1 #ifndef _ASM_POWERPC_MMU_8XX_H_ 2 #define _ASM_POWERPC_MMU_8XX_H_ 3 /* 4 * PPC8xx support 5 */ 6 7 /* Control/status registers for the MPC8xx. 8 * A write operation to these registers causes serialized access. 9 * During software tablewalk, the registers used perform mask/shift-add 10 * operations when written/read. A TLB entry is created when the Mx_RPN 11 * is written, and the contents of several registers are used to 12 * create the entry. 13 */ 14 #define SPRN_MI_CTR 784 /* Instruction TLB control register */ 15 #define MI_GPM 0x80000000 /* Set domain manager mode */ 16 #define MI_PPM 0x40000000 /* Set subpage protection */ 17 #define MI_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */ 18 #define MI_RSV4I 0x08000000 /* Reserve 4 TLB entries */ 19 #define MI_PPCS 0x02000000 /* Use MI_RPN prob/priv state */ 20 #define MI_IDXMASK 0x00001f00 /* TLB index to be loaded */ 21 #define MI_RESETVAL 0x00000000 /* Value of register at reset */ 22 23 /* These are the Ks and Kp from the PowerPC books. For proper operation, 24 * Ks = 0, Kp = 1. 25 */ 26 #define SPRN_MI_AP 786 27 #define MI_Ks 0x80000000 /* Should not be set */ 28 #define MI_Kp 0x40000000 /* Should always be set */ 29 30 /* 31 * All pages' PP exec bits are set to 000, which means Execute for Supervisor 32 * and no Execute for User. 33 * Then we use the APG to say whether accesses are according to Page rules, 34 * "all Supervisor" rules (Exec for all) and "all User" rules (Exec for noone) 35 * Therefore, we define 4 APG groups. msb is _PAGE_EXEC, lsb is _PAGE_USER 36 * 0 (00) => Not User, no exec => 11 (all accesses performed as user) 37 * 1 (01) => User but no exec => 11 (all accesses performed as user) 38 * 2 (10) => Not User, exec => 01 (rights according to page definition) 39 * 3 (11) => User, exec => 00 (all accesses performed as supervisor) 40 */ 41 #define MI_APG_INIT 0xf4ffffff 42 43 /* The effective page number register. When read, contains the information 44 * about the last instruction TLB miss. When MI_RPN is written, bits in 45 * this register are used to create the TLB entry. 46 */ 47 #define SPRN_MI_EPN 787 48 #define MI_EPNMASK 0xfffff000 /* Effective page number for entry */ 49 #define MI_EVALID 0x00000200 /* Entry is valid */ 50 #define MI_ASIDMASK 0x0000000f /* ASID match value */ 51 /* Reset value is undefined */ 52 53 /* A "level 1" or "segment" or whatever you want to call it register. 54 * For the instruction TLB, it contains bits that get loaded into the 55 * TLB entry when the MI_RPN is written. 56 */ 57 #define SPRN_MI_TWC 789 58 #define MI_APG 0x000001e0 /* Access protection group (0) */ 59 #define MI_GUARDED 0x00000010 /* Guarded storage */ 60 #define MI_PSMASK 0x0000000c /* Mask of page size bits */ 61 #define MI_PS8MEG 0x0000000c /* 8M page size */ 62 #define MI_PS512K 0x00000004 /* 512K page size */ 63 #define MI_PS4K_16K 0x00000000 /* 4K or 16K page size */ 64 #define MI_SVALID 0x00000001 /* Segment entry is valid */ 65 /* Reset value is undefined */ 66 67 /* Real page number. Defined by the pte. Writing this register 68 * causes a TLB entry to be created for the instruction TLB, using 69 * additional information from the MI_EPN, and MI_TWC registers. 70 */ 71 #define SPRN_MI_RPN 790 72 #define MI_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */ 73 74 /* Define an RPN value for mapping kernel memory to large virtual 75 * pages for boot initialization. This has real page number of 0, 76 * large page size, shared page, cache enabled, and valid. 77 * Also mark all subpages valid and write access. 