• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/log2.h>
6 #include <linux/usb.h>
7 #include <linux/wait.h>
8 #include <linux/usb/hcd.h>
9 #include <linux/scatterlist.h>
10 
11 #define to_urb(d) container_of(d, struct urb, kref)
12 
13 
urb_destroy(struct kref * kref)14 static void urb_destroy(struct kref *kref)
15 {
16 	struct urb *urb = to_urb(kref);
17 
18 	if (urb->transfer_flags & URB_FREE_BUFFER)
19 		kfree(urb->transfer_buffer);
20 
21 	kfree(urb);
22 }
23 
24 /**
25  * usb_init_urb - initializes a urb so that it can be used by a USB driver
26  * @urb: pointer to the urb to initialize
27  *
28  * Initializes a urb so that the USB subsystem can use it properly.
29  *
30  * If a urb is created with a call to usb_alloc_urb() it is not
31  * necessary to call this function.  Only use this if you allocate the
32  * space for a struct urb on your own.  If you call this function, be
33  * careful when freeing the memory for your urb that it is no longer in
34  * use by the USB core.
35  *
36  * Only use this function if you _really_ understand what you are doing.
37  */
usb_init_urb(struct urb * urb)38 void usb_init_urb(struct urb *urb)
39 {
40 	if (urb) {
41 		memset(urb, 0, sizeof(*urb));
42 		kref_init(&urb->kref);
43 		INIT_LIST_HEAD(&urb->urb_list);
44 		INIT_LIST_HEAD(&urb->anchor_list);
45 	}
46 }
47 EXPORT_SYMBOL_GPL(usb_init_urb);
48 
49 /**
50  * usb_alloc_urb - creates a new urb for a USB driver to use
51  * @iso_packets: number of iso packets for this urb
52  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
53  *	valid options for this.
54  *
55  * Creates an urb for the USB driver to use, initializes a few internal
56  * structures, increments the usage counter, and returns a pointer to it.
57  *
58  * If the driver want to use this urb for interrupt, control, or bulk
59  * endpoints, pass '0' as the number of iso packets.
60  *
61  * The driver must call usb_free_urb() when it is finished with the urb.
62  *
63  * Return: A pointer to the new urb, or %NULL if no memory is available.
64  */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)65 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
66 {
67 	struct urb *urb;
68 
69 	urb = kmalloc(sizeof(struct urb) +
70 		iso_packets * sizeof(struct usb_iso_packet_descriptor),
71 		mem_flags);
72 	if (!urb) {
73 		printk(KERN_ERR "alloc_urb: kmalloc failed\n");
74 		return NULL;
75 	}
76 	usb_init_urb(urb);
77 	return urb;
78 }
79 EXPORT_SYMBOL_GPL(usb_alloc_urb);
80 
81 /**
82  * usb_free_urb - frees the memory used by a urb when all users of it are finished
83  * @urb: pointer to the urb to free, may be NULL
84  *
85  * Must be called when a user of a urb is finished with it.  When the last user
86  * of the urb calls this function, the memory of the urb is freed.
87  *
88  * Note: The transfer buffer associated with the urb is not freed unless the
89  * URB_FREE_BUFFER transfer flag is set.
90  */
usb_free_urb(struct urb * urb)91 void usb_free_urb(struct urb *urb)
92 {
93 	if (urb)
94 		kref_put(&urb->kref, urb_destroy);
95 }
96 EXPORT_SYMBOL_GPL(usb_free_urb);
97 
98 /**
99  * usb_get_urb - increments the reference count of the urb
100  * @urb: pointer to the urb to modify, may be NULL
101  *
102  * This must be  called whenever a urb is transferred from a device driver to a
103  * host controller driver.  This allows proper reference counting to happen
104  * for urbs.
105  *
106  * Return: A pointer to the urb with the incremented reference counter.
