1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /*
51 * xhci_handshake - spin reading hc until handshake completes or fails
52 * @ptr: address of hc register to be read
53 * @mask: bits to look at in result of read
54 * @done: value of those bits when handshake succeeds
55 * @usec: timeout in microseconds
56 *
57 * Returns negative errno, or zero on success
58 *
59 * Success happens when the "mask" bits have the specified value (hardware
60 * handshake done). There are two failure modes: "usec" have passed (major
61 * hardware flakeout), or the register reads as all-ones (hardware removed).
62 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,int usec)63 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
64 {
65 u32 result;
66 int ret;
67
68 ret = readl_poll_timeout_atomic(ptr, result,
69 (result & mask) == done ||
70 result == U32_MAX,
71 1, usec);
72 if (result == U32_MAX) /* card removed */
73 return -ENODEV;
74
75 return ret;
76 }
77
78 /*
79 * Disable interrupts and begin the xHCI halting process.
80 */
xhci_quiesce(struct xhci_hcd * xhci)81 void xhci_quiesce(struct xhci_hcd *xhci)
82 {
83 u32 halted;
84 u32 cmd;
85 u32 mask;
86
87 mask = ~(XHCI_IRQS);
88 halted = readl(&xhci->op_regs->status) & STS_HALT;
89 if (!halted)
90 mask &= ~CMD_RUN;
91
92 cmd = readl(&xhci->op_regs->command);
93 cmd &= mask;
94 writel(cmd, &xhci->op_regs->command);
95 }
96
97 /*
98 * Force HC into halt state.
99 *
100 * Disable any IRQs and clear the run/stop bit.
101 * HC will complete any current and actively pipelined transactions, and
102 * should halt within 16 ms of the run/stop bit being cleared.
103 * Read HC Halted bit in the status register to see when the HC is finished.
104 */
xhci_halt(struct xhci_hcd * xhci)105 int xhci_halt(struct xhci_hcd *xhci)
106 {
107 int ret;
108 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
109 xhci_quiesce(xhci);
110
111 ret = xhci_handshake(&xhci->op_regs->status,
112 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
113 if (!ret) {
114 xhci->xhc_state |= XHCI_STATE_HALTED;
115 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
116 } else
117 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
118 XHCI_MAX_HALT_USEC);
119 return ret;
120 }
121
122 /*
123 * Set the run bit and wait for the host to be running.
124 */
xhci_start(struct xhci_hcd * xhci)125 static int xhci_start(struct xhci_hcd *xhci)
126 {
127 u32 temp;
128 int ret;
129
130 temp = readl(&xhci->op_regs->command);
131 temp |= (CMD_RUN);
132 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
133 temp);
134 writel(temp, &xhci->op_regs->command);
135
136 /*
137 * Wait for the HCHalted Status bit to be 0 to indicate the host is
138 * running.
139 */
140 ret = xhci_handshake(&xhci->op_regs->status,
141 STS_HALT, 0, XHCI_MAX_HALT_USEC);
142 if (ret == -ETIMEDOUT)
143 xhci_err(xhci, "Host took too long to start, "
144 "waited %u microseconds.\n",
145 XHCI_MAX_HALT_USEC);
146 if (!ret)
147 /* clear state flags. Including dying, halted or removing */
148 xhci->xhc_state = 0;
149
150 return ret;
151 }
152
153 /*
154 * Reset a halted HC.
155 *
156 * This resets pipelines, timers, counters, state machines, etc.
157 * Transactions will be terminated immediately, and operational registers
158 * will be set to their defaults.
159 */
xhci_reset(struct xhci_hcd * xhci)160 int xhci_reset(struct xhci_hcd *xhci)
161 {
162 u32 command;
163 u32 state;
164 int ret, i;
165
166 state = readl(&xhci->op_regs->status);
167 if ((state & STS_HALT) == 0) {
168 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
169 return 0;
170 }
171
172 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
173 command = readl(&xhci->op_regs->command);
174 command |= CMD_RESET;
175 writel(command, &xhci->op_regs->command);
176
177 /* Existing Intel xHCI controllers require a delay of 1 mS,
178 * after setting the CMD_RESET bit, and before accessing any
179 * HC registers. This allows the HC to complete the
180 * reset operation and be ready for HC register access.
181 * Without this delay, the subsequent HC register access,
182 * may result in a system hang very rarely.
183 */
184 if (xhci->quirks & XHCI_INTEL_HOST)
185 udelay(1000);
186
187 ret = xhci_handshake(&xhci->op_regs->command,
188 CMD_RESET, 0, 10 * 1000 * 1000);
189 if (ret)
190 return ret;
191
192 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
193 "Wait for controller to be ready for doorbell rings");
194 /*
195 * xHCI cannot write to any doorbells or operational registers other
196 * than status until the "Controller Not Ready" flag is cleared.
197 */
198 ret = xhci_handshake(&xhci->op_regs->status,
199 STS_CNR, 0, 10 * 1000 * 1000);
200
201 for (i = 0; i < 2; ++i) {
202 xhci->bus_state[i].port_c_suspend = 0;
203 xhci->bus_state[i].suspended_ports = 0;
204 xhci->bus_state[i].resuming_ports = 0;
205 }
206
207 return ret;
208 }
209
210 #ifdef CONFIG_PCI
xhci_free_msi(struct xhci_hcd * xhci)211 static int xhci_free_msi(struct xhci_hcd *xhci)
212 {
213 int i;
214
215 if (!xhci->msix_entries)
216 return -EINVAL;
217
218 for (i = 0; i < xhci->msix_count; i++)
219 if (xhci->msix_entries[i].vector)
220 free_irq(xhci->msix_entries[i].vector,
221 xhci_to_hcd(xhci));
222 return 0;
223 }
224
225 /*
226 * Set up MSI
227 */
xhci_setup_msi(struct xhci_hcd * xhci)228 static int xhci_setup_msi(struct xhci_hcd *xhci)
229 {
230 int ret;
231 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
232
233 ret = pci_enable_msi(pdev);
234 if (ret) {
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "failed to allocate MSI entry");
237 return ret;
238 }
239
240 ret = request_irq(pdev->irq, xhci_msi_irq,
241 0, "xhci_hcd", xhci_to_hcd(xhci));
242 if (ret) {
243 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
244 "disable MSI interrupt");
245 pci_disable_msi(pdev);
246 }
247
248 return ret;
249 }
250
251 /*
252 * Free IRQs
253 * free all IRQs request
254 */
xhci_free_irq(struct xhci_hcd * xhci)255 static void xhci_free_irq(struct xhci_hcd *xhci)
256 {
257 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
258 int ret;
259
260 /* return if using legacy interrupt */
261 if (xhci_to_hcd(xhci)->irq > 0)
262 return;
263
264 ret = xhci_free_msi(xhci);
265 if (!ret)
266 return;
267 if (pdev->irq > 0)
268 free_irq(pdev->irq, xhci_to_hcd(xhci));
269
270 return;
271 }
272
273 /*
274 * Set up MSI-X
275 */
xhci_setup_msix(struct xhci_hcd * xhci)276 static int xhci_setup_msix(struct xhci_hcd *xhci)
277 {
278 int i, ret = 0;
279 struct usb_hcd *hcd = xhci_to_hcd(xhci);
280 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
281
282 /*
283 * calculate number of msi-x vectors supported.
284 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
285 * with max number of interrupters based on the xhci HCSPARAMS1.
286 * - num_online_cpus: maximum msi-x vectors per CPUs core.
287 * Add additional 1 vector to ensure always available interrupt.
288 */
289 xhci->msix_count = min(num_online_cpus() + 1,
290 HCS_MAX_INTRS(xhci->hcs_params1));
291
292 xhci->msix_entries =
293 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
294 GFP_KERNEL);
295 if (!xhci->msix_entries) {
296 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
297 return -ENOMEM;
298 }
299
300 for (i = 0; i < xhci->msix_count; i++) {
301 xhci->msix_entries[i].entry = i;
302 xhci->msix_entries[i].vector = 0;
303 }
304
305 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
306 if (ret) {
307 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
308 "Failed to enable MSI-X");
309 goto free_entries;
310 }
311
312 for (i = 0; i < xhci->msix_count; i++) {
313 ret = request_irq(xhci->msix_entries[i].vector,
314 xhci_msi_irq,
315 0, "xhci_hcd", xhci_to_hcd(xhci));
316 if (ret)
317 goto disable_msix;
318 }
319
320 hcd->msix_enabled = 1;
321 return ret;
322
323 disable_msix:
324 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
325 xhci_free_irq(xhci);
326 pci_disable_msix(pdev);
327 free_entries:
328 kfree(xhci->msix_entries);
329 xhci->msix_entries = NULL;
330 return ret;
331 }
332
333 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)334 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
335 {
336 struct usb_hcd *hcd = xhci_to_hcd(xhci);
337 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
338
339 if (xhci->quirks & XHCI_PLAT)
340 return;
341
342 xhci_free_irq(xhci);
343
344 if (xhci->msix_entries) {
345 pci_disable_msix(pdev);
346 kfree(xhci->msix_entries);
347 xhci->msix_entries = NULL;
348 } else {
349 pci_disable_msi(pdev);
350 }
351
352 hcd->msix_enabled = 0;
353 return;
354 }
355
xhci_msix_sync_irqs(struct xhci_hcd * xhci)356 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
357 {
358 int i;
359
360 if (xhci->msix_entries) {
361 for (i = 0; i < xhci->msix_count; i++)
362 synchronize_irq(xhci->msix_entries[i].vector);
363 }
364 }
365
xhci_try_enable_msi(struct usb_hcd * hcd)366 static int xhci_try_enable_msi(struct usb_hcd *hcd)
367 {
368 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
369 struct pci_dev *pdev;
370 int ret;
371
372 /* The xhci platform device has set up IRQs through usb_add_hcd. */
373 if (xhci->quirks & XHCI_PLAT)
374 return 0;
375
376 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
377 /*
378 * Some Fresco Logic host controllers advertise MSI, but fail to
379 * generate interrupts. Don't even try to enable MSI.
380 */
381 if (xhci->quirks & XHCI_BROKEN_MSI)
382 goto legacy_irq;
383
384 /* unregister the legacy interrupt */
385 if (hcd->irq)
386 free_irq(hcd->irq, hcd);
387 hcd->irq = 0;
388
389 ret = xhci_setup_msix(xhci);
390 if (ret)
391 /* fall back to msi*/
392 ret = xhci_setup_msi(xhci);
393
394 if (!ret)
395 /* hcd->irq is 0, we have MSI */
396 return 0;
397
398 if (!pdev->irq) {
399 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
400 return -EINVAL;
401 }
402
403 legacy_irq:
404 if (!strlen(hcd->irq_descr))
405 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
406 hcd->driver->description, hcd->self.busnum);
407
408 /* fall back to legacy interrupt*/
409 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
410 hcd->irq_descr, hcd);
411 if (ret) {
412 xhci_err(xhci, "request interrupt %d failed\n",
413 pdev->irq);
414 return ret;
415 }
416 hcd->irq = pdev->irq;
417 return 0;
418 }
419
420 #else
421
xhci_try_enable_msi(struct usb_hcd * hcd)422 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
423 {
424 return 0;
425 }
426
xhci_cleanup_msix(struct xhci_hcd * xhci)427 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
428 {
429 }
430
xhci_msix_sync_irqs(struct xhci_hcd * xhci)431 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
432 {
433 }
434
435 #endif
436
compliance_mode_recovery(unsigned long arg)437 static void compliance_mode_recovery(unsigned long arg)
438 {
439 struct xhci_hcd *xhci;
440 struct usb_hcd *hcd;
441 u32 temp;
442 int i;
443
444 xhci = (struct xhci_hcd *)arg;
445
446 for (i = 0; i < xhci->num_usb3_ports; i++) {
447 temp = readl(xhci->usb3_ports[i]);
448 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
449 /*
450 * Compliance Mode Detected. Letting USB Core
451 * handle the Warm Reset
452 */
453 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454 "Compliance mode detected->port %d",
455 i + 1);
456 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457 "Attempting compliance mode recovery");
458 hcd = xhci->shared_hcd;
459
460 if (hcd->state == HC_STATE_SUSPENDED)
461 usb_hcd_resume_root_hub(hcd);
462
463 usb_hcd_poll_rh_status(hcd);
464 }
465 }
466
467 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
468 mod_timer(&xhci->comp_mode_recovery_timer,
469 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
470 }
471
472 /*
473 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
474 * that causes ports behind that hardware to enter compliance mode sometimes.
475 * The quirk creates a timer that polls every 2 seconds the link state of
476 * each host controller's port and recovers it by issuing a Warm reset
477 * if Compliance mode is detected, otherwise the port will become "dead" (no
478 * device connections or disconnections will be detected anymore). Becasue no
479 * status event is generated when entering compliance mode (per xhci spec),
480 * this quirk is needed on systems that have the failing hardware installed.
481 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)482 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
483 {
484 xhci->port_status_u0 = 0;
485 setup_timer(&xhci->comp_mode_recovery_timer,
486 compliance_mode_recovery, (unsigned long)xhci);
487 xhci->comp_mode_recovery_timer.expires = jiffies +
488 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
489
490 set_timer_slack(&xhci->comp_mode_recovery_timer,
491 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
492 add_timer(&xhci->comp_mode_recovery_timer);
493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 "Compliance mode recovery timer initialized");
495 }
496
497 /*
498 * This function identifies the systems that have installed the SN65LVPE502CP
499 * USB3.0 re-driver and that need the Compliance Mode Quirk.
500 * Systems:
501 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
502 */
xhci_compliance_mode_recovery_timer_quirk_check(void)503 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
504 {
505 const char *dmi_product_name, *dmi_sys_vendor;
506
507 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
508 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
509 if (!dmi_product_name || !dmi_sys_vendor)
510 return false;
511
512 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
513 return false;
514
515 if (strstr(dmi_product_name, "Z420") ||
516 strstr(dmi_product_name, "Z620") ||
517 strstr(dmi_product_name, "Z820") ||
518 strstr(dmi_product_name, "Z1 Workstation"))
519 return true;
520
521 return false;
522 }
523
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)524 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
525 {
526 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
527 }
528
529
530 /*
531 * Initialize memory for HCD and xHC (one-time init).
532 *
533 * Program the PAGESIZE register, initialize the device context array, create
534 * device contexts (?), set up a command ring segment (or two?), create event
535 * ring (one for now).
536 */
xhci_init(struct usb_hcd * hcd)537 int xhci_init(struct usb_hcd *hcd)
538 {
539 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540 int retval = 0;
541
542 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
543 spin_lock_init(&xhci->lock);
544 if (xhci->hci_version == 0x95 && link_quirk) {
545 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
546 "QUIRK: Not clearing Link TRB chain bits.");
547 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
548 } else {
549 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550 "xHCI doesn't need link TRB QUIRK");
551 }
552 retval = xhci_mem_init(xhci, GFP_KERNEL);
553 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
554
555 /* Initializing Compliance Mode Recovery Data If Needed */
556 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
557 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
558 compliance_mode_recovery_timer_init(xhci);
559 }
560
561 return retval;
562 }
563
564 /*-------------------------------------------------------------------------*/
565
566
xhci_run_finished(struct xhci_hcd * xhci)567 static int xhci_run_finished(struct xhci_hcd *xhci)
568 {
569 if (xhci_start(xhci)) {
570 xhci_halt(xhci);
571 return -ENODEV;
572 }
573 xhci->shared_hcd->state = HC_STATE_RUNNING;
574 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
575
576 if (xhci->quirks & XHCI_NEC_HOST)
577 xhci_ring_cmd_db(xhci);
578
579 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 "Finished xhci_run for USB3 roothub");
581 return 0;
582 }
583
584 /*
585 * Start the HC after it was halted.
586 *
587 * This function is called by the USB core when the HC driver is added.
588 * Its opposite is xhci_stop().
589 *
590 * xhci_init() must be called once before this function can be called.
591 * Reset the HC, enable device slot contexts, program DCBAAP, and
592 * set command ring pointer and event ring pointer.
593 *
594 * Setup MSI-X vectors and enable interrupts.
595 */
xhci_run(struct usb_hcd * hcd)596 int xhci_run(struct usb_hcd *hcd)
597 {
598 u32 temp;
599 u64 temp_64;
600 int ret;
601 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
602
603 /* Start the xHCI host controller running only after the USB 2.0 roothub
604 * is setup.
605 */
606
607 hcd->uses_new_polling = 1;
608 if (!usb_hcd_is_primary_hcd(hcd))
609 return xhci_run_finished(xhci);
610
611 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
612
613 ret = xhci_try_enable_msi(hcd);
614 if (ret)
615 return ret;
616
617 xhci_dbg(xhci, "Command ring memory map follows:\n");
618 xhci_debug_ring(xhci, xhci->cmd_ring);
619 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
620 xhci_dbg_cmd_ptrs(xhci);
621
622 xhci_dbg(xhci, "ERST memory map follows:\n");
623 xhci_dbg_erst(xhci, &xhci->erst);
624 xhci_dbg(xhci, "Event ring:\n");
625 xhci_debug_ring(xhci, xhci->event_ring);
626 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
627 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
628 temp_64 &= ~ERST_PTR_MASK;
629 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
631
632 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633 "// Set the interrupt modulation register");
634 temp = readl(&xhci->ir_set->irq_control);
635 temp &= ~ER_IRQ_INTERVAL_MASK;
636 temp |= (u32) 160;
637 writel(temp, &xhci->ir_set->irq_control);
638
639 /* Set the HCD state before we enable the irqs */
640 temp = readl(&xhci->op_regs->command);
641 temp |= (CMD_EIE);
642 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
643 "// Enable interrupts, cmd = 0x%x.", temp);
644 writel(temp, &xhci->op_regs->command);
645
646 temp = readl(&xhci->ir_set->irq_pending);
647 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
648 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
649 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
650 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
651 xhci_print_ir_set(xhci, 0);
652
653 if (xhci->quirks & XHCI_NEC_HOST) {
654 struct xhci_command *command;
655 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
656 if (!command)
657 return -ENOMEM;
658 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
659 TRB_TYPE(TRB_NEC_GET_FW));
660 }
661 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 "Finished xhci_run for USB2 roothub");
663 return 0;
664 }
665 EXPORT_SYMBOL_GPL(xhci_run);
666
667 /*
668 * Stop xHCI driver.
669 *
670 * This function is called by the USB core when the HC driver is removed.
671 * Its opposite is xhci_run().
672 *
673 * Disable device contexts, disable IRQs, and quiesce the HC.
674 * Reset the HC, finish any completed transactions, and cleanup memory.
675 */
xhci_stop(struct usb_hcd * hcd)676 void xhci_stop(struct usb_hcd *hcd)
677 {
678 u32 temp;
679 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
680
681 mutex_lock(&xhci->mutex);
682
683 if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
684 spin_lock_irq(&xhci->lock);
685
686 xhci->xhc_state |= XHCI_STATE_HALTED;
687 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
688 xhci_halt(xhci);
689 xhci_reset(xhci);
690
691 spin_unlock_irq(&xhci->lock);
692 }
693
694 if (!usb_hcd_is_primary_hcd(hcd)) {
695 mutex_unlock(&xhci->mutex);
696 return;
697 }
698
699 xhci_cleanup_msix(xhci);
700
701 /* Deleting Compliance Mode Recovery Timer */
702 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703 (!(xhci_all_ports_seen_u0(xhci)))) {
704 del_timer_sync(&xhci->comp_mode_recovery_timer);
705 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706 "%s: compliance mode recovery timer deleted",
707 __func__);
708 }
709
710 if (xhci->quirks & XHCI_AMD_PLL_FIX)
711 usb_amd_dev_put();
712
713 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714 "// Disabling event ring interrupts");
715 temp = readl(&xhci->op_regs->status);
716 writel(temp & ~STS_EINT, &xhci->op_regs->status);
717 temp = readl(&xhci->ir_set->irq_pending);
718 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719 xhci_print_ir_set(xhci, 0);
720
721 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722 xhci_mem_cleanup(xhci);
723 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724 "xhci_stop completed - status = %x",
725 readl(&xhci->op_regs->status));
726 mutex_unlock(&xhci->mutex);
727 }
728
729 /*
730 * Shutdown HC (not bus-specific)
731 *
732 * This is called when the machine is rebooting or halting. We assume that the
733 * machine will be powered off, and the HC's internal state will be reset.
