• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *		DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *		DEC FDDIcontroller/EISA         (DEFEA)
18  *		DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro	Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *		The driver scans for supported EISA adapters by reading the
42  *		SLOT ID register for each EISA slot and making a match
43  *		against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *		This driver currently supports both EISA and PCI controller
47  *		families.  While the custom DMA chip and FDDI logic is similar
48  *		or identical, the bus logic is very different.  After
49  *		initialization, the	only bus-specific differences is in how the
50  *		driver enables and disables interrupts.  Other than that, the
51  *		run-time critical code behaves the same on both families.
52  *		It's important to note that both adapter families are configured
53  *		to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *		In the driver open routine, the driver ISR (interrupt service
57  *		routine) is registered and the adapter is brought to an
58  *		operational state.  In the driver close routine, the opposite
59  *		occurs; the driver ISR is deregistered and the adapter is
60  *		brought to a safe, but closed state.  Users may use consecutive
61  *		commands to bring the adapter up and down as in the following
62  *		example:
63  *					ifconfig fddi0 up
64  *					ifconfig fddi0 down
65  *					ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *		Apparently, there is no shutdown or halt routine support under
69  *		Linux.  This routine would be called during "reboot" or
70  *		"shutdown" to allow the driver to place the adapter in a safe
71  *		state before a warm reboot occurs.  To be really safe, the user
72  *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *		to ensure that the adapter DMA engine is taken off-line.  However,
74  *		the current driver code anticipates this problem and always issues
75  *		a soft reset of the adapter	at the beginning of driver initialization.
76  *		A future driver enhancement in this area may occur in 2.1.X where
77  *		Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *		The driver supports shared interrupts, so the ISR is registered for
81  *		each board with the appropriate flag and the pointer to that board's
82  *		device structure.  This provides the context during interrupt
83  *		processing to support shared interrupts and multiple boards.
84  *
85  *		Interrupt enabling/disabling can occur at many levels.  At the host
86  *		end, you can disable system interrupts, or disable interrupts at the
87  *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *		have a bus-logic chip interrupt enable/disable as well as a DMA
89  *		controller interrupt enable/disable.
90  *
91  *		The driver currently enables and disables adapter interrupts at the
92  *		bus-logic chip and assumes that Linux will take care of clearing or
93  *		acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *		Control functions are those used to support functions such as adding
97  *		or deleting multicast addresses, enabling or disabling packet
98  *		reception filters, or other custom/proprietary commands.  Presently,
99  *		the driver supports the "get statistics", "set multicast list", and
100  *		"set mac address" functions defined by Linux.  A list of possible
101  *		enhancements include:
102  *
103  *				- Custom ioctl interface for executing port interface commands
104  *				- Custom ioctl interface for adding unicast addresses to
105  *				  adapter CAM (to support bridge functions).
106  *				- Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *		The driver function names that start with "dfx_hw_" represent
110  *		low-level port interface routines that are called frequently.  They
111  *		include issuing a DMA or port control command to the adapter,
112  *		resetting the adapter, or reading the adapter state.  Since the
113  *		driver initialization and run-time code must make calls into the
114  *		port interface, these routines were written to be as generic and
115  *		usable as possible.
116  *
117  *   Receive Path -
118  *		The adapter DMA engine supports a 256 entry receive descriptor block
119  *		of which up to 255 entries can be used at any given time.  The
120  *		architecture is a standard producer, consumer, completion model in
121  *		which the driver "produces" receive buffers to the adapter, the
122  *		adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *		and the driver "completes" the receive buffers by servicing the
124  *		incoming packet, then "produces" a new buffer and starts the cycle
125  *		again.  Receive buffers can be fragmented in up to 16 fragments
126  *		(descriptor	entries).  For simplicity, this driver posts
127  *		single-fragment receive buffers of 4608 bytes, then allocates a
128  *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *		utilization, a better approach would be to pass up the receive
130  *		buffer (no extra copy) then allocate and post a replacement buffer.
131  *		This is a performance enhancement that should be looked into at
132  *		some point.
133  *
134  *   Transmit Path -
135  *		Like the receive path, the adapter DMA engine supports a 256 entry
136  *		transmit descriptor block of which up to 255 entries can be used at
137  *		any	given time.  Transmit buffers can be fragmented	in up to 255
138  *		fragments (descriptor entries).  This driver always posts one
139  *		fragment per transmit packet request.
140  *
141  *		The fragment contains the entire packet from FC to end of data.
142  *		Before posting the buffer to the adapter, the driver sets a three-byte
143  *		packet request header (PRH) which is required by the Motorola MAC chip
144  *		used on the adapters.  The PRH tells the MAC the type of token to
145  *		receive/send, whether or not to generate and append the CRC, whether
146  *		synchronous or asynchronous framing is used, etc.  Since the PRH
147  *		definition is not necessarily consistent across all FDDI chipsets,
148  *		the driver, rather than the common FDDI packet handler routines,
149  *		sets these bytes.
150  *
151  *		To reduce the amount of descriptor fetches needed per transmit request,
152  *		the driver takes advantage of the fact that there are at least three
153  *		bytes available before the skb->data field on the outgoing transmit
154  *		request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *		bytes which we'll use to store the PRH.
158  *
159  *		There's a subtle advantage to adding these pad bytes to the
160  *		hard_header_len, it ensures that the data portion of the packet for
161  *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *		implementations may not need the extra padding and can start copying
163  *		or DMAing directly from the FC byte which starts at skb->data.  Should
164  *		another driver implementation need ADDITIONAL padding, the net_init.c
165  *		module should be updated and dev->hard_header_len should be increased.
166  *		NOTE: To maintain the alignment on the data portion of the packet,
167  *		dev->hard_header_len should always be evenly divisible by 4 and at
168  *		least 24 bytes in size.
169  *
170  * Modification History:
171  *		Date		Name	Description
172  *		16-Aug-96	LVS		Created.
173  *		20-Aug-96	LVS		Updated dfx_probe so that version information
174  *							string is only displayed if 1 or more cards are
175  *							found.  Changed dfx_rcv_queue_process to copy
176  *							3 NULL bytes before FC to ensure that data is
177  *							longword aligned in receive buffer.
178  *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
179  *							LLC group promiscuous mode if multicast list
180  *							is too large.  LLC individual/group promiscuous
181  *							mode is now disabled if IFF_PROMISC flag not set.
182  *							dfx_xmt_queue_pkt no longer checks for NULL skb
183  *							on Alan Cox recommendation.  Added node address
184  *							override support.
185  *		12-Sep-96	LVS		Reset current address to factory address during
186  *							device open.  Updated transmit path to post a
187  *							single fragment which includes PRH->end of data.
188  *		Mar 2000	AC		Did various cleanups for 2.3.x
189  *		Jun 2000	jgarzik		PCI and resource alloc cleanups
190  *		Jul 2000	tjeerd		Much cleanup and some bug fixes
191  *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
192  *		Feb 2001			Skb allocation fixes
193  *		Feb 2001	davej		PCI enable cleanups.
194  *		04 Aug 2003	macro		Converted to the DMA API.
195  *		14 Aug 2004	macro		Fix device names reported.
196  *		14 Jun 2005	macro		Use irqreturn_t.
197  *		23 Oct 2006	macro		Big-endian host support.
198  *		14 Dec 2006	macro		TURBOchannel support.
199  *		01 Jul 2014	macro		Fixes for DMA on 64-bit hosts.
200  */
201 
202 /* Include files */
203 #include <linux/bitops.h>
204 #include <linux/compiler.h>
205 #include <linux/delay.h>
206 #include <linux/dma-mapping.h>
207 #include <linux/eisa.h>
208 #include <linux/errno.h>
209 #include <linux/fddidevice.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220 
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223 
224 #include "defxx.h"
225 
226 /* Version information string should be updated prior to each new release!  */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.11"
229 #define DRV_RELDATE "2014/07/01"
230 
231 static char version[] =
232 	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233 	"  Lawrence V. Stefani and others\n";
234 
235 #define DYNAMIC_BUFFERS 1
236 
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240  * alignment for compatibility with old EISA boards.
241  */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243 
244 #ifdef CONFIG_EISA
245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246 #else
247 #define DFX_BUS_EISA(dev) 0
248 #endif
249 
250 #ifdef CONFIG_TC
251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252 #else
253 #define DFX_BUS_TC(dev) 0
254 #endif
255 
256 #ifdef CONFIG_DEFXX_MMIO
257 #define DFX_MMIO 1
258 #else
259 #define DFX_MMIO 0
260 #endif
261 
262 /* Define module-wide (static) routines */
263 
264 static void		dfx_bus_init(struct net_device *dev);
265 static void		dfx_bus_uninit(struct net_device *dev);
266 static void		dfx_bus_config_check(DFX_board_t *bp);
267 
268 static int		dfx_driver_init(struct net_device *dev,
269 					const char *print_name,
270 					resource_size_t bar_start);
271 static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
272 
273 static int		dfx_open(struct net_device *dev);
274 static int		dfx_close(struct net_device *dev);
275 
276 static void		dfx_int_pr_halt_id(DFX_board_t *bp);
277 static void		dfx_int_type_0_process(DFX_board_t *bp);
278 static void		dfx_int_common(struct net_device *dev);
279 static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
280 
281 static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282 static void		dfx_ctl_set_multicast_list(struct net_device *dev);
283 static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284 static int		dfx_ctl_update_cam(DFX_board_t *bp);
285 static int		dfx_ctl_update_filters(DFX_board_t *bp);
286 
287 static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
288 static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289 static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290 static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
291 static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292 
293 static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294 static void		dfx_rcv_queue_process(DFX_board_t *bp);
295 #ifdef DYNAMIC_BUFFERS
296 static void		dfx_rcv_flush(DFX_board_t *bp);
297 #else
dfx_rcv_flush(DFX_board_t * bp)298 static inline void	dfx_rcv_flush(DFX_board_t *bp) {}
299 #endif
300 
301 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302 				     struct net_device *dev);
303 static int		dfx_xmt_done(DFX_board_t *bp);
304 static void		dfx_xmt_flush(DFX_board_t *bp);
305 
306 /* Define module-wide (static) variables */
307 
308 static struct pci_driver dfx_pci_driver;
309 static struct eisa_driver dfx_eisa_driver;
310 static struct tc_driver dfx_tc_driver;
311 
312 
313 /*
314  * =======================
315  * = dfx_port_write_long =
316  * = dfx_port_read_long  =
317  * =======================
318  *
319  * Overview:
320  *   Routines for reading and writing values from/to adapter
321  *
322  * Returns:
323  *   None
324  *
325  * Arguments:
326  *   bp		- pointer to board information
327  *   offset	- register offset from base I/O address
328  *   data	- for dfx_port_write_long, this is a value to write;
329  *		  for dfx_port_read_long, this is a pointer to store
330  *		  the read value
331  *
332  * Functional Description:
333  *   These routines perform the correct operation to read or write
334  *   the adapter register.
335  *
336  *   EISA port block base addresses are based on the slot number in which the
337  *   controller is installed.  For example, if the EISA controller is installed
338  *   in slot 4, the port block base address is 0x4000.  If the controller is
339  *   installed in slot 2, the port block base address is 0x2000, and so on.
340  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
341  *   registers using the register offsets defined in DEFXX.H.
342  *
343  *   PCI port block base addresses are assigned by the PCI BIOS or system
344  *   firmware.  There is one 128 byte port block which can be accessed.  It
345  *   allows for I/O mapping of both PDQ and PFI registers using the register
346  *   offsets defined in DEFXX.H.
347  *
348  * Return Codes:
349  *   None
350  *
351  * Assumptions:
352  *   bp->base is a valid base I/O address for this adapter.
353  *   offset is a valid register offset for this adapter.
354  *
355  * Side Effects:
356  *   Rather than produce macros for these functions, these routines
357  *   are defined using "inline" to ensure that the compiler will
358  *   generate inline code and not waste a procedure call and return.
359  *   This provides all the benefits of macros, but with the
360  *   advantage of strict data type checking.
361  */
362 
dfx_writel(DFX_board_t * bp,int offset,u32 data)363 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364 {
365 	writel(data, bp->base.mem + offset);
366 	mb();
367 }
368 
dfx_outl(DFX_board_t * bp,int offset,u32 data)369 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370 {
371 	outl(data, bp->base.port + offset);
372 }
373 
dfx_port_write_long(DFX_board_t * bp,int offset,u32 data)374 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375 {
376 	struct device __maybe_unused *bdev = bp->bus_dev;
377 	int dfx_bus_tc = DFX_BUS_TC(bdev);
378 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379 
380 	if (dfx_use_mmio)
381 		dfx_writel(bp, offset, data);
382 	else
383 		dfx_outl(bp, offset, data);
384 }
385 
386 
dfx_readl(DFX_board_t * bp,int offset,u32 * data)387 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388 {
389 	mb();
390 	*data = readl(bp->base.mem + offset);
391 }
392 
dfx_inl(DFX_board_t * bp,int offset,u32 * data)393 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394 {
395 	*data = inl(bp->base.port + offset);
396 }
397 
dfx_port_read_long(DFX_board_t * bp,int offset,u32 * data)398 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399 {
400 	struct device __maybe_unused *bdev = bp->bus_dev;
401 	int dfx_bus_tc = DFX_BUS_TC(bdev);
402 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403 
404 	if (dfx_use_mmio)
405 		dfx_readl(bp, offset, data);
406 	else
407 		dfx_inl(bp, offset, data);
408 }
409 
410 
411 /*
412  * ================
413  * = dfx_get_bars =
414  * ================
415  *
416  * Overview:
417  *   Retrieves the address ranges used to access control and status
418  *   registers.
419  *
420  * Returns:
421  *   None
422  *
423  * Arguments:
424  *   bdev	- pointer to device information
425  *   bar_start	- pointer to store the start addresses
426  *   bar_len	- pointer to store the lengths of the areas
427  *
428  * Assumptions:
429  *   I am sure there are some.
