 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2294 		unsigned int bw_added;
2295 		unsigned int largest_mps;
2296 		unsigned int interval_overhead;
2297 
2298 		/*
2299 		 * How many packets could we transmit in this interval?
2300 		 * If packets didn't fit in the previous interval, we will need
2301 		 * to transmit that many packets twice within this interval.
2302 		 */
2303 		packets_remaining = 2 * packets_remaining +
2304 			bw_table->interval_bw[i].num_packets;
2305 
2306 		/* Find the largest max packet size of this or the previous
2307 		 * interval.
2308 		 */
2309 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2310 			largest_mps = 0;
2311 		else {
2312 			struct xhci_virt_ep *virt_ep;
2313 			struct list_head *ep_entry;
2314 
2315 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2316 			virt_ep = list_entry(ep_entry,
2317 					struct xhci_virt_ep, bw_endpoint_list);
2318 			/* Convert to blocks, rounding up */
2319 			largest_mps = DIV_ROUND_UP(
2320 					virt_ep->bw_info.max_packet_size,
2321 					block_size);
2322 		}
2323 		if (largest_mps > packet_size)
2324 			packet_size = largest_mps;
2325 
2326 		/* Use the larger overhead of this or the previous interval. */
2327 		interval_overhead = xhci_get_largest_overhead(
2328 				&bw_table->interval_bw[i]);
2329 		if (interval_overhead > overhead)
2330 			overhead = interval_overhead;
2331 
2332 		/* How many packets can we evenly distribute across
2333 		 * (1 << (i + 1)) possible scheduling opportunities?
2334 		 */
2335 		packets_transmitted = packets_remaining >> (i + 1);
2336 
2337 		/* Add in the bandwidth used for those scheduled packets */
2338 		bw_added = packets_transmitted * (overhead + packet_size);
2339 
2340 		/* How many packets do we have remaining to transmit? */
2341 		packets_remaining = packets_remaining % (1 << (i + 1));
2342 
2343 		/* What largest max packet size should those packets have? */
2344 		/* If we've transmitted all packets, don't carry over the
2345 		 * largest packet size.
2346 		 */
2347 		if (packets_remaining == 0) {
2348 			packet_size = 0;
2349 			overhead = 0;
2350 		} else if (packets_transmitted > 0) {
2351 			/* Otherwise if we do have remaining packets, and we've
2352 			 * scheduled some packets in this interval, take the
2353 			 * largest max packet size from endpoints with this
2354 			 * interval.
2355 			 */
2356 			packet_size = largest_mps;
2357 			overhead = interval_overhead;
2358 		}
2359 		/* Otherwise carry over packet_size and overhead from the last
2360 		 * time we had a remainder.
2361 		 */
2362 		bw_used += bw_added;
2363 		if (bw_used > max_bandwidth) {
2364 			xhci_warn(xhci, "Not enough bandwidth. "
2365 					"Proposed: %u, Max: %u\n",
2366 				bw_used, max_bandwidth);
2367 			return -ENOMEM;
2368 		}
2369 	}
2370 	/*
2371 	 * Ok, we know we have some packets left over after even-handedly
2372 	 * scheduling interval 15.  We don't know which microframes they will
2373 	 * fit into, so we over-schedule and say they will be scheduled every
2374 	 * microframe.
2375 	 */
2376 	if (packets_remaining > 0)
2377 		bw_used += overhead + packet_size;
2378 
2379 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2380 		unsigned int port_index = virt_dev->real_port - 1;
2381 
2382 		/* OK, we're manipulating a HS device attached to a
2383 		 * root port bandwidth domain.  Include the number of active TTs
2384 		 * in the bandwidth used.
2385 		 */
2386 		bw_used += TT_HS_OVERHEAD *
2387 			xhci->rh_bw[port_index].num_active_tts;
2388 	}
2389 
2390 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2392 		"Available: %u " "percent",
2393 		bw_used, max_bandwidth, bw_reserved,
2394 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2395 		max_bandwidth);
2396 
2397 	bw_used += bw_reserved;
2398 	if (bw_used > max_bandwidth) {
2399 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2400 				bw_used, max_bandwidth);
2401 		return -ENOMEM;
2402 	}
2403 
2404 	bw_table->bw_used = bw_used;
2405 	return 0;
2406 }
2407 
xhci_is_async_ep(unsigned int ep_type)2408 static bool xhci_is_async_ep(unsigned int ep_type)
2409 {
2410 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2411 					ep_type != ISOC_IN_EP &&
2412 					ep_type != INT_IN_EP);
2413 }
2414 
xhci_is_sync_in_ep(unsigned int ep_type)2415 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2416 {
2417 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2418 }
2419 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2420 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2421 {
2422 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2423 
2424 	if (ep_bw->ep_interval == 0)
2425 		return SS_OVERHEAD_BURST +
2426 			(ep_bw->mult * ep_bw->num_packets *
2427 					(SS_OVERHEAD + mps));
2428 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2429 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2430 				1 << ep_bw->ep_interval);
2431 
2432 }
2433 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2434 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2435 		struct xhci_bw_info *ep_bw,
2436 		struct xhci_interval_bw_table *bw_table,
2437 		struct usb_device *udev,
2438 		struct xhci_virt_ep *virt_ep,
2439 		struct xhci_tt_bw_info *tt_info)
2440 {
2441 	struct xhci_interval_bw	*interval_bw;
2442 	int normalized_interval;
2443 
2444 	if (xhci_is_async_ep(ep_bw->type))
2445 		return;
2446 
2447 	if (udev->speed >= USB_SPEED_SUPER) {
2448 		if (xhci_is_sync_in_ep(ep_bw->type))
2449 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2450 				xhci_get_ss_bw_consumed(ep_bw);
2451 		else
2452 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2453 				xhci_get_ss_bw_consumed(ep_bw);
2454 		return;
2455 	}
2456 
2457 	/* SuperSpeed endpoints never get added to intervals in the table, so
2458 	 * this check is only valid for HS/FS/LS devices.
2459 	 */
2460 	if (list_empty(&virt_ep->bw_endpoint_list))
2461 		return;
2462 	/* For LS/FS devices, we need to translate the interval expressed in
2463 	 * microframes to frames.
2464 	 */
2465 	if (udev->speed == USB_SPEED_HIGH)
2466 		normalized_interval = ep_bw->ep_interval;
2467 	else
2468 		normalized_interval = ep_bw->ep_interval - 3;
2469 
2470 	if (normalized_interval == 0)
2471 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2472 	interval_bw = &bw_table->interval_bw[normalized_interval];
2473 	interval_bw->num_packets -= ep_bw->num_packets;
2474 	switch (udev->speed) {
2475 	case USB_SPEED_LOW:
2476 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2477 		break;
2478 	case USB_SPEED_FULL:
2479 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2480 		break;
2481 	case USB_SPEED_HIGH:
2482 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2483 		break;
2484 	case USB_SPEED_SUPER:
2485 	case USB_SPEED_SUPER_PLUS:
2486 	case USB_SPEED_UNKNOWN:
2487 	case USB_SPEED_WIRELESS:
2488 		/* Should never happen because only LS/FS/HS endpoints will get
2489 		 * added to the endpoint list.
2490 		 */
2491 		return;
2492 	}
2493 	if (tt_info)
2494 		tt_info->active_eps -= 1;
2495 	list_del_init(&virt_ep->bw_endpoint_list);
2496 }
2497 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2498 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2499 		struct xhci_bw_info *ep_bw,
2500 		struct xhci_interval_bw_table *bw_table,
2501 		struct usb_device *udev,
2502 		struct xhci_virt_ep *virt_ep,
2503 		struct xhci_tt_bw_info *tt_info)
2504 {
2505 	struct xhci_interval_bw	*interval_bw;
2506 	struct xhci_virt_ep *smaller_ep;
2507 	int normalized_interval;
2508 
2509 	if (xhci_is_async_ep(ep_bw->type))
2510 		return;
2511 
2512 	if (udev->speed == USB_SPEED_SUPER) {
2513 		if (xhci_is_sync_in_ep(ep_bw->type))
2514 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2515 				xhci_get_ss_bw_consumed(ep_bw);
2516 		else
2517 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2518 				xhci_get_ss_bw_consumed(ep_bw);
2519 		return;
2520 	}
2521 
2522 	/* For LS/FS devices, we need to translate the interval expressed in
2523 	 * microframes to frames.
2524 	 */
2525 	if (udev->speed == USB_SPEED_HIGH)
2526 		normalized_interval = ep_bw->ep_interval;
2527 	else
2528 		normalized_interval = ep_bw->ep_interval - 3;
2529 
2530 	if (normalized_interval == 0)
2531 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2532 	interval_bw = &bw_table->interval_bw[normalized_interval];
2533 	interval_bw->num_packets += ep_bw->num_packets;
2534 	switch (udev->speed) {
2535 	case USB_SPEED_LOW:
2536 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2537 		break;
2538 	case USB_SPEED_FULL:
2539 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2540 		break;
2541 	case USB_SPEED_HIGH:
2542 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2543 		break;
2544 	case USB_SPEED_SUPER:
2545 	case USB_SPEED_SUPER_PLUS:
2546 	case USB_SPEED_UNKNOWN:
2547 	case USB_SPEED_WIRELESS:
2548 		/* Should never happen because only LS/FS/HS endpoints will get
2549 		 * added to the endpoint list.
2550 		 */
2551 		return;
2552 	}
2553 
2554 	if (tt_info)
2555 		tt_info->active_eps += 1;
2556 	/* Insert the endpoint into the list, largest max packet size first. */
2557 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2558 			bw_endpoint_list) {
2559 		if (ep_bw->max_packet_size >=
2560 				smaller_ep->bw_info.max_packet_size) {
2561 			/* Add the new ep before the smaller endpoint */
2562 			list_add_tail(&virt_ep->bw_endpoint_list,
2563 					&smaller_ep->bw_endpoint_list);
2564 			return;
2565 		}
2566 	}
2567 	/* Add the new endpoint at the end of the list. */
2568 	list_add_tail(&virt_ep->bw_endpoint_list,
2569 			&interval_bw->endpoints);
2570 }
2571 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2572 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2573 		struct xhci_virt_device *virt_dev,
2574 		int old_active_eps)
2575 {
2576 	struct xhci_root_port_bw_info *rh_bw_info;
2577 	if (!virt_dev->tt_info)
2578 		return;
2579 
2580 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2581 	if (old_active_eps == 0 &&
2582 				virt_dev->tt_info->active_eps != 0) {
2583 		rh_bw_info->num_active_tts += 1;
2584 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2585 	} else if (old_active_eps != 0 &&
2586 				virt_dev->tt_info->active_eps == 0) {
2587 		rh_bw_info->num_active_tts -= 1;
2588 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2589 	}
2590 }
2591 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2592 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2593 		struct xhci_virt_device *virt_dev,
2594 		struct xhci_container_ctx *in_ctx)
2595 {
2596 	struct xhci_bw_info ep_bw_info[31];
2597 	int i;
2598 	struct xhci_input_control_ctx *ctrl_ctx;
2599 	int old_active_eps = 0;
2600 
2601 	if (virt_dev->tt_info)
2602 		old_active_eps = virt_dev->tt_info->active_eps;
2603 
2604 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2605 	if (!ctrl_ctx) {
2606 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2607 				__func__);
2608 		return -ENOMEM;
2609 	}
2610 
2611 	for (i = 0; i < 31; i++) {
2612 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2613 			continue;
2614 
2615 		/* Make a copy of the BW info in case we need to revert this */
2616 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2617 				sizeof(ep_bw_info[i]));
2618 		/* Drop the endpoint from the interval table if the endpoint is
2619 		 * being dropped or changed.