734 * Don't bother to free memory.
735 *
736 * This will only ever be called with the main usb_hcd (the USB3 roothub).
737 */
xhci_shutdown(struct usb_hcd * hcd)738 void xhci_shutdown(struct usb_hcd *hcd)
739 {
740 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
741
742 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
743 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
744
745 spin_lock_irq(&xhci->lock);
746 xhci_halt(xhci);
747 /* Workaround for spurious wakeups at shutdown with HSW */
748 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
749 xhci_reset(xhci);
750 spin_unlock_irq(&xhci->lock);
751
752 xhci_cleanup_msix(xhci);
753
754 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
755 "xhci_shutdown completed - status = %x",
756 readl(&xhci->op_regs->status));
757 }
758 EXPORT_SYMBOL_GPL(xhci_shutdown);
759
760 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)761 static void xhci_save_registers(struct xhci_hcd *xhci)
762 {
763 xhci->s3.command = readl(&xhci->op_regs->command);
764 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
765 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
766 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
767 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
768 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
769 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
770 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
771 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
772 }
773
xhci_restore_registers(struct xhci_hcd * xhci)774 static void xhci_restore_registers(struct xhci_hcd *xhci)
775 {
776 writel(xhci->s3.command, &xhci->op_regs->command);
777 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
778 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
779 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
780 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
781 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
782 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
783 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
784 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
785 }
786
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)787 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
788 {
789 u64 val_64;
790
791 /* step 2: initialize command ring buffer */
792 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
793 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
794 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
795 xhci->cmd_ring->dequeue) &
796 (u64) ~CMD_RING_RSVD_BITS) |
797 xhci->cmd_ring->cycle_state;
798 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
799 "// Setting command ring address to 0x%llx",
800 (long unsigned long) val_64);
801 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
802 }
803
804 /*
805 * The whole command ring must be cleared to zero when we suspend the host.
806 *
807 * The host doesn't save the command ring pointer in the suspend well, so we
808 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
809 * aligned, because of the reserved bits in the command ring dequeue pointer
810 * register. Therefore, we can't just set the dequeue pointer back in the
811 * middle of the ring (TRBs are 16-byte aligned).
812 */
xhci_clear_command_ring(struct xhci_hcd * xhci)813 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
814 {
815 struct xhci_ring *ring;
816 struct xhci_segment *seg;
817
818 ring = xhci->cmd_ring;
819 seg = ring->deq_seg;
820 do {
821 memset(seg->trbs, 0,
822 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
823 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
824 cpu_to_le32(~TRB_CYCLE);
825 seg = seg->next;
826 } while (seg != ring->deq_seg);
827
828 /* Reset the software enqueue and dequeue pointers */
829 ring->deq_seg = ring->first_seg;
830 ring->dequeue = ring->first_seg->trbs;
831 ring->enq_seg = ring->deq_seg;
832 ring->enqueue = ring->dequeue;
833
834 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
835 /*
836 * Ring is now zeroed, so the HW should look for change of ownership
837 * when the cycle bit is set to 1.
838 */
839 ring->cycle_state = 1;
840
841 /*
842 * Reset the hardware dequeue pointer.
843 * Yes, this will need to be re-written after resume, but we're paranoid
844 * and want to make sure the hardware doesn't access bogus memory
845 * because, say, the BIOS or an SMI started the host without changing
846 * the command ring pointers.
847 */
848 xhci_set_cmd_ring_deq(xhci);
849 }
850
xhci_disable_port_wake_on_bits(struct xhci_hcd * xhci)851 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
852 {
853 int port_index;
854 __le32 __iomem **port_array;
855 unsigned long flags;
856 u32 t1, t2;
857
858 spin_lock_irqsave(&xhci->lock, flags);
859
860 /* disble usb3 ports Wake bits*/
861 port_index = xhci->num_usb3_ports;
862 port_array = xhci->usb3_ports;
863 while (port_index--) {
864 t1 = readl(port_array[port_index]);
865 t1 = xhci_port_state_to_neutral(t1);
866 t2 = t1 & ~PORT_WAKE_BITS;
867 if (t1 != t2)
868 writel(t2, port_array[port_index]);
869 }
870
871 /* disble usb2 ports Wake bits*/
872 port_index = xhci->num_usb2_ports;
873 port_array = xhci->usb2_ports;
874 while (port_index--) {
875 t1 = readl(port_array[port_index]);
876 t1 = xhci_port_state_to_neutral(t1);
877 t2 = t1 & ~PORT_WAKE_BITS;
878 if (t1 != t2)
879 writel(t2, port_array[port_index]);
880 }
881
882 spin_unlock_irqrestore(&xhci->lock, flags);
883 }
884
xhci_pending_portevent(struct xhci_hcd * xhci)885 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
886 {
887 __le32 __iomem **port_array;
888 int port_index;
889 u32 status;
890 u32 portsc;
891
892 status = readl(&xhci->op_regs->status);
893 if (status & STS_EINT)
894 return true;
895 /*
896 * Checking STS_EINT is not enough as there is a lag between a change
897 * bit being set and the Port Status Change Event that it generated
898 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
899 */
900
901 port_index = xhci->num_usb2_ports;
902 port_array = xhci->usb2_ports;
903 while (port_index--) {
904 portsc = readl(port_array[port_index]);
905 if (portsc & PORT_CHANGE_MASK ||
906 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
907 return true;
908 }
909 port_index = xhci->num_usb3_ports;
910 port_array = xhci->usb3_ports;
911 while (port_index--) {
912 portsc = readl(port_array[port_index]);
913 if (portsc & PORT_CHANGE_MASK ||
914 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
915 return true;
916 }
917 return false;
918 }
919
920 /*
921 * Stop HC (not bus-specific)
922 *
923 * This is called when the machine transition into S3/S4 mode.
924 *
925 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)926 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
927 {
928 int rc = 0;
929 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
930 struct usb_hcd *hcd = xhci_to_hcd(xhci);
931 u32 command;
932
933 if (!hcd->state)
934 return 0;
935
936 if (hcd->state != HC_STATE_SUSPENDED ||
937 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
938 return -EINVAL;
939
940 /* Clear root port wake on bits if wakeup not allowed. */
941 if (!do_wakeup)
942 xhci_disable_port_wake_on_bits(xhci);
943
944 /* Don't poll the roothubs on bus suspend. */
945 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
946 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
947 del_timer_sync(&hcd->rh_timer);
948 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
949 del_timer_sync(&xhci->shared_hcd->rh_timer);
950
951 spin_lock_irq(&xhci->lock);
952 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
953 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
954 /* step 1: stop endpoint */
955 /* skipped assuming that port suspend has done */
956
957 /* step 2: clear Run/Stop bit */
958 command = readl(&xhci->op_regs->command);
959 command &= ~CMD_RUN;
960 writel(command, &xhci->op_regs->command);
961
962 /* Some chips from Fresco Logic need an extraordinary delay */
963 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
964
965 if (xhci_handshake(&xhci->op_regs->status,
966 STS_HALT, STS_HALT, delay)) {
967 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
968 spin_unlock_irq(&xhci->lock);
969 return -ETIMEDOUT;
970 }
971 xhci_clear_command_ring(xhci);
972
973 /* step 3: save registers */
974 xhci_save_registers(xhci);
975
976 /* step 4: set CSS flag */
977 command = readl(&xhci->op_regs->command);
978 command |= CMD_CSS;
979 writel(command, &xhci->op_regs->command);
980 if (xhci_handshake(&xhci->op_regs->status,
981 STS_SAVE, 0, 20 * 1000)) {
982 xhci_warn(xhci, "WARN: xHC save state timeout\n");
983 spin_unlock_irq(&xhci->lock);
984 return -ETIMEDOUT;
985 }
986 spin_unlock_irq(&xhci->lock);
987
988 /*
989 * Deleting Compliance Mode Recovery Timer because the xHCI Host
990 * is about to be suspended.
991 */
992 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
993 (!(xhci_all_ports_seen_u0(xhci)))) {
994 del_timer_sync(&xhci->comp_mode_recovery_timer);
995 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
996 "%s: compliance mode recovery timer deleted",
997 __func__);
998 }
999
1000 /* step 5: remove core well power */
1001 /* synchronize irq when using MSI-X */
1002 xhci_msix_sync_irqs(xhci);
1003
1004 return rc;
1005 }
1006 EXPORT_SYMBOL_GPL(xhci_suspend);
1007
1008 /*
1009 * start xHC (not bus-specific)
1010 *
1011 * This is called when the machine transition from S3/S4 mode.
1012 *
1013 */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1014 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1015 {
1016 u32 command, temp = 0;
1017 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1018 struct usb_hcd *secondary_hcd;
1019 int retval = 0;
1020 bool comp_timer_running = false;
1021 bool pending_portevent = false;
1022
1023 if (!hcd->state)
1024 return 0;
1025
1026 /* Wait a bit if either of the roothubs need to settle from the
1027 * transition into bus suspend.
1028 */
1029 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1030 time_before(jiffies,
1031 xhci->bus_state[1].next_statechange))
1032 msleep(100);
1033
1034 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1035 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1036
1037 spin_lock_irq(&xhci->lock);
1038 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1039 hibernated = true;
1040
1041 if (!hibernated) {
1042 /*
1043 * Some controllers might lose power during suspend, so wait
1044 * for controller not ready bit to clear, just as in xHC init.
1045 */
1046 retval = xhci_handshake(&xhci->op_regs->status,
1047 STS_CNR, 0, 10 * 1000 * 1000);
1048 if (retval) {
1049 xhci_warn(xhci, "Controller not ready at resume %d\n",
1050 retval);
1051 spin_unlock_irq(&xhci->lock);
1052 return retval;
1053 }
1054 /* step 1: restore register */
1055 xhci_restore_registers(xhci);
1056 /* step 2: initialize command ring buffer */
1057 xhci_set_cmd_ring_deq(xhci);
1058 /* step 3: restore state and start state*/
1059 /* step 3: set CRS flag */
1060 command = readl(&xhci->op_regs->command);
1061 command |= CMD_CRS;
1062 writel(command, &xhci->op_regs->command);
1063 /*
1064 * Some controllers take up to 55+ ms to complete the controller
1065 * restore so setting the timeout to 100ms. Xhci specification
1066 * doesn't mention any timeout value.
1067 */
1068 if (xhci_handshake(&xhci->op_regs->status,
1069 STS_RESTORE, 0, 100 * 1000)) {
1070 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1071 spin_unlock_irq(&xhci->lock);
1072 return -ETIMEDOUT;
1073 }
1074 temp = readl(&xhci->op_regs->status);
1075 }
1076
1077 /* If restore operation fails, re-initialize the HC during resume */
1078 if ((temp & STS_SRE) || hibernated) {
1079
1080 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1081 !(xhci_all_ports_seen_u0(xhci))) {
1082 del_timer_sync(&xhci->comp_mode_recovery_timer);
1083 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1084 "Compliance Mode Recovery Timer deleted!");
1085 }
1086
1087 /* Let the USB core know _both_ roothubs lost power. */
1088 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1089 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1090
1091 xhci_dbg(xhci, "Stop HCD\n");
1092 xhci_halt(xhci);
1093 xhci_reset(xhci);
1094 spin_unlock_irq(&xhci->lock);
1095 xhci_cleanup_msix(xhci);
1096
1097 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1098 temp = readl(&xhci->op_regs->status);
1099 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1100 temp = readl(&xhci->ir_set->irq_pending);
1101 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1102 xhci_print_ir_set(xhci, 0);
1103
1104 xhci_dbg(xhci, "cleaning up memory\n");
1105 xhci_mem_cleanup(xhci);
1106 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1107 readl(&xhci->op_regs->status));
1108
1109 /* USB core calls the PCI reinit and start functions twice:
1110 * first with the primary HCD, and then with the secondary HCD.
1111 * If we don't do the same, the host will never be started.
1112 */
1113 if (!usb_hcd_is_primary_hcd(hcd))
1114 secondary_hcd = hcd;
1115 else
1116 secondary_hcd = xhci->shared_hcd;
1117
1118 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1119 retval = xhci_init(hcd->primary_hcd);
1120 if (retval)
1121 return retval;
1122 comp_timer_running = true;
1123
1124 xhci_dbg(xhci, "Start the primary HCD\n");
1125 retval = xhci_run(hcd->primary_hcd);
1126 if (!retval) {
1127 xhci_dbg(xhci, "Start the secondary HCD\n");
1128 retval = xhci_run(secondary_hcd);
1129 }
1130 hcd->state = HC_STATE_SUSPENDED;
1131 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1132 goto done;
1133 }
1134
1135 /* step 4: set Run/Stop bit */
1136 command = readl(&xhci->op_regs->command);
1137 command |= CMD_RUN;
1138 writel(command, &xhci->op_regs->command);
1139 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1140 0, 250 * 1000);
1141
1142 /* step 5: walk topology and initialize portsc,
1143 * portpmsc and portli
1144 */
1145 /* this is done in bus_resume */
1146
1147 /* step 6: restart each of the previously
1148 * Running endpoints by ringing their doorbells
1149 */
1150
1151 spin_unlock_irq(&xhci->lock);
1152
1153 done:
1154 if (retval == 0) {
1155 /*
1156 * Resume roothubs only if there are pending events.
1157 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1158 * the first wake signalling failed, give it that chance.
1159 */
1160 pending_portevent = xhci_pending_portevent(xhci);
1161 if (!pending_portevent) {
1162 msleep(120);
1163 pending_portevent = xhci_pending_portevent(xhci);
1164 }
1165
1166 if (pending_portevent) {
1167 usb_hcd_resume_root_hub(xhci->shared_hcd);
1168 usb_hcd_resume_root_hub(hcd);
1169 }
1170 }
1171 /*
1172 * If system is subject to the Quirk, Compliance Mode Timer needs to
1173 * be re-initialized Always after a system resume. Ports are subject
1174 * to suffer the Compliance Mode issue again. It doesn't matter if
1175 * ports have entered previously to U0 before system's suspension.
1176 */
1177 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1178 compliance_mode_recovery_timer_init(xhci);
1179
1180 /* Re-enable port polling. */
1181 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1182 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1183 usb_hcd_poll_rh_status(xhci->shared_hcd);
1184 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1185 usb_hcd_poll_rh_status(hcd);
1186
1187 return retval;
1188 }
1189 EXPORT_SYMBOL_GPL(xhci_resume);
1190 #endif /* CONFIG_PM */
1191
1192 /*-------------------------------------------------------------------------*/
1193
1194 /**
1195 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1196 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1197 * value to right shift 1 for the bitmask.
1198 *
1199 * Index = (epnum * 2) + direction - 1,
1200 * where direction = 0 for OUT, 1 for IN.
1201 * For control endpoints, the IN index is used (OUT index is unused), so
1202 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1203 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1204 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1205 {
1206 unsigned int index;
1207 if (usb_endpoint_xfer_control(desc))
1208 index = (unsigned int) (usb_endpoint_num(desc)*2);
1209 else
1210 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1211 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1212 return index;
1213 }
1214
1215 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1216 * address from the XHCI endpoint index.
1217 */
xhci_get_endpoint_address(unsigned int ep_index)1218 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1219 {
1220 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1221 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1222 return direction | number;
1223 }
1224
1225 /* Find the flag for this endpoint (for use in the control context). Use the
1226 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1227 * bit 1, etc.
1228 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1229 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1230 {
1231 return 1 << (xhci_get_endpoint_index(desc) + 1);
1232 }
1233
1234 /* Find the flag for this endpoint (for use in the control context). Use the
1235 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1236 * bit 1, etc.
1237 */
xhci_get_endpoint_flag_from_index(unsigned int ep_index)1238 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1239 {
1240 return 1 << (ep_index + 1);
1241 }
1242
1243 /* Compute the last valid endpoint context index. Basically, this is the
1244 * endpoint index plus one. For slot contexts with more than valid endpoint,
1245 * we find the most significant bit set in the added contexts flags.
1246 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1247 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1248 */
xhci_last_valid_endpoint(u32 added_ctxs)1249 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1250 {
1251 return fls(added_ctxs) - 1;
1252 }
1253
1254 /* Returns 1 if the arguments are OK;
1255 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1256 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1257 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1258 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1259 const char *func) {
1260 struct xhci_hcd *xhci;
1261 struct xhci_virt_device *virt_dev;
1262
1263 if (!hcd || (check_ep && !ep) || !udev) {
1264 pr_debug("xHCI %s called with invalid args\n", func);
1265 return -EINVAL;
1266 }
1267 if (!udev->parent) {
1268 pr_debug("xHCI %s called for root hub\n", func);
1269 return 0;
1270 }
1271
1272 xhci = hcd_to_xhci(hcd);
1273 if (check_virt_dev) {
1274 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1275 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1276 func);
1277 return -EINVAL;
1278 }
1279
1280 virt_dev = xhci->devs[udev->slot_id];
1281 if (virt_dev->udev != udev) {
1282 xhci_dbg(xhci, "xHCI %s called with udev and "
1283 "virt_dev does not match\n", func);
1284 return -EINVAL;
1285 }
1286 }
1287
1288 if (xhci->xhc_state & XHCI_STATE_HALTED)
1289 return -ENODEV;
1290
1291 return 1;
1292 }
1293
1294 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1295 struct usb_device *udev, struct xhci_command *command,
1296 bool ctx_change, bool must_succeed);
1297
1298 /*
1299 * Full speed devices may have a max packet size greater than 8 bytes, but the
1300 * USB core doesn't know that until it reads the first 8 bytes of the
1301 * descriptor. If the usb_device's max packet size changes after that point,
1302 * we need to issue an evaluate context command and wait on it.
1303 */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1304 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1305 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1306 {
1307 struct xhci_container_ctx *out_ctx;
1308 struct xhci_input_control_ctx *ctrl_ctx;
1309 struct xhci_ep_ctx *ep_ctx;
1310 struct xhci_command *command;
1311 int max_packet_size;
1312 int hw_max_packet_size;
1313 int ret = 0;
1314
1315 out_ctx = xhci->devs[slot_id]->out_ctx;
1316 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1317 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1318 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1319 if (hw_max_packet_size != max_packet_size) {
1320 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1321 "Max Packet Size for ep 0 changed.");
1322 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1323 "Max packet size in usb_device = %d",
1324 max_packet_size);
1325 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1326 "Max packet size in xHCI HW = %d",
1327 hw_max_packet_size);
1328 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1329 "Issuing evaluate context command.");
1330
1331 /* Set up the input context flags for the command */
1332 /* FIXME: This won't work if a non-default control endpoint
1333 * changes max packet sizes.
