1 /*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/device.h>
29 #include <linux/clocksource.h>
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33 #include <linux/tick.h>
34 #include <linux/kthread.h>
35
36 #include "tick-internal.h"
37 #include "timekeeping_internal.h"
38
39 /**
40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41 * @mult: pointer to mult variable
42 * @shift: pointer to shift variable
43 * @from: frequency to convert from
44 * @to: frequency to convert to
45 * @maxsec: guaranteed runtime conversion range in seconds
46 *
47 * The function evaluates the shift/mult pair for the scaled math
48 * operations of clocksources and clockevents.
49 *
50 * @to and @from are frequency values in HZ. For clock sources @to is
51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
53 *
54 * The @maxsec conversion range argument controls the time frame in
55 * seconds which must be covered by the runtime conversion with the
56 * calculated mult and shift factors. This guarantees that no 64bit
57 * overflow happens when the input value of the conversion is
58 * multiplied with the calculated mult factor. Larger ranges may
59 * reduce the conversion accuracy by chosing smaller mult and shift
60 * factors.
61 */
62 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64 {
65 u64 tmp;
66 u32 sft, sftacc= 32;
67
68 /*
69 * Calculate the shift factor which is limiting the conversion
70 * range:
71 */
72 tmp = ((u64)maxsec * from) >> 32;
73 while (tmp) {
74 tmp >>=1;
75 sftacc--;
76 }
77
78 /*
79 * Find the conversion shift/mult pair which has the best
80 * accuracy and fits the maxsec conversion range:
81 */
82 for (sft = 32; sft > 0; sft--) {
83 tmp = (u64) to << sft;
84 tmp += from / 2;
85 do_div(tmp, from);
86 if ((tmp >> sftacc) == 0)
87 break;
88 }
89 *mult = tmp;
90 *shift = sft;
91 }
92
93 /*[Clocksource internal variables]---------
94 * curr_clocksource:
95 * currently selected clocksource.
96 * clocksource_list:
97 * linked list with the registered clocksources
98 * clocksource_mutex:
99 * protects manipulations to curr_clocksource and the clocksource_list
100 * override_name:
101 * Name of the user-specified clocksource.
102 */
103 static struct clocksource *curr_clocksource;
104 static LIST_HEAD(clocksource_list);
105 static DEFINE_MUTEX(clocksource_mutex);
106 static char override_name[CS_NAME_LEN];
107 static int finished_booting;
108
109 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
110 static void clocksource_watchdog_work(struct work_struct *work);
111 static void clocksource_select(void);
112
113 static LIST_HEAD(watchdog_list);
114 static struct clocksource *watchdog;
115 static struct timer_list watchdog_timer;
116 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
117 static DEFINE_SPINLOCK(watchdog_lock);
118 static int watchdog_running;
119 static atomic_t watchdog_reset_pending;
120
121 static int clocksource_watchdog_kthread(void *data);
122 static void __clocksource_change_rating(struct clocksource *cs, int rating);
123
124 /*
125 * Interval: 0.5sec Threshold: 0.0625s
126 */
127 #define WATCHDOG_INTERVAL (HZ >> 1)
128 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
129
clocksource_watchdog_work(struct work_struct * work)130 static void clocksource_watchdog_work(struct work_struct *work)
131 {
132 /*
133 * If kthread_run fails the next watchdog scan over the
134 * watchdog_list will find the unstable clock again.
135 */
136 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
137 }
138
__clocksource_unstable(struct clocksource * cs)139 static void __clocksource_unstable(struct clocksource *cs)
140 {
141 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
142 cs->flags |= CLOCK_SOURCE_UNSTABLE;
143 if (finished_booting)
144 schedule_work(&watchdog_work);
145 }
146
147 /**
148 * clocksource_mark_unstable - mark clocksource unstable via watchdog
149 * @cs: clocksource to be marked unstable
150 *
151 * This function is called instead of clocksource_change_rating from
152 * cpu hotplug code to avoid a deadlock between the clocksource mutex
153 * and the cpu hotplug mutex. It defers the update of the clocksource
154 * to the watchdog thread.
