• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55 
56 #include "internal.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60 
61 struct scan_control {
62 	/* How many pages shrink_list() should reclaim */
63 	unsigned long nr_to_reclaim;
64 
65 	/* This context's GFP mask */
66 	gfp_t gfp_mask;
67 
68 	/* Allocation order */
69 	int order;
70 
71 	/*
72 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 	 * are scanned.
74 	 */
75 	nodemask_t	*nodemask;
76 
77 	/*
78 	 * The memory cgroup that hit its limit and as a result is the
79 	 * primary target of this reclaim invocation.
80 	 */
81 	struct mem_cgroup *target_mem_cgroup;
82 
83 	/* Scan (total_size >> priority) pages at once */
84 	int priority;
85 
86 	unsigned int may_writepage:1;
87 
88 	/* Can mapped pages be reclaimed? */
89 	unsigned int may_unmap:1;
90 
91 	/* Can pages be swapped as part of reclaim? */
92 	unsigned int may_swap:1;
93 
94 	/* Can cgroups be reclaimed below their normal consumption range? */
95 	unsigned int may_thrash:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Incremented by the number of inactive pages that were scanned */
103 	unsigned long nr_scanned;
104 
105 	/* Number of pages freed so far during a call to shrink_zones() */
106 	unsigned long nr_reclaimed;
107 };
108 
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110 
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field)			\
113 	do {								\
114 		if ((_page)->lru.prev != _base) {			\
115 			struct page *prev;				\
116 									\
117 			prev = lru_to_page(&(_page->lru));		\
118 			prefetch(&prev->_field);			\
119 		}							\
120 	} while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124 
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetchw(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 /*
140  * From 0 .. 100.  Higher means more swappy.
141  */
142 int vm_swappiness = 60;
143 /*
144  * The total number of pages which are beyond the high watermark within all
145  * zones.
146  */
147 unsigned long vm_total_pages;
148 
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151 
152 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)153 static bool global_reclaim(struct scan_control *sc)
154 {
155 	return !sc->target_mem_cgroup;
156 }
157 
158 /**
159  * sane_reclaim - is the usual dirty throttling mechanism operational?
160  * @sc: scan_control in question
161  *
162  * The normal page dirty throttling mechanism in balance_dirty_pages() is
163  * completely broken with the legacy memcg and direct stalling in
164  * shrink_page_list() is used for throttling instead, which lacks all the
165  * niceties such as fairness, adaptive pausing, bandwidth proportional
166  * allocation and configurability.
167  *
168  * This function tests whether the vmscan currently in progress can assume
169  * that the normal dirty throttling mechanism is operational.
170  */
sane_reclaim(struct scan_control * sc)171 static bool sane_reclaim(struct scan_control *sc)
172 {
173 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
174 
175 	if (!memcg)
176 		return true;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
179 		return true;
180 #endif
181 	return false;
182 }
183 #else
global_reclaim(struct scan_control * sc)184 static bool global_reclaim(struct scan_control *sc)
185 {
186 	return true;
187 }
188 
sane_reclaim(struct scan_control * sc)189 static bool sane_reclaim(struct scan_control *sc)
190 {
191 	return true;
192 }
193 #endif
194 
zone_reclaimable_pages(struct zone * zone)195 static unsigned long zone_reclaimable_pages(struct zone *zone)
196 {
197 	unsigned long nr;
198 
199 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 	     zone_page_state(zone, NR_INACTIVE_FILE);
201 
202 	if (get_nr_swap_pages() > 0)
203 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 		      zone_page_state(zone, NR_INACTIVE_ANON);
205 
206 	return nr;
207 }
208 
zone_reclaimable(struct zone * zone)209 bool zone_reclaimable(struct zone *zone)
210 {
211 	return zone_page_state(zone, NR_PAGES_SCANNED) <
212 		zone_reclaimable_pages(zone) * 6;
213 }
214 
get_lru_size(struct lruvec * lruvec,enum lru_list lru)215 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
216 {
217 	if (!mem_cgroup_disabled())
218 		return mem_cgroup_get_lru_size(lruvec, lru);
219 
220 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
221 }
222 
223 /*
224  * Add a shrinker callback to be called from the vm.
225  */
register_shrinker(struct shrinker * shrinker)226 int register_shrinker(struct shrinker *shrinker)
227 {
228 	size_t size = sizeof(*shrinker->nr_deferred);
229 
230 	/*
231 	 * If we only have one possible node in the system anyway, save
232 	 * ourselves the trouble and disable NUMA aware behavior. This way we
233 	 * will save memory and some small loop time later.
234 	 */
235 	if (nr_node_ids == 1)
236 		shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237 
238 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 		size *= nr_node_ids;
240 
241 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 	if (!shrinker->nr_deferred)
243 		return -ENOMEM;
244 
245 	down_write(&shrinker_rwsem);
246 	list_add_tail(&shrinker->list, &shrinker_list);
247 	up_write(&shrinker_rwsem);
248 	return 0;
249 }
250 EXPORT_SYMBOL(register_shrinker);
251 
252 /*
253  * Remove one
254  */
unregister_shrinker(struct shrinker * shrinker)255 void unregister_shrinker(struct shrinker *shrinker)
256 {
257 	if (!shrinker->nr_deferred)
258 		return;
259 	down_write(&shrinker_rwsem);
260 	list_del(&shrinker->list);
261 	up_write(&shrinker_rwsem);
262 	kfree(shrinker->nr_deferred);
263 	shrinker->nr_deferred = NULL;
264 }
265 EXPORT_SYMBOL(unregister_shrinker);
266 
267 #define SHRINK_BATCH 128
268 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_scanned,unsigned long nr_eligible)269 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
270 				    struct shrinker *shrinker,
271 				    unsigned long nr_scanned,
272 				    unsigned long nr_eligible)
273 {
274 	unsigned long freed = 0;
275 	unsigned long long delta;
276 	long total_scan;
277 	long freeable;
278 	long nr;
279 	long new_nr;
280 	int nid = shrinkctl->nid;
281 	long batch_size = shrinker->batch ? shrinker->batch
282 					  : SHRINK_BATCH;
283 	long scanned = 0, next_deferred;
284 
285 	freeable = shrinker->count_objects(shrinker, shrinkctl);
286 	if (freeable == 0)
287 		return 0;
288 
289 	/*
290 	 * copy the current shrinker scan count into a local variable
291 	 * and zero it so that other concurrent shrinker invocations
292 	 * don't also do this scanning work.
293 	 */
294 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
295 
296 	total_scan = nr;
297 	delta = (4 * nr_scanned) / shrinker->seeks;
298 	delta *= freeable;
299 	do_div(delta, nr_eligible + 1);
300 	total_scan += delta;
301 	if (total_scan < 0) {
302 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
303 		       shrinker->scan_objects, total_scan);
304 		total_scan = freeable;
305 		next_deferred = nr;
306 	} else
307 		next_deferred = total_scan;
308 
309 	/*
310 	 * We need to avoid excessive windup on filesystem shrinkers
311 	 * due to large numbers of GFP_NOFS allocations causing the
312 	 * shrinkers to return -1 all the time. This results in a large
313 	 * nr being built up so when a shrink that can do some work
314 	 * comes along it empties the entire cache due to nr >>>
315 	 * freeable. This is bad for sustaining a working set in
316 	 * memory.
317 	 *
318 	 * Hence only allow the shrinker to scan the entire cache when
319 	 * a large delta change is calculated directly.
320 	 */
321 	if (delta < freeable / 4)
322 		total_scan = min(total_scan, freeable / 2);
323 
324 	/*
325 	 * Avoid risking looping forever due to too large nr value:
326 	 * never try to free more than twice the estimate number of
327 	 * freeable entries.
328 	 */
329 	if (total_scan > freeable * 2)
330 		total_scan = freeable * 2;
331 
332 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
333 				   nr_scanned, nr_eligible,
334 				   freeable, delta, total_scan);
335 
336 	/*
337 	 * Normally, we should not scan less than batch_size objects in one
338 	 * pass to avoid too frequent shrinker calls, but if the slab has less
339 	 * than batch_size objects in total and we are really tight on memory,
340 	 * we will try to reclaim all available objects, otherwise we can end
341 	 * up failing allocations although there are plenty of reclaimable
342 	 * objects spread over several slabs with usage less than the
343 	 * batch_size.
344 	 *
345 	 * We detect the "tight on memory" situations by looking at the total
346 	 * number of objects we want to scan (total_scan). If it is greater
347 	 * than the total number of objects on slab (freeable), we must be
348 	 * scanning at high prio and therefore should try to reclaim as much as
349 	 * possible.
350 	 */
351 	while (total_scan >= batch_size ||
352 	       total_scan >= freeable) {
353 		unsigned long ret;
354 		unsigned long nr_to_scan = min(batch_size, total_scan);
355 
356 		shrinkctl->nr_to_scan = nr_to_scan;
357 		ret = shrinker->scan_objects(shrinker, shrinkctl);
358 		if (ret == SHRINK_STOP)
359 			break;
360 		freed += ret;
361 
362 		count_vm_events(SLABS_SCANNED, nr_to_scan);
363 		total_scan -= nr_to_scan;
364 		scanned += nr_to_scan;
365 
366 		cond_resched();
367 	}
368 
369 	if (next_deferred >= scanned)
370 		next_deferred -= scanned;
371 	else
372 		next_deferred = 0;
373 	/*
374 	 * move the unused scan count back into the shrinker in a
375 	 * manner that handles concurrent updates. If we exhausted the
376 	 * scan, there is no need to do an update.
377 	 */
378 	if (next_deferred > 0)
379 		new_nr = atomic_long_add_return(next_deferred,
380 						&shrinker->nr_deferred[nid]);
381 	else
382 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
383 
384 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
385 	return freed;
386 }
387 
388 /**
389  * shrink_slab - shrink slab caches
390  * @gfp_mask: allocation context
391  * @nid: node whose slab caches to target
392  * @memcg: memory cgroup whose slab caches to target
393  * @nr_scanned: pressure numerator
394  * @nr_eligible: pressure denominator
395  *
396  * Call the shrink functions to age shrinkable caches.
397  *
398  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
399  * unaware shrinkers will receive a node id of 0 instead.
400  *
401  * @memcg specifies the memory cgroup to target. If it is not NULL,
402  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
403  * objects from the memory cgroup specified. Otherwise all shrinkers
404  * are called, and memcg aware shrinkers are supposed to scan the
405  * global list then.
406  *
407  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
408  * the available objects should be scanned.  Page reclaim for example
409  * passes the number of pages scanned and the number of pages on the
410  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
411  * when it encountered mapped pages.  The ratio is further biased by
412  * the ->seeks setting of the shrink function, which indicates the
413  * cost to recreate an object relative to that of an LRU page.
414  *
415  * Returns the number of reclaimed slab objects.
416  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,unsigned long nr_scanned,unsigned long nr_eligible)417 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
418 				 struct mem_cgroup *memcg,
419 				 unsigned long nr_scanned,
420 				 unsigned long nr_eligible)
421 {
422 	struct shrinker *shrinker;
423 	unsigned long freed = 0;
424 
425 	if (memcg && !memcg_kmem_is_active(memcg))
426 		return 0;
427 
428 	if (nr_scanned == 0)
429 		nr_scanned = SWAP_CLUSTER_MAX;
430 
431 	if (!down_read_trylock(&shrinker_rwsem)) {
432 		/*
433 		 * If we would return 0, our callers would understand that we
434 		 * have nothing else to shrink and give up trying. By returning
435 		 * 1 we keep it going and assume we'll be able to shrink next
436 		 * time.
437 		 */
438 		freed = 1;
439 		goto out;
440 	}
441 
442 	list_for_each_entry(shrinker, &shrinker_list, list) {
443 		struct shrink_control sc = {
444 			.gfp_mask = gfp_mask,
445 			.nid = nid,
446 			.memcg = memcg,
447 		};
448 
449 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
450 			continue;
451 
452 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
453 			sc.nid = 0;
454 
455 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
456 	}
457 
458 	up_read(&shrinker_rwsem);
459 out:
460 	cond_resched();
461 	return freed;
462 }
463 
drop_slab_node(int nid)464 void drop_slab_node(int nid)
465 {
466 	unsigned long freed;
467 
468 	do {
469 		struct mem_cgroup *memcg = NULL;
470 
471 		freed = 0;
472 		do {
473 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
474 					     1000, 1000);
475 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
476 	} while (freed > 10);
477 }
478 
drop_slab(void)479 void drop_slab(void)
480 {
481 	int nid;
482 
483 	for_each_online_node(nid)
484 		drop_slab_node(nid);
485 }
486 
is_page_cache_freeable(struct page * page)487 static inline int is_page_cache_freeable(struct page *page)
488 {
489 	/*
490 	 * A freeable page cache page is referenced only by the caller
491 	 * that isolated the page, the page cache radix tree and
492 	 * optional buffer heads at page->private.
493 	 */
494 	return page_count(page) - page_has_private(page) == 2;
495 }
496 
may_write_to_inode(struct inode * inode,struct scan_control * sc)497 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
498 {
499 	if (current->flags & PF_SWAPWRITE)
500 		return 1;
501 	if (!inode_write_congested(inode))
502 		return 1;
503 	if (inode_to_bdi(inode) == current->backing_dev_info)
504 		return 1;
505 	return 0;
506 }
507 
508 /*
509  * We detected a synchronous write error writing a page out.  Probably
510  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
511  * fsync(), msync() or close().
512  *
513  * The tricky part is that after writepage we cannot touch the mapping: nothing
514  * prevents it from being freed up.  But we have a ref on the page and once
515  * that page is locked, the mapping is pinned.
516  *
517  * We're allowed to run sleeping lock_page() here because we know the caller has
518  * __GFP_FS.
519  */
handle_write_error(struct address_space * mapping,struct page * page,int error)520 static void handle_write_error(struct address_space *mapping,
521 				struct page *page, int error)
522 {
523 	lock_page(page);
524 	if (page_mapping(page) == mapping)
525 		mapping_set_error(mapping, error);
526 	unlock_page(page);
527 }
528 
529 /* possible outcome of pageout() */
530 typedef enum {
531 	/* failed to write page out, page is locked */
532 	PAGE_KEEP,
533 	/* move page to the active list, page is locked */
534 	PAGE_ACTIVATE,
535 	/* page has been sent to the disk successfully, page is unlocked */
536 	PAGE_SUCCESS,
537 	/* page is clean and locked */
538 	PAGE_CLEAN,
539 } pageout_t;
540 
541 /*
542  * pageout is called by shrink_page_list() for each dirty page.
543  * Calls ->writepage().
544  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)545 static pageout_t pageout(struct page *page, struct address_space *mapping,
546 			 struct scan_control *sc)
547 {
548 	/*
549 	 * If the page is dirty, only perform writeback if that write
550 	 * will be non-blocking.  To prevent this allocation from being
551 	 * stalled by pagecache activity.  But note that there may be
552 	 * stalls if we need to run get_block().  We could test
553 	 * PagePrivate for that.
554 	 *
555 	 * If this process is currently in __generic_file_write_iter() against
556 	 * this page's queue, we can perform writeback even if that
557 	 * will block.
558 	 *
559 	 * If the page is swapcache, write it back even if that would
560 	 * block, for some throttling. This happens by accident, because
561 	 * swap_backing_dev_info is bust: it doesn't reflect the
562 	 * congestion state of the swapdevs.  Easy to fix, if needed.
563 	 */
564 	if (!is_page_cache_freeable(page))
565 		return PAGE_KEEP;
566 	if (!mapping) {
567 		/*
568 		 * Some data journaling orphaned pages can have
569 		 * page->mapping == NULL while being dirty with clean buffers.
