• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * HWA Host Controller Driver
3  * Wire Adapter Control/Data Streaming Iface (WUSB1.0[8])
4  *
5  * Copyright (C) 2005-2006 Intel Corporation
6  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA.
21  *
22  *
23  * This driver implements a USB Host Controller (struct usb_hcd) for a
24  * Wireless USB Host Controller based on the Wireless USB 1.0
25  * Host-Wire-Adapter specification (in layman terms, a USB-dongle that
26  * implements a Wireless USB host).
27  *
28  * Check out the Design-overview.txt file in the source documentation
29  * for other details on the implementation.
30  *
31  * Main blocks:
32  *
33  *  driver     glue with the driver API, workqueue daemon
34  *
35  *  lc         RC instance life cycle management (create, destroy...)
36  *
37  *  hcd        glue with the USB API Host Controller Interface API.
38  *
39  *  nep        Notification EndPoint management: collect notifications
40  *             and queue them with the workqueue daemon.
41  *
42  *             Handle notifications as coming from the NEP. Sends them
43  *             off others to their respective modules (eg: connect,
44  *             disconnect and reset go to devconnect).
45  *
46  *  rpipe      Remote Pipe management; rpipe is what we use to write
47  *             to an endpoint on a WUSB device that is connected to a
48  *             HWA RC.
49  *
50  *  xfer       Transfer management -- this is all the code that gets a
51  *             buffer and pushes it to a device (or viceversa). *
52  *
53  * Some day a lot of this code will be shared between this driver and
54  * the drivers for DWA (xfer, rpipe).
55  *
56  * All starts at driver.c:hwahc_probe(), when one of this guys is
57  * connected. hwahc_disconnect() stops it.
58  *
59  * During operation, the main driver is devices connecting or
60  * disconnecting. They cause the HWA RC to send notifications into
61  * nep.c:hwahc_nep_cb() that will dispatch them to
62  * notif.c:wa_notif_dispatch(). From there they will fan to cause
63  * device connects, disconnects, etc.
64  *
65  * Note much of the activity is difficult to follow. For example a
66  * device connect goes to devconnect, which will cause the "fake" root
67  * hub port to show a connect and stop there. Then hub_wq will notice
68  * and call into the rh.c:hwahc_rc_port_reset() code to authenticate
69  * the device (and this might require user intervention) and enable
70  * the port.
71  *
72  * We also have a timer workqueue going from devconnect.c that
73  * schedules in hwahc_devconnect_create().
74  *
75  * The rest of the traffic is in the usual entry points of a USB HCD,
76  * which are hooked up in driver.c:hwahc_rc_driver, and defined in
77  * hcd.c.
78  */
79 
80 #ifndef __HWAHC_INTERNAL_H__
81 #define __HWAHC_INTERNAL_H__
82 
83 #include <linux/completion.h>
84 #include <linux/usb.h>
85 #include <linux/mutex.h>
86 #include <linux/spinlock.h>
87 #include <linux/uwb.h>
88 #include <linux/usb/wusb.h>
89 #include <linux/usb/wusb-wa.h>
90 
91 struct wusbhc;
92 struct wahc;
93 extern void wa_urb_enqueue_run(struct work_struct *ws);
94 extern void wa_process_errored_transfers_run(struct work_struct *ws);
95 
96 /**
97  * RPipe instance
98  *
99  * @descr's fields are kept in LE, as we need to send it back and
100  * forth.
101  *
102  * @wa is referenced when set
103  *
104  * @segs_available is the number of requests segments that still can
105  *                 be submitted to the controller without overloading
106  *                 it. It is initialized to descr->wRequests when
107  *                 aiming.
108  *
109  * A rpipe supports a max of descr->wRequests at the same time; before
110  * submitting seg_lock has to be taken. If segs_avail > 0, then we can
111  * submit; if not, we have to queue them.