155 */
clocksource_mark_unstable(struct clocksource * cs)156 void clocksource_mark_unstable(struct clocksource *cs)
157 {
158 unsigned long flags;
159
160 spin_lock_irqsave(&watchdog_lock, flags);
161 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
162 if (list_empty(&cs->wd_list))
163 list_add(&cs->wd_list, &watchdog_list);
164 __clocksource_unstable(cs);
165 }
166 spin_unlock_irqrestore(&watchdog_lock, flags);
167 }
168
clocksource_watchdog(unsigned long data)169 static void clocksource_watchdog(unsigned long data)
170 {
171 struct clocksource *cs;
172 cycle_t csnow, wdnow, cslast, wdlast, delta;
173 int64_t wd_nsec, cs_nsec;
174 int next_cpu, reset_pending;
175
176 spin_lock(&watchdog_lock);
177 if (!watchdog_running)
178 goto out;
179
180 reset_pending = atomic_read(&watchdog_reset_pending);
181
182 list_for_each_entry(cs, &watchdog_list, wd_list) {
183
184 /* Clocksource already marked unstable? */
185 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
186 if (finished_booting)
187 schedule_work(&watchdog_work);
188 continue;
189 }
190
191 local_irq_disable();
192 csnow = cs->read(cs);
193 wdnow = watchdog->read(watchdog);
194 local_irq_enable();
195
196 /* Clocksource initialized ? */
197 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
198 atomic_read(&watchdog_reset_pending)) {
199 cs->flags |= CLOCK_SOURCE_WATCHDOG;
200 cs->wd_last = wdnow;
201 cs->cs_last = csnow;
202 continue;
203 }
204
205 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
206 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
207 watchdog->shift);
208
209 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
210 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
211 wdlast = cs->wd_last; /* save these in case we print them */
212 cslast = cs->cs_last;
213 cs->cs_last = csnow;
214 cs->wd_last = wdnow;
215
216 if (atomic_read(&watchdog_reset_pending))
217 continue;
218
219 /* Check the deviation from the watchdog clocksource. */
220 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
221 pr_warn("timekeeping watchdog: Marking clocksource '%s' as unstable because the skew is too large:\n",
222 cs->name);
223 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
224 watchdog->name, wdnow, wdlast, watchdog->mask);
225 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
226 cs->name, csnow, cslast, cs->mask);
227 __clocksource_unstable(cs);
228 continue;
229 }
230
231 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
232 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
233 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
234 /* Mark it valid for high-res. */
235 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
236
237 /*
238 * clocksource_done_booting() will sort it if
239 * finished_booting is not set yet.
240 */
241 if (!finished_booting)
242 continue;
243
244 /*
245 * If this is not the current clocksource let
246 * the watchdog thread reselect it. Due to the
247 * change to high res this clocksource might
248 * be preferred now. If it is the current
249 * clocksource let the tick code know about
250 * that change.
251 */
252 if (cs != curr_clocksource) {
253 cs->flags |= CLOCK_SOURCE_RESELECT;
254 schedule_work(&watchdog_work);
255 } else {
256 tick_clock_notify();
257 }
258 }
259 }
260
261 /*
262 * We only clear the watchdog_reset_pending, when we did a
263 * full cycle through all clocksources.
264 */
265 if (reset_pending)
266 atomic_dec(&watchdog_reset_pending);
267
268 /*
269 * Cycle through CPUs to check if the CPUs stay synchronized
270 * to each other.