1334 */
1335
1336 command = xhci_alloc_command(xhci, false, true, mem_flags);
1337 if (!command)
1338 return -ENOMEM;
1339
1340 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1341 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1342 if (!ctrl_ctx) {
1343 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1344 __func__);
1345 ret = -ENOMEM;
1346 goto command_cleanup;
1347 }
1348 /* Set up the modified control endpoint 0 */
1349 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1350 xhci->devs[slot_id]->out_ctx, ep_index);
1351
1352 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1353 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1354 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1355 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1356
1357 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1358 ctrl_ctx->drop_flags = 0;
1359
1360 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1361 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1362 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1363 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1364
1365 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1366 true, false);
1367
1368 /* Clean up the input context for later use by bandwidth
1369 * functions.
1370 */
1371 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1372 command_cleanup:
1373 kfree(command->completion);
1374 kfree(command);
1375 }
1376 return ret;
1377 }
1378
1379 /*
1380 * non-error returns are a promise to giveback() the urb later
1381 * we drop ownership so next owner (or urb unlink) can get it
1382 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1383 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1384 {
1385 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1386 struct xhci_td *buffer;
1387 unsigned long flags;
1388 int ret = 0;
1389 unsigned int slot_id, ep_index;
1390 struct urb_priv *urb_priv;
1391 int size, i;
1392
1393 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1394 true, true, __func__) <= 0)
1395 return -EINVAL;
1396
1397 slot_id = urb->dev->slot_id;
1398 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399
1400 if (!HCD_HW_ACCESSIBLE(hcd)) {
1401 if (!in_interrupt())
1402 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1403 ret = -ESHUTDOWN;
1404 goto exit;
1405 }
1406
1407 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1408 size = urb->number_of_packets;
1409 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1410 urb->transfer_buffer_length > 0 &&
1411 urb->transfer_flags & URB_ZERO_PACKET &&
1412 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1413 size = 2;
1414 else
1415 size = 1;
1416
1417 urb_priv = kzalloc(sizeof(struct urb_priv) +
1418 size * sizeof(struct xhci_td *), mem_flags);
1419 if (!urb_priv)
1420 return -ENOMEM;
1421
1422 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1423 if (!buffer) {
1424 kfree(urb_priv);
1425 return -ENOMEM;
1426 }
1427
1428 for (i = 0; i < size; i++) {
1429 urb_priv->td[i] = buffer;
1430 buffer++;
1431 }
1432
1433 urb_priv->length = size;
1434 urb_priv->td_cnt = 0;
1435 urb->hcpriv = urb_priv;
1436
1437 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1438 /* Check to see if the max packet size for the default control
1439 * endpoint changed during FS device enumeration
1440 */
1441 if (urb->dev->speed == USB_SPEED_FULL) {
1442 ret = xhci_check_maxpacket(xhci, slot_id,
1443 ep_index, urb, mem_flags);
1444 if (ret < 0) {
1445 xhci_urb_free_priv(urb_priv);
1446 urb->hcpriv = NULL;
1447 return ret;
1448 }
1449 }
1450
1451 /* We have a spinlock and interrupts disabled, so we must pass
1452 * atomic context to this function, which may allocate memory.
1453 */
1454 spin_lock_irqsave(&xhci->lock, flags);
1455 if (xhci->xhc_state & XHCI_STATE_DYING)
1456 goto dying;
1457 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1458 slot_id, ep_index);
1459 if (ret)
1460 goto free_priv;
1461 spin_unlock_irqrestore(&xhci->lock, flags);
1462 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1463 spin_lock_irqsave(&xhci->lock, flags);
1464 if (xhci->xhc_state & XHCI_STATE_DYING)
1465 goto dying;
1466 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1467 EP_GETTING_STREAMS) {
1468 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1469 "is transitioning to using streams.\n");
1470 ret = -EINVAL;
1471 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1472 EP_GETTING_NO_STREAMS) {
1473 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1474 "is transitioning to "
1475 "not having streams.\n");
1476 ret = -EINVAL;
1477 } else {
1478 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1479 slot_id, ep_index);
1480 }
1481 if (ret)
1482 goto free_priv;
1483 spin_unlock_irqrestore(&xhci->lock, flags);
1484 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1485 spin_lock_irqsave(&xhci->lock, flags);
1486 if (xhci->xhc_state & XHCI_STATE_DYING)
1487 goto dying;
1488 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1489 slot_id, ep_index);
1490 if (ret)
1491 goto free_priv;
1492 spin_unlock_irqrestore(&xhci->lock, flags);
1493 } else {
1494 spin_lock_irqsave(&xhci->lock, flags);
1495 if (xhci->xhc_state & XHCI_STATE_DYING)
1496 goto dying;
1497 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1498 slot_id, ep_index);
1499 if (ret)
1500 goto free_priv;
1501 spin_unlock_irqrestore(&xhci->lock, flags);
1502 }
1503 exit:
1504 return ret;
1505 dying:
1506 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1507 "non-responsive xHCI host.\n",
1508 urb->ep->desc.bEndpointAddress, urb);
1509 ret = -ESHUTDOWN;
1510 free_priv:
1511 xhci_urb_free_priv(urb_priv);
1512 urb->hcpriv = NULL;
1513 spin_unlock_irqrestore(&xhci->lock, flags);
1514 return ret;
1515 }
1516
1517 /* Get the right ring for the given URB.
1518 * If the endpoint supports streams, boundary check the URB's stream ID.
1519 * If the endpoint doesn't support streams, return the singular endpoint ring.
1520 */
xhci_urb_to_transfer_ring(struct xhci_hcd * xhci,struct urb * urb)1521 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1522 struct urb *urb)
1523 {
1524 unsigned int slot_id;
1525 unsigned int ep_index;
1526 unsigned int stream_id;
1527 struct xhci_virt_ep *ep;
1528
1529 slot_id = urb->dev->slot_id;
1530 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1531 stream_id = urb->stream_id;
1532 ep = &xhci->devs[slot_id]->eps[ep_index];
1533 /* Common case: no streams */
1534 if (!(ep->ep_state & EP_HAS_STREAMS))
1535 return ep->ring;
1536
1537 if (stream_id == 0) {
1538 xhci_warn(xhci,
1539 "WARN: Slot ID %u, ep index %u has streams, "
1540 "but URB has no stream ID.\n",
1541 slot_id, ep_index);
1542 return NULL;
1543 }
1544
1545 if (stream_id < ep->stream_info->num_streams)
1546 return ep->stream_info->stream_rings[stream_id];
1547
1548 xhci_warn(xhci,
1549 "WARN: Slot ID %u, ep index %u has "
1550 "stream IDs 1 to %u allocated, "
1551 "but stream ID %u is requested.\n",
1552 slot_id, ep_index,
1553 ep->stream_info->num_streams - 1,
1554 stream_id);
1555 return NULL;
1556 }
1557
1558 /*
1559 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1560 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1561 * should pick up where it left off in the TD, unless a Set Transfer Ring
1562 * Dequeue Pointer is issued.
1563 *
1564 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1565 * the ring. Since the ring is a contiguous structure, they can't be physically
1566 * removed. Instead, there are two options:
1567 *
1568 * 1) If the HC is in the middle of processing the URB to be canceled, we
1569 * simply move the ring's dequeue pointer past those TRBs using the Set
1570 * Transfer Ring Dequeue Pointer command. This will be the common case,
1571 * when drivers timeout on the last submitted URB and attempt to cancel.
1572 *
1573 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1574 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1575 * HC will need to invalidate the any TRBs it has cached after the stop
1576 * endpoint command, as noted in the xHCI 0.95 errata.
1577 *
1578 * 3) The TD may have completed by the time the Stop Endpoint Command
1579 * completes, so software needs to handle that case too.
1580 *
1581 * This function should protect against the TD enqueueing code ringing the
1582 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1583 * It also needs to account for multiple cancellations on happening at the same
1584 * time for the same endpoint.
1585 *
1586 * Note that this function can be called in any context, or so says
1587 * usb_hcd_unlink_urb()
1588 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1589 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1590 {
1591 unsigned long flags;
1592 int ret, i;
1593 u32 temp;
1594 struct xhci_hcd *xhci;
1595 struct urb_priv *urb_priv;
1596 struct xhci_td *td;
1597 unsigned int ep_index;
1598 struct xhci_ring *ep_ring;
1599 struct xhci_virt_ep *ep;
1600 struct xhci_command *command;
1601
1602 xhci = hcd_to_xhci(hcd);
1603 spin_lock_irqsave(&xhci->lock, flags);
1604 /* Make sure the URB hasn't completed or been unlinked already */
1605 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1606 if (ret || !urb->hcpriv)
1607 goto done;
1608 temp = readl(&xhci->op_regs->status);
1609 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1610 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1611 "HW died, freeing TD.");
1612 urb_priv = urb->hcpriv;
1613 for (i = urb_priv->td_cnt;
1614 i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1615 i++) {
1616 td = urb_priv->td[i];
1617 if (!list_empty(&td->td_list))
1618 list_del_init(&td->td_list);
1619 if (!list_empty(&td->cancelled_td_list))
1620 list_del_init(&td->cancelled_td_list);
1621 }
1622
1623 usb_hcd_unlink_urb_from_ep(hcd, urb);
1624 spin_unlock_irqrestore(&xhci->lock, flags);
1625 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1626 xhci_urb_free_priv(urb_priv);
1627 return ret;
1628 }
1629
1630 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1632 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633 if (!ep_ring) {
1634 ret = -EINVAL;
1635 goto done;
1636 }
1637
1638 urb_priv = urb->hcpriv;
1639 i = urb_priv->td_cnt;
1640 if (i < urb_priv->length)
1641 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1642 "Cancel URB %p, dev %s, ep 0x%x, "
1643 "starting at offset 0x%llx",
1644 urb, urb->dev->devpath,
1645 urb->ep->desc.bEndpointAddress,
1646 (unsigned long long) xhci_trb_virt_to_dma(
1647 urb_priv->td[i]->start_seg,
1648 urb_priv->td[i]->first_trb));
1649
1650 for (; i < urb_priv->length; i++) {
1651 td = urb_priv->td[i];
1652 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1653 }
1654
1655 /* Queue a stop endpoint command, but only if this is
1656 * the first cancellation to be handled.
1657 */
1658 if (!(ep->ep_state & EP_HALT_PENDING)) {
1659 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1660 if (!command) {
1661 ret = -ENOMEM;
1662 goto done;
1663 }
1664 ep->ep_state |= EP_HALT_PENDING;
1665 ep->stop_cmds_pending++;
1666 ep->stop_cmd_timer.expires = jiffies +
1667 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1668 add_timer(&ep->stop_cmd_timer);
1669 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1670 ep_index, 0);
1671 xhci_ring_cmd_db(xhci);
1672 }
1673 done:
1674 spin_unlock_irqrestore(&xhci->lock, flags);
1675 return ret;
1676 }
1677
1678 /* Drop an endpoint from a new bandwidth configuration for this device.
1679 * Only one call to this function is allowed per endpoint before
1680 * check_bandwidth() or reset_bandwidth() must be called.
1681 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1682 * add the endpoint to the schedule with possibly new parameters denoted by a
1683 * different endpoint descriptor in usb_host_endpoint.
1684 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1685 * not allowed.
1686 *
1687 * The USB core will not allow URBs to be queued to an endpoint that is being
1688 * disabled, so there's no need for mutual exclusion to protect
1689 * the xhci->devs[slot_id] structure.
1690 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1691 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1692 struct usb_host_endpoint *ep)
1693 {
1694 struct xhci_hcd *xhci;
1695 struct xhci_container_ctx *in_ctx, *out_ctx;
1696 struct xhci_input_control_ctx *ctrl_ctx;
1697 unsigned int ep_index;
1698 struct xhci_ep_ctx *ep_ctx;
1699 u32 drop_flag;
1700 u32 new_add_flags, new_drop_flags;
1701 int ret;
1702
1703 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1704 if (ret <= 0)
1705 return ret;
1706 xhci = hcd_to_xhci(hcd);
1707 if (xhci->xhc_state & XHCI_STATE_DYING)
1708 return -ENODEV;
1709
1710 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1711 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1712 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1713 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1714 __func__, drop_flag);
1715 return 0;
1716 }
1717
1718 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1719 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1720 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1721 if (!ctrl_ctx) {
1722 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1723 __func__);
1724 return 0;
1725 }
1726
1727 ep_index = xhci_get_endpoint_index(&ep->desc);
1728 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1729 /* If the HC already knows the endpoint is disabled,
1730 * or the HCD has noted it is disabled, ignore this request
1731 */
1732 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1733 cpu_to_le32(EP_STATE_DISABLED)) ||
1734 le32_to_cpu(ctrl_ctx->drop_flags) &
1735 xhci_get_endpoint_flag(&ep->desc)) {
1736 /* Do not warn when called after a usb_device_reset */
1737 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1738 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1739 __func__, ep);
1740 return 0;
1741 }
1742
1743 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1744 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745
1746 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1747 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1748
1749 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1750
1751 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1752 (unsigned int) ep->desc.bEndpointAddress,
1753 udev->slot_id,
1754 (unsigned int) new_drop_flags,
1755 (unsigned int) new_add_flags);
1756 return 0;
1757 }
1758
1759 /* Add an endpoint to a new possible bandwidth configuration for this device.
1760 * Only one call to this function is allowed per endpoint before
1761 * check_bandwidth() or reset_bandwidth() must be called.
1762 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1763 * add the endpoint to the schedule with possibly new parameters denoted by a
1764 * different endpoint descriptor in usb_host_endpoint.
1765 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1766 * not allowed.
1767 *
1768 * The USB core will not allow URBs to be queued to an endpoint until the
1769 * configuration or alt setting is installed in the device, so there's no need
1770 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1771 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1772 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1773 struct usb_host_endpoint *ep)
1774 {
1775 struct xhci_hcd *xhci;
1776 struct xhci_container_ctx *in_ctx;
1777 unsigned int ep_index;
1778 struct xhci_input_control_ctx *ctrl_ctx;
1779 u32 added_ctxs;
1780 u32 new_add_flags, new_drop_flags;
1781 struct xhci_virt_device *virt_dev;
1782 int ret = 0;
1783
1784 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1785 if (ret <= 0) {
1786 /* So we won't queue a reset ep command for a root hub */
1787 ep->hcpriv = NULL;
1788 return ret;
1789 }
1790 xhci = hcd_to_xhci(hcd);
1791 if (xhci->xhc_state & XHCI_STATE_DYING)
1792 return -ENODEV;
1793
1794 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1795 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1796 /* FIXME when we have to issue an evaluate endpoint command to
1797 * deal with ep0 max packet size changing once we get the
1798 * descriptors
1799 */
1800 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1801 __func__, added_ctxs);
1802 return 0;
1803 }
1804
1805 virt_dev = xhci->devs[udev->slot_id];
1806 in_ctx = virt_dev->in_ctx;
1807 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1808 if (!ctrl_ctx) {
1809 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1810 __func__);
1811 return 0;
1812 }
1813
1814 ep_index = xhci_get_endpoint_index(&ep->desc);
1815 /* If this endpoint is already in use, and the upper layers are trying
1816 * to add it again without dropping it, reject the addition.
1817 */
1818 if (virt_dev->eps[ep_index].ring &&
1819 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1820 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1821 "without dropping it.\n",
1822 (unsigned int) ep->desc.bEndpointAddress);
1823 return -EINVAL;
1824 }
1825
1826 /* If the HCD has already noted the endpoint is enabled,
1827 * ignore this request.
1828 */
1829 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1830 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1831 __func__, ep);
1832 return 0;
1833 }
1834
1835 /*
1836 * Configuration and alternate setting changes must be done in
1837 * process context, not interrupt context (or so documenation
1838 * for usb_set_interface() and usb_set_configuration() claim).
1839 */
1840 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1841 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1842 __func__, ep->desc.bEndpointAddress);
1843 return -ENOMEM;
1844 }
1845
1846 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1847 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1848
1849 /* If xhci_endpoint_disable() was called for this endpoint, but the
1850 * xHC hasn't been notified yet through the check_bandwidth() call,
1851 * this re-adds a new state for the endpoint from the new endpoint
1852 * descriptors. We must drop and re-add this endpoint, so we leave the
1853 * drop flags alone.
1854 */
1855 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1856
1857 /* Store the usb_device pointer for later use */
1858 ep->hcpriv = udev;
1859
1860 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1861 (unsigned int) ep->desc.bEndpointAddress,
1862 udev->slot_id,
1863 (unsigned int) new_drop_flags,
1864 (unsigned int) new_add_flags);
1865 return 0;
1866 }
1867
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1868 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1869 {
1870 struct xhci_input_control_ctx *ctrl_ctx;
1871 struct xhci_ep_ctx *ep_ctx;
1872 struct xhci_slot_ctx *slot_ctx;
1873 int i;
1874
1875 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1876 if (!ctrl_ctx) {
1877 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1878 __func__);
1879 return;
1880 }
1881
1882 /* When a device's add flag and drop flag are zero, any subsequent
1883 * configure endpoint command will leave that endpoint's state
1884 * untouched. Make sure we don't leave any old state in the input
1885 * endpoint contexts.
1886 */
1887 ctrl_ctx->drop_flags = 0;
1888 ctrl_ctx->add_flags = 0;
1889 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1890 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1891 /* Endpoint 0 is always valid */
1892 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1893 for (i = 1; i < 31; ++i) {
1894 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1895 ep_ctx->ep_info = 0;
1896 ep_ctx->ep_info2 = 0;
1897 ep_ctx->deq = 0;
1898 ep_ctx->tx_info = 0;
1899 }
1900 }
1901
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1902 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1903 struct usb_device *udev, u32 *cmd_status)
1904 {
1905 int ret;
1906
1907 switch (*cmd_status) {
1908 case COMP_CMD_ABORT:
1909 case COMP_CMD_STOP:
1910 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1911 ret = -ETIME;
1912 break;
1913 case COMP_ENOMEM:
1914 dev_warn(&udev->dev,
1915 "Not enough host controller resources for new device state.\n");
1916 ret = -ENOMEM;
1917 /* FIXME: can we allocate more resources for the HC? */
1918 break;
1919 case COMP_BW_ERR:
1920 case COMP_2ND_BW_ERR:
1921 dev_warn(&udev->dev,
1922 "Not enough bandwidth for new device state.\n");
1923 ret = -ENOSPC;
1924 /* FIXME: can we go back to the old state? */
1925 break;
1926 case COMP_TRB_ERR:
1927 /* the HCD set up something wrong */
1928 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1929 "add flag = 1, "
1930 "and endpoint is not disabled.\n");
1931 ret = -EINVAL;
1932 break;
1933 case COMP_DEV_ERR:
1934 dev_warn(&udev->dev,
1935 "ERROR: Incompatible device for endpoint configure command.\n");
1936 ret = -ENODEV;
1937 break;
1938 case COMP_SUCCESS:
1939 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1940 "Successful Endpoint Configure command");
1941 ret = 0;
1942 break;
1943 default:
1944 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1945 *cmd_status);
1946 ret = -EINVAL;
1947 break;
1948 }
1949 return ret;
1950 }
1951
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1952 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1953 struct usb_device *udev, u32 *cmd_status)
1954 {
1955 int ret;
1956 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1957
1958 switch (*cmd_status) {
1959 case COMP_CMD_ABORT:
1960 case COMP_CMD_STOP:
1961 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1962 ret = -ETIME;
1963 break;
1964 case COMP_EINVAL:
1965 dev_warn(&udev->dev,
1966 "WARN: xHCI driver setup invalid evaluate context command.\n");
1967 ret = -EINVAL;
1968 break;
1969 case COMP_EBADSLT:
1970 dev_warn(&udev->dev,
1971 "WARN: slot not enabled for evaluate context command.\n");
1972 ret = -EINVAL;
1973 break;
1974 case COMP_CTX_STATE:
1975 dev_warn(&udev->dev,
1976 "WARN: invalid context state for evaluate context command.\n");
1977 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1978 ret = -EINVAL;
1979 break;
1980 case COMP_DEV_ERR:
1981 dev_warn(&udev->dev,
1982 "ERROR: Incompatible device for evaluate context command.\n");
1983 ret = -ENODEV;
1984 break;
1985 case COMP_MEL_ERR:
1986 /* Max Exit Latency too large error */
1987 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1988 ret = -EINVAL;
1989 break;
1990 case COMP_SUCCESS:
1991 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1992 "Successful evaluate context command");
1993 ret = 0;
1994 break;
1995 default:
1996 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1997 *cmd_status);
1998 ret = -EINVAL;
1999 break;
2000 }
2001 return ret;
2002 }
2003
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2004 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2005 struct xhci_input_control_ctx *ctrl_ctx)
2006 {
2007 u32 valid_add_flags;
2008 u32 valid_drop_flags;
2009
2010 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2011 * (bit 1). The default control endpoint is added during the Address
2012 * Device command and is never removed until the slot is disabled.
