1 /*
2 * Copyright IBM Corp. 2012
3 *
4 * Author(s):
5 * Jan Glauber <jang@linux.vnet.ibm.com>
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/export.h>
11 #include <linux/iommu-helper.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pci.h>
15 #include <asm/pci_dma.h>
16
17 static struct kmem_cache *dma_region_table_cache;
18 static struct kmem_cache *dma_page_table_cache;
19 static int s390_iommu_strict;
20
zpci_refresh_global(struct zpci_dev * zdev)21 static int zpci_refresh_global(struct zpci_dev *zdev)
22 {
23 return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
24 zdev->iommu_pages * PAGE_SIZE);
25 }
26
dma_alloc_cpu_table(void)27 unsigned long *dma_alloc_cpu_table(void)
28 {
29 unsigned long *table, *entry;
30
31 table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
32 if (!table)
33 return NULL;
34
35 for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
36 *entry = ZPCI_TABLE_INVALID;
37 return table;
38 }
39
dma_free_cpu_table(void * table)40 static void dma_free_cpu_table(void *table)
41 {
42 kmem_cache_free(dma_region_table_cache, table);
43 }
44
dma_alloc_page_table(void)45 static unsigned long *dma_alloc_page_table(void)
46 {
47 unsigned long *table, *entry;
48
49 table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
50 if (!table)
51 return NULL;
52
53 for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
54 *entry = ZPCI_PTE_INVALID;
55 return table;
56 }
57
dma_free_page_table(void * table)58 static void dma_free_page_table(void *table)
59 {
60 kmem_cache_free(dma_page_table_cache, table);
61 }
62
dma_get_seg_table_origin(unsigned long * entry)63 static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
64 {
65 unsigned long *sto;
66
67 if (reg_entry_isvalid(*entry))
68 sto = get_rt_sto(*entry);
69 else {
70 sto = dma_alloc_cpu_table();
71 if (!sto)
72 return NULL;
73
74 set_rt_sto(entry, sto);
75 validate_rt_entry(entry);
76 entry_clr_protected(entry);
77 }
78 return sto;
79 }
80
dma_get_page_table_origin(unsigned long * entry)81 static unsigned long *dma_get_page_table_origin(unsigned long *entry)
82 {
83 unsigned long *pto;
84
85 if (reg_entry_isvalid(*entry))
86 pto = get_st_pto(*entry);
87 else {
88 pto = dma_alloc_page_table();
89 if (!pto)
90 return NULL;
91 set_st_pto(entry, pto);
92 validate_st_entry(entry);
93 entry_clr_protected(entry);
94 }
95 return pto;
96 }
97
dma_walk_cpu_trans(unsigned long * rto,dma_addr_t dma_addr)98 unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
99 {
100 unsigned long *sto, *pto;
101 unsigned int rtx, sx, px;
102
103 rtx = calc_rtx(dma_addr);
104 sto = dma_get_seg_table_origin(&rto[rtx]);
105 if (!sto)
106 return NULL;
107
108 sx = calc_sx(dma_addr);
109 pto = dma_get_page_table_origin(&sto[sx]);
110 if (!pto)
111 return NULL;
112
113 px = calc_px(dma_addr);
114 return &pto[px];
115 }
116
dma_update_cpu_trans(unsigned long * entry,void * page_addr,int flags)117 void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags)
118 {
119 if (flags & ZPCI_PTE_INVALID) {
120 invalidate_pt_entry(entry);
121 } else {
122 set_pt_pfaa(entry, page_addr);
123 validate_pt_entry(entry);
124 }
125
126 if (flags & ZPCI_TABLE_PROTECTED)
127 entry_set_protected(entry);
128 else
129 entry_clr_protected(entry);
130 }
131
dma_update_trans(struct zpci_dev * zdev,unsigned long pa,dma_addr_t dma_addr,size_t size,int flags)132 static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
133 dma_addr_t dma_addr, size_t size, int flags)
134 {
135 unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
136 u8 *page_addr = (u8 *) (pa & PAGE_MASK);
137 dma_addr_t start_dma_addr = dma_addr;
138 unsigned long irq_flags;
139 unsigned long *entry;
140 int i, rc = 0;
141
142 if (!nr_pages)
143 return -EINVAL;
144
145 spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
146 if (!zdev->dma_table) {
147 rc = -EINVAL;
148 goto no_refresh;
149 }
150
151 for (i = 0; i < nr_pages; i++) {
152 entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
153 if (!entry) {
154 rc = -ENOMEM;
155 goto undo_cpu_trans;
156 }
157 dma_update_cpu_trans(entry, page_addr, flags);
158 page_addr += PAGE_SIZE;
159 dma_addr += PAGE_SIZE;
160 }
161
162 /*
163 * With zdev->tlb_refresh == 0, rpcit is not required to establish new
164 * translations when previously invalid translation-table entries are
165 * validated. With lazy unmap, it also is skipped for previously valid
166 * entries, but a global rpcit is then required before any address can
167 * be re-used, i.e. after each iommu bitmap wrap-around.