271 */
272 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
273 if (next_cpu >= nr_cpu_ids)
274 next_cpu = cpumask_first(cpu_online_mask);
275
276 /*
277 * Arm timer if not already pending: could race with concurrent
278 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
279 */
280 if (!timer_pending(&watchdog_timer)) {
281 watchdog_timer.expires += WATCHDOG_INTERVAL;
282 add_timer_on(&watchdog_timer, next_cpu);
283 }
284 out:
285 spin_unlock(&watchdog_lock);
286 }
287
clocksource_start_watchdog(void)288 static inline void clocksource_start_watchdog(void)
289 {
290 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
291 return;
292 init_timer(&watchdog_timer);
293 watchdog_timer.function = clocksource_watchdog;
294 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
295 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
296 watchdog_running = 1;
297 }
298
clocksource_stop_watchdog(void)299 static inline void clocksource_stop_watchdog(void)
300 {
301 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
302 return;
303 del_timer(&watchdog_timer);
304 watchdog_running = 0;
305 }
306
clocksource_reset_watchdog(void)307 static inline void clocksource_reset_watchdog(void)
308 {
309 struct clocksource *cs;
310
311 list_for_each_entry(cs, &watchdog_list, wd_list)
312 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
313 }
314
clocksource_resume_watchdog(void)315 static void clocksource_resume_watchdog(void)
316 {
317 atomic_inc(&watchdog_reset_pending);
318 }
319
clocksource_enqueue_watchdog(struct clocksource * cs)320 static void clocksource_enqueue_watchdog(struct clocksource *cs)
321 {
322 unsigned long flags;
323
324 spin_lock_irqsave(&watchdog_lock, flags);
325 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
326 /* cs is a clocksource to be watched. */
327 list_add(&cs->wd_list, &watchdog_list);
328 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
329 } else {
330 /* cs is a watchdog. */
331 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
332 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
333 }
334 spin_unlock_irqrestore(&watchdog_lock, flags);
335 }
336
clocksource_select_watchdog(bool fallback)337 static void clocksource_select_watchdog(bool fallback)
338 {
339 struct clocksource *cs, *old_wd;
340 unsigned long flags;
341
342 spin_lock_irqsave(&watchdog_lock, flags);
343 /* save current watchdog */
344 old_wd = watchdog;
345 if (fallback)
346 watchdog = NULL;
347
348 list_for_each_entry(cs, &clocksource_list, list) {
349 /* cs is a clocksource to be watched. */
350 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
351 continue;
352
353 /* Skip current if we were requested for a fallback. */
354 if (fallback && cs == old_wd)
355 continue;
356
357 /* Pick the best watchdog. */
358 if (!watchdog || cs->rating > watchdog->rating)
359 watchdog = cs;
360 }
361 /* If we failed to find a fallback restore the old one. */
362 if (!watchdog)
363 watchdog = old_wd;
364
365 /* If we changed the watchdog we need to reset cycles. */
366 if (watchdog != old_wd)
367 clocksource_reset_watchdog();
368
369 /* Check if the watchdog timer needs to be started. */
370 clocksource_start_watchdog();
371 spin_unlock_irqrestore(&watchdog_lock, flags);
372 }
373
clocksource_dequeue_watchdog(struct clocksource * cs)374 static void clocksource_dequeue_watchdog(struct clocksource *cs)
375 {
376 unsigned long flags;
377
378 spin_lock_irqsave(&watchdog_lock, flags);
379 if (cs != watchdog) {
380 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
381 /* cs is a watched clocksource. */
382 list_del_init(&cs->wd_list);
383 /* Check if the watchdog timer needs to be stopped. */
384 clocksource_stop_watchdog();
385 }
386 }
387 spin_unlock_irqrestore(&watchdog_lock, flags);
388 }
389
__clocksource_watchdog_kthread(void)390 static int __clocksource_watchdog_kthread(void)
391 {
392 struct clocksource *cs, *tmp;
393 unsigned long flags;
394 LIST_HEAD(unstable);
395 int select = 0;
396
397 spin_lock_irqsave(&watchdog_lock, flags);
398 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
399 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
400 list_del_init(&cs->wd_list);
401 list_add(&cs->wd_list, &unstable);
402 select = 1;
403 }
404 if (cs->flags & CLOCK_SOURCE_RESELECT) {
405 cs->flags &= ~CLOCK_SOURCE_RESELECT;
406 select = 1;
407 }
408 }
409 /* Check if the watchdog timer needs to be stopped. */