107  */
usb_get_urb(struct urb * urb)108 struct urb *usb_get_urb(struct urb *urb)
109 {
110 	if (urb)
111 		kref_get(&urb->kref);
112 	return urb;
113 }
114 EXPORT_SYMBOL_GPL(usb_get_urb);
115 
116 /**
117  * usb_anchor_urb - anchors an URB while it is processed
118  * @urb: pointer to the urb to anchor
119  * @anchor: pointer to the anchor
120  *
121  * This can be called to have access to URBs which are to be executed
122  * without bothering to track them
123  */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)124 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
125 {
126 	unsigned long flags;
127 
128 	spin_lock_irqsave(&anchor->lock, flags);
129 	usb_get_urb(urb);
130 	list_add_tail(&urb->anchor_list, &anchor->urb_list);
131 	urb->anchor = anchor;
132 
133 	if (unlikely(anchor->poisoned))
134 		atomic_inc(&urb->reject);
135 
136 	spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139 
usb_anchor_check_wakeup(struct usb_anchor * anchor)140 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
141 {
142 	return atomic_read(&anchor->suspend_wakeups) == 0 &&
143 		list_empty(&anchor->urb_list);
144 }
145 
146 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)147 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
148 {
149 	urb->anchor = NULL;
150 	list_del(&urb->anchor_list);
151 	usb_put_urb(urb);
152 	if (usb_anchor_check_wakeup(anchor))
153 		wake_up(&anchor->wait);
154 }
155 
156 /**
157  * usb_unanchor_urb - unanchors an URB
158  * @urb: pointer to the urb to anchor
159  *
160  * Call this to stop the system keeping track of this URB
161  */
usb_unanchor_urb(struct urb * urb)162 void usb_unanchor_urb(struct urb *urb)
163 {
164 	unsigned long flags;
165 	struct usb_anchor *anchor;
166 
167 	if (!urb)
168 		return;
169 
170 	anchor = urb->anchor;
171 	if (!anchor)
172 		return;
173 
174 	spin_lock_irqsave(&anchor->lock, flags);
175 	/*
176 	 * At this point, we could be competing with another thread which
177 	 * has the same intention. To protect the urb from being unanchored
178 	 * twice, only the winner of the race gets the job.
179 	 */
180 	if (likely(anchor == urb->anchor))
181 		__usb_unanchor_urb(urb, anchor);
182 	spin_unlock_irqrestore(&anchor->lock, flags);
183 }
184 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
185 
186 /*-------------------------------------------------------------------*/
187 
188 static const int pipetypes[4] = {
189 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
190 };
191 
192 /**
193  * usb_urb_ep_type_check - sanity check of endpoint in the given urb
194  * @urb: urb to be checked
195  *
196  * This performs a light-weight sanity check for the endpoint in the
197  * given urb.  It returns 0 if the urb contains a valid endpoint, otherwise
198  * a negative error code.
199  */
usb_urb_ep_type_check(const struct urb * urb)200 int usb_urb_ep_type_check(const struct urb *urb)
201 {
202 	const struct usb_host_endpoint *ep;
203 
204 	ep = usb_pipe_endpoint(urb->dev, urb->pipe);
205 	if (!ep)
206 		return -EINVAL;
207 	if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
208 		return -EINVAL;
209 	return 0;
210 }
211 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
212 
213 /**
214  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
215  * @urb: pointer to the urb describing the request
216  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
217  *	of valid options for this.
218  *
219  * This submits a transfer request, and transfers control of the URB
220  * describing that request to the USB subsystem.  Request completion will
221  * be indicated later, asynchronously, by calling the completion handler.
222  * The three types of completion are success, error, and unlink
223  * (a software-induced fault, also called "request cancellation").
224  *
225  * URBs may be submitted in interrupt context.
226  *
227  * The caller must have correctly initialized the URB before submitting
228  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
229  * available to ensure that most fields are correctly initialized, for
230  * the particular kind of transfer, although they will not initialize
231  * any transfer flags.
232  *
233  * If the submission is successful, the complete() callback from the URB
234  * will be called exactly once, when the USB core and Host Controller Driver
235  * (HCD) are finished with the URB.  When the completion function is called,
236  * control of the URB is returned to the device driver which issued the
237  * request.  The completion handler may then immediately free or reuse that
238  * URB.
239  *
240  * With few exceptions, USB device drivers should never access URB fields
241  * provided by usbcore or the HCD until its complete() is called.
242  * The exceptions relate to periodic transfer scheduling.  For both
243  * interrupt and isochronous urbs, as part of successful URB submission
244  * urb->interval is modified to reflect the actual transfer period used
245  * (normally some power of two units).  And for isochronous urbs,
246  * urb->start_frame is modified to reflect when the URB's transfers were
247  * scheduled to start.
248  *
249  * Not all isochronous transfer scheduling policies will work, but most
250  * host controller drivers should easily handle ISO queues going from now
251  * until 10-200 msec into the future.  Drivers should try to keep at
252  * least one or two msec of data in the queue; many controllers require
253  * that new transfers start at least 1 msec in the future when they are
254  * added.  If the driver is unable to keep up and the queue empties out,
255  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
256  * If the flag is set, or if the queue is idle, then the URB is always
257  * assigned to the first available (and not yet expired) slot in the
258  * endpoint's schedule.  If the flag is not set and the queue is active
259  * then the URB is always assigned to the next slot in the schedule
260  * following the end of the endpoint's previous URB, even if that slot is
261  * in the past.  When a packet is assigned in this way to a slot that has
262  * already expired, the packet is not transmitted and the corresponding
263  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
264  * would happen to all the packets in the URB, submission fails with a
265  * -EXDEV error code.
