• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3  *
4  * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published
8  * by the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 #include <linux/signal.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/usb.h>
24 
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 
29 MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30 MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31 MODULE_LICENSE("GPL v2");
32 
33 /* Control-Values for CPC_Control() Command Subject Selection */
34 #define CONTR_CAN_MESSAGE 0x04
35 #define CONTR_CAN_STATE   0x0C
36 #define CONTR_BUS_ERROR   0x1C
37