570 		 */
571 		if (page_has_private(page)) {
572 			if (try_to_free_buffers(page)) {
573 				ClearPageDirty(page);
574 				pr_info("%s: orphaned page\n", __func__);
575 				return PAGE_CLEAN;
576 			}
577 		}
578 		return PAGE_KEEP;
579 	}
580 	if (mapping->a_ops->writepage == NULL)
581 		return PAGE_ACTIVATE;
582 	if (!may_write_to_inode(mapping->host, sc))
583 		return PAGE_KEEP;
584 
585 	if (clear_page_dirty_for_io(page)) {
586 		int res;
587 		struct writeback_control wbc = {
588 			.sync_mode = WB_SYNC_NONE,
589 			.nr_to_write = SWAP_CLUSTER_MAX,
590 			.range_start = 0,
591 			.range_end = LLONG_MAX,
592 			.for_reclaim = 1,
593 		};
594 
595 		SetPageReclaim(page);
596 		res = mapping->a_ops->writepage(page, &wbc);
597 		if (res < 0)
598 			handle_write_error(mapping, page, res);
599 		if (res == AOP_WRITEPAGE_ACTIVATE) {
600 			ClearPageReclaim(page);
601 			return PAGE_ACTIVATE;
602 		}
603 
604 		if (!PageWriteback(page)) {
605 			/* synchronous write or broken a_ops? */
606 			ClearPageReclaim(page);
607 		}
608 		trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
609 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
610 		return PAGE_SUCCESS;
611 	}
612 
613 	return PAGE_CLEAN;
614 }
615 
616 /*
617  * Same as remove_mapping, but if the page is removed from the mapping, it
618  * gets returned with a refcount of 0.
619  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)620 static int __remove_mapping(struct address_space *mapping, struct page *page,
621 			    bool reclaimed)
622 {
623 	unsigned long flags;
624 	struct mem_cgroup *memcg;
625 
626 	BUG_ON(!PageLocked(page));
627 	BUG_ON(mapping != page_mapping(page));
628 
629 	memcg = mem_cgroup_begin_page_stat(page);
630 	spin_lock_irqsave(&mapping->tree_lock, flags);
631 	/*
632 	 * The non racy check for a busy page.
633 	 *
634 	 * Must be careful with the order of the tests. When someone has
635 	 * a ref to the page, it may be possible that they dirty it then
636 	 * drop the reference. So if PageDirty is tested before page_count
637 	 * here, then the following race may occur:
638 	 *
639 	 * get_user_pages(&page);
640 	 * [user mapping goes away]
641 	 * write_to(page);
642 	 *				!PageDirty(page)    [good]
643 	 * SetPageDirty(page);
644 	 * put_page(page);
645 	 *				!page_count(page)   [good, discard it]
646 	 *
647 	 * [oops, our write_to data is lost]
648 	 *
649 	 * Reversing the order of the tests ensures such a situation cannot
650 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
651 	 * load is not satisfied before that of page->_count.
652 	 *
653 	 * Note that if SetPageDirty is always performed via set_page_dirty,
654 	 * and thus under tree_lock, then this ordering is not required.
655 	 */
656 	if (!page_freeze_refs(page, 2))
657 		goto cannot_free;
658 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
659 	if (unlikely(PageDirty(page))) {
660 		page_unfreeze_refs(page, 2);
661 		goto cannot_free;
662 	}
663 
664 	if (PageSwapCache(page)) {
665 		swp_entry_t swap = { .val = page_private(page) };
666 		mem_cgroup_swapout(page, swap);
667 		__delete_from_swap_cache(page);
668 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
669 		mem_cgroup_end_page_stat(memcg);
670 		swapcache_free(swap);
671 	} else {
672 		void (*freepage)(struct page *);
673 		void *shadow = NULL;
674 
675 		freepage = mapping->a_ops->freepage;
676 		/*
677 		 * Remember a shadow entry for reclaimed file cache in
678 		 * order to detect refaults, thus thrashing, later on.
679 		 *
680 		 * But don't store shadows in an address space that is
681 		 * already exiting.  This is not just an optizimation,
682 		 * inode reclaim needs to empty out the radix tree or
683 		 * the nodes are lost.  Don't plant shadows behind its
684 		 * back.
685 		 */
686 		if (reclaimed && page_is_file_cache(page) &&
687 		    !mapping_exiting(mapping))
688 			shadow = workingset_eviction(mapping, page);
689 		__delete_from_page_cache(page, shadow, memcg);
690 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
691 		mem_cgroup_end_page_stat(memcg);
692 
693 		if (freepage != NULL)
694 			freepage(page);
695 	}
696 
697 	return 1;
698 
699 cannot_free:
700 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
701 	mem_cgroup_end_page_stat(memcg);
702 	return 0;
703 }
704 
705 /*
706  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
707  * someone else has a ref on the page, abort and return 0.  If it was
708  * successfully detached, return 1.  Assumes the caller has a single ref on
709  * this page.
710  */
remove_mapping(struct address_space * mapping,struct page * page)711 int remove_mapping(struct address_space *mapping, struct page *page)
712 {
713 	if (__remove_mapping(mapping, page, false)) {
714 		/*
715 		 * Unfreezing the refcount with 1 rather than 2 effectively
716 		 * drops the pagecache ref for us without requiring another
717 		 * atomic operation.
718 		 */
719 		page_unfreeze_refs(page, 1);
720 		return 1;
721 	}
722 	return 0;
723 }
724 
725 /**
726  * putback_lru_page - put previously isolated page onto appropriate LRU list
727  * @page: page to be put back to appropriate lru list
728  *
729  * Add previously isolated @page to appropriate LRU list.
730  * Page may still be unevictable for other reasons.
731  *
732  * lru_lock must not be held, interrupts must be enabled.
733  */
putback_lru_page(struct page * page)734 void putback_lru_page(struct page *page)
735 {
736 	bool is_unevictable;
737 	int was_unevictable = PageUnevictable(page);
738 
739 	VM_BUG_ON_PAGE(PageLRU(page), page);
740 
741 redo:
742 	ClearPageUnevictable(page);
743 
744 	if (page_evictable(page)) {
745 		/*
746 		 * For evictable pages, we can use the cache.
747 		 * In event of a race, worst case is we end up with an
748 		 * unevictable page on [in]active list.
749 		 * We know how to handle that.
750 		 */
751 		is_unevictable = false;
752 		lru_cache_add(page);
753 	} else {
754 		/*
755 		 * Put unevictable pages directly on zone's unevictable
756 		 * list.
757 		 */
758 		is_unevictable = true;
759 		add_page_to_unevictable_list(page);
760 		/*
761 		 * When racing with an mlock or AS_UNEVICTABLE clearing
762 		 * (page is unlocked) make sure that if the other thread
763 		 * does not observe our setting of PG_lru and fails
764 		 * isolation/check_move_unevictable_pages,
765 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
766 		 * the page back to the evictable list.
767 		 *
768 		 * The other side is TestClearPageMlocked() or shmem_lock().
769 		 */
770 		smp_mb();
771 	}
772 
773 	/*
774 	 * page's status can change while we move it among lru. If an evictable
775 	 * page is on unevictable list, it never be freed. To avoid that,
776 	 * check after we added it to the list, again.
777 	 */
778 	if (is_unevictable && page_evictable(page)) {
779 		if (!isolate_lru_page(page)) {
780 			put_page(page);
781 			goto redo;
782 		}
783 		/* This means someone else dropped this page from LRU
784 		 * So, it will be freed or putback to LRU again. There is
785 		 * nothing to do here.
786 		 */
787 	}
788 
789 	if (was_unevictable && !is_unevictable)
790 		count_vm_event(UNEVICTABLE_PGRESCUED);
791 	else if (!was_unevictable && is_unevictable)
792 		count_vm_event(UNEVICTABLE_PGCULLED);
793 
794 	put_page(page);		/* drop ref from isolate */
795 }
796 
797 enum page_references {
798 	PAGEREF_RECLAIM,
799 	PAGEREF_RECLAIM_CLEAN,
800 	PAGEREF_KEEP,
801 	PAGEREF_ACTIVATE,
802 };
803 
page_check_references(struct page * page,struct scan_control * sc)804 static enum page_references page_check_references(struct page *page,
805 						  struct scan_control *sc)
806 {
807 	int referenced_ptes, referenced_page;
808 	unsigned long vm_flags;
809 
810 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
811 					  &vm_flags);
812 	referenced_page = TestClearPageReferenced(page);
813 
814 	/*
815 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
816 	 * move the page to the unevictable list.
817 	 */
818 	if (vm_flags & VM_LOCKED)
819 		return PAGEREF_RECLAIM;
820 
821 	if (referenced_ptes) {
822 		if (PageSwapBacked(page))
823 			return PAGEREF_ACTIVATE;
824 		/*
825 		 * All mapped pages start out with page table
826 		 * references from the instantiating fault, so we need
827 		 * to look twice if a mapped file page is used more
828 		 * than once.
829 		 *
830 		 * Mark it and spare it for another trip around the
831 		 * inactive list.  Another page table reference will
832 		 * lead to its activation.
833 		 *
834 		 * Note: the mark is set for activated pages as well
835 		 * so that recently deactivated but used pages are
836 		 * quickly recovered.
837 		 */
838 		SetPageReferenced(page);
839 
840 		if (referenced_page || referenced_ptes > 1)
841 			return PAGEREF_ACTIVATE;
842 
843 		/*
844 		 * Activate file-backed executable pages after first usage.
845 		 */
846 		if (vm_flags & VM_EXEC)
847 			return PAGEREF_ACTIVATE;
848 
849 		return PAGEREF_KEEP;
850 	}
851 
852 	/* Reclaim if clean, defer dirty pages to writeback */
853 	if (referenced_page && !PageSwapBacked(page))
854 		return PAGEREF_RECLAIM_CLEAN;
855 
856 	return PAGEREF_RECLAIM;
857 }
858 
859 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)860 static void page_check_dirty_writeback(struct page *page,
861 				       bool *dirty, bool *writeback)
862 {
863 	struct address_space *mapping;
864 
865 	/*
866 	 * Anonymous pages are not handled by flushers and must be written
867 	 * from reclaim context. Do not stall reclaim based on them
868 	 */
869 	if (!page_is_file_cache(page)) {
870 		*dirty = false;
871 		*writeback = false;
872 		return;
873 	}
874 
875 	/* By default assume that the page flags are accurate */
876 	*dirty = PageDirty(page);
877 	*writeback = PageWriteback(page);
878 
879 	/* Verify dirty/writeback state if the filesystem supports it */
880 	if (!page_has_private(page))
881 		return;
882 
883 	mapping = page_mapping(page);
884 	if (mapping && mapping->a_ops->is_dirty_writeback)
885 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
886 }
887 
888 /*
889  * shrink_page_list() returns the number of reclaimed pages
890  */
shrink_page_list(struct list_head * page_list,struct zone * zone,struct scan_control * sc,enum ttu_flags ttu_flags,unsigned long * ret_nr_dirty,unsigned long * ret_nr_unqueued_dirty,unsigned long * ret_nr_congested,unsigned long * ret_nr_writeback,unsigned long * ret_nr_immediate,bool force_reclaim)891 static unsigned long shrink_page_list(struct list_head *page_list,
892 				      struct zone *zone,
893 				      struct scan_control *sc,
894 				      enum ttu_flags ttu_flags,
895 				      unsigned long *ret_nr_dirty,
896 				      unsigned long *ret_nr_unqueued_dirty,
897 				      unsigned long *ret_nr_congested,
898 				      unsigned long *ret_nr_writeback,
899 				      unsigned long *ret_nr_immediate,
900 				      bool force_reclaim)
901 {
902 	LIST_HEAD(ret_pages);
903 	LIST_HEAD(free_pages);
904 	int pgactivate = 0;
905 	unsigned long nr_unqueued_dirty = 0;
906 	unsigned long nr_dirty = 0;
907 	unsigned long nr_congested = 0;
908 	unsigned long nr_reclaimed = 0;
909 	unsigned long nr_writeback = 0;
910 	unsigned long nr_immediate = 0;
911 
912 	cond_resched();
913 
914 	while (!list_empty(page_list)) {
915 		struct address_space *mapping;
916 		struct page *page;
917 		int may_enter_fs;
918 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
919 		bool dirty, writeback;
920 
921 		cond_resched();
922 
923 		page = lru_to_page(page_list);
924 		list_del(&page->lru);
925 
926 		if (!trylock_page(page))
927 			goto keep;
928 
929 		VM_BUG_ON_PAGE(PageActive(page), page);
930 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
931 
932 		sc->nr_scanned++;
933 
934 		if (unlikely(!page_evictable(page)))
935 			goto cull_mlocked;
936 
937 		if (!sc->may_unmap && page_mapped(page))
938 			goto keep_locked;
939 
940 		/* Double the slab pressure for mapped and swapcache pages */
941 		if (page_mapped(page) || PageSwapCache(page))
942 			sc->nr_scanned++;
943 
944 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
945 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
946 
947 		/*
948 		 * The number of dirty pages determines if a zone is marked
949 		 * reclaim_congested which affects wait_iff_congested. kswapd
950 		 * will stall and start writing pages if the tail of the LRU
951 		 * is all dirty unqueued pages.
952 		 */
953 		page_check_dirty_writeback(page, &dirty, &writeback);
954 		if (dirty || writeback)
955 			nr_dirty++;
956 
957 		if (dirty && !writeback)
958 			nr_unqueued_dirty++;
959 
960 		/*
961 		 * Treat this page as congested if the underlying BDI is or if
962 		 * pages are cycling through the LRU so quickly that the
963 		 * pages marked for immediate reclaim are making it to the
964 		 * end of the LRU a second time.
965 		 */
966 		mapping = page_mapping(page);
967 		if (((dirty || writeback) && mapping &&
968 		     inode_write_congested(mapping->host)) ||
969 		    (writeback && PageReclaim(page)))
970 			nr_congested++;
971 
972 		/*
973 		 * If a page at the tail of the LRU is under writeback, there
974 		 * are three cases to consider.
975 		 *
976 		 * 1) If reclaim is encountering an excessive number of pages
977 		 *    under writeback and this page is both under writeback and
978 		 *    PageReclaim then it indicates that pages are being queued
979 		 *    for IO but are being recycled through the LRU before the
980 		 *    IO can complete. Waiting on the page itself risks an
981 		 *    indefinite stall if it is impossible to writeback the
982 		 *    page due to IO error or disconnected storage so instead
983 		 *    note that the LRU is being scanned too quickly and the
984 		 *    caller can stall after page list has been processed.
985 		 *
986 		 * 2) Global or new memcg reclaim encounters a page that is
987 		 *    not marked for immediate reclaim, or the caller does not
988 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
989 		 *    not to fs). In this case mark the page for immediate
990 		 *    reclaim and continue scanning.
991 		 *
992 		 *    Require may_enter_fs because we would wait on fs, which
993 		 *    may not have submitted IO yet. And the loop driver might
994 		 *    enter reclaim, and deadlock if it waits on a page for
995 		 *    which it is needed to do the write (loop masks off
996 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
997 		 *    would probably show more reasons.
998 		 *
999 		 * 3) Legacy memcg encounters a page that is already marked
1000 		 *    PageReclaim. memcg does not have any dirty pages
1001 		 *    throttling so we could easily OOM just because too many
1002 		 *    pages are in writeback and there is nothing else to
1003 		 *    reclaim. Wait for the writeback to complete.
1004 		 */
1005 		if (PageWriteback(page)) {
1006 			/* Case 1 above */
1007 			if (current_is_kswapd() &&
1008 			    PageReclaim(page) &&
1009 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
1010 				nr_immediate++;
1011 				goto keep_locked;
1012 
1013 			/* Case 2 above */
1014 			} else if (sane_reclaim(sc) ||
1015 			    !PageReclaim(page) || !may_enter_fs) {
1016 				/*
1017 				 * This is slightly racy - end_page_writeback()
1018 				 * might have just cleared PageReclaim, then
1019 				 * setting PageReclaim here end up interpreted
1020 				 * as PageReadahead - but that does not matter
1021 				 * enough to care.  What we do want is for this
1022 				 * page to have PageReclaim set next time memcg
1023 				 * reclaim reaches the tests above, so it will
1024 				 * then wait_on_page_writeback() to avoid OOM;
1025 				 * and it's also appropriate in global reclaim.