266  *
267  * For control endpoints, the synchronous usb_control_msg() call is
268  * often used (in non-interrupt context) instead of this call.
269  * That is often used through convenience wrappers, for the requests
270  * that are standardized in the USB 2.0 specification.  For bulk
271  * endpoints, a synchronous usb_bulk_msg() call is available.
272  *
273  * Return:
274  * 0 on successful submissions. A negative error number otherwise.
275  *
276  * Request Queuing:
277  *
278  * URBs may be submitted to endpoints before previous ones complete, to
279  * minimize the impact of interrupt latencies and system overhead on data
280  * throughput.  With that queuing policy, an endpoint's queue would never
281  * be empty.  This is required for continuous isochronous data streams,
282  * and may also be required for some kinds of interrupt transfers. Such
283  * queuing also maximizes bandwidth utilization by letting USB controllers
284  * start work on later requests before driver software has finished the
285  * completion processing for earlier (successful) requests.
286  *
287  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
288  * than one.  This was previously a HCD-specific behavior, except for ISO
289  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
290  * after faults (transfer errors or cancellation).
291  *
292  * Reserved Bandwidth Transfers:
293  *
294  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
295  * using the interval specified in the urb.  Submitting the first urb to
296  * the endpoint reserves the bandwidth necessary to make those transfers.
297  * If the USB subsystem can't allocate sufficient bandwidth to perform
298  * the periodic request, submitting such a periodic request should fail.
299  *
300  * For devices under xHCI, the bandwidth is reserved at configuration time, or
301  * when the alt setting is selected.  If there is not enough bus bandwidth, the
302  * configuration/alt setting request will fail.  Therefore, submissions to
303  * periodic endpoints on devices under xHCI should never fail due to bandwidth
304  * constraints.
305  *
306  * Device drivers must explicitly request that repetition, by ensuring that
307  * some URB is always on the endpoint's queue (except possibly for short
308  * periods during completion callbacks).  When there is no longer an urb
309  * queued, the endpoint's bandwidth reservation is canceled.  This means
310  * drivers can use their completion handlers to ensure they keep bandwidth
311  * they need, by reinitializing and resubmitting the just-completed urb
312  * until the driver longer needs that periodic bandwidth.
313  *
314  * Memory Flags:
315  *
316  * The general rules for how to decide which mem_flags to use
317  * are the same as for kmalloc.  There are four
318  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
319  * GFP_ATOMIC.
320  *
321  * GFP_NOFS is not ever used, as it has not been implemented yet.
322  *
323  * GFP_ATOMIC is used when
324  *   (a) you are inside a completion handler, an interrupt, bottom half,
325  *       tasklet or timer, or
326  *   (b) you are holding a spinlock or rwlock (does not apply to
327  *       semaphores), or
328  *   (c) current->state != TASK_RUNNING, this is the case only after
329  *       you've changed it.
330  *
331  * GFP_NOIO is used in the block io path and error handling of storage
332  * devices.
333  *
334  * All other situations use GFP_KERNEL.
335  *
336  * Some more specific rules for mem_flags can be inferred, such as
337  *  (1) start_xmit, timeout, and receive methods of network drivers must
338  *      use GFP_ATOMIC (they are called with a spinlock held);
339  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
340  *      called with a spinlock held);
341  *  (3) If you use a kernel thread with a network driver you must use
342  *      GFP_NOIO, unless (b) or (c) apply;
343  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
344  *      apply or your are in a storage driver's block io path;
345  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
346  *  (6) changing firmware on a running storage or net device uses
347  *      GFP_NOIO, unless b) or c) apply
348  *
349  */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)350 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
351 {
352 	int				xfertype, max;
353 	struct usb_device		*dev;
354 	struct usb_host_endpoint	*ep;
355 	int				is_out;
356 	unsigned int			allowed;
357 
358 	if (!urb || !urb->complete)
359 		return -EINVAL;
360 	if (urb->hcpriv) {
361 		WARN_ONCE(1, "URB %pK submitted while active\n", urb);
362 		return -EBUSY;
363 	}
364 
365 	dev = urb->dev;
366 	if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
367 		return -ENODEV;
368 
369 	/* For now, get the endpoint from the pipe.  Eventually drivers
370 	 * will be required to set urb->ep directly and we will eliminate
371 	 * urb->pipe.