168 */
169 if (!zdev->tlb_refresh &&
170 (!s390_iommu_strict ||
171 ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)))
172 goto no_refresh;
173
174 rc = zpci_refresh_trans((u64) zdev->fh << 32, start_dma_addr,
175 nr_pages * PAGE_SIZE);
176 undo_cpu_trans:
177 if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) {
178 flags = ZPCI_PTE_INVALID;
179 while (i-- > 0) {
180 page_addr -= PAGE_SIZE;
181 dma_addr -= PAGE_SIZE;
182 entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
183 if (!entry)
184 break;
185 dma_update_cpu_trans(entry, page_addr, flags);
186 }
187 }
188
189 no_refresh:
190 spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
191 return rc;
192 }
193
dma_free_seg_table(unsigned long entry)194 void dma_free_seg_table(unsigned long entry)
195 {
196 unsigned long *sto = get_rt_sto(entry);
197 int sx;
198
199 for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
200 if (reg_entry_isvalid(sto[sx]))
201 dma_free_page_table(get_st_pto(sto[sx]));
202
203 dma_free_cpu_table(sto);
204 }
205
dma_cleanup_tables(unsigned long * table)206 void dma_cleanup_tables(unsigned long *table)
207 {
208 int rtx;
209
210 if (!table)
211 return;
212
213 for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
214 if (reg_entry_isvalid(table[rtx]))
215 dma_free_seg_table(table[rtx]);
216
217 dma_free_cpu_table(table);
218 }
219
__dma_alloc_iommu(struct zpci_dev * zdev,unsigned long start,int size)220 static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev,
221 unsigned long start, int size)
222 {
223 unsigned long boundary_size;
224
225 boundary_size = ALIGN(dma_get_seg_boundary(&zdev->pdev->dev) + 1,
226 PAGE_SIZE) >> PAGE_SHIFT;
227 return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
228 start, size, 0, boundary_size, 0);
229 }
230
dma_alloc_iommu(struct zpci_dev * zdev,int size)231 static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size)
232 {
233 unsigned long offset, flags;
234 int wrap = 0;
235
236 spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
237 offset = __dma_alloc_iommu(zdev, zdev->next_bit, size);
238 if (offset == -1) {
239 /* wrap-around */
240 offset = __dma_alloc_iommu(zdev, 0, size);
241 wrap = 1;
242 }
243
244 if (offset != -1) {
245 zdev->next_bit = offset + size;
246 if (!zdev->tlb_refresh && !s390_iommu_strict && wrap)
247 /* global flush after wrap-around with lazy unmap */
248 zpci_refresh_global(zdev);
249 }
250 spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
251 return offset;
252 }
253
dma_free_iommu(struct zpci_dev * zdev,unsigned long offset,int size)254 static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size)
255 {
256 unsigned long flags;
257
258 spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
259 if (!zdev->iommu_bitmap)
260 goto out;
261 bitmap_clear(zdev->iommu_bitmap, offset, size);
262 /*
263 * Lazy flush for unmap: need to move next_bit to avoid address re-use
264 * until wrap-around.