112  */
113 struct wa_rpipe {
114 	struct kref refcnt;
115 	struct usb_rpipe_descriptor descr;
116 	struct usb_host_endpoint *ep;
117 	struct wahc *wa;
118 	spinlock_t seg_lock;
119 	struct list_head seg_list;
120 	struct list_head list_node;
121 	atomic_t segs_available;
122 	u8 buffer[1];	/* For reads/writes on USB */
123 };
124 
125 
126 enum wa_dti_state {
127 	WA_DTI_TRANSFER_RESULT_PENDING,
128 	WA_DTI_ISOC_PACKET_STATUS_PENDING,
129 	WA_DTI_BUF_IN_DATA_PENDING
130 };
131 
132 enum wa_quirks {
133 	/*
134 	 * The Alereon HWA expects the data frames in isochronous transfer
135 	 * requests to be concatenated and not sent as separate packets.
136 	 */
137 	WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC	= 0x01,
138 	/*
139 	 * The Alereon HWA can be instructed to not send transfer notifications
140 	 * as an optimization.
141 	 */
142 	WUSB_QUIRK_ALEREON_HWA_DISABLE_XFER_NOTIFICATIONS	= 0x02,
143 };
144 
145 enum wa_vendor_specific_requests {
146 	WA_REQ_ALEREON_DISABLE_XFER_NOTIFICATIONS = 0x4C,
147 	WA_REQ_ALEREON_FEATURE_SET = 0x01,
148 	WA_REQ_ALEREON_FEATURE_CLEAR = 0x00,
149 };
150 
151 #define WA_MAX_BUF_IN_URBS	4
152 /**
153  * Instance of a HWA Host Controller
154  *
155  * Except where a more specific lock/mutex applies or atomic, all
156  * fields protected by @mutex.
157  *
158  * @wa_descr  Can be accessed without locking because it is in
159  *            the same area where the device descriptors were
160  *            read, so it is guaranteed to exist unmodified while
161  *            the device exists.
162  *
163  *            Endianess has been converted to CPU's.
164  *
165  * @nep_* can be accessed without locking as its processing is
166  *        serialized; we submit a NEP URB and it comes to
167  *        hwahc_nep_cb(), which won't issue another URB until it is
168  *        done processing it.
169  *
170  * @xfer_list:
171  *
172  *   List of active transfers to verify existence from a xfer id
173  *   gotten from the xfer result message. Can't use urb->list because
174  *   it goes by endpoint, and we don't know the endpoint at the time
175  *   when we get the xfer result message. We can't really rely on the
176  *   pointer (will have to change for 64 bits) as the xfer id is 32 bits.
177  *
178  * @xfer_delayed_list:   List of transfers that need to be started
179  *                       (with a workqueue, because they were
180  *                       submitted from an atomic context).
181  *
182  * FIXME: this needs to be layered up: a wusbhc layer (for sharing
183  *        commonalities with WHCI), a wa layer (for sharing
184  *        commonalities with DWA-RC).
185  */
186 struct wahc {
187 	struct usb_device *usb_dev;
188 	struct usb_interface *usb_iface;
189 
190 	/* HC to deliver notifications */
191 	union {
192 		struct wusbhc *wusb;
193 		struct dwahc *dwa;
194 	};
195 
196 	const struct usb_endpoint_descriptor *dto_epd, *dti_epd;
197 	const struct usb_wa_descriptor *wa_descr;
198 
199 	struct urb *nep_urb;		/* Notification EndPoint [lockless] */
200 	struct edc nep_edc;
201 	void *nep_buffer;
202 	size_t nep_buffer_size;
203 
204 	atomic_t notifs_queued;
205 
206 	u16 rpipes;
207 	unsigned long *rpipe_bm;	/* rpipe usage bitmap */
208 	struct list_head rpipe_delayed_list;	/* delayed RPIPES. */
209 	spinlock_t rpipe_lock;	/* protect rpipe_bm and delayed list */
210 	struct mutex rpipe_mutex;	/* assigning resources to endpoints */
211 
212 	/*
213 	 * dti_state is used to track the state of the dti_urb. When dti_state
214 	 * is WA_DTI_ISOC_PACKET_STATUS_PENDING, dti_isoc_xfer_in_progress and
215 	 * dti_isoc_xfer_seg identify which xfer the incoming isoc packet
216 	 * status refers to.