2620 		 */
2621 		if (EP_IS_DROPPED(ctrl_ctx, i))
2622 			xhci_drop_ep_from_interval_table(xhci,
2623 					&virt_dev->eps[i].bw_info,
2624 					virt_dev->bw_table,
2625 					virt_dev->udev,
2626 					&virt_dev->eps[i],
2627 					virt_dev->tt_info);
2628 	}
2629 	/* Overwrite the information stored in the endpoints' bw_info */
2630 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2631 	for (i = 0; i < 31; i++) {
2632 		/* Add any changed or added endpoints to the interval table */
2633 		if (EP_IS_ADDED(ctrl_ctx, i))
2634 			xhci_add_ep_to_interval_table(xhci,
2635 					&virt_dev->eps[i].bw_info,
2636 					virt_dev->bw_table,
2637 					virt_dev->udev,
2638 					&virt_dev->eps[i],
2639 					virt_dev->tt_info);
2640 	}
2641 
2642 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2643 		/* Ok, this fits in the bandwidth we have.
2644 		 * Update the number of active TTs.
2645 		 */
2646 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2647 		return 0;
2648 	}
2649 
2650 	/* We don't have enough bandwidth for this, revert the stored info. */
2651 	for (i = 0; i < 31; i++) {
2652 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2653 			continue;
2654 
2655 		/* Drop the new copies of any added or changed endpoints from
2656 		 * the interval table.
2657 		 */
2658 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2659 			xhci_drop_ep_from_interval_table(xhci,
2660 					&virt_dev->eps[i].bw_info,
2661 					virt_dev->bw_table,
2662 					virt_dev->udev,
2663 					&virt_dev->eps[i],
2664 					virt_dev->tt_info);
2665 		}
2666 		/* Revert the endpoint back to its old information */
2667 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2668 				sizeof(ep_bw_info[i]));
2669 		/* Add any changed or dropped endpoints back into the table */
2670 		if (EP_IS_DROPPED(ctrl_ctx, i))
2671 			xhci_add_ep_to_interval_table(xhci,
2672 					&virt_dev->eps[i].bw_info,
2673 					virt_dev->bw_table,
2674 					virt_dev->udev,
2675 					&virt_dev->eps[i],
2676 					virt_dev->tt_info);
2677 	}
2678 	return -ENOMEM;
2679 }
2680 
2681 
2682 /* Issue a configure endpoint command or evaluate context command
2683  * and wait for it to finish.
2684  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2685 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2686 		struct usb_device *udev,
2687 		struct xhci_command *command,
2688 		bool ctx_change, bool must_succeed)
2689 {
2690 	int ret;
2691 	unsigned long flags;
2692 	struct xhci_input_control_ctx *ctrl_ctx;
2693 	struct xhci_virt_device *virt_dev;
2694 
2695 	if (!command)
2696 		return -EINVAL;
2697 
2698 	spin_lock_irqsave(&xhci->lock, flags);
2699 	virt_dev = xhci->devs[udev->slot_id];
2700 
2701 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2702 	if (!ctrl_ctx) {
2703 		spin_unlock_irqrestore(&xhci->lock, flags);
2704 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2705 				__func__);
2706 		return -ENOMEM;
2707 	}
2708 
2709 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2710 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2711 		spin_unlock_irqrestore(&xhci->lock, flags);
2712 		xhci_warn(xhci, "Not enough host resources, "
2713 				"active endpoint contexts = %u\n",
2714 				xhci->num_active_eps);
2715 		return -ENOMEM;
2716 	}
2717 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2718 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2719 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2720 			xhci_free_host_resources(xhci, ctrl_ctx);
2721 		spin_unlock_irqrestore(&xhci->lock, flags);
2722 		xhci_warn(xhci, "Not enough bandwidth\n");
2723 		return -ENOMEM;
2724 	}
2725 
2726 	if (!ctx_change)
2727 		ret = xhci_queue_configure_endpoint(xhci, command,
2728 				command->in_ctx->dma,
2729 				udev->slot_id, must_succeed);
2730 	else
2731 		ret = xhci_queue_evaluate_context(xhci, command,
2732 				command->in_ctx->dma,
2733 				udev->slot_id, must_succeed);
2734 	if (ret < 0) {
2735 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2736 			xhci_free_host_resources(xhci, ctrl_ctx);
2737 		spin_unlock_irqrestore(&xhci->lock, flags);
2738 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2739 				"FIXME allocate a new ring segment");
2740 		return -ENOMEM;
2741 	}
2742 	xhci_ring_cmd_db(xhci);
2743 	spin_unlock_irqrestore(&xhci->lock, flags);
2744 
2745 	/* Wait for the configure endpoint command to complete */
2746 	wait_for_completion(command->completion);
2747 
2748 	if (!ctx_change)
2749 		ret = xhci_configure_endpoint_result(xhci, udev,
2750 						     &command->status);
2751 	else
2752 		ret = xhci_evaluate_context_result(xhci, udev,
2753 						   &command->status);
2754 
2755 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2756 		spin_lock_irqsave(&xhci->lock, flags);
2757 		/* If the command failed, remove the reserved resources.
2758 		 * Otherwise, clean up the estimate to include dropped eps.
2759 		 */
2760 		if (ret)
2761 			xhci_free_host_resources(xhci, ctrl_ctx);
2762 		else
2763 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2764 		spin_unlock_irqrestore(&xhci->lock, flags);
2765 	}
2766 	return ret;
2767 }
2768 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2769 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2770 	struct xhci_virt_device *vdev, int i)
2771 {
2772 	struct xhci_virt_ep *ep = &vdev->eps[i];
2773 
2774 	if (ep->ep_state & EP_HAS_STREAMS) {
2775 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2776 				xhci_get_endpoint_address(i));
2777 		xhci_free_stream_info(xhci, ep->stream_info);
2778 		ep->stream_info = NULL;
2779 		ep->ep_state &= ~EP_HAS_STREAMS;
2780 	}
2781 }
2782 
2783 /* Called after one or more calls to xhci_add_endpoint() or
2784  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2785  * to call xhci_reset_bandwidth().
2786  *
2787  * Since we are in the middle of changing either configuration or
2788  * installing a new alt setting, the USB core won't allow URBs to be
2789  * enqueued for any endpoint on the old config or interface.  Nothing
2790  * else should be touching the xhci->devs[slot_id] structure, so we
2791  * don't need to take the xhci->lock for manipulating that.
2792  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2793 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2794 {
2795 	int i;
2796 	int ret = 0;
2797 	struct xhci_hcd *xhci;
2798 	struct xhci_virt_device	*virt_dev;
2799 	struct xhci_input_control_ctx *ctrl_ctx;
2800 	struct xhci_slot_ctx *slot_ctx;
2801 	struct xhci_command *command;
2802 
2803 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2804 	if (ret <= 0)
2805 		return ret;
2806 	xhci = hcd_to_xhci(hcd);
2807 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2808 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2809 		return -ENODEV;
2810 
2811 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2812 	virt_dev = xhci->devs[udev->slot_id];
2813 
2814 	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2815 	if (!command)
2816 		return -ENOMEM;
2817 
2818 	command->in_ctx = virt_dev->in_ctx;
2819 
2820 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2821 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2822 	if (!ctrl_ctx) {
2823 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2824 				__func__);
2825 		ret = -ENOMEM;
2826 		goto command_cleanup;
2827 	}
2828 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2829 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2830 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2831 
2832 	/* Don't issue the command if there's no endpoints to update. */
2833 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2834 	    ctrl_ctx->drop_flags == 0) {
2835 		ret = 0;
2836 		goto command_cleanup;
2837 	}
2838 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2839 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2840 	for (i = 31; i >= 1; i--) {
2841 		__le32 le32 = cpu_to_le32(BIT(i));
2842 
2843 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2844 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2845 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2846 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2847 			break;
2848 		}
2849 	}
2850 	xhci_dbg(xhci, "New Input Control Context:\n");
2851 	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2852 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2853 
2854 	ret = xhci_configure_endpoint(xhci, udev, command,
2855 			false, false);
2856 	if (ret)
2857 		/* Callee should call reset_bandwidth() */
2858 		goto command_cleanup;
2859 
2860 	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2861 	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2862 		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2863 
2864 	/* Free any rings that were dropped, but not changed. */
2865 	for (i = 1; i < 31; ++i) {
2866 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2867 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2868 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2869 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2870 		}
2871 	}
2872 	xhci_zero_in_ctx(xhci, virt_dev);
2873 	/*
2874 	 * Install any rings for completely new endpoints or changed endpoints,
2875 	 * and free or cache any old rings from changed endpoints.
2876 	 */
2877 	for (i = 1; i < 31; ++i) {
2878 		if (!virt_dev->eps[i].new_ring)
2879 			continue;
2880 		/* Only cache or free the old ring if it exists.
2881 		 * It may not if this is the first add of an endpoint.
2882 		 */
2883 		if (virt_dev->eps[i].ring) {
2884 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2885 		}
2886 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2887 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2888 		virt_dev->eps[i].new_ring = NULL;
2889 	}
2890 command_cleanup:
2891 	kfree(command->completion);
2892 	kfree(command);
2893 
2894 	return ret;
2895 }
2896 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2897 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2898 {
2899 	struct xhci_hcd *xhci;
2900 	struct xhci_virt_device	*virt_dev;
2901 	int i, ret;
2902 
2903 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2904 	if (ret <= 0)
2905 		return;
2906 	xhci = hcd_to_xhci(hcd);
2907 
2908 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2909 	virt_dev = xhci->devs[udev->slot_id];
2910 	/* Free any rings allocated for added endpoints */
2911 	for (i = 0; i < 31; ++i) {
2912 		if (virt_dev->eps[i].new_ring) {
2913 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2914 			virt_dev->eps[i].new_ring = NULL;
2915 		}
2916 	}
2917 	xhci_zero_in_ctx(xhci, virt_dev);
2918 }
2919 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2920 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2921 		struct xhci_container_ctx *in_ctx,
2922 		struct xhci_container_ctx *out_ctx,
2923 		struct xhci_input_control_ctx *ctrl_ctx,
2924 		u32 add_flags, u32 drop_flags)
2925 {
2926 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2927 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2928 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2929 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2930 
2931 	xhci_dbg(xhci, "Input Context:\n");
2932 	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2933 }
2934 
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2935 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2936 		unsigned int slot_id, unsigned int ep_index,
2937 		struct xhci_dequeue_state *deq_state)
2938 {
2939 	struct xhci_input_control_ctx *ctrl_ctx;
2940 	struct xhci_container_ctx *in_ctx;
2941 	struct xhci_ep_ctx *ep_ctx;
2942 	u32 added_ctxs;
2943 	dma_addr_t addr;
2944 
2945 	in_ctx = xhci->devs[slot_id]->in_ctx;
2946 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2947 	if (!ctrl_ctx) {
2948 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2949 				__func__);
2950 		return;
2951 	}
2952 
2953 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2954 			xhci->devs[slot_id]->out_ctx, ep_index);
2955 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2956 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2957 			deq_state->new_deq_ptr);
2958 	if (addr == 0) {
2959 		xhci_warn(xhci, "WARN Cannot submit config ep after "
2960 				"reset ep command\n");
2961 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2962 				deq_state->new_deq_seg,
2963 				deq_state->new_deq_ptr);
2964 		return;
2965 	}
2966 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2967 
2968 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2969 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2970 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2971 			added_ctxs, added_ctxs);
2972 }
2973 
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int ep_index,struct xhci_td * td)2974 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2975 			unsigned int ep_index, struct xhci_td *td)
2976 {
2977 	struct xhci_dequeue_state deq_state;
2978 	struct xhci_virt_ep *ep;
2979 	struct usb_device *udev = td->urb->dev;
2980 
2981 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2982 			"Cleaning up stalled endpoint ring");
2983 	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2984 	/* We need to move the HW's dequeue pointer past this TD,
2985 	 * or it will attempt to resend it on the next doorbell ring.