430  *
431  * Side Effects:
432  *   None
433  */
dfx_get_bars(struct device * bdev,resource_size_t * bar_start,resource_size_t * bar_len)434 static void dfx_get_bars(struct device *bdev,
435 			 resource_size_t *bar_start, resource_size_t *bar_len)
436 {
437 	int dfx_bus_pci = dev_is_pci(bdev);
438 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439 	int dfx_bus_tc = DFX_BUS_TC(bdev);
440 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441 
442 	if (dfx_bus_pci) {
443 		int num = dfx_use_mmio ? 0 : 1;
444 
445 		bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
446 		bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
447 		bar_start[2] = bar_start[1] = 0;
448 		bar_len[2] = bar_len[1] = 0;
449 	}
450 	if (dfx_bus_eisa) {
451 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452 		resource_size_t bar_lo;
453 		resource_size_t bar_hi;
454 
455 		if (dfx_use_mmio) {
456 			bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
457 			bar_lo <<= 8;
458 			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
459 			bar_lo <<= 8;
460 			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
461 			bar_lo <<= 8;
462 			bar_start[0] = bar_lo;
463 			bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
464 			bar_hi <<= 8;
465 			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
466 			bar_hi <<= 8;
467 			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
468 			bar_hi <<= 8;
469 			bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
470 				     1;
471 		} else {
472 			bar_start[0] = base_addr;
473 			bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
474 		}
475 		bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
476 		bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
477 		bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
478 		bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
479 	}
480 	if (dfx_bus_tc) {
481 		bar_start[0] = to_tc_dev(bdev)->resource.start +
482 			       PI_TC_K_CSR_OFFSET;
483 		bar_len[0] = PI_TC_K_CSR_LEN;
484 		bar_start[2] = bar_start[1] = 0;
485 		bar_len[2] = bar_len[1] = 0;
486 	}
487 }
488 
489 static const struct net_device_ops dfx_netdev_ops = {
490 	.ndo_open		= dfx_open,
491 	.ndo_stop		= dfx_close,
492 	.ndo_start_xmit		= dfx_xmt_queue_pkt,
493 	.ndo_get_stats		= dfx_ctl_get_stats,
494 	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
495 	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
496 };
497 
dfx_register_res_alloc_err(const char * print_name,bool mmio,bool eisa)498 static void dfx_register_res_alloc_err(const char *print_name, bool mmio,
499 				       bool eisa)
500 {
501 	pr_err("%s: Cannot use %s, no address set, aborting\n",
502 	       print_name, mmio ? "MMIO" : "I/O");
503 	pr_err("%s: Recompile driver with \"CONFIG_DEFXX_MMIO=%c\"\n",
504 	       print_name, mmio ? 'n' : 'y');
505 	if (eisa && mmio)
506 		pr_err("%s: Or run ECU and set adapter's MMIO location\n",
507 		       print_name);
508 }
509 
dfx_register_res_err(const char * print_name,bool mmio,unsigned long start,unsigned long len)510 static void dfx_register_res_err(const char *print_name, bool mmio,
511 				 unsigned long start, unsigned long len)
512 {
513 	pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
514 	       print_name, mmio ? "MMIO" : "I/O", len, start);
515 }
516 
517 /*
518  * ================
519  * = dfx_register =
520  * ================
521  *
522  * Overview:
523  *   Initializes a supported FDDI controller
524  *
525  * Returns:
526  *   Condition code
527  *
528  * Arguments:
529  *   bdev - pointer to device information
530  *
531  * Functional Description:
532  *
533  * Return Codes:
534  *   0		 - This device (fddi0, fddi1, etc) configured successfully
535  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
536  *
537  * Assumptions:
538  *   It compiles so it should work :-( (PCI cards do :-)
539  *
540  * Side Effects:
541  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
542  *   initialized and the board resources are read and stored in
543  *   the device structure.
544  */
dfx_register(struct device * bdev)545 static int dfx_register(struct device *bdev)
546 {
547 	static int version_disp;
548 	int dfx_bus_pci = dev_is_pci(bdev);
549 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
550 	int dfx_bus_tc = DFX_BUS_TC(bdev);
551 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
552 	const char *print_name = dev_name(bdev);
553 	struct net_device *dev;
554 	DFX_board_t	  *bp;			/* board pointer */
555 	resource_size_t bar_start[3];		/* pointers to ports */
556 	resource_size_t bar_len[3];		/* resource length */
557 	int alloc_size;				/* total buffer size used */
558 	struct resource *region;
559 	int err = 0;
560 
561 	if (!version_disp) {	/* display version info if adapter is found */
562 		version_disp = 1;	/* set display flag to TRUE so that */
563 		printk(version);	/* we only display this string ONCE */
564 	}
565 
566 	dev = alloc_fddidev(sizeof(*bp));
567 	if (!dev) {
568 		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
569 		       print_name);
570 		return -ENOMEM;
571 	}
572 
573 	/* Enable PCI device. */
574 	if (dfx_bus_pci) {
575 		err = pci_enable_device(to_pci_dev(bdev));
576 		if (err) {
577 			pr_err("%s: Cannot enable PCI device, aborting\n",
578 			       print_name);
579 			goto err_out;
580 		}
581 	}
582 
583 	SET_NETDEV_DEV(dev, bdev);
584 
585 	bp = netdev_priv(dev);
586 	bp->bus_dev = bdev;
587 	dev_set_drvdata(bdev, dev);
588 
589 	dfx_get_bars(bdev, bar_start, bar_len);
590 	if (bar_len[0] == 0 ||
591 	    (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
592 		dfx_register_res_alloc_err(print_name, dfx_use_mmio,
593 					   dfx_bus_eisa);
594 		err = -ENXIO;
595 		goto err_out_disable;
596 	}
597 
598 	if (dfx_use_mmio)
599 		region = request_mem_region(bar_start[0], bar_len[0],
600 					    print_name);
601 	else
602 		region = request_region(bar_start[0], bar_len[0], print_name);
603 	if (!region) {
604 		dfx_register_res_err(print_name, dfx_use_mmio,
605 				     bar_start[0], bar_len[0]);
606 		err = -EBUSY;
607 		goto err_out_disable;
608 	}
609 	if (bar_start[1] != 0) {
610 		region = request_region(bar_start[1], bar_len[1], print_name);
611 		if (!region) {
612 			dfx_register_res_err(print_name, 0,
613 					     bar_start[1], bar_len[1]);
614 			err = -EBUSY;
615 			goto err_out_csr_region;
616 		}
617 	}
618 	if (bar_start[2] != 0) {
619 		region = request_region(bar_start[2], bar_len[2], print_name);
620 		if (!region) {
621 			dfx_register_res_err(print_name, 0,
622 					     bar_start[2], bar_len[2]);
623 			err = -EBUSY;
624 			goto err_out_bh_region;
625 		}
626 	}
627 
628 	/* Set up I/O base address. */
629 	if (dfx_use_mmio) {
630 		bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]);
631 		if (!bp->base.mem) {
632 			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
633 			err = -ENOMEM;
634 			goto err_out_esic_region;
635 		}
636 	} else {
637 		bp->base.port = bar_start[0];
638 		dev->base_addr = bar_start[0];
639 	}
640 
641 	/* Initialize new device structure */
642 	dev->netdev_ops			= &dfx_netdev_ops;
643 
644 	if (dfx_bus_pci)
645 		pci_set_master(to_pci_dev(bdev));
646 
647 	if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
648 		err = -ENODEV;
649 		goto err_out_unmap;
650 	}
651 
652 	err = register_netdev(dev);
653 	if (err)
654 		goto err_out_kfree;
655 
656 	printk("%s: registered as %s\n", print_name, dev->name);
657 	return 0;
658 
659 err_out_kfree:
660 	alloc_size = sizeof(PI_DESCR_BLOCK) +
661 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
662 #ifndef DYNAMIC_BUFFERS
663 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
664 #endif
665 		     sizeof(PI_CONSUMER_BLOCK) +
666 		     (PI_ALIGN_K_DESC_BLK - 1);
667 	if (bp->kmalloced)
668 		dma_free_coherent(bdev, alloc_size,
669 				  bp->kmalloced, bp->kmalloced_dma);
670 
671 err_out_unmap:
672 	if (dfx_use_mmio)
673 		iounmap(bp->base.mem);
674 
675 err_out_esic_region:
676 	if (bar_start[2] != 0)
677 		release_region(bar_start[2], bar_len[2]);
678 
679 err_out_bh_region:
680 	if (bar_start[1] != 0)
681 		release_region(bar_start[1], bar_len[1]);
682 
683 err_out_csr_region:
684 	if (dfx_use_mmio)
685 		release_mem_region(bar_start[0], bar_len[0]);
686 	else
687 		release_region(bar_start[0], bar_len[0]);
688 
689 err_out_disable:
690 	if (dfx_bus_pci)
691 		pci_disable_device(to_pci_dev(bdev));
692 
693 err_out:
694 	free_netdev(dev);
695 	return err;
696 }
697 
698 
699 /*
700  * ================
701  * = dfx_bus_init =
702  * ================
703  *
704  * Overview:
705  *   Initializes the bus-specific controller logic.
706  *
707  * Returns:
708  *   None
709  *
710  * Arguments:
711  *   dev - pointer to device information
712  *
713  * Functional Description:
714  *   Determine and save adapter IRQ in device table,
715  *   then perform bus-specific logic initialization.
716  *
717  * Return Codes:
718  *   None
719  *
720  * Assumptions:
721  *   bp->base has already been set with the proper
722  *	 base I/O address for this device.
723  *
724  * Side Effects:
725  *   Interrupts are enabled at the adapter bus-specific logic.
726  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
727  *   enabled yet.
728  */
729 
dfx_bus_init(struct net_device * dev)730 static void dfx_bus_init(struct net_device *dev)
731 {
732 	DFX_board_t *bp = netdev_priv(dev);
733 	struct device *bdev = bp->bus_dev;
734 	int dfx_bus_pci = dev_is_pci(bdev);
735 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
736 	int dfx_bus_tc = DFX_BUS_TC(bdev);
737 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
738 	u8 val;
739 
740 	DBG_printk("In dfx_bus_init...\n");
741 
742 	/* Initialize a pointer back to the net_device struct */
743 	bp->dev = dev;
744 
745 	/* Initialize adapter based on bus type */
746 
747 	if (dfx_bus_tc)
748 		dev->irq = to_tc_dev(bdev)->interrupt;
749 	if (dfx_bus_eisa) {
750 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
751 
752 		/* Disable the board before fiddling with the decoders.  */
753 		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
754 
755 		/* Get the interrupt level from the ESIC chip.  */
756 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
757 		val &= PI_CONFIG_STAT_0_M_IRQ;
758 		val >>= PI_CONFIG_STAT_0_V_IRQ;
759 
760 		switch (val) {
761 		case PI_CONFIG_STAT_0_IRQ_K_9:
762 			dev->irq = 9;
763 			break;
764 
765 		case PI_CONFIG_STAT_0_IRQ_K_10:
766 			dev->irq = 10;
767 			break;
768 
769 		case PI_CONFIG_STAT_0_IRQ_K_11:
770 			dev->irq = 11;
771 			break;
772 
773 		case PI_CONFIG_STAT_0_IRQ_K_15:
774 			dev->irq = 15;
775 			break;
776 		}
777 
778 		/*
779 		 * Enable memory decoding (MEMCS1) and/or port decoding
780 		 * (IOCS1/IOCS0) as appropriate in Function Control
781 		 * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
782 		 * taking 16 32-bit words, while IOCS1 is used for the
783 		 * Burst Holdoff register, taking a single 32-bit word
784 		 * only.  We use the slot-specific I/O range as per the
785 		 * ESIC spec, that is set bits 15:12 in the mask registers
786 		 * to mask them out.
787 		 */
788 
789 		/* Set the decode range of the board.  */
790 		val = 0;
791 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
792 		val = PI_DEFEA_K_CSR_IO;
793 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
794 
795 		val = PI_IO_CMP_M_SLOT;
796 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
797 		val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
798 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
799 
800 		val = 0;
801 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
802 		val = PI_DEFEA_K_BURST_HOLDOFF;
803 		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
804 
805 		val = PI_IO_CMP_M_SLOT;
806 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
807 		val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
808 		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
809 
810 		/* Enable the decoders.  */
811 		val = PI_FUNCTION_CNTRL_M_IOCS1;
812 		if (dfx_use_mmio)
813 			val |= PI_FUNCTION_CNTRL_M_MEMCS1;
814 		else
815 			val |= PI_FUNCTION_CNTRL_M_IOCS0;
816 		outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
817 
818 		/*
819 		 * Enable access to the rest of the module
820 		 * (including PDQ and packet memory).
821 		 */
822 		val = PI_SLOT_CNTRL_M_ENB;
823 		outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
824 
825 		/*
826 		 * Map PDQ registers into memory or port space.  This is
827 		 * done with a bit in the Burst Holdoff register.
828 		 */
829 		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
830 		if (dfx_use_mmio)
831 			val |= PI_BURST_HOLDOFF_M_MEM_MAP;
832 		else
833 			val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
834 		outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
835 
836 		/* Enable interrupts at EISA bus interface chip (ESIC) */
837 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
838 		val |= PI_CONFIG_STAT_0_M_INT_ENB;
839 		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
840 	}
841 	if (dfx_bus_pci) {
842 		struct pci_dev *pdev = to_pci_dev(bdev);
843 
844 		/* Get the interrupt level from the PCI Configuration Table */
845 
846 		dev->irq = pdev->irq;
847 
848 		/* Check Latency Timer and set if less than minimal */
849 
850 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
851 		if (val < PFI_K_LAT_TIMER_MIN) {
852 			val = PFI_K_LAT_TIMER_DEF;
853 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
854 		}
855 
856 		/* Enable interrupts at PCI bus interface chip (PFI) */
857 		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
858 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
859 	}
860 }
861 
862 /*
863  * ==================
864  * = dfx_bus_uninit =
865  * ==================
866  *
867  * Overview:
868  *   Uninitializes the bus-specific controller logic.
869  *
870  * Returns:
871  *   None
872  *
873  * Arguments:
874  *   dev - pointer to device information
875  *
876  * Functional Description:
877  *   Perform bus-specific logic uninitialization.
878  *
879  * Return Codes:
880  *   None
881  *
882  * Assumptions:
883  *   bp->base has already been set with the proper
884  *	 base I/O address for this device.
885  *
886  * Side Effects:
887  *   Interrupts are disabled at the adapter bus-specific logic.
888  */
889 
dfx_bus_uninit(struct net_device * dev)890 static void dfx_bus_uninit(struct net_device *dev)
891 {
892 	DFX_board_t *bp = netdev_priv(dev);
893 	struct device *bdev = bp->bus_dev;
894 	int dfx_bus_pci = dev_is_pci(bdev);
895 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
896 	u8 val;
897 
898 	DBG_printk("In dfx_bus_uninit...\n");
899 
900 	/* Uninitialize adapter based on bus type */
901 
902 	if (dfx_bus_eisa) {
903 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
904 
905 		/* Disable interrupts at EISA bus interface chip (ESIC) */
906 		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
907 		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
908 		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
909 
910 		/* Disable the board.  */
911 		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
912 
913 		/* Disable memory and port decoders.  */
914 		outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
915 	}
916 	if (dfx_bus_pci) {
917 		/* Disable interrupts at PCI bus interface chip (PFI) */
918 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
919 	}
920 }
921 
922 
923 /*
924  * ========================
925  * = dfx_bus_config_check =
926  * ========================
927  *
928  * Overview:
929  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
930  *   are illegal, then this routine will set new defaults.