410 clocksource_stop_watchdog();
411 spin_unlock_irqrestore(&watchdog_lock, flags);
412
413 /* Needs to be done outside of watchdog lock */
414 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
415 list_del_init(&cs->wd_list);
416 __clocksource_change_rating(cs, 0);
417 }
418 return select;
419 }
420
clocksource_watchdog_kthread(void * data)421 static int clocksource_watchdog_kthread(void *data)
422 {
423 mutex_lock(&clocksource_mutex);
424 if (__clocksource_watchdog_kthread())
425 clocksource_select();
426 mutex_unlock(&clocksource_mutex);
427 return 0;
428 }
429
clocksource_is_watchdog(struct clocksource * cs)430 static bool clocksource_is_watchdog(struct clocksource *cs)
431 {
432 return cs == watchdog;
433 }
434
435 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
436
clocksource_enqueue_watchdog(struct clocksource * cs)437 static void clocksource_enqueue_watchdog(struct clocksource *cs)
438 {
439 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
440 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
441 }
442
clocksource_select_watchdog(bool fallback)443 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)444 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)445 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)446 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)447 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)448 void clocksource_mark_unstable(struct clocksource *cs) { }
449
450 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
451
452 /**
453 * clocksource_suspend - suspend the clocksource(s)
454 */
clocksource_suspend(void)455 void clocksource_suspend(void)
456 {
457 struct clocksource *cs;
458
459 list_for_each_entry_reverse(cs, &clocksource_list, list)
460 if (cs->suspend)
461 cs->suspend(cs);
462 }
463
464 /**
465 * clocksource_resume - resume the clocksource(s)
466 */
clocksource_resume(void)467 void clocksource_resume(void)
468 {
469 struct clocksource *cs;
470
471 list_for_each_entry(cs, &clocksource_list, list)
472 if (cs->resume)
473 cs->resume(cs);
474
475 clocksource_resume_watchdog();
476 }
477
478 /**
479 * clocksource_touch_watchdog - Update watchdog
480 *
481 * Update the watchdog after exception contexts such as kgdb so as not
482 * to incorrectly trip the watchdog. This might fail when the kernel
483 * was stopped in code which holds watchdog_lock.
484 */
clocksource_touch_watchdog(void)485 void clocksource_touch_watchdog(void)
486 {
487 clocksource_resume_watchdog();
488 }
489
490 /**
491 * clocksource_max_adjustment- Returns max adjustment amount
492 * @cs: Pointer to clocksource
493 *
494 */
clocksource_max_adjustment(struct clocksource * cs)495 static u32 clocksource_max_adjustment(struct clocksource *cs)
496 {
497 u64 ret;
498 /*
499 * We won't try to correct for more than 11% adjustments (110,000 ppm),
500 */
501 ret = (u64)cs->mult * 11;
502 do_div(ret,100);
503 return (u32)ret;
504 }
505
506 /**
507 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
508 * @mult: cycle to nanosecond multiplier
509 * @shift: cycle to nanosecond divisor (power of two)
510 * @maxadj: maximum adjustment value to mult (~11%)
511 * @mask: bitmask for two's complement subtraction of non 64 bit counters
512 * @max_cyc: maximum cycle value before potential overflow (does not include
513 * any safety margin)
514 *
515 * NOTE: This function includes a safety margin of 50%, in other words, we
516 * return half the number of nanoseconds the hardware counter can technically
517 * cover. This is done so that we can potentially detect problems caused by
518 * delayed timers or bad hardware, which might result in time intervals that
519 * are larger than what the math used can handle without overflows.
520 */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)521 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
522 {
523 u64 max_nsecs, max_cycles;
524
525 /*
526 * Calculate the maximum number of cycles that we can pass to the
527 * cyc2ns() function without overflowing a 64-bit result.
528 */
529 max_cycles = ULLONG_MAX;
530 do_div(max_cycles, mult+maxadj);
531
532 /*
533 * The actual maximum number of cycles we can defer the clocksource is
534 * determined by the minimum of max_cycles and mask.
535 * Note: Here we subtract the maxadj to make sure we don't sleep for
536 * too long if there's a large negative adjustment.