2986 	 */
2987 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2988 			ep_index, ep->stopped_stream, td, &deq_state);
2989 
2990 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2991 		return;
2992 
2993 	/* HW with the reset endpoint quirk will use the saved dequeue state to
2994 	 * issue a configure endpoint command later.
2995 	 */
2996 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2997 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2998 				"Queueing new dequeue state");
2999 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3000 				ep_index, ep->stopped_stream, &deq_state);
3001 	} else {
3002 		/* Better hope no one uses the input context between now and the
3003 		 * reset endpoint completion!
3004 		 * XXX: No idea how this hardware will react when stream rings
3005 		 * are enabled.
3006 		 */
3007 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3008 				"Setting up input context for "
3009 				"configure endpoint command");
3010 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3011 				ep_index, &deq_state);
3012 	}
3013 }
3014 
3015 /* Called when clearing halted device. The core should have sent the control
3016  * message to clear the device halt condition. The host side of the halt should
3017  * already be cleared with a reset endpoint command issued when the STALL tx
3018  * event was received.
3019  *
3020  * Context: in_interrupt
3021  */
3022 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3023 void xhci_endpoint_reset(struct usb_hcd *hcd,
3024 		struct usb_host_endpoint *ep)
3025 {
3026 	struct xhci_hcd *xhci;
3027 
3028 	xhci = hcd_to_xhci(hcd);
3029 
3030 	/*
3031 	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3032 	 * The Reset Endpoint Command may only be issued to endpoints in the
3033 	 * Halted state. If software wishes reset the Data Toggle or Sequence
3034 	 * Number of an endpoint that isn't in the Halted state, then software
3035 	 * may issue a Configure Endpoint Command with the Drop and Add bits set
3036 	 * for the target endpoint. that is in the Stopped state.
3037 	 */
3038 
3039 	/* For now just print debug to follow the situation */
3040 	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3041 		 ep->desc.bEndpointAddress);
3042 }
3043 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3044 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3045 		struct usb_device *udev, struct usb_host_endpoint *ep,
3046 		unsigned int slot_id)
3047 {
3048 	int ret;
3049 	unsigned int ep_index;
3050 	unsigned int ep_state;
3051 
3052 	if (!ep)
3053 		return -EINVAL;
3054 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3055 	if (ret <= 0)
3056 		return -EINVAL;
3057 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3058 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3059 				" descriptor for ep 0x%x does not support streams\n",
3060 				ep->desc.bEndpointAddress);
3061 		return -EINVAL;
3062 	}
3063 
3064 	ep_index = xhci_get_endpoint_index(&ep->desc);
3065 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3066 	if (ep_state & EP_HAS_STREAMS ||
3067 			ep_state & EP_GETTING_STREAMS) {
3068 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3069 				"already has streams set up.\n",
3070 				ep->desc.bEndpointAddress);
3071 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3072 				"dynamic stream context array reallocation.\n");
3073 		return -EINVAL;
3074 	}
3075 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3076 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3077 				"endpoint 0x%x; URBs are pending.\n",
3078 				ep->desc.bEndpointAddress);
3079 		return -EINVAL;
3080 	}
3081 	return 0;
3082 }
3083 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3084 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3085 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3086 {
3087 	unsigned int max_streams;
3088 
3089 	/* The stream context array size must be a power of two */
3090 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3091 	/*
3092 	 * Find out how many primary stream array entries the host controller
3093 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3094 	 * level page entries), but that's an optional feature for xHCI host
3095 	 * controllers. xHCs must support at least 4 stream IDs.
3096 	 */
3097 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3098 	if (*num_stream_ctxs > max_streams) {
3099 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3100 				max_streams);
3101 		*num_stream_ctxs = max_streams;
3102 		*num_streams = max_streams;
3103 	}
3104 }
3105 
3106 /* Returns an error code if one of the endpoint already has streams.
3107  * This does not change any data structures, it only checks and gathers
3108  * information.
3109  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3110 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3111 		struct usb_device *udev,
3112 		struct usb_host_endpoint **eps, unsigned int num_eps,
3113 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3114 {
3115 	unsigned int max_streams;
3116 	unsigned int endpoint_flag;
3117 	int i;
3118 	int ret;
3119 
3120 	for (i = 0; i < num_eps; i++) {
3121 		ret = xhci_check_streams_endpoint(xhci, udev,
3122 				eps[i], udev->slot_id);
3123 		if (ret < 0)
3124 			return ret;
3125 
3126 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3127 		if (max_streams < (*num_streams - 1)) {
3128 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3129 					eps[i]->desc.bEndpointAddress,
3130 					max_streams);
3131 			*num_streams = max_streams+1;
3132 		}
3133 
3134 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3135 		if (*changed_ep_bitmask & endpoint_flag)
3136 			return -EINVAL;
3137 		*changed_ep_bitmask |= endpoint_flag;
3138 	}
3139 	return 0;
3140 }
3141 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3142 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3143 		struct usb_device *udev,
3144 		struct usb_host_endpoint **eps, unsigned int num_eps)
3145 {
3146 	u32 changed_ep_bitmask = 0;
3147 	unsigned int slot_id;
3148 	unsigned int ep_index;
3149 	unsigned int ep_state;
3150 	int i;
3151 
3152 	slot_id = udev->slot_id;
3153 	if (!xhci->devs[slot_id])
3154 		return 0;
3155 
3156 	for (i = 0; i < num_eps; i++) {
3157 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3158 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3159 		/* Are streams already being freed for the endpoint? */
3160 		if (ep_state & EP_GETTING_NO_STREAMS) {
3161 			xhci_warn(xhci, "WARN Can't disable streams for "
3162 					"endpoint 0x%x, "
3163 					"streams are being disabled already\n",
3164 					eps[i]->desc.bEndpointAddress);
3165 			return 0;
3166 		}
3167 		/* Are there actually any streams to free? */
3168 		if (!(ep_state & EP_HAS_STREAMS) &&
3169 				!(ep_state & EP_GETTING_STREAMS)) {
3170 			xhci_warn(xhci, "WARN Can't disable streams for "
3171 					"endpoint 0x%x, "
3172 					"streams are already disabled!\n",
3173 					eps[i]->desc.bEndpointAddress);
3174 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3175 					"with non-streams endpoint\n");
3176 			return 0;
3177 		}
3178 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3179 	}
3180 	return changed_ep_bitmask;
3181 }
3182 
3183 /*
3184  * The USB device drivers use this function (through the HCD interface in USB
3185  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3186  * coordinate mass storage command queueing across multiple endpoints (basically
3187  * a stream ID == a task ID).
3188  *
3189  * Setting up streams involves allocating the same size stream context array
3190  * for each endpoint and issuing a configure endpoint command for all endpoints.
3191  *
3192  * Don't allow the call to succeed if one endpoint only supports one stream
3193  * (which means it doesn't support streams at all).
3194  *
3195  * Drivers may get less stream IDs than they asked for, if the host controller
3196  * hardware or endpoints claim they can't support the number of requested
3197  * stream IDs.
3198  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3199 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3200 		struct usb_host_endpoint **eps, unsigned int num_eps,
3201 		unsigned int num_streams, gfp_t mem_flags)
3202 {
3203 	int i, ret;
3204 	struct xhci_hcd *xhci;
3205 	struct xhci_virt_device *vdev;
3206 	struct xhci_command *config_cmd;
3207 	struct xhci_input_control_ctx *ctrl_ctx;
3208 	unsigned int ep_index;
3209 	unsigned int num_stream_ctxs;
3210 	unsigned long flags;
3211 	u32 changed_ep_bitmask = 0;
3212 
3213 	if (!eps)
3214 		return -EINVAL;
3215 
3216 	/* Add one to the number of streams requested to account for
3217 	 * stream 0 that is reserved for xHCI usage.
3218 	 */
3219 	num_streams += 1;
3220 	xhci = hcd_to_xhci(hcd);
3221 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3222 			num_streams);
3223 
3224 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3225 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3226 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3227 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3228 		return -ENOSYS;
3229 	}
3230 
3231 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3232 	if (!config_cmd) {
3233 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3234 		return -ENOMEM;
3235 	}
3236 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3237 	if (!ctrl_ctx) {
3238 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3239 				__func__);
3240 		xhci_free_command(xhci, config_cmd);
3241 		return -ENOMEM;
3242 	}
3243 
3244 	/* Check to make sure all endpoints are not already configured for
3245 	 * streams.  While we're at it, find the maximum number of streams that
3246 	 * all the endpoints will support and check for duplicate endpoints.
3247 	 */
3248 	spin_lock_irqsave(&xhci->lock, flags);
3249 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3250 			num_eps, &num_streams, &changed_ep_bitmask);
3251 	if (ret < 0) {
3252 		xhci_free_command(xhci, config_cmd);
3253 		spin_unlock_irqrestore(&xhci->lock, flags);
3254 		return ret;
3255 	}
3256 	if (num_streams <= 1) {
3257 		xhci_warn(xhci, "WARN: endpoints can't handle "
3258 				"more than one stream.\n");
3259 		xhci_free_command(xhci, config_cmd);
3260 		spin_unlock_irqrestore(&xhci->lock, flags);
3261 		return -EINVAL;
3262 	}
3263 	vdev = xhci->devs[udev->slot_id];
3264 	/* Mark each endpoint as being in transition, so
3265 	 * xhci_urb_enqueue() will reject all URBs.
3266 	 */
3267 	for (i = 0; i < num_eps; i++) {
3268 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3269 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3270 	}
3271 	spin_unlock_irqrestore(&xhci->lock, flags);
3272 
3273 	/* Setup internal data structures and allocate HW data structures for
3274 	 * streams (but don't install the HW structures in the input context
3275 	 * until we're sure all memory allocation succeeded).
3276 	 */
3277 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3278 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3279 			num_stream_ctxs, num_streams);
3280 
3281 	for (i = 0; i < num_eps; i++) {
3282 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3283 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3284 				num_stream_ctxs,
3285 				num_streams, mem_flags);
3286 		if (!vdev->eps[ep_index].stream_info)
3287 			goto cleanup;
3288 		/* Set maxPstreams in endpoint context and update deq ptr to
3289 		 * point to stream context array. FIXME
3290 		 */
3291 	}
3292 
3293 	/* Set up the input context for a configure endpoint command. */
3294 	for (i = 0; i < num_eps; i++) {
3295 		struct xhci_ep_ctx *ep_ctx;
3296 
3297 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3298 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3299 
3300 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3301 				vdev->out_ctx, ep_index);
3302 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3303 				vdev->eps[ep_index].stream_info);
3304 	}
3305 	/* Tell the HW to drop its old copy of the endpoint context info
3306 	 * and add the updated copy from the input context.