1026 				 */
1027 				SetPageReclaim(page);
1028 				nr_writeback++;
1029 				goto keep_locked;
1030 
1031 			/* Case 3 above */
1032 			} else {
1033 				unlock_page(page);
1034 				wait_on_page_writeback(page);
1035 				/* then go back and try same page again */
1036 				list_add_tail(&page->lru, page_list);
1037 				continue;
1038 			}
1039 		}
1040 
1041 		if (!force_reclaim)
1042 			references = page_check_references(page, sc);
1043 
1044 		switch (references) {
1045 		case PAGEREF_ACTIVATE:
1046 			goto activate_locked;
1047 		case PAGEREF_KEEP:
1048 			goto keep_locked;
1049 		case PAGEREF_RECLAIM:
1050 		case PAGEREF_RECLAIM_CLEAN:
1051 			; /* try to reclaim the page below */
1052 		}
1053 
1054 		/*
1055 		 * Anonymous process memory has backing store?
1056 		 * Try to allocate it some swap space here.
1057 		 */
1058 		if (PageAnon(page) && !PageSwapCache(page)) {
1059 			if (!(sc->gfp_mask & __GFP_IO))
1060 				goto keep_locked;
1061 			if (!add_to_swap(page, page_list))
1062 				goto activate_locked;
1063 			may_enter_fs = 1;
1064 
1065 			/* Adding to swap updated mapping */
1066 			mapping = page_mapping(page);
1067 		}
1068 
1069 		/*
1070 		 * The page is mapped into the page tables of one or more
1071 		 * processes. Try to unmap it here.
1072 		 */
1073 		if (page_mapped(page) && mapping) {
1074 			switch (try_to_unmap(page,
1075 					ttu_flags|TTU_BATCH_FLUSH)) {
1076 			case SWAP_FAIL:
1077 				goto activate_locked;
1078 			case SWAP_AGAIN:
1079 				goto keep_locked;
1080 			case SWAP_MLOCK:
1081 				goto cull_mlocked;
1082 			case SWAP_SUCCESS:
1083 				; /* try to free the page below */
1084 			}
1085 		}
1086 
1087 		if (PageDirty(page)) {
1088 			/*
1089 			 * Only kswapd can writeback filesystem pages to
1090 			 * avoid risk of stack overflow but only writeback
1091 			 * if many dirty pages have been encountered.
1092 			 */
1093 			if (page_is_file_cache(page) &&
1094 					(!current_is_kswapd() ||
1095 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1096 				/*
1097 				 * Immediately reclaim when written back.
1098 				 * Similar in principal to deactivate_page()
1099 				 * except we already have the page isolated
1100 				 * and know it's dirty
1101 				 */
1102 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1103 				SetPageReclaim(page);
1104 
1105 				goto keep_locked;
1106 			}
1107 
1108 			if (references == PAGEREF_RECLAIM_CLEAN)
1109 				goto keep_locked;
1110 			if (!may_enter_fs)
1111 				goto keep_locked;
1112 			if (!sc->may_writepage)
1113 				goto keep_locked;
1114 
1115 			/*
1116 			 * Page is dirty. Flush the TLB if a writable entry
1117 			 * potentially exists to avoid CPU writes after IO
1118 			 * starts and then write it out here.
1119 			 */
1120 			try_to_unmap_flush_dirty();
1121 			switch (pageout(page, mapping, sc)) {
1122 			case PAGE_KEEP:
1123 				goto keep_locked;
1124 			case PAGE_ACTIVATE:
1125 				goto activate_locked;
1126 			case PAGE_SUCCESS:
1127 				if (PageWriteback(page))
1128 					goto keep;
1129 				if (PageDirty(page))
1130 					goto keep;
1131 
1132 				/*
1133 				 * A synchronous write - probably a ramdisk.  Go
1134 				 * ahead and try to reclaim the page.
1135 				 */
1136 				if (!trylock_page(page))
1137 					goto keep;
1138 				if (PageDirty(page) || PageWriteback(page))
1139 					goto keep_locked;
1140 				mapping = page_mapping(page);
1141 			case PAGE_CLEAN:
1142 				; /* try to free the page below */
1143 			}
1144 		}
1145 
1146 		/*
1147 		 * If the page has buffers, try to free the buffer mappings
1148 		 * associated with this page. If we succeed we try to free
1149 		 * the page as well.
1150 		 *
1151 		 * We do this even if the page is PageDirty().
1152 		 * try_to_release_page() does not perform I/O, but it is
1153 		 * possible for a page to have PageDirty set, but it is actually
1154 		 * clean (all its buffers are clean).  This happens if the
1155 		 * buffers were written out directly, with submit_bh(). ext3
1156 		 * will do this, as well as the blockdev mapping.
1157 		 * try_to_release_page() will discover that cleanness and will
1158 		 * drop the buffers and mark the page clean - it can be freed.
1159 		 *
1160 		 * Rarely, pages can have buffers and no ->mapping.  These are
1161 		 * the pages which were not successfully invalidated in
1162 		 * truncate_complete_page().  We try to drop those buffers here
1163 		 * and if that worked, and the page is no longer mapped into
1164 		 * process address space (page_count == 1) it can be freed.
1165 		 * Otherwise, leave the page on the LRU so it is swappable.
1166 		 */
1167 		if (page_has_private(page)) {
1168 			if (!try_to_release_page(page, sc->gfp_mask))
1169 				goto activate_locked;
1170 			if (!mapping && page_count(page) == 1) {
1171 				unlock_page(page);
1172 				if (put_page_testzero(page))
1173 					goto free_it;
1174 				else {
1175 					/*
1176 					 * rare race with speculative reference.
1177 					 * the speculative reference will free
1178 					 * this page shortly, so we may
1179 					 * increment nr_reclaimed here (and
1180 					 * leave it off the LRU).
1181 					 */
1182 					nr_reclaimed++;
1183 					continue;
1184 				}
1185 			}
1186 		}
1187 
1188 		if (!mapping || !__remove_mapping(mapping, page, true))
1189 			goto keep_locked;
1190 
1191 		/*
1192 		 * At this point, we have no other references and there is
1193 		 * no way to pick any more up (removed from LRU, removed
1194 		 * from pagecache). Can use non-atomic bitops now (and
1195 		 * we obviously don't have to worry about waking up a process
1196 		 * waiting on the page lock, because there are no references.
1197 		 */
1198 		__clear_page_locked(page);
1199 free_it:
1200 		nr_reclaimed++;
1201 
1202 		/*
1203 		 * Is there need to periodically free_page_list? It would
1204 		 * appear not as the counts should be low
1205 		 */
1206 		list_add(&page->lru, &free_pages);
1207 		continue;
1208 
1209 cull_mlocked:
1210 		if (PageSwapCache(page))
1211 			try_to_free_swap(page);
1212 		unlock_page(page);
1213 		list_add(&page->lru, &ret_pages);
1214 		continue;
1215 
1216 activate_locked:
1217 		/* Not a candidate for swapping, so reclaim swap space. */
1218 		if (PageSwapCache(page) && vm_swap_full())
1219 			try_to_free_swap(page);
1220 		VM_BUG_ON_PAGE(PageActive(page), page);
1221 		SetPageActive(page);
1222 		pgactivate++;
1223 keep_locked:
1224 		unlock_page(page);
1225 keep:
1226 		list_add(&page->lru, &ret_pages);
1227 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1228 	}
1229 
1230 	mem_cgroup_uncharge_list(&free_pages);
1231 	try_to_unmap_flush();
1232 	free_hot_cold_page_list(&free_pages, true);
1233 
1234 	list_splice(&ret_pages, page_list);
1235 	count_vm_events(PGACTIVATE, pgactivate);
1236 
1237 	*ret_nr_dirty += nr_dirty;
1238 	*ret_nr_congested += nr_congested;
1239 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1240 	*ret_nr_writeback += nr_writeback;
1241 	*ret_nr_immediate += nr_immediate;
1242 	return nr_reclaimed;
1243 }
1244 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1245 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1246 					    struct list_head *page_list)
1247 {
1248 	struct scan_control sc = {
1249 		.gfp_mask = GFP_KERNEL,
1250 		.priority = DEF_PRIORITY,
1251 		.may_unmap = 1,
1252 	};
1253 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1254 	struct page *page, *next;
1255 	LIST_HEAD(clean_pages);
1256 
1257 	list_for_each_entry_safe(page, next, page_list, lru) {
1258 		if (page_is_file_cache(page) && !PageDirty(page) &&
1259 		    !isolated_balloon_page(page)) {
1260 			ClearPageActive(page);
1261 			list_move(&page->lru, &clean_pages);
1262 		}
1263 	}
1264 
1265 	ret = shrink_page_list(&clean_pages, zone, &sc,
1266 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1267 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1268 	list_splice(&clean_pages, page_list);
1269 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1270 	return ret;
1271 }
1272 
1273 /*
1274  * Attempt to remove the specified page from its LRU.  Only take this page
1275  * if it is of the appropriate PageActive status.  Pages which are being
1276  * freed elsewhere are also ignored.
1277  *
1278  * page:	page to consider
1279  * mode:	one of the LRU isolation modes defined above
1280  *
1281  * returns 0 on success, -ve errno on failure.
1282  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1283 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1284 {
1285 	int ret = -EINVAL;
1286 
1287 	/* Only take pages on the LRU. */
1288 	if (!PageLRU(page))
1289 		return ret;
1290 
1291 	/* Compaction should not handle unevictable pages but CMA can do so */
1292 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1293 		return ret;
1294 
1295 	ret = -EBUSY;
1296 
1297 	/*
1298 	 * To minimise LRU disruption, the caller can indicate that it only
1299 	 * wants to isolate pages it will be able to operate on without
1300 	 * blocking - clean pages for the most part.
1301 	 *
1302 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1303 	 * is used by reclaim when it is cannot write to backing storage
1304 	 *
1305 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1306 	 * that it is possible to migrate without blocking
1307 	 */
1308 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1309 		/* All the caller can do on PageWriteback is block */
1310 		if (PageWriteback(page))
1311 			return ret;
1312 
1313 		if (PageDirty(page)) {
1314 			struct address_space *mapping;
1315 			bool migrate_dirty;
1316 
1317 			/* ISOLATE_CLEAN means only clean pages */
1318 			if (mode & ISOLATE_CLEAN)
1319 				return ret;
1320 
1321 			/*
1322 			 * Only pages without mappings or that have a
1323 			 * ->migratepage callback are possible to migrate
1324 			 * without blocking. However, we can be racing with
1325 			 * truncation so it's necessary to lock the page
1326 			 * to stabilise the mapping as truncation holds
1327 			 * the page lock until after the page is removed
1328 			 * from the page cache.
1329 			 */
1330 			if (!trylock_page(page))
1331 				return ret;
1332 
1333 			mapping = page_mapping(page);
1334 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1335 			unlock_page(page);
1336 			if (!migrate_dirty)
1337 				return ret;
1338 		}
1339 	}
1340 
1341 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1342 		return ret;
1343 
1344 	if (likely(get_page_unless_zero(page))) {
1345 		/*
1346 		 * Be careful not to clear PageLRU until after we're
1347 		 * sure the page is not being freed elsewhere -- the
1348 		 * page release code relies on it.
1349 		 */
1350 		ClearPageLRU(page);
1351 		ret = 0;
1352 	}
1353 
1354 	return ret;
1355 }
1356 
1357 /*
1358  * zone->lru_lock is heavily contended.  Some of the functions that
1359  * shrink the lists perform better by taking out a batch of pages
1360  * and working on them outside the LRU lock.
1361  *
1362  * For pagecache intensive workloads, this function is the hottest
1363  * spot in the kernel (apart from copy_*_user functions).
1364  *
1365  * Appropriate locks must be held before calling this function.
1366  *
1367  * @nr_to_scan:	The number of pages to look through on the list.
1368  * @lruvec:	The LRU vector to pull pages from.
1369  * @dst:	The temp list to put pages on to.
1370  * @nr_scanned:	The number of pages that were scanned.
1371  * @sc:		The scan_control struct for this reclaim session
1372  * @mode:	One of the LRU isolation modes
1373  * @lru:	LRU list id for isolating
1374  *
1375  * returns how many pages were moved onto *@dst.
1376  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1377 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1378 		struct lruvec *lruvec, struct list_head *dst,
1379 		unsigned long *nr_scanned, struct scan_control *sc,
1380 		isolate_mode_t mode, enum lru_list lru)
1381 {
1382 	struct list_head *src = &lruvec->lists[lru];
1383 	unsigned long nr_taken = 0;
1384 	unsigned long scan;
1385 
1386 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1387 					!list_empty(src); scan++) {
1388 		struct page *page;
1389 		int nr_pages;
1390 
1391 		page = lru_to_page(src);
1392 		prefetchw_prev_lru_page(page, src, flags);
1393 
1394 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1395 
1396 		switch (__isolate_lru_page(page, mode)) {
1397 		case 0:
1398 			nr_pages = hpage_nr_pages(page);
1399 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1400 			list_move(&page->lru, dst);
1401 			nr_taken += nr_pages;
1402 			break;
1403 
1404 		case -EBUSY:
1405 			/* else it is being freed elsewhere */
1406 			list_move(&page->lru, src);
1407 			continue;
1408 
1409 		default:
1410 			BUG();
1411 		}
1412 	}
1413 
1414 	*nr_scanned = scan;
1415 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1416 				    nr_taken, mode, is_file_lru(lru));
1417 	return nr_taken;
1418 }
1419 
1420 /**
1421  * isolate_lru_page - tries to isolate a page from its LRU list
1422  * @page: page to isolate from its LRU list
1423  *
1424  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1425  * vmstat statistic corresponding to whatever LRU list the page was on.
1426  *
1427  * Returns 0 if the page was removed from an LRU list.
1428  * Returns -EBUSY if the page was not on an LRU list.
1429  *
1430  * The returned page will have PageLRU() cleared.  If it was found on
1431  * the active list, it will have PageActive set.  If it was found on
1432  * the unevictable list, it will have the PageUnevictable bit set. That flag
1433  * may need to be cleared by the caller before letting the page go.
1434  *
1435  * The vmstat statistic corresponding to the list on which the page was
1436  * found will be decremented.
1437  *
1438  * Restrictions:
1439  * (1) Must be called with an elevated refcount on the page. This is a
1440  *     fundamentnal difference from isolate_lru_pages (which is called
1441  *     without a stable reference).
1442  * (2) the lru_lock must not be held.
1443  * (3) interrupts must be enabled.
1444  */
isolate_lru_page(struct page * page)1445 int isolate_lru_page(struct page *page)
1446 {
1447 	int ret = -EBUSY;
1448 
1449 	VM_BUG_ON_PAGE(!page_count(page), page);
1450 
1451 	if (PageLRU(page)) {
1452 		struct zone *zone = page_zone(page);
1453 		struct lruvec *lruvec;
1454 
1455 		spin_lock_irq(&zone->lru_lock);
1456 		lruvec = mem_cgroup_page_lruvec(page, zone);
1457 		if (PageLRU(page)) {
1458 			int lru = page_lru(page);
1459 			get_page(page);
1460 			ClearPageLRU(page);
1461 			del_page_from_lru_list(page, lruvec, lru);
1462 			ret = 0;
1463 		}
1464 		spin_unlock_irq(&zone->lru_lock);
1465 	}
1466 	return ret;
1467 }
1468 
1469 /*
1470  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1471  * then get resheduled. When there are massive number of tasks doing page
1472  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1473  * the LRU list will go small and be scanned faster than necessary, leading to
1474  * unnecessary swapping, thrashing and OOM.
1475  */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1476 static int too_many_isolated(struct zone *zone, int file,
1477 		struct scan_control *sc)
1478 {
1479 	unsigned long inactive, isolated;
1480 
1481 	if (current_is_kswapd())
1482 		return 0;
1483 
1484 	if (!sane_reclaim(sc))
1485 		return 0;
1486 
1487 	if (file) {
1488 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1489 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1490 	} else {
1491 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1492 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1493 	}
1494 
1495 	/*
1496 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1497 	 * won't get blocked by normal direct-reclaimers, forming a circular
1498 	 * deadlock.
