1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/log2.h>
6 #include <linux/usb.h>
7 #include <linux/wait.h>
8 #include <linux/usb/hcd.h>
9 #include <linux/scatterlist.h>
10
11 #define to_urb(d) container_of(d, struct urb, kref)
12
13
urb_destroy(struct kref * kref)14 static void urb_destroy(struct kref *kref)
15 {
16 struct urb *urb = to_urb(kref);
17
18 if (urb->transfer_flags & URB_FREE_BUFFER)
19 kfree(urb->transfer_buffer);
20
21 kfree(urb);
22 }
23
24 /**
25 * usb_init_urb - initializes a urb so that it can be used by a USB driver
26 * @urb: pointer to the urb to initialize
27 *
28 * Initializes a urb so that the USB subsystem can use it properly.
29 *
30 * If a urb is created with a call to usb_alloc_urb() it is not
31 * necessary to call this function. Only use this if you allocate the
32 * space for a struct urb on your own. If you call this function, be
33 * careful when freeing the memory for your urb that it is no longer in
34 * use by the USB core.
35 *
36 * Only use this function if you _really_ understand what you are doing.
37 */
usb_init_urb(struct urb * urb)38 void usb_init_urb(struct urb *urb)
39 {
40 if (urb) {
41 memset(urb, 0, sizeof(*urb));
42 kref_init(&urb->kref);
43 INIT_LIST_HEAD(&urb->urb_list);
44 INIT_LIST_HEAD(&urb->anchor_list);
45 }
46 }
47 EXPORT_SYMBOL_GPL(usb_init_urb);
48
49 /**
50 * usb_alloc_urb - creates a new urb for a USB driver to use
51 * @iso_packets: number of iso packets for this urb
52 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
53 * valid options for this.
54 *
55 * Creates an urb for the USB driver to use, initializes a few internal
56 * structures, increments the usage counter, and returns a pointer to it.
57 *
58 * If the driver want to use this urb for interrupt, control, or bulk
59 * endpoints, pass '0' as the number of iso packets.
60 *
61 * The driver must call usb_free_urb() when it is finished with the urb.
62 *
63 * Return: A pointer to the new urb, or %NULL if no memory is available.
64 */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)65 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
66 {
67 struct urb *urb;
68
69 urb = kmalloc(sizeof(struct urb) +
70 iso_packets * sizeof(struct usb_iso_packet_descriptor),
71 mem_flags);
72 if (!urb) {
73 printk(KERN_ERR "alloc_urb: kmalloc failed\n");
74 return NULL;
75 }
76 usb_init_urb(urb);
77 return urb;
78 }
79 EXPORT_SYMBOL_GPL(usb_alloc_urb);
80
81 /**
82 * usb_free_urb - frees the memory used by a urb when all users of it are finished
83 * @urb: pointer to the urb to free, may be NULL
84 *
85 * Must be called when a user of a urb is finished with it. When the last user
86 * of the urb calls this function, the memory of the urb is freed.
87 *
88 * Note: The transfer buffer associated with the urb is not freed unless the
89 * URB_FREE_BUFFER transfer flag is set.
90 */
usb_free_urb(struct urb * urb)91 void usb_free_urb(struct urb *urb)
92 {
93 if (urb)
94 kref_put(&urb->kref, urb_destroy);
95 }
96 EXPORT_SYMBOL_GPL(usb_free_urb);
97
98 /**
99 * usb_get_urb - increments the reference count of the urb
100 * @urb: pointer to the urb to modify, may be NULL
101 *
102 * This must be called whenever a urb is transferred from a device driver to a
103 * host controller driver. This allows proper reference counting to happen
104 * for urbs.
105 *
106 * Return: A pointer to the urb with the incremented reference counter.