3307 	 */
3308 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3309 			vdev->out_ctx, ctrl_ctx,
3310 			changed_ep_bitmask, changed_ep_bitmask);
3311 
3312 	/* Issue and wait for the configure endpoint command */
3313 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3314 			false, false);
3315 
3316 	/* xHC rejected the configure endpoint command for some reason, so we
3317 	 * leave the old ring intact and free our internal streams data
3318 	 * structure.
3319 	 */
3320 	if (ret < 0)
3321 		goto cleanup;
3322 
3323 	spin_lock_irqsave(&xhci->lock, flags);
3324 	for (i = 0; i < num_eps; i++) {
3325 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3326 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3327 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3328 			 udev->slot_id, ep_index);
3329 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3330 	}
3331 	xhci_free_command(xhci, config_cmd);
3332 	spin_unlock_irqrestore(&xhci->lock, flags);
3333 
3334 	/* Subtract 1 for stream 0, which drivers can't use */
3335 	return num_streams - 1;
3336 
3337 cleanup:
3338 	/* If it didn't work, free the streams! */
3339 	for (i = 0; i < num_eps; i++) {
3340 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3341 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3342 		vdev->eps[ep_index].stream_info = NULL;
3343 		/* FIXME Unset maxPstreams in endpoint context and
3344 		 * update deq ptr to point to normal string ring.
3345 		 */
3346 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3347 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3348 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3349 	}
3350 	xhci_free_command(xhci, config_cmd);
3351 	return -ENOMEM;
3352 }
3353 
3354 /* Transition the endpoint from using streams to being a "normal" endpoint
3355  * without streams.
3356  *
3357  * Modify the endpoint context state, submit a configure endpoint command,
3358  * and free all endpoint rings for streams if that completes successfully.
3359  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3360 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3361 		struct usb_host_endpoint **eps, unsigned int num_eps,
3362 		gfp_t mem_flags)
3363 {
3364 	int i, ret;
3365 	struct xhci_hcd *xhci;
3366 	struct xhci_virt_device *vdev;
3367 	struct xhci_command *command;
3368 	struct xhci_input_control_ctx *ctrl_ctx;
3369 	unsigned int ep_index;
3370 	unsigned long flags;
3371 	u32 changed_ep_bitmask;
3372 
3373 	xhci = hcd_to_xhci(hcd);
3374 	vdev = xhci->devs[udev->slot_id];
3375 
3376 	/* Set up a configure endpoint command to remove the streams rings */
3377 	spin_lock_irqsave(&xhci->lock, flags);
3378 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3379 			udev, eps, num_eps);
3380 	if (changed_ep_bitmask == 0) {
3381 		spin_unlock_irqrestore(&xhci->lock, flags);
3382 		return -EINVAL;
3383 	}
3384 
3385 	/* Use the xhci_command structure from the first endpoint.  We may have
3386 	 * allocated too many, but the driver may call xhci_free_streams() for
3387 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3388 	 */
3389 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3390 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3391 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3392 	if (!ctrl_ctx) {
3393 		spin_unlock_irqrestore(&xhci->lock, flags);
3394 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3395 				__func__);
3396 		return -EINVAL;
3397 	}
3398 
3399 	for (i = 0; i < num_eps; i++) {
3400 		struct xhci_ep_ctx *ep_ctx;
3401 
3402 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3403 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3404 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3405 			EP_GETTING_NO_STREAMS;
3406 
3407 		xhci_endpoint_copy(xhci, command->in_ctx,
3408 				vdev->out_ctx, ep_index);
3409 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3410 				&vdev->eps[ep_index]);
3411 	}
3412 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3413 			vdev->out_ctx, ctrl_ctx,
3414 			changed_ep_bitmask, changed_ep_bitmask);
3415 	spin_unlock_irqrestore(&xhci->lock, flags);
3416 
3417 	/* Issue and wait for the configure endpoint command,
3418 	 * which must succeed.
3419 	 */
3420 	ret = xhci_configure_endpoint(xhci, udev, command,
3421 			false, true);
3422 
3423 	/* xHC rejected the configure endpoint command for some reason, so we
3424 	 * leave the streams rings intact.
3425 	 */
3426 	if (ret < 0)
3427 		return ret;
3428 
3429 	spin_lock_irqsave(&xhci->lock, flags);
3430 	for (i = 0; i < num_eps; i++) {
3431 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3432 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3433 		vdev->eps[ep_index].stream_info = NULL;
3434 		/* FIXME Unset maxPstreams in endpoint context and
3435 		 * update deq ptr to point to normal string ring.
3436 		 */
3437 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3438 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3439 	}
3440 	spin_unlock_irqrestore(&xhci->lock, flags);
3441 
3442 	return 0;
3443 }
3444 
3445 /*
3446  * Deletes endpoint resources for endpoints that were active before a Reset
3447  * Device command, or a Disable Slot command.  The Reset Device command leaves
3448  * the control endpoint intact, whereas the Disable Slot command deletes it.
3449  *
3450  * Must be called with xhci->lock held.
3451  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3452 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3453 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3454 {
3455 	int i;
3456 	unsigned int num_dropped_eps = 0;
3457 	unsigned int drop_flags = 0;
3458 
3459 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3460 		if (virt_dev->eps[i].ring) {
3461 			drop_flags |= 1 << i;
3462 			num_dropped_eps++;
3463 		}
3464 	}
3465 	xhci->num_active_eps -= num_dropped_eps;
3466 	if (num_dropped_eps)
3467 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3468 				"Dropped %u ep ctxs, flags = 0x%x, "
3469 				"%u now active.",
3470 				num_dropped_eps, drop_flags,
3471 				xhci->num_active_eps);
3472 }
3473 
3474 /*
3475  * This submits a Reset Device Command, which will set the device state to 0,
3476  * set the device address to 0, and disable all the endpoints except the default
3477  * control endpoint.  The USB core should come back and call
3478  * xhci_address_device(), and then re-set up the configuration.  If this is
3479  * called because of a usb_reset_and_verify_device(), then the old alternate
3480  * settings will be re-installed through the normal bandwidth allocation
3481  * functions.
3482  *
3483  * Wait for the Reset Device command to finish.  Remove all structures
3484  * associated with the endpoints that were disabled.  Clear the input device
3485  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3486  *
3487  * If the virt_dev to be reset does not exist or does not match the udev,
3488  * it means the device is lost, possibly due to the xHC restore error and
3489  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3490  * re-allocate the device.
3491  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3492 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3493 {
3494 	int ret, i;
3495 	unsigned long flags;
3496 	struct xhci_hcd *xhci;
3497 	unsigned int slot_id;
3498 	struct xhci_virt_device *virt_dev;
3499 	struct xhci_command *reset_device_cmd;
3500 	int last_freed_endpoint;
3501 	struct xhci_slot_ctx *slot_ctx;
3502 	int old_active_eps = 0;
3503 
3504 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3505 	if (ret <= 0)
3506 		return ret;
3507 	xhci = hcd_to_xhci(hcd);
3508 	slot_id = udev->slot_id;
3509 	virt_dev = xhci->devs[slot_id];
3510 	if (!virt_dev) {
3511 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3512 				"not exist. Re-allocate the device\n", slot_id);
3513 		ret = xhci_alloc_dev(hcd, udev);
3514 		if (ret == 1)
3515 			return 0;
3516 		else
3517 			return -EINVAL;
3518 	}
3519 
3520 	if (virt_dev->tt_info)
3521 		old_active_eps = virt_dev->tt_info->active_eps;
3522 
3523 	if (virt_dev->udev != udev) {
3524 		/* If the virt_dev and the udev does not match, this virt_dev
3525 		 * may belong to another udev.
3526 		 * Re-allocate the device.
3527 		 */
3528 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3529 				"not match the udev. Re-allocate the device\n",
3530 				slot_id);
3531 		ret = xhci_alloc_dev(hcd, udev);
3532 		if (ret == 1)
3533 			return 0;
3534 		else
3535 			return -EINVAL;
3536 	}
3537 
3538 	/* If device is not setup, there is no point in resetting it */
3539 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3540 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3541 						SLOT_STATE_DISABLED)
3542 		return 0;
3543 
3544 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3545 	/* Allocate the command structure that holds the struct completion.
3546 	 * Assume we're in process context, since the normal device reset
3547 	 * process has to wait for the device anyway.  Storage devices are
3548 	 * reset as part of error handling, so use GFP_NOIO instead of
3549 	 * GFP_KERNEL.
3550 	 */
3551 	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3552 	if (!reset_device_cmd) {
3553 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3554 		return -ENOMEM;
3555 	}
3556 
3557 	/* Attempt to submit the Reset Device command to the command ring */
3558 	spin_lock_irqsave(&xhci->lock, flags);
3559 
3560 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3561 	if (ret) {
3562 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3563 		spin_unlock_irqrestore(&xhci->lock, flags);
3564 		goto command_cleanup;
3565 	}
3566 	xhci_ring_cmd_db(xhci);
3567 	spin_unlock_irqrestore(&xhci->lock, flags);
3568 
3569 	/* Wait for the Reset Device command to finish */
3570 	wait_for_completion(reset_device_cmd->completion);
3571 
3572 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3573 	 * unless we tried to reset a slot ID that wasn't enabled,
3574 	 * or the device wasn't in the addressed or configured state.
3575 	 */
3576 	ret = reset_device_cmd->status;
3577 	switch (ret) {
3578 	case COMP_CMD_ABORT:
3579 	case COMP_CMD_STOP:
3580 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3581 		ret = -ETIME;
3582 		goto command_cleanup;
3583 	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3584 	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3585 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3586 				slot_id,
3587 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3588 		xhci_dbg(xhci, "Not freeing device rings.\n");
3589 		/* Don't treat this as an error.  May change my mind later. */
3590 		ret = 0;
3591 		goto command_cleanup;
3592 	case COMP_SUCCESS:
3593 		xhci_dbg(xhci, "Successful reset device command.\n");
3594 		break;
3595 	default:
3596 		if (xhci_is_vendor_info_code(xhci, ret))
3597 			break;
3598 		xhci_warn(xhci, "Unknown completion code %u for "
3599 				"reset device command.\n", ret);
3600 		ret = -EINVAL;
3601 		goto command_cleanup;
3602 	}
3603 
3604 	/* Free up host controller endpoint resources */
3605 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3606 		spin_lock_irqsave(&xhci->lock, flags);
3607 		/* Don't delete the default control endpoint resources */
3608 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3609 		spin_unlock_irqrestore(&xhci->lock, flags);
3610 	}
3611 
3612 	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3613 	last_freed_endpoint = 1;
3614 	for (i = 1; i < 31; ++i) {
3615 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3616 
3617 		if (ep->ep_state & EP_HAS_STREAMS) {
3618 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3619 					xhci_get_endpoint_address(i));
3620 			xhci_free_stream_info(xhci, ep->stream_info);
3621 			ep->stream_info = NULL;
3622 			ep->ep_state &= ~EP_HAS_STREAMS;
3623 		}
3624 
3625 		if (ep->ring) {
3626 			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3627 			last_freed_endpoint = i;
3628 		}
3629 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3630 			xhci_drop_ep_from_interval_table(xhci,
3631 					&virt_dev->eps[i].bw_info,
3632 					virt_dev->bw_table,
3633 					udev,
3634 					&virt_dev->eps[i],
3635 					virt_dev->tt_info);
3636 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3637 	}
3638 	/* If necessary, update the number of active TTs on this root port */
3639 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3640 
3641 	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3642 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3643 	ret = 0;
3644 
3645 command_cleanup:
3646 	xhci_free_command(xhci, reset_device_cmd);
3647 	return ret;
3648 }
3649 
3650 /*
3651  * At this point, the struct usb_device is about to go away, the device has
3652  * disconnected, and all traffic has been stopped and the endpoints have been
3653  * disabled.  Free any HC data structures associated with that device.