1499 	 */
1500 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1501 		inactive >>= 3;
1502 
1503 	return isolated > inactive;
1504 }
1505 
1506 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1507 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1508 {
1509 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1510 	struct zone *zone = lruvec_zone(lruvec);
1511 	LIST_HEAD(pages_to_free);
1512 
1513 	/*
1514 	 * Put back any unfreeable pages.
1515 	 */
1516 	while (!list_empty(page_list)) {
1517 		struct page *page = lru_to_page(page_list);
1518 		int lru;
1519 
1520 		VM_BUG_ON_PAGE(PageLRU(page), page);
1521 		list_del(&page->lru);
1522 		if (unlikely(!page_evictable(page))) {
1523 			spin_unlock_irq(&zone->lru_lock);
1524 			putback_lru_page(page);
1525 			spin_lock_irq(&zone->lru_lock);
1526 			continue;
1527 		}
1528 
1529 		lruvec = mem_cgroup_page_lruvec(page, zone);
1530 
1531 		SetPageLRU(page);
1532 		lru = page_lru(page);
1533 		add_page_to_lru_list(page, lruvec, lru);
1534 
1535 		if (is_active_lru(lru)) {
1536 			int file = is_file_lru(lru);
1537 			int numpages = hpage_nr_pages(page);
1538 			reclaim_stat->recent_rotated[file] += numpages;
1539 		}
1540 		if (put_page_testzero(page)) {
1541 			__ClearPageLRU(page);
1542 			__ClearPageActive(page);
1543 			del_page_from_lru_list(page, lruvec, lru);
1544 
1545 			if (unlikely(PageCompound(page))) {
1546 				spin_unlock_irq(&zone->lru_lock);
1547 				mem_cgroup_uncharge(page);
1548 				(*get_compound_page_dtor(page))(page);
1549 				spin_lock_irq(&zone->lru_lock);
1550 			} else
1551 				list_add(&page->lru, &pages_to_free);
1552 		}
1553 	}
1554 
1555 	/*
1556 	 * To save our caller's stack, now use input list for pages to free.
1557 	 */
1558 	list_splice(&pages_to_free, page_list);
1559 }
1560 
1561 /*
1562  * If a kernel thread (such as nfsd for loop-back mounts) services
1563  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1564  * In that case we should only throttle if the backing device it is
1565  * writing to is congested.  In other cases it is safe to throttle.
1566  */
current_may_throttle(void)1567 static int current_may_throttle(void)
1568 {
1569 	return !(current->flags & PF_LESS_THROTTLE) ||
1570 		current->backing_dev_info == NULL ||
1571 		bdi_write_congested(current->backing_dev_info);
1572 }
1573 
1574 /*
1575  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1576  * of reclaimed pages
1577  */
1578 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1579 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1580 		     struct scan_control *sc, enum lru_list lru)
1581 {
1582 	LIST_HEAD(page_list);
1583 	unsigned long nr_scanned;
1584 	unsigned long nr_reclaimed = 0;
1585 	unsigned long nr_taken;
1586 	unsigned long nr_dirty = 0;
1587 	unsigned long nr_congested = 0;
1588 	unsigned long nr_unqueued_dirty = 0;
1589 	unsigned long nr_writeback = 0;
1590 	unsigned long nr_immediate = 0;
1591 	isolate_mode_t isolate_mode = 0;
1592 	int file = is_file_lru(lru);
1593 	struct zone *zone = lruvec_zone(lruvec);
1594 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1595 
1596 	while (unlikely(too_many_isolated(zone, file, sc))) {
1597 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1598 
1599 		/* We are about to die and free our memory. Return now. */
1600 		if (fatal_signal_pending(current))
1601 			return SWAP_CLUSTER_MAX;
1602 	}
1603 
1604 	lru_add_drain();
1605 
1606 	if (!sc->may_unmap)
1607 		isolate_mode |= ISOLATE_UNMAPPED;
1608 	if (!sc->may_writepage)
1609 		isolate_mode |= ISOLATE_CLEAN;
1610 
1611 	spin_lock_irq(&zone->lru_lock);
1612 
1613 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1614 				     &nr_scanned, sc, isolate_mode, lru);
1615 
1616 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1617 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1618 
1619 	if (global_reclaim(sc)) {
1620 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1621 		if (current_is_kswapd())
1622 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1623 		else
1624 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1625 	}
1626 	spin_unlock_irq(&zone->lru_lock);
1627 
1628 	if (nr_taken == 0)
1629 		return 0;
1630 
1631 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1632 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1633 				&nr_writeback, &nr_immediate,
1634 				false);
1635 
1636 	spin_lock_irq(&zone->lru_lock);
1637 
1638 	reclaim_stat->recent_scanned[file] += nr_taken;
1639 
1640 	if (global_reclaim(sc)) {
1641 		if (current_is_kswapd())
1642 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1643 					       nr_reclaimed);
1644 		else
1645 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1646 					       nr_reclaimed);
1647 	}
1648 
1649 	putback_inactive_pages(lruvec, &page_list);
1650 
1651 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1652 
1653 	spin_unlock_irq(&zone->lru_lock);
1654 
1655 	mem_cgroup_uncharge_list(&page_list);
1656 	free_hot_cold_page_list(&page_list, true);
1657 
1658 	/*
1659 	 * If reclaim is isolating dirty pages under writeback, it implies
1660 	 * that the long-lived page allocation rate is exceeding the page
1661 	 * laundering rate. Either the global limits are not being effective
1662 	 * at throttling processes due to the page distribution throughout
1663 	 * zones or there is heavy usage of a slow backing device. The
1664 	 * only option is to throttle from reclaim context which is not ideal
1665 	 * as there is no guarantee the dirtying process is throttled in the
1666 	 * same way balance_dirty_pages() manages.
1667 	 *
1668 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1669 	 * of pages under pages flagged for immediate reclaim and stall if any
1670 	 * are encountered in the nr_immediate check below.
1671 	 */
1672 	if (nr_writeback && nr_writeback == nr_taken)
1673 		set_bit(ZONE_WRITEBACK, &zone->flags);
1674 
1675 	/*
1676 	 * Legacy memcg will stall in page writeback so avoid forcibly
1677 	 * stalling here.
1678 	 */
1679 	if (sane_reclaim(sc)) {
1680 		/*
1681 		 * Tag a zone as congested if all the dirty pages scanned were
1682 		 * backed by a congested BDI and wait_iff_congested will stall.
1683 		 */
1684 		if (nr_dirty && nr_dirty == nr_congested)
1685 			set_bit(ZONE_CONGESTED, &zone->flags);
1686 
1687 		/*
1688 		 * If dirty pages are scanned that are not queued for IO, it
1689 		 * implies that flushers are not keeping up. In this case, flag
1690 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1691 		 * reclaim context.
1692 		 */
1693 		if (nr_unqueued_dirty == nr_taken)
1694 			set_bit(ZONE_DIRTY, &zone->flags);
1695 
1696 		/*
1697 		 * If kswapd scans pages marked marked for immediate
1698 		 * reclaim and under writeback (nr_immediate), it implies
1699 		 * that pages are cycling through the LRU faster than
1700 		 * they are written so also forcibly stall.
1701 		 */
1702 		if (nr_immediate && current_may_throttle())
1703 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1704 	}
1705 
1706 	/*
1707 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1708 	 * is congested. Allow kswapd to continue until it starts encountering
1709 	 * unqueued dirty pages or cycling through the LRU too quickly.
1710 	 */
1711 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1712 	    current_may_throttle())
1713 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1714 
1715 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1716 		zone_idx(zone),
1717 		nr_scanned, nr_reclaimed,
1718 		sc->priority,
1719 		trace_shrink_flags(file));
1720 	return nr_reclaimed;
1721 }
1722 
1723 /*
1724  * This moves pages from the active list to the inactive list.
1725  *
1726  * We move them the other way if the page is referenced by one or more
1727  * processes, from rmap.
1728  *
1729  * If the pages are mostly unmapped, the processing is fast and it is
1730  * appropriate to hold zone->lru_lock across the whole operation.  But if
1731  * the pages are mapped, the processing is slow (page_referenced()) so we
1732  * should drop zone->lru_lock around each page.  It's impossible to balance
1733  * this, so instead we remove the pages from the LRU while processing them.
1734  * It is safe to rely on PG_active against the non-LRU pages in here because
1735  * nobody will play with that bit on a non-LRU page.
1736  *
1737  * The downside is that we have to touch page->_count against each page.
1738  * But we had to alter page->flags anyway.
1739  */
1740 
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1741 static void move_active_pages_to_lru(struct lruvec *lruvec,
1742 				     struct list_head *list,
1743 				     struct list_head *pages_to_free,
1744 				     enum lru_list lru)
1745 {
1746 	struct zone *zone = lruvec_zone(lruvec);
1747 	unsigned long pgmoved = 0;
1748 	struct page *page;
1749 	int nr_pages;
1750 
1751 	while (!list_empty(list)) {
1752 		page = lru_to_page(list);
1753 		lruvec = mem_cgroup_page_lruvec(page, zone);
1754 
1755 		VM_BUG_ON_PAGE(PageLRU(page), page);
1756 		SetPageLRU(page);
1757 
1758 		nr_pages = hpage_nr_pages(page);
1759 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1760 		list_move(&page->lru, &lruvec->lists[lru]);
1761 		pgmoved += nr_pages;
1762 
1763 		if (put_page_testzero(page)) {
1764 			__ClearPageLRU(page);
1765 			__ClearPageActive(page);
1766 			del_page_from_lru_list(page, lruvec, lru);
1767 
1768 			if (unlikely(PageCompound(page))) {
1769 				spin_unlock_irq(&zone->lru_lock);
1770 				mem_cgroup_uncharge(page);
1771 				(*get_compound_page_dtor(page))(page);
1772 				spin_lock_irq(&zone->lru_lock);
1773 			} else
1774 				list_add(&page->lru, pages_to_free);
1775 		}
1776 	}
1777 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1778 	if (!is_active_lru(lru))
1779 		__count_vm_events(PGDEACTIVATE, pgmoved);
1780 }
1781 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1782 static void shrink_active_list(unsigned long nr_to_scan,
1783 			       struct lruvec *lruvec,
1784 			       struct scan_control *sc,
1785 			       enum lru_list lru)
1786 {
1787 	unsigned long nr_taken;
1788 	unsigned long nr_scanned;
1789 	unsigned long vm_flags;
1790 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1791 	LIST_HEAD(l_active);
1792 	LIST_HEAD(l_inactive);
1793 	struct page *page;
1794 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1795 	unsigned long nr_rotated = 0;
1796 	isolate_mode_t isolate_mode = 0;
1797 	int file = is_file_lru(lru);
1798 	struct zone *zone = lruvec_zone(lruvec);
1799 
1800 	lru_add_drain();
1801 
1802 	if (!sc->may_unmap)
1803 		isolate_mode |= ISOLATE_UNMAPPED;
1804 	if (!sc->may_writepage)
1805 		isolate_mode |= ISOLATE_CLEAN;
1806 
1807 	spin_lock_irq(&zone->lru_lock);
1808 
1809 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1810 				     &nr_scanned, sc, isolate_mode, lru);
1811 	if (global_reclaim(sc))
1812 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1813 
1814 	reclaim_stat->recent_scanned[file] += nr_taken;
1815 
1816 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1817 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1818 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1819 	spin_unlock_irq(&zone->lru_lock);
1820 
1821 	while (!list_empty(&l_hold)) {
1822 		cond_resched();
1823 		page = lru_to_page(&l_hold);
1824 		list_del(&page->lru);
1825 
1826 		if (unlikely(!page_evictable(page))) {
1827 			putback_lru_page(page);
1828 			continue;
1829 		}
1830 
1831 		if (unlikely(buffer_heads_over_limit)) {
1832 			if (page_has_private(page) && trylock_page(page)) {
1833 				if (page_has_private(page))
1834 					try_to_release_page(page, 0);
1835 				unlock_page(page);
1836 			}
1837 		}
1838 
1839 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1840 				    &vm_flags)) {
1841 			nr_rotated += hpage_nr_pages(page);
1842 			/*
1843 			 * Identify referenced, file-backed active pages and
1844 			 * give them one more trip around the active list. So
1845 			 * that executable code get better chances to stay in
1846 			 * memory under moderate memory pressure.  Anon pages
1847 			 * are not likely to be evicted by use-once streaming
1848 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1849 			 * so we ignore them here.
1850 			 */
1851 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1852 				list_add(&page->lru, &l_active);
1853 				continue;
1854 			}
1855 		}
1856 
1857 		ClearPageActive(page);	/* we are de-activating */
1858 		list_add(&page->lru, &l_inactive);
1859 	}
1860 
1861 	/*
1862 	 * Move pages back to the lru list.
1863 	 */
1864 	spin_lock_irq(&zone->lru_lock);
1865 	/*
1866 	 * Count referenced pages from currently used mappings as rotated,
1867 	 * even though only some of them are actually re-activated.  This
1868 	 * helps balance scan pressure between file and anonymous pages in
1869 	 * get_scan_count.
1870 	 */
1871 	reclaim_stat->recent_rotated[file] += nr_rotated;
1872 
1873 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1874 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1875 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1876 	spin_unlock_irq(&zone->lru_lock);
1877 
1878 	mem_cgroup_uncharge_list(&l_hold);
1879 	free_hot_cold_page_list(&l_hold, true);
1880 }
1881 
1882 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1883 static bool inactive_anon_is_low_global(struct zone *zone)
1884 {
1885 	unsigned long active, inactive;
1886 
1887 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1888 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1889 
1890 	return inactive * zone->inactive_ratio < active;
1891 }
1892 
1893 /**
1894  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1895  * @lruvec: LRU vector to check
1896  *
1897  * Returns true if the zone does not have enough inactive anon pages,
1898  * meaning some active anon pages need to be deactivated.
1899  */
inactive_anon_is_low(struct lruvec * lruvec)1900 static bool inactive_anon_is_low(struct lruvec *lruvec)
1901 {
1902 	/*
1903 	 * If we don't have swap space, anonymous page deactivation
1904 	 * is pointless.
1905 	 */
1906 	if (!total_swap_pages)
1907 		return false;
1908 
1909 	if (!mem_cgroup_disabled())
1910 		return mem_cgroup_inactive_anon_is_low(lruvec);
1911 
1912 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1913 }
1914 #else
inactive_anon_is_low(struct lruvec * lruvec)1915 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1916 {
1917 	return false;
1918 }
1919 #endif
1920 
1921 /**
1922  * inactive_file_is_low - check if file pages need to be deactivated
1923  * @lruvec: LRU vector to check
1924  *
1925  * When the system is doing streaming IO, memory pressure here
1926  * ensures that active file pages get deactivated, until more
1927  * than half of the file pages are on the inactive list.
1928  *
1929  * Once we get to that situation, protect the system's working
1930  * set from being evicted by disabling active file page aging.
1931  *
1932  * This uses a different ratio than the anonymous pages, because
1933  * the page cache uses a use-once replacement algorithm.
1934  */
inactive_file_is_low(struct lruvec * lruvec)1935 static bool inactive_file_is_low(struct lruvec *lruvec)
1936 {
1937 	unsigned long inactive;
1938 	unsigned long active;
1939 
1940 	inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1941 	active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1942 
1943 	return active > inactive;
1944 }
1945 
inactive_list_is_low(struct lruvec * lruvec,enum lru_list lru)1946 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1947 {
1948 	if (is_file_lru(lru))
1949 		return inactive_file_is_low(lruvec);
1950 	else
1951 		return inactive_anon_is_low(lruvec);
1952 }
1953 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)1954 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1955 				 struct lruvec *lruvec, struct scan_control *sc)
1956 {
1957 	if (is_active_lru(lru)) {
1958 		if (inactive_list_is_low(lruvec, lru))
1959 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1960 		return 0;
1961 	}
1962 
1963 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1964 }
1965 
1966 enum scan_balance {
1967 	SCAN_EQUAL,
1968 	SCAN_FRACT,
1969 	SCAN_ANON,
1970 	SCAN_FILE,
1971 };
1972 
1973 /*
1974  * Determine how aggressively the anon and file LRU lists should be
1975  * scanned.  The relative value of each set of LRU lists is determined
1976  * by looking at the fraction of the pages scanned we did rotate back
1977  * onto the active list instead of evict.