931  *
932  * Returns:
933  *   None
934  *
935  * Arguments:
936  *   bp - pointer to board information
937  *
938  * Functional Description:
939  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
940  *   PDQ, and all FDDI PCI controllers, all values are legal.
941  *
942  * Return Codes:
943  *   None
944  *
945  * Assumptions:
946  *   dfx_adap_init has NOT been called yet so burst size and other items have
947  *   not been set.
948  *
949  * Side Effects:
950  *   None
951  */
952 
dfx_bus_config_check(DFX_board_t * bp)953 static void dfx_bus_config_check(DFX_board_t *bp)
954 {
955 	struct device __maybe_unused *bdev = bp->bus_dev;
956 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
957 	int	status;				/* return code from adapter port control call */
958 	u32	host_data;			/* LW data returned from port control call */
959 
960 	DBG_printk("In dfx_bus_config_check...\n");
961 
962 	/* Configuration check only valid for EISA adapter */
963 
964 	if (dfx_bus_eisa) {
965 		/*
966 		 * First check if revision 2 EISA controller.  Rev. 1 cards used
967 		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
968 		 * cards used PDQ revision E, so no workaround needed in this
969 		 * case, either.  Only Rev. 2 cards used either Rev. D or E
970 		 * chips, so we must verify the chip revision on Rev. 2 cards.
971 		 */
972 		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
973 			/*
974 			 * Revision 2 FDDI EISA controller found,
975 			 * so let's check PDQ revision of adapter.
976 			 */
977 			status = dfx_hw_port_ctrl_req(bp,
978 											PI_PCTRL_M_SUB_CMD,
979 											PI_SUB_CMD_K_PDQ_REV_GET,
980 											0,
981 											&host_data);
982 			if ((status != DFX_K_SUCCESS) || (host_data == 2))
983 				{
984 				/*
985 				 * Either we couldn't determine the PDQ revision, or
986 				 * we determined that it is at revision D.  In either case,
987 				 * we need to implement the workaround.
988 				 */
989 
990 				/* Ensure that the burst size is set to 8 longwords or less */
991 
992 				switch (bp->burst_size)
993 					{
994 					case PI_PDATA_B_DMA_BURST_SIZE_32:
995 					case PI_PDATA_B_DMA_BURST_SIZE_16:
996 						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
997 						break;
998 
999 					default:
1000 						break;
1001 					}
1002 
1003 				/* Ensure that full-duplex mode is not enabled */
1004 
1005 				bp->full_duplex_enb = PI_SNMP_K_FALSE;
1006 				}
1007 			}
1008 		}
1009 	}
1010 
1011 
1012 /*
1013  * ===================
1014  * = dfx_driver_init =
1015  * ===================
1016  *
1017  * Overview:
1018  *   Initializes remaining adapter board structure information
1019  *   and makes sure adapter is in a safe state prior to dfx_open().
1020  *
1021  * Returns:
1022  *   Condition code
1023  *
1024  * Arguments:
1025  *   dev - pointer to device information
1026  *   print_name - printable device name
1027  *
1028  * Functional Description:
1029  *   This function allocates additional resources such as the host memory
1030  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1031  *	 Remaining bus initialization steps are also completed.  The adapter
1032  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1033  *   must call dfx_open() to open the adapter and bring it on-line.
1034  *
1035  * Return Codes:
1036  *   DFX_K_SUCCESS	- initialization succeeded
1037  *   DFX_K_FAILURE	- initialization failed - could not allocate memory
1038  *						or read adapter MAC address
1039  *
1040  * Assumptions:
1041  *   Memory allocated from pci_alloc_consistent() call is physically
1042  *   contiguous, locked memory.
1043  *
1044  * Side Effects:
1045  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1046  *   returning from this routine.
1047  */
1048 
dfx_driver_init(struct net_device * dev,const char * print_name,resource_size_t bar_start)1049 static int dfx_driver_init(struct net_device *dev, const char *print_name,
1050 			   resource_size_t bar_start)
1051 {
1052 	DFX_board_t *bp = netdev_priv(dev);
1053 	struct device *bdev = bp->bus_dev;
1054 	int dfx_bus_pci = dev_is_pci(bdev);
1055 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1056 	int dfx_bus_tc = DFX_BUS_TC(bdev);
1057 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1058 	int alloc_size;			/* total buffer size needed */
1059 	char *top_v, *curr_v;		/* virtual addrs into memory block */
1060 	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
1061 	u32 data;			/* host data register value */
1062 	__le32 le32;
1063 	char *board_name = NULL;
1064 
1065 	DBG_printk("In dfx_driver_init...\n");
1066 
1067 	/* Initialize bus-specific hardware registers */
1068 
1069 	dfx_bus_init(dev);
1070 
1071 	/*
1072 	 * Initialize default values for configurable parameters
1073 	 *
1074 	 * Note: All of these parameters are ones that a user may
1075 	 *       want to customize.  It'd be nice to break these
1076 	 *		 out into Space.c or someplace else that's more
1077 	 *		 accessible/understandable than this file.
1078 	 */
1079 
1080 	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
1081 	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
1082 	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
1083 	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1084 
1085 	/*
1086 	 * Ensure that HW configuration is OK
1087 	 *
1088 	 * Note: Depending on the hardware revision, we may need to modify
1089 	 *       some of the configurable parameters to workaround hardware
1090 	 *       limitations.  We'll perform this configuration check AFTER
1091 	 *       setting the parameters to their default values.
1092 	 */
1093 
1094 	dfx_bus_config_check(bp);
1095 
1096 	/* Disable PDQ interrupts first */
1097 
1098 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1099 
1100 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1101 
1102 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1103 
1104 	/*  Read the factory MAC address from the adapter then save it */
1105 
1106 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1107 				 &data) != DFX_K_SUCCESS) {
1108 		printk("%s: Could not read adapter factory MAC address!\n",
1109 		       print_name);
1110 		return DFX_K_FAILURE;
1111 	}
1112 	le32 = cpu_to_le32(data);
1113 	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1114 
1115 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1116 				 &data) != DFX_K_SUCCESS) {
1117 		printk("%s: Could not read adapter factory MAC address!\n",
1118 		       print_name);
1119 		return DFX_K_FAILURE;
1120 	}
1121 	le32 = cpu_to_le32(data);
1122 	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1123 
1124 	/*
1125 	 * Set current address to factory address
1126 	 *
1127 	 * Note: Node address override support is handled through
1128 	 *       dfx_ctl_set_mac_address.
1129 	 */
1130 
1131 	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1132 	if (dfx_bus_tc)
1133 		board_name = "DEFTA";
1134 	if (dfx_bus_eisa)
1135 		board_name = "DEFEA";
1136 	if (dfx_bus_pci)
1137 		board_name = "DEFPA";
1138 	pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1139 		print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1140 		(long long)bar_start, dev->irq, dev->dev_addr);
1141 
1142 	/*
1143 	 * Get memory for descriptor block, consumer block, and other buffers
1144 	 * that need to be DMA read or written to by the adapter.
1145 	 */
1146 
1147 	alloc_size = sizeof(PI_DESCR_BLOCK) +
1148 					PI_CMD_REQ_K_SIZE_MAX +
1149 					PI_CMD_RSP_K_SIZE_MAX +
1150 #ifndef DYNAMIC_BUFFERS
1151 					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1152 #endif
1153 					sizeof(PI_CONSUMER_BLOCK) +
1154 					(PI_ALIGN_K_DESC_BLK - 1);
1155 	bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1156 						    &bp->kmalloced_dma,
1157 						    GFP_ATOMIC);
1158 	if (top_v == NULL)
1159 		return DFX_K_FAILURE;
1160 
1161 	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1162 
1163 	/*
1164 	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1165 	 *  plus the amount of memory needed was allocated.  The physical address
1166 	 *	is now 8K aligned.  By carving up the memory in a specific order,
1167 	 *  we'll guarantee the alignment requirements for all other structures.
1168 	 *
1169 	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1170 	 *		  physically contiguous nature of the memory block or the address
1171 	 *		  alignments, then we'll need to implement a different algorithm
1172 	 *		  for allocating the needed memory.
1173 	 */
1174 
1175 	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1176 	curr_v = top_v + (curr_p - top_p);
1177 
1178 	/* Reserve space for descriptor block */
1179 
1180 	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1181 	bp->descr_block_phys = curr_p;
1182 	curr_v += sizeof(PI_DESCR_BLOCK);
1183 	curr_p += sizeof(PI_DESCR_BLOCK);
1184 
1185 	/* Reserve space for command request buffer */
1186 
1187 	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1188 	bp->cmd_req_phys = curr_p;
1189 	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1190 	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1191 
1192 	/* Reserve space for command response buffer */
1193 
1194 	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1195 	bp->cmd_rsp_phys = curr_p;
1196 	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1197 	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1198 
1199 	/* Reserve space for the LLC host receive queue buffers */
1200 
1201 	bp->rcv_block_virt = curr_v;
1202 	bp->rcv_block_phys = curr_p;
1203 
1204 #ifndef DYNAMIC_BUFFERS
1205 	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1206 	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1207 #endif
1208 
1209 	/* Reserve space for the consumer block */
1210 
1211 	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1212 	bp->cons_block_phys = curr_p;
1213 
1214 	/* Display virtual and physical addresses if debug driver */
1215 
1216 	DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1217 		   print_name, bp->descr_block_virt, &bp->descr_block_phys);
1218 	DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1219 		   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1220 	DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1221 		   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1222 	DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1223 		   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1224 	DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1225 		   print_name, bp->cons_block_virt, &bp->cons_block_phys);
1226 
1227 	return DFX_K_SUCCESS;
1228 }
1229 
1230 
1231 /*
1232  * =================
1233  * = dfx_adap_init =
1234  * =================
1235  *
1236  * Overview:
1237  *   Brings the adapter to the link avail/link unavailable state.
1238  *
1239  * Returns:
1240  *   Condition code
1241  *
1242  * Arguments:
1243  *   bp - pointer to board information
1244  *   get_buffers - non-zero if buffers to be allocated
1245  *
1246  * Functional Description:
1247  *   Issues the low-level firmware/hardware calls necessary to bring
1248  *   the adapter up, or to properly reset and restore adapter during
1249  *   run-time.
1250  *
1251  * Return Codes:
1252  *   DFX_K_SUCCESS - Adapter brought up successfully
1253  *   DFX_K_FAILURE - Adapter initialization failed
1254  *
1255  * Assumptions:
1256  *   bp->reset_type should be set to a valid reset type value before
1257  *   calling this routine.
1258  *
1259  * Side Effects:
1260  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1261  *   upon a successful return of this routine.
1262  */
1263 
dfx_adap_init(DFX_board_t * bp,int get_buffers)1264 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1265 	{
1266 	DBG_printk("In dfx_adap_init...\n");
1267 
1268 	/* Disable PDQ interrupts first */
1269 
1270 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1271 
1272 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1273 
1274 	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1275 		{
1276 		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1277 		return DFX_K_FAILURE;
1278 		}
1279 
1280 	/*
1281 	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1282 	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1283 	 */
1284 
1285 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1286 
1287 	/*
1288 	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1289 	 *
1290 	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1291 	 *       takes care of the on-board register values.
1292 	 */
1293 
1294 	bp->cmd_req_reg.lword	= 0;
1295 	bp->cmd_rsp_reg.lword	= 0;
1296 	bp->rcv_xmt_reg.lword	= 0;
1297 
1298 	/* Clear consumer block before going to DMA_AVAILABLE state */
1299 
1300 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1301 
1302 	/* Initialize the DMA Burst Size */
1303 
1304 	if (dfx_hw_port_ctrl_req(bp,
1305 							PI_PCTRL_M_SUB_CMD,
1306 							PI_SUB_CMD_K_BURST_SIZE_SET,
1307 							bp->burst_size,
1308 							NULL) != DFX_K_SUCCESS)
1309 		{
1310 		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1311 		return DFX_K_FAILURE;
1312 		}
1313 
1314 	/*
1315 	 * Set base address of Consumer Block
1316 	 *
1317 	 * Assumption: 32-bit physical address of consumer block is 64 byte
1318 	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1319 	 */
1320 
1321 	if (dfx_hw_port_ctrl_req(bp,
1322 							PI_PCTRL_M_CONS_BLOCK,
1323 							bp->cons_block_phys,
1324 							0,
1325 							NULL) != DFX_K_SUCCESS)
1326 		{
1327 		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1328 		return DFX_K_FAILURE;
1329 		}
1330 
1331 	/*
1332 	 * Set the base address of Descriptor Block and bring adapter
1333 	 * to DMA_AVAILABLE state.
1334 	 *
1335 	 * Note: We also set the literal and data swapping requirements
1336 	 *       in this command.
1337 	 *
1338 	 * Assumption: 32-bit physical address of descriptor block
1339 	 *       is 8Kbyte aligned.
1340 	 */
1341 	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1342 				 (u32)(bp->descr_block_phys |
1343 				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1344 				 0, NULL) != DFX_K_SUCCESS) {
1345 		printk("%s: Could not set descriptor block address!\n",
1346 		       bp->dev->name);
1347 		return DFX_K_FAILURE;
1348 	}
1349 
1350 	/* Set transmit flush timeout value */
1351 
1352 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1353 	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1354 	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1355 	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1356 	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1357 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1358 		{
1359 		printk("%s: DMA command request failed!\n", bp->dev->name);
1360 		return DFX_K_FAILURE;
1361 		}
1362 
1363 	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1364 
1365 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1366 	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1367 	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1368 	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1369 	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1370 	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1371 	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1372 	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1373 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1374 		{
1375 		printk("%s: DMA command request failed!\n", bp->dev->name);
1376 		return DFX_K_FAILURE;
1377 		}
1378 
1379 	/* Initialize adapter CAM */
1380 
1381 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1382 		{
1383 		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1384 		return DFX_K_FAILURE;
1385 		}
1386 
1387 	/* Initialize adapter filters */
1388 
1389 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1390 		{
1391 		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1392 		return DFX_K_FAILURE;
1393 		}
1394 
1395 	/*
1396 	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1397 	 * reinitialized)
1398 	 */
1399 
1400 	if (get_buffers)
1401 		dfx_rcv_flush(bp);
1402 
1403 	/* Initialize receive descriptor block and produce buffers */
1404 
1405 	if (dfx_rcv_init(bp, get_buffers))
1406 	        {
1407 		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1408 		if (get_buffers)
1409 			dfx_rcv_flush(bp);
1410 		return DFX_K_FAILURE;
1411 		}
1412 
1413 	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1414 
1415 	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1416 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1417 		{
1418 		printk("%s: Start command failed\n", bp->dev->name);
1419 		if (get_buffers)
1420 			dfx_rcv_flush(bp);
1421 		return DFX_K_FAILURE;
1422 		}
1423 
1424 	/* Initialization succeeded, reenable PDQ interrupts */
1425 
1426 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1427 	return DFX_K_SUCCESS;
1428 	}
1429 
1430 
1431 /*
1432  * ============
1433  * = dfx_open =
1434  * ============
1435  *
1436  * Overview:
1437  *   Opens the adapter
1438  *
1439  * Returns:
1440  *   Condition code
1441  *
1442  * Arguments:
1443  *   dev - pointer to device information
1444  *
1445  * Functional Description:
1446  *   This function brings the adapter to an operational state.