3654  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3655 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3656 {
3657 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3658 	struct xhci_virt_device *virt_dev;
3659 	unsigned long flags;
3660 	u32 state;
3661 	int i, ret;
3662 	struct xhci_command *command;
3663 
3664 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3665 	if (!command)
3666 		return;
3667 
3668 #ifndef CONFIG_USB_DEFAULT_PERSIST
3669 	/*
3670 	 * We called pm_runtime_get_noresume when the device was attached.
3671 	 * Decrement the counter here to allow controller to runtime suspend
3672 	 * if no devices remain.
3673 	 */
3674 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3675 		pm_runtime_put_noidle(hcd->self.controller);
3676 #endif
3677 
3678 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3679 	/* If the host is halted due to driver unload, we still need to free the
3680 	 * device.
3681 	 */
3682 	if (ret <= 0 && ret != -ENODEV) {
3683 		kfree(command);
3684 		return;
3685 	}
3686 
3687 	virt_dev = xhci->devs[udev->slot_id];
3688 
3689 	/* Stop any wayward timer functions (which may grab the lock) */
3690 	for (i = 0; i < 31; ++i) {
3691 		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3692 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3693 	}
3694 
3695 	spin_lock_irqsave(&xhci->lock, flags);
3696 
3697 	virt_dev->udev = NULL;
3698 
3699 	/* Don't disable the slot if the host controller is dead. */
3700 	state = readl(&xhci->op_regs->status);
3701 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3702 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3703 		xhci_free_virt_device(xhci, udev->slot_id);
3704 		spin_unlock_irqrestore(&xhci->lock, flags);
3705 		kfree(command);
3706 		return;
3707 	}
3708 
3709 	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3710 				    udev->slot_id)) {
3711 		spin_unlock_irqrestore(&xhci->lock, flags);
3712 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3713 		return;
3714 	}
3715 	xhci_ring_cmd_db(xhci);
3716 	spin_unlock_irqrestore(&xhci->lock, flags);
3717 
3718 	/*
3719 	 * Event command completion handler will free any data structures
3720 	 * associated with the slot.  XXX Can free sleep?
3721 	 */
3722 }
3723 
3724 /*
3725  * Checks if we have enough host controller resources for the default control
3726  * endpoint.
3727  *
3728  * Must be called with xhci->lock held.
3729  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3730 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3731 {
3732 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3733 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3734 				"Not enough ep ctxs: "
3735 				"%u active, need to add 1, limit is %u.",
3736 				xhci->num_active_eps, xhci->limit_active_eps);
3737 		return -ENOMEM;
3738 	}
3739 	xhci->num_active_eps += 1;
3740 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3741 			"Adding 1 ep ctx, %u now active.",
3742 			xhci->num_active_eps);
3743 	return 0;
3744 }
3745 
3746 
3747 /*
3748  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3749  * timed out, or allocating memory failed.  Returns 1 on success.
3750  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3751 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3752 {
3753 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3754 	unsigned long flags;
3755 	int ret, slot_id;
3756 	struct xhci_command *command;
3757 
3758 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3759 	if (!command)
3760 		return 0;
3761 
3762 	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3763 	mutex_lock(&xhci->mutex);
3764 	spin_lock_irqsave(&xhci->lock, flags);
3765 	command->completion = &xhci->addr_dev;
3766 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3767 	if (ret) {
3768 		spin_unlock_irqrestore(&xhci->lock, flags);
3769 		mutex_unlock(&xhci->mutex);
3770 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3771 		kfree(command);
3772 		return 0;
3773 	}
3774 	xhci_ring_cmd_db(xhci);
3775 	spin_unlock_irqrestore(&xhci->lock, flags);
3776 
3777 	wait_for_completion(command->completion);
3778 	slot_id = xhci->slot_id;
3779 	mutex_unlock(&xhci->mutex);
3780 
3781 	if (!slot_id || command->status != COMP_SUCCESS) {
3782 		xhci_err(xhci, "Error while assigning device slot ID\n");
3783 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3784 				HCS_MAX_SLOTS(
3785 					readl(&xhci->cap_regs->hcs_params1)));
3786 		kfree(command);
3787 		return 0;
3788 	}
3789 
3790 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3791 		spin_lock_irqsave(&xhci->lock, flags);
3792 		ret = xhci_reserve_host_control_ep_resources(xhci);
3793 		if (ret) {
3794 			spin_unlock_irqrestore(&xhci->lock, flags);
3795 			xhci_warn(xhci, "Not enough host resources, "
3796 					"active endpoint contexts = %u\n",
3797 					xhci->num_active_eps);
3798 			goto disable_slot;
3799 		}
3800 		spin_unlock_irqrestore(&xhci->lock, flags);
3801 	}
3802 	/* Use GFP_NOIO, since this function can be called from
3803 	 * xhci_discover_or_reset_device(), which may be called as part of
3804 	 * mass storage driver error handling.
3805 	 */
3806 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3807 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3808 		goto disable_slot;
3809 	}
3810 	udev->slot_id = slot_id;
3811 
3812 #ifndef CONFIG_USB_DEFAULT_PERSIST
3813 	/*
3814 	 * If resetting upon resume, we can't put the controller into runtime
3815 	 * suspend if there is a device attached.
3816 	 */
3817 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3818 		pm_runtime_get_noresume(hcd->self.controller);
3819 #endif
3820 
3821 
3822 	kfree(command);
3823 	/* Is this a LS or FS device under a HS hub? */
3824 	/* Hub or peripherial? */
3825 	return 1;
3826 
3827 disable_slot:
3828 	/* Disable slot, if we can do it without mem alloc */
3829 	spin_lock_irqsave(&xhci->lock, flags);
3830 	command->completion = NULL;
3831 	command->status = 0;
3832 	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3833 				     udev->slot_id))
3834 		xhci_ring_cmd_db(xhci);
3835 	spin_unlock_irqrestore(&xhci->lock, flags);
3836 	return 0;
3837 }
3838 
3839 /*
3840  * Issue an Address Device command and optionally send a corresponding
3841  * SetAddress request to the device.
3842  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)3843 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3844 			     enum xhci_setup_dev setup)
3845 {
3846 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3847 	unsigned long flags;
3848 	struct xhci_virt_device *virt_dev;
3849 	int ret = 0;
3850 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3851 	struct xhci_slot_ctx *slot_ctx;
3852 	struct xhci_input_control_ctx *ctrl_ctx;
3853 	u64 temp_64;
3854 	struct xhci_command *command = NULL;
3855 
3856 	mutex_lock(&xhci->mutex);
3857 
3858 	if (xhci->xhc_state) {	/* dying, removing or halted */
3859 		ret = -ESHUTDOWN;
3860 		goto out;
3861 	}
3862 
3863 	if (!udev->slot_id) {
3864 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3865 				"Bad Slot ID %d", udev->slot_id);
3866 		ret = -EINVAL;
3867 		goto out;
3868 	}
3869 
3870 	virt_dev = xhci->devs[udev->slot_id];
3871 
3872 	if (WARN_ON(!virt_dev)) {
3873 		/*
3874 		 * In plug/unplug torture test with an NEC controller,
3875 		 * a zero-dereference was observed once due to virt_dev = 0.
3876 		 * Print useful debug rather than crash if it is observed again!
3877 		 */
3878 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3879 			udev->slot_id);
3880 		ret = -EINVAL;
3881 		goto out;
3882 	}
3883 
3884 	if (setup == SETUP_CONTEXT_ONLY) {
3885 		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3886 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3887 		    SLOT_STATE_DEFAULT) {
3888 			xhci_dbg(xhci, "Slot already in default state\n");
3889 			goto out;
3890 		}
3891 	}
3892 
3893 	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3894 	if (!command) {
3895 		ret = -ENOMEM;
3896 		goto out;
3897 	}
3898 
3899 	command->in_ctx = virt_dev->in_ctx;
3900 	command->completion = &xhci->addr_dev;
3901 
3902 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3903 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3904 	if (!ctrl_ctx) {
3905 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3906 				__func__);
3907 		ret = -EINVAL;
3908 		goto out;
3909 	}
3910 	/*
3911 	 * If this is the first Set Address since device plug-in or
3912 	 * virt_device realloaction after a resume with an xHCI power loss,
3913 	 * then set up the slot context.
3914 	 */
3915 	if (!slot_ctx->dev_info)
3916 		xhci_setup_addressable_virt_dev(xhci, udev);
3917 	/* Otherwise, update the control endpoint ring enqueue pointer. */
3918 	else
3919 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3920 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3921 	ctrl_ctx->drop_flags = 0;
3922 
3923 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3924 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3925 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3926 				le32_to_cpu(slot_ctx->dev_info) >> 27);
3927 
3928 	spin_lock_irqsave(&xhci->lock, flags);
3929 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3930 					udev->slot_id, setup);
3931 	if (ret) {
3932 		spin_unlock_irqrestore(&xhci->lock, flags);
3933 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3934 				"FIXME: allocate a command ring segment");
3935 		goto out;
3936 	}
3937 	xhci_ring_cmd_db(xhci);
3938 	spin_unlock_irqrestore(&xhci->lock, flags);
3939 
3940 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3941 	wait_for_completion(command->completion);
3942 
3943 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3944 	 * the SetAddress() "recovery interval" required by USB and aborting the
3945 	 * command on a timeout.
3946 	 */
3947 	switch (command->status) {
3948 	case COMP_CMD_ABORT:
3949 	case COMP_CMD_STOP:
3950 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3951 		ret = -ETIME;
3952 		break;
3953 	case COMP_CTX_STATE:
3954 	case COMP_EBADSLT:
3955 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3956 			 act, udev->slot_id);
3957 		ret = -EINVAL;
3958 		break;
3959 	case COMP_TX_ERR:
3960 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3961 		ret = -EPROTO;
3962 		break;
3963 	case COMP_DEV_ERR:
3964 		dev_warn(&udev->dev,
3965 			 "ERROR: Incompatible device for setup %s command\n", act);
3966 		ret = -ENODEV;
3967 		break;
3968 	case COMP_SUCCESS:
3969 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3970 			       "Successful setup %s command", act);
3971 		break;
3972 	default:
3973 		xhci_err(xhci,
3974 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3975 			 act, command->status);
3976 		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3977 		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3978 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3979 		ret = -EINVAL;
3980 		break;
3981 	}
3982 	if (ret)
3983 		goto out;
3984 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3985 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3986 			"Op regs DCBAA ptr = %#016llx", temp_64);
3987 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3988 		"Slot ID %d dcbaa entry @%p = %#016llx",
3989 		udev->slot_id,
3990 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3991 		(unsigned long long)
3992 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3993 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3994 			"Output Context DMA address = %#08llx",
3995 			(unsigned long long)virt_dev->out_ctx->dma);
3996 	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3997 	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3998 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3999 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4000 	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
4001 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
4002 	/*
4003 	 * USB core uses address 1 for the roothubs, so we add one to the
4004 	 * address given back to us by the HC.