372 	 */
373 	ep = usb_pipe_endpoint(dev, urb->pipe);
374 	if (!ep)
375 		return -ENOENT;
376 
377 	urb->ep = ep;
378 	urb->status = -EINPROGRESS;
379 	urb->actual_length = 0;
380 
381 	/* Lots of sanity checks, so HCDs can rely on clean data
382 	 * and don't need to duplicate tests
383 	 */
384 	xfertype = usb_endpoint_type(&ep->desc);
385 	if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
386 		struct usb_ctrlrequest *setup =
387 				(struct usb_ctrlrequest *) urb->setup_packet;
388 
389 		if (!setup)
390 			return -ENOEXEC;
391 		is_out = !(setup->bRequestType & USB_DIR_IN) ||
392 				!setup->wLength;
393 	} else {
394 		is_out = usb_endpoint_dir_out(&ep->desc);
395 	}
396 
397 	/* Clear the internal flags and cache the direction for later use */
398 	urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
399 			URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
400 			URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
401 			URB_DMA_SG_COMBINED);
402 	urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
403 
404 	if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
405 			dev->state < USB_STATE_CONFIGURED)
406 		return -ENODEV;
407 
408 	max = usb_endpoint_maxp(&ep->desc);
409 	if (max <= 0) {
410 		dev_dbg(&dev->dev,
411 			"bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
412 			usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
413 			__func__, max);
414 		return -EMSGSIZE;
415 	}
416 
417 	/* periodic transfers limit size per frame/uframe,
418 	 * but drivers only control those sizes for ISO.
419 	 * while we're checking, initialize return status.
420 	 */
421 	if (xfertype == USB_ENDPOINT_XFER_ISOC) {
422 		int	n, len;
423 
424 		/* SuperSpeed isoc endpoints have up to 16 bursts of up to
425 		 * 3 packets each
426 		 */
427 		if (dev->speed >= USB_SPEED_SUPER) {
428 			int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
429 			int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
430 			max *= burst;
431 			max *= mult;
432 		}
433 
434 		/* "high bandwidth" mode, 1-3 packets/uframe? */
435 		if (dev->speed == USB_SPEED_HIGH) {
436 			int	mult = 1 + ((max >> 11) & 0x03);
437 			max &= 0x07ff;
438 			max *= mult;
439 		}
440 
441 		if (urb->number_of_packets <= 0)
442 			return -EINVAL;
443 		for (n = 0; n < urb->number_of_packets; n++) {
444 			len = urb->iso_frame_desc[n].length;
445 			if (len < 0 || len > max)
446 				return -EMSGSIZE;
447 			urb->iso_frame_desc[n].status = -EXDEV;
448 			urb->iso_frame_desc[n].actual_length = 0;
449 		}
450 	} else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
451 			dev->speed != USB_SPEED_WIRELESS) {
452 		struct scatterlist *sg;
453 		int i;
454 
455 		for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
456 			if (sg->length % max)
457 				return -EINVAL;
458 	}
459 
460 	/* the I/O buffer must be mapped/unmapped, except when length=0 */
461 	if (urb->transfer_buffer_length > INT_MAX)
462 		return -EMSGSIZE;
463 
464 	/*
465 	 * stuff that drivers shouldn't do, but which shouldn't
466 	 * cause problems in HCDs if they get it wrong.
467 	 */
468 
469 	/* Check that the pipe's type matches the endpoint's type */
470 	if (usb_urb_ep_type_check(urb))
471 		dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
472 			usb_pipetype(urb->pipe), pipetypes[xfertype]);
473 
474 	/* Check against a simple/standard policy */
475 	allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
476 			URB_FREE_BUFFER);
477 	switch (xfertype) {
478 	case USB_ENDPOINT_XFER_BULK:
479 	case USB_ENDPOINT_XFER_INT:
480 		if (is_out)
481 			allowed |= URB_ZERO_PACKET;
482 		/* FALLTHROUGH */
483 	case USB_ENDPOINT_XFER_CONTROL:
484 		allowed |= URB_NO_FSBR;	/* only affects UHCI */
485 		/* FALLTHROUGH */
486 	default:			/* all non-iso endpoints */
487 		if (!is_out)
488 			allowed |= URB_SHORT_NOT_OK;
489 		break;
490 	case USB_ENDPOINT_XFER_ISOC:
491 		allowed |= URB_ISO_ASAP;
492 		break;
493 	}
494 	allowed &= urb->transfer_flags;
495 
496 	/* warn if submitter gave bogus flags */
497 	if (allowed != urb->transfer_flags)
498 		dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
499 			urb->transfer_flags, allowed);
500 
501 	/*
502 	 * Force periodic transfer intervals to be legal values that are
503 	 * a power of two (so HCDs don't need to).