217 	 */
218 	enum wa_dti_state dti_state;
219 	u32 dti_isoc_xfer_in_progress;
220 	u8  dti_isoc_xfer_seg;
221 	struct urb *dti_urb;		/* URB for reading xfer results */
222 					/* URBs for reading data in */
223 	struct urb buf_in_urbs[WA_MAX_BUF_IN_URBS];
224 	int active_buf_in_urbs;		/* number of buf_in_urbs active. */
225 	struct edc dti_edc;		/* DTI error density counter */
226 	void *dti_buf;
227 	size_t dti_buf_size;
228 
229 	unsigned long dto_in_use;	/* protect dto endoint serialization */
230 
231 	s32 status;			/* For reading status */
232 
233 	struct list_head xfer_list;
234 	struct list_head xfer_delayed_list;
235 	struct list_head xfer_errored_list;
236 	/*
237 	 * lock for the above xfer lists.  Can be taken while a xfer->lock is
238 	 * held but not in the reverse order.
239 	 */
240 	spinlock_t xfer_list_lock;
241 	struct work_struct xfer_enqueue_work;
242 	struct work_struct xfer_error_work;
243 	atomic_t xfer_id_count;
244 
245 	kernel_ulong_t	quirks;
246 };
247 
248 
249 extern int wa_create(struct wahc *wa, struct usb_interface *iface,
250 	kernel_ulong_t);
251 extern void __wa_destroy(struct wahc *wa);
252 extern int wa_dti_start(struct wahc *wa);
253 void wa_reset_all(struct wahc *wa);
254 
255 
256 /* Miscellaneous constants */
257 enum {
258 	/** Max number of EPROTO errors we tolerate on the NEP in a
259 	 * period of time */
260 	HWAHC_EPROTO_MAX = 16,
261 	/** Period of time for EPROTO errors (in jiffies) */
262 	HWAHC_EPROTO_PERIOD = 4 * HZ,
263 };
264 
265 
266 /* Notification endpoint handling */
267 extern int wa_nep_create(struct wahc *, struct usb_interface *);
268 extern void wa_nep_destroy(struct wahc *);
269 
wa_nep_arm(struct wahc * wa,gfp_t gfp_mask)270 static inline int wa_nep_arm(struct wahc *wa, gfp_t gfp_mask)
271 {
272 	struct urb *urb = wa->nep_urb;
273 	urb->transfer_buffer = wa->nep_buffer;
274 	urb->transfer_buffer_length = wa->nep_buffer_size;
275 	return usb_submit_urb(urb, gfp_mask);
276 }
277 
wa_nep_disarm(struct wahc * wa)278 static inline void wa_nep_disarm(struct wahc *wa)
279 {
280 	usb_kill_urb(wa->nep_urb);
281 }
282 
283 
284 /* RPipes */
wa_rpipe_init(struct wahc * wa)285 static inline void wa_rpipe_init(struct wahc *wa)
286 {
287 	INIT_LIST_HEAD(&wa->rpipe_delayed_list);
288 	spin_lock_init(&wa->rpipe_lock);
289 	mutex_init(&wa->rpipe_mutex);
290 }
291 
wa_init(struct wahc * wa)292 static inline void wa_init(struct wahc *wa)
293 {
294 	int index;
295 
296 	edc_init(&wa->nep_edc);
297 	atomic_set(&wa->notifs_queued, 0);
298 	wa->dti_state = WA_DTI_TRANSFER_RESULT_PENDING;
299 	wa_rpipe_init(wa);
300 	edc_init(&wa->dti_edc);
301 	INIT_LIST_HEAD(&wa->xfer_list);
302 	INIT_LIST_HEAD(&wa->xfer_delayed_list);
303 	INIT_LIST_HEAD(&wa->xfer_errored_list);
304 	spin_lock_init(&wa->xfer_list_lock);
305 	INIT_WORK(&wa->xfer_enqueue_work, wa_urb_enqueue_run);
306 	INIT_WORK(&wa->xfer_error_work, wa_process_errored_transfers_run);
307 	wa->dto_in_use = 0;
308 	atomic_set(&wa->xfer_id_count, 1);
309 	/* init the buf in URBs */
310 	for (index = 0; index < WA_MAX_BUF_IN_URBS; ++index)
311 		usb_init_urb(&(wa->buf_in_urbs[index]));
312 	wa->active_buf_in_urbs = 0;
313 }
314 
315 /**
316  * Destroy a pipe (when refcount drops to zero)
317  *
318  * Assumes it has been moved to the "QUIESCING" state.