265 */
266 if (!s390_iommu_strict && offset >= zdev->next_bit)
267 zdev->next_bit = offset + size;
268 out:
269 spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
270 }
271
zpci_err_dma(unsigned long rc,unsigned long addr)272 static inline void zpci_err_dma(unsigned long rc, unsigned long addr)
273 {
274 struct {
275 unsigned long rc;
276 unsigned long addr;
277 } __packed data = {rc, addr};
278
279 zpci_err_hex(&data, sizeof(data));
280 }
281
s390_dma_map_pages(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)282 static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
283 unsigned long offset, size_t size,
284 enum dma_data_direction direction,
285 struct dma_attrs *attrs)
286 {
287 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
288 unsigned long nr_pages, iommu_page_index;
289 unsigned long pa = page_to_phys(page) + offset;
290 int flags = ZPCI_PTE_VALID;
291 dma_addr_t dma_addr;
292 int ret;
293
294 /* This rounds up number of pages based on size and offset */
295 nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
296 iommu_page_index = dma_alloc_iommu(zdev, nr_pages);
297 if (iommu_page_index == -1) {
298 ret = -ENOSPC;
299 goto out_err;
300 }
301
302 /* Use rounded up size */
303 size = nr_pages * PAGE_SIZE;
304
305 dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE;
306 if (dma_addr + size > zdev->end_dma) {
307 ret = -ERANGE;
308 goto out_free;
309 }
310
311 if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
312 flags |= ZPCI_TABLE_PROTECTED;
313
314 ret = dma_update_trans(zdev, pa, dma_addr, size, flags);
315 if (ret)
316 goto out_free;
317
318 atomic64_add(nr_pages, &zdev->mapped_pages);
319 return dma_addr + (offset & ~PAGE_MASK);
320
321 out_free:
322 dma_free_iommu(zdev, iommu_page_index, nr_pages);
323 out_err:
324 zpci_err("map error:\n");
325 zpci_err_dma(ret, pa);
326 return DMA_ERROR_CODE;
327 }
328
s390_dma_unmap_pages(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)329 static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
330 size_t size, enum dma_data_direction direction,
331 struct dma_attrs *attrs)
332 {
333 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
334 unsigned long iommu_page_index;
335 int npages, ret;
336
337 npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
338 dma_addr = dma_addr & PAGE_MASK;
339 ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
340 ZPCI_PTE_INVALID);
341 if (ret) {
342 zpci_err("unmap error:\n");
343 zpci_err_dma(ret, dma_addr);
344 return;
345 }
346
347 atomic64_add(npages, &zdev->unmapped_pages);
348 iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
349 dma_free_iommu(zdev, iommu_page_index, npages);
350 }
351
s390_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,struct dma_attrs * attrs)352 static void *s390_dma_alloc(struct device *dev, size_t size,
353 dma_addr_t *dma_handle, gfp_t flag,
354 struct dma_attrs *attrs)
355 {
356 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
357 struct page *page;
358 unsigned long pa;
359 dma_addr_t map;
360
361 size = PAGE_ALIGN(size);
362 page = alloc_pages(flag, get_order(size));
363 if (!page)
364 return NULL;
365
366 pa = page_to_phys(page);
367 memset((void *) pa, 0, size);
368
369 map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE,
370 size, DMA_BIDIRECTIONAL, NULL);
371 if (dma_mapping_error(dev, map)) {
372 free_pages(pa, get_order(size));
373 return NULL;
374 }
375
376 atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
377 if (dma_handle)
378 *dma_handle = map;
379 return (void *) pa;
380 }
381
s390_dma_free(struct device * dev,size_t size,void * pa,dma_addr_t dma_handle,struct dma_attrs * attrs)382 static void s390_dma_free(struct device *dev, size_t size,
383 void *pa, dma_addr_t dma_handle,
384 struct dma_attrs *attrs)
385 {
386 struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
387
388 size = PAGE_ALIGN(size);
389 atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
390 s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
391 free_pages((unsigned long) pa, get_order(size));
392 }
393
s390_dma_map_sg(struct device * dev,struct scatterlist * sg,int nr_elements,enum dma_data_direction dir,struct dma_attrs * attrs)394 static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
395 int nr_elements, enum dma_data_direction dir,
396 struct dma_attrs *attrs)
397 {
398 int mapped_elements = 0;
399 struct scatterlist *s;
400 int i;
401
402 for_each_sg(sg, s, nr_elements, i) {
403 struct page *page = sg_page(s);
404 s->dma_address = s390_dma_map_pages(dev, page, s->offset,
405 s->length, dir, NULL);
406 if (!dma_mapping_error(dev, s->dma_address)) {
407 s->dma_length = s->length;
408 mapped_elements++;
409 } else
410 goto unmap;
411 }
412 out:
413 return mapped_elements;
414
415 unmap:
416 for_each_sg(sg, s, mapped_elements, i) {
417 if (s->dma_address)
418 s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
419 dir, NULL);
420 s->dma_address = 0;
421 s->dma_length = 0;
422 }
423 mapped_elements = 0;
424 goto out;
425 }
426
s390_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nr_elements,enum dma_data_direction dir,struct dma_attrs * attrs)427 static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
428 int nr_elements, enum dma_data_direction dir,
429 struct dma_attrs *attrs)
430 {
431 struct scatterlist *s;
432 int i;
433
434 for_each_sg(sg, s, nr_elements, i) {
435 s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL);
436 s->dma_address = 0;
437 s->dma_length = 0;
438 }
439 }
440
zpci_dma_init_device(struct zpci_dev * zdev)441 int zpci_dma_init_device(struct zpci_dev *zdev)
442 {
443 int rc;
444
445 /*
446 * At this point, if the device is part of an IOMMU domain, this would
447 * be a strong hint towards a bug in the IOMMU API (common) code and/or
448 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
449 */
450 WARN_ON(zdev->s390_domain);
451
452 spin_lock_init(&zdev->iommu_bitmap_lock);
453 spin_lock_init(&zdev->dma_table_lock);
454
455 zdev->dma_table = dma_alloc_cpu_table();
456 if (!zdev->dma_table) {
457 rc = -ENOMEM;
458 goto out;
459 }
460
461 /*
462 * Restrict the iommu bitmap size to the minimum of the following:
463 * - main memory size
464 * - 3-level pagetable address limit minus start_dma offset
465 * - DMA address range allowed by the hardware (clp query pci fn)
466 *
467 * Also set zdev->end_dma to the actual end address of the usable
468 * range, instead of the theoretical maximum as reported by hardware.