504 	 *
505 	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
506 	 * supports different values... this uses EHCI/UHCI defaults (and
507 	 * EHCI can use smaller non-default values).
508 	 */
509 	switch (xfertype) {
510 	case USB_ENDPOINT_XFER_ISOC:
511 	case USB_ENDPOINT_XFER_INT:
512 		/* too small? */
513 		switch (dev->speed) {
514 		case USB_SPEED_WIRELESS:
515 			if ((urb->interval < 6)
516 				&& (xfertype == USB_ENDPOINT_XFER_INT))
517 				return -EINVAL;
518 		default:
519 			if (urb->interval <= 0)
520 				return -EINVAL;
521 			break;
522 		}
523 		/* too big? */
524 		switch (dev->speed) {
525 		case USB_SPEED_SUPER_PLUS:
526 		case USB_SPEED_SUPER:	/* units are 125us */
527 			/* Handle up to 2^(16-1) microframes */
528 			if (urb->interval > (1 << 15))
529 				return -EINVAL;
530 			max = 1 << 15;
531 			break;
532 		case USB_SPEED_WIRELESS:
533 			if (urb->interval > 16)
534 				return -EINVAL;
535 			break;
536 		case USB_SPEED_HIGH:	/* units are microframes */
537 			/* NOTE usb handles 2^15 */
538 			if (urb->interval > (1024 * 8))
539 				urb->interval = 1024 * 8;
540 			max = 1024 * 8;
541 			break;
542 		case USB_SPEED_FULL:	/* units are frames/msec */
543 		case USB_SPEED_LOW:
544 			if (xfertype == USB_ENDPOINT_XFER_INT) {
545 				if (urb->interval > 255)
546 					return -EINVAL;
547 				/* NOTE ohci only handles up to 32 */
548 				max = 128;
549 			} else {
550 				if (urb->interval > 1024)
551 					urb->interval = 1024;
552 				/* NOTE usb and ohci handle up to 2^15 */
553 				max = 1024;
554 			}
555 			break;
556 		default:
557 			return -EINVAL;
558 		}
559 		if (dev->speed != USB_SPEED_WIRELESS) {
560 			/* Round down to a power of 2, no more than max */
561 			urb->interval = min(max, 1 << ilog2(urb->interval));
562 		}
563 	}
564 
565 	return usb_hcd_submit_urb(urb, mem_flags);
566 }
567 EXPORT_SYMBOL_GPL(usb_submit_urb);
568 
569 /*-------------------------------------------------------------------*/
570 
571 /**
572  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
573  * @urb: pointer to urb describing a previously submitted request,
574  *	may be NULL
575  *
576  * This routine cancels an in-progress request.  URBs complete only once
577  * per submission, and may be canceled only once per submission.
578  * Successful cancellation means termination of @urb will be expedited
579  * and the completion handler will be called with a status code
580  * indicating that the request has been canceled (rather than any other
581  * code).
582  *
583  * Drivers should not call this routine or related routines, such as
584  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
585  * method has returned.  The disconnect function should synchronize with
586  * a driver's I/O routines to insure that all URB-related activity has
587  * completed before it returns.
588  *
589  * This request is asynchronous, however the HCD might call the ->complete()
590  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
591  * must not hold any locks that may be taken by the completion function.
592  * Success is indicated by returning -EINPROGRESS, at which time the URB will
593  * probably not yet have been given back to the device driver. When it is
594  * eventually called, the completion function will see @urb->status ==
595  * -ECONNRESET.
596  * Failure is indicated by usb_unlink_urb() returning any other value.
597  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
598  * never submitted, or it was unlinked before, or the hardware is already
599  * finished with it), even if the completion handler has not yet run.
600  *
601  * The URB must not be deallocated while this routine is running.  In
602  * particular, when a driver calls this routine, it must insure that the
603  * completion handler cannot deallocate the URB.
604  *
605  * Return: -EINPROGRESS on success. See description for other values on
606  * failure.
607  *
608  * Unlinking and Endpoint Queues:
609  *
610  * [The behaviors and guarantees described below do not apply to virtual
611  * root hubs but only to endpoint queues for physical USB devices.]
612  *
613  * Host Controller Drivers (HCDs) place all the URBs for a particular
614  * endpoint in a queue.  Normally the queue advances as the controller
615  * hardware processes each request.  But when an URB terminates with an
616  * error its queue generally stops (see below), at least until that URB's
617  * completion routine returns.  It is guaranteed that a stopped queue
618  * will not restart until all its unlinked URBs have been fully retired,
619  * with their completion routines run, even if that's not until some time
620  * after the original completion handler returns.  The same behavior and
621  * guarantee apply when an URB terminates because it was unlinked.