1978  *
1979  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1980  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1981  */
get_scan_count(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)1982 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1983 			   struct scan_control *sc, unsigned long *nr,
1984 			   unsigned long *lru_pages)
1985 {
1986 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1987 	u64 fraction[2];
1988 	u64 denominator = 0;	/* gcc */
1989 	struct zone *zone = lruvec_zone(lruvec);
1990 	unsigned long anon_prio, file_prio;
1991 	enum scan_balance scan_balance;
1992 	unsigned long anon, file;
1993 	bool force_scan = false;
1994 	unsigned long ap, fp;
1995 	enum lru_list lru;
1996 	bool some_scanned;
1997 	int pass;
1998 
1999 	/*
2000 	 * If the zone or memcg is small, nr[l] can be 0.  This
2001 	 * results in no scanning on this priority and a potential
2002 	 * priority drop.  Global direct reclaim can go to the next
2003 	 * zone and tends to have no problems. Global kswapd is for
2004 	 * zone balancing and it needs to scan a minimum amount. When
2005 	 * reclaiming for a memcg, a priority drop can cause high
2006 	 * latencies, so it's better to scan a minimum amount there as
2007 	 * well.
2008 	 */
2009 	if (current_is_kswapd()) {
2010 		if (!zone_reclaimable(zone))
2011 			force_scan = true;
2012 		if (!mem_cgroup_lruvec_online(lruvec))
2013 			force_scan = true;
2014 	}
2015 	if (!global_reclaim(sc))
2016 		force_scan = true;
2017 
2018 	/* If we have no swap space, do not bother scanning anon pages. */
2019 	if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
2020 		scan_balance = SCAN_FILE;
2021 		goto out;
2022 	}
2023 
2024 	/*
2025 	 * Global reclaim will swap to prevent OOM even with no
2026 	 * swappiness, but memcg users want to use this knob to
2027 	 * disable swapping for individual groups completely when
2028 	 * using the memory controller's swap limit feature would be
2029 	 * too expensive.
2030 	 */
2031 	if (!global_reclaim(sc) && !swappiness) {
2032 		scan_balance = SCAN_FILE;
2033 		goto out;
2034 	}
2035 
2036 	/*
2037 	 * Do not apply any pressure balancing cleverness when the
2038 	 * system is close to OOM, scan both anon and file equally
2039 	 * (unless the swappiness setting disagrees with swapping).
2040 	 */
2041 	if (!sc->priority && swappiness) {
2042 		scan_balance = SCAN_EQUAL;
2043 		goto out;
2044 	}
2045 
2046 	/*
2047 	 * Prevent the reclaimer from falling into the cache trap: as
2048 	 * cache pages start out inactive, every cache fault will tip
2049 	 * the scan balance towards the file LRU.  And as the file LRU
2050 	 * shrinks, so does the window for rotation from references.
2051 	 * This means we have a runaway feedback loop where a tiny
2052 	 * thrashing file LRU becomes infinitely more attractive than
2053 	 * anon pages.  Try to detect this based on file LRU size.
2054 	 */
2055 	if (global_reclaim(sc)) {
2056 		unsigned long zonefile;
2057 		unsigned long zonefree;
2058 
2059 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2060 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2061 			   zone_page_state(zone, NR_INACTIVE_FILE);
2062 
2063 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2064 			scan_balance = SCAN_ANON;
2065 			goto out;
2066 		}
2067 	}
2068 
2069 	/*
2070 	 * If there is enough inactive page cache, i.e. if the size of the
2071 	 * inactive list is greater than that of the active list *and* the
2072 	 * inactive list actually has some pages to scan on this priority, we
2073 	 * do not reclaim anything from the anonymous working set right now.
2074 	 * Without the second condition we could end up never scanning an
2075 	 * lruvec even if it has plenty of old anonymous pages unless the
2076 	 * system is under heavy pressure.
2077 	 */
2078 	if (!inactive_file_is_low(lruvec) &&
2079 	    get_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2080 		scan_balance = SCAN_FILE;
2081 		goto out;
2082 	}
2083 
2084 	scan_balance = SCAN_FRACT;
2085 
2086 	/*
2087 	 * With swappiness at 100, anonymous and file have the same priority.
2088 	 * This scanning priority is essentially the inverse of IO cost.
2089 	 */
2090 	anon_prio = swappiness;
2091 	file_prio = 200 - anon_prio;
2092 
2093 	/*
2094 	 * OK, so we have swap space and a fair amount of page cache
2095 	 * pages.  We use the recently rotated / recently scanned
2096 	 * ratios to determine how valuable each cache is.
2097 	 *
2098 	 * Because workloads change over time (and to avoid overflow)
2099 	 * we keep these statistics as a floating average, which ends
2100 	 * up weighing recent references more than old ones.
2101 	 *
2102 	 * anon in [0], file in [1]
2103 	 */
2104 
2105 	anon  = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2106 		get_lru_size(lruvec, LRU_INACTIVE_ANON);
2107 	file  = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2108 		get_lru_size(lruvec, LRU_INACTIVE_FILE);
2109 
2110 	spin_lock_irq(&zone->lru_lock);
2111 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2112 		reclaim_stat->recent_scanned[0] /= 2;
2113 		reclaim_stat->recent_rotated[0] /= 2;
2114 	}
2115 
2116 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2117 		reclaim_stat->recent_scanned[1] /= 2;
2118 		reclaim_stat->recent_rotated[1] /= 2;
2119 	}
2120 
2121 	/*
2122 	 * The amount of pressure on anon vs file pages is inversely
2123 	 * proportional to the fraction of recently scanned pages on
2124 	 * each list that were recently referenced and in active use.
2125 	 */
2126 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2127 	ap /= reclaim_stat->recent_rotated[0] + 1;
2128 
2129 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2130 	fp /= reclaim_stat->recent_rotated[1] + 1;
2131 	spin_unlock_irq(&zone->lru_lock);
2132 
2133 	fraction[0] = ap;
2134 	fraction[1] = fp;
2135 	denominator = ap + fp + 1;
2136 out:
2137 	some_scanned = false;
2138 	/* Only use force_scan on second pass. */
2139 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2140 		*lru_pages = 0;
2141 		for_each_evictable_lru(lru) {
2142 			int file = is_file_lru(lru);
2143 			unsigned long size;
2144 			unsigned long scan;
2145 
2146 			size = get_lru_size(lruvec, lru);
2147 			scan = size >> sc->priority;
2148 
2149 			if (!scan && pass && force_scan)
2150 				scan = min(size, SWAP_CLUSTER_MAX);
2151 
2152 			switch (scan_balance) {
2153 			case SCAN_EQUAL:
2154 				/* Scan lists relative to size */
2155 				break;
2156 			case SCAN_FRACT:
2157 				/*
2158 				 * Scan types proportional to swappiness and
2159 				 * their relative recent reclaim efficiency.
2160 				 */
2161 				scan = div64_u64(scan * fraction[file],
2162 							denominator);
2163 				break;
2164 			case SCAN_FILE:
2165 			case SCAN_ANON:
2166 				/* Scan one type exclusively */
2167 				if ((scan_balance == SCAN_FILE) != file) {
2168 					size = 0;
2169 					scan = 0;
2170 				}
2171 				break;
2172 			default:
2173 				/* Look ma, no brain */
2174 				BUG();
2175 			}
2176 
2177 			*lru_pages += size;
2178 			nr[lru] = scan;
2179 
2180 			/*
2181 			 * Skip the second pass and don't force_scan,
2182 			 * if we found something to scan.
2183 			 */
2184 			some_scanned |= !!scan;
2185 		}
2186 	}
2187 }
2188 
2189 /*
2190  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2191  */
shrink_lruvec(struct lruvec * lruvec,int swappiness,struct scan_control * sc,unsigned long * lru_pages)2192 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2193 			  struct scan_control *sc, unsigned long *lru_pages)
2194 {
2195 	unsigned long nr[NR_LRU_LISTS];
2196 	unsigned long targets[NR_LRU_LISTS];
2197 	unsigned long nr_to_scan;
2198 	enum lru_list lru;
2199 	unsigned long nr_reclaimed = 0;
2200 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2201 	struct blk_plug plug;
2202 	bool scan_adjusted;
2203 
2204 	get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2205 
2206 	/* Record the original scan target for proportional adjustments later */
2207 	memcpy(targets, nr, sizeof(nr));
2208 
2209 	/*
2210 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2211 	 * event that can occur when there is little memory pressure e.g.
2212 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2213 	 * when the requested number of pages are reclaimed when scanning at
2214 	 * DEF_PRIORITY on the assumption that the fact we are direct
2215 	 * reclaiming implies that kswapd is not keeping up and it is best to
2216 	 * do a batch of work at once. For memcg reclaim one check is made to
2217 	 * abort proportional reclaim if either the file or anon lru has already
2218 	 * dropped to zero at the first pass.
2219 	 */
2220 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2221 			 sc->priority == DEF_PRIORITY);
2222 
2223 	blk_start_plug(&plug);
2224 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2225 					nr[LRU_INACTIVE_FILE]) {
2226 		unsigned long nr_anon, nr_file, percentage;
2227 		unsigned long nr_scanned;
2228 
2229 		for_each_evictable_lru(lru) {
2230 			if (nr[lru]) {
2231 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2232 				nr[lru] -= nr_to_scan;
2233 
2234 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2235 							    lruvec, sc);
2236 			}
2237 		}
2238 
2239 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2240 			continue;
2241 
2242 		/*
2243 		 * For kswapd and memcg, reclaim at least the number of pages
2244 		 * requested. Ensure that the anon and file LRUs are scanned
2245 		 * proportionally what was requested by get_scan_count(). We
2246 		 * stop reclaiming one LRU and reduce the amount scanning
2247 		 * proportional to the original scan target.
2248 		 */
2249 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2250 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2251 
2252 		/*
2253 		 * It's just vindictive to attack the larger once the smaller
2254 		 * has gone to zero.  And given the way we stop scanning the
2255 		 * smaller below, this makes sure that we only make one nudge
2256 		 * towards proportionality once we've got nr_to_reclaim.
2257 		 */
2258 		if (!nr_file || !nr_anon)
2259 			break;
2260 
2261 		if (nr_file > nr_anon) {
2262 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2263 						targets[LRU_ACTIVE_ANON] + 1;
2264 			lru = LRU_BASE;
2265 			percentage = nr_anon * 100 / scan_target;
2266 		} else {
2267 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2268 						targets[LRU_ACTIVE_FILE] + 1;
2269 			lru = LRU_FILE;
2270 			percentage = nr_file * 100 / scan_target;
2271 		}
2272 
2273 		/* Stop scanning the smaller of the LRU */
2274 		nr[lru] = 0;
2275 		nr[lru + LRU_ACTIVE] = 0;
2276 
2277 		/*
2278 		 * Recalculate the other LRU scan count based on its original
2279 		 * scan target and the percentage scanning already complete
2280 		 */
2281 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2282 		nr_scanned = targets[lru] - nr[lru];
2283 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2284 		nr[lru] -= min(nr[lru], nr_scanned);
2285 
2286 		lru += LRU_ACTIVE;
2287 		nr_scanned = targets[lru] - nr[lru];
2288 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2289 		nr[lru] -= min(nr[lru], nr_scanned);
2290 
2291 		scan_adjusted = true;
2292 	}
2293 	blk_finish_plug(&plug);
2294 	sc->nr_reclaimed += nr_reclaimed;
2295 
2296 	/*
2297 	 * Even if we did not try to evict anon pages at all, we want to
2298 	 * rebalance the anon lru active/inactive ratio.
2299 	 */
2300 	if (inactive_anon_is_low(lruvec))
2301 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2302 				   sc, LRU_ACTIVE_ANON);
2303 
2304 	throttle_vm_writeout(sc->gfp_mask);
2305 }
2306 
2307 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2308 static bool in_reclaim_compaction(struct scan_control *sc)
2309 {
2310 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2311 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2312 			 sc->priority < DEF_PRIORITY - 2))
2313 		return true;
2314 
2315 	return false;
2316 }
2317 
2318 /*
2319  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2320  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2321  * true if more pages should be reclaimed such that when the page allocator
2322  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2323  * It will give up earlier than that if there is difficulty reclaiming pages.
2324  */
should_continue_reclaim(struct zone * zone,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2325 static inline bool should_continue_reclaim(struct zone *zone,
2326 					unsigned long nr_reclaimed,
2327 					unsigned long nr_scanned,
2328 					struct scan_control *sc)
2329 {
2330 	unsigned long pages_for_compaction;
2331 	unsigned long inactive_lru_pages;
2332 
2333 	/* If not in reclaim/compaction mode, stop */
2334 	if (!in_reclaim_compaction(sc))
2335 		return false;
2336 
2337 	/* Consider stopping depending on scan and reclaim activity */
2338 	if (sc->gfp_mask & __GFP_REPEAT) {
2339 		/*
2340 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2341 		 * full LRU list has been scanned and we are still failing
2342 		 * to reclaim pages. This full LRU scan is potentially
2343 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2344 		 */
2345 		if (!nr_reclaimed && !nr_scanned)
2346 			return false;
2347 	} else {
2348 		/*
2349 		 * For non-__GFP_REPEAT allocations which can presumably
2350 		 * fail without consequence, stop if we failed to reclaim
2351 		 * any pages from the last SWAP_CLUSTER_MAX number of
2352 		 * pages that were scanned. This will return to the
2353 		 * caller faster at the risk reclaim/compaction and
2354 		 * the resulting allocation attempt fails
2355 		 */
2356 		if (!nr_reclaimed)
2357 			return false;
2358 	}
2359 
2360 	/*
2361 	 * If we have not reclaimed enough pages for compaction and the
2362 	 * inactive lists are large enough, continue reclaiming
2363 	 */
2364 	pages_for_compaction = (2UL << sc->order);
2365 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2366 	if (get_nr_swap_pages() > 0)
2367 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2368 	if (sc->nr_reclaimed < pages_for_compaction &&
2369 			inactive_lru_pages > pages_for_compaction)
2370 		return true;
2371 
2372 	/* If compaction would go ahead or the allocation would succeed, stop */
2373 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2374 	case COMPACT_PARTIAL:
2375 	case COMPACT_CONTINUE:
2376 		return false;
2377 	default:
2378 		return true;
2379 	}
2380 }
2381 
shrink_zone(struct zone * zone,struct scan_control * sc,bool is_classzone)2382 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2383 			bool is_classzone)
2384 {
2385 	struct reclaim_state *reclaim_state = current->reclaim_state;
2386 	unsigned long nr_reclaimed, nr_scanned;
2387 	bool reclaimable = false;
2388 
2389 	do {
2390 		struct mem_cgroup *root = sc->target_mem_cgroup;
2391 		struct mem_cgroup_reclaim_cookie reclaim = {
2392 			.zone = zone,
2393 			.priority = sc->priority,
2394 		};
2395 		unsigned long zone_lru_pages = 0;
2396 		struct mem_cgroup *memcg;
2397 
2398 		nr_reclaimed = sc->nr_reclaimed;
2399 		nr_scanned = sc->nr_scanned;
2400 
2401 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2402 		do {
2403 			unsigned long lru_pages;
2404 			unsigned long scanned;
2405 			struct lruvec *lruvec;
2406 			int swappiness;
2407 
2408 			if (mem_cgroup_low(root, memcg)) {
2409 				if (!sc->may_thrash)
2410 					continue;
2411 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2412 			}
2413 
2414 			lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2415 			swappiness = mem_cgroup_swappiness(memcg);
2416 			scanned = sc->nr_scanned;
2417 
2418 			shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2419 			zone_lru_pages += lru_pages;
2420 
2421 			if (memcg && is_classzone)
2422 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2423 					    memcg, sc->nr_scanned - scanned,
2424 					    lru_pages);
2425 
2426 			/*
2427 			 * Direct reclaim and kswapd have to scan all memory
2428 			 * cgroups to fulfill the overall scan target for the
2429 			 * zone.