107 */
usb_get_urb(struct urb * urb)108 struct urb *usb_get_urb(struct urb *urb)
109 {
110 if (urb)
111 kref_get(&urb->kref);
112 return urb;
113 }
114 EXPORT_SYMBOL_GPL(usb_get_urb);
115
116 /**
117 * usb_anchor_urb - anchors an URB while it is processed
118 * @urb: pointer to the urb to anchor
119 * @anchor: pointer to the anchor
120 *
121 * This can be called to have access to URBs which are to be executed
122 * without bothering to track them
123 */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)124 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
125 {
126 unsigned long flags;
127
128 spin_lock_irqsave(&anchor->lock, flags);
129 usb_get_urb(urb);
130 list_add_tail(&urb->anchor_list, &anchor->urb_list);
131 urb->anchor = anchor;
132
133 if (unlikely(anchor->poisoned))
134 atomic_inc(&urb->reject);
135
136 spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139
usb_anchor_check_wakeup(struct usb_anchor * anchor)140 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
141 {
142 return atomic_read(&anchor->suspend_wakeups) == 0 &&
143 list_empty(&anchor->urb_list);
144 }
145
146 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)147 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
148 {
149 urb->anchor = NULL;
150 list_del(&urb->anchor_list);
151 usb_put_urb(urb);
152 if (usb_anchor_check_wakeup(anchor))
153 wake_up(&anchor->wait);
154 }
155
156 /**
157 * usb_unanchor_urb - unanchors an URB
158 * @urb: pointer to the urb to anchor
159 *
160 * Call this to stop the system keeping track of this URB
161 */
usb_unanchor_urb(struct urb * urb)162 void usb_unanchor_urb(struct urb *urb)
163 {
164 unsigned long flags;
165 struct usb_anchor *anchor;
166
167 if (!urb)
168 return;
169
170 anchor = urb->anchor;
171 if (!anchor)
172 return;
173
174 spin_lock_irqsave(&anchor->lock, flags);
175 /*
176 * At this point, we could be competing with another thread which
177 * has the same intention. To protect the urb from being unanchored
178 * twice, only the winner of the race gets the job.
179 */
180 if (likely(anchor == urb->anchor))
181 __usb_unanchor_urb(urb, anchor);
182 spin_unlock_irqrestore(&anchor->lock, flags);
183 }
184 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
185
186 /*-------------------------------------------------------------------*/
187
188 static const int pipetypes[4] = {
189 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
190 };
191
192 /**
193 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
194 * @urb: urb to be checked
195 *
196 * This performs a light-weight sanity check for the endpoint in the
197 * given urb. It returns 0 if the urb contains a valid endpoint, otherwise
198 * a negative error code.
199 */
usb_urb_ep_type_check(const struct urb * urb)200 int usb_urb_ep_type_check(const struct urb *urb)
201 {
202 const struct usb_host_endpoint *ep;
203
204 ep = usb_pipe_endpoint(urb->dev, urb->pipe);
205 if (!ep)
206 return -EINVAL;
207 if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
208 return -EINVAL;
209 return 0;
210 }
211 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
212
213 /**
214 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
215 * @urb: pointer to the urb describing the request
216 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
217 * of valid options for this.
218 *
219 * This submits a transfer request, and transfers control of the URB
220 * describing that request to the USB subsystem. Request completion will
221 * be indicated later, asynchronously, by calling the completion handler.
222 * The three types of completion are success, error, and unlink
223 * (a software-induced fault, also called "request cancellation").
224 *
225 * URBs may be submitted in interrupt context.
226 *
227 * The caller must have correctly initialized the URB before submitting
228 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
229 * available to ensure that most fields are correctly initialized, for
230 * the particular kind of transfer, although they will not initialize
231 * any transfer flags.
232 *
233 * If the submission is successful, the complete() callback from the URB
234 * will be called exactly once, when the USB core and Host Controller Driver
235 * (HCD) are finished with the URB. When the completion function is called,
236 * control of the URB is returned to the device driver which issued the
237 * request. The completion handler may then immediately free or reuse that
238 * URB.
239 *
240 * With few exceptions, USB device drivers should never access URB fields
241 * provided by usbcore or the HCD until its complete() is called.
242 * The exceptions relate to periodic transfer scheduling. For both
243 * interrupt and isochronous urbs, as part of successful URB submission
244 * urb->interval is modified to reflect the actual transfer period used
245 * (normally some power of two units). And for isochronous urbs,
246 * urb->start_frame is modified to reflect when the URB's transfers were
247 * scheduled to start.
248 *
249 * Not all isochronous transfer scheduling policies will work, but most
250 * host controller drivers should easily handle ISO queues going from now
251 * until 10-200 msec into the future. Drivers should try to keep at
252 * least one or two msec of data in the queue; many controllers require
253 * that new transfers start at least 1 msec in the future when they are
254 * added. If the driver is unable to keep up and the queue empties out,
255 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
256 * If the flag is set, or if the queue is idle, then the URB is always
257 * assigned to the first available (and not yet expired) slot in the
258 * endpoint's schedule. If the flag is not set and the queue is active
259 * then the URB is always assigned to the next slot in the schedule
260 * following the end of the endpoint's previous URB, even if that slot is
261 * in the past. When a packet is assigned in this way to a slot that has
262 * already expired, the packet is not transmitted and the corresponding
263 * usb_iso_packet_descriptor's status field will return -EXDEV. If this
264 * would happen to all the packets in the URB, submission fails with a
265 * -EXDEV error code.