2013 */
2014 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2015 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2016
2017 /* Use hweight32 to count the number of ones in the add flags, or
2018 * number of endpoints added. Don't count endpoints that are changed
2019 * (both added and dropped).
2020 */
2021 return hweight32(valid_add_flags) -
2022 hweight32(valid_add_flags & valid_drop_flags);
2023 }
2024
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2025 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2026 struct xhci_input_control_ctx *ctrl_ctx)
2027 {
2028 u32 valid_add_flags;
2029 u32 valid_drop_flags;
2030
2031 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2032 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2033
2034 return hweight32(valid_drop_flags) -
2035 hweight32(valid_add_flags & valid_drop_flags);
2036 }
2037
2038 /*
2039 * We need to reserve the new number of endpoints before the configure endpoint
2040 * command completes. We can't subtract the dropped endpoints from the number
2041 * of active endpoints until the command completes because we can oversubscribe
2042 * the host in this case:
2043 *
2044 * - the first configure endpoint command drops more endpoints than it adds
2045 * - a second configure endpoint command that adds more endpoints is queued
2046 * - the first configure endpoint command fails, so the config is unchanged
2047 * - the second command may succeed, even though there isn't enough resources
2048 *
2049 * Must be called with xhci->lock held.
2050 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2051 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2052 struct xhci_input_control_ctx *ctrl_ctx)
2053 {
2054 u32 added_eps;
2055
2056 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2057 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2058 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059 "Not enough ep ctxs: "
2060 "%u active, need to add %u, limit is %u.",
2061 xhci->num_active_eps, added_eps,
2062 xhci->limit_active_eps);
2063 return -ENOMEM;
2064 }
2065 xhci->num_active_eps += added_eps;
2066 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2067 "Adding %u ep ctxs, %u now active.", added_eps,
2068 xhci->num_active_eps);
2069 return 0;
2070 }
2071
2072 /*
2073 * The configure endpoint was failed by the xHC for some other reason, so we
2074 * need to revert the resources that failed configuration would have used.
2075 *
2076 * Must be called with xhci->lock held.
2077 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2078 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2079 struct xhci_input_control_ctx *ctrl_ctx)
2080 {
2081 u32 num_failed_eps;
2082
2083 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2084 xhci->num_active_eps -= num_failed_eps;
2085 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2086 "Removing %u failed ep ctxs, %u now active.",
2087 num_failed_eps,
2088 xhci->num_active_eps);
2089 }
2090
2091 /*
2092 * Now that the command has completed, clean up the active endpoint count by
2093 * subtracting out the endpoints that were dropped (but not changed).
2094 *
2095 * Must be called with xhci->lock held.
2096 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2097 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2098 struct xhci_input_control_ctx *ctrl_ctx)
2099 {
2100 u32 num_dropped_eps;
2101
2102 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2103 xhci->num_active_eps -= num_dropped_eps;
2104 if (num_dropped_eps)
2105 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2106 "Removing %u dropped ep ctxs, %u now active.",
2107 num_dropped_eps,
2108 xhci->num_active_eps);
2109 }
2110
xhci_get_block_size(struct usb_device * udev)2111 static unsigned int xhci_get_block_size(struct usb_device *udev)
2112 {
2113 switch (udev->speed) {
2114 case USB_SPEED_LOW:
2115 case USB_SPEED_FULL:
2116 return FS_BLOCK;
2117 case USB_SPEED_HIGH:
2118 return HS_BLOCK;
2119 case USB_SPEED_SUPER:
2120 case USB_SPEED_SUPER_PLUS:
2121 return SS_BLOCK;
2122 case USB_SPEED_UNKNOWN:
2123 case USB_SPEED_WIRELESS:
2124 default:
2125 /* Should never happen */
2126 return 1;
2127 }
2128 }
2129
2130 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2131 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2132 {
2133 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2134 return LS_OVERHEAD;
2135 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2136 return FS_OVERHEAD;
2137 return HS_OVERHEAD;
2138 }
2139
2140 /* If we are changing a LS/FS device under a HS hub,
2141 * make sure (if we are activating a new TT) that the HS bus has enough
2142 * bandwidth for this new TT.
2143 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2144 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2145 struct xhci_virt_device *virt_dev,
2146 int old_active_eps)
2147 {
2148 struct xhci_interval_bw_table *bw_table;
2149 struct xhci_tt_bw_info *tt_info;
2150
2151 /* Find the bandwidth table for the root port this TT is attached to. */
2152 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2153 tt_info = virt_dev->tt_info;
2154 /* If this TT already had active endpoints, the bandwidth for this TT
2155 * has already been added. Removing all periodic endpoints (and thus
2156 * making the TT enactive) will only decrease the bandwidth used.
2157 */
2158 if (old_active_eps)
2159 return 0;
2160 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2161 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2162 return -ENOMEM;
2163 return 0;
2164 }
2165 /* Not sure why we would have no new active endpoints...
2166 *
2167 * Maybe because of an Evaluate Context change for a hub update or a
2168 * control endpoint 0 max packet size change?
2169 * FIXME: skip the bandwidth calculation in that case.
2170 */
2171 return 0;
2172 }
2173
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2174 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2175 struct xhci_virt_device *virt_dev)
2176 {
2177 unsigned int bw_reserved;
2178
2179 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2180 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2181 return -ENOMEM;
2182
2183 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2184 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2185 return -ENOMEM;
2186
2187 return 0;
2188 }
2189
2190 /*
2191 * This algorithm is a very conservative estimate of the worst-case scheduling
2192 * scenario for any one interval. The hardware dynamically schedules the
2193 * packets, so we can't tell which microframe could be the limiting factor in
2194 * the bandwidth scheduling. This only takes into account periodic endpoints.
2195 *
2196 * Obviously, we can't solve an NP complete problem to find the minimum worst
2197 * case scenario. Instead, we come up with an estimate that is no less than
2198 * the worst case bandwidth used for any one microframe, but may be an
2199 * over-estimate.
2200 *
2201 * We walk the requirements for each endpoint by interval, starting with the
2202 * smallest interval, and place packets in the schedule where there is only one
2203 * possible way to schedule packets for that interval. In order to simplify
2204 * this algorithm, we record the largest max packet size for each interval, and
2205 * assume all packets will be that size.
2206 *
2207 * For interval 0, we obviously must schedule all packets for each interval.
2208 * The bandwidth for interval 0 is just the amount of data to be transmitted
2209 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2210 * the number of packets).
2211 *
2212 * For interval 1, we have two possible microframes to schedule those packets
2213 * in. For this algorithm, if we can schedule the same number of packets for
2214 * each possible scheduling opportunity (each microframe), we will do so. The
2215 * remaining number of packets will be saved to be transmitted in the gaps in
2216 * the next interval's scheduling sequence.
2217 *
2218 * As we move those remaining packets to be scheduled with interval 2 packets,
2219 * we have to double the number of remaining packets to transmit. This is
2220 * because the intervals are actually powers of 2, and we would be transmitting
2221 * the previous interval's packets twice in this interval. We also have to be
2222 * sure that when we look at the largest max packet size for this interval, we
2223 * also look at the largest max packet size for the remaining packets and take
2224 * the greater of the two.
2225 *
2226 * The algorithm continues to evenly distribute packets in each scheduling
2227 * opportunity, and push the remaining packets out, until we get to the last
2228 * interval. Then those packets and their associated overhead are just added
2229 * to the bandwidth used.
2230 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2231 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2232 struct xhci_virt_device *virt_dev,
2233 int old_active_eps)
2234 {
2235 unsigned int bw_reserved;
2236 unsigned int max_bandwidth;
2237 unsigned int bw_used;
2238 unsigned int block_size;
2239 struct xhci_interval_bw_table *bw_table;
2240 unsigned int packet_size = 0;
2241 unsigned int overhead = 0;
2242 unsigned int packets_transmitted = 0;
2243 unsigned int packets_remaining = 0;
2244 unsigned int i;
2245
2246 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2247 return xhci_check_ss_bw(xhci, virt_dev);
2248
2249 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2250 max_bandwidth = HS_BW_LIMIT;
2251 /* Convert percent of bus BW reserved to blocks reserved */
2252 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2253 } else {
2254 max_bandwidth = FS_BW_LIMIT;
2255 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2256 }
2257
2258 bw_table = virt_dev->bw_table;
2259 /* We need to translate the max packet size and max ESIT payloads into
2260 * the units the hardware uses.
2261 */
2262 block_size = xhci_get_block_size(virt_dev->udev);
2263
2264 /* If we are manipulating a LS/FS device under a HS hub, double check
2265 * that the HS bus has enough bandwidth if we are activing a new TT.
2266 */
2267 if (virt_dev->tt_info) {
2268 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269 "Recalculating BW for rootport %u",
2270 virt_dev->real_port);
2271 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2272 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2273 "newly activated TT.\n");
2274 return -ENOMEM;
2275 }
2276 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2277 "Recalculating BW for TT slot %u port %u",
2278 virt_dev->tt_info->slot_id,
2279 virt_dev->tt_info->ttport);
2280 } else {
2281 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2282 "Recalculating BW for rootport %u",
2283 virt_dev->real_port);
2284 }
2285
2286 /* Add in how much bandwidth will be used for interval zero, or the
2287 * rounded max ESIT payload + number of packets * largest overhead.
2288 */
2289 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2290 bw_table->interval_bw[0].num_packets *
2291 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2292
2293 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2294 unsigned int bw_added;
2295 unsigned int largest_mps;
2296 unsigned int interval_overhead;
2297
2298 /*
2299 * How many packets could we transmit in this interval?
2300 * If packets didn't fit in the previous interval, we will need
2301 * to transmit that many packets twice within this interval.
2302 */
2303 packets_remaining = 2 * packets_remaining +
2304 bw_table->interval_bw[i].num_packets;
2305
2306 /* Find the largest max packet size of this or the previous
2307 * interval.
2308 */
2309 if (list_empty(&bw_table->interval_bw[i].endpoints))
2310 largest_mps = 0;
2311 else {
2312 struct xhci_virt_ep *virt_ep;
2313 struct list_head *ep_entry;
2314
2315 ep_entry = bw_table->interval_bw[i].endpoints.next;
2316 virt_ep = list_entry(ep_entry,
2317 struct xhci_virt_ep, bw_endpoint_list);
2318 /* Convert to blocks, rounding up */
2319 largest_mps = DIV_ROUND_UP(
2320 virt_ep->bw_info.max_packet_size,
2321 block_size);
2322 }
2323 if (largest_mps > packet_size)
2324 packet_size = largest_mps;
2325
2326 /* Use the larger overhead of this or the previous interval. */
2327 interval_overhead = xhci_get_largest_overhead(
2328 &bw_table->interval_bw[i]);
2329 if (interval_overhead > overhead)
2330 overhead = interval_overhead;
2331
2332 /* How many packets can we evenly distribute across
2333 * (1 << (i + 1)) possible scheduling opportunities?
2334 */
2335 packets_transmitted = packets_remaining >> (i + 1);
2336
2337 /* Add in the bandwidth used for those scheduled packets */
2338 bw_added = packets_transmitted * (overhead + packet_size);
2339
2340 /* How many packets do we have remaining to transmit? */
2341 packets_remaining = packets_remaining % (1 << (i + 1));
2342
2343 /* What largest max packet size should those packets have? */
2344 /* If we've transmitted all packets, don't carry over the
2345 * largest packet size.
2346 */
2347 if (packets_remaining == 0) {
2348 packet_size = 0;
2349 overhead = 0;
2350 } else if (packets_transmitted > 0) {
2351 /* Otherwise if we do have remaining packets, and we've
2352 * scheduled some packets in this interval, take the
2353 * largest max packet size from endpoints with this
2354 * interval.
2355 */
2356 packet_size = largest_mps;
2357 overhead = interval_overhead;
2358 }
2359 /* Otherwise carry over packet_size and overhead from the last
2360 * time we had a remainder.
2361 */
2362 bw_used += bw_added;
2363 if (bw_used > max_bandwidth) {
2364 xhci_warn(xhci, "Not enough bandwidth. "
2365 "Proposed: %u, Max: %u\n",
2366 bw_used, max_bandwidth);
2367 return -ENOMEM;
2368 }
2369 }
2370 /*
2371 * Ok, we know we have some packets left over after even-handedly
2372 * scheduling interval 15. We don't know which microframes they will
2373 * fit into, so we over-schedule and say they will be scheduled every
2374 * microframe.
2375 */
2376 if (packets_remaining > 0)
2377 bw_used += overhead + packet_size;
2378
2379 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2380 unsigned int port_index = virt_dev->real_port - 1;
2381
2382 /* OK, we're manipulating a HS device attached to a
2383 * root port bandwidth domain. Include the number of active TTs
2384 * in the bandwidth used.
2385 */
2386 bw_used += TT_HS_OVERHEAD *
2387 xhci->rh_bw[port_index].num_active_tts;
2388 }
2389
2390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2392 "Available: %u " "percent",
2393 bw_used, max_bandwidth, bw_reserved,
2394 (max_bandwidth - bw_used - bw_reserved) * 100 /
2395 max_bandwidth);
2396
2397 bw_used += bw_reserved;
2398 if (bw_used > max_bandwidth) {
2399 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2400 bw_used, max_bandwidth);
2401 return -ENOMEM;
2402 }
2403
2404 bw_table->bw_used = bw_used;
2405 return 0;
2406 }
2407
xhci_is_async_ep(unsigned int ep_type)2408 static bool xhci_is_async_ep(unsigned int ep_type)
2409 {
2410 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2411 ep_type != ISOC_IN_EP &&
2412 ep_type != INT_IN_EP);
2413 }
2414
xhci_is_sync_in_ep(unsigned int ep_type)2415 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2416 {
2417 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2418 }
2419
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2420 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2421 {
2422 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2423
2424 if (ep_bw->ep_interval == 0)
2425 return SS_OVERHEAD_BURST +
2426 (ep_bw->mult * ep_bw->num_packets *
2427 (SS_OVERHEAD + mps));
2428 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2429 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2430 1 << ep_bw->ep_interval);
2431
2432 }
2433
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2434 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2435 struct xhci_bw_info *ep_bw,
2436 struct xhci_interval_bw_table *bw_table,
2437 struct usb_device *udev,
2438 struct xhci_virt_ep *virt_ep,
2439 struct xhci_tt_bw_info *tt_info)
2440 {
2441 struct xhci_interval_bw *interval_bw;
2442 int normalized_interval;
2443
2444 if (xhci_is_async_ep(ep_bw->type))
2445 return;
2446
2447 if (udev->speed >= USB_SPEED_SUPER) {
2448 if (xhci_is_sync_in_ep(ep_bw->type))
2449 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2450 xhci_get_ss_bw_consumed(ep_bw);
2451 else
2452 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2453 xhci_get_ss_bw_consumed(ep_bw);
2454 return;
2455 }
2456
2457 /* SuperSpeed endpoints never get added to intervals in the table, so
2458 * this check is only valid for HS/FS/LS devices.
2459 */
2460 if (list_empty(&virt_ep->bw_endpoint_list))
2461 return;
2462 /* For LS/FS devices, we need to translate the interval expressed in
2463 * microframes to frames.
2464 */
2465 if (udev->speed == USB_SPEED_HIGH)
2466 normalized_interval = ep_bw->ep_interval;
2467 else
2468 normalized_interval = ep_bw->ep_interval - 3;
2469
2470 if (normalized_interval == 0)
2471 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2472 interval_bw = &bw_table->interval_bw[normalized_interval];
2473 interval_bw->num_packets -= ep_bw->num_packets;
2474 switch (udev->speed) {
2475 case USB_SPEED_LOW:
2476 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2477 break;
2478 case USB_SPEED_FULL:
2479 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2480 break;
2481 case USB_SPEED_HIGH:
2482 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2483 break;
2484 case USB_SPEED_SUPER:
2485 case USB_SPEED_SUPER_PLUS:
2486 case USB_SPEED_UNKNOWN:
2487 case USB_SPEED_WIRELESS:
2488 /* Should never happen because only LS/FS/HS endpoints will get
2489 * added to the endpoint list.
2490 */
2491 return;
2492 }
2493 if (tt_info)
2494 tt_info->active_eps -= 1;
2495 list_del_init(&virt_ep->bw_endpoint_list);
2496 }
2497
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2498 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2499 struct xhci_bw_info *ep_bw,
2500 struct xhci_interval_bw_table *bw_table,
2501 struct usb_device *udev,
2502 struct xhci_virt_ep *virt_ep,
2503 struct xhci_tt_bw_info *tt_info)
2504 {
2505 struct xhci_interval_bw *interval_bw;
2506 struct xhci_virt_ep *smaller_ep;
2507 int normalized_interval;
2508
2509 if (xhci_is_async_ep(ep_bw->type))
2510 return;
2511
2512 if (udev->speed == USB_SPEED_SUPER) {
2513 if (xhci_is_sync_in_ep(ep_bw->type))
2514 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2515 xhci_get_ss_bw_consumed(ep_bw);
2516 else
2517 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2518 xhci_get_ss_bw_consumed(ep_bw);
2519 return;
2520 }
2521
2522 /* For LS/FS devices, we need to translate the interval expressed in
2523 * microframes to frames.
2524 */
2525 if (udev->speed == USB_SPEED_HIGH)
2526 normalized_interval = ep_bw->ep_interval;
2527 else
2528 normalized_interval = ep_bw->ep_interval - 3;
2529
2530 if (normalized_interval == 0)
2531 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2532 interval_bw = &bw_table->interval_bw[normalized_interval];
2533 interval_bw->num_packets += ep_bw->num_packets;
2534 switch (udev->speed) {
2535 case USB_SPEED_LOW:
2536 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2537 break;
2538 case USB_SPEED_FULL:
2539 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2540 break;
2541 case USB_SPEED_HIGH:
2542 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2543 break;
2544 case USB_SPEED_SUPER:
2545 case USB_SPEED_SUPER_PLUS:
2546 case USB_SPEED_UNKNOWN:
2547 case USB_SPEED_WIRELESS:
2548 /* Should never happen because only LS/FS/HS endpoints will get
2549 * added to the endpoint list.