537 */
538 max_cycles = min(max_cycles, mask);
539 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
540
541 /* return the max_cycles value as well if requested */
542 if (max_cyc)
543 *max_cyc = max_cycles;
544
545 /* Return 50% of the actual maximum, so we can detect bad values */
546 max_nsecs >>= 1;
547
548 return max_nsecs;
549 }
550
551 /**
552 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
553 * @cs: Pointer to clocksource to be updated
554 *
555 */
clocksource_update_max_deferment(struct clocksource * cs)556 static inline void clocksource_update_max_deferment(struct clocksource *cs)
557 {
558 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
559 cs->maxadj, cs->mask,
560 &cs->max_cycles);
561 }
562
563 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
564
clocksource_find_best(bool oneshot,bool skipcur)565 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
566 {
567 struct clocksource *cs;
568
569 if (!finished_booting || list_empty(&clocksource_list))
570 return NULL;
571
572 /*
573 * We pick the clocksource with the highest rating. If oneshot
574 * mode is active, we pick the highres valid clocksource with
575 * the best rating.
576 */
577 list_for_each_entry(cs, &clocksource_list, list) {
578 if (skipcur && cs == curr_clocksource)
579 continue;
580 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
581 continue;
582 return cs;
583 }
584 return NULL;
585 }
586
__clocksource_select(bool skipcur)587 static void __clocksource_select(bool skipcur)
588 {
589 bool oneshot = tick_oneshot_mode_active();
590 struct clocksource *best, *cs;
591
592 /* Find the best suitable clocksource */
593 best = clocksource_find_best(oneshot, skipcur);
594 if (!best)
595 return;
596
597 /* Check for the override clocksource. */
598 list_for_each_entry(cs, &clocksource_list, list) {
599 if (skipcur && cs == curr_clocksource)
600 continue;
601 if (strcmp(cs->name, override_name) != 0)
602 continue;
603 /*
604 * Check to make sure we don't switch to a non-highres
605 * capable clocksource if the tick code is in oneshot
606 * mode (highres or nohz)
607 */
608 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
609 /* Override clocksource cannot be used. */
610 pr_warn("Override clocksource %s is not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
611 cs->name);
612 override_name[0] = 0;
613 } else
614 /* Override clocksource can be used. */
615 best = cs;
616 break;
617 }
618
619 if (curr_clocksource != best && !timekeeping_notify(best)) {
620 pr_info("Switched to clocksource %s\n", best->name);
621 curr_clocksource = best;
622 }
623 }
624
625 /**
626 * clocksource_select - Select the best clocksource available
627 *
628 * Private function. Must hold clocksource_mutex when called.
629 *
630 * Select the clocksource with the best rating, or the clocksource,
631 * which is selected by userspace override.
632 */
clocksource_select(void)633 static void clocksource_select(void)
634 {
635 __clocksource_select(false);
636 }
637
clocksource_select_fallback(void)638 static void clocksource_select_fallback(void)
639 {
640 __clocksource_select(true);
641 }
642
643 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)644 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)645 static inline void clocksource_select_fallback(void) { }
646
647 #endif
648
649 /*
650 * clocksource_done_booting - Called near the end of core bootup
651 *
652 * Hack to avoid lots of clocksource churn at boot time.
653 * We use fs_initcall because we want this to start before
654 * device_initcall but after subsys_initcall.
655 */
clocksource_done_booting(void)656 static int __init clocksource_done_booting(void)
657 {
658 mutex_lock(&clocksource_mutex);
659 curr_clocksource = clocksource_default_clock();
660 finished_booting = 1;
661 /*
662 * Run the watchdog first to eliminate unstable clock sources
663 */
664 __clocksource_watchdog_kthread();
665 clocksource_select();
666 mutex_unlock(&clocksource_mutex);
667 return 0;
668 }
669 fs_initcall(clocksource_done_booting);
670
671 /*
672 * Enqueue the clocksource sorted by rating
673 */
clocksource_enqueue(struct clocksource * cs)674 static void clocksource_enqueue(struct clocksource *cs)
675 {
676 struct list_head *entry = &clocksource_list;
677 struct clocksource *tmp;
678
679 list_for_each_entry(tmp, &clocksource_list, list)
680 /* Keep track of the place, where to insert */
681 if (tmp->rating >= cs->rating)
682 entry = &tmp->list;
683 list_add(&cs->list, entry);
684 }
685
686 /**
687 * __clocksource_update_freq_scale - Used update clocksource with new freq
688 * @cs: clocksource to be registered
689 * @scale: Scale factor multiplied against freq to get clocksource hz
690 * @freq: clocksource frequency (cycles per second) divided by scale
691 *
692 * This should only be called from the clocksource->enable() method.