622  *
623  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
624  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
625  * and -EREMOTEIO.  Control endpoint queues behave the same way except
626  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
627  * for isochronous endpoints are treated differently, because they must
628  * advance at fixed rates.  Such queues do not stop when an URB
629  * encounters an error or is unlinked.  An unlinked isochronous URB may
630  * leave a gap in the stream of packets; it is undefined whether such
631  * gaps can be filled in.
632  *
633  * Note that early termination of an URB because a short packet was
634  * received will generate a -EREMOTEIO error if and only if the
635  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
636  * drivers can build deep queues for large or complex bulk transfers
637  * and clean them up reliably after any sort of aborted transfer by
638  * unlinking all pending URBs at the first fault.
639  *
640  * When a control URB terminates with an error other than -EREMOTEIO, it
641  * is quite likely that the status stage of the transfer will not take
642  * place.
643  */
usb_unlink_urb(struct urb * urb)644 int usb_unlink_urb(struct urb *urb)
645 {
646 	if (!urb)
647 		return -EINVAL;
648 	if (!urb->dev)
649 		return -ENODEV;
650 	if (!urb->ep)
651 		return -EIDRM;
652 	return usb_hcd_unlink_urb(urb, -ECONNRESET);
653 }
654 EXPORT_SYMBOL_GPL(usb_unlink_urb);
655 
656 /**
657  * usb_kill_urb - cancel a transfer request and wait for it to finish
658  * @urb: pointer to URB describing a previously submitted request,
659  *	may be NULL
660  *
661  * This routine cancels an in-progress request.  It is guaranteed that
662  * upon return all completion handlers will have finished and the URB
663  * will be totally idle and available for reuse.  These features make
664  * this an ideal way to stop I/O in a disconnect() callback or close()
665  * function.  If the request has not already finished or been unlinked
666  * the completion handler will see urb->status == -ENOENT.
667  *
668  * While the routine is running, attempts to resubmit the URB will fail
669  * with error -EPERM.  Thus even if the URB's completion handler always
670  * tries to resubmit, it will not succeed and the URB will become idle.
671  *
672  * The URB must not be deallocated while this routine is running.  In
673  * particular, when a driver calls this routine, it must insure that the
674  * completion handler cannot deallocate the URB.
675  *
676  * This routine may not be used in an interrupt context (such as a bottom
677  * half or a completion handler), or when holding a spinlock, or in other
678  * situations where the caller can't schedule().
679  *
680  * This routine should not be called by a driver after its disconnect
681  * method has returned.
682  */
usb_kill_urb(struct urb * urb)683 void usb_kill_urb(struct urb *urb)
684 {
685 	might_sleep();
686 	if (!(urb && urb->dev && urb->ep))
687 		return;
688 	atomic_inc(&urb->reject);
689 	/*
690 	 * Order the write of urb->reject above before the read
691 	 * of urb->use_count below.  Pairs with the barriers in
692 	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
693 	 */
694 	smp_mb__after_atomic();
695 
696 	usb_hcd_unlink_urb(urb, -ENOENT);
697 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
698 
699 	atomic_dec(&urb->reject);
700 }
701 EXPORT_SYMBOL_GPL(usb_kill_urb);
702 
703 /**
704  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
705  * @urb: pointer to URB describing a previously submitted request,
706  *	may be NULL
707  *
708  * This routine cancels an in-progress request.  It is guaranteed that
709  * upon return all completion handlers will have finished and the URB
710  * will be totally idle and cannot be reused.  These features make
711  * this an ideal way to stop I/O in a disconnect() callback.
712  * If the request has not already finished or been unlinked
713  * the completion handler will see urb->status == -ENOENT.
714  *
715  * After and while the routine runs, attempts to resubmit the URB will fail
716  * with error -EPERM.  Thus even if the URB's completion handler always
717  * tries to resubmit, it will not succeed and the URB will become idle.
718  *
719  * The URB must not be deallocated while this routine is running.  In
720  * particular, when a driver calls this routine, it must insure that the
721  * completion handler cannot deallocate the URB.
722  *
723  * This routine may not be used in an interrupt context (such as a bottom
724  * half or a completion handler), or when holding a spinlock, or in other
725  * situations where the caller can't schedule().
726  *
727  * This routine should not be called by a driver after its disconnect
728  * method has returned.