78 */ 79 #define MI_BOOTINIT 0x000001fd 80 81 #define SPRN_MD_CTR 792 /* Data TLB control register */ 82 #define MD_GPM 0x80000000 /* Set domain manager mode */ 83 #define MD_PPM 0x40000000 /* Set subpage protection */ 84 #define MD_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */ 85 #define MD_WTDEF 0x10000000 /* Set writethrough when MMU dis */ 86 #define MD_RSV4I 0x08000000 /* Reserve 4 TLB entries */ 87 #define MD_TWAM 0x04000000 /* Use 4K page hardware assist */ 88 #define MD_PPCS 0x02000000 /* Use MI_RPN prob/priv state */ 89 #define MD_IDXMASK 0x00001f00 /* TLB index to be loaded */ 90 #define MD_RESETVAL 0x04000000 /* Value of register at reset */ 91 92 #define SPRN_M_CASID 793 /* Address space ID (context) to match */ 93 #define MC_ASIDMASK 0x0000000f /* Bits used for ASID value */ 94 95 96 /* These are the Ks and Kp from the PowerPC books. For proper operation, 97 * Ks = 0, Kp = 1. 98 */ 99 #define SPRN_MD_AP 794 100 #define MD_Ks 0x80000000 /* Should not be set */ 101 #define MD_Kp 0x40000000 /* Should always be set */ 102 103 /* 104 * All pages' PP data bits are set to either 000 or 011, which means 105 * respectively RW for Supervisor and no access for User, or RO for 106 * Supervisor and no access for user. 107 * Then we use the APG to say whether accesses are according to Page rules or 108 * "all Supervisor" rules (Access to all) 109 * Therefore, we define 2 APG groups. lsb is _PAGE_USER 110 * 0 => No user => 01 (all accesses performed according to page definition) 111 * 1 => User => 00 (all accesses performed as supervisor 112 * according to page definition) 113 */ 114 #define MD_APG_INIT 0x4fffffff 115 116 /* The effective page number register. When read, contains the information 117 * about the last instruction TLB miss. When MD_RPN is written, bits in 118 * this register are used to create the TLB entry. 119 */ 120 #define SPRN_MD_EPN 795 121 #define MD_EPNMASK 0xfffff000 /* Effective page number for entry */ 122 #define MD_EVALID 0x00000200 /* Entry is valid */ 123 #define MD_ASIDMASK 0x0000000f /* ASID match value */ 124 /* Reset value is undefined */ 125 126 /* The pointer to the base address of the first level page table. 127 * During a software tablewalk, reading this register provides the address 128 * of the entry associated with MD_EPN. 129 */ 130 #define SPRN_M_TWB 796 131 #define M_L1TB 0xfffff000 /* Level 1 table base address */ 132 #define M_L1INDX 0x00000ffc /* Level 1 index, when read */ 133 /* Reset value is undefined */ 134 135 /* A "level 1" or "segment" or whatever you want to call it register. 136 * For the data TLB, it contains bits that get loaded into the TLB entry 137 * when the MD_RPN is written. It is also provides the hardware assist 138 * for finding the PTE address during software tablewalk. 139 */ 140 #define SPRN_MD_TWC 797 141 #define MD_L2TB 0xfffff000 /* Level 2 table base address */ 142 #define MD_L2INDX 0xfffffe00 /* Level 2 index (*pte), when read */ 143 #define MD_APG 0x000001e0 /* Access protection group (0) */ 144 #define MD_GUARDED 0x00000010 /* Guarded storage */ 145 #define MD_PSMASK 0x0000000c /* Mask of page size bits */ 146 #define MD_PS8MEG 0x0000000c /* 8M page size */ 147 #define MD_PS512K 0x00000004 /* 512K page size */ 148 #define MD_PS4K_16K 0x00000000 /* 4K or 16K page size */ 149 #define MD_WT 0x00000002 /* Use writethrough page attribute */ 150 #define MD_SVALID 0x00000001 /* Segment entry is valid */ 151 /* Reset value is undefined */ 152 153 154 /* Real page number. Defined by the pte. Writing this register 155 * causes a TLB entry to be created for the data TLB, using 156 * additional information from the MD_EPN, and MD_TWC registers. 157 */ 158 #define SPRN_MD_RPN 798 159 #define MD_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */ 160 161 /* This is a temporary storage register that could be used to save 162 * a processor working register during a tablewalk. 163 */ 164 #define SPRN_M_TW 799 165 166 #ifndef __ASSEMBLY__ 167 typedef struct { 168 unsigned int id; 169 unsigned int active; 170 unsigned long vdso_base; 171 } mm_context_t; 172 #endif /* !__ASSEMBLY__ */ 173 174 #if (PAGE_SHIFT == 12) 175 #define mmu_virtual_psize MMU_PAGE_4K 176 #elif (PAGE_SHIFT == 14) 177 #define mmu_virtual_psize MMU_PAGE_16K 178 #else 179 #error "Unsupported PAGE_SIZE" 180 #endif 181 182 #define mmu_linear_psize MMU_PAGE_8M 183 184 #endif /* _ASM_POWERPC_MMU_8XX_H_ */ 185