266 *
267 * For control endpoints, the synchronous usb_control_msg() call is
268 * often used (in non-interrupt context) instead of this call.
269 * That is often used through convenience wrappers, for the requests
270 * that are standardized in the USB 2.0 specification. For bulk
271 * endpoints, a synchronous usb_bulk_msg() call is available.
272 *
273 * Return:
274 * 0 on successful submissions. A negative error number otherwise.
275 *
276 * Request Queuing:
277 *
278 * URBs may be submitted to endpoints before previous ones complete, to
279 * minimize the impact of interrupt latencies and system overhead on data
280 * throughput. With that queuing policy, an endpoint's queue would never
281 * be empty. This is required for continuous isochronous data streams,
282 * and may also be required for some kinds of interrupt transfers. Such
283 * queuing also maximizes bandwidth utilization by letting USB controllers
284 * start work on later requests before driver software has finished the
285 * completion processing for earlier (successful) requests.
286 *
287 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
288 * than one. This was previously a HCD-specific behavior, except for ISO
289 * transfers. Non-isochronous endpoint queues are inactive during cleanup
290 * after faults (transfer errors or cancellation).
291 *
292 * Reserved Bandwidth Transfers:
293 *
294 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
295 * using the interval specified in the urb. Submitting the first urb to
296 * the endpoint reserves the bandwidth necessary to make those transfers.
297 * If the USB subsystem can't allocate sufficient bandwidth to perform
298 * the periodic request, submitting such a periodic request should fail.
299 *
300 * For devices under xHCI, the bandwidth is reserved at configuration time, or
301 * when the alt setting is selected. If there is not enough bus bandwidth, the
302 * configuration/alt setting request will fail. Therefore, submissions to
303 * periodic endpoints on devices under xHCI should never fail due to bandwidth
304 * constraints.
305 *
306 * Device drivers must explicitly request that repetition, by ensuring that
307 * some URB is always on the endpoint's queue (except possibly for short
308 * periods during completion callbacks). When there is no longer an urb
309 * queued, the endpoint's bandwidth reservation is canceled. This means
310 * drivers can use their completion handlers to ensure they keep bandwidth
311 * they need, by reinitializing and resubmitting the just-completed urb
312 * until the driver longer needs that periodic bandwidth.
313 *
314 * Memory Flags:
315 *
316 * The general rules for how to decide which mem_flags to use
317 * are the same as for kmalloc. There are four
318 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
319 * GFP_ATOMIC.
320 *
321 * GFP_NOFS is not ever used, as it has not been implemented yet.
322 *
323 * GFP_ATOMIC is used when
324 * (a) you are inside a completion handler, an interrupt, bottom half,
325 * tasklet or timer, or
326 * (b) you are holding a spinlock or rwlock (does not apply to
327 * semaphores), or
328 * (c) current->state != TASK_RUNNING, this is the case only after
329 * you've changed it.
330 *
331 * GFP_NOIO is used in the block io path and error handling of storage
332 * devices.
333 *
334 * All other situations use GFP_KERNEL.
335 *
336 * Some more specific rules for mem_flags can be inferred, such as
337 * (1) start_xmit, timeout, and receive methods of network drivers must
338 * use GFP_ATOMIC (they are called with a spinlock held);
339 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
340 * called with a spinlock held);
341 * (3) If you use a kernel thread with a network driver you must use
342 * GFP_NOIO, unless (b) or (c) apply;
343 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
344 * apply or your are in a storage driver's block io path;
345 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
346 * (6) changing firmware on a running storage or net device uses
347 * GFP_NOIO, unless b) or c) apply
348 *
349 */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)350 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
351 {
352 int xfertype, max;
353 struct usb_device *dev;
354 struct usb_host_endpoint *ep;
355 int is_out;
356 unsigned int allowed;
357
358 if (!urb || !urb->complete)
359 return -EINVAL;
360 if (urb->hcpriv) {
361 WARN_ONCE(1, "URB %pK submitted while active\n", urb);
362 return -EBUSY;
363 }
364
365 dev = urb->dev;
366 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
367 return -ENODEV;
368
369 /* For now, get the endpoint from the pipe. Eventually drivers
370 * will be required to set urb->ep directly and we will eliminate
371 * urb->pipe.