729  */
usb_poison_urb(struct urb * urb)730 void usb_poison_urb(struct urb *urb)
731 {
732 	might_sleep();
733 	if (!urb)
734 		return;
735 	atomic_inc(&urb->reject);
736 	/*
737 	 * Order the write of urb->reject above before the read
738 	 * of urb->use_count below.  Pairs with the barriers in
739 	 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
740 	 */
741 	smp_mb__after_atomic();
742 
743 	if (!urb->dev || !urb->ep)
744 		return;
745 
746 	usb_hcd_unlink_urb(urb, -ENOENT);
747 	wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
748 }
749 EXPORT_SYMBOL_GPL(usb_poison_urb);
750 
usb_unpoison_urb(struct urb * urb)751 void usb_unpoison_urb(struct urb *urb)
752 {
753 	if (!urb)
754 		return;
755 
756 	atomic_dec(&urb->reject);
757 }
758 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
759 
760 /**
761  * usb_block_urb - reliably prevent further use of an URB
762  * @urb: pointer to URB to be blocked, may be NULL
763  *
764  * After the routine has run, attempts to resubmit the URB will fail
765  * with error -EPERM.  Thus even if the URB's completion handler always
766  * tries to resubmit, it will not succeed and the URB will become idle.
767  *
768  * The URB must not be deallocated while this routine is running.  In
769  * particular, when a driver calls this routine, it must insure that the
770  * completion handler cannot deallocate the URB.
771  */
usb_block_urb(struct urb * urb)772 void usb_block_urb(struct urb *urb)
773 {
774 	if (!urb)
775 		return;
776 
777 	atomic_inc(&urb->reject);
778 }
779 EXPORT_SYMBOL_GPL(usb_block_urb);
780 
781 /**
782  * usb_kill_anchored_urbs - kill all URBs associated with an anchor
783  * @anchor: anchor the requests are bound to
784  *
785  * This kills all outstanding URBs starting from the back of the queue,
786  * with guarantee that no completer callbacks will take place from the
787  * anchor after this function returns.
788  *
789  * This routine should not be called by a driver after its disconnect
790  * method has returned.
791  */
usb_kill_anchored_urbs(struct usb_anchor * anchor)792 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
793 {
794 	struct urb *victim;
795 	int surely_empty;
796 
797 	do {
798 		spin_lock_irq(&anchor->lock);
799 		while (!list_empty(&anchor->urb_list)) {
800 			victim = list_entry(anchor->urb_list.prev,
801 					    struct urb, anchor_list);
802 			/* make sure the URB isn't freed before we kill it */
803 			usb_get_urb(victim);
804 			spin_unlock_irq(&anchor->lock);
805 			/* this will unanchor the URB */
806 			usb_kill_urb(victim);
807 			usb_put_urb(victim);
808 			spin_lock_irq(&anchor->lock);
809 		}
810 		surely_empty = usb_anchor_check_wakeup(anchor);
811 
812 		spin_unlock_irq(&anchor->lock);
813 		cpu_relax();
814 	} while (!surely_empty);
815 }
816 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
817 
818 
819 /**
820  * usb_poison_anchored_urbs - cease all traffic from an anchor
821  * @anchor: anchor the requests are bound to
822  *
823  * this allows all outstanding URBs to be poisoned starting
824  * from the back of the queue. Newly added URBs will also be
825  * poisoned
826  *
827  * This routine should not be called by a driver after its disconnect
828  * method has returned.
829  */
usb_poison_anchored_urbs(struct usb_anchor * anchor)830 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
831 {
832 	struct urb *victim;
833 	int surely_empty;
834 
835 	do {
836 		spin_lock_irq(&anchor->lock);
837 		anchor->poisoned = 1;
838 		while (!list_empty(&anchor->urb_list)) {
839 			victim = list_entry(anchor->urb_list.prev,
840 					    struct urb, anchor_list);
841 			/* make sure the URB isn't freed before we kill it */
842 			usb_get_urb(victim);
843 			spin_unlock_irq(&anchor->lock);
844 			/* this will unanchor the URB */
845 			usb_poison_urb(victim);
846 			usb_put_urb(victim);
847 			spin_lock_irq(&anchor->lock);
848 		}
849 		surely_empty = usb_anchor_check_wakeup(anchor);
850 
851 		spin_unlock_irq(&anchor->lock);
852 		cpu_relax();
853 	} while (!surely_empty);
854 }
855 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
856 
857 /**
858  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
859  * @anchor: anchor the requests are bound to
860  *
861  * Reverses the effect of usb_poison_anchored_urbs
862  * the anchor can be used normally after it returns
863  */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)864 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
865 {
866 	unsigned long flags;
867 	struct urb *lazarus;
868 
869 	spin_lock_irqsave(&anchor->lock, flags);
870 	list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
871 		usb_unpoison_urb(lazarus);
872 	}
873 	anchor->poisoned = 0;
874 	spin_unlock_irqrestore(&anchor->lock, flags);
875 }
876 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
877 /**
878  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
879  * @anchor: anchor the requests are bound to
880  *
881  * this allows all outstanding URBs to be unlinked starting
882  * from the back of the queue. This function is asynchronous.