4005 	 */
4006 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4007 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4008 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4009 	/* Zero the input context control for later use */
4010 	ctrl_ctx->add_flags = 0;
4011 	ctrl_ctx->drop_flags = 0;
4012 
4013 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4014 		       "Internal device address = %d",
4015 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4016 out:
4017 	mutex_unlock(&xhci->mutex);
4018 	kfree(command);
4019 	return ret;
4020 }
4021 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4022 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4023 {
4024 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4025 }
4026 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4027 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4028 {
4029 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4030 }
4031 
4032 /*
4033  * Transfer the port index into real index in the HW port status
4034  * registers. Caculate offset between the port's PORTSC register
4035  * and port status base. Divide the number of per port register
4036  * to get the real index. The raw port number bases 1.
4037  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4038 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4039 {
4040 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4041 	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4042 	__le32 __iomem *addr;
4043 	int raw_port;
4044 
4045 	if (hcd->speed < HCD_USB3)
4046 		addr = xhci->usb2_ports[port1 - 1];
4047 	else
4048 		addr = xhci->usb3_ports[port1 - 1];
4049 
4050 	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4051 	return raw_port;
4052 }
4053 
4054 /*
4055  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4056  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4057  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4058 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4059 			struct usb_device *udev, u16 max_exit_latency)
4060 {
4061 	struct xhci_virt_device *virt_dev;
4062 	struct xhci_command *command;
4063 	struct xhci_input_control_ctx *ctrl_ctx;
4064 	struct xhci_slot_ctx *slot_ctx;
4065 	unsigned long flags;
4066 	int ret;
4067 
4068 	spin_lock_irqsave(&xhci->lock, flags);
4069 
4070 	virt_dev = xhci->devs[udev->slot_id];
4071 
4072 	/*
4073 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4074 	 * xHC was re-initialized. Exit latency will be set later after
4075 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4076 	 */
4077 
4078 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4079 		spin_unlock_irqrestore(&xhci->lock, flags);
4080 		return 0;
4081 	}
4082 
4083 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4084 	command = xhci->lpm_command;
4085 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4086 	if (!ctrl_ctx) {
4087 		spin_unlock_irqrestore(&xhci->lock, flags);
4088 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4089 				__func__);
4090 		return -ENOMEM;
4091 	}
4092 
4093 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4094 	spin_unlock_irqrestore(&xhci->lock, flags);
4095 
4096 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4097 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4098 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4099 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4100 	slot_ctx->dev_state = 0;
4101 
4102 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4103 			"Set up evaluate context for LPM MEL change.");
4104 	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4105 	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4106 
4107 	/* Issue and wait for the evaluate context command. */
4108 	ret = xhci_configure_endpoint(xhci, udev, command,
4109 			true, true);
4110 	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4111 	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4112 
4113 	if (!ret) {
4114 		spin_lock_irqsave(&xhci->lock, flags);
4115 		virt_dev->current_mel = max_exit_latency;
4116 		spin_unlock_irqrestore(&xhci->lock, flags);
4117 	}
4118 	return ret;
4119 }
4120 
4121 #ifdef CONFIG_PM
4122 
4123 /* BESL to HIRD Encoding array for USB2 LPM */
4124 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4125 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4126 
4127 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4128 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4129 					struct usb_device *udev)
4130 {
4131 	int u2del, besl, besl_host;
4132 	int besl_device = 0;
4133 	u32 field;
4134 
4135 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4136 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4137 
4138 	if (field & USB_BESL_SUPPORT) {
4139 		for (besl_host = 0; besl_host < 16; besl_host++) {
4140 			if (xhci_besl_encoding[besl_host] >= u2del)
4141 				break;
4142 		}
4143 		/* Use baseline BESL value as default */
4144 		if (field & USB_BESL_BASELINE_VALID)
4145 			besl_device = USB_GET_BESL_BASELINE(field);
4146 		else if (field & USB_BESL_DEEP_VALID)
4147 			besl_device = USB_GET_BESL_DEEP(field);
4148 	} else {
4149 		if (u2del <= 50)
4150 			besl_host = 0;
4151 		else
4152 			besl_host = (u2del - 51) / 75 + 1;
4153 	}
4154 
4155 	besl = besl_host + besl_device;
4156 	if (besl > 15)
4157 		besl = 15;
4158 
4159 	return besl;
4160 }
4161 
4162 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4163 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4164 {
4165 	u32 field;
4166 	int l1;
4167 	int besld = 0;
4168 	int hirdm = 0;
4169 
4170 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4171 
4172 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4173 	l1 = udev->l1_params.timeout / 256;
4174 
4175 	/* device has preferred BESLD */
4176 	if (field & USB_BESL_DEEP_VALID) {
4177 		besld = USB_GET_BESL_DEEP(field);
4178 		hirdm = 1;
4179 	}
4180 
4181 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4182 }
4183 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4184 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4185 			struct usb_device *udev, int enable)
4186 {
4187 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4188 	__le32 __iomem	**port_array;
4189 	__le32 __iomem	*pm_addr, *hlpm_addr;
4190 	u32		pm_val, hlpm_val, field;
4191 	unsigned int	port_num;
4192 	unsigned long	flags;
4193 	int		hird, exit_latency;
4194 	int		ret;
4195 
4196 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4197 			!udev->lpm_capable)
4198 		return -EPERM;
4199 
4200 	if (!udev->parent || udev->parent->parent ||
4201 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4202 		return -EPERM;
4203 
4204 	if (udev->usb2_hw_lpm_capable != 1)
4205 		return -EPERM;
4206 
4207 	spin_lock_irqsave(&xhci->lock, flags);
4208 
4209 	port_array = xhci->usb2_ports;
4210 	port_num = udev->portnum - 1;
4211 	pm_addr = port_array[port_num] + PORTPMSC;
4212 	pm_val = readl(pm_addr);
4213 	hlpm_addr = port_array[port_num] + PORTHLPMC;
4214 
4215 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4216 			enable ? "enable" : "disable", port_num + 1);
4217 
4218 	if (enable) {
4219 		/* Host supports BESL timeout instead of HIRD */
4220 		if (udev->usb2_hw_lpm_besl_capable) {
4221 			/* if device doesn't have a preferred BESL value use a
4222 			 * default one which works with mixed HIRD and BESL
4223 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4224 			 */
4225 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4226 			if ((field & USB_BESL_SUPPORT) &&
4227 			    (field & USB_BESL_BASELINE_VALID))
4228 				hird = USB_GET_BESL_BASELINE(field);
4229 			else
4230 				hird = udev->l1_params.besl;
4231 
4232 			exit_latency = xhci_besl_encoding[hird];
4233 			spin_unlock_irqrestore(&xhci->lock, flags);
4234 
4235 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4236 			 * input context for link powermanagement evaluate
4237 			 * context commands. It is protected by hcd->bandwidth
4238 			 * mutex and is shared by all devices. We need to set
4239 			 * the max ext latency in USB 2 BESL LPM as well, so
4240 			 * use the same mutex and xhci_change_max_exit_latency()
4241 			 */
4242 			mutex_lock(hcd->bandwidth_mutex);
4243 			ret = xhci_change_max_exit_latency(xhci, udev,
4244 							   exit_latency);
4245 			mutex_unlock(hcd->bandwidth_mutex);
4246 
4247 			if (ret < 0)
4248 				return ret;
4249 			spin_lock_irqsave(&xhci->lock, flags);
4250 
4251 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4252 			writel(hlpm_val, hlpm_addr);
4253 			/* flush write */
4254 			readl(hlpm_addr);
4255 		} else {
4256 			hird = xhci_calculate_hird_besl(xhci, udev);
4257 		}
4258 
4259 		pm_val &= ~PORT_HIRD_MASK;
4260 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4261 		writel(pm_val, pm_addr);
4262 		pm_val = readl(pm_addr);
4263 		pm_val |= PORT_HLE;
4264 		writel(pm_val, pm_addr);
4265 		/* flush write */
4266 		readl(pm_addr);
4267 	} else {
4268 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4269 		writel(pm_val, pm_addr);
4270 		/* flush write */
4271 		readl(pm_addr);
4272 		if (udev->usb2_hw_lpm_besl_capable) {
4273 			spin_unlock_irqrestore(&xhci->lock, flags);
4274 			mutex_lock(hcd->bandwidth_mutex);
4275 			xhci_change_max_exit_latency(xhci, udev, 0);
4276 			mutex_unlock(hcd->bandwidth_mutex);
4277 			readl_poll_timeout(port_array[port_num], pm_val,
4278 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4279 					   100, 10000);
4280 			return 0;
4281 		}
4282 	}
4283 
4284 	spin_unlock_irqrestore(&xhci->lock, flags);
4285 	return 0;
4286 }
4287 
4288 /* check if a usb2 port supports a given extened capability protocol
4289  * only USB2 ports extended protocol capability values are cached.
4290  * Return 1 if capability is supported
4291  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4292 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4293 					   unsigned capability)
4294 {
4295 	u32 port_offset, port_count;
4296 	int i;
4297 
4298 	for (i = 0; i < xhci->num_ext_caps; i++) {
4299 		if (xhci->ext_caps[i] & capability) {
4300 			/* port offsets starts at 1 */
4301 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4302 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4303 			if (port >= port_offset &&
4304 			    port < port_offset + port_count)
4305 				return 1;
4306 		}
4307 	}
4308 	return 0;
4309 }
4310 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4311 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4312 {
4313 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4314 	int		portnum = udev->portnum - 1;
4315 
4316 	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4317 			!udev->lpm_capable)
4318 		return 0;
4319 
4320 	/* we only support lpm for non-hub device connected to root hub yet */
4321 	if (!udev->parent || udev->parent->parent ||
4322 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4323 		return 0;
4324 
4325 	if (xhci->hw_lpm_support == 1 &&
4326 			xhci_check_usb2_port_capability(
4327 				xhci, portnum, XHCI_HLC)) {
4328 		udev->usb2_hw_lpm_capable = 1;
4329 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4330 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4331 		if (xhci_check_usb2_port_capability(xhci, portnum,
4332 					XHCI_BLC))
4333 			udev->usb2_hw_lpm_besl_capable = 1;
4334 	}
4335 
4336 	return 0;
4337 }
4338 
4339 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4340 
4341 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4342 static unsigned long long xhci_service_interval_to_ns(
4343 		struct usb_endpoint_descriptor *desc)
4344 {
4345 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4346 }
4347 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4348 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4349 		enum usb3_link_state state)
4350 {
4351 	unsigned long long sel;
4352 	unsigned long long pel;
4353 	unsigned int max_sel_pel;
4354 	char *state_name;
4355 
4356 	switch (state) {
4357 	case USB3_LPM_U1:
4358 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4359 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4360 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4361 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4362 		state_name = "U1";
4363 		break;
4364 	case USB3_LPM_U2:
4365 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4366 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4367 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4368 		state_name = "U2";
4369 		break;
4370 	default:
4371 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4372 				__func__);
4373 		return USB3_LPM_DISABLED;
4374 	}
4375 
4376 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4377 		return USB3_LPM_DEVICE_INITIATED;
4378 
4379 	if (sel > max_sel_pel)
4380 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4381 				"due to long SEL %llu ms\n",
4382 				state_name, sel);
4383 	else
4384 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4385 				"due to long PEL %llu ms\n",
4386 				state_name, pel);
4387 	return USB3_LPM_DISABLED;
4388 }
4389 
4390 /* The U1 timeout should be the maximum of the following values:
4391  *  - For control endpoints, U1 system exit latency (SEL) * 3
4392  *  - For bulk endpoints, U1 SEL * 5
4393  *  - For interrupt endpoints:
4394  *    - Notification EPs, U1 SEL * 3
4395  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4396  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4397  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4398 static unsigned long long xhci_calculate_intel_u1_timeout(
4399 		struct usb_device *udev,
4400 		struct usb_endpoint_descriptor *desc)
4401 {
4402 	unsigned long long timeout_ns;
4403 	int ep_type;
4404 	int intr_type;
4405 
4406 	ep_type = usb_endpoint_type(desc);
4407 	switch (ep_type) {
4408 	case USB_ENDPOINT_XFER_CONTROL:
4409 		timeout_ns = udev->u1_params.sel * 3;
4410 		break;
4411 	case USB_ENDPOINT_XFER_BULK:
4412 		timeout_ns = udev->u1_params.sel * 5;
4413 		break;
4414 	case USB_ENDPOINT_XFER_INT:
4415 		intr_type = usb_endpoint_interrupt_type(desc);
4416 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4417 			timeout_ns = udev->u1_params.sel * 3;
4418 			break;
4419 		}
4420 		/* Otherwise the calculation is the same as isoc eps */
4421 	case USB_ENDPOINT_XFER_ISOC:
4422 		timeout_ns = xhci_service_interval_to_ns(desc);
4423 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4424 		if (timeout_ns < udev->u1_params.sel * 2)
4425 			timeout_ns = udev->u1_params.sel * 2;
4426 		break;
4427 	default:
4428 		return 0;
4429 	}
4430 
4431 	return timeout_ns;
4432 }
4433 
4434 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4435 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4436 		struct usb_device *udev,
4437 		struct usb_endpoint_descriptor *desc)
4438 {
4439 	unsigned long long timeout_ns;
4440 
4441 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4442 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4443 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4444 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4445 			return USB3_LPM_DISABLED;
4446 		}
4447 	}
4448 
4449 	if (xhci->quirks & XHCI_INTEL_HOST)
4450 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4451 	else
4452 		timeout_ns = udev->u1_params.sel;
4453 
4454 	/* The U1 timeout is encoded in 1us intervals.