2430 			 *
2431 			 * Limit reclaim, on the other hand, only cares about
2432 			 * nr_to_reclaim pages to be reclaimed and it will
2433 			 * retry with decreasing priority if one round over the
2434 			 * whole hierarchy is not sufficient.
2435 			 */
2436 			if (!global_reclaim(sc) &&
2437 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2438 				mem_cgroup_iter_break(root, memcg);
2439 				break;
2440 			}
2441 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2442 
2443 		/*
2444 		 * Shrink the slab caches in the same proportion that
2445 		 * the eligible LRU pages were scanned.
2446 		 */
2447 		if (global_reclaim(sc) && is_classzone)
2448 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2449 				    sc->nr_scanned - nr_scanned,
2450 				    zone_lru_pages);
2451 
2452 		if (reclaim_state) {
2453 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2454 			reclaim_state->reclaimed_slab = 0;
2455 		}
2456 
2457 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2458 			   sc->nr_scanned - nr_scanned,
2459 			   sc->nr_reclaimed - nr_reclaimed);
2460 
2461 		if (sc->nr_reclaimed - nr_reclaimed)
2462 			reclaimable = true;
2463 
2464 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2465 					 sc->nr_scanned - nr_scanned, sc));
2466 
2467 	return reclaimable;
2468 }
2469 
2470 /*
2471  * Returns true if compaction should go ahead for a high-order request, or
2472  * the high-order allocation would succeed without compaction.
2473  */
compaction_ready(struct zone * zone,int order)2474 static inline bool compaction_ready(struct zone *zone, int order)
2475 {
2476 	unsigned long balance_gap, watermark;
2477 	bool watermark_ok;
2478 
2479 	/*
2480 	 * Compaction takes time to run and there are potentially other
2481 	 * callers using the pages just freed. Continue reclaiming until
2482 	 * there is a buffer of free pages available to give compaction
2483 	 * a reasonable chance of completing and allocating the page
2484 	 */
2485 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2486 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2487 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2488 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2489 
2490 	/*
2491 	 * If compaction is deferred, reclaim up to a point where
2492 	 * compaction will have a chance of success when re-enabled
2493 	 */
2494 	if (compaction_deferred(zone, order))
2495 		return watermark_ok;
2496 
2497 	/*
2498 	 * If compaction is not ready to start and allocation is not likely
2499 	 * to succeed without it, then keep reclaiming.
2500 	 */
2501 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2502 		return false;
2503 
2504 	return watermark_ok;
2505 }
2506 
2507 /*
2508  * This is the direct reclaim path, for page-allocating processes.  We only
2509  * try to reclaim pages from zones which will satisfy the caller's allocation
2510  * request.
2511  *
2512  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2513  * Because:
2514  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2515  *    allocation or
2516  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2517  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2518  *    zone defense algorithm.
2519  *
2520  * If a zone is deemed to be full of pinned pages then just give it a light
2521  * scan then give up on it.
2522  *
2523  * Returns true if a zone was reclaimable.
2524  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2525 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2526 {
2527 	struct zoneref *z;
2528 	struct zone *zone;
2529 	unsigned long nr_soft_reclaimed;
2530 	unsigned long nr_soft_scanned;
2531 	gfp_t orig_mask;
2532 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2533 	bool reclaimable = false;
2534 
2535 	/*
2536 	 * If the number of buffer_heads in the machine exceeds the maximum
2537 	 * allowed level, force direct reclaim to scan the highmem zone as
2538 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2539 	 */
2540 	orig_mask = sc->gfp_mask;
2541 	if (buffer_heads_over_limit)
2542 		sc->gfp_mask |= __GFP_HIGHMEM;
2543 
2544 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2545 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2546 		enum zone_type classzone_idx;
2547 
2548 		if (!populated_zone(zone))
2549 			continue;
2550 
2551 		classzone_idx = gfp_zone(sc->gfp_mask);
2552 		while (!populated_zone(zone->zone_pgdat->node_zones +
2553 							classzone_idx))
2554 			classzone_idx--;
2555 
2556 		/*
2557 		 * Take care memory controller reclaiming has small influence
2558 		 * to global LRU.
2559 		 */
2560 		if (global_reclaim(sc)) {
2561 			if (!cpuset_zone_allowed(zone,
2562 						 GFP_KERNEL | __GFP_HARDWALL))
2563 				continue;
2564 
2565 			if (sc->priority != DEF_PRIORITY &&
2566 			    !zone_reclaimable(zone))
2567 				continue;	/* Let kswapd poll it */
2568 
2569 			/*
2570 			 * If we already have plenty of memory free for
2571 			 * compaction in this zone, don't free any more.
2572 			 * Even though compaction is invoked for any
2573 			 * non-zero order, only frequent costly order
2574 			 * reclamation is disruptive enough to become a
2575 			 * noticeable problem, like transparent huge
2576 			 * page allocations.
2577 			 */
2578 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2579 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2580 			    zonelist_zone_idx(z) <= requested_highidx &&
2581 			    compaction_ready(zone, sc->order)) {
2582 				sc->compaction_ready = true;
2583 				continue;
2584 			}
2585 
2586 			/*
2587 			 * This steals pages from memory cgroups over softlimit
2588 			 * and returns the number of reclaimed pages and
2589 			 * scanned pages. This works for global memory pressure
2590 			 * and balancing, not for a memcg's limit.
2591 			 */
2592 			nr_soft_scanned = 0;
2593 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2594 						sc->order, sc->gfp_mask,
2595 						&nr_soft_scanned);
2596 			sc->nr_reclaimed += nr_soft_reclaimed;
2597 			sc->nr_scanned += nr_soft_scanned;
2598 			if (nr_soft_reclaimed)
2599 				reclaimable = true;
2600 			/* need some check for avoid more shrink_zone() */
2601 		}
2602 
2603 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2604 			reclaimable = true;
2605 
2606 		if (global_reclaim(sc) &&
2607 		    !reclaimable && zone_reclaimable(zone))
2608 			reclaimable = true;
2609 	}
2610 
2611 	/*
2612 	 * Restore to original mask to avoid the impact on the caller if we
2613 	 * promoted it to __GFP_HIGHMEM.
2614 	 */
2615 	sc->gfp_mask = orig_mask;
2616 
2617 	return reclaimable;
2618 }
2619 
2620 /*
2621  * This is the main entry point to direct page reclaim.
2622  *
2623  * If a full scan of the inactive list fails to free enough memory then we
2624  * are "out of memory" and something needs to be killed.
2625  *
2626  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2627  * high - the zone may be full of dirty or under-writeback pages, which this
2628  * caller can't do much about.  We kick the writeback threads and take explicit
2629  * naps in the hope that some of these pages can be written.  But if the
2630  * allocating task holds filesystem locks which prevent writeout this might not
2631  * work, and the allocation attempt will fail.
2632  *
2633  * returns:	0, if no pages reclaimed
2634  * 		else, the number of pages reclaimed
2635  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2636 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2637 					  struct scan_control *sc)
2638 {
2639 	int initial_priority = sc->priority;
2640 	unsigned long total_scanned = 0;
2641 	unsigned long writeback_threshold;
2642 	bool zones_reclaimable;
2643 retry:
2644 	delayacct_freepages_start();
2645 
2646 	if (global_reclaim(sc))
2647 		count_vm_event(ALLOCSTALL);
2648 
2649 	do {
2650 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2651 				sc->priority);
2652 		sc->nr_scanned = 0;
2653 		zones_reclaimable = shrink_zones(zonelist, sc);
2654 
2655 		total_scanned += sc->nr_scanned;
2656 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2657 			break;
2658 
2659 		if (sc->compaction_ready)
2660 			break;
2661 
2662 		/*
2663 		 * If we're getting trouble reclaiming, start doing
2664 		 * writepage even in laptop mode.
2665 		 */
2666 		if (sc->priority < DEF_PRIORITY - 2)
2667 			sc->may_writepage = 1;
2668 
2669 		/*
2670 		 * Try to write back as many pages as we just scanned.  This
2671 		 * tends to cause slow streaming writers to write data to the
2672 		 * disk smoothly, at the dirtying rate, which is nice.   But
2673 		 * that's undesirable in laptop mode, where we *want* lumpy
2674 		 * writeout.  So in laptop mode, write out the whole world.
2675 		 */
2676 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2677 		if (total_scanned > writeback_threshold) {
2678 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2679 						WB_REASON_TRY_TO_FREE_PAGES);
2680 			sc->may_writepage = 1;
2681 		}
2682 	} while (--sc->priority >= 0);
2683 
2684 	delayacct_freepages_end();
2685 
2686 	if (sc->nr_reclaimed)
2687 		return sc->nr_reclaimed;
2688 
2689 	/* Aborted reclaim to try compaction? don't OOM, then */
2690 	if (sc->compaction_ready)
2691 		return 1;
2692 
2693 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2694 	if (!sc->may_thrash) {
2695 		sc->priority = initial_priority;
2696 		sc->may_thrash = 1;
2697 		goto retry;
2698 	}
2699 
2700 	/* Any of the zones still reclaimable?  Don't OOM. */
2701 	if (zones_reclaimable)
2702 		return 1;
2703 
2704 	return 0;
2705 }
2706 
pfmemalloc_watermark_ok(pg_data_t * pgdat)2707 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2708 {
2709 	struct zone *zone;
2710 	unsigned long pfmemalloc_reserve = 0;
2711 	unsigned long free_pages = 0;
2712 	int i;
2713 	bool wmark_ok;
2714 
2715 	for (i = 0; i <= ZONE_NORMAL; i++) {
2716 		zone = &pgdat->node_zones[i];
2717 		if (!populated_zone(zone) ||
2718 		    zone_reclaimable_pages(zone) == 0)
2719 			continue;
2720 
2721 		pfmemalloc_reserve += min_wmark_pages(zone);
2722 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2723 	}
2724 
2725 	/* If there are no reserves (unexpected config) then do not throttle */
2726 	if (!pfmemalloc_reserve)
2727 		return true;
2728 
2729 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2730 
2731 	/* kswapd must be awake if processes are being throttled */
2732 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2733 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2734 						(enum zone_type)ZONE_NORMAL);
2735 		wake_up_interruptible(&pgdat->kswapd_wait);
2736 	}
2737 
2738 	return wmark_ok;
2739 }
2740 
2741 /*
2742  * Throttle direct reclaimers if backing storage is backed by the network
2743  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2744  * depleted. kswapd will continue to make progress and wake the processes
2745  * when the low watermark is reached.
2746  *
2747  * Returns true if a fatal signal was delivered during throttling. If this
2748  * happens, the page allocator should not consider triggering the OOM killer.
2749  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2750 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2751 					nodemask_t *nodemask)
2752 {
2753 	struct zoneref *z;
2754 	struct zone *zone;
2755 	pg_data_t *pgdat = NULL;
2756 
2757 	/*
2758 	 * Kernel threads should not be throttled as they may be indirectly
2759 	 * responsible for cleaning pages necessary for reclaim to make forward
2760 	 * progress. kjournald for example may enter direct reclaim while
2761 	 * committing a transaction where throttling it could forcing other
2762 	 * processes to block on log_wait_commit().
2763 	 */
2764 	if (current->flags & PF_KTHREAD)
2765 		goto out;
2766 
2767 	/*
2768 	 * If a fatal signal is pending, this process should not throttle.
2769 	 * It should return quickly so it can exit and free its memory
2770 	 */
2771 	if (fatal_signal_pending(current))
2772 		goto out;
2773 
2774 	/*
2775 	 * Check if the pfmemalloc reserves are ok by finding the first node
2776 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2777 	 * GFP_KERNEL will be required for allocating network buffers when
2778 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2779 	 *
2780 	 * Throttling is based on the first usable node and throttled processes
2781 	 * wait on a queue until kswapd makes progress and wakes them. There
2782 	 * is an affinity then between processes waking up and where reclaim
2783 	 * progress has been made assuming the process wakes on the same node.
2784 	 * More importantly, processes running on remote nodes will not compete
2785 	 * for remote pfmemalloc reserves and processes on different nodes
2786 	 * should make reasonable progress.
2787 	 */
2788 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2789 					gfp_zone(gfp_mask), nodemask) {
2790 		if (zone_idx(zone) > ZONE_NORMAL)
2791 			continue;
2792 
2793 		/* Throttle based on the first usable node */
2794 		pgdat = zone->zone_pgdat;
2795 		if (pfmemalloc_watermark_ok(pgdat))
2796 			goto out;
2797 		break;
2798 	}
2799 
2800 	/* If no zone was usable by the allocation flags then do not throttle */
2801 	if (!pgdat)
2802 		goto out;
2803 
2804 	/* Account for the throttling */
2805 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2806 
2807 	/*
2808 	 * If the caller cannot enter the filesystem, it's possible that it
2809 	 * is due to the caller holding an FS lock or performing a journal
2810 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2811 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2812 	 * blocked waiting on the same lock. Instead, throttle for up to a
2813 	 * second before continuing.
2814 	 */
2815 	if (!(gfp_mask & __GFP_FS)) {
2816 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2817 			pfmemalloc_watermark_ok(pgdat), HZ);
2818 
2819 		goto check_pending;
2820 	}
2821 
2822 	/* Throttle until kswapd wakes the process */
2823 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2824 		pfmemalloc_watermark_ok(pgdat));
2825 
2826 check_pending:
2827 	if (fatal_signal_pending(current))
2828 		return true;
2829 
2830 out:
2831 	return false;
2832 }
2833 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2834 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2835 				gfp_t gfp_mask, nodemask_t *nodemask)
2836 {
2837 	unsigned long nr_reclaimed;
2838 	struct scan_control sc = {
2839 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2840 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2841 		.order = order,
2842 		.nodemask = nodemask,
2843 		.priority = DEF_PRIORITY,
2844 		.may_writepage = !laptop_mode,
2845 		.may_unmap = 1,
2846 		.may_swap = 1,
2847 	};
2848 
2849 	/*
2850 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2851 	 * 1 is returned so that the page allocator does not OOM kill at this
2852 	 * point.
2853 	 */
2854 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2855 		return 1;
2856 
2857 	trace_mm_vmscan_direct_reclaim_begin(order,
2858 				sc.may_writepage,
2859 				gfp_mask);
2860 
2861 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2862 
2863 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2864 
2865 	return nr_reclaimed;
2866 }
2867 
2868 #ifdef CONFIG_MEMCG
2869 
mem_cgroup_shrink_node_zone(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,struct zone * zone,unsigned long * nr_scanned)2870 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2871 						gfp_t gfp_mask, bool noswap,
2872 						struct zone *zone,
2873 						unsigned long *nr_scanned)
2874 {
2875 	struct scan_control sc = {
2876 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2877 		.target_mem_cgroup = memcg,
2878 		.may_writepage = !laptop_mode,
2879 		.may_unmap = 1,
2880 		.may_swap = !noswap,
2881 	};
2882 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2883 	int swappiness = mem_cgroup_swappiness(memcg);
2884 	unsigned long lru_pages;
2885 
2886 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2887 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2888 
2889 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2890 						      sc.may_writepage,
2891 						      sc.gfp_mask);
2892 
2893 	/*
2894 	 * NOTE: Although we can get the priority field, using it
2895 	 * here is not a good idea, since it limits the pages we can scan.
2896 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2897 	 * will pick up pages from other mem cgroup's as well. We hack
2898 	 * the priority and make it zero.