319  */
320 struct wa_xfer;
321 extern void rpipe_destroy(struct kref *_rpipe);
322 static inline
__rpipe_get(struct wa_rpipe * rpipe)323 void __rpipe_get(struct wa_rpipe *rpipe)
324 {
325 	kref_get(&rpipe->refcnt);
326 }
327 extern int rpipe_get_by_ep(struct wahc *, struct usb_host_endpoint *,
328 			   struct urb *, gfp_t);
rpipe_put(struct wa_rpipe * rpipe)329 static inline void rpipe_put(struct wa_rpipe *rpipe)
330 {
331 	kref_put(&rpipe->refcnt, rpipe_destroy);
332 
333 }
334 extern void rpipe_ep_disable(struct wahc *, struct usb_host_endpoint *);
335 extern void rpipe_clear_feature_stalled(struct wahc *,
336 			struct usb_host_endpoint *);
337 extern int wa_rpipes_create(struct wahc *);
338 extern void wa_rpipes_destroy(struct wahc *);
rpipe_avail_dec(struct wa_rpipe * rpipe)339 static inline void rpipe_avail_dec(struct wa_rpipe *rpipe)
340 {
341 	atomic_dec(&rpipe->segs_available);
342 }
343 
344 /**
345  * Returns true if the rpipe is ready to submit more segments.
346  */
rpipe_avail_inc(struct wa_rpipe * rpipe)347 static inline int rpipe_avail_inc(struct wa_rpipe *rpipe)
348 {
349 	return atomic_inc_return(&rpipe->segs_available) > 0
350 		&& !list_empty(&rpipe->seg_list);
351 }
352 
353 
354 /* Transferring data */
355 extern int wa_urb_enqueue(struct wahc *, struct usb_host_endpoint *,
356 			  struct urb *, gfp_t);
357 extern int wa_urb_dequeue(struct wahc *, struct urb *, int);
358 extern void wa_handle_notif_xfer(struct wahc *, struct wa_notif_hdr *);
359 
360 
361 /* Misc
362  *
363  * FIXME: Refcounting for the actual @hwahc object is not correct; I
364  *        mean, this should be refcounting on the HCD underneath, but
365  *        it is not. In any case, the semantics for HCD refcounting
366  *        are *weird*...on refcount reaching zero it just frees
367  *        it...no RC specific function is called...unless I miss
368  *        something.