2550 */
2551 return;
2552 }
2553
2554 if (tt_info)
2555 tt_info->active_eps += 1;
2556 /* Insert the endpoint into the list, largest max packet size first. */
2557 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2558 bw_endpoint_list) {
2559 if (ep_bw->max_packet_size >=
2560 smaller_ep->bw_info.max_packet_size) {
2561 /* Add the new ep before the smaller endpoint */
2562 list_add_tail(&virt_ep->bw_endpoint_list,
2563 &smaller_ep->bw_endpoint_list);
2564 return;
2565 }
2566 }
2567 /* Add the new endpoint at the end of the list. */
2568 list_add_tail(&virt_ep->bw_endpoint_list,
2569 &interval_bw->endpoints);
2570 }
2571
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2572 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2573 struct xhci_virt_device *virt_dev,
2574 int old_active_eps)
2575 {
2576 struct xhci_root_port_bw_info *rh_bw_info;
2577 if (!virt_dev->tt_info)
2578 return;
2579
2580 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2581 if (old_active_eps == 0 &&
2582 virt_dev->tt_info->active_eps != 0) {
2583 rh_bw_info->num_active_tts += 1;
2584 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2585 } else if (old_active_eps != 0 &&
2586 virt_dev->tt_info->active_eps == 0) {
2587 rh_bw_info->num_active_tts -= 1;
2588 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2589 }
2590 }
2591
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2592 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2593 struct xhci_virt_device *virt_dev,
2594 struct xhci_container_ctx *in_ctx)
2595 {
2596 struct xhci_bw_info ep_bw_info[31];
2597 int i;
2598 struct xhci_input_control_ctx *ctrl_ctx;
2599 int old_active_eps = 0;
2600
2601 if (virt_dev->tt_info)
2602 old_active_eps = virt_dev->tt_info->active_eps;
2603
2604 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2605 if (!ctrl_ctx) {
2606 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2607 __func__);
2608 return -ENOMEM;
2609 }
2610
2611 for (i = 0; i < 31; i++) {
2612 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2613 continue;
2614
2615 /* Make a copy of the BW info in case we need to revert this */
2616 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2617 sizeof(ep_bw_info[i]));
2618 /* Drop the endpoint from the interval table if the endpoint is
2619 * being dropped or changed.
2620 */
2621 if (EP_IS_DROPPED(ctrl_ctx, i))
2622 xhci_drop_ep_from_interval_table(xhci,
2623 &virt_dev->eps[i].bw_info,
2624 virt_dev->bw_table,
2625 virt_dev->udev,
2626 &virt_dev->eps[i],
2627 virt_dev->tt_info);
2628 }
2629 /* Overwrite the information stored in the endpoints' bw_info */
2630 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2631 for (i = 0; i < 31; i++) {
2632 /* Add any changed or added endpoints to the interval table */
2633 if (EP_IS_ADDED(ctrl_ctx, i))
2634 xhci_add_ep_to_interval_table(xhci,
2635 &virt_dev->eps[i].bw_info,
2636 virt_dev->bw_table,
2637 virt_dev->udev,
2638 &virt_dev->eps[i],
2639 virt_dev->tt_info);
2640 }
2641
2642 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2643 /* Ok, this fits in the bandwidth we have.
2644 * Update the number of active TTs.
2645 */
2646 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2647 return 0;
2648 }
2649
2650 /* We don't have enough bandwidth for this, revert the stored info. */
2651 for (i = 0; i < 31; i++) {
2652 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2653 continue;
2654
2655 /* Drop the new copies of any added or changed endpoints from
2656 * the interval table.
2657 */
2658 if (EP_IS_ADDED(ctrl_ctx, i)) {
2659 xhci_drop_ep_from_interval_table(xhci,
2660 &virt_dev->eps[i].bw_info,
2661 virt_dev->bw_table,
2662 virt_dev->udev,
2663 &virt_dev->eps[i],
2664 virt_dev->tt_info);
2665 }
2666 /* Revert the endpoint back to its old information */
2667 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2668 sizeof(ep_bw_info[i]));
2669 /* Add any changed or dropped endpoints back into the table */
2670 if (EP_IS_DROPPED(ctrl_ctx, i))
2671 xhci_add_ep_to_interval_table(xhci,
2672 &virt_dev->eps[i].bw_info,
2673 virt_dev->bw_table,
2674 virt_dev->udev,
2675 &virt_dev->eps[i],
2676 virt_dev->tt_info);
2677 }
2678 return -ENOMEM;
2679 }
2680
2681
2682 /* Issue a configure endpoint command or evaluate context command
2683 * and wait for it to finish.
2684 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2685 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2686 struct usb_device *udev,
2687 struct xhci_command *command,
2688 bool ctx_change, bool must_succeed)
2689 {
2690 int ret;
2691 unsigned long flags;
2692 struct xhci_input_control_ctx *ctrl_ctx;
2693 struct xhci_virt_device *virt_dev;
2694
2695 if (!command)
2696 return -EINVAL;
2697
2698 spin_lock_irqsave(&xhci->lock, flags);
2699 virt_dev = xhci->devs[udev->slot_id];
2700
2701 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2702 if (!ctrl_ctx) {
2703 spin_unlock_irqrestore(&xhci->lock, flags);
2704 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2705 __func__);
2706 return -ENOMEM;
2707 }
2708
2709 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2710 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2711 spin_unlock_irqrestore(&xhci->lock, flags);
2712 xhci_warn(xhci, "Not enough host resources, "
2713 "active endpoint contexts = %u\n",
2714 xhci->num_active_eps);
2715 return -ENOMEM;
2716 }
2717 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2718 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2719 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2720 xhci_free_host_resources(xhci, ctrl_ctx);
2721 spin_unlock_irqrestore(&xhci->lock, flags);
2722 xhci_warn(xhci, "Not enough bandwidth\n");
2723 return -ENOMEM;
2724 }
2725
2726 if (!ctx_change)
2727 ret = xhci_queue_configure_endpoint(xhci, command,
2728 command->in_ctx->dma,
2729 udev->slot_id, must_succeed);
2730 else
2731 ret = xhci_queue_evaluate_context(xhci, command,
2732 command->in_ctx->dma,
2733 udev->slot_id, must_succeed);
2734 if (ret < 0) {
2735 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2736 xhci_free_host_resources(xhci, ctrl_ctx);
2737 spin_unlock_irqrestore(&xhci->lock, flags);
2738 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2739 "FIXME allocate a new ring segment");
2740 return -ENOMEM;
2741 }
2742 xhci_ring_cmd_db(xhci);
2743 spin_unlock_irqrestore(&xhci->lock, flags);
2744
2745 /* Wait for the configure endpoint command to complete */
2746 wait_for_completion(command->completion);
2747
2748 if (!ctx_change)
2749 ret = xhci_configure_endpoint_result(xhci, udev,
2750 &command->status);
2751 else
2752 ret = xhci_evaluate_context_result(xhci, udev,
2753 &command->status);
2754
2755 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2756 spin_lock_irqsave(&xhci->lock, flags);
2757 /* If the command failed, remove the reserved resources.
2758 * Otherwise, clean up the estimate to include dropped eps.
2759 */
2760 if (ret)
2761 xhci_free_host_resources(xhci, ctrl_ctx);
2762 else
2763 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2764 spin_unlock_irqrestore(&xhci->lock, flags);
2765 }
2766 return ret;
2767 }
2768
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2769 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2770 struct xhci_virt_device *vdev, int i)
2771 {
2772 struct xhci_virt_ep *ep = &vdev->eps[i];
2773
2774 if (ep->ep_state & EP_HAS_STREAMS) {
2775 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2776 xhci_get_endpoint_address(i));
2777 xhci_free_stream_info(xhci, ep->stream_info);
2778 ep->stream_info = NULL;
2779 ep->ep_state &= ~EP_HAS_STREAMS;
2780 }
2781 }
2782
2783 /* Called after one or more calls to xhci_add_endpoint() or
2784 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2785 * to call xhci_reset_bandwidth().
2786 *
2787 * Since we are in the middle of changing either configuration or
2788 * installing a new alt setting, the USB core won't allow URBs to be
2789 * enqueued for any endpoint on the old config or interface. Nothing
2790 * else should be touching the xhci->devs[slot_id] structure, so we
2791 * don't need to take the xhci->lock for manipulating that.
2792 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2793 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2794 {
2795 int i;
2796 int ret = 0;
2797 struct xhci_hcd *xhci;
2798 struct xhci_virt_device *virt_dev;
2799 struct xhci_input_control_ctx *ctrl_ctx;
2800 struct xhci_slot_ctx *slot_ctx;
2801 struct xhci_command *command;
2802
2803 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2804 if (ret <= 0)
2805 return ret;
2806 xhci = hcd_to_xhci(hcd);
2807 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2808 (xhci->xhc_state & XHCI_STATE_REMOVING))
2809 return -ENODEV;
2810
2811 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2812 virt_dev = xhci->devs[udev->slot_id];
2813
2814 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2815 if (!command)
2816 return -ENOMEM;
2817
2818 command->in_ctx = virt_dev->in_ctx;
2819
2820 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2821 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2822 if (!ctrl_ctx) {
2823 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2824 __func__);
2825 ret = -ENOMEM;
2826 goto command_cleanup;
2827 }
2828 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2829 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2830 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2831
2832 /* Don't issue the command if there's no endpoints to update. */
2833 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2834 ctrl_ctx->drop_flags == 0) {
2835 ret = 0;
2836 goto command_cleanup;
2837 }
2838 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2839 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2840 for (i = 31; i >= 1; i--) {
2841 __le32 le32 = cpu_to_le32(BIT(i));
2842
2843 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2844 || (ctrl_ctx->add_flags & le32) || i == 1) {
2845 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2846 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2847 break;
2848 }
2849 }
2850 xhci_dbg(xhci, "New Input Control Context:\n");
2851 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2852 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2853
2854 ret = xhci_configure_endpoint(xhci, udev, command,
2855 false, false);
2856 if (ret)
2857 /* Callee should call reset_bandwidth() */
2858 goto command_cleanup;
2859
2860 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2861 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2862 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2863
2864 /* Free any rings that were dropped, but not changed. */
2865 for (i = 1; i < 31; ++i) {
2866 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2867 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2868 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2869 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2870 }
2871 }
2872 xhci_zero_in_ctx(xhci, virt_dev);
2873 /*
2874 * Install any rings for completely new endpoints or changed endpoints,
2875 * and free or cache any old rings from changed endpoints.
2876 */
2877 for (i = 1; i < 31; ++i) {
2878 if (!virt_dev->eps[i].new_ring)
2879 continue;
2880 /* Only cache or free the old ring if it exists.
2881 * It may not if this is the first add of an endpoint.
2882 */
2883 if (virt_dev->eps[i].ring) {
2884 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2885 }
2886 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2887 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2888 virt_dev->eps[i].new_ring = NULL;
2889 }
2890 command_cleanup:
2891 kfree(command->completion);
2892 kfree(command);
2893
2894 return ret;
2895 }
2896
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2897 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2898 {
2899 struct xhci_hcd *xhci;
2900 struct xhci_virt_device *virt_dev;
2901 int i, ret;
2902
2903 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2904 if (ret <= 0)
2905 return;
2906 xhci = hcd_to_xhci(hcd);
2907
2908 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2909 virt_dev = xhci->devs[udev->slot_id];
2910 /* Free any rings allocated for added endpoints */
2911 for (i = 0; i < 31; ++i) {
2912 if (virt_dev->eps[i].new_ring) {
2913 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2914 virt_dev->eps[i].new_ring = NULL;
2915 }
2916 }
2917 xhci_zero_in_ctx(xhci, virt_dev);
2918 }
2919
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)2920 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2921 struct xhci_container_ctx *in_ctx,
2922 struct xhci_container_ctx *out_ctx,
2923 struct xhci_input_control_ctx *ctrl_ctx,
2924 u32 add_flags, u32 drop_flags)
2925 {
2926 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2927 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2928 xhci_slot_copy(xhci, in_ctx, out_ctx);
2929 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2930
2931 xhci_dbg(xhci, "Input Context:\n");
2932 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2933 }
2934
xhci_setup_input_ctx_for_quirk(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct xhci_dequeue_state * deq_state)2935 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2936 unsigned int slot_id, unsigned int ep_index,
2937 struct xhci_dequeue_state *deq_state)
2938 {
2939 struct xhci_input_control_ctx *ctrl_ctx;
2940 struct xhci_container_ctx *in_ctx;
2941 struct xhci_ep_ctx *ep_ctx;
2942 u32 added_ctxs;
2943 dma_addr_t addr;
2944
2945 in_ctx = xhci->devs[slot_id]->in_ctx;
2946 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2947 if (!ctrl_ctx) {
2948 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2949 __func__);
2950 return;
2951 }
2952
2953 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2954 xhci->devs[slot_id]->out_ctx, ep_index);
2955 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2956 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2957 deq_state->new_deq_ptr);
2958 if (addr == 0) {
2959 xhci_warn(xhci, "WARN Cannot submit config ep after "
2960 "reset ep command\n");
2961 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2962 deq_state->new_deq_seg,
2963 deq_state->new_deq_ptr);
2964 return;
2965 }
2966 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2967
2968 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2969 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2970 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2971 added_ctxs, added_ctxs);
2972 }
2973
xhci_cleanup_stalled_ring(struct xhci_hcd * xhci,unsigned int ep_index,struct xhci_td * td)2974 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2975 unsigned int ep_index, struct xhci_td *td)
2976 {
2977 struct xhci_dequeue_state deq_state;
2978 struct xhci_virt_ep *ep;
2979 struct usb_device *udev = td->urb->dev;
2980
2981 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2982 "Cleaning up stalled endpoint ring");
2983 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2984 /* We need to move the HW's dequeue pointer past this TD,
2985 * or it will attempt to resend it on the next doorbell ring.
2986 */
2987 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2988 ep_index, ep->stopped_stream, td, &deq_state);
2989
2990 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2991 return;
2992
2993 /* HW with the reset endpoint quirk will use the saved dequeue state to
2994 * issue a configure endpoint command later.
2995 */
2996 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2997 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2998 "Queueing new dequeue state");
2999 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3000 ep_index, ep->stopped_stream, &deq_state);
3001 } else {
3002 /* Better hope no one uses the input context between now and the
3003 * reset endpoint completion!
3004 * XXX: No idea how this hardware will react when stream rings
3005 * are enabled.
3006 */
3007 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3008 "Setting up input context for "
3009 "configure endpoint command");
3010 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3011 ep_index, &deq_state);
3012 }
3013 }
3014
3015 /* Called when clearing halted device. The core should have sent the control
3016 * message to clear the device halt condition. The host side of the halt should
3017 * already be cleared with a reset endpoint command issued when the STALL tx
3018 * event was received.
3019 *
3020 * Context: in_interrupt
3021 */
3022
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3023 void xhci_endpoint_reset(struct usb_hcd *hcd,
3024 struct usb_host_endpoint *ep)
3025 {
3026 struct xhci_hcd *xhci;
3027
3028 xhci = hcd_to_xhci(hcd);
3029
3030 /*
3031 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3032 * The Reset Endpoint Command may only be issued to endpoints in the
3033 * Halted state. If software wishes reset the Data Toggle or Sequence
3034 * Number of an endpoint that isn't in the Halted state, then software
3035 * may issue a Configure Endpoint Command with the Drop and Add bits set
3036 * for the target endpoint. that is in the Stopped state.
3037 */
3038
3039 /* For now just print debug to follow the situation */
3040 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3041 ep->desc.bEndpointAddress);
3042 }
3043
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3044 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3045 struct usb_device *udev, struct usb_host_endpoint *ep,
3046 unsigned int slot_id)
3047 {
3048 int ret;
3049 unsigned int ep_index;
3050 unsigned int ep_state;
3051
3052 if (!ep)
3053 return -EINVAL;
3054 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3055 if (ret <= 0)
3056 return -EINVAL;
3057 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3058 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3059 " descriptor for ep 0x%x does not support streams\n",
3060 ep->desc.bEndpointAddress);
3061 return -EINVAL;
3062 }
3063
3064 ep_index = xhci_get_endpoint_index(&ep->desc);
3065 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3066 if (ep_state & EP_HAS_STREAMS ||
3067 ep_state & EP_GETTING_STREAMS) {
3068 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3069 "already has streams set up.\n",
3070 ep->desc.bEndpointAddress);
3071 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3072 "dynamic stream context array reallocation.\n");
3073 return -EINVAL;
3074 }
3075 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3076 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3077 "endpoint 0x%x; URBs are pending.\n",
3078 ep->desc.bEndpointAddress);
3079 return -EINVAL;
3080 }
3081 return 0;
3082 }
3083
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3084 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3085 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3086 {
3087 unsigned int max_streams;
3088
3089 /* The stream context array size must be a power of two */
3090 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3091 /*
3092 * Find out how many primary stream array entries the host controller
3093 * supports. Later we may use secondary stream arrays (similar to 2nd
3094 * level page entries), but that's an optional feature for xHCI host
3095 * controllers. xHCs must support at least 4 stream IDs.
3096 */
3097 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3098 if (*num_stream_ctxs > max_streams) {
3099 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3100 max_streams);
3101 *num_stream_ctxs = max_streams;
3102 *num_streams = max_streams;
3103 }
3104 }
3105
3106 /* Returns an error code if one of the endpoint already has streams.
3107 * This does not change any data structures, it only checks and gathers
3108 * information.
3109 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3110 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3111 struct usb_device *udev,
3112 struct usb_host_endpoint **eps, unsigned int num_eps,
3113 unsigned int *num_streams, u32 *changed_ep_bitmask)
3114 {
3115 unsigned int max_streams;
3116 unsigned int endpoint_flag;
3117 int i;
3118 int ret;
3119
3120 for (i = 0; i < num_eps; i++) {
3121 ret = xhci_check_streams_endpoint(xhci, udev,
3122 eps[i], udev->slot_id);
3123 if (ret < 0)
3124 return ret;
3125
3126 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3127 if (max_streams < (*num_streams - 1)) {
3128 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3129 eps[i]->desc.bEndpointAddress,
3130 max_streams);
3131 *num_streams = max_streams+1;
3132 }
3133
3134 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3135 if (*changed_ep_bitmask & endpoint_flag)
3136 return -EINVAL;
3137 *changed_ep_bitmask |= endpoint_flag;
3138 }
3139 return 0;
3140 }
3141
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3142 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3143 struct usb_device *udev,
3144 struct usb_host_endpoint **eps, unsigned int num_eps)
3145 {
3146 u32 changed_ep_bitmask = 0;
3147 unsigned int slot_id;
3148 unsigned int ep_index;
3149 unsigned int ep_state;
3150 int i;
3151
3152 slot_id = udev->slot_id;
3153 if (!xhci->devs[slot_id])
3154 return 0;
3155
3156 for (i = 0; i < num_eps; i++) {
3157 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3158 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3159 /* Are streams already being freed for the endpoint? */
3160 if (ep_state & EP_GETTING_NO_STREAMS) {
3161 xhci_warn(xhci, "WARN Can't disable streams for "
3162 "endpoint 0x%x, "
3163 "streams are being disabled already\n",
3164 eps[i]->desc.bEndpointAddress);
3165 return 0;
3166 }
3167 /* Are there actually any streams to free? */
3168 if (!(ep_state & EP_HAS_STREAMS) &&
3169 !(ep_state & EP_GETTING_STREAMS)) {
3170 xhci_warn(xhci, "WARN Can't disable streams for "
3171 "endpoint 0x%x, "
3172 "streams are already disabled!\n",
3173 eps[i]->desc.bEndpointAddress);
3174 xhci_warn(xhci, "WARN xhci_free_streams() called "
3175 "with non-streams endpoint\n");
3176 return 0;
3177 }
3178 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3179 }
3180 return changed_ep_bitmask;
3181 }
3182
3183 /*
3184 * The USB device drivers use this function (through the HCD interface in USB
3185 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3186 * coordinate mass storage command queueing across multiple endpoints (basically
3187 * a stream ID == a task ID).