4455 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4456 	 */
4457 	if (timeout_ns == USB3_LPM_DISABLED)
4458 		timeout_ns = 1;
4459 	else
4460 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4461 
4462 	/* If the necessary timeout value is bigger than what we can set in the
4463 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4464 	 */
4465 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4466 		return timeout_ns;
4467 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4468 			"due to long timeout %llu ms\n", timeout_ns);
4469 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4470 }
4471 
4472 /* The U2 timeout should be the maximum of:
4473  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4474  *  - largest bInterval of any active periodic endpoint (to avoid going
4475  *    into lower power link states between intervals).
4476  *  - the U2 Exit Latency of the device
4477  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4478 static unsigned long long xhci_calculate_intel_u2_timeout(
4479 		struct usb_device *udev,
4480 		struct usb_endpoint_descriptor *desc)
4481 {
4482 	unsigned long long timeout_ns;
4483 	unsigned long long u2_del_ns;
4484 
4485 	timeout_ns = 10 * 1000 * 1000;
4486 
4487 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4488 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4489 		timeout_ns = xhci_service_interval_to_ns(desc);
4490 
4491 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4492 	if (u2_del_ns > timeout_ns)
4493 		timeout_ns = u2_del_ns;
4494 
4495 	return timeout_ns;
4496 }
4497 
4498 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4499 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4500 		struct usb_device *udev,
4501 		struct usb_endpoint_descriptor *desc)
4502 {
4503 	unsigned long long timeout_ns;
4504 
4505 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4506 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4507 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4508 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4509 			return USB3_LPM_DISABLED;
4510 		}
4511 	}
4512 
4513 	if (xhci->quirks & XHCI_INTEL_HOST)
4514 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4515 	else
4516 		timeout_ns = udev->u2_params.sel;
4517 
4518 	/* The U2 timeout is encoded in 256us intervals */
4519 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4520 	/* If the necessary timeout value is bigger than what we can set in the
4521 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4522 	 */
4523 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4524 		return timeout_ns;
4525 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4526 			"due to long timeout %llu ms\n", timeout_ns);
4527 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4528 }
4529 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4530 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4531 		struct usb_device *udev,
4532 		struct usb_endpoint_descriptor *desc,
4533 		enum usb3_link_state state,
4534 		u16 *timeout)
4535 {
4536 	if (state == USB3_LPM_U1)
4537 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4538 	else if (state == USB3_LPM_U2)
4539 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4540 
4541 	return USB3_LPM_DISABLED;
4542 }
4543 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4544 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4545 		struct usb_device *udev,
4546 		struct usb_endpoint_descriptor *desc,
4547 		enum usb3_link_state state,
4548 		u16 *timeout)
4549 {
4550 	u16 alt_timeout;
4551 
4552 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4553 		desc, state, timeout);
4554 
4555 	/* If we found we can't enable hub-initiated LPM, and
4556 	 * the U1 or U2 exit latency was too high to allow
4557 	 * device-initiated LPM as well, then we will disable LPM
4558 	 * for this device, so stop searching any further.
4559 	 */
4560 	if (alt_timeout == USB3_LPM_DISABLED) {
4561 		*timeout = alt_timeout;
4562 		return -E2BIG;
4563 	}
4564 	if (alt_timeout > *timeout)
4565 		*timeout = alt_timeout;
4566 	return 0;
4567 }
4568 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4569 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4570 		struct usb_device *udev,
4571 		struct usb_host_interface *alt,
4572 		enum usb3_link_state state,
4573 		u16 *timeout)
4574 {
4575 	int j;
4576 
4577 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4578 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4579 					&alt->endpoint[j].desc, state, timeout))
4580 			return -E2BIG;
4581 		continue;
4582 	}
4583 	return 0;
4584 }
4585 
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4586 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4587 		enum usb3_link_state state)
4588 {
4589 	struct usb_device *parent;
4590 	unsigned int num_hubs;
4591 
4592 	if (state == USB3_LPM_U2)
4593 		return 0;
4594 
4595 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4596 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4597 			parent = parent->parent)
4598 		num_hubs++;
4599 
4600 	if (num_hubs < 2)
4601 		return 0;
4602 
4603 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4604 			" below second-tier hub.\n");
4605 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4606 			"to decrease power consumption.\n");
4607 	return -E2BIG;
4608 }
4609 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4610 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4611 		struct usb_device *udev,
4612 		enum usb3_link_state state)
4613 {
4614 	if (xhci->quirks & XHCI_INTEL_HOST)
4615 		return xhci_check_intel_tier_policy(udev, state);
4616 	else
4617 		return 0;
4618 }
4619 
4620 /* Returns the U1 or U2 timeout that should be enabled.
4621  * If the tier check or timeout setting functions return with a non-zero exit
4622  * code, that means the timeout value has been finalized and we shouldn't look
4623  * at any more endpoints.
4624  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4625 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4626 			struct usb_device *udev, enum usb3_link_state state)
4627 {
4628 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4629 	struct usb_host_config *config;
4630 	char *state_name;
4631 	int i;
4632 	u16 timeout = USB3_LPM_DISABLED;
4633 
4634 	if (state == USB3_LPM_U1)
4635 		state_name = "U1";
4636 	else if (state == USB3_LPM_U2)
4637 		state_name = "U2";
4638 	else {
4639 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4640 				state);
4641 		return timeout;
4642 	}
4643 
4644 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4645 		return timeout;
4646 
4647 	/* Gather some information about the currently installed configuration
4648 	 * and alternate interface settings.
4649 	 */
4650 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4651 			state, &timeout))
4652 		return timeout;
4653 
4654 	config = udev->actconfig;
4655 	if (!config)
4656 		return timeout;
4657 
4658 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4659 		struct usb_driver *driver;
4660 		struct usb_interface *intf = config->interface[i];
4661 
4662 		if (!intf)
4663 			continue;
4664 
4665 		/* Check if any currently bound drivers want hub-initiated LPM
4666 		 * disabled.
4667 		 */
4668 		if (intf->dev.driver) {
4669 			driver = to_usb_driver(intf->dev.driver);
4670 			if (driver && driver->disable_hub_initiated_lpm) {
4671 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4672 					state_name, driver->name);
4673 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4674 								      state);
4675 				if (timeout == USB3_LPM_DISABLED)
4676 					return timeout;
4677 			}
4678 		}
4679 
4680 		/* Not sure how this could happen... */
4681 		if (!intf->cur_altsetting)
4682 			continue;
4683 
4684 		if (xhci_update_timeout_for_interface(xhci, udev,
4685 					intf->cur_altsetting,
4686 					state, &timeout))
4687 			return timeout;
4688 	}
4689 	return timeout;
4690 }
4691 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4692 static int calculate_max_exit_latency(struct usb_device *udev,
4693 		enum usb3_link_state state_changed,
4694 		u16 hub_encoded_timeout)
4695 {
4696 	unsigned long long u1_mel_us = 0;
4697 	unsigned long long u2_mel_us = 0;
4698 	unsigned long long mel_us = 0;
4699 	bool disabling_u1;
4700 	bool disabling_u2;
4701 	bool enabling_u1;
4702 	bool enabling_u2;
4703 
4704 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4705 			hub_encoded_timeout == USB3_LPM_DISABLED);
4706 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4707 			hub_encoded_timeout == USB3_LPM_DISABLED);
4708 
4709 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4710 			hub_encoded_timeout != USB3_LPM_DISABLED);
4711 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4712 			hub_encoded_timeout != USB3_LPM_DISABLED);
4713 
4714 	/* If U1 was already enabled and we're not disabling it,
4715 	 * or we're going to enable U1, account for the U1 max exit latency.
4716 	 */
4717 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4718 			enabling_u1)
4719 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4720 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4721 			enabling_u2)
4722 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4723 
4724 	if (u1_mel_us > u2_mel_us)
4725 		mel_us = u1_mel_us;
4726 	else
4727 		mel_us = u2_mel_us;
4728 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4729 	if (mel_us > MAX_EXIT) {
4730 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4731 				"is too big.\n", mel_us);
4732 		return -E2BIG;
4733 	}
4734 	return mel_us;
4735 }
4736 
4737 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4738 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4739 			struct usb_device *udev, enum usb3_link_state state)
4740 {
4741 	struct xhci_hcd	*xhci;
4742 	u16 hub_encoded_timeout;
4743 	int mel;
4744 	int ret;
4745 
4746 	xhci = hcd_to_xhci(hcd);
4747 	/* The LPM timeout values are pretty host-controller specific, so don't
4748 	 * enable hub-initiated timeouts unless the vendor has provided
4749 	 * information about their timeout algorithm.
4750 	 */
4751 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4752 			!xhci->devs[udev->slot_id])
4753 		return USB3_LPM_DISABLED;
4754 
4755 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4756 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4757 	if (mel < 0) {
4758 		/* Max Exit Latency is too big, disable LPM. */
4759 		hub_encoded_timeout = USB3_LPM_DISABLED;
4760 		mel = 0;
4761 	}
4762 
4763 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4764 	if (ret)
4765 		return ret;
4766 	return hub_encoded_timeout;
4767 }
4768 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4769 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4770 			struct usb_device *udev, enum usb3_link_state state)
4771 {
4772 	struct xhci_hcd	*xhci;
4773 	u16 mel;
4774 
4775 	xhci = hcd_to_xhci(hcd);
4776 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4777 			!xhci->devs[udev->slot_id])
4778 		return 0;
4779 
4780 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4781 	return xhci_change_max_exit_latency(xhci, udev, mel);
4782 }
4783 #else /* CONFIG_PM */
4784 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4785 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4786 				struct usb_device *udev, int enable)
4787 {
4788 	return 0;
4789 }
4790 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4791 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4792 {
4793 	return 0;
4794 }
4795 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4796 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4797 			struct usb_device *udev, enum usb3_link_state state)
4798 {
4799 	return USB3_LPM_DISABLED;
4800 }
4801 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4802 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4803 			struct usb_device *udev, enum usb3_link_state state)
4804 {
4805 	return 0;
4806 }
4807 #endif	/* CONFIG_PM */
4808 
4809 /*-------------------------------------------------------------------------*/
4810 
4811 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4812  * internal data structures for the device.