372 */
373 ep = usb_pipe_endpoint(dev, urb->pipe);
374 if (!ep)
375 return -ENOENT;
376
377 urb->ep = ep;
378 urb->status = -EINPROGRESS;
379 urb->actual_length = 0;
380
381 /* Lots of sanity checks, so HCDs can rely on clean data
382 * and don't need to duplicate tests
383 */
384 xfertype = usb_endpoint_type(&ep->desc);
385 if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
386 struct usb_ctrlrequest *setup =
387 (struct usb_ctrlrequest *) urb->setup_packet;
388
389 if (!setup)
390 return -ENOEXEC;
391 is_out = !(setup->bRequestType & USB_DIR_IN) ||
392 !setup->wLength;
393 } else {
394 is_out = usb_endpoint_dir_out(&ep->desc);
395 }
396
397 /* Clear the internal flags and cache the direction for later use */
398 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
399 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
400 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
401 URB_DMA_SG_COMBINED);
402 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
403
404 if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
405 dev->state < USB_STATE_CONFIGURED)
406 return -ENODEV;
407
408 max = usb_endpoint_maxp(&ep->desc);
409 if (max <= 0) {
410 dev_dbg(&dev->dev,
411 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
412 usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
413 __func__, max);
414 return -EMSGSIZE;
415 }
416
417 /* periodic transfers limit size per frame/uframe,
418 * but drivers only control those sizes for ISO.
419 * while we're checking, initialize return status.
420 */
421 if (xfertype == USB_ENDPOINT_XFER_ISOC) {
422 int n, len;
423
424 /* SuperSpeed isoc endpoints have up to 16 bursts of up to
425 * 3 packets each
426 */
427 if (dev->speed >= USB_SPEED_SUPER) {
428 int burst = 1 + ep->ss_ep_comp.bMaxBurst;
429 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
430 max *= burst;
431 max *= mult;
432 }
433
434 /* "high bandwidth" mode, 1-3 packets/uframe? */
435 if (dev->speed == USB_SPEED_HIGH) {
436 int mult = 1 + ((max >> 11) & 0x03);
437 max &= 0x07ff;
438 max *= mult;
439 }
440
441 if (urb->number_of_packets <= 0)
442 return -EINVAL;
443 for (n = 0; n < urb->number_of_packets; n++) {
444 len = urb->iso_frame_desc[n].length;
445 if (len < 0 || len > max)
446 return -EMSGSIZE;
447 urb->iso_frame_desc[n].status = -EXDEV;
448 urb->iso_frame_desc[n].actual_length = 0;
449 }
450 } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
451 dev->speed != USB_SPEED_WIRELESS) {
452 struct scatterlist *sg;
453 int i;
454
455 for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
456 if (sg->length % max)
457 return -EINVAL;
458 }
459
460 /* the I/O buffer must be mapped/unmapped, except when length=0 */
461 if (urb->transfer_buffer_length > INT_MAX)
462 return -EMSGSIZE;
463
464 /*
465 * stuff that drivers shouldn't do, but which shouldn't
466 * cause problems in HCDs if they get it wrong.
467 */
468
469 /* Check that the pipe's type matches the endpoint's type */
470 if (usb_urb_ep_type_check(urb))
471 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
472 usb_pipetype(urb->pipe), pipetypes[xfertype]);
473
474 /* Check against a simple/standard policy */
475 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
476 URB_FREE_BUFFER);
477 switch (xfertype) {
478 case USB_ENDPOINT_XFER_BULK:
479 case USB_ENDPOINT_XFER_INT:
480 if (is_out)
481 allowed |= URB_ZERO_PACKET;
482 /* FALLTHROUGH */
483 case USB_ENDPOINT_XFER_CONTROL:
484 allowed |= URB_NO_FSBR; /* only affects UHCI */
485 /* FALLTHROUGH */
486 default: /* all non-iso endpoints */
487 if (!is_out)
488 allowed |= URB_SHORT_NOT_OK;
489 break;
490 case USB_ENDPOINT_XFER_ISOC:
491 allowed |= URB_ISO_ASAP;
492 break;
493 }
494 allowed &= urb->transfer_flags;
495
496 /* warn if submitter gave bogus flags */
497 if (allowed != urb->transfer_flags)
498 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
499 urb->transfer_flags, allowed);
500
501 /*
502 * Force periodic transfer intervals to be legal values that are
503 * a power of two (so HCDs don't need to).