3188 *
3189 * Setting up streams involves allocating the same size stream context array
3190 * for each endpoint and issuing a configure endpoint command for all endpoints.
3191 *
3192 * Don't allow the call to succeed if one endpoint only supports one stream
3193 * (which means it doesn't support streams at all).
3194 *
3195 * Drivers may get less stream IDs than they asked for, if the host controller
3196 * hardware or endpoints claim they can't support the number of requested
3197 * stream IDs.
3198 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3199 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3200 struct usb_host_endpoint **eps, unsigned int num_eps,
3201 unsigned int num_streams, gfp_t mem_flags)
3202 {
3203 int i, ret;
3204 struct xhci_hcd *xhci;
3205 struct xhci_virt_device *vdev;
3206 struct xhci_command *config_cmd;
3207 struct xhci_input_control_ctx *ctrl_ctx;
3208 unsigned int ep_index;
3209 unsigned int num_stream_ctxs;
3210 unsigned long flags;
3211 u32 changed_ep_bitmask = 0;
3212
3213 if (!eps)
3214 return -EINVAL;
3215
3216 /* Add one to the number of streams requested to account for
3217 * stream 0 that is reserved for xHCI usage.
3218 */
3219 num_streams += 1;
3220 xhci = hcd_to_xhci(hcd);
3221 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3222 num_streams);
3223
3224 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3225 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3226 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3227 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3228 return -ENOSYS;
3229 }
3230
3231 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3232 if (!config_cmd) {
3233 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3234 return -ENOMEM;
3235 }
3236 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3237 if (!ctrl_ctx) {
3238 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3239 __func__);
3240 xhci_free_command(xhci, config_cmd);
3241 return -ENOMEM;
3242 }
3243
3244 /* Check to make sure all endpoints are not already configured for
3245 * streams. While we're at it, find the maximum number of streams that
3246 * all the endpoints will support and check for duplicate endpoints.
3247 */
3248 spin_lock_irqsave(&xhci->lock, flags);
3249 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3250 num_eps, &num_streams, &changed_ep_bitmask);
3251 if (ret < 0) {
3252 xhci_free_command(xhci, config_cmd);
3253 spin_unlock_irqrestore(&xhci->lock, flags);
3254 return ret;
3255 }
3256 if (num_streams <= 1) {
3257 xhci_warn(xhci, "WARN: endpoints can't handle "
3258 "more than one stream.\n");
3259 xhci_free_command(xhci, config_cmd);
3260 spin_unlock_irqrestore(&xhci->lock, flags);
3261 return -EINVAL;
3262 }
3263 vdev = xhci->devs[udev->slot_id];
3264 /* Mark each endpoint as being in transition, so
3265 * xhci_urb_enqueue() will reject all URBs.
3266 */
3267 for (i = 0; i < num_eps; i++) {
3268 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3269 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3270 }
3271 spin_unlock_irqrestore(&xhci->lock, flags);
3272
3273 /* Setup internal data structures and allocate HW data structures for
3274 * streams (but don't install the HW structures in the input context
3275 * until we're sure all memory allocation succeeded).
3276 */
3277 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3278 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3279 num_stream_ctxs, num_streams);
3280
3281 for (i = 0; i < num_eps; i++) {
3282 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3283 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3284 num_stream_ctxs,
3285 num_streams, mem_flags);
3286 if (!vdev->eps[ep_index].stream_info)
3287 goto cleanup;
3288 /* Set maxPstreams in endpoint context and update deq ptr to
3289 * point to stream context array. FIXME
3290 */
3291 }
3292
3293 /* Set up the input context for a configure endpoint command. */
3294 for (i = 0; i < num_eps; i++) {
3295 struct xhci_ep_ctx *ep_ctx;
3296
3297 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3298 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3299
3300 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3301 vdev->out_ctx, ep_index);
3302 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3303 vdev->eps[ep_index].stream_info);
3304 }
3305 /* Tell the HW to drop its old copy of the endpoint context info
3306 * and add the updated copy from the input context.
3307 */
3308 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3309 vdev->out_ctx, ctrl_ctx,
3310 changed_ep_bitmask, changed_ep_bitmask);
3311
3312 /* Issue and wait for the configure endpoint command */
3313 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3314 false, false);
3315
3316 /* xHC rejected the configure endpoint command for some reason, so we
3317 * leave the old ring intact and free our internal streams data
3318 * structure.
3319 */
3320 if (ret < 0)
3321 goto cleanup;
3322
3323 spin_lock_irqsave(&xhci->lock, flags);
3324 for (i = 0; i < num_eps; i++) {
3325 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3326 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3327 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3328 udev->slot_id, ep_index);
3329 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3330 }
3331 xhci_free_command(xhci, config_cmd);
3332 spin_unlock_irqrestore(&xhci->lock, flags);
3333
3334 /* Subtract 1 for stream 0, which drivers can't use */
3335 return num_streams - 1;
3336
3337 cleanup:
3338 /* If it didn't work, free the streams! */
3339 for (i = 0; i < num_eps; i++) {
3340 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3341 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3342 vdev->eps[ep_index].stream_info = NULL;
3343 /* FIXME Unset maxPstreams in endpoint context and
3344 * update deq ptr to point to normal string ring.
3345 */
3346 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3347 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3348 xhci_endpoint_zero(xhci, vdev, eps[i]);
3349 }
3350 xhci_free_command(xhci, config_cmd);
3351 return -ENOMEM;
3352 }
3353
3354 /* Transition the endpoint from using streams to being a "normal" endpoint
3355 * without streams.
3356 *
3357 * Modify the endpoint context state, submit a configure endpoint command,
3358 * and free all endpoint rings for streams if that completes successfully.
3359 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3360 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3361 struct usb_host_endpoint **eps, unsigned int num_eps,
3362 gfp_t mem_flags)
3363 {
3364 int i, ret;
3365 struct xhci_hcd *xhci;
3366 struct xhci_virt_device *vdev;
3367 struct xhci_command *command;
3368 struct xhci_input_control_ctx *ctrl_ctx;
3369 unsigned int ep_index;
3370 unsigned long flags;
3371 u32 changed_ep_bitmask;
3372
3373 xhci = hcd_to_xhci(hcd);
3374 vdev = xhci->devs[udev->slot_id];
3375
3376 /* Set up a configure endpoint command to remove the streams rings */
3377 spin_lock_irqsave(&xhci->lock, flags);
3378 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3379 udev, eps, num_eps);
3380 if (changed_ep_bitmask == 0) {
3381 spin_unlock_irqrestore(&xhci->lock, flags);
3382 return -EINVAL;
3383 }
3384
3385 /* Use the xhci_command structure from the first endpoint. We may have
3386 * allocated too many, but the driver may call xhci_free_streams() for
3387 * each endpoint it grouped into one call to xhci_alloc_streams().
3388 */
3389 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3390 command = vdev->eps[ep_index].stream_info->free_streams_command;
3391 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3392 if (!ctrl_ctx) {
3393 spin_unlock_irqrestore(&xhci->lock, flags);
3394 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3395 __func__);
3396 return -EINVAL;
3397 }
3398
3399 for (i = 0; i < num_eps; i++) {
3400 struct xhci_ep_ctx *ep_ctx;
3401
3402 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3403 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3404 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3405 EP_GETTING_NO_STREAMS;
3406
3407 xhci_endpoint_copy(xhci, command->in_ctx,
3408 vdev->out_ctx, ep_index);
3409 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3410 &vdev->eps[ep_index]);
3411 }
3412 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3413 vdev->out_ctx, ctrl_ctx,
3414 changed_ep_bitmask, changed_ep_bitmask);
3415 spin_unlock_irqrestore(&xhci->lock, flags);
3416
3417 /* Issue and wait for the configure endpoint command,
3418 * which must succeed.
3419 */
3420 ret = xhci_configure_endpoint(xhci, udev, command,
3421 false, true);
3422
3423 /* xHC rejected the configure endpoint command for some reason, so we
3424 * leave the streams rings intact.
3425 */
3426 if (ret < 0)
3427 return ret;
3428
3429 spin_lock_irqsave(&xhci->lock, flags);
3430 for (i = 0; i < num_eps; i++) {
3431 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3432 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3433 vdev->eps[ep_index].stream_info = NULL;
3434 /* FIXME Unset maxPstreams in endpoint context and
3435 * update deq ptr to point to normal string ring.
3436 */
3437 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3438 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3439 }
3440 spin_unlock_irqrestore(&xhci->lock, flags);
3441
3442 return 0;
3443 }
3444
3445 /*
3446 * Deletes endpoint resources for endpoints that were active before a Reset
3447 * Device command, or a Disable Slot command. The Reset Device command leaves
3448 * the control endpoint intact, whereas the Disable Slot command deletes it.
3449 *
3450 * Must be called with xhci->lock held.
3451 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3452 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3453 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3454 {
3455 int i;
3456 unsigned int num_dropped_eps = 0;
3457 unsigned int drop_flags = 0;
3458
3459 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3460 if (virt_dev->eps[i].ring) {
3461 drop_flags |= 1 << i;
3462 num_dropped_eps++;
3463 }
3464 }
3465 xhci->num_active_eps -= num_dropped_eps;
3466 if (num_dropped_eps)
3467 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3468 "Dropped %u ep ctxs, flags = 0x%x, "
3469 "%u now active.",
3470 num_dropped_eps, drop_flags,
3471 xhci->num_active_eps);
3472 }
3473
3474 /*
3475 * This submits a Reset Device Command, which will set the device state to 0,
3476 * set the device address to 0, and disable all the endpoints except the default
3477 * control endpoint. The USB core should come back and call
3478 * xhci_address_device(), and then re-set up the configuration. If this is
3479 * called because of a usb_reset_and_verify_device(), then the old alternate
3480 * settings will be re-installed through the normal bandwidth allocation
3481 * functions.
3482 *
3483 * Wait for the Reset Device command to finish. Remove all structures
3484 * associated with the endpoints that were disabled. Clear the input device
3485 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3486 *
3487 * If the virt_dev to be reset does not exist or does not match the udev,
3488 * it means the device is lost, possibly due to the xHC restore error and
3489 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3490 * re-allocate the device.
3491 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3492 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3493 {
3494 int ret, i;
3495 unsigned long flags;
3496 struct xhci_hcd *xhci;
3497 unsigned int slot_id;
3498 struct xhci_virt_device *virt_dev;
3499 struct xhci_command *reset_device_cmd;
3500 int last_freed_endpoint;
3501 struct xhci_slot_ctx *slot_ctx;
3502 int old_active_eps = 0;
3503
3504 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3505 if (ret <= 0)
3506 return ret;
3507 xhci = hcd_to_xhci(hcd);
3508 slot_id = udev->slot_id;
3509 virt_dev = xhci->devs[slot_id];
3510 if (!virt_dev) {
3511 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3512 "not exist. Re-allocate the device\n", slot_id);
3513 ret = xhci_alloc_dev(hcd, udev);
3514 if (ret == 1)
3515 return 0;
3516 else
3517 return -EINVAL;
3518 }
3519
3520 if (virt_dev->tt_info)
3521 old_active_eps = virt_dev->tt_info->active_eps;
3522
3523 if (virt_dev->udev != udev) {
3524 /* If the virt_dev and the udev does not match, this virt_dev
3525 * may belong to another udev.
3526 * Re-allocate the device.
3527 */
3528 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3529 "not match the udev. Re-allocate the device\n",
3530 slot_id);
3531 ret = xhci_alloc_dev(hcd, udev);
3532 if (ret == 1)
3533 return 0;
3534 else
3535 return -EINVAL;
3536 }
3537
3538 /* If device is not setup, there is no point in resetting it */
3539 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3540 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3541 SLOT_STATE_DISABLED)
3542 return 0;
3543
3544 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3545 /* Allocate the command structure that holds the struct completion.
3546 * Assume we're in process context, since the normal device reset
3547 * process has to wait for the device anyway. Storage devices are
3548 * reset as part of error handling, so use GFP_NOIO instead of
3549 * GFP_KERNEL.
3550 */
3551 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3552 if (!reset_device_cmd) {
3553 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3554 return -ENOMEM;
3555 }
3556
3557 /* Attempt to submit the Reset Device command to the command ring */
3558 spin_lock_irqsave(&xhci->lock, flags);
3559
3560 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3561 if (ret) {
3562 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3563 spin_unlock_irqrestore(&xhci->lock, flags);
3564 goto command_cleanup;
3565 }
3566 xhci_ring_cmd_db(xhci);
3567 spin_unlock_irqrestore(&xhci->lock, flags);
3568
3569 /* Wait for the Reset Device command to finish */
3570 wait_for_completion(reset_device_cmd->completion);
3571
3572 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3573 * unless we tried to reset a slot ID that wasn't enabled,
3574 * or the device wasn't in the addressed or configured state.
3575 */
3576 ret = reset_device_cmd->status;
3577 switch (ret) {
3578 case COMP_CMD_ABORT:
3579 case COMP_CMD_STOP:
3580 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3581 ret = -ETIME;
3582 goto command_cleanup;
3583 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3584 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3585 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3586 slot_id,
3587 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3588 xhci_dbg(xhci, "Not freeing device rings.\n");
3589 /* Don't treat this as an error. May change my mind later. */
3590 ret = 0;
3591 goto command_cleanup;
3592 case COMP_SUCCESS:
3593 xhci_dbg(xhci, "Successful reset device command.\n");
3594 break;
3595 default:
3596 if (xhci_is_vendor_info_code(xhci, ret))
3597 break;
3598 xhci_warn(xhci, "Unknown completion code %u for "
3599 "reset device command.\n", ret);
3600 ret = -EINVAL;
3601 goto command_cleanup;
3602 }
3603
3604 /* Free up host controller endpoint resources */
3605 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3606 spin_lock_irqsave(&xhci->lock, flags);
3607 /* Don't delete the default control endpoint resources */
3608 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3609 spin_unlock_irqrestore(&xhci->lock, flags);
3610 }
3611
3612 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3613 last_freed_endpoint = 1;
3614 for (i = 1; i < 31; ++i) {
3615 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3616
3617 if (ep->ep_state & EP_HAS_STREAMS) {
3618 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3619 xhci_get_endpoint_address(i));
3620 xhci_free_stream_info(xhci, ep->stream_info);
3621 ep->stream_info = NULL;
3622 ep->ep_state &= ~EP_HAS_STREAMS;
3623 }
3624
3625 if (ep->ring) {
3626 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3627 last_freed_endpoint = i;
3628 }
3629 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3630 xhci_drop_ep_from_interval_table(xhci,
3631 &virt_dev->eps[i].bw_info,
3632 virt_dev->bw_table,
3633 udev,
3634 &virt_dev->eps[i],
3635 virt_dev->tt_info);
3636 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3637 }
3638 /* If necessary, update the number of active TTs on this root port */
3639 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3640
3641 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3642 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3643 ret = 0;
3644
3645 command_cleanup:
3646 xhci_free_command(xhci, reset_device_cmd);
3647 return ret;
3648 }
3649
3650 /*
3651 * At this point, the struct usb_device is about to go away, the device has
3652 * disconnected, and all traffic has been stopped and the endpoints have been
3653 * disabled. Free any HC data structures associated with that device.
3654 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3655 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3656 {
3657 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3658 struct xhci_virt_device *virt_dev;
3659 unsigned long flags;
3660 u32 state;
3661 int i, ret;
3662 struct xhci_command *command;
3663
3664 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3665 if (!command)
3666 return;
3667
3668 #ifndef CONFIG_USB_DEFAULT_PERSIST
3669 /*
3670 * We called pm_runtime_get_noresume when the device was attached.
3671 * Decrement the counter here to allow controller to runtime suspend
3672 * if no devices remain.
3673 */
3674 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3675 pm_runtime_put_noidle(hcd->self.controller);
3676 #endif
3677
3678 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3679 /* If the host is halted due to driver unload, we still need to free the
3680 * device.
3681 */
3682 if (ret <= 0 && ret != -ENODEV) {
3683 kfree(command);
3684 return;
3685 }
3686
3687 virt_dev = xhci->devs[udev->slot_id];
3688
3689 /* Stop any wayward timer functions (which may grab the lock) */
3690 for (i = 0; i < 31; ++i) {
3691 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3692 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3693 }
3694
3695 spin_lock_irqsave(&xhci->lock, flags);
3696
3697 virt_dev->udev = NULL;
3698
3699 /* Don't disable the slot if the host controller is dead. */
3700 state = readl(&xhci->op_regs->status);
3701 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3702 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3703 xhci_free_virt_device(xhci, udev->slot_id);
3704 spin_unlock_irqrestore(&xhci->lock, flags);
3705 kfree(command);
3706 return;
3707 }
3708
3709 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3710 udev->slot_id)) {
3711 spin_unlock_irqrestore(&xhci->lock, flags);
3712 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3713 return;
3714 }
3715 xhci_ring_cmd_db(xhci);
3716 spin_unlock_irqrestore(&xhci->lock, flags);
3717
3718 /*
3719 * Event command completion handler will free any data structures
3720 * associated with the slot. XXX Can free sleep?
3721 */
3722 }
3723
3724 /*
3725 * Checks if we have enough host controller resources for the default control
3726 * endpoint.
3727 *
3728 * Must be called with xhci->lock held.
3729 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3730 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3731 {
3732 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3733 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3734 "Not enough ep ctxs: "
3735 "%u active, need to add 1, limit is %u.",
3736 xhci->num_active_eps, xhci->limit_active_eps);
3737 return -ENOMEM;
3738 }
3739 xhci->num_active_eps += 1;
3740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3741 "Adding 1 ep ctx, %u now active.",
3742 xhci->num_active_eps);
3743 return 0;
3744 }
3745
3746
3747 /*
3748 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3749 * timed out, or allocating memory failed. Returns 1 on success.
3750 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3751 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3752 {
3753 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3754 unsigned long flags;
3755 int ret, slot_id;
3756 struct xhci_command *command;
3757
3758 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3759 if (!command)
3760 return 0;
3761
3762 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3763 mutex_lock(&xhci->mutex);
3764 spin_lock_irqsave(&xhci->lock, flags);
3765 command->completion = &xhci->addr_dev;
3766 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3767 if (ret) {
3768 spin_unlock_irqrestore(&xhci->lock, flags);
3769 mutex_unlock(&xhci->mutex);
3770 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3771 kfree(command);
3772 return 0;
3773 }
3774 xhci_ring_cmd_db(xhci);
3775 spin_unlock_irqrestore(&xhci->lock, flags);
3776
3777 wait_for_completion(command->completion);
3778 slot_id = xhci->slot_id;
3779 mutex_unlock(&xhci->mutex);
3780
3781 if (!slot_id || command->status != COMP_SUCCESS) {
3782 xhci_err(xhci, "Error while assigning device slot ID\n");
3783 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3784 HCS_MAX_SLOTS(
3785 readl(&xhci->cap_regs->hcs_params1)));
3786 kfree(command);
3787 return 0;
3788 }
3789
3790 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3791 spin_lock_irqsave(&xhci->lock, flags);
3792 ret = xhci_reserve_host_control_ep_resources(xhci);
3793 if (ret) {
3794 spin_unlock_irqrestore(&xhci->lock, flags);
3795 xhci_warn(xhci, "Not enough host resources, "
3796 "active endpoint contexts = %u\n",
3797 xhci->num_active_eps);
3798 goto disable_slot;
3799 }
3800 spin_unlock_irqrestore(&xhci->lock, flags);
3801 }
3802 /* Use GFP_NOIO, since this function can be called from
3803 * xhci_discover_or_reset_device(), which may be called as part of
3804 * mass storage driver error handling.