4813  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4814 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4815 			struct usb_tt *tt, gfp_t mem_flags)
4816 {
4817 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4818 	struct xhci_virt_device *vdev;
4819 	struct xhci_command *config_cmd;
4820 	struct xhci_input_control_ctx *ctrl_ctx;
4821 	struct xhci_slot_ctx *slot_ctx;
4822 	unsigned long flags;
4823 	unsigned think_time;
4824 	int ret;
4825 
4826 	/* Ignore root hubs */
4827 	if (!hdev->parent)
4828 		return 0;
4829 
4830 	vdev = xhci->devs[hdev->slot_id];
4831 	if (!vdev) {
4832 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4833 		return -EINVAL;
4834 	}
4835 	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4836 	if (!config_cmd) {
4837 		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4838 		return -ENOMEM;
4839 	}
4840 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4841 	if (!ctrl_ctx) {
4842 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4843 				__func__);
4844 		xhci_free_command(xhci, config_cmd);
4845 		return -ENOMEM;
4846 	}
4847 
4848 	spin_lock_irqsave(&xhci->lock, flags);
4849 	if (hdev->speed == USB_SPEED_HIGH &&
4850 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4851 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4852 		xhci_free_command(xhci, config_cmd);
4853 		spin_unlock_irqrestore(&xhci->lock, flags);
4854 		return -ENOMEM;
4855 	}
4856 
4857 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4858 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4859 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4860 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4861 	/*
4862 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4863 	 * but it may be already set to 1 when setup an xHCI virtual
4864 	 * device, so clear it anyway.
4865 	 */
4866 	if (tt->multi)
4867 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4868 	else if (hdev->speed == USB_SPEED_FULL)
4869 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4870 
4871 	if (xhci->hci_version > 0x95) {
4872 		xhci_dbg(xhci, "xHCI version %x needs hub "
4873 				"TT think time and number of ports\n",
4874 				(unsigned int) xhci->hci_version);
4875 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4876 		/* Set TT think time - convert from ns to FS bit times.
4877 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4878 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4879 		 *
4880 		 * xHCI 1.0: this field shall be 0 if the device is not a
4881 		 * High-spped hub.
4882 		 */
4883 		think_time = tt->think_time;
4884 		if (think_time != 0)
4885 			think_time = (think_time / 666) - 1;
4886 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4887 			slot_ctx->tt_info |=
4888 				cpu_to_le32(TT_THINK_TIME(think_time));
4889 	} else {
4890 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4891 				"TT think time or number of ports\n",
4892 				(unsigned int) xhci->hci_version);
4893 	}
4894 	slot_ctx->dev_state = 0;
4895 	spin_unlock_irqrestore(&xhci->lock, flags);
4896 
4897 	xhci_dbg(xhci, "Set up %s for hub device.\n",
4898 			(xhci->hci_version > 0x95) ?
4899 			"configure endpoint" : "evaluate context");
4900 	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4901 	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4902 
4903 	/* Issue and wait for the configure endpoint or
4904 	 * evaluate context command.
4905 	 */
4906 	if (xhci->hci_version > 0x95)
4907 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4908 				false, false);
4909 	else
4910 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4911 				true, false);
4912 
4913 	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4914 	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4915 
4916 	xhci_free_command(xhci, config_cmd);
4917 	return ret;
4918 }
4919 
xhci_get_frame(struct usb_hcd * hcd)4920 int xhci_get_frame(struct usb_hcd *hcd)
4921 {
4922 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4923 	/* EHCI mods by the periodic size.  Why? */
4924 	return readl(&xhci->run_regs->microframe_index) >> 3;
4925 }
4926 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4927 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4928 {
4929 	struct xhci_hcd		*xhci;
4930 	struct device		*dev = hcd->self.controller;
4931 	int			retval;
4932 
4933 	/* Accept arbitrarily long scatter-gather lists */
4934 	hcd->self.sg_tablesize = ~0;
4935 
4936 	/* support to build packet from discontinuous buffers */
4937 	hcd->self.no_sg_constraint = 1;
4938 
4939 	/* XHCI controllers don't stop the ep queue on short packets :| */
4940 	hcd->self.no_stop_on_short = 1;
4941 
4942 	xhci = hcd_to_xhci(hcd);
4943 
4944 	if (usb_hcd_is_primary_hcd(hcd)) {
4945 		xhci->main_hcd = hcd;
4946 		/* Mark the first roothub as being USB 2.0.
4947 		 * The xHCI driver will register the USB 3.0 roothub.
4948 		 */
4949 		hcd->speed = HCD_USB2;
4950 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4951 		/*
4952 		 * USB 2.0 roothub under xHCI has an integrated TT,
4953 		 * (rate matching hub) as opposed to having an OHCI/UHCI
4954 		 * companion controller.
4955 		 */
4956 		hcd->has_tt = 1;
4957 	} else {
4958 		if (xhci->sbrn == 0x31) {
4959 			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4960 			hcd->speed = HCD_USB31;
4961 		}
4962 		/* xHCI private pointer was set in xhci_pci_probe for the second
4963 		 * registered roothub.
4964 		 */
4965 		return 0;
4966 	}
4967 
4968 	mutex_init(&xhci->mutex);
4969 	xhci->cap_regs = hcd->regs;
4970 	xhci->op_regs = hcd->regs +
4971 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4972 	xhci->run_regs = hcd->regs +
4973 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4974 	/* Cache read-only capability registers */
4975 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4976 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4977 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4978 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4979 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4980 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4981 	if (xhci->hci_version > 0x100)
4982 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4983 	xhci_print_registers(xhci);
4984 
4985 	xhci->quirks = quirks;
4986 
4987 	get_quirks(dev, xhci);
4988 
4989 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4990 	 * success event after a short transfer. This quirk will ignore such
4991 	 * spurious event.
4992 	 */
4993 	if (xhci->hci_version > 0x96)
4994 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4995 
4996 	/* Make sure the HC is halted. */
4997 	retval = xhci_halt(xhci);
4998 	if (retval)
4999 		return retval;
5000 
5001 	xhci_dbg(xhci, "Resetting HCD\n");
5002 	/* Reset the internal HC memory state and registers. */
5003 	retval = xhci_reset(xhci);
5004 	if (retval)
5005 		return retval;
5006 	xhci_dbg(xhci, "Reset complete\n");
5007 
5008 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5009 	 * if xHC supports 64-bit addressing */
5010 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5011 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5012 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5013 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5014 	} else {
5015 		/*
5016 		 * This is to avoid error in cases where a 32-bit USB
5017 		 * controller is used on a 64-bit capable system.
5018 		 */
5019 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5020 		if (retval)
5021 			return retval;
5022 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5023 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5024 	}
5025 
5026 	xhci_dbg(xhci, "Calling HCD init\n");
5027 	/* Initialize HCD and host controller data structures. */
5028 	retval = xhci_init(hcd);
5029 	if (retval)
5030 		return retval;
5031 	xhci_dbg(xhci, "Called HCD init\n");
5032 
5033 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
5034 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5035 
5036 	return 0;
5037 }
5038 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5039 
5040 static const struct hc_driver xhci_hc_driver = {
5041 	.description =		"xhci-hcd",
5042 	.product_desc =		"xHCI Host Controller",
5043 	.hcd_priv_size =	sizeof(struct xhci_hcd *),
5044 
5045 	/*
5046 	 * generic hardware linkage
5047 	 */
5048 	.irq =			xhci_irq,
5049 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5050 
5051 	/*
5052 	 * basic lifecycle operations
5053 	 */
5054 	.reset =		NULL, /* set in xhci_init_driver() */
5055 	.start =		xhci_run,
5056 	.stop =			xhci_stop,
5057 	.shutdown =		xhci_shutdown,
5058 
5059 	/*
5060 	 * managing i/o requests and associated device resources
5061 	 */
5062 	.urb_enqueue =		xhci_urb_enqueue,
5063 	.urb_dequeue =		xhci_urb_dequeue,
5064 	.alloc_dev =		xhci_alloc_dev,
5065 	.free_dev =		xhci_free_dev,
5066 	.alloc_streams =	xhci_alloc_streams,
5067 	.free_streams =		xhci_free_streams,
5068 	.add_endpoint =		xhci_add_endpoint,
5069 	.drop_endpoint =	xhci_drop_endpoint,
5070 	.endpoint_reset =	xhci_endpoint_reset,
5071 	.check_bandwidth =	xhci_check_bandwidth,
5072 	.reset_bandwidth =	xhci_reset_bandwidth,
5073 	.address_device =	xhci_address_device,
5074 	.enable_device =	xhci_enable_device,
5075 	.update_hub_device =	xhci_update_hub_device,
5076 	.reset_device =		xhci_discover_or_reset_device,
5077 
5078 	/*
5079 	 * scheduling support
5080 	 */
5081 	.get_frame_number =	xhci_get_frame,
5082 
5083 	/*
5084 	 * root hub support
5085 	 */
5086 	.hub_control =		xhci_hub_control,
5087 	.hub_status_data =	xhci_hub_status_data,
5088 	.bus_suspend =		xhci_bus_suspend,
5089 	.bus_resume =		xhci_bus_resume,
5090 
5091 	/*
5092 	 * call back when device connected and addressed
5093 	 */
5094 	.update_device =        xhci_update_device,
5095 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5096 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5097 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5098 	.find_raw_port_number =	xhci_find_raw_port_number,
5099 };
5100 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5101 void xhci_init_driver(struct hc_driver *drv,
5102 		      const struct xhci_driver_overrides *over)
5103 {
5104 	BUG_ON(!over);
5105 
5106 	/* Copy the generic table to drv then apply the overrides */
5107 	*drv = xhci_hc_driver;
5108 
5109 	if (over) {
5110 		drv->hcd_priv_size += over->extra_priv_size;
5111 		if (over->reset)
5112 			drv->reset = over->reset;
5113 		if (over->start)
5114 			drv->start = over->start;
5115 	}
5116 }
5117 EXPORT_SYMBOL_GPL(xhci_init_driver);
5118 
5119 MODULE_DESCRIPTION(DRIVER_DESC);
5120 MODULE_AUTHOR(DRIVER_AUTHOR);
5121 MODULE_LICENSE("GPL");
5122 
xhci_hcd_init(void)5123 static int __init xhci_hcd_init(void)
5124 {
5125 	/*
5126 	 * Check the compiler generated sizes of structures that must be laid
5127 	 * out in specific ways for hardware access.
5128 	 */
5129 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5130 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5131 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5132 	/* xhci_device_control has eight fields, and also
5133 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5134 	 */
5135 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5136 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5137 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5138 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5139 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5140 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5141 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5142 
5143 	if (usb_disabled())
5144 		return -ENODEV;
5145 
5146 	return 0;
5147 }
5148 
5149 /*
5150  * If an init function is provided, an exit function must also be provided
5151  * to allow module unload.
5152  */
xhci_hcd_fini(void)5153 static void __exit xhci_hcd_fini(void) { }
5154 
5155 module_init(xhci_hcd_init);
5156 module_exit(xhci_hcd_fini);
5157