369  *
370  * FIXME: has to go away in favour of a 'struct' hcd based solution
371  */
wa_get(struct wahc * wa)372 static inline struct wahc *wa_get(struct wahc *wa)
373 {
374 	usb_get_intf(wa->usb_iface);
375 	return wa;
376 }
377 
wa_put(struct wahc * wa)378 static inline void wa_put(struct wahc *wa)
379 {
380 	usb_put_intf(wa->usb_iface);
381 }
382 
383 
__wa_feature(struct wahc * wa,unsigned op,u16 feature)384 static inline int __wa_feature(struct wahc *wa, unsigned op, u16 feature)
385 {
386 	return usb_control_msg(wa->usb_dev, usb_sndctrlpipe(wa->usb_dev, 0),
387 			op ? USB_REQ_SET_FEATURE : USB_REQ_CLEAR_FEATURE,
388 			USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
389 			feature,
390 			wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
391 			NULL, 0, USB_CTRL_SET_TIMEOUT);
392 }
393 
394 
__wa_set_feature(struct wahc * wa,u16 feature)395 static inline int __wa_set_feature(struct wahc *wa, u16 feature)
396 {
397 	return  __wa_feature(wa, 1, feature);
398 }
399 
400 
__wa_clear_feature(struct wahc * wa,u16 feature)401 static inline int __wa_clear_feature(struct wahc *wa, u16 feature)
402 {
403 	return __wa_feature(wa, 0, feature);
404 }
405 
406 
407 /**
408  * Return the status of a Wire Adapter
409  *
410  * @wa:		Wire Adapter instance
411  * @returns     < 0 errno code on error, or status bitmap as described
412  *              in WUSB1.0[8.3.1.6].
413  *
414  * NOTE: need malloc, some arches don't take USB from the stack
415  */
416 static inline
__wa_get_status(struct wahc * wa)417 s32 __wa_get_status(struct wahc *wa)
418 {
419 	s32 result;
420 	result = usb_control_msg(
421 		wa->usb_dev, usb_rcvctrlpipe(wa->usb_dev, 0),
422 		USB_REQ_GET_STATUS,
423 		USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
424 		0, wa->usb_iface->cur_altsetting->desc.bInterfaceNumber,
425 		&wa->status, sizeof(wa->status), USB_CTRL_GET_TIMEOUT);
426 	if (result >= 0)
427 		result = wa->status;
428 	return result;
429 }
430 
431 
432 /**
433  * Waits until the Wire Adapter's status matches @mask/@value
434  *
435  * @wa:		Wire Adapter instance.
436  * @returns     < 0 errno code on error, otherwise status.
437  *
438  * Loop until the WAs status matches the mask and value (status & mask
439  * == value). Timeout if it doesn't happen.
440  *
441  * FIXME: is there an official specification on how long status
442  *        changes can take?
443  */
__wa_wait_status(struct wahc * wa,u32 mask,u32 value)444 static inline s32 __wa_wait_status(struct wahc *wa, u32 mask, u32 value)
445 {
446 	s32 result;
447 	unsigned loops = 10;
448 	do {
449 		msleep(50);
450 		result = __wa_get_status(wa);
451 		if ((result & mask) == value)
452 			break;
453 		if (loops-- == 0) {
454 			result = -ETIMEDOUT;
455 			break;
456 		}
457 	} while (result >= 0);
458 	return result;
459 }
460 
461 
462 /** Command @hwahc to stop, @returns 0 if ok, < 0 errno code on error */
__wa_stop(struct wahc * wa)463 static inline int __wa_stop(struct wahc *wa)
464 {
465 	int result;
466 	struct device *dev = &wa->usb_iface->dev;
467 
468 	result = __wa_clear_feature(wa, WA_ENABLE);
469 	if (result < 0 && result != -ENODEV) {
470 		dev_err(dev, "error commanding HC to stop: %d\n", result);
471 		goto out;
472 	}
473 	result = __wa_wait_status(wa, WA_ENABLE, 0);
474 	if (result < 0 && result != -ENODEV)
475 		dev_err(dev, "error waiting for HC to stop: %d\n", result);
476 out:
477 	return 0;
478 }
479 
480 
481 #endif /* #ifndef __HWAHC_INTERNAL_H__ */
482