3805 */
3806 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3807 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3808 goto disable_slot;
3809 }
3810 udev->slot_id = slot_id;
3811
3812 #ifndef CONFIG_USB_DEFAULT_PERSIST
3813 /*
3814 * If resetting upon resume, we can't put the controller into runtime
3815 * suspend if there is a device attached.
3816 */
3817 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3818 pm_runtime_get_noresume(hcd->self.controller);
3819 #endif
3820
3821
3822 kfree(command);
3823 /* Is this a LS or FS device under a HS hub? */
3824 /* Hub or peripherial? */
3825 return 1;
3826
3827 disable_slot:
3828 /* Disable slot, if we can do it without mem alloc */
3829 spin_lock_irqsave(&xhci->lock, flags);
3830 command->completion = NULL;
3831 command->status = 0;
3832 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3833 udev->slot_id))
3834 xhci_ring_cmd_db(xhci);
3835 spin_unlock_irqrestore(&xhci->lock, flags);
3836 return 0;
3837 }
3838
3839 /*
3840 * Issue an Address Device command and optionally send a corresponding
3841 * SetAddress request to the device.
3842 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)3843 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3844 enum xhci_setup_dev setup)
3845 {
3846 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3847 unsigned long flags;
3848 struct xhci_virt_device *virt_dev;
3849 int ret = 0;
3850 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3851 struct xhci_slot_ctx *slot_ctx;
3852 struct xhci_input_control_ctx *ctrl_ctx;
3853 u64 temp_64;
3854 struct xhci_command *command = NULL;
3855
3856 mutex_lock(&xhci->mutex);
3857
3858 if (xhci->xhc_state) { /* dying, removing or halted */
3859 ret = -ESHUTDOWN;
3860 goto out;
3861 }
3862
3863 if (!udev->slot_id) {
3864 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3865 "Bad Slot ID %d", udev->slot_id);
3866 ret = -EINVAL;
3867 goto out;
3868 }
3869
3870 virt_dev = xhci->devs[udev->slot_id];
3871
3872 if (WARN_ON(!virt_dev)) {
3873 /*
3874 * In plug/unplug torture test with an NEC controller,
3875 * a zero-dereference was observed once due to virt_dev = 0.
3876 * Print useful debug rather than crash if it is observed again!
3877 */
3878 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3879 udev->slot_id);
3880 ret = -EINVAL;
3881 goto out;
3882 }
3883
3884 if (setup == SETUP_CONTEXT_ONLY) {
3885 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3886 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3887 SLOT_STATE_DEFAULT) {
3888 xhci_dbg(xhci, "Slot already in default state\n");
3889 goto out;
3890 }
3891 }
3892
3893 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3894 if (!command) {
3895 ret = -ENOMEM;
3896 goto out;
3897 }
3898
3899 command->in_ctx = virt_dev->in_ctx;
3900 command->completion = &xhci->addr_dev;
3901
3902 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3903 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3904 if (!ctrl_ctx) {
3905 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3906 __func__);
3907 ret = -EINVAL;
3908 goto out;
3909 }
3910 /*
3911 * If this is the first Set Address since device plug-in or
3912 * virt_device realloaction after a resume with an xHCI power loss,
3913 * then set up the slot context.
3914 */
3915 if (!slot_ctx->dev_info)
3916 xhci_setup_addressable_virt_dev(xhci, udev);
3917 /* Otherwise, update the control endpoint ring enqueue pointer. */
3918 else
3919 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3920 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3921 ctrl_ctx->drop_flags = 0;
3922
3923 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3924 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3925 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3926 le32_to_cpu(slot_ctx->dev_info) >> 27);
3927
3928 spin_lock_irqsave(&xhci->lock, flags);
3929 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3930 udev->slot_id, setup);
3931 if (ret) {
3932 spin_unlock_irqrestore(&xhci->lock, flags);
3933 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3934 "FIXME: allocate a command ring segment");
3935 goto out;
3936 }
3937 xhci_ring_cmd_db(xhci);
3938 spin_unlock_irqrestore(&xhci->lock, flags);
3939
3940 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3941 wait_for_completion(command->completion);
3942
3943 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3944 * the SetAddress() "recovery interval" required by USB and aborting the
3945 * command on a timeout.
3946 */
3947 switch (command->status) {
3948 case COMP_CMD_ABORT:
3949 case COMP_CMD_STOP:
3950 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3951 ret = -ETIME;
3952 break;
3953 case COMP_CTX_STATE:
3954 case COMP_EBADSLT:
3955 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3956 act, udev->slot_id);
3957 ret = -EINVAL;
3958 break;
3959 case COMP_TX_ERR:
3960 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3961 ret = -EPROTO;
3962 break;
3963 case COMP_DEV_ERR:
3964 dev_warn(&udev->dev,
3965 "ERROR: Incompatible device for setup %s command\n", act);
3966 ret = -ENODEV;
3967 break;
3968 case COMP_SUCCESS:
3969 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3970 "Successful setup %s command", act);
3971 break;
3972 default:
3973 xhci_err(xhci,
3974 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3975 act, command->status);
3976 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3977 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3978 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3979 ret = -EINVAL;
3980 break;
3981 }
3982 if (ret)
3983 goto out;
3984 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3985 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3986 "Op regs DCBAA ptr = %#016llx", temp_64);
3987 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3988 "Slot ID %d dcbaa entry @%p = %#016llx",
3989 udev->slot_id,
3990 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3991 (unsigned long long)
3992 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3993 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3994 "Output Context DMA address = %#08llx",
3995 (unsigned long long)virt_dev->out_ctx->dma);
3996 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3997 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3998 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3999 le32_to_cpu(slot_ctx->dev_info) >> 27);
4000 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
4001 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
4002 /*
4003 * USB core uses address 1 for the roothubs, so we add one to the
4004 * address given back to us by the HC.
4005 */
4006 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4007 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4008 le32_to_cpu(slot_ctx->dev_info) >> 27);
4009 /* Zero the input context control for later use */
4010 ctrl_ctx->add_flags = 0;
4011 ctrl_ctx->drop_flags = 0;
4012
4013 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4014 "Internal device address = %d",
4015 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4016 out:
4017 mutex_unlock(&xhci->mutex);
4018 kfree(command);
4019 return ret;
4020 }
4021
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4022 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4023 {
4024 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4025 }
4026
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4027 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4028 {
4029 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4030 }
4031
4032 /*
4033 * Transfer the port index into real index in the HW port status
4034 * registers. Caculate offset between the port's PORTSC register
4035 * and port status base. Divide the number of per port register
4036 * to get the real index. The raw port number bases 1.
4037 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4038 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4039 {
4040 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4041 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4042 __le32 __iomem *addr;
4043 int raw_port;
4044
4045 if (hcd->speed < HCD_USB3)
4046 addr = xhci->usb2_ports[port1 - 1];
4047 else
4048 addr = xhci->usb3_ports[port1 - 1];
4049
4050 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4051 return raw_port;
4052 }
4053
4054 /*
4055 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4056 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4057 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4058 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4059 struct usb_device *udev, u16 max_exit_latency)
4060 {
4061 struct xhci_virt_device *virt_dev;
4062 struct xhci_command *command;
4063 struct xhci_input_control_ctx *ctrl_ctx;
4064 struct xhci_slot_ctx *slot_ctx;
4065 unsigned long flags;
4066 int ret;
4067
4068 spin_lock_irqsave(&xhci->lock, flags);
4069
4070 virt_dev = xhci->devs[udev->slot_id];
4071
4072 /*
4073 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4074 * xHC was re-initialized. Exit latency will be set later after
4075 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4076 */
4077
4078 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4079 spin_unlock_irqrestore(&xhci->lock, flags);
4080 return 0;
4081 }
4082
4083 /* Attempt to issue an Evaluate Context command to change the MEL. */
4084 command = xhci->lpm_command;
4085 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4086 if (!ctrl_ctx) {
4087 spin_unlock_irqrestore(&xhci->lock, flags);
4088 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4089 __func__);
4090 return -ENOMEM;
4091 }
4092
4093 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4094 spin_unlock_irqrestore(&xhci->lock, flags);
4095
4096 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4097 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4098 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4099 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4100 slot_ctx->dev_state = 0;
4101
4102 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4103 "Set up evaluate context for LPM MEL change.");
4104 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4105 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4106
4107 /* Issue and wait for the evaluate context command. */
4108 ret = xhci_configure_endpoint(xhci, udev, command,
4109 true, true);
4110 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4111 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4112
4113 if (!ret) {
4114 spin_lock_irqsave(&xhci->lock, flags);
4115 virt_dev->current_mel = max_exit_latency;
4116 spin_unlock_irqrestore(&xhci->lock, flags);
4117 }
4118 return ret;
4119 }
4120
4121 #ifdef CONFIG_PM
4122
4123 /* BESL to HIRD Encoding array for USB2 LPM */
4124 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4125 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4126
4127 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4128 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4129 struct usb_device *udev)
4130 {
4131 int u2del, besl, besl_host;
4132 int besl_device = 0;
4133 u32 field;
4134
4135 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4136 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4137
4138 if (field & USB_BESL_SUPPORT) {
4139 for (besl_host = 0; besl_host < 16; besl_host++) {
4140 if (xhci_besl_encoding[besl_host] >= u2del)
4141 break;
4142 }
4143 /* Use baseline BESL value as default */
4144 if (field & USB_BESL_BASELINE_VALID)
4145 besl_device = USB_GET_BESL_BASELINE(field);
4146 else if (field & USB_BESL_DEEP_VALID)
4147 besl_device = USB_GET_BESL_DEEP(field);
4148 } else {
4149 if (u2del <= 50)
4150 besl_host = 0;
4151 else
4152 besl_host = (u2del - 51) / 75 + 1;
4153 }
4154
4155 besl = besl_host + besl_device;
4156 if (besl > 15)
4157 besl = 15;
4158
4159 return besl;
4160 }
4161
4162 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4163 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4164 {
4165 u32 field;
4166 int l1;
4167 int besld = 0;
4168 int hirdm = 0;
4169
4170 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4171
4172 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4173 l1 = udev->l1_params.timeout / 256;
4174
4175 /* device has preferred BESLD */
4176 if (field & USB_BESL_DEEP_VALID) {
4177 besld = USB_GET_BESL_DEEP(field);
4178 hirdm = 1;
4179 }
4180
4181 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4182 }
4183
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4184 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4185 struct usb_device *udev, int enable)
4186 {
4187 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4188 __le32 __iomem **port_array;
4189 __le32 __iomem *pm_addr, *hlpm_addr;
4190 u32 pm_val, hlpm_val, field;
4191 unsigned int port_num;
4192 unsigned long flags;
4193 int hird, exit_latency;
4194 int ret;
4195
4196 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4197 !udev->lpm_capable)
4198 return -EPERM;
4199
4200 if (!udev->parent || udev->parent->parent ||
4201 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4202 return -EPERM;
4203
4204 if (udev->usb2_hw_lpm_capable != 1)
4205 return -EPERM;
4206
4207 spin_lock_irqsave(&xhci->lock, flags);
4208
4209 port_array = xhci->usb2_ports;
4210 port_num = udev->portnum - 1;
4211 pm_addr = port_array[port_num] + PORTPMSC;
4212 pm_val = readl(pm_addr);
4213 hlpm_addr = port_array[port_num] + PORTHLPMC;
4214
4215 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4216 enable ? "enable" : "disable", port_num + 1);
4217
4218 if (enable) {
4219 /* Host supports BESL timeout instead of HIRD */
4220 if (udev->usb2_hw_lpm_besl_capable) {
4221 /* if device doesn't have a preferred BESL value use a
4222 * default one which works with mixed HIRD and BESL
4223 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4224 */
4225 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4226 if ((field & USB_BESL_SUPPORT) &&
4227 (field & USB_BESL_BASELINE_VALID))
4228 hird = USB_GET_BESL_BASELINE(field);
4229 else
4230 hird = udev->l1_params.besl;
4231
4232 exit_latency = xhci_besl_encoding[hird];
4233 spin_unlock_irqrestore(&xhci->lock, flags);
4234
4235 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4236 * input context for link powermanagement evaluate
4237 * context commands. It is protected by hcd->bandwidth
4238 * mutex and is shared by all devices. We need to set
4239 * the max ext latency in USB 2 BESL LPM as well, so
4240 * use the same mutex and xhci_change_max_exit_latency()
4241 */
4242 mutex_lock(hcd->bandwidth_mutex);
4243 ret = xhci_change_max_exit_latency(xhci, udev,
4244 exit_latency);
4245 mutex_unlock(hcd->bandwidth_mutex);
4246
4247 if (ret < 0)
4248 return ret;
4249 spin_lock_irqsave(&xhci->lock, flags);
4250
4251 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4252 writel(hlpm_val, hlpm_addr);
4253 /* flush write */
4254 readl(hlpm_addr);
4255 } else {
4256 hird = xhci_calculate_hird_besl(xhci, udev);
4257 }
4258
4259 pm_val &= ~PORT_HIRD_MASK;
4260 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4261 writel(pm_val, pm_addr);
4262 pm_val = readl(pm_addr);
4263 pm_val |= PORT_HLE;
4264 writel(pm_val, pm_addr);
4265 /* flush write */
4266 readl(pm_addr);
4267 } else {
4268 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4269 writel(pm_val, pm_addr);
4270 /* flush write */
4271 readl(pm_addr);
4272 if (udev->usb2_hw_lpm_besl_capable) {
4273 spin_unlock_irqrestore(&xhci->lock, flags);
4274 mutex_lock(hcd->bandwidth_mutex);
4275 xhci_change_max_exit_latency(xhci, udev, 0);
4276 mutex_unlock(hcd->bandwidth_mutex);
4277 readl_poll_timeout(port_array[port_num], pm_val,
4278 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4279 100, 10000);
4280 return 0;
4281 }
4282 }
4283
4284 spin_unlock_irqrestore(&xhci->lock, flags);
4285 return 0;
4286 }
4287
4288 /* check if a usb2 port supports a given extened capability protocol
4289 * only USB2 ports extended protocol capability values are cached.
4290 * Return 1 if capability is supported
4291 */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4292 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4293 unsigned capability)
4294 {
4295 u32 port_offset, port_count;
4296 int i;
4297
4298 for (i = 0; i < xhci->num_ext_caps; i++) {
4299 if (xhci->ext_caps[i] & capability) {
4300 /* port offsets starts at 1 */
4301 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4302 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4303 if (port >= port_offset &&
4304 port < port_offset + port_count)
4305 return 1;
4306 }
4307 }
4308 return 0;
4309 }
4310
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4311 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4312 {
4313 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4314 int portnum = udev->portnum - 1;
4315
4316 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4317 !udev->lpm_capable)
4318 return 0;
4319
4320 /* we only support lpm for non-hub device connected to root hub yet */
4321 if (!udev->parent || udev->parent->parent ||
4322 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4323 return 0;
4324
4325 if (xhci->hw_lpm_support == 1 &&
4326 xhci_check_usb2_port_capability(
4327 xhci, portnum, XHCI_HLC)) {
4328 udev->usb2_hw_lpm_capable = 1;
4329 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4330 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4331 if (xhci_check_usb2_port_capability(xhci, portnum,
4332 XHCI_BLC))
4333 udev->usb2_hw_lpm_besl_capable = 1;
4334 }
4335
4336 return 0;
4337 }
4338
4339 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4340
4341 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4342 static unsigned long long xhci_service_interval_to_ns(
4343 struct usb_endpoint_descriptor *desc)
4344 {
4345 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4346 }
4347
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4348 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4349 enum usb3_link_state state)
4350 {
4351 unsigned long long sel;
4352 unsigned long long pel;
4353 unsigned int max_sel_pel;
4354 char *state_name;
4355
4356 switch (state) {
4357 case USB3_LPM_U1:
4358 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4359 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4360 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4361 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4362 state_name = "U1";
4363 break;
4364 case USB3_LPM_U2:
4365 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4366 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4367 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4368 state_name = "U2";
4369 break;
4370 default:
4371 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4372 __func__);
4373 return USB3_LPM_DISABLED;
4374 }
4375
4376 if (sel <= max_sel_pel && pel <= max_sel_pel)
4377 return USB3_LPM_DEVICE_INITIATED;
4378
4379 if (sel > max_sel_pel)
4380 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4381 "due to long SEL %llu ms\n",
4382 state_name, sel);
4383 else
4384 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4385 "due to long PEL %llu ms\n",
4386 state_name, pel);
4387 return USB3_LPM_DISABLED;
4388 }
4389
4390 /* The U1 timeout should be the maximum of the following values:
4391 * - For control endpoints, U1 system exit latency (SEL) * 3
4392 * - For bulk endpoints, U1 SEL * 5
4393 * - For interrupt endpoints:
4394 * - Notification EPs, U1 SEL * 3
4395 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4396 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4397 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4398 static unsigned long long xhci_calculate_intel_u1_timeout(
4399 struct usb_device *udev,
4400 struct usb_endpoint_descriptor *desc)
4401 {
4402 unsigned long long timeout_ns;
4403 int ep_type;
4404 int intr_type;
4405
4406 ep_type = usb_endpoint_type(desc);
4407 switch (ep_type) {
4408 case USB_ENDPOINT_XFER_CONTROL:
4409 timeout_ns = udev->u1_params.sel * 3;
4410 break;
4411 case USB_ENDPOINT_XFER_BULK:
4412 timeout_ns = udev->u1_params.sel * 5;
4413 break;
4414 case USB_ENDPOINT_XFER_INT:
4415 intr_type = usb_endpoint_interrupt_type(desc);
4416 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4417 timeout_ns = udev->u1_params.sel * 3;
4418 break;
4419 }
4420 /* Otherwise the calculation is the same as isoc eps */
4421 case USB_ENDPOINT_XFER_ISOC:
4422 timeout_ns = xhci_service_interval_to_ns(desc);
4423 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4424 if (timeout_ns < udev->u1_params.sel * 2)
4425 timeout_ns = udev->u1_params.sel * 2;
4426 break;
4427 default:
4428 return 0;
4429 }
4430
4431 return timeout_ns;
4432 }
4433
4434 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4435 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4436 struct usb_device *udev,
4437 struct usb_endpoint_descriptor *desc)
4438 {
4439 unsigned long long timeout_ns;
4440
4441 /* Prevent U1 if service interval is shorter than U1 exit latency */
4442 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4443 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4444 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4445 return USB3_LPM_DISABLED;
4446 }
4447 }
4448
4449 if (xhci->quirks & XHCI_INTEL_HOST)
4450 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4451 else
4452 timeout_ns = udev->u1_params.sel;
4453
4454 /* The U1 timeout is encoded in 1us intervals.
4455 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4456 */
4457 if (timeout_ns == USB3_LPM_DISABLED)
4458 timeout_ns = 1;
4459 else
4460 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4461
4462 /* If the necessary timeout value is bigger than what we can set in the
4463 * USB 3.0 hub, we have to disable hub-initiated U1.
4464 */
4465 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4466 return timeout_ns;
4467 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4468 "due to long timeout %llu ms\n", timeout_ns);
4469 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4470 }
4471
4472 /* The U2 timeout should be the maximum of:
4473 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4474 * - largest bInterval of any active periodic endpoint (to avoid going
4475 * into lower power link states between intervals).