504 *
505 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
506 * supports different values... this uses EHCI/UHCI defaults (and
507 * EHCI can use smaller non-default values).
508 */
509 switch (xfertype) {
510 case USB_ENDPOINT_XFER_ISOC:
511 case USB_ENDPOINT_XFER_INT:
512 /* too small? */
513 switch (dev->speed) {
514 case USB_SPEED_WIRELESS:
515 if ((urb->interval < 6)
516 && (xfertype == USB_ENDPOINT_XFER_INT))
517 return -EINVAL;
518 default:
519 if (urb->interval <= 0)
520 return -EINVAL;
521 break;
522 }
523 /* too big? */
524 switch (dev->speed) {
525 case USB_SPEED_SUPER_PLUS:
526 case USB_SPEED_SUPER: /* units are 125us */
527 /* Handle up to 2^(16-1) microframes */
528 if (urb->interval > (1 << 15))
529 return -EINVAL;
530 max = 1 << 15;
531 break;
532 case USB_SPEED_WIRELESS:
533 if (urb->interval > 16)
534 return -EINVAL;
535 break;
536 case USB_SPEED_HIGH: /* units are microframes */
537 /* NOTE usb handles 2^15 */
538 if (urb->interval > (1024 * 8))
539 urb->interval = 1024 * 8;
540 max = 1024 * 8;
541 break;
542 case USB_SPEED_FULL: /* units are frames/msec */
543 case USB_SPEED_LOW:
544 if (xfertype == USB_ENDPOINT_XFER_INT) {
545 if (urb->interval > 255)
546 return -EINVAL;
547 /* NOTE ohci only handles up to 32 */
548 max = 128;
549 } else {
550 if (urb->interval > 1024)
551 urb->interval = 1024;
552 /* NOTE usb and ohci handle up to 2^15 */
553 max = 1024;
554 }
555 break;
556 default:
557 return -EINVAL;
558 }
559 if (dev->speed != USB_SPEED_WIRELESS) {
560 /* Round down to a power of 2, no more than max */
561 urb->interval = min(max, 1 << ilog2(urb->interval));
562 }
563 }
564
565 return usb_hcd_submit_urb(urb, mem_flags);
566 }
567 EXPORT_SYMBOL_GPL(usb_submit_urb);
568
569 /*-------------------------------------------------------------------*/
570
571 /**
572 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
573 * @urb: pointer to urb describing a previously submitted request,
574 * may be NULL
575 *
576 * This routine cancels an in-progress request. URBs complete only once
577 * per submission, and may be canceled only once per submission.
578 * Successful cancellation means termination of @urb will be expedited
579 * and the completion handler will be called with a status code
580 * indicating that the request has been canceled (rather than any other
581 * code).
582 *
583 * Drivers should not call this routine or related routines, such as
584 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
585 * method has returned. The disconnect function should synchronize with
586 * a driver's I/O routines to insure that all URB-related activity has
587 * completed before it returns.
588 *
589 * This request is asynchronous, however the HCD might call the ->complete()
590 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
591 * must not hold any locks that may be taken by the completion function.
592 * Success is indicated by returning -EINPROGRESS, at which time the URB will
593 * probably not yet have been given back to the device driver. When it is
594 * eventually called, the completion function will see @urb->status ==
595 * -ECONNRESET.
596 * Failure is indicated by usb_unlink_urb() returning any other value.
597 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
598 * never submitted, or it was unlinked before, or the hardware is already
599 * finished with it), even if the completion handler has not yet run.
600 *
601 * The URB must not be deallocated while this routine is running. In
602 * particular, when a driver calls this routine, it must insure that the
603 * completion handler cannot deallocate the URB.
604 *
605 * Return: -EINPROGRESS on success. See description for other values on
606 * failure.
607 *
608 * Unlinking and Endpoint Queues:
609 *
610 * [The behaviors and guarantees described below do not apply to virtual
611 * root hubs but only to endpoint queues for physical USB devices.]
612 *
613 * Host Controller Drivers (HCDs) place all the URBs for a particular
614 * endpoint in a queue. Normally the queue advances as the controller
615 * hardware processes each request. But when an URB terminates with an
616 * error its queue generally stops (see below), at least until that URB's
617 * completion routine returns. It is guaranteed that a stopped queue
618 * will not restart until all its unlinked URBs have been fully retired,
619 * with their completion routines run, even if that's not until some time
620 * after the original completion handler returns. The same behavior and
621 * guarantee apply when an URB terminates because it was unlinked.