693 *
694 * This *SHOULD NOT* be called directly! Please use the
695 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
696 * functions.
697 */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)698 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
699 {
700 u64 sec;
701
702 /*
703 * Default clocksources are *special* and self-define their mult/shift.
704 * But, you're not special, so you should specify a freq value.
705 */
706 if (freq) {
707 /*
708 * Calc the maximum number of seconds which we can run before
709 * wrapping around. For clocksources which have a mask > 32-bit
710 * we need to limit the max sleep time to have a good
711 * conversion precision. 10 minutes is still a reasonable
712 * amount. That results in a shift value of 24 for a
713 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
714 * ~ 0.06ppm granularity for NTP.
715 */
716 sec = cs->mask;
717 do_div(sec, freq);
718 do_div(sec, scale);
719 if (!sec)
720 sec = 1;
721 else if (sec > 600 && cs->mask > UINT_MAX)
722 sec = 600;
723
724 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
725 NSEC_PER_SEC / scale, sec * scale);
726 }
727 /*
728 * Ensure clocksources that have large 'mult' values don't overflow
729 * when adjusted.
730 */
731 cs->maxadj = clocksource_max_adjustment(cs);
732 while (freq && ((cs->mult + cs->maxadj < cs->mult)
733 || (cs->mult - cs->maxadj > cs->mult))) {
734 cs->mult >>= 1;
735 cs->shift--;
736 cs->maxadj = clocksource_max_adjustment(cs);
737 }
738
739 /*
740 * Only warn for *special* clocksources that self-define
741 * their mult/shift values and don't specify a freq.
742 */
743 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
744 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
745 cs->name);
746
747 clocksource_update_max_deferment(cs);
748
749 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
750 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
751 }
752 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
753
754 /**
755 * __clocksource_register_scale - Used to install new clocksources
756 * @cs: clocksource to be registered
757 * @scale: Scale factor multiplied against freq to get clocksource hz
758 * @freq: clocksource frequency (cycles per second) divided by scale
759 *
760 * Returns -EBUSY if registration fails, zero otherwise.
761 *
762 * This *SHOULD NOT* be called directly! Please use the
763 * clocksource_register_hz() or clocksource_register_khz helper functions.
764 */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)765 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
766 {
767
768 /* Initialize mult/shift and max_idle_ns */
769 __clocksource_update_freq_scale(cs, scale, freq);
770
771 /* Add clocksource to the clocksource list */
772 mutex_lock(&clocksource_mutex);
773 clocksource_enqueue(cs);
774 clocksource_enqueue_watchdog(cs);
775 clocksource_select();
776 clocksource_select_watchdog(false);
777 mutex_unlock(&clocksource_mutex);
778 return 0;
779 }
780 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
781
__clocksource_change_rating(struct clocksource * cs,int rating)782 static void __clocksource_change_rating(struct clocksource *cs, int rating)
783 {
784 list_del(&cs->list);
785 cs->rating = rating;
786 clocksource_enqueue(cs);
787 }
788
789 /**
790 * clocksource_change_rating - Change the rating of a registered clocksource
791 * @cs: clocksource to be changed
792 * @rating: new rating
793 */
clocksource_change_rating(struct clocksource * cs,int rating)794 void clocksource_change_rating(struct clocksource *cs, int rating)