4476 * - the U2 Exit Latency of the device
4477 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4478 static unsigned long long xhci_calculate_intel_u2_timeout(
4479 struct usb_device *udev,
4480 struct usb_endpoint_descriptor *desc)
4481 {
4482 unsigned long long timeout_ns;
4483 unsigned long long u2_del_ns;
4484
4485 timeout_ns = 10 * 1000 * 1000;
4486
4487 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4488 (xhci_service_interval_to_ns(desc) > timeout_ns))
4489 timeout_ns = xhci_service_interval_to_ns(desc);
4490
4491 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4492 if (u2_del_ns > timeout_ns)
4493 timeout_ns = u2_del_ns;
4494
4495 return timeout_ns;
4496 }
4497
4498 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4499 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4500 struct usb_device *udev,
4501 struct usb_endpoint_descriptor *desc)
4502 {
4503 unsigned long long timeout_ns;
4504
4505 /* Prevent U2 if service interval is shorter than U2 exit latency */
4506 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4507 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4508 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4509 return USB3_LPM_DISABLED;
4510 }
4511 }
4512
4513 if (xhci->quirks & XHCI_INTEL_HOST)
4514 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4515 else
4516 timeout_ns = udev->u2_params.sel;
4517
4518 /* The U2 timeout is encoded in 256us intervals */
4519 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4520 /* If the necessary timeout value is bigger than what we can set in the
4521 * USB 3.0 hub, we have to disable hub-initiated U2.
4522 */
4523 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4524 return timeout_ns;
4525 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4526 "due to long timeout %llu ms\n", timeout_ns);
4527 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4528 }
4529
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4530 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4531 struct usb_device *udev,
4532 struct usb_endpoint_descriptor *desc,
4533 enum usb3_link_state state,
4534 u16 *timeout)
4535 {
4536 if (state == USB3_LPM_U1)
4537 return xhci_calculate_u1_timeout(xhci, udev, desc);
4538 else if (state == USB3_LPM_U2)
4539 return xhci_calculate_u2_timeout(xhci, udev, desc);
4540
4541 return USB3_LPM_DISABLED;
4542 }
4543
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4544 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4545 struct usb_device *udev,
4546 struct usb_endpoint_descriptor *desc,
4547 enum usb3_link_state state,
4548 u16 *timeout)
4549 {
4550 u16 alt_timeout;
4551
4552 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4553 desc, state, timeout);
4554
4555 /* If we found we can't enable hub-initiated LPM, and
4556 * the U1 or U2 exit latency was too high to allow
4557 * device-initiated LPM as well, then we will disable LPM
4558 * for this device, so stop searching any further.
4559 */
4560 if (alt_timeout == USB3_LPM_DISABLED) {
4561 *timeout = alt_timeout;
4562 return -E2BIG;
4563 }
4564 if (alt_timeout > *timeout)
4565 *timeout = alt_timeout;
4566 return 0;
4567 }
4568
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4569 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4570 struct usb_device *udev,
4571 struct usb_host_interface *alt,
4572 enum usb3_link_state state,
4573 u16 *timeout)
4574 {
4575 int j;
4576
4577 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4578 if (xhci_update_timeout_for_endpoint(xhci, udev,
4579 &alt->endpoint[j].desc, state, timeout))
4580 return -E2BIG;
4581 continue;
4582 }
4583 return 0;
4584 }
4585
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4586 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4587 enum usb3_link_state state)
4588 {
4589 struct usb_device *parent;
4590 unsigned int num_hubs;
4591
4592 if (state == USB3_LPM_U2)
4593 return 0;
4594
4595 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4596 for (parent = udev->parent, num_hubs = 0; parent->parent;
4597 parent = parent->parent)
4598 num_hubs++;
4599
4600 if (num_hubs < 2)
4601 return 0;
4602
4603 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4604 " below second-tier hub.\n");
4605 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4606 "to decrease power consumption.\n");
4607 return -E2BIG;
4608 }
4609
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4610 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4611 struct usb_device *udev,
4612 enum usb3_link_state state)
4613 {
4614 if (xhci->quirks & XHCI_INTEL_HOST)
4615 return xhci_check_intel_tier_policy(udev, state);
4616 else
4617 return 0;
4618 }
4619
4620 /* Returns the U1 or U2 timeout that should be enabled.
4621 * If the tier check or timeout setting functions return with a non-zero exit
4622 * code, that means the timeout value has been finalized and we shouldn't look
4623 * at any more endpoints.
4624 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4625 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4626 struct usb_device *udev, enum usb3_link_state state)
4627 {
4628 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4629 struct usb_host_config *config;
4630 char *state_name;
4631 int i;
4632 u16 timeout = USB3_LPM_DISABLED;
4633
4634 if (state == USB3_LPM_U1)
4635 state_name = "U1";
4636 else if (state == USB3_LPM_U2)
4637 state_name = "U2";
4638 else {
4639 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4640 state);
4641 return timeout;
4642 }
4643
4644 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4645 return timeout;
4646
4647 /* Gather some information about the currently installed configuration
4648 * and alternate interface settings.
4649 */
4650 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4651 state, &timeout))
4652 return timeout;
4653
4654 config = udev->actconfig;
4655 if (!config)
4656 return timeout;
4657
4658 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4659 struct usb_driver *driver;
4660 struct usb_interface *intf = config->interface[i];
4661
4662 if (!intf)
4663 continue;
4664
4665 /* Check if any currently bound drivers want hub-initiated LPM
4666 * disabled.
4667 */
4668 if (intf->dev.driver) {
4669 driver = to_usb_driver(intf->dev.driver);
4670 if (driver && driver->disable_hub_initiated_lpm) {
4671 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4672 state_name, driver->name);
4673 timeout = xhci_get_timeout_no_hub_lpm(udev,
4674 state);
4675 if (timeout == USB3_LPM_DISABLED)
4676 return timeout;
4677 }
4678 }
4679
4680 /* Not sure how this could happen... */
4681 if (!intf->cur_altsetting)
4682 continue;
4683
4684 if (xhci_update_timeout_for_interface(xhci, udev,
4685 intf->cur_altsetting,
4686 state, &timeout))
4687 return timeout;
4688 }
4689 return timeout;
4690 }
4691
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4692 static int calculate_max_exit_latency(struct usb_device *udev,
4693 enum usb3_link_state state_changed,
4694 u16 hub_encoded_timeout)
4695 {
4696 unsigned long long u1_mel_us = 0;
4697 unsigned long long u2_mel_us = 0;
4698 unsigned long long mel_us = 0;
4699 bool disabling_u1;
4700 bool disabling_u2;
4701 bool enabling_u1;
4702 bool enabling_u2;
4703
4704 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4705 hub_encoded_timeout == USB3_LPM_DISABLED);
4706 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4707 hub_encoded_timeout == USB3_LPM_DISABLED);
4708
4709 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4710 hub_encoded_timeout != USB3_LPM_DISABLED);
4711 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4712 hub_encoded_timeout != USB3_LPM_DISABLED);
4713
4714 /* If U1 was already enabled and we're not disabling it,
4715 * or we're going to enable U1, account for the U1 max exit latency.
4716 */
4717 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4718 enabling_u1)
4719 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4720 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4721 enabling_u2)
4722 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4723
4724 if (u1_mel_us > u2_mel_us)
4725 mel_us = u1_mel_us;
4726 else
4727 mel_us = u2_mel_us;
4728 /* xHCI host controller max exit latency field is only 16 bits wide. */
4729 if (mel_us > MAX_EXIT) {
4730 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4731 "is too big.\n", mel_us);
4732 return -E2BIG;
4733 }
4734 return mel_us;
4735 }
4736
4737 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4738 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4739 struct usb_device *udev, enum usb3_link_state state)
4740 {
4741 struct xhci_hcd *xhci;
4742 u16 hub_encoded_timeout;
4743 int mel;
4744 int ret;
4745
4746 xhci = hcd_to_xhci(hcd);
4747 /* The LPM timeout values are pretty host-controller specific, so don't
4748 * enable hub-initiated timeouts unless the vendor has provided
4749 * information about their timeout algorithm.
4750 */
4751 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4752 !xhci->devs[udev->slot_id])
4753 return USB3_LPM_DISABLED;
4754
4755 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4756 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4757 if (mel < 0) {
4758 /* Max Exit Latency is too big, disable LPM. */
4759 hub_encoded_timeout = USB3_LPM_DISABLED;
4760 mel = 0;
4761 }
4762
4763 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4764 if (ret)
4765 return ret;
4766 return hub_encoded_timeout;
4767 }
4768
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4769 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4770 struct usb_device *udev, enum usb3_link_state state)
4771 {
4772 struct xhci_hcd *xhci;
4773 u16 mel;
4774
4775 xhci = hcd_to_xhci(hcd);
4776 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4777 !xhci->devs[udev->slot_id])
4778 return 0;
4779
4780 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4781 return xhci_change_max_exit_latency(xhci, udev, mel);
4782 }
4783 #else /* CONFIG_PM */
4784
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4785 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4786 struct usb_device *udev, int enable)
4787 {
4788 return 0;
4789 }
4790
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4791 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4792 {
4793 return 0;
4794 }
4795
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4796 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4797 struct usb_device *udev, enum usb3_link_state state)
4798 {
4799 return USB3_LPM_DISABLED;
4800 }
4801
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4802 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4803 struct usb_device *udev, enum usb3_link_state state)
4804 {
4805 return 0;
4806 }
4807 #endif /* CONFIG_PM */
4808
4809 /*-------------------------------------------------------------------------*/
4810
4811 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4812 * internal data structures for the device.
4813 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)4814 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4815 struct usb_tt *tt, gfp_t mem_flags)
4816 {
4817 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4818 struct xhci_virt_device *vdev;
4819 struct xhci_command *config_cmd;
4820 struct xhci_input_control_ctx *ctrl_ctx;
4821 struct xhci_slot_ctx *slot_ctx;
4822 unsigned long flags;
4823 unsigned think_time;
4824 int ret;
4825
4826 /* Ignore root hubs */
4827 if (!hdev->parent)
4828 return 0;
4829
4830 vdev = xhci->devs[hdev->slot_id];
4831 if (!vdev) {
4832 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4833 return -EINVAL;
4834 }
4835 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4836 if (!config_cmd) {
4837 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4838 return -ENOMEM;
4839 }
4840 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4841 if (!ctrl_ctx) {
4842 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4843 __func__);
4844 xhci_free_command(xhci, config_cmd);
4845 return -ENOMEM;
4846 }
4847
4848 spin_lock_irqsave(&xhci->lock, flags);
4849 if (hdev->speed == USB_SPEED_HIGH &&
4850 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4851 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4852 xhci_free_command(xhci, config_cmd);
4853 spin_unlock_irqrestore(&xhci->lock, flags);
4854 return -ENOMEM;
4855 }
4856
4857 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4858 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4859 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4860 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4861 /*
4862 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4863 * but it may be already set to 1 when setup an xHCI virtual
4864 * device, so clear it anyway.
4865 */
4866 if (tt->multi)
4867 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4868 else if (hdev->speed == USB_SPEED_FULL)
4869 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4870
4871 if (xhci->hci_version > 0x95) {
4872 xhci_dbg(xhci, "xHCI version %x needs hub "
4873 "TT think time and number of ports\n",
4874 (unsigned int) xhci->hci_version);
4875 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4876 /* Set TT think time - convert from ns to FS bit times.
4877 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4878 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4879 *
4880 * xHCI 1.0: this field shall be 0 if the device is not a
4881 * High-spped hub.
4882 */
4883 think_time = tt->think_time;
4884 if (think_time != 0)
4885 think_time = (think_time / 666) - 1;
4886 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4887 slot_ctx->tt_info |=
4888 cpu_to_le32(TT_THINK_TIME(think_time));
4889 } else {
4890 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4891 "TT think time or number of ports\n",
4892 (unsigned int) xhci->hci_version);
4893 }
4894 slot_ctx->dev_state = 0;
4895 spin_unlock_irqrestore(&xhci->lock, flags);
4896
4897 xhci_dbg(xhci, "Set up %s for hub device.\n",
4898 (xhci->hci_version > 0x95) ?
4899 "configure endpoint" : "evaluate context");
4900 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4901 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4902
4903 /* Issue and wait for the configure endpoint or
4904 * evaluate context command.
4905 */
4906 if (xhci->hci_version > 0x95)
4907 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4908 false, false);
4909 else
4910 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4911 true, false);
4912
4913 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4914 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4915
4916 xhci_free_command(xhci, config_cmd);
4917 return ret;
4918 }
4919
xhci_get_frame(struct usb_hcd * hcd)4920 int xhci_get_frame(struct usb_hcd *hcd)
4921 {
4922 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4923 /* EHCI mods by the periodic size. Why? */
4924 return readl(&xhci->run_regs->microframe_index) >> 3;
4925 }
4926
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)4927 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4928 {
4929 struct xhci_hcd *xhci;
4930 struct device *dev = hcd->self.controller;
4931 int retval;
4932
4933 /* Accept arbitrarily long scatter-gather lists */
4934 hcd->self.sg_tablesize = ~0;
4935
4936 /* support to build packet from discontinuous buffers */
4937 hcd->self.no_sg_constraint = 1;
4938
4939 /* XHCI controllers don't stop the ep queue on short packets :| */
4940 hcd->self.no_stop_on_short = 1;
4941
4942 xhci = hcd_to_xhci(hcd);
4943
4944 if (usb_hcd_is_primary_hcd(hcd)) {
4945 xhci->main_hcd = hcd;
4946 /* Mark the first roothub as being USB 2.0.
4947 * The xHCI driver will register the USB 3.0 roothub.
4948 */
4949 hcd->speed = HCD_USB2;
4950 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4951 /*
4952 * USB 2.0 roothub under xHCI has an integrated TT,
4953 * (rate matching hub) as opposed to having an OHCI/UHCI
4954 * companion controller.
4955 */
4956 hcd->has_tt = 1;
4957 } else {
4958 if (xhci->sbrn == 0x31) {
4959 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4960 hcd->speed = HCD_USB31;
4961 }
4962 /* xHCI private pointer was set in xhci_pci_probe for the second
4963 * registered roothub.
4964 */
4965 return 0;
4966 }
4967
4968 mutex_init(&xhci->mutex);
4969 xhci->cap_regs = hcd->regs;
4970 xhci->op_regs = hcd->regs +
4971 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4972 xhci->run_regs = hcd->regs +
4973 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4974 /* Cache read-only capability registers */
4975 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4976 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4977 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4978 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4979 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4980 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4981 if (xhci->hci_version > 0x100)
4982 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4983 xhci_print_registers(xhci);
4984
4985 xhci->quirks = quirks;
4986
4987 get_quirks(dev, xhci);
4988
4989 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4990 * success event after a short transfer. This quirk will ignore such
4991 * spurious event.
4992 */
4993 if (xhci->hci_version > 0x96)
4994 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4995
4996 /* Make sure the HC is halted. */
4997 retval = xhci_halt(xhci);
4998 if (retval)
4999 return retval;
5000
5001 xhci_dbg(xhci, "Resetting HCD\n");
5002 /* Reset the internal HC memory state and registers. */
5003 retval = xhci_reset(xhci);
5004 if (retval)
5005 return retval;
5006 xhci_dbg(xhci, "Reset complete\n");
5007
5008 /* Set dma_mask and coherent_dma_mask to 64-bits,
5009 * if xHC supports 64-bit addressing */
5010 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5011 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5012 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5013 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5014 } else {
5015 /*
5016 * This is to avoid error in cases where a 32-bit USB
5017 * controller is used on a 64-bit capable system.
5018 */
5019 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5020 if (retval)
5021 return retval;
5022 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5023 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5024 }
5025
5026 xhci_dbg(xhci, "Calling HCD init\n");
5027 /* Initialize HCD and host controller data structures. */
5028 retval = xhci_init(hcd);
5029 if (retval)
5030 return retval;
5031 xhci_dbg(xhci, "Called HCD init\n");
5032
5033 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
5034 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5035
5036 return 0;
5037 }
5038 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5039
5040 static const struct hc_driver xhci_hc_driver = {
5041 .description = "xhci-hcd",
5042 .product_desc = "xHCI Host Controller",
5043 .hcd_priv_size = sizeof(struct xhci_hcd *),
5044
5045 /*
5046 * generic hardware linkage
5047 */
5048 .irq = xhci_irq,
5049 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5050
5051 /*
5052 * basic lifecycle operations
5053 */
5054 .reset = NULL, /* set in xhci_init_driver() */
5055 .start = xhci_run,
5056 .stop = xhci_stop,
5057 .shutdown = xhci_shutdown,
5058
5059 /*
5060 * managing i/o requests and associated device resources
5061 */
5062 .urb_enqueue = xhci_urb_enqueue,
5063 .urb_dequeue = xhci_urb_dequeue,
5064 .alloc_dev = xhci_alloc_dev,
5065 .free_dev = xhci_free_dev,
5066 .alloc_streams = xhci_alloc_streams,
5067 .free_streams = xhci_free_streams,
5068 .add_endpoint = xhci_add_endpoint,
5069 .drop_endpoint = xhci_drop_endpoint,
5070 .endpoint_reset = xhci_endpoint_reset,
5071 .check_bandwidth = xhci_check_bandwidth,
5072 .reset_bandwidth = xhci_reset_bandwidth,
5073 .address_device = xhci_address_device,
5074 .enable_device = xhci_enable_device,
5075 .update_hub_device = xhci_update_hub_device,
5076 .reset_device = xhci_discover_or_reset_device,
5077
5078 /*
5079 * scheduling support
5080 */
5081 .get_frame_number = xhci_get_frame,
5082
5083 /*
5084 * root hub support
5085 */
5086 .hub_control = xhci_hub_control,
5087 .hub_status_data = xhci_hub_status_data,
5088 .bus_suspend = xhci_bus_suspend,
5089 .bus_resume = xhci_bus_resume,
5090
5091 /*
5092 * call back when device connected and addressed
5093 */
5094 .update_device = xhci_update_device,
5095 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5096 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5097 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5098 .find_raw_port_number = xhci_find_raw_port_number,
5099 };
5100
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5101 void xhci_init_driver(struct hc_driver *drv,
5102 const struct xhci_driver_overrides *over)
5103 {
5104 BUG_ON(!over);
5105
5106 /* Copy the generic table to drv then apply the overrides */
5107 *drv = xhci_hc_driver;
5108
5109 if (over) {
5110 drv->hcd_priv_size += over->extra_priv_size;
5111 if (over->reset)
5112 drv->reset = over->reset;
5113 if (over->start)
5114 drv->start = over->start;
5115 }
5116 }
5117 EXPORT_SYMBOL_GPL(xhci_init_driver);
5118
5119 MODULE_DESCRIPTION(DRIVER_DESC);
5120 MODULE_AUTHOR(DRIVER_AUTHOR);
5121 MODULE_LICENSE("GPL");
5122
xhci_hcd_init(void)5123 static int __init xhci_hcd_init(void)
5124 {
5125 /*
5126 * Check the compiler generated sizes of structures that must be laid
5127 * out in specific ways for hardware access.
5128 */
5129 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5130 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5131 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5132 /* xhci_device_control has eight fields, and also
5133 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5134 */
5135 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5136 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5137 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5138 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5139 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5140 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5141 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5142
5143 if (usb_disabled())
5144 return -ENODEV;
5145
5146 return 0;
5147 }
5148
5149 /*
5150 * If an init function is provided, an exit function must also be provided
5151 * to allow module unload.
5152 */
xhci_hcd_fini(void)5153 static void __exit xhci_hcd_fini(void) { }
5154
5155 module_init(xhci_hcd_init);
5156 module_exit(xhci_hcd_fini);
5157