622 *
623 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
624 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
625 * and -EREMOTEIO. Control endpoint queues behave the same way except
626 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
627 * for isochronous endpoints are treated differently, because they must
628 * advance at fixed rates. Such queues do not stop when an URB
629 * encounters an error or is unlinked. An unlinked isochronous URB may
630 * leave a gap in the stream of packets; it is undefined whether such
631 * gaps can be filled in.
632 *
633 * Note that early termination of an URB because a short packet was
634 * received will generate a -EREMOTEIO error if and only if the
635 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
636 * drivers can build deep queues for large or complex bulk transfers
637 * and clean them up reliably after any sort of aborted transfer by
638 * unlinking all pending URBs at the first fault.
639 *
640 * When a control URB terminates with an error other than -EREMOTEIO, it
641 * is quite likely that the status stage of the transfer will not take
642 * place.
643 */
usb_unlink_urb(struct urb * urb)644 int usb_unlink_urb(struct urb *urb)
645 {
646 if (!urb)
647 return -EINVAL;
648 if (!urb->dev)
649 return -ENODEV;
650 if (!urb->ep)
651 return -EIDRM;
652 return usb_hcd_unlink_urb(urb, -ECONNRESET);
653 }
654 EXPORT_SYMBOL_GPL(usb_unlink_urb);
655
656 /**
657 * usb_kill_urb - cancel a transfer request and wait for it to finish
658 * @urb: pointer to URB describing a previously submitted request,
659 * may be NULL
660 *
661 * This routine cancels an in-progress request. It is guaranteed that
662 * upon return all completion handlers will have finished and the URB
663 * will be totally idle and available for reuse. These features make
664 * this an ideal way to stop I/O in a disconnect() callback or close()
665 * function. If the request has not already finished or been unlinked
666 * the completion handler will see urb->status == -ENOENT.
667 *
668 * While the routine is running, attempts to resubmit the URB will fail
669 * with error -EPERM. Thus even if the URB's completion handler always
670 * tries to resubmit, it will not succeed and the URB will become idle.
671 *
672 * The URB must not be deallocated while this routine is running. In
673 * particular, when a driver calls this routine, it must insure that the
674 * completion handler cannot deallocate the URB.
675 *
676 * This routine may not be used in an interrupt context (such as a bottom
677 * half or a completion handler), or when holding a spinlock, or in other
678 * situations where the caller can't schedule().
679 *
680 * This routine should not be called by a driver after its disconnect
681 * method has returned.
682 */
usb_kill_urb(struct urb * urb)683 void usb_kill_urb(struct urb *urb)
684 {
685 might_sleep();
686 if (!(urb && urb->dev && urb->ep))
687 return;
688 atomic_inc(&urb->reject);
689 /*
690 * Order the write of urb->reject above before the read
691 * of urb->use_count below. Pairs with the barriers in
692 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
693 */
694 smp_mb__after_atomic();
695
696 usb_hcd_unlink_urb(urb, -ENOENT);
697 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
698
699 atomic_dec(&urb->reject);
700 }
701 EXPORT_SYMBOL_GPL(usb_kill_urb);
702
703 /**
704 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
705 * @urb: pointer to URB describing a previously submitted request,
706 * may be NULL
707 *
708 * This routine cancels an in-progress request. It is guaranteed that
709 * upon return all completion handlers will have finished and the URB
710 * will be totally idle and cannot be reused. These features make
711 * this an ideal way to stop I/O in a disconnect() callback.
712 * If the request has not already finished or been unlinked
713 * the completion handler will see urb->status == -ENOENT.
714 *
715 * After and while the routine runs, attempts to resubmit the URB will fail
716 * with error -EPERM. Thus even if the URB's completion handler always
717 * tries to resubmit, it will not succeed and the URB will become idle.
718 *
719 * The URB must not be deallocated while this routine is running. In
720 * particular, when a driver calls this routine, it must insure that the
721 * completion handler cannot deallocate the URB.
722 *
723 * This routine may not be used in an interrupt context (such as a bottom
724 * half or a completion handler), or when holding a spinlock, or in other
725 * situations where the caller can't schedule().
726 *
727 * This routine should not be called by a driver after its disconnect
728 * method has returned.