469 */
470 zdev->iommu_size = min3((u64) high_memory,
471 ZPCI_TABLE_SIZE_RT - zdev->start_dma,
472 zdev->end_dma - zdev->start_dma + 1);
473 zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1;
474 zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
475 zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
476 if (!zdev->iommu_bitmap) {
477 rc = -ENOMEM;
478 goto free_dma_table;
479 }
480
481 rc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma,
482 (u64) zdev->dma_table);
483 if (rc)
484 goto free_bitmap;
485
486 return 0;
487 free_bitmap:
488 vfree(zdev->iommu_bitmap);
489 zdev->iommu_bitmap = NULL;
490 free_dma_table:
491 dma_free_cpu_table(zdev->dma_table);
492 zdev->dma_table = NULL;
493 out:
494 return rc;
495 }
496
zpci_dma_exit_device(struct zpci_dev * zdev)497 void zpci_dma_exit_device(struct zpci_dev *zdev)
498 {
499 /*
500 * At this point, if the device is part of an IOMMU domain, this would
501 * be a strong hint towards a bug in the IOMMU API (common) code and/or
502 * simultaneous access via IOMMU and DMA API. So let's issue a warning.
503 */
504 WARN_ON(zdev->s390_domain);
505
506 zpci_unregister_ioat(zdev, 0);
507 dma_cleanup_tables(zdev->dma_table);
508 zdev->dma_table = NULL;
509 vfree(zdev->iommu_bitmap);
510 zdev->iommu_bitmap = NULL;
511 zdev->next_bit = 0;
512 }
513
dma_alloc_cpu_table_caches(void)514 static int __init dma_alloc_cpu_table_caches(void)
515 {
516 dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
517 ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
518 0, NULL);
519 if (!dma_region_table_cache)
520 return -ENOMEM;
521
522 dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
523 ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
524 0, NULL);
525 if (!dma_page_table_cache) {
526 kmem_cache_destroy(dma_region_table_cache);
527 return -ENOMEM;
528 }
529 return 0;
530 }
531
zpci_dma_init(void)532 int __init zpci_dma_init(void)
533 {
534 return dma_alloc_cpu_table_caches();
535 }
536
zpci_dma_exit(void)537 void zpci_dma_exit(void)
538 {
539 kmem_cache_destroy(dma_page_table_cache);
540 kmem_cache_destroy(dma_region_table_cache);
541 }
542
543 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
544
dma_debug_do_init(void)545 static int __init dma_debug_do_init(void)
546 {
547 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
548 return 0;
549 }
550 fs_initcall(dma_debug_do_init);
551
552 struct dma_map_ops s390_dma_ops = {
553 .alloc = s390_dma_alloc,
554 .free = s390_dma_free,
555 .map_sg = s390_dma_map_sg,
556 .unmap_sg = s390_dma_unmap_sg,
557 .map_page = s390_dma_map_pages,
558 .unmap_page = s390_dma_unmap_pages,
559 /* if we support direct DMA this must be conditional */
560 .is_phys = 0,
561 /* dma_supported is unconditionally true without a callback */
562 };
563 EXPORT_SYMBOL_GPL(s390_dma_ops);
564
s390_iommu_setup(char * str)565 static int __init s390_iommu_setup(char *str)
566 {
567 if (!strncmp(str, "strict", 6))
568 s390_iommu_strict = 1;
569 return 0;
570 }
571
572 __setup("s390_iommu=", s390_iommu_setup);
573