1447  *
1448  * Return Codes:
1449  *   0		 - Adapter was successfully opened
1450  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1451  *
1452  * Assumptions:
1453  *   This routine should only be called for a device that was
1454  *   initialized successfully.
1455  *
1456  * Side Effects:
1457  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1458  *   if the open is successful.
1459  */
1460 
dfx_open(struct net_device * dev)1461 static int dfx_open(struct net_device *dev)
1462 {
1463 	DFX_board_t *bp = netdev_priv(dev);
1464 	int ret;
1465 
1466 	DBG_printk("In dfx_open...\n");
1467 
1468 	/* Register IRQ - support shared interrupts by passing device ptr */
1469 
1470 	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1471 			  dev);
1472 	if (ret) {
1473 		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1474 		return ret;
1475 	}
1476 
1477 	/*
1478 	 * Set current address to factory MAC address
1479 	 *
1480 	 * Note: We've already done this step in dfx_driver_init.
1481 	 *       However, it's possible that a user has set a node
1482 	 *		 address override, then closed and reopened the
1483 	 *		 adapter.  Unless we reset the device address field
1484 	 *		 now, we'll continue to use the existing modified
1485 	 *		 address.
1486 	 */
1487 
1488 	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1489 
1490 	/* Clear local unicast/multicast address tables and counts */
1491 
1492 	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1493 	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1494 	bp->uc_count = 0;
1495 	bp->mc_count = 0;
1496 
1497 	/* Disable promiscuous filter settings */
1498 
1499 	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1500 	bp->group_prom		= PI_FSTATE_K_BLOCK;
1501 
1502 	spin_lock_init(&bp->lock);
1503 
1504 	/* Reset and initialize adapter */
1505 
1506 	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1507 	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1508 	{
1509 		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1510 		free_irq(dev->irq, dev);
1511 		return -EAGAIN;
1512 	}
1513 
1514 	/* Set device structure info */
1515 	netif_start_queue(dev);
1516 	return 0;
1517 }
1518 
1519 
1520 /*
1521  * =============
1522  * = dfx_close =
1523  * =============
1524  *
1525  * Overview:
1526  *   Closes the device/module.
1527  *
1528  * Returns:
1529  *   Condition code
1530  *
1531  * Arguments:
1532  *   dev - pointer to device information
1533  *
1534  * Functional Description:
1535  *   This routine closes the adapter and brings it to a safe state.
1536  *   The interrupt service routine is deregistered with the OS.
1537  *   The adapter can be opened again with another call to dfx_open().
1538  *
1539  * Return Codes:
1540  *   Always return 0.
1541  *
1542  * Assumptions:
1543  *   No further requests for this adapter are made after this routine is
1544  *   called.  dfx_open() can be called to reset and reinitialize the
1545  *   adapter.
1546  *
1547  * Side Effects:
1548  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1549  *   routine.
1550  */
1551 
dfx_close(struct net_device * dev)1552 static int dfx_close(struct net_device *dev)
1553 {
1554 	DFX_board_t *bp = netdev_priv(dev);
1555 
1556 	DBG_printk("In dfx_close...\n");
1557 
1558 	/* Disable PDQ interrupts first */
1559 
1560 	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1561 
1562 	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1563 
1564 	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1565 
1566 	/*
1567 	 * Flush any pending transmit buffers
1568 	 *
1569 	 * Note: It's important that we flush the transmit buffers
1570 	 *		 BEFORE we clear our copy of the Type 2 register.
1571 	 *		 Otherwise, we'll have no idea how many buffers
1572 	 *		 we need to free.
1573 	 */
1574 
1575 	dfx_xmt_flush(bp);
1576 
1577 	/*
1578 	 * Clear Type 1 and Type 2 registers after adapter reset
1579 	 *
1580 	 * Note: Even though we're closing the adapter, it's
1581 	 *       possible that an interrupt will occur after
1582 	 *		 dfx_close is called.  Without some assurance to
1583 	 *		 the contrary we want to make sure that we don't
1584 	 *		 process receive and transmit LLC frames and update
1585 	 *		 the Type 2 register with bad information.
1586 	 */
1587 
1588 	bp->cmd_req_reg.lword	= 0;
1589 	bp->cmd_rsp_reg.lword	= 0;
1590 	bp->rcv_xmt_reg.lword	= 0;
1591 
1592 	/* Clear consumer block for the same reason given above */
1593 
1594 	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1595 
1596 	/* Release all dynamically allocate skb in the receive ring. */
1597 
1598 	dfx_rcv_flush(bp);
1599 
1600 	/* Clear device structure flags */
1601 
1602 	netif_stop_queue(dev);
1603 
1604 	/* Deregister (free) IRQ */
1605 
1606 	free_irq(dev->irq, dev);
1607 
1608 	return 0;
1609 }
1610 
1611 
1612 /*
1613  * ======================
1614  * = dfx_int_pr_halt_id =
1615  * ======================
1616  *
1617  * Overview:
1618  *   Displays halt id's in string form.
1619  *
1620  * Returns:
1621  *   None
1622  *
1623  * Arguments:
1624  *   bp - pointer to board information
1625  *
1626  * Functional Description:
1627  *   Determine current halt id and display appropriate string.
1628  *
1629  * Return Codes:
1630  *   None
1631  *
1632  * Assumptions:
1633  *   None
1634  *
1635  * Side Effects:
1636  *   None
1637  */
1638 
dfx_int_pr_halt_id(DFX_board_t * bp)1639 static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1640 	{
1641 	PI_UINT32	port_status;			/* PDQ port status register value */
1642 	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1643 
1644 	/* Read the latest port status */
1645 
1646 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1647 
1648 	/* Display halt state transition information */
1649 
1650 	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1651 	switch (halt_id)
1652 		{
1653 		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1654 			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1655 			break;
1656 
1657 		case PI_HALT_ID_K_PARITY_ERROR:
1658 			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1659 			break;
1660 
1661 		case PI_HALT_ID_K_HOST_DIR_HALT:
1662 			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1663 			break;
1664 
1665 		case PI_HALT_ID_K_SW_FAULT:
1666 			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1667 			break;
1668 
1669 		case PI_HALT_ID_K_HW_FAULT:
1670 			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1671 			break;
1672 
1673 		case PI_HALT_ID_K_PC_TRACE:
1674 			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1675 			break;
1676 
1677 		case PI_HALT_ID_K_DMA_ERROR:
1678 			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1679 			break;
1680 
1681 		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1682 			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1683 			break;
1684 
1685 		case PI_HALT_ID_K_BUS_EXCEPTION:
1686 			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1687 			break;
1688 
1689 		default:
1690 			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1691 			break;
1692 		}
1693 	}
1694 
1695 
1696 /*
1697  * ==========================
1698  * = dfx_int_type_0_process =
1699  * ==========================
1700  *
1701  * Overview:
1702  *   Processes Type 0 interrupts.
1703  *
1704  * Returns:
1705  *   None
1706  *
1707  * Arguments:
1708  *   bp - pointer to board information
1709  *
1710  * Functional Description:
1711  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1712  *   is a serious fault on the adapter, then an error message is displayed
1713  *   and the adapter is reset.
1714  *
1715  *   One tricky potential timing window is the rapid succession of "link avail"
1716  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1717  *   interrupt must be done before reading the state from the Port Status
1718  *   register.  This is true because a state change could occur after reading
1719  *   the data, but before acknowledging the interrupt.  If this state change
1720  *   does happen, it would be lost because the driver is using the old state,
1721  *   and it will never know about the new state because it subsequently
1722  *   acknowledges the state change interrupt.
1723  *
1724  *          INCORRECT                                      CORRECT
1725  *      read type 0 int reasons                   read type 0 int reasons
1726  *      read adapter state                        ack type 0 interrupts
1727  *      ack type 0 interrupts                     read adapter state
1728  *      ... process interrupt ...                 ... process interrupt ...
1729  *
1730  * Return Codes:
1731  *   None
1732  *
1733  * Assumptions:
1734  *   None
1735  *
1736  * Side Effects:
1737  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1738  *   or if the port status indicates that the adapter is halted.  The driver
1739  *   is responsible for reinitializing the adapter with the current CAM
1740  *   contents and adapter filter settings.
1741  */
1742 
dfx_int_type_0_process(DFX_board_t * bp)1743 static void dfx_int_type_0_process(DFX_board_t	*bp)
1744 
1745 	{
1746 	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1747 	PI_UINT32	state;				/* current adap state (from port status) */
1748 
1749 	/*
1750 	 * Read host interrupt Type 0 register to determine which Type 0
1751 	 * interrupts are pending.  Immediately write it back out to clear
1752 	 * those interrupts.
1753 	 */
1754 
1755 	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1756 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1757 
1758 	/* Check for Type 0 error interrupts */
1759 
1760 	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1761 							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1762 							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1763 		{
1764 		/* Check for Non-Existent Memory error */
1765 
1766 		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1767 			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1768 
1769 		/* Check for Packet Memory Parity error */
1770 
1771 		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1772 			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1773 
1774 		/* Check for Host Bus Parity error */
1775 
1776 		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1777 			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1778 
1779 		/* Reset adapter and bring it back on-line */
1780 
1781 		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1782 		bp->reset_type = 0;					/* rerun on-board diagnostics */
1783 		printk("%s: Resetting adapter...\n", bp->dev->name);
1784 		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1785 			{
1786 			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1787 			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1788 			return;
1789 			}
1790 		printk("%s: Adapter reset successful!\n", bp->dev->name);
1791 		return;
1792 		}
1793 
1794 	/* Check for transmit flush interrupt */
1795 
1796 	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1797 		{
1798 		/* Flush any pending xmt's and acknowledge the flush interrupt */
1799 
1800 		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1801 		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1802 		(void) dfx_hw_port_ctrl_req(bp,
1803 									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1804 									0,
1805 									0,
1806 									NULL);
1807 		}
1808 
1809 	/* Check for adapter state change */
1810 
1811 	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1812 		{
1813 		/* Get latest adapter state */
1814 
1815 		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1816 		if (state == PI_STATE_K_HALTED)
1817 			{
1818 			/*
1819 			 * Adapter has transitioned to HALTED state, try to reset
1820 			 * adapter to bring it back on-line.  If reset fails,
1821 			 * leave the adapter in the broken state.
1822 			 */
1823 
1824 			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1825 			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1826 
1827 			/* Reset adapter and bring it back on-line */
1828 
1829 			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1830 			bp->reset_type = 0;					/* rerun on-board diagnostics */
1831 			printk("%s: Resetting adapter...\n", bp->dev->name);
1832 			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1833 				{
1834 				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1835 				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1836 				return;
1837 				}
1838 			printk("%s: Adapter reset successful!\n", bp->dev->name);
1839 			}
1840 		else if (state == PI_STATE_K_LINK_AVAIL)
1841 			{
1842 			bp->link_available = PI_K_TRUE;		/* set link available flag */
1843 			}
1844 		}
1845 	}
1846 
1847 
1848 /*
1849  * ==================
1850  * = dfx_int_common =
1851  * ==================
1852  *
1853  * Overview:
1854  *   Interrupt service routine (ISR)
1855  *
1856  * Returns:
1857  *   None
1858  *
1859  * Arguments:
1860  *   bp - pointer to board information
1861  *
1862  * Functional Description:
1863  *   This is the ISR which processes incoming adapter interrupts.
1864  *
1865  * Return Codes:
1866  *   None
1867  *
1868  * Assumptions:
1869  *   This routine assumes PDQ interrupts have not been disabled.
1870  *   When interrupts are disabled at the PDQ, the Port Status register
1871  *   is automatically cleared.  This routine uses the Port Status
1872  *   register value to determine whether a Type 0 interrupt occurred,
1873  *   so it's important that adapter interrupts are not normally
1874  *   enabled/disabled at the PDQ.
1875  *
1876  *   It's vital that this routine is NOT reentered for the
1877  *   same board and that the OS is not in another section of
1878  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1879  *   different thread.
1880  *
1881  * Side Effects:
1882  *   Pending interrupts are serviced.  Depending on the type of
1883  *   interrupt, acknowledging and clearing the interrupt at the
1884  *   PDQ involves writing a register to clear the interrupt bit
1885  *   or updating completion indices.
1886  */
1887 
dfx_int_common(struct net_device * dev)1888 static void dfx_int_common(struct net_device *dev)
1889 {
1890 	DFX_board_t *bp = netdev_priv(dev);
1891 	PI_UINT32	port_status;		/* Port Status register */
1892 
1893 	/* Process xmt interrupts - frequent case, so always call this routine */
1894 
1895 	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1896 		netif_wake_queue(dev);
1897 
1898 	/* Process rcv interrupts - frequent case, so always call this routine */
1899 
1900 	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1901 
1902 	/*
1903 	 * Transmit and receive producer and completion indices are updated on the
1904 	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1905 	 * case is that we'll be processing either LLC transmit or receive buffers,
1906 	 * we'll optimize I/O writes by doing a single register write here.
1907 	 */
1908 
1909 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1910 
1911 	/* Read PDQ Port Status register to find out which interrupts need processing */
1912 
1913 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1914 
1915 	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1916 
1917 	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1918 		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1919 	}
1920 
1921 
1922 /*
1923  * =================
1924  * = dfx_interrupt =
1925  * =================
1926  *
1927  * Overview:
1928  *   Interrupt processing routine
1929  *
1930  * Returns:
1931  *   Whether a valid interrupt was seen.
1932  *
1933  * Arguments:
1934  *   irq	- interrupt vector
1935  *   dev_id	- pointer to device information
1936  *
1937  * Functional Description:
1938  *   This routine calls the interrupt processing routine for this adapter.  It
1939  *   disables and reenables adapter interrupts, as appropriate.  We can support
1940  *   shared interrupts since the incoming dev_id pointer provides our device
1941  *   structure context.
1942  *
1943  * Return Codes:
1944  *   IRQ_HANDLED - an IRQ was handled.
1945  *   IRQ_NONE    - no IRQ was handled.
1946  *
1947  * Assumptions:
1948  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1949  *   on Intel-based systems) is done by the operating system outside this
1950  *   routine.
1951  *
1952  *	 System interrupts are enabled through this call.