883  * The unlinking is just triggered. It may happen after this
884  * function has returned.
885  *
886  * This routine should not be called by a driver after its disconnect
887  * method has returned.
888  */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)889 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
890 {
891 	struct urb *victim;
892 
893 	while ((victim = usb_get_from_anchor(anchor)) != NULL) {
894 		usb_unlink_urb(victim);
895 		usb_put_urb(victim);
896 	}
897 }
898 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
899 
900 /**
901  * usb_anchor_suspend_wakeups
902  * @anchor: the anchor you want to suspend wakeups on
903  *
904  * Call this to stop the last urb being unanchored from waking up any
905  * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
906  * back path to delay waking up until after the completion handler has run.
907  */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)908 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
909 {
910 	if (anchor)
911 		atomic_inc(&anchor->suspend_wakeups);
912 }
913 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
914 
915 /**
916  * usb_anchor_resume_wakeups
917  * @anchor: the anchor you want to resume wakeups on
918  *
919  * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
920  * wake up any current waiters if the anchor is empty.
921  */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)922 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
923 {
924 	if (!anchor)
925 		return;
926 
927 	atomic_dec(&anchor->suspend_wakeups);
928 	if (usb_anchor_check_wakeup(anchor))
929 		wake_up(&anchor->wait);
930 }
931 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
932 
933 /**
934  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
935  * @anchor: the anchor you want to become unused
936  * @timeout: how long you are willing to wait in milliseconds
937  *
938  * Call this is you want to be sure all an anchor's
939  * URBs have finished
940  *
941  * Return: Non-zero if the anchor became unused. Zero on timeout.
942  */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)943 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
944 				  unsigned int timeout)
945 {
946 	return wait_event_timeout(anchor->wait,
947 				  usb_anchor_check_wakeup(anchor),
948 				  msecs_to_jiffies(timeout));
949 }
950 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
951 
952 /**
953  * usb_get_from_anchor - get an anchor's oldest urb
954  * @anchor: the anchor whose urb you want
955  *
956  * This will take the oldest urb from an anchor,
957  * unanchor and return it
958  *
959  * Return: The oldest urb from @anchor, or %NULL if @anchor has no
960  * urbs associated with it.
961  */
usb_get_from_anchor(struct usb_anchor * anchor)962 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
963 {
964 	struct urb *victim;
965 	unsigned long flags;
966 
967 	spin_lock_irqsave(&anchor->lock, flags);
968 	if (!list_empty(&anchor->urb_list)) {
969 		victim = list_entry(anchor->urb_list.next, struct urb,
970 				    anchor_list);
971 		usb_get_urb(victim);
972 		__usb_unanchor_urb(victim, anchor);
973 	} else {
974 		victim = NULL;
975 	}
976 	spin_unlock_irqrestore(&anchor->lock, flags);
977 
978 	return victim;
979 }
980 
981 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
982 
983 /**
984  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
985  * @anchor: the anchor whose urbs you want to unanchor
986  *
987  * use this to get rid of all an anchor's urbs
988  */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)989 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
990 {
991 	struct urb *victim;
992 	unsigned long flags;
993 	int surely_empty;
994 
995 	do {
996 		spin_lock_irqsave(&anchor->lock, flags);
997 		while (!list_empty(&anchor->urb_list)) {
998 			victim = list_entry(anchor->urb_list.prev,
999 					    struct urb, anchor_list);
1000 			__usb_unanchor_urb(victim, anchor);
1001 		}
1002 		surely_empty = usb_anchor_check_wakeup(anchor);
1003 
1004 		spin_unlock_irqrestore(&anchor->lock, flags);
1005 		cpu_relax();
1006 	} while (!surely_empty);
1007 }
1008 
1009 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1010 
1011 /**
1012  * usb_anchor_empty - is an anchor empty
1013  * @anchor: the anchor you want to query
1014  *
1015  * Return: 1 if the anchor has no urbs associated with it.
1016  */
usb_anchor_empty(struct usb_anchor * anchor)1017 int usb_anchor_empty(struct usb_anchor *anchor)
1018 {
1019 	return list_empty(&anchor->urb_list);
1020 }
1021 
1022 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1023 
1024