795 {
796 mutex_lock(&clocksource_mutex);
797 __clocksource_change_rating(cs, rating);
798 clocksource_select();
799 clocksource_select_watchdog(false);
800 mutex_unlock(&clocksource_mutex);
801 }
802 EXPORT_SYMBOL(clocksource_change_rating);
803
804 /*
805 * Unbind clocksource @cs. Called with clocksource_mutex held
806 */
clocksource_unbind(struct clocksource * cs)807 static int clocksource_unbind(struct clocksource *cs)
808 {
809 if (clocksource_is_watchdog(cs)) {
810 /* Select and try to install a replacement watchdog. */
811 clocksource_select_watchdog(true);
812 if (clocksource_is_watchdog(cs))
813 return -EBUSY;
814 }
815
816 if (cs == curr_clocksource) {
817 /* Select and try to install a replacement clock source */
818 clocksource_select_fallback();
819 if (curr_clocksource == cs)
820 return -EBUSY;
821 }
822 clocksource_dequeue_watchdog(cs);
823 list_del_init(&cs->list);
824 return 0;
825 }
826
827 /**
828 * clocksource_unregister - remove a registered clocksource
829 * @cs: clocksource to be unregistered
830 */
clocksource_unregister(struct clocksource * cs)831 int clocksource_unregister(struct clocksource *cs)
832 {
833 int ret = 0;
834
835 mutex_lock(&clocksource_mutex);
836 if (!list_empty(&cs->list))
837 ret = clocksource_unbind(cs);
838 mutex_unlock(&clocksource_mutex);
839 return ret;
840 }
841 EXPORT_SYMBOL(clocksource_unregister);
842
843 #ifdef CONFIG_SYSFS
844 /**
845 * sysfs_show_current_clocksources - sysfs interface for current clocksource
846 * @dev: unused
847 * @attr: unused
848 * @buf: char buffer to be filled with clocksource list
849 *
850 * Provides sysfs interface for listing current clocksource.
851 */
852 static ssize_t
sysfs_show_current_clocksources(struct device * dev,struct device_attribute * attr,char * buf)853 sysfs_show_current_clocksources(struct device *dev,
854 struct device_attribute *attr, char *buf)
855 {
856 ssize_t count = 0;
857
858 mutex_lock(&clocksource_mutex);
859 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
860 mutex_unlock(&clocksource_mutex);
861
862 return count;
863 }
864
sysfs_get_uname(const char * buf,char * dst,size_t cnt)865 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
866 {
867 size_t ret = cnt;
868
869 /* strings from sysfs write are not 0 terminated! */
870 if (!cnt || cnt >= CS_NAME_LEN)
871 return -EINVAL;
872
873 /* strip of \n: */
874 if (buf[cnt-1] == '\n')
875 cnt--;
876 if (cnt > 0)
877 memcpy(dst, buf, cnt);
878 dst[cnt] = 0;
879 return ret;
880 }
881
882 /**
883 * sysfs_override_clocksource - interface for manually overriding clocksource
884 * @dev: unused
885 * @attr: unused
886 * @buf: name of override clocksource
887 * @count: length of buffer
888 *
889 * Takes input from sysfs interface for manually overriding the default
890 * clocksource selection.
891 */
sysfs_override_clocksource(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)892 static ssize_t sysfs_override_clocksource(struct device *dev,
893 struct device_attribute *attr,
894 const char *buf, size_t count)
895 {
896 ssize_t ret;
897
898 mutex_lock(&clocksource_mutex);
899
900 ret = sysfs_get_uname(buf, override_name, count);
901 if (ret >= 0)
902 clocksource_select();
903
904 mutex_unlock(&clocksource_mutex);
905
906 return ret;
907 }
908
909 /**
910 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
911 * @dev: unused
912 * @attr: unused
913 * @buf: unused
914 * @count: length of buffer
915 *
916 * Takes input from sysfs interface for manually unbinding a clocksource.