2899 	 */
2900 	shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2901 
2902 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2903 
2904 	*nr_scanned = sc.nr_scanned;
2905 	return sc.nr_reclaimed;
2906 }
2907 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)2908 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2909 					   unsigned long nr_pages,
2910 					   gfp_t gfp_mask,
2911 					   bool may_swap)
2912 {
2913 	struct zonelist *zonelist;
2914 	unsigned long nr_reclaimed;
2915 	int nid;
2916 	struct scan_control sc = {
2917 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2918 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2919 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2920 		.target_mem_cgroup = memcg,
2921 		.priority = DEF_PRIORITY,
2922 		.may_writepage = !laptop_mode,
2923 		.may_unmap = 1,
2924 		.may_swap = may_swap,
2925 	};
2926 
2927 	/*
2928 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2929 	 * take care of from where we get pages. So the node where we start the
2930 	 * scan does not need to be the current node.
2931 	 */
2932 	nid = mem_cgroup_select_victim_node(memcg);
2933 
2934 	zonelist = NODE_DATA(nid)->node_zonelists;
2935 
2936 	trace_mm_vmscan_memcg_reclaim_begin(0,
2937 					    sc.may_writepage,
2938 					    sc.gfp_mask);
2939 
2940 	current->flags |= PF_MEMALLOC;
2941 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2942 	current->flags &= ~PF_MEMALLOC;
2943 
2944 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2945 
2946 	return nr_reclaimed;
2947 }
2948 #endif
2949 
age_active_anon(struct zone * zone,struct scan_control * sc)2950 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2951 {
2952 	struct mem_cgroup *memcg;
2953 
2954 	if (!total_swap_pages)
2955 		return;
2956 
2957 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2958 	do {
2959 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2960 
2961 		if (inactive_anon_is_low(lruvec))
2962 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2963 					   sc, LRU_ACTIVE_ANON);
2964 
2965 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2966 	} while (memcg);
2967 }
2968 
zone_balanced(struct zone * zone,int order,unsigned long balance_gap,int classzone_idx)2969 static bool zone_balanced(struct zone *zone, int order,
2970 			  unsigned long balance_gap, int classzone_idx)
2971 {
2972 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2973 				    balance_gap, classzone_idx))
2974 		return false;
2975 
2976 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2977 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2978 		return false;
2979 
2980 	return true;
2981 }
2982 
2983 /*
2984  * pgdat_balanced() is used when checking if a node is balanced.
2985  *
2986  * For order-0, all zones must be balanced!
2987  *
2988  * For high-order allocations only zones that meet watermarks and are in a
2989  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2990  * total of balanced pages must be at least 25% of the zones allowed by
2991  * classzone_idx for the node to be considered balanced. Forcing all zones to
2992  * be balanced for high orders can cause excessive reclaim when there are
2993  * imbalanced zones.
2994  * The choice of 25% is due to
2995  *   o a 16M DMA zone that is balanced will not balance a zone on any
2996  *     reasonable sized machine
2997  *   o On all other machines, the top zone must be at least a reasonable
2998  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2999  *     would need to be at least 256M for it to be balance a whole node.
3000  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
3001  *     to balance a node on its own. These seemed like reasonable ratios.
3002  */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3003 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3004 {
3005 	unsigned long managed_pages = 0;
3006 	unsigned long balanced_pages = 0;
3007 	int i;
3008 
3009 	/* Check the watermark levels */
3010 	for (i = 0; i <= classzone_idx; i++) {
3011 		struct zone *zone = pgdat->node_zones + i;
3012 
3013 		if (!populated_zone(zone))
3014 			continue;
3015 
3016 		managed_pages += zone->managed_pages;
3017 
3018 		/*
3019 		 * A special case here:
3020 		 *
3021 		 * balance_pgdat() skips over all_unreclaimable after
3022 		 * DEF_PRIORITY. Effectively, it considers them balanced so
3023 		 * they must be considered balanced here as well!
3024 		 */
3025 		if (!zone_reclaimable(zone)) {
3026 			balanced_pages += zone->managed_pages;
3027 			continue;
3028 		}
3029 
3030 		if (zone_balanced(zone, order, 0, i))
3031 			balanced_pages += zone->managed_pages;
3032 		else if (!order)
3033 			return false;
3034 	}
3035 
3036 	if (order)
3037 		return balanced_pages >= (managed_pages >> 2);
3038 	else
3039 		return true;
3040 }
3041 
3042 /*
3043  * Prepare kswapd for sleeping. This verifies that there are no processes
3044  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3045  *
3046  * Returns true if kswapd is ready to sleep
3047  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,long remaining,int classzone_idx)3048 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3049 					int classzone_idx)
3050 {
3051 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3052 	if (remaining)
3053 		return false;
3054 
3055 	/*
3056 	 * The throttled processes are normally woken up in balance_pgdat() as
3057 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3058 	 * race between when kswapd checks the watermarks and a process gets
3059 	 * throttled. There is also a potential race if processes get
3060 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3061 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3062 	 * the wake up checks. If kswapd is going to sleep, no process should
3063 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3064 	 * the wake up is premature, processes will wake kswapd and get
3065 	 * throttled again. The difference from wake ups in balance_pgdat() is
3066 	 * that here we are under prepare_to_wait().
3067 	 */
3068 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3069 		wake_up_all(&pgdat->pfmemalloc_wait);
3070 
3071 	return pgdat_balanced(pgdat, order, classzone_idx);
3072 }
3073 
3074 /*
3075  * kswapd shrinks the zone by the number of pages required to reach
3076  * the high watermark.
3077  *
3078  * Returns true if kswapd scanned at least the requested number of pages to
3079  * reclaim or if the lack of progress was due to pages under writeback.
3080  * This is used to determine if the scanning priority needs to be raised.
3081  */
kswapd_shrink_zone(struct zone * zone,int classzone_idx,struct scan_control * sc,unsigned long * nr_attempted)3082 static bool kswapd_shrink_zone(struct zone *zone,
3083 			       int classzone_idx,
3084 			       struct scan_control *sc,
3085 			       unsigned long *nr_attempted)
3086 {
3087 	int testorder = sc->order;
3088 	unsigned long balance_gap;
3089 	bool lowmem_pressure;
3090 
3091 	/* Reclaim above the high watermark. */
3092 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3093 
3094 	/*
3095 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3096 	 * too hard to reclaim until contiguous free pages have become
3097 	 * available can hurt performance by evicting too much useful data
3098 	 * from memory. Do not reclaim more than needed for compaction.
3099 	 */
3100 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3101 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3102 							!= COMPACT_SKIPPED)
3103 		testorder = 0;
3104 
3105 	/*
3106 	 * We put equal pressure on every zone, unless one zone has way too
3107 	 * many pages free already. The "too many pages" is defined as the
3108 	 * high wmark plus a "gap" where the gap is either the low
3109 	 * watermark or 1% of the zone, whichever is smaller.
3110 	 */
3111 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3112 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3113 
3114 	/*
3115 	 * If there is no low memory pressure or the zone is balanced then no
3116 	 * reclaim is necessary
3117 	 */
3118 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3119 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3120 						balance_gap, classzone_idx))
3121 		return true;
3122 
3123 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3124 
3125 	/* Account for the number of pages attempted to reclaim */
3126 	*nr_attempted += sc->nr_to_reclaim;
3127 
3128 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3129 
3130 	/*
3131 	 * If a zone reaches its high watermark, consider it to be no longer
3132 	 * congested. It's possible there are dirty pages backed by congested
3133 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3134 	 * waits.
3135 	 */
3136 	if (zone_reclaimable(zone) &&
3137 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3138 		clear_bit(ZONE_CONGESTED, &zone->flags);
3139 		clear_bit(ZONE_DIRTY, &zone->flags);
3140 	}
3141 
3142 	return sc->nr_scanned >= sc->nr_to_reclaim;
3143 }
3144 
3145 /*
3146  * For kswapd, balance_pgdat() will work across all this node's zones until
3147  * they are all at high_wmark_pages(zone).
3148  *
3149  * Returns the final order kswapd was reclaiming at
3150  *
3151  * There is special handling here for zones which are full of pinned pages.
3152  * This can happen if the pages are all mlocked, or if they are all used by
3153  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3154  * What we do is to detect the case where all pages in the zone have been
3155  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3156  * dead and from now on, only perform a short scan.  Basically we're polling
3157  * the zone for when the problem goes away.
3158  *
3159  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3160  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3161  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3162  * lower zones regardless of the number of free pages in the lower zones. This
3163  * interoperates with the page allocator fallback scheme to ensure that aging
3164  * of pages is balanced across the zones.
3165  */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)3166 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3167 							int *classzone_idx)
3168 {
3169 	int i;
3170 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3171 	unsigned long nr_soft_reclaimed;
3172 	unsigned long nr_soft_scanned;
3173 	struct scan_control sc = {
3174 		.gfp_mask = GFP_KERNEL,
3175 		.order = order,
3176 		.priority = DEF_PRIORITY,
3177 		.may_writepage = !laptop_mode,
3178 		.may_unmap = 1,
3179 		.may_swap = 1,
3180 	};
3181 	count_vm_event(PAGEOUTRUN);
3182 
3183 	do {
3184 		unsigned long nr_attempted = 0;
3185 		bool raise_priority = true;
3186 		bool pgdat_needs_compaction = (order > 0);
3187 
3188 		sc.nr_reclaimed = 0;
3189 
3190 		/*
3191 		 * Scan in the highmem->dma direction for the highest
3192 		 * zone which needs scanning
3193 		 */
3194 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3195 			struct zone *zone = pgdat->node_zones + i;
3196 
3197 			if (!populated_zone(zone))
3198 				continue;
3199 
3200 			if (sc.priority != DEF_PRIORITY &&
3201 			    !zone_reclaimable(zone))
3202 				continue;
3203 
3204 			/*
3205 			 * Do some background aging of the anon list, to give
3206 			 * pages a chance to be referenced before reclaiming.
3207 			 */
3208 			age_active_anon(zone, &sc);
3209 
3210 			/*
3211 			 * If the number of buffer_heads in the machine
3212 			 * exceeds the maximum allowed level and this node
3213 			 * has a highmem zone, force kswapd to reclaim from
3214 			 * it to relieve lowmem pressure.
3215 			 */
3216 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3217 				end_zone = i;
3218 				break;
3219 			}
3220 
3221 			if (!zone_balanced(zone, order, 0, 0)) {
3222 				end_zone = i;
3223 				break;
3224 			} else {
3225 				/*
3226 				 * If balanced, clear the dirty and congested
3227 				 * flags
3228 				 */
3229 				clear_bit(ZONE_CONGESTED, &zone->flags);
3230 				clear_bit(ZONE_DIRTY, &zone->flags);
3231 			}
3232 		}
3233 
3234 		if (i < 0)
3235 			goto out;
3236 
3237 		for (i = 0; i <= end_zone; i++) {
3238 			struct zone *zone = pgdat->node_zones + i;
3239 
3240 			if (!populated_zone(zone))
3241 				continue;
3242 
3243 			/*
3244 			 * If any zone is currently balanced then kswapd will
3245 			 * not call compaction as it is expected that the
3246 			 * necessary pages are already available.
3247 			 */
3248 			if (pgdat_needs_compaction &&
3249 					zone_watermark_ok(zone, order,
3250 						low_wmark_pages(zone),
3251 						*classzone_idx, 0))
3252 				pgdat_needs_compaction = false;
3253 		}
3254 
3255 		/*
3256 		 * If we're getting trouble reclaiming, start doing writepage
3257 		 * even in laptop mode.
3258 		 */
3259 		if (sc.priority < DEF_PRIORITY - 2)
3260 			sc.may_writepage = 1;
3261 
3262 		/*
3263 		 * Now scan the zone in the dma->highmem direction, stopping
3264 		 * at the last zone which needs scanning.
3265 		 *
3266 		 * We do this because the page allocator works in the opposite
3267 		 * direction.  This prevents the page allocator from allocating
3268 		 * pages behind kswapd's direction of progress, which would
3269 		 * cause too much scanning of the lower zones.
3270 		 */
3271 		for (i = 0; i <= end_zone; i++) {
3272 			struct zone *zone = pgdat->node_zones + i;
3273 
3274 			if (!populated_zone(zone))
3275 				continue;
3276 
3277 			if (sc.priority != DEF_PRIORITY &&
3278 			    !zone_reclaimable(zone))
3279 				continue;
3280 
3281 			sc.nr_scanned = 0;
3282 
3283 			nr_soft_scanned = 0;
3284 			/*
3285 			 * Call soft limit reclaim before calling shrink_zone.
3286 			 */
3287 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3288 							order, sc.gfp_mask,
3289 							&nr_soft_scanned);
3290 			sc.nr_reclaimed += nr_soft_reclaimed;
3291 
3292 			/*
3293 			 * There should be no need to raise the scanning
3294 			 * priority if enough pages are already being scanned
3295 			 * that that high watermark would be met at 100%
3296 			 * efficiency.
3297 			 */
3298 			if (kswapd_shrink_zone(zone, end_zone,
3299 					       &sc, &nr_attempted))
3300 				raise_priority = false;
3301 		}
3302 
3303 		/*
3304 		 * If the low watermark is met there is no need for processes
3305 		 * to be throttled on pfmemalloc_wait as they should not be
3306 		 * able to safely make forward progress. Wake them
3307 		 */
3308 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3309 				pfmemalloc_watermark_ok(pgdat))
3310 			wake_up_all(&pgdat->pfmemalloc_wait);
3311 
3312 		/*
3313 		 * Fragmentation may mean that the system cannot be rebalanced
3314 		 * for high-order allocations in all zones. If twice the
3315 		 * allocation size has been reclaimed and the zones are still
3316 		 * not balanced then recheck the watermarks at order-0 to
3317 		 * prevent kswapd reclaiming excessively. Assume that a
3318 		 * process requested a high-order can direct reclaim/compact.
3319 		 */
3320 		if (order && sc.nr_reclaimed >= 2UL << order)
3321 			order = sc.order = 0;
3322 
3323 		/* Check if kswapd should be suspending */
3324 		if (try_to_freeze() || kthread_should_stop())
3325 			break;
3326 
3327 		/*
3328 		 * Compact if necessary and kswapd is reclaiming at least the
3329 		 * high watermark number of pages as requsted
3330 		 */
3331 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3332 			compact_pgdat(pgdat, order);
3333 
3334 		/*
3335 		 * Raise priority if scanning rate is too low or there was no
3336 		 * progress in reclaiming pages
3337 		 */
3338 		if (raise_priority || !sc.nr_reclaimed)
3339 			sc.priority--;
3340 	} while (sc.priority >= 1 &&
3341 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3342 
3343 out:
3344 	/*
3345 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3346 	 * makes a decision on the order we were last reclaiming at. However,
3347 	 * if another caller entered the allocator slow path while kswapd
3348 	 * was awake, order will remain at the higher level
3349 	 */
3350 	*classzone_idx = end_zone;
3351 	return order;
3352 }
3353 
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)3354 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3355 {
3356 	long remaining = 0;
3357 	DEFINE_WAIT(wait);
3358 
3359 	if (freezing(current) || kthread_should_stop())
3360 		return;
3361 
3362 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3363 
3364 	/* Try to sleep for a short interval */
3365 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3366 		remaining = schedule_timeout(HZ/10);
3367 		finish_wait(&pgdat->kswapd_wait, &wait);
3368 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3369 	}
3370 
3371 	/*
3372 	 * After a short sleep, check if it was a premature sleep. If not, then
3373 	 * go fully to sleep until explicitly woken up.
3374 	 */
3375 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3376 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3377 
3378 		/*
3379 		 * vmstat counters are not perfectly accurate and the estimated
3380 		 * value for counters such as NR_FREE_PAGES can deviate from the
3381 		 * true value by nr_online_cpus * threshold. To avoid the zone
3382 		 * watermarks being breached while under pressure, we reduce the
3383 		 * per-cpu vmstat threshold while kswapd is awake and restore
3384 		 * them before going back to sleep.