729 */
usb_poison_urb(struct urb * urb)730 void usb_poison_urb(struct urb *urb)
731 {
732 might_sleep();
733 if (!urb)
734 return;
735 atomic_inc(&urb->reject);
736 /*
737 * Order the write of urb->reject above before the read
738 * of urb->use_count below. Pairs with the barriers in
739 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
740 */
741 smp_mb__after_atomic();
742
743 if (!urb->dev || !urb->ep)
744 return;
745
746 usb_hcd_unlink_urb(urb, -ENOENT);
747 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
748 }
749 EXPORT_SYMBOL_GPL(usb_poison_urb);
750
usb_unpoison_urb(struct urb * urb)751 void usb_unpoison_urb(struct urb *urb)
752 {
753 if (!urb)
754 return;
755
756 atomic_dec(&urb->reject);
757 }
758 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
759
760 /**
761 * usb_block_urb - reliably prevent further use of an URB
762 * @urb: pointer to URB to be blocked, may be NULL
763 *
764 * After the routine has run, attempts to resubmit the URB will fail
765 * with error -EPERM. Thus even if the URB's completion handler always
766 * tries to resubmit, it will not succeed and the URB will become idle.
767 *
768 * The URB must not be deallocated while this routine is running. In
769 * particular, when a driver calls this routine, it must insure that the
770 * completion handler cannot deallocate the URB.
771 */
usb_block_urb(struct urb * urb)772 void usb_block_urb(struct urb *urb)
773 {
774 if (!urb)
775 return;
776
777 atomic_inc(&urb->reject);
778 }
779 EXPORT_SYMBOL_GPL(usb_block_urb);
780
781 /**
782 * usb_kill_anchored_urbs - kill all URBs associated with an anchor
783 * @anchor: anchor the requests are bound to
784 *
785 * This kills all outstanding URBs starting from the back of the queue,
786 * with guarantee that no completer callbacks will take place from the
787 * anchor after this function returns.
788 *
789 * This routine should not be called by a driver after its disconnect
790 * method has returned.
791 */
usb_kill_anchored_urbs(struct usb_anchor * anchor)792 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
793 {
794 struct urb *victim;
795 int surely_empty;
796
797 do {
798 spin_lock_irq(&anchor->lock);
799 while (!list_empty(&anchor->urb_list)) {
800 victim = list_entry(anchor->urb_list.prev,
801 struct urb, anchor_list);
802 /* make sure the URB isn't freed before we kill it */
803 usb_get_urb(victim);
804 spin_unlock_irq(&anchor->lock);
805 /* this will unanchor the URB */
806 usb_kill_urb(victim);
807 usb_put_urb(victim);
808 spin_lock_irq(&anchor->lock);
809 }
810 surely_empty = usb_anchor_check_wakeup(anchor);
811
812 spin_unlock_irq(&anchor->lock);
813 cpu_relax();
814 } while (!surely_empty);
815 }
816 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
817
818
819 /**
820 * usb_poison_anchored_urbs - cease all traffic from an anchor
821 * @anchor: anchor the requests are bound to
822 *
823 * this allows all outstanding URBs to be poisoned starting
824 * from the back of the queue. Newly added URBs will also be
825 * poisoned
826 *
827 * This routine should not be called by a driver after its disconnect
828 * method has returned.
829 */
usb_poison_anchored_urbs(struct usb_anchor * anchor)830 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
831 {
832 struct urb *victim;
833 int surely_empty;
834
835 do {
836 spin_lock_irq(&anchor->lock);
837 anchor->poisoned = 1;
838 while (!list_empty(&anchor->urb_list)) {
839 victim = list_entry(anchor->urb_list.prev,
840 struct urb, anchor_list);
841 /* make sure the URB isn't freed before we kill it */
842 usb_get_urb(victim);
843 spin_unlock_irq(&anchor->lock);
844 /* this will unanchor the URB */
845 usb_poison_urb(victim);
846 usb_put_urb(victim);
847 spin_lock_irq(&anchor->lock);
848 }
849 surely_empty = usb_anchor_check_wakeup(anchor);
850
851 spin_unlock_irq(&anchor->lock);
852 cpu_relax();
853 } while (!surely_empty);
854 }
855 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
856
857 /**
858 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
859 * @anchor: anchor the requests are bound to
860 *
861 * Reverses the effect of usb_poison_anchored_urbs
862 * the anchor can be used normally after it returns
863 */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)864 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
865 {
866 unsigned long flags;
867 struct urb *lazarus;
868
869 spin_lock_irqsave(&anchor->lock, flags);
870 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
871 usb_unpoison_urb(lazarus);
872 }
873 anchor->poisoned = 0;
874 spin_unlock_irqrestore(&anchor->lock, flags);
875 }
876 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
877 /**
878 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
879 * @anchor: anchor the requests are bound to
880 *
881 * this allows all outstanding URBs to be unlinked starting
882 * from the back of the queue. This function is asynchronous.