1953  *
1954  * Side Effects:
1955  *   Interrupts are disabled, then reenabled at the adapter.
1956  */
1957 
dfx_interrupt(int irq,void * dev_id)1958 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1959 {
1960 	struct net_device *dev = dev_id;
1961 	DFX_board_t *bp = netdev_priv(dev);
1962 	struct device *bdev = bp->bus_dev;
1963 	int dfx_bus_pci = dev_is_pci(bdev);
1964 	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1965 	int dfx_bus_tc = DFX_BUS_TC(bdev);
1966 
1967 	/* Service adapter interrupts */
1968 
1969 	if (dfx_bus_pci) {
1970 		u32 status;
1971 
1972 		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1973 		if (!(status & PFI_STATUS_M_PDQ_INT))
1974 			return IRQ_NONE;
1975 
1976 		spin_lock(&bp->lock);
1977 
1978 		/* Disable PDQ-PFI interrupts at PFI */
1979 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1980 				    PFI_MODE_M_DMA_ENB);
1981 
1982 		/* Call interrupt service routine for this adapter */
1983 		dfx_int_common(dev);
1984 
1985 		/* Clear PDQ interrupt status bit and reenable interrupts */
1986 		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1987 				    PFI_STATUS_M_PDQ_INT);
1988 		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1989 				    (PFI_MODE_M_PDQ_INT_ENB |
1990 				     PFI_MODE_M_DMA_ENB));
1991 
1992 		spin_unlock(&bp->lock);
1993 	}
1994 	if (dfx_bus_eisa) {
1995 		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1996 		u8 status;
1997 
1998 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1999 		if (!(status & PI_CONFIG_STAT_0_M_PEND))
2000 			return IRQ_NONE;
2001 
2002 		spin_lock(&bp->lock);
2003 
2004 		/* Disable interrupts at the ESIC */
2005 		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
2006 		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2007 
2008 		/* Call interrupt service routine for this adapter */
2009 		dfx_int_common(dev);
2010 
2011 		/* Reenable interrupts at the ESIC */
2012 		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2013 		status |= PI_CONFIG_STAT_0_M_INT_ENB;
2014 		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2015 
2016 		spin_unlock(&bp->lock);
2017 	}
2018 	if (dfx_bus_tc) {
2019 		u32 status;
2020 
2021 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2022 		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2023 				PI_PSTATUS_M_XMT_DATA_PENDING |
2024 				PI_PSTATUS_M_SMT_HOST_PENDING |
2025 				PI_PSTATUS_M_UNSOL_PENDING |
2026 				PI_PSTATUS_M_CMD_RSP_PENDING |
2027 				PI_PSTATUS_M_CMD_REQ_PENDING |
2028 				PI_PSTATUS_M_TYPE_0_PENDING)))
2029 			return IRQ_NONE;
2030 
2031 		spin_lock(&bp->lock);
2032 
2033 		/* Call interrupt service routine for this adapter */
2034 		dfx_int_common(dev);
2035 
2036 		spin_unlock(&bp->lock);
2037 	}
2038 
2039 	return IRQ_HANDLED;
2040 }
2041 
2042 
2043 /*
2044  * =====================
2045  * = dfx_ctl_get_stats =
2046  * =====================
2047  *
2048  * Overview:
2049  *   Get statistics for FDDI adapter
2050  *
2051  * Returns:
2052  *   Pointer to FDDI statistics structure
2053  *
2054  * Arguments:
2055  *   dev - pointer to device information
2056  *
2057  * Functional Description:
2058  *   Gets current MIB objects from adapter, then
2059  *   returns FDDI statistics structure as defined
2060  *   in if_fddi.h.
2061  *
2062  *   Note: Since the FDDI statistics structure is
2063  *   still new and the device structure doesn't
2064  *   have an FDDI-specific get statistics handler,
2065  *   we'll return the FDDI statistics structure as
2066  *   a pointer to an Ethernet statistics structure.
2067  *   That way, at least the first part of the statistics
2068  *   structure can be decoded properly, and it allows
2069  *   "smart" applications to perform a second cast to
2070  *   decode the FDDI-specific statistics.
2071  *
2072  *   We'll have to pay attention to this routine as the
2073  *   device structure becomes more mature and LAN media
2074  *   independent.
2075  *
2076  * Return Codes:
2077  *   None
2078  *
2079  * Assumptions:
2080  *   None
2081  *
2082  * Side Effects:
2083  *   None
2084  */
2085 
dfx_ctl_get_stats(struct net_device * dev)2086 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2087 	{
2088 	DFX_board_t *bp = netdev_priv(dev);
2089 
2090 	/* Fill the bp->stats structure with driver-maintained counters */
2091 
2092 	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2093 	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2094 	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2095 	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2096 	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2097 				   bp->rcv_frame_status_errors +
2098 				   bp->rcv_length_errors;
2099 	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2100 	bp->stats.gen.rx_dropped = bp->rcv_discards;
2101 	bp->stats.gen.tx_dropped = bp->xmt_discards;
2102 	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2103 	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2104 
2105 	/* Get FDDI SMT MIB objects */
2106 
2107 	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2108 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2109 		return (struct net_device_stats *)&bp->stats;
2110 
2111 	/* Fill the bp->stats structure with the SMT MIB object values */
2112 
2113 	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2114 	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2115 	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2116 	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2117 	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2118 	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2119 	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2120 	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2121 	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2122 	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2123 	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2124 	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2125 	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2126 	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2127 	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2128 	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2129 	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2130 	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2131 	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2132 	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2133 	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2134 	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2135 	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2136 	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2137 	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2138 	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2139 	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2140 	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2141 	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2142 	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2143 	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2144 	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2145 	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2146 	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2147 	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2148 	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2149 	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2150 	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2151 	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2152 	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2153 	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2154 	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2155 	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2156 	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2157 	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2158 	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2159 	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2160 	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2161 	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2162 	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2163 	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2164 	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2165 	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2166 	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2167 	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2168 	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2169 	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2170 	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2171 	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2172 	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2173 	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2174 	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2175 	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2176 	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2177 	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2178 	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2179 	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2180 	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2181 	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2182 	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2183 	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2184 	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2185 	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2186 	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2187 	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2188 	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2189 	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2190 	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2191 	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2192 	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2193 	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2194 	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2195 	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2196 	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2197 	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2198 	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2199 	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2200 	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2201 	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2202 	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2203 	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2204 	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2205 
2206 	/* Get FDDI counters */
2207 
2208 	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2209 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2210 		return (struct net_device_stats *)&bp->stats;
2211 
2212 	/* Fill the bp->stats structure with the FDDI counter values */
2213 
2214 	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2215 	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2216 	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2217 	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2218 	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2219 	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2220 	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2221 	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2222 	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2223 	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2224 	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2225 
2226 	return (struct net_device_stats *)&bp->stats;
2227 	}
2228 
2229 
2230 /*
2231  * ==============================
2232  * = dfx_ctl_set_multicast_list =
2233  * ==============================
2234  *
2235  * Overview:
2236  *   Enable/Disable LLC frame promiscuous mode reception
2237  *   on the adapter and/or update multicast address table.
2238  *
2239  * Returns:
2240  *   None
2241  *
2242  * Arguments:
2243  *   dev - pointer to device information
2244  *
2245  * Functional Description:
2246  *   This routine follows a fairly simple algorithm for setting the
2247  *   adapter filters and CAM:
2248  *
2249  *		if IFF_PROMISC flag is set
2250  *			enable LLC individual/group promiscuous mode
2251  *		else
2252  *			disable LLC individual/group promiscuous mode
2253  *			if number of incoming multicast addresses >
2254  *					(CAM max size - number of unicast addresses in CAM)
2255  *				enable LLC group promiscuous mode
2256  *				set driver-maintained multicast address count to zero
2257  *			else
2258  *				disable LLC group promiscuous mode
2259  *				set driver-maintained multicast address count to incoming count
2260  *			update adapter CAM
2261  *		update adapter filters
2262  *
2263  * Return Codes:
2264  *   None
2265  *
2266  * Assumptions:
2267  *   Multicast addresses are presented in canonical (LSB) format.
2268  *
2269  * Side Effects:
2270  *   On-board adapter CAM and filters are updated.
2271  */
2272 
dfx_ctl_set_multicast_list(struct net_device * dev)2273 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2274 {
2275 	DFX_board_t *bp = netdev_priv(dev);
2276 	int					i;			/* used as index in for loop */
2277 	struct netdev_hw_addr *ha;
2278 
2279 	/* Enable LLC frame promiscuous mode, if necessary */
2280 
2281 	if (dev->flags & IFF_PROMISC)
2282 		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2283 
2284 	/* Else, update multicast address table */
2285 
2286 	else
2287 		{
2288 		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2289 		/*
2290 		 * Check whether incoming multicast address count exceeds table size
2291 		 *
2292 		 * Note: The adapters utilize an on-board 64 entry CAM for
2293 		 *       supporting perfect filtering of multicast packets
2294 		 *		 and bridge functions when adding unicast addresses.
2295 		 *		 There is no hash function available.  To support
2296 		 *		 additional multicast addresses, the all multicast
2297 		 *		 filter (LLC group promiscuous mode) must be enabled.
2298 		 *
2299 		 *		 The firmware reserves two CAM entries for SMT-related
2300 		 *		 multicast addresses, which leaves 62 entries available.
2301 		 *		 The following code ensures that we're not being asked
2302 		 *		 to add more than 62 addresses to the CAM.  If we are,
2303 		 *		 the driver will enable the all multicast filter.
2304 		 *		 Should the number of multicast addresses drop below
2305 		 *		 the high water mark, the filter will be disabled and
2306 		 *		 perfect filtering will be used.
2307 		 */
2308 
2309 		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2310 			{
2311 			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2312 			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2313 			}
2314 		else
2315 			{
2316 			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2317 			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2318 			}
2319 
2320 		/* Copy addresses to multicast address table, then update adapter CAM */
2321 
2322 		i = 0;
2323 		netdev_for_each_mc_addr(ha, dev)
2324 			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2325 			       ha->addr, FDDI_K_ALEN);
2326 
2327 		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2328 			{
2329 			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2330 			}
2331 		else
2332 			{
2333 			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2334 			}
2335 		}
2336 
2337 	/* Update adapter filters */
2338 
2339 	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2340 		{
2341 		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2342 		}
2343 	else
2344 		{
2345 		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2346 		}
2347 	}
2348 
2349 
2350 /*
2351  * ===========================
2352  * = dfx_ctl_set_mac_address =
2353  * ===========================
2354  *
2355  * Overview:
2356  *   Add node address override (unicast address) to adapter
2357  *   CAM and update dev_addr field in device table.
2358  *
2359  * Returns:
2360  *   None
2361  *
2362  * Arguments:
2363  *   dev  - pointer to device information
2364  *   addr - pointer to sockaddr structure containing unicast address to add
2365  *
2366  * Functional Description:
2367  *   The adapter supports node address overrides by adding one or more
2368  *   unicast addresses to the adapter CAM.  This is similar to adding
2369  *   multicast addresses.  In this routine we'll update the driver and
2370  *   device structures with the new address, then update the adapter CAM
2371  *   to ensure that the adapter will copy and strip frames destined and
2372  *   sourced by that address.
2373  *
2374  * Return Codes:
2375  *   Always returns zero.
2376  *
2377  * Assumptions:
2378  *   The address pointed to by addr->sa_data is a valid unicast
2379  *   address and is presented in canonical (LSB) format.
2380  *
2381  * Side Effects:
2382  *   On-board adapter CAM is updated.  On-board adapter filters
2383  *   may be updated.
2384  */
2385 
dfx_ctl_set_mac_address(struct net_device * dev,void * addr)2386 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2387 	{
2388 	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2389 	DFX_board_t *bp = netdev_priv(dev);
2390 
2391 	/* Copy unicast address to driver-maintained structs and update count */
2392 
2393 	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2394 	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2395 	bp->uc_count = 1;
2396 
2397 	/*
2398 	 * Verify we're not exceeding the CAM size by adding unicast address
2399 	 *
2400 	 * Note: It's possible that before entering this routine we've
2401 	 *       already filled the CAM with 62 multicast addresses.
2402 	 *		 Since we need to place the node address override into
2403 	 *		 the CAM, we have to check to see that we're not
2404 	 *		 exceeding the CAM size.  If we are, we have to enable
2405 	 *		 the LLC group (multicast) promiscuous mode filter as
2406 	 *		 in dfx_ctl_set_multicast_list.
2407 	 */
2408 
2409 	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2410 		{
2411 		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2412 		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2413 
2414 		/* Update adapter filters */
2415 
2416 		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2417 			{
2418 			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2419 			}
2420 		else
2421 			{
2422 			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2423 			}
2424 		}
2425 
2426 	/* Update adapter CAM with new unicast address */
2427 
2428 	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2429 		{
2430 		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2431 		}
2432 	else
2433 		{
2434 		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2435 		}
2436 	return 0;			/* always return zero */
2437 	}
2438 
2439 
2440 /*
2441  * ======================
2442  * = dfx_ctl_update_cam =
2443  * ======================
2444  *
2445  * Overview:
2446  *   Procedure to update adapter CAM (Content Addressable Memory)
2447  *   with desired unicast and multicast address entries.
2448  *
2449  * Returns:
2450  *   Condition code
2451  *
2452  * Arguments:
2453  *   bp - pointer to board information
2454  *
2455  * Functional Description:
2456  *   Updates adapter CAM with current contents of board structure
2457  *   unicast and multicast address tables.  Since there are only 62
2458  *   free entries in CAM, this routine ensures that the command
2459  *   request buffer is not overrun.
2460  *
2461  * Return Codes:
2462  *   DFX_K_SUCCESS - Request succeeded
2463  *   DFX_K_FAILURE - Request failed
2464  *
2465  * Assumptions:
2466  *   All addresses being added (unicast and multicast) are in canonical
2467  *   order.
2468  *
2469  * Side Effects:
2470  *   On-board adapter CAM is updated.
2471  */
2472 
dfx_ctl_update_cam(DFX_board_t * bp)2473 static int dfx_ctl_update_cam(DFX_board_t *bp)
2474 	{
2475 	int			i;				/* used as index */
2476 	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2477 
2478 	/*
2479 	 * Fill in command request information
2480 	 *
2481 	 * Note: Even though both the unicast and multicast address
2482 	 *       table entries are stored as contiguous 6 byte entries,
2483 	 *		 the firmware address filter set command expects each
2484 	 *		 entry to be two longwords (8 bytes total).  We must be
2485 	 *		 careful to only copy the six bytes of each unicast and
2486 	 *		 multicast table entry into each command entry.  This
2487 	 *		 is also why we must first clear the entire command
2488 	 *		 request buffer.
2489 	 */
2490 
2491 	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2492 	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2493 	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2494 
2495 	/* Now add unicast addresses to command request buffer, if any */
2496 
2497 	for (i=0; i < (int)bp->uc_count; i++)
2498 		{
2499 		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2500 			{
2501 			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2502 			p_addr++;			/* point to next command entry */
2503 			}
2504 		}
2505 
2506 	/* Now add multicast addresses to command request buffer, if any */
2507 
2508 	for (i=0; i < (int)bp->mc_count; i++)
2509 		{
2510 		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2511 			{
2512 			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2513 			p_addr++;			/* point to next command entry */
2514 			}
2515 		}
2516 
2517 	/* Issue command to update adapter CAM, then return */
2518 
2519 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2520 		return DFX_K_FAILURE;
2521 	return DFX_K_SUCCESS;
2522 	}
2523 
2524 
2525 /*
2526  * ==========================
2527  * = dfx_ctl_update_filters =
2528  * ==========================
2529  *
2530  * Overview:
2531  *   Procedure to update adapter filters with desired
2532  *   filter settings.
2533  *
2534  * Returns:
2535  *   Condition code
2536  *
2537  * Arguments:
2538  *   bp - pointer to board information
2539  *
2540  * Functional Description:
2541  *   Enables or disables filter using current filter settings.
2542  *
2543  * Return Codes:
2544  *   DFX_K_SUCCESS - Request succeeded.
2545  *   DFX_K_FAILURE - Request failed.
2546  *
2547  * Assumptions:
2548  *   We must always pass up packets destined to the broadcast
2549  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2550  *   broadcast filter enabled.
2551  *
2552  * Side Effects:
2553  *   On-board adapter filters are updated.
2554  */
2555 
dfx_ctl_update_filters(DFX_board_t * bp)2556 static int dfx_ctl_update_filters(DFX_board_t *bp)
2557 	{
2558 	int	i = 0;					/* used as index */
2559 
2560 	/* Fill in command request information */
2561 
2562 	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2563 
2564 	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2565 
2566 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2567 	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2568 
2569 	/* Initialize LLC Individual/Group Promiscuous filter */
2570 
2571 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2572 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2573 
2574 	/* Initialize LLC Group Promiscuous filter */
2575 
2576 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2577 	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2578 
2579 	/* Terminate the item code list */
2580 
2581 	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2582 
2583 	/* Issue command to update adapter filters, then return */
2584 
2585 	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2586 		return DFX_K_FAILURE;
2587 	return DFX_K_SUCCESS;
2588 	}
2589 
2590 
2591 /*
2592  * ======================
2593  * = dfx_hw_dma_cmd_req =
2594  * ======================
2595  *
2596  * Overview:
2597  *   Sends PDQ DMA command to adapter firmware
2598  *
2599  * Returns:
2600  *   Condition code
2601  *
2602  * Arguments:
2603  *   bp - pointer to board information
2604  *
2605  * Functional Description:
2606  *   The command request and response buffers are posted to the adapter in the manner
2607  *   described in the PDQ Port Specification:
2608  *
2609  *		1. Command Response Buffer is posted to adapter.
2610  *		2. Command Request Buffer is posted to adapter.
2611  *		3. Command Request consumer index is polled until it indicates that request
2612  *         buffer has been DMA'd to adapter.
2613  *		4. Command Response consumer index is polled until it indicates that response
2614  *         buffer has been DMA'd from adapter.
2615  *
2616  *   This ordering ensures that a response buffer is already available for the firmware
2617  *   to use once it's done processing the request buffer.
2618  *
2619  * Return Codes:
2620  *   DFX_K_SUCCESS	  - DMA command succeeded
2621  * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2622  *   DFX_K_HW_TIMEOUT - DMA command timed out
2623  *
2624  * Assumptions:
2625  *   Command request buffer has already been filled with desired DMA command.
2626  *
2627  * Side Effects:
2628  *   None
2629  */
2630 
dfx_hw_dma_cmd_req(DFX_board_t * bp)2631 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2632 	{
2633 	int status;			/* adapter status */
2634 	int timeout_cnt;	/* used in for loops */
2635 
2636 	/* Make sure the adapter is in a state that we can issue the DMA command in */
2637 
2638 	status = dfx_hw_adap_state_rd(bp);
2639 	if ((status == PI_STATE_K_RESET)		||
2640 		(status == PI_STATE_K_HALTED)		||
2641 		(status == PI_STATE_K_DMA_UNAVAIL)	||
2642 		(status == PI_STATE_K_UPGRADE))
2643 		return DFX_K_OUTSTATE;
2644 
2645 	/* Put response buffer on the command response queue */
2646 
2647 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2648 			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2649 	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2650 
2651 	/* Bump (and wrap) the producer index and write out to register */
2652 
2653 	bp->cmd_rsp_reg.index.prod += 1;
2654 	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2655 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2656 
2657 	/* Put request buffer on the command request queue */
2658 
2659 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2660 			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2661 	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2662 
2663 	/* Bump (and wrap) the producer index and write out to register */
2664 
2665 	bp->cmd_req_reg.index.prod += 1;
2666 	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2667 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2668 
2669 	/*
2670 	 * Here we wait for the command request consumer index to be equal
2671 	 * to the producer, indicating that the adapter has DMAed the request.
2672 	 */
2673 
2674 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2675 		{
2676 		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2677 			break;
2678 		udelay(100);			/* wait for 100 microseconds */
2679 		}
2680 	if (timeout_cnt == 0)
2681 		return DFX_K_HW_TIMEOUT;
2682 
2683 	/* Bump (and wrap) the completion index and write out to register */
2684 
2685 	bp->cmd_req_reg.index.comp += 1;
2686 	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2687 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2688 
2689 	/*
2690 	 * Here we wait for the command response consumer index to be equal
2691 	 * to the producer, indicating that the adapter has DMAed the response.
2692 	 */
2693 
2694 	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2695 		{
2696 		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2697 			break;
2698 		udelay(100);			/* wait for 100 microseconds */
2699 		}
2700 	if (timeout_cnt == 0)
2701 		return DFX_K_HW_TIMEOUT;
2702 
2703 	/* Bump (and wrap) the completion index and write out to register */
2704 
2705 	bp->cmd_rsp_reg.index.comp += 1;
2706 	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2707 	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2708 	return DFX_K_SUCCESS;
2709 	}
2710 
2711 
2712 /*
2713  * ========================
2714  * = dfx_hw_port_ctrl_req =
2715  * ========================
2716  *
2717  * Overview:
2718  *   Sends PDQ port control command to adapter firmware
2719  *
2720  * Returns:
2721  *   Host data register value in host_data if ptr is not NULL
2722  *
2723  * Arguments:
2724  *   bp			- pointer to board information
2725  *	 command	- port control command
2726  *	 data_a		- port data A register value
2727  *	 data_b		- port data B register value
2728  *	 host_data	- ptr to host data register value
2729  *
2730  * Functional Description:
2731  *   Send generic port control command to adapter by writing
2732  *   to various PDQ port registers, then polling for completion.
2733  *
2734  * Return Codes:
2735  *   DFX_K_SUCCESS	  - port control command succeeded
2736  *   DFX_K_HW_TIMEOUT - port control command timed out
2737  *
2738  * Assumptions:
2739  *   None
2740  *
2741  * Side Effects:
2742  *   None
2743  */
2744 
dfx_hw_port_ctrl_req(DFX_board_t * bp,PI_UINT32 command,PI_UINT32 data_a,PI_UINT32 data_b,PI_UINT32 * host_data)2745 static int dfx_hw_port_ctrl_req(
2746 	DFX_board_t	*bp,
2747 	PI_UINT32	command,
2748 	PI_UINT32	data_a,
2749 	PI_UINT32	data_b,
2750 	PI_UINT32	*host_data
2751 	)
2752 
2753 	{
2754 	PI_UINT32	port_cmd;		/* Port Control command register value */
2755 	int			timeout_cnt;	/* used in for loops */
2756 
2757 	/* Set Command Error bit in command longword */
2758 
2759 	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2760 
2761 	/* Issue port command to the adapter */
2762 
2763 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2764 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2765 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2766 
2767 	/* Now wait for command to complete */
2768 
2769 	if (command == PI_PCTRL_M_BLAST_FLASH)
2770 		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2771 	else
2772 		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2773 
2774 	for (; timeout_cnt > 0; timeout_cnt--)
2775 		{
2776 		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2777 		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2778 			break;
2779 		udelay(100);			/* wait for 100 microseconds */
2780 		}
2781 	if (timeout_cnt == 0)
2782 		return DFX_K_HW_TIMEOUT;
2783 
2784 	/*
2785 	 * If the address of host_data is non-zero, assume caller has supplied a
2786 	 * non NULL pointer, and return the contents of the HOST_DATA register in
2787 	 * it.
2788 	 */
2789 
2790 	if (host_data != NULL)
2791 		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2792 	return DFX_K_SUCCESS;
2793 	}
2794 
2795 
2796 /*
2797  * =====================
2798  * = dfx_hw_adap_reset =
2799  * =====================
2800  *
2801  * Overview:
2802  *   Resets adapter
2803  *
2804  * Returns:
2805  *   None
2806  *
2807  * Arguments:
2808  *   bp   - pointer to board information
2809  *   type - type of reset to perform
2810  *
2811  * Functional Description:
2812  *   Issue soft reset to adapter by writing to PDQ Port Reset
2813  *   register.  Use incoming reset type to tell adapter what
2814  *   kind of reset operation to perform.
2815  *
2816  * Return Codes:
2817  *   None
2818  *
2819  * Assumptions:
2820  *   This routine merely issues a soft reset to the adapter.
2821  *   It is expected that after this routine returns, the caller
2822  *   will appropriately poll the Port Status register for the
2823  *   adapter to enter the proper state.
2824  *
2825  * Side Effects:
2826  *   Internal adapter registers are cleared.
2827  */
2828 
dfx_hw_adap_reset(DFX_board_t * bp,PI_UINT32 type)2829 static void dfx_hw_adap_reset(
2830 	DFX_board_t	*bp,
2831 	PI_UINT32	type
2832 	)
2833 
2834 	{
2835 	/* Set Reset type and assert reset */
2836 
2837 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2838 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2839 
2840 	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2841 
2842 	udelay(20);
2843 
2844 	/* Deassert reset */
2845 
2846 	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2847 	}
2848 
2849 
2850 /*
2851  * ========================
2852  * = dfx_hw_adap_state_rd =
2853  * ========================
2854  *
2855  * Overview:
2856  *   Returns current adapter state
2857  *
2858  * Returns:
2859  *   Adapter state per PDQ Port Specification
2860  *
2861  * Arguments:
2862  *   bp - pointer to board information
2863  *
2864  * Functional Description:
2865  *   Reads PDQ Port Status register and returns adapter state.
2866  *
2867  * Return Codes:
2868  *   None
2869  *
2870  * Assumptions:
2871  *   None
2872  *
2873  * Side Effects:
2874  *   None
2875  */
2876 
dfx_hw_adap_state_rd(DFX_board_t * bp)2877 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2878 	{
2879 	PI_UINT32 port_status;		/* Port Status register value */
2880 
2881 	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2882 	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2883 	}
2884 
2885 
2886 /*
2887  * =====================
2888  * = dfx_hw_dma_uninit =
2889  * =====================
2890  *
2891  * Overview:
2892  *   Brings adapter to DMA_UNAVAILABLE state
2893  *
2894  * Returns:
2895  *   Condition code
2896  *
2897  * Arguments:
2898  *   bp   - pointer to board information
2899  *   type - type of reset to perform
2900  *
2901  * Functional Description:
2902  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2903  *		1. Set reset type bit in Port Data A Register then reset adapter.
2904  *		2. Check that adapter is in DMA_UNAVAILABLE state.
2905  *
2906  * Return Codes:
2907  *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2908  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2909  *
2910  * Assumptions:
2911  *   None
2912  *
2913  * Side Effects:
2914  *   Internal adapter registers are cleared.
2915  */
2916 
dfx_hw_dma_uninit(DFX_board_t * bp,PI_UINT32 type)2917 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2918 	{
2919 	int timeout_cnt;	/* used in for loops */
2920 
2921 	/* Set reset type bit and reset adapter */
2922 
2923 	dfx_hw_adap_reset(bp, type);
2924 
2925 	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2926 
2927 	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2928 		{
2929 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2930 			break;
2931 		udelay(100);					/* wait for 100 microseconds */
2932 		}
2933 	if (timeout_cnt == 0)
2934 		return DFX_K_HW_TIMEOUT;
2935 	return DFX_K_SUCCESS;
2936 	}
2937 
2938 /*
2939  *	Align an sk_buff to a boundary power of 2
2940  *
2941  */
2942 #ifdef DYNAMIC_BUFFERS
my_skb_align(struct sk_buff * skb,int n)2943 static void my_skb_align(struct sk_buff *skb, int n)
2944 {
2945 	unsigned long x = (unsigned long)skb->data;
2946 	unsigned long v;
2947 
2948 	v = ALIGN(x, n);	/* Where we want to be */
2949 
2950 	skb_reserve(skb, v - x);
2951 }
2952 #endif
2953 
2954 /*
2955  * ================
2956  * = dfx_rcv_init =
2957  * ================
2958  *
2959  * Overview:
2960  *   Produces buffers to adapter LLC Host receive descriptor block
2961  *
2962  * Returns:
2963  *   None
2964  *
2965  * Arguments:
2966  *   bp - pointer to board information
2967  *   get_buffers - non-zero if buffers to be allocated
2968  *
2969  * Functional Description:
2970  *   This routine can be called during dfx_adap_init() or during an adapter
2971  *	 reset.  It initializes the descriptor block and produces all allocated
2972  *   LLC Host queue receive buffers.
2973  *
2974  * Return Codes:
2975  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2976  *   dynamic buffer allocation). If the buffer allocation failed, the
2977  *   already allocated buffers will not be released and the caller should do
2978  *   this.
2979  *
2980  * Assumptions:
2981  *   The PDQ has been reset and the adapter and driver maintained Type 2
2982  *   register indices are cleared.
2983  *
2984  * Side Effects:
2985  *   Receive buffers are posted to the adapter LLC queue and the adapter
2986  *   is notified.
2987  */
2988 
dfx_rcv_init(DFX_board_t * bp,int get_buffers)2989 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2990 	{
2991 	int	i, j;					/* used in for loop */
2992 
2993 	/*
2994 	 *  Since each receive buffer is a single fragment of same length, initialize
2995 	 *  first longword in each receive descriptor for entire LLC Host descriptor
2996 	 *  block.  Also initialize second longword in each receive descriptor with
2997 	 *  physical address of receive buffer.  We'll always allocate receive
2998 	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2999 	 *  block and produce new receive buffers by simply updating the receive
3000 	 *  producer index.
3001 	 *
3002 	 * 	Assumptions:
3003 	 *		To support all shipping versions of PDQ, the receive buffer size
3004 	 *		must be mod 128 in length and the physical address must be 128 byte
3005 	 *		aligned.  In other words, bits 0-6 of the length and address must
3006 	 *		be zero for the following descriptor field entries to be correct on
3007 	 *		all PDQ-based boards.  We guaranteed both requirements during
3008 	 *		driver initialization when we allocated memory for the receive buffers.
3009 	 */
3010 
3011 	if (get_buffers) {
3012 #ifdef DYNAMIC_BUFFERS
3013 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3014 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3015 		{
3016 			struct sk_buff *newskb;
3017 			dma_addr_t dma_addr;
3018 
3019 			newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3020 						    GFP_NOIO);
3021 			if (!newskb)
3022 				return -ENOMEM;
3023 			/*
3024 			 * align to 128 bytes for compatibility with
3025 			 * the old EISA boards.
3026 			 */
3027 
3028 			my_skb_align(newskb, 128);
3029 			dma_addr = dma_map_single(bp->bus_dev,
3030 						  newskb->data,
3031 						  PI_RCV_DATA_K_SIZE_MAX,
3032 						  DMA_FROM_DEVICE);
3033 			if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3034 				dev_kfree_skb(newskb);
3035 				return -ENOMEM;
3036 			}
3037 			bp->descr_block_virt->rcv_data[i + j].long_0 =
3038 				(u32)(PI_RCV_DESCR_M_SOP |
3039 				      ((PI_RCV_DATA_K_SIZE_MAX /
3040 					PI_ALIGN_K_RCV_DATA_BUFF) <<
3041 				       PI_RCV_DESCR_V_SEG_LEN));
3042 			bp->descr_block_virt->rcv_data[i + j].long_1 =
3043 				(u32)dma_addr;
3044 
3045 			/*
3046 			 * p_rcv_buff_va is only used inside the
3047 			 * kernel so we put the skb pointer here.
3048 			 */
3049 			bp->p_rcv_buff_va[i+j] = (char *) newskb;
3050 		}
3051 #else
3052 	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3053 		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3054 			{
3055 			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3056 				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3057 			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3058 			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3059 			}
3060 #endif
3061 	}
3062 
3063 	/* Update receive producer and Type 2 register */
3064 
3065 	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3066 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3067 	return 0;
3068 	}
3069 
3070 
3071 /*
3072  * =========================
3073  * = dfx_rcv_queue_process =
3074  * =========================
3075  *
3076  * Overview:
3077  *   Process received LLC frames.
3078  *
3079  * Returns:
3080  *   None
3081  *
3082  * Arguments:
3083  *   bp - pointer to board information
3084  *
3085  * Functional Description:
3086  *   Received LLC frames are processed until there are no more consumed frames.
3087  *   Once all frames are processed, the receive buffers are returned to the
3088  *   adapter.  Note that this algorithm fixes the length of time that can be spent
3089  *   in this routine, because there are a fixed number of receive buffers to
3090  *   process and buffers are not produced until this routine exits and returns
3091  *   to the ISR.
3092  *
3093  * Return Codes:
3094  *   None
3095  *
3096  * Assumptions:
3097  *   None
3098  *
3099  * Side Effects:
3100  *   None
3101  */
3102 
dfx_rcv_queue_process(DFX_board_t * bp)3103 static void dfx_rcv_queue_process(
3104 	DFX_board_t *bp
3105 	)
3106 
3107 	{
3108 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3109 	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3110 	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3111 	struct sk_buff		*skb = NULL;			/* pointer to a sk_buff to hold incoming packet data */
3112 
3113 	/* Service all consumed LLC receive frames */
3114 
3115 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3116 	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3117 		{
3118 		/* Process any errors */
3119 		dma_addr_t dma_addr;
3120 		int entry;
3121 
3122 		entry = bp->rcv_xmt_reg.index.rcv_comp;
3123 #ifdef DYNAMIC_BUFFERS
3124 		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3125 #else
3126 		p_buff = bp->p_rcv_buff_va[entry];
3127 #endif
3128 		dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3129 		dma_sync_single_for_cpu(bp->bus_dev,
3130 					dma_addr + RCV_BUFF_K_DESCR,
3131 					sizeof(u32),
3132 					DMA_FROM_DEVICE);
3133 		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3134 
3135 		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3136 			{
3137 			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3138 				bp->rcv_crc_errors++;
3139 			else
3140 				bp->rcv_frame_status_errors++;
3141 			}
3142 		else
3143 		{
3144 			int rx_in_place = 0;
3145 
3146 			/* The frame was received without errors - verify packet length */
3147 
3148 			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3149 			pkt_len -= 4;				/* subtract 4 byte CRC */
3150 			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3151 				bp->rcv_length_errors++;
3152 			else{
3153 #ifdef DYNAMIC_BUFFERS
3154 				struct sk_buff *newskb = NULL;
3155 
3156 				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3157 					dma_addr_t new_dma_addr;
3158 
3159 					newskb = netdev_alloc_skb(bp->dev,
3160 								  NEW_SKB_SIZE);
3161 					if (newskb){
3162 						my_skb_align(newskb, 128);
3163 						new_dma_addr = dma_map_single(
3164 								bp->bus_dev,
3165 								newskb->data,
3166 								PI_RCV_DATA_K_SIZE_MAX,
3167 								DMA_FROM_DEVICE);
3168 						if (dma_mapping_error(
3169 								bp->bus_dev,
3170 								new_dma_addr)) {
3171 							dev_kfree_skb(newskb);
3172 							newskb = NULL;
3173 						}
3174 					}
3175 					if (newskb) {
3176 						rx_in_place = 1;
3177 
3178 						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3179 						dma_unmap_single(bp->bus_dev,
3180 							dma_addr,
3181 							PI_RCV_DATA_K_SIZE_MAX,
3182 							DMA_FROM_DEVICE);
3183 						skb_reserve(skb, RCV_BUFF_K_PADDING);
3184 						bp->p_rcv_buff_va[entry] = (char *)newskb;
3185 						bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3186 					}
3187 				}
3188 				if (!newskb)
3189 #endif
3190 					/* Alloc new buffer to pass up,
3191 					 * add room for PRH. */
3192 					skb = netdev_alloc_skb(bp->dev,
3193 							       pkt_len + 3);
3194 				if (skb == NULL)
3195 					{
3196 					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3197 					bp->rcv_discards++;
3198 					break;
3199 					}
3200 				else {
3201 					if (!rx_in_place) {
3202 						/* Receive buffer allocated, pass receive packet up */
3203 						dma_sync_single_for_cpu(
3204 							bp->bus_dev,
3205 							dma_addr +
3206 							RCV_BUFF_K_PADDING,
3207 							pkt_len + 3,
3208 							DMA_FROM_DEVICE);
3209 
3210 						skb_copy_to_linear_data(skb,
3211 							       p_buff + RCV_BUFF_K_PADDING,
3212 							       pkt_len + 3);
3213 					}
3214 
3215 					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3216 					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3217 					skb->protocol = fddi_type_trans(skb, bp->dev);
3218 					bp->rcv_total_bytes += skb->len;
3219 					netif_rx(skb);
3220 
3221 					/* Update the rcv counters */
3222 					bp->rcv_total_frames++;
3223 					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3224 						bp->rcv_multicast_frames++;
3225 				}
3226 			}
3227 			}
3228 
3229 		/*
3230 		 * Advance the producer (for recycling) and advance the completion
3231 		 * (for servicing received frames).  Note that it is okay to
3232 		 * advance the producer without checking that it passes the
3233 		 * completion index because they are both advanced at the same
3234 		 * rate.
3235 		 */
3236 
3237 		bp->rcv_xmt_reg.index.rcv_prod += 1;
3238 		bp->rcv_xmt_reg.index.rcv_comp += 1;
3239 		}
3240 	}
3241 
3242 
3243 /*
3244  * =====================
3245  * = dfx_xmt_queue_pkt =
3246  * =====================
3247  *
3248  * Overview:
3249  *   Queues packets for transmission
3250  *
3251  * Returns:
3252  *   Condition code
3253  *
3254  * Arguments:
3255  *   skb - pointer to sk_buff to queue for transmission
3256  *   dev - pointer to device information
3257  *
3258  * Functional Description:
3259  *   Here we assume that an incoming skb transmit request
3260  *   is contained in a single physically contiguous buffer
3261  *   in which the virtual address of the start of packet
3262  *   (skb->data) can be converted to a physical address
3263  *   by using pci_map_single().
3264  *
3265  *   Since the adapter architecture requires a three byte
3266  *   packet request header to prepend the start of packet,
3267  *   we'll write the three byte field immediately prior to
3268  *   the FC byte.  This assumption is valid because we've
3269  *   ensured that dev->hard_header_len includes three pad
3270  *   bytes.  By posting a single fragment to the adapter,
3271  *   we'll reduce the number of descriptor fetches and
3272  *   bus traffic needed to send the request.
3273  *
3274  *   Also, we can't free the skb until after it's been DMA'd
3275  *   out by the adapter, so we'll queue it in the driver and
3276  *   return it in dfx_xmt_done.
3277  *
3278  * Return Codes:
3279  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3280  *	 1 - caller should requeue the sk_buff for later transmission
3281  *
3282  * Assumptions:
3283  *	 First and foremost, we assume the incoming skb pointer
3284  *   is NOT NULL and is pointing to a valid sk_buff structure.
3285  *
3286  *   The outgoing packet is complete, starting with the
3287  *   frame control byte including the last byte of data,
3288  *   but NOT including the 4 byte CRC.  We'll let the
3289  *   adapter hardware generate and append the CRC.
3290  *
3291  *   The entire packet is stored in one physically
3292  *   contiguous buffer which is not cached and whose
3293  *   32-bit physical address can be determined.
3294  *
3295  *   It's vital that this routine is NOT reentered for the
3296  *   same board and that the OS is not in another section of
3297  *   code (eg. dfx_int_common) for the same board on a
3298  *   different thread.
3299  *
3300  * Side Effects:
3301  *   None
3302  */
3303 
dfx_xmt_queue_pkt(struct sk_buff * skb,struct net_device * dev)3304 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3305 				     struct net_device *dev)
3306 	{
3307 	DFX_board_t		*bp = netdev_priv(dev);
3308 	u8			prod;				/* local transmit producer index */
3309 	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3310 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3311 	dma_addr_t		dma_addr;
3312 	unsigned long		flags;
3313 
3314 	netif_stop_queue(dev);
3315 
3316 	/*
3317 	 * Verify that incoming transmit request is OK
3318 	 *
3319 	 * Note: The packet size check is consistent with other
3320 	 *		 Linux device drivers, although the correct packet
3321 	 *		 size should be verified before calling the
3322 	 *		 transmit routine.
3323 	 */
3324 
3325 	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3326 	{
3327 		printk("%s: Invalid packet length - %u bytes\n",
3328 			dev->name, skb->len);
3329 		bp->xmt_length_errors++;		/* bump error counter */
3330 		netif_wake_queue(dev);
3331 		dev_kfree_skb(skb);
3332 		return NETDEV_TX_OK;			/* return "success" */
3333 	}
3334 	/*
3335 	 * See if adapter link is available, if not, free buffer
3336 	 *
3337 	 * Note: If the link isn't available, free buffer and return 0
3338 	 *		 rather than tell the upper layer to requeue the packet.
3339 	 *		 The methodology here is that by the time the link
3340 	 *		 becomes available, the packet to be sent will be
3341 	 *		 fairly stale.  By simply dropping the packet, the
3342 	 *		 higher layer protocols will eventually time out
3343 	 *		 waiting for response packets which it won't receive.
3344 	 */
3345 
3346 	if (bp->link_available == PI_K_FALSE)
3347 		{
3348 		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3349 			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3350 		else
3351 			{
3352 			bp->xmt_discards++;					/* bump error counter */
3353 			dev_kfree_skb(skb);		/* free sk_buff now */
3354 			netif_wake_queue(dev);
3355 			return NETDEV_TX_OK;		/* return "success" */
3356 			}
3357 		}
3358 
3359 	/* Write the three PRH bytes immediately before the FC byte */
3360 
3361 	skb_push(skb, 3);
3362 	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3363 	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3364 	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3365 
3366 	dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3367 				  DMA_TO_DEVICE);
3368 	if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3369 		skb_pull(skb, 3);
3370 		return NETDEV_TX_BUSY;
3371 	}
3372 
3373 	spin_lock_irqsave(&bp->lock, flags);
3374 
3375 	/* Get the current producer and the next free xmt data descriptor */
3376 
3377 	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3378 	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3379 
3380 	/*
3381 	 * Get pointer to auxiliary queue entry to contain information
3382 	 * for this packet.
3383 	 *
3384 	 * Note: The current xmt producer index will become the
3385 	 *	 current xmt completion index when we complete this
3386 	 *	 packet later on.  So, we'll get the pointer to the
3387 	 *	 next auxiliary queue entry now before we bump the
3388 	 *	 producer index.
3389 	 */
3390 
3391 	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3392 
3393 	/*
3394 	 * Write the descriptor with buffer info and bump producer
3395 	 *
3396 	 * Note: Since we need to start DMA from the packet request
3397 	 *		 header, we'll add 3 bytes to the DMA buffer length,
3398 	 *		 and we'll determine the physical address of the
3399 	 *		 buffer from the PRH, not skb->data.
3400 	 *
3401 	 * Assumptions:
3402 	 *		 1. Packet starts with the frame control (FC) byte
3403 	 *		    at skb->data.
3404 	 *		 2. The 4-byte CRC is not appended to the buffer or
3405 	 *			included in the length.
3406 	 *		 3. Packet length (skb->len) is from FC to end of
3407 	 *			data, inclusive.
3408 	 *		 4. The packet length does not exceed the maximum
3409 	 *			FDDI LLC frame length of 4491 bytes.
3410 	 *		 5. The entire packet is contained in a physically
3411 	 *			contiguous, non-cached, locked memory space
3412 	 *			comprised of a single buffer pointed to by
3413 	 *			skb->data.
3414 	 *		 6. The physical address of the start of packet
3415 	 *			can be determined from the virtual address
3416 	 *			by using pci_map_single() and is only 32-bits
3417 	 *			wide.
3418 	 */
3419 
3420 	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3421 	p_xmt_descr->long_1 = (u32)dma_addr;
3422 
3423 	/*
3424 	 * Verify that descriptor is actually available
3425 	 *
3426 	 * Note: If descriptor isn't available, return 1 which tells
3427 	 *	 the upper layer to requeue the packet for later
3428 	 *	 transmission.
3429 	 *
3430 	 *       We need to ensure that the producer never reaches the
3431 	 *	 completion, except to indicate that the queue is empty.
3432 	 */
3433 
3434 	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3435 	{
3436 		skb_pull(skb,3);
3437 		spin_unlock_irqrestore(&bp->lock, flags);
3438 		return NETDEV_TX_BUSY;	/* requeue packet for later */
3439 	}
3440 
3441 	/*
3442 	 * Save info for this packet for xmt done indication routine
3443 	 *
3444 	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3445 	 * structure so that we'd have it handy when we complete this
3446 	 * packet later (in dfx_xmt_done).  However, since the current
3447 	 * transmit architecture guarantees a single fragment for the
3448 	 * entire packet, we can simply bump the completion index by
3449 	 * one (1) for each completed packet.
3450 	 *
3451 	 * Note: If this assumption changes and we're presented with
3452 	 *	 an inconsistent number of transmit fragments for packet
3453 	 *	 data, we'll need to modify this code to save the current
3454 	 *	 transmit producer index.
3455 	 */
3456 
3457 	p_xmt_drv_descr->p_skb = skb;
3458 
3459 	/* Update Type 2 register */
3460 
3461 	bp->rcv_xmt_reg.index.xmt_prod = prod;
3462 	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3463 	spin_unlock_irqrestore(&bp->lock, flags);
3464 	netif_wake_queue(dev);
3465 	return NETDEV_TX_OK;	/* packet queued to adapter */
3466 	}
3467 
3468 
3469 /*
3470  * ================
3471  * = dfx_xmt_done =
3472  * ================
3473  *
3474  * Overview:
3475  *   Processes all frames that have been transmitted.
3476  *
3477  * Returns:
3478  *   None
3479  *
3480  * Arguments:
3481  *   bp - pointer to board information
3482  *
3483  * Functional Description:
3484  *   For all consumed transmit descriptors that have not
3485  *   yet been completed, we'll free the skb we were holding
3486  *   onto using dev_kfree_skb and bump the appropriate
3487  *   counters.
3488  *
3489  * Return Codes:
3490  *   None
3491  *
3492  * Assumptions:
3493  *   The Type 2 register is not updated in this routine.  It is
3494  *   assumed that it will be updated in the ISR when dfx_xmt_done
3495  *   returns.
3496  *
3497  * Side Effects:
3498  *   None
3499  */
3500 
dfx_xmt_done(DFX_board_t * bp)3501 static int dfx_xmt_done(DFX_board_t *bp)
3502 	{
3503 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3504 	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3505 	u8			comp;			/* local transmit completion index */
3506 	int 			freed = 0;		/* buffers freed */
3507 
3508 	/* Service all consumed transmit frames */
3509 
3510 	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3511 	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3512 		{
3513 		/* Get pointer to the transmit driver descriptor block information */
3514 
3515 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3516 
3517 		/* Increment transmit counters */
3518 
3519 		bp->xmt_total_frames++;
3520 		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3521 
3522 		/* Return skb to operating system */
3523 		comp = bp->rcv_xmt_reg.index.xmt_comp;
3524 		dma_unmap_single(bp->bus_dev,
3525 				 bp->descr_block_virt->xmt_data[comp].long_1,
3526 				 p_xmt_drv_descr->p_skb->len,
3527 				 DMA_TO_DEVICE);
3528 		dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3529 
3530 		/*
3531 		 * Move to start of next packet by updating completion index
3532 		 *
3533 		 * Here we assume that a transmit packet request is always
3534 		 * serviced by posting one fragment.  We can therefore
3535 		 * simplify the completion code by incrementing the
3536 		 * completion index by one.  This code will need to be
3537 		 * modified if this assumption changes.  See comments
3538 		 * in dfx_xmt_queue_pkt for more details.
3539 		 */
3540 
3541 		bp->rcv_xmt_reg.index.xmt_comp += 1;
3542 		freed++;
3543 		}
3544 	return freed;
3545 	}
3546 
3547 
3548 /*
3549  * =================
3550  * = dfx_rcv_flush =
3551  * =================
3552  *
3553  * Overview:
3554  *   Remove all skb's in the receive ring.
3555  *
3556  * Returns:
3557  *   None
3558  *
3559  * Arguments:
3560  *   bp - pointer to board information
3561  *
3562  * Functional Description:
3563  *   Free's all the dynamically allocated skb's that are
3564  *   currently attached to the device receive ring. This
3565  *   function is typically only used when the device is
3566  *   initialized or reinitialized.
3567  *
3568  * Return Codes:
3569  *   None
3570  *
3571  * Side Effects:
3572  *   None
3573  */
3574 #ifdef DYNAMIC_BUFFERS
dfx_rcv_flush(DFX_board_t * bp)3575 static void dfx_rcv_flush( DFX_board_t *bp )
3576 	{
3577 	int i, j;
3578 
3579 	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3580 		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3581 		{
3582 			struct sk_buff *skb;
3583 			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3584 			if (skb) {
3585 				dma_unmap_single(bp->bus_dev,
3586 						 bp->descr_block_virt->rcv_data[i+j].long_1,
3587 						 PI_RCV_DATA_K_SIZE_MAX,
3588 						 DMA_FROM_DEVICE);
3589 				dev_kfree_skb(skb);
3590 			}
3591 			bp->p_rcv_buff_va[i+j] = NULL;
3592 		}
3593 
3594 	}
3595 #endif /* DYNAMIC_BUFFERS */
3596 
3597 /*
3598  * =================
3599  * = dfx_xmt_flush =
3600  * =================
3601  *
3602  * Overview:
3603  *   Processes all frames whether they've been transmitted
3604  *   or not.
3605  *
3606  * Returns:
3607  *   None
3608  *
3609  * Arguments:
3610  *   bp - pointer to board information
3611  *
3612  * Functional Description:
3613  *   For all produced transmit descriptors that have not
3614  *   yet been completed, we'll free the skb we were holding
3615  *   onto using dev_kfree_skb and bump the appropriate
3616  *   counters.  Of course, it's possible that some of
3617  *   these transmit requests actually did go out, but we
3618  *   won't make that distinction here.  Finally, we'll
3619  *   update the consumer index to match the producer.
3620  *
3621  * Return Codes:
3622  *   None
3623  *
3624  * Assumptions:
3625  *   This routine does NOT update the Type 2 register.  It
3626  *   is assumed that this routine is being called during a
3627  *   transmit flush interrupt, or a shutdown or close routine.
3628  *
3629  * Side Effects:
3630  *   None
3631  */
3632 
dfx_xmt_flush(DFX_board_t * bp)3633 static void dfx_xmt_flush( DFX_board_t *bp )
3634 	{
3635 	u32			prod_cons;		/* rcv/xmt consumer block longword */
3636 	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3637 	u8			comp;			/* local transmit completion index */
3638 
3639 	/* Flush all outstanding transmit frames */
3640 
3641 	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3642 		{
3643 		/* Get pointer to the transmit driver descriptor block information */
3644 
3645 		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3646 
3647 		/* Return skb to operating system */
3648 		comp = bp->rcv_xmt_reg.index.xmt_comp;
3649 		dma_unmap_single(bp->bus_dev,
3650 				 bp->descr_block_virt->xmt_data[comp].long_1,
3651 				 p_xmt_drv_descr->p_skb->len,
3652 				 DMA_TO_DEVICE);
3653 		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3654 
3655 		/* Increment transmit error counter */
3656 
3657 		bp->xmt_discards++;
3658 
3659 		/*
3660 		 * Move to start of next packet by updating completion index
3661 		 *
3662 		 * Here we assume that a transmit packet request is always
3663 		 * serviced by posting one fragment.  We can therefore
3664 		 * simplify the completion code by incrementing the
3665 		 * completion index by one.  This code will need to be
3666 		 * modified if this assumption changes.  See comments
3667 		 * in dfx_xmt_queue_pkt for more details.
3668 		 */
3669 
3670 		bp->rcv_xmt_reg.index.xmt_comp += 1;
3671 		}
3672 
3673 	/* Update the transmit consumer index in the consumer block */
3674 
3675 	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3676 	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3677 	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3678 	}
3679 
3680 /*
3681  * ==================
3682  * = dfx_unregister =
3683  * ==================
3684  *
3685  * Overview:
3686  *   Shuts down an FDDI controller
3687  *
3688  * Returns:
3689  *   Condition code
3690  *
3691  * Arguments:
3692  *   bdev - pointer to device information
3693  *
3694  * Functional Description:
3695  *
3696  * Return Codes:
3697  *   None
3698  *
3699  * Assumptions:
3700  *   It compiles so it should work :-( (PCI cards do :-)
3701  *
3702  * Side Effects:
3703  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3704  *   freed.
3705  */
dfx_unregister(struct device * bdev)3706 static void dfx_unregister(struct device *bdev)
3707 {
3708 	struct net_device *dev = dev_get_drvdata(bdev);
3709 	DFX_board_t *bp = netdev_priv(dev);
3710 	int dfx_bus_pci = dev_is_pci(bdev);
3711 	int dfx_bus_tc = DFX_BUS_TC(bdev);
3712 	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3713 	resource_size_t bar_start[3];		/* pointers to ports */
3714 	resource_size_t bar_len[3];		/* resource lengths */
3715 	int		alloc_size;		/* total buffer size used */
3716 
3717 	unregister_netdev(dev);
3718 
3719 	alloc_size = sizeof(PI_DESCR_BLOCK) +
3720 		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3721 #ifndef DYNAMIC_BUFFERS
3722 		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3723 #endif
3724 		     sizeof(PI_CONSUMER_BLOCK) +
3725 		     (PI_ALIGN_K_DESC_BLK - 1);
3726 	if (bp->kmalloced)
3727 		dma_free_coherent(bdev, alloc_size,
3728 				  bp->kmalloced, bp->kmalloced_dma);
3729 
3730 	dfx_bus_uninit(dev);
3731 
3732 	dfx_get_bars(bdev, bar_start, bar_len);
3733 	if (bar_start[2] != 0)
3734 		release_region(bar_start[2], bar_len[2]);
3735 	if (bar_start[1] != 0)
3736 		release_region(bar_start[1], bar_len[1]);
3737 	if (dfx_use_mmio) {
3738 		iounmap(bp->base.mem);
3739 		release_mem_region(bar_start[0], bar_len[0]);
3740 	} else
3741 		release_region(bar_start[0], bar_len[0]);
3742 
3743 	if (dfx_bus_pci)
3744 		pci_disable_device(to_pci_dev(bdev));
3745 
3746 	free_netdev(dev);
3747 }
3748 
3749 
3750 static int __maybe_unused dfx_dev_register(struct device *);
3751 static int __maybe_unused dfx_dev_unregister(struct device *);
3752 
3753 #ifdef CONFIG_PCI
3754 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3755 static void dfx_pci_unregister(struct pci_dev *);
3756 
3757 static const struct pci_device_id dfx_pci_table[] = {
3758 	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3759 	{ }
3760 };
3761 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3762 
3763 static struct pci_driver dfx_pci_driver = {
3764 	.name		= "defxx",
3765 	.id_table	= dfx_pci_table,
3766 	.probe		= dfx_pci_register,
3767 	.remove		= dfx_pci_unregister,
3768 };
3769 
dfx_pci_register(struct pci_dev * pdev,const struct pci_device_id * ent)3770 static int dfx_pci_register(struct pci_dev *pdev,
3771 			    const struct pci_device_id *ent)
3772 {
3773 	return dfx_register(&pdev->dev);
3774 }
3775 
dfx_pci_unregister(struct pci_dev * pdev)3776 static void dfx_pci_unregister(struct pci_dev *pdev)
3777 {
3778 	dfx_unregister(&pdev->dev);
3779 }
3780 #endif /* CONFIG_PCI */
3781 
3782 #ifdef CONFIG_EISA
3783 static struct eisa_device_id dfx_eisa_table[] = {
3784         { "DEC3001", DEFEA_PROD_ID_1 },
3785         { "DEC3002", DEFEA_PROD_ID_2 },
3786         { "DEC3003", DEFEA_PROD_ID_3 },
3787         { "DEC3004", DEFEA_PROD_ID_4 },
3788         { }
3789 };
3790 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3791 
3792 static struct eisa_driver dfx_eisa_driver = {
3793 	.id_table	= dfx_eisa_table,
3794 	.driver		= {
3795 		.name	= "defxx",
3796 		.bus	= &eisa_bus_type,
3797 		.probe	= dfx_dev_register,
3798 		.remove	= dfx_dev_unregister,
3799 	},
3800 };
3801 #endif /* CONFIG_EISA */
3802 
3803 #ifdef CONFIG_TC
3804 static struct tc_device_id const dfx_tc_table[] = {
3805 	{ "DEC     ", "PMAF-FA " },
3806 	{ "DEC     ", "PMAF-FD " },
3807 	{ "DEC     ", "PMAF-FS " },
3808 	{ "DEC     ", "PMAF-FU " },
3809 	{ }
3810 };
3811 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3812 
3813 static struct tc_driver dfx_tc_driver = {
3814 	.id_table	= dfx_tc_table,
3815 	.driver		= {
3816 		.name	= "defxx",
3817 		.bus	= &tc_bus_type,
3818 		.probe	= dfx_dev_register,
3819 		.remove	= dfx_dev_unregister,
3820 	},
3821 };
3822 #endif /* CONFIG_TC */
3823 
dfx_dev_register(struct device * dev)3824 static int __maybe_unused dfx_dev_register(struct device *dev)
3825 {
3826 	int status;
3827 
3828 	status = dfx_register(dev);
3829 	if (!status)
3830 		get_device(dev);
3831 	return status;
3832 }
3833 
dfx_dev_unregister(struct device * dev)3834 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3835 {
3836 	put_device(dev);
3837 	dfx_unregister(dev);
3838 	return 0;
3839 }
3840 
3841 
dfx_init(void)3842 static int dfx_init(void)
3843 {
3844 	int status;
3845 
3846 	status = pci_register_driver(&dfx_pci_driver);
3847 	if (!status)
3848 		status = eisa_driver_register(&dfx_eisa_driver);
3849 	if (!status)
3850 		status = tc_register_driver(&dfx_tc_driver);
3851 	return status;
3852 }
3853 
dfx_cleanup(void)3854 static void dfx_cleanup(void)
3855 {
3856 	tc_unregister_driver(&dfx_tc_driver);
3857 	eisa_driver_unregister(&dfx_eisa_driver);
3858 	pci_unregister_driver(&dfx_pci_driver);
3859 }
3860 
3861 module_init(dfx_init);
3862 module_exit(dfx_cleanup);
3863 MODULE_AUTHOR("Lawrence V. Stefani");
3864 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3865 		   DRV_VERSION " " DRV_RELDATE);
3866 MODULE_LICENSE("GPL");
3867