3385 		 */
3386 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3387 
3388 		/*
3389 		 * Compaction records what page blocks it recently failed to
3390 		 * isolate pages from and skips them in the future scanning.
3391 		 * When kswapd is going to sleep, it is reasonable to assume
3392 		 * that pages and compaction may succeed so reset the cache.
3393 		 */
3394 		reset_isolation_suitable(pgdat);
3395 
3396 		if (!kthread_should_stop())
3397 			schedule();
3398 
3399 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3400 	} else {
3401 		if (remaining)
3402 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3403 		else
3404 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3405 	}
3406 	finish_wait(&pgdat->kswapd_wait, &wait);
3407 }
3408 
3409 /*
3410  * The background pageout daemon, started as a kernel thread
3411  * from the init process.
3412  *
3413  * This basically trickles out pages so that we have _some_
3414  * free memory available even if there is no other activity
3415  * that frees anything up. This is needed for things like routing
3416  * etc, where we otherwise might have all activity going on in
3417  * asynchronous contexts that cannot page things out.
3418  *
3419  * If there are applications that are active memory-allocators
3420  * (most normal use), this basically shouldn't matter.
3421  */
kswapd(void * p)3422 static int kswapd(void *p)
3423 {
3424 	unsigned long order, new_order;
3425 	unsigned balanced_order;
3426 	int classzone_idx, new_classzone_idx;
3427 	int balanced_classzone_idx;
3428 	pg_data_t *pgdat = (pg_data_t*)p;
3429 	struct task_struct *tsk = current;
3430 
3431 	struct reclaim_state reclaim_state = {
3432 		.reclaimed_slab = 0,
3433 	};
3434 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3435 
3436 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3437 
3438 	if (!cpumask_empty(cpumask))
3439 		set_cpus_allowed_ptr(tsk, cpumask);
3440 	current->reclaim_state = &reclaim_state;
3441 
3442 	/*
3443 	 * Tell the memory management that we're a "memory allocator",
3444 	 * and that if we need more memory we should get access to it
3445 	 * regardless (see "__alloc_pages()"). "kswapd" should
3446 	 * never get caught in the normal page freeing logic.
3447 	 *
3448 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3449 	 * you need a small amount of memory in order to be able to
3450 	 * page out something else, and this flag essentially protects
3451 	 * us from recursively trying to free more memory as we're
3452 	 * trying to free the first piece of memory in the first place).
3453 	 */
3454 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3455 	set_freezable();
3456 
3457 	order = new_order = 0;
3458 	balanced_order = 0;
3459 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3460 	balanced_classzone_idx = classzone_idx;
3461 	for ( ; ; ) {
3462 		bool ret;
3463 
3464 		/*
3465 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3466 		 * new request of a similar or harder type will succeed soon
3467 		 * so consider going to sleep on the basis we reclaimed at
3468 		 */
3469 		if (balanced_classzone_idx >= new_classzone_idx &&
3470 					balanced_order == new_order) {
3471 			new_order = pgdat->kswapd_max_order;
3472 			new_classzone_idx = pgdat->classzone_idx;
3473 			pgdat->kswapd_max_order =  0;
3474 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3475 		}
3476 
3477 		if (order < new_order || classzone_idx > new_classzone_idx) {
3478 			/*
3479 			 * Don't sleep if someone wants a larger 'order'
3480 			 * allocation or has tigher zone constraints
3481 			 */
3482 			order = new_order;
3483 			classzone_idx = new_classzone_idx;
3484 		} else {
3485 			kswapd_try_to_sleep(pgdat, balanced_order,
3486 						balanced_classzone_idx);
3487 			order = pgdat->kswapd_max_order;
3488 			classzone_idx = pgdat->classzone_idx;
3489 			new_order = order;
3490 			new_classzone_idx = classzone_idx;
3491 			pgdat->kswapd_max_order = 0;
3492 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3493 		}
3494 
3495 		ret = try_to_freeze();
3496 		if (kthread_should_stop())
3497 			break;
3498 
3499 		/*
3500 		 * We can speed up thawing tasks if we don't call balance_pgdat
3501 		 * after returning from the refrigerator
3502 		 */
3503 		if (!ret) {
3504 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3505 			balanced_classzone_idx = classzone_idx;
3506 			balanced_order = balance_pgdat(pgdat, order,
3507 						&balanced_classzone_idx);
3508 		}
3509 	}
3510 
3511 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3512 	current->reclaim_state = NULL;
3513 	lockdep_clear_current_reclaim_state();
3514 
3515 	return 0;
3516 }
3517 
3518 /*
3519  * A zone is low on free memory, so wake its kswapd task to service it.
3520  */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3521 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3522 {
3523 	pg_data_t *pgdat;
3524 
3525 	if (!populated_zone(zone))
3526 		return;
3527 
3528 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3529 		return;
3530 	pgdat = zone->zone_pgdat;
3531 	if (pgdat->kswapd_max_order < order) {
3532 		pgdat->kswapd_max_order = order;
3533 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3534 	}
3535 	if (!waitqueue_active(&pgdat->kswapd_wait))
3536 		return;
3537 	if (zone_balanced(zone, order, 0, 0))
3538 		return;
3539 
3540 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3541 	wake_up_interruptible(&pgdat->kswapd_wait);
3542 }
3543 
3544 #ifdef CONFIG_HIBERNATION
3545 /*
3546  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3547  * freed pages.
3548  *
3549  * Rather than trying to age LRUs the aim is to preserve the overall
3550  * LRU order by reclaiming preferentially
3551  * inactive > active > active referenced > active mapped
3552  */
shrink_all_memory(unsigned long nr_to_reclaim)3553 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3554 {
3555 	struct reclaim_state reclaim_state;
3556 	struct scan_control sc = {
3557 		.nr_to_reclaim = nr_to_reclaim,
3558 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3559 		.priority = DEF_PRIORITY,
3560 		.may_writepage = 1,
3561 		.may_unmap = 1,
3562 		.may_swap = 1,
3563 		.hibernation_mode = 1,
3564 	};
3565 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3566 	struct task_struct *p = current;
3567 	unsigned long nr_reclaimed;
3568 
3569 	p->flags |= PF_MEMALLOC;
3570 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3571 	reclaim_state.reclaimed_slab = 0;
3572 	p->reclaim_state = &reclaim_state;
3573 
3574 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3575 
3576 	p->reclaim_state = NULL;
3577 	lockdep_clear_current_reclaim_state();
3578 	p->flags &= ~PF_MEMALLOC;
3579 
3580 	return nr_reclaimed;
3581 }
3582 #endif /* CONFIG_HIBERNATION */
3583 
3584 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3585    not required for correctness.  So if the last cpu in a node goes
3586    away, we get changed to run anywhere: as the first one comes back,
3587    restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3588 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3589 			void *hcpu)
3590 {
3591 	int nid;
3592 
3593 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3594 		for_each_node_state(nid, N_MEMORY) {
3595 			pg_data_t *pgdat = NODE_DATA(nid);
3596 			const struct cpumask *mask;
3597 
3598 			mask = cpumask_of_node(pgdat->node_id);
3599 
3600 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3601 				/* One of our CPUs online: restore mask */
3602 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3603 		}
3604 	}
3605 	return NOTIFY_OK;
3606 }
3607 
3608 /*
3609  * This kswapd start function will be called by init and node-hot-add.
3610  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3611  */
kswapd_run(int nid)3612 int kswapd_run(int nid)
3613 {
3614 	pg_data_t *pgdat = NODE_DATA(nid);
3615 	int ret = 0;
3616 
3617 	if (pgdat->kswapd)
3618 		return 0;
3619 
3620 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3621 	if (IS_ERR(pgdat->kswapd)) {
3622 		/* failure at boot is fatal */
3623 		BUG_ON(system_state == SYSTEM_BOOTING);
3624 		pr_err("Failed to start kswapd on node %d\n", nid);
3625 		ret = PTR_ERR(pgdat->kswapd);
3626 		pgdat->kswapd = NULL;
3627 	}
3628 	return ret;
3629 }
3630 
3631 /*
3632  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3633  * hold mem_hotplug_begin/end().
3634  */
kswapd_stop(int nid)3635 void kswapd_stop(int nid)
3636 {
3637 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3638 
3639 	if (kswapd) {
3640 		kthread_stop(kswapd);
3641 		NODE_DATA(nid)->kswapd = NULL;
3642 	}
3643 }
3644 
kswapd_init(void)3645 static int __init kswapd_init(void)
3646 {
3647 	int nid;
3648 
3649 	swap_setup();
3650 	for_each_node_state(nid, N_MEMORY)
3651  		kswapd_run(nid);
3652 	hotcpu_notifier(cpu_callback, 0);
3653 	return 0;
3654 }
3655 
3656 module_init(kswapd_init)
3657 
3658 #ifdef CONFIG_NUMA
3659 /*
3660  * Zone reclaim mode
3661  *
3662  * If non-zero call zone_reclaim when the number of free pages falls below
3663  * the watermarks.
3664  */
3665 int zone_reclaim_mode __read_mostly;
3666 
3667 #define RECLAIM_OFF 0
3668 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3669 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3670 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3671 
3672 /*
3673  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3674  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3675  * a zone.
3676  */
3677 #define ZONE_RECLAIM_PRIORITY 4
3678 
3679 /*
3680  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3681  * occur.
3682  */
3683 int sysctl_min_unmapped_ratio = 1;
3684 
3685 /*
3686  * If the number of slab pages in a zone grows beyond this percentage then
3687  * slab reclaim needs to occur.
3688  */
3689 int sysctl_min_slab_ratio = 5;
3690 
zone_unmapped_file_pages(struct zone * zone)3691 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3692 {
3693 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3694 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3695 		zone_page_state(zone, NR_ACTIVE_FILE);
3696 
3697 	/*
3698 	 * It's possible for there to be more file mapped pages than
3699 	 * accounted for by the pages on the file LRU lists because
3700 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3701 	 */
3702 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3703 }
3704 
3705 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)3706 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3707 {
3708 	unsigned long nr_pagecache_reclaimable;
3709 	unsigned long delta = 0;
3710 
3711 	/*
3712 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3713 	 * potentially reclaimable. Otherwise, we have to worry about
3714 	 * pages like swapcache and zone_unmapped_file_pages() provides
3715 	 * a better estimate
3716 	 */
3717 	if (zone_reclaim_mode & RECLAIM_UNMAP)
3718 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3719 	else
3720 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3721 
3722 	/* If we can't clean pages, remove dirty pages from consideration */
3723 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3724 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3725 
3726 	/* Watch for any possible underflows due to delta */
3727 	if (unlikely(delta > nr_pagecache_reclaimable))
3728 		delta = nr_pagecache_reclaimable;
3729 
3730 	return nr_pagecache_reclaimable - delta;
3731 }
3732 
3733 /*
3734  * Try to free up some pages from this zone through reclaim.
3735  */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3736 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3737 {
3738 	/* Minimum pages needed in order to stay on node */
3739 	const unsigned long nr_pages = 1 << order;
3740 	struct task_struct *p = current;
3741 	struct reclaim_state reclaim_state;
3742 	struct scan_control sc = {
3743 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3744 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3745 		.order = order,
3746 		.priority = ZONE_RECLAIM_PRIORITY,
3747 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3748 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3749 		.may_swap = 1,
3750 	};
3751 
3752 	cond_resched();
3753 	/*
3754 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3755 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3756 	 * and RECLAIM_UNMAP.
3757 	 */
3758 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3759 	lockdep_set_current_reclaim_state(gfp_mask);
3760 	reclaim_state.reclaimed_slab = 0;
3761 	p->reclaim_state = &reclaim_state;
3762 
3763 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3764 		/*
3765 		 * Free memory by calling shrink zone with increasing
3766 		 * priorities until we have enough memory freed.
3767 		 */
3768 		do {
3769 			shrink_zone(zone, &sc, true);
3770 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3771 	}
3772 
3773 	p->reclaim_state = NULL;
3774 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3775 	lockdep_clear_current_reclaim_state();
3776 	return sc.nr_reclaimed >= nr_pages;
3777 }
3778 
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3779 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3780 {
3781 	int node_id;
3782 	int ret;
3783 
3784 	/*
3785 	 * Zone reclaim reclaims unmapped file backed pages and
3786 	 * slab pages if we are over the defined limits.
3787 	 *
3788 	 * A small portion of unmapped file backed pages is needed for
3789 	 * file I/O otherwise pages read by file I/O will be immediately
3790 	 * thrown out if the zone is overallocated. So we do not reclaim
3791 	 * if less than a specified percentage of the zone is used by
3792 	 * unmapped file backed pages.
3793 	 */
3794 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3795 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3796 		return ZONE_RECLAIM_FULL;
3797 
3798 	if (!zone_reclaimable(zone))
3799 		return ZONE_RECLAIM_FULL;
3800 
3801 	/*
3802 	 * Do not scan if the allocation should not be delayed.
3803 	 */
3804 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3805 		return ZONE_RECLAIM_NOSCAN;
3806 
3807 	/*
3808 	 * Only run zone reclaim on the local zone or on zones that do not
3809 	 * have associated processors. This will favor the local processor
3810 	 * over remote processors and spread off node memory allocations
3811 	 * as wide as possible.
3812 	 */
3813 	node_id = zone_to_nid(zone);
3814 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3815 		return ZONE_RECLAIM_NOSCAN;
3816 
3817 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3818 		return ZONE_RECLAIM_NOSCAN;
3819 
3820 	ret = __zone_reclaim(zone, gfp_mask, order);
3821 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3822 
3823 	if (!ret)
3824 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3825 
3826 	return ret;
3827 }
3828 #endif
3829 
3830 /*
3831  * page_evictable - test whether a page is evictable
3832  * @page: the page to test
3833  *
3834  * Test whether page is evictable--i.e., should be placed on active/inactive
3835  * lists vs unevictable list.
3836  *
3837  * Reasons page might not be evictable:
3838  * (1) page's mapping marked unevictable
3839  * (2) page is part of an mlocked VMA
3840  *
3841  */
page_evictable(struct page * page)3842 int page_evictable(struct page *page)
3843 {
3844 	int ret;
3845 
3846 	/* Prevent address_space of inode and swap cache from being freed */
3847 	rcu_read_lock();
3848 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3849 	rcu_read_unlock();
3850 	return ret;
3851 }
3852 
3853 #ifdef CONFIG_SHMEM
3854 /**
3855  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3856  * @pages:	array of pages to check
3857  * @nr_pages:	number of pages to check
3858  *
3859  * Checks pages for evictability and moves them to the appropriate lru list.
3860  *
3861  * This function is only used for SysV IPC SHM_UNLOCK.
3862  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3863 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3864 {
3865 	struct lruvec *lruvec;
3866 	struct zone *zone = NULL;
3867 	int pgscanned = 0;
3868 	int pgrescued = 0;
3869 	int i;
3870 
3871 	for (i = 0; i < nr_pages; i++) {
3872 		struct page *page = pages[i];
3873 		struct zone *pagezone;
3874 
3875 		pgscanned++;
3876 		pagezone = page_zone(page);
3877 		if (pagezone != zone) {
3878 			if (zone)
3879 				spin_unlock_irq(&zone->lru_lock);
3880 			zone = pagezone;
3881 			spin_lock_irq(&zone->lru_lock);
3882 		}
3883 		lruvec = mem_cgroup_page_lruvec(page, zone);
3884 
3885 		if (!PageLRU(page) || !PageUnevictable(page))
3886 			continue;
3887 
3888 		if (page_evictable(page)) {
3889 			enum lru_list lru = page_lru_base_type(page);
3890 
3891 			VM_BUG_ON_PAGE(PageActive(page), page);
3892 			ClearPageUnevictable(page);
3893 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3894 			add_page_to_lru_list(page, lruvec, lru);
3895 			pgrescued++;
3896 		}
3897 	}
3898 
3899 	if (zone) {
3900 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3901 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3902 		spin_unlock_irq(&zone->lru_lock);
3903 	}
3904 }
3905 #endif /* CONFIG_SHMEM */
3906