917 */
sysfs_unbind_clocksource(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)918 static ssize_t sysfs_unbind_clocksource(struct device *dev,
919 struct device_attribute *attr,
920 const char *buf, size_t count)
921 {
922 struct clocksource *cs;
923 char name[CS_NAME_LEN];
924 ssize_t ret;
925
926 ret = sysfs_get_uname(buf, name, count);
927 if (ret < 0)
928 return ret;
929
930 ret = -ENODEV;
931 mutex_lock(&clocksource_mutex);
932 list_for_each_entry(cs, &clocksource_list, list) {
933 if (strcmp(cs->name, name))
934 continue;
935 ret = clocksource_unbind(cs);
936 break;
937 }
938 mutex_unlock(&clocksource_mutex);
939
940 return ret ? ret : count;
941 }
942
943 /**
944 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
945 * @dev: unused
946 * @attr: unused
947 * @buf: char buffer to be filled with clocksource list
948 *
949 * Provides sysfs interface for listing registered clocksources
950 */
951 static ssize_t
sysfs_show_available_clocksources(struct device * dev,struct device_attribute * attr,char * buf)952 sysfs_show_available_clocksources(struct device *dev,
953 struct device_attribute *attr,
954 char *buf)
955 {
956 struct clocksource *src;
957 ssize_t count = 0;
958
959 mutex_lock(&clocksource_mutex);
960 list_for_each_entry(src, &clocksource_list, list) {
961 /*
962 * Don't show non-HRES clocksource if the tick code is
963 * in one shot mode (highres=on or nohz=on)
964 */
965 if (!tick_oneshot_mode_active() ||
966 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
967 count += snprintf(buf + count,
968 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
969 "%s ", src->name);
970 }
971 mutex_unlock(&clocksource_mutex);
972
973 count += snprintf(buf + count,
974 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
975
976 return count;
977 }
978
979 /*
980 * Sysfs setup bits:
981 */
982 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
983 sysfs_override_clocksource);
984
985 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
986
987 static DEVICE_ATTR(available_clocksource, 0444,
988 sysfs_show_available_clocksources, NULL);
989
990 static struct bus_type clocksource_subsys = {
991 .name = "clocksource",
992 .dev_name = "clocksource",
993 };
994
995 static struct device device_clocksource = {
996 .id = 0,
997 .bus = &clocksource_subsys,
998 };
999
init_clocksource_sysfs(void)1000 static int __init init_clocksource_sysfs(void)
1001 {
1002 int error = subsys_system_register(&clocksource_subsys, NULL);
1003
1004 if (!error)
1005 error = device_register(&device_clocksource);
1006 if (!error)
1007 error = device_create_file(
1008 &device_clocksource,
1009 &dev_attr_current_clocksource);
1010 if (!error)
1011 error = device_create_file(&device_clocksource,
1012 &dev_attr_unbind_clocksource);
1013 if (!error)
1014 error = device_create_file(
1015 &device_clocksource,
1016 &dev_attr_available_clocksource);
1017 return error;
1018 }
1019
1020 device_initcall(init_clocksource_sysfs);
1021 #endif /* CONFIG_SYSFS */
1022
1023 /**
1024 * boot_override_clocksource - boot clock override
1025 * @str: override name
1026 *
1027 * Takes a clocksource= boot argument and uses it
1028 * as the clocksource override name.
1029 */
boot_override_clocksource(char * str)1030 static int __init boot_override_clocksource(char* str)
1031 {
1032 mutex_lock(&clocksource_mutex);
1033 if (str)
1034 strlcpy(override_name, str, sizeof(override_name));
1035 mutex_unlock(&clocksource_mutex);
1036 return 1;
1037 }
1038
1039 __setup("clocksource=", boot_override_clocksource);
1040
1041 /**
1042 * boot_override_clock - Compatibility layer for deprecated boot option
1043 * @str: override name
1044 *
1045 * DEPRECATED! Takes a clock= boot argument and uses it
1046 * as the clocksource override name
1047 */
boot_override_clock(char * str)1048 static int __init boot_override_clock(char* str)
1049 {
1050 if (!strcmp(str, "pmtmr")) {
1051 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1052 return boot_override_clocksource("acpi_pm");
1053 }
1054 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1055 return boot_override_clocksource(str);
1056 }
1057
1058 __setup("clock=", boot_override_clock);
1059