883 * The unlinking is just triggered. It may happen after this
884 * function has returned.
885 *
886 * This routine should not be called by a driver after its disconnect
887 * method has returned.
888 */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)889 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
890 {
891 struct urb *victim;
892
893 while ((victim = usb_get_from_anchor(anchor)) != NULL) {
894 usb_unlink_urb(victim);
895 usb_put_urb(victim);
896 }
897 }
898 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
899
900 /**
901 * usb_anchor_suspend_wakeups
902 * @anchor: the anchor you want to suspend wakeups on
903 *
904 * Call this to stop the last urb being unanchored from waking up any
905 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
906 * back path to delay waking up until after the completion handler has run.
907 */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)908 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
909 {
910 if (anchor)
911 atomic_inc(&anchor->suspend_wakeups);
912 }
913 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
914
915 /**
916 * usb_anchor_resume_wakeups
917 * @anchor: the anchor you want to resume wakeups on
918 *
919 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
920 * wake up any current waiters if the anchor is empty.
921 */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)922 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
923 {
924 if (!anchor)
925 return;
926
927 atomic_dec(&anchor->suspend_wakeups);
928 if (usb_anchor_check_wakeup(anchor))
929 wake_up(&anchor->wait);
930 }
931 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
932
933 /**
934 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
935 * @anchor: the anchor you want to become unused
936 * @timeout: how long you are willing to wait in milliseconds
937 *
938 * Call this is you want to be sure all an anchor's
939 * URBs have finished
940 *
941 * Return: Non-zero if the anchor became unused. Zero on timeout.
942 */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)943 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
944 unsigned int timeout)
945 {
946 return wait_event_timeout(anchor->wait,
947 usb_anchor_check_wakeup(anchor),
948 msecs_to_jiffies(timeout));
949 }
950 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
951
952 /**
953 * usb_get_from_anchor - get an anchor's oldest urb
954 * @anchor: the anchor whose urb you want
955 *
956 * This will take the oldest urb from an anchor,
957 * unanchor and return it
958 *
959 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
960 * urbs associated with it.
961 */
usb_get_from_anchor(struct usb_anchor * anchor)962 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
963 {
964 struct urb *victim;
965 unsigned long flags;
966
967 spin_lock_irqsave(&anchor->lock, flags);
968 if (!list_empty(&anchor->urb_list)) {
969 victim = list_entry(anchor->urb_list.next, struct urb,
970 anchor_list);
971 usb_get_urb(victim);
972 __usb_unanchor_urb(victim, anchor);
973 } else {
974 victim = NULL;
975 }
976 spin_unlock_irqrestore(&anchor->lock, flags);
977
978 return victim;
979 }
980
981 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
982
983 /**
984 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
985 * @anchor: the anchor whose urbs you want to unanchor
986 *
987 * use this to get rid of all an anchor's urbs
988 */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)989 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
990 {
991 struct urb *victim;
992 unsigned long flags;
993 int surely_empty;
994
995 do {
996 spin_lock_irqsave(&anchor->lock, flags);
997 while (!list_empty(&anchor->urb_list)) {
998 victim = list_entry(anchor->urb_list.prev,
999 struct urb, anchor_list);
1000 __usb_unanchor_urb(victim, anchor);
1001 }
1002 surely_empty = usb_anchor_check_wakeup(anchor);
1003
1004 spin_unlock_irqrestore(&anchor->lock, flags);
1005 cpu_relax();
1006 } while (!surely_empty);
1007 }
1008
1009 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1010
1011 /**
1012 * usb_anchor_empty - is an anchor empty
1013 * @anchor: the anchor you want to query
1014 *
1015 * Return: 1 if the anchor has no urbs associated with it.
1016 */
usb_anchor_empty(struct usb_anchor * anchor)1017 int usb_anchor_empty(struct usb_anchor *anchor)
1018 {
1019 return list_empty(&anchor->urb_list);
1020 }
1021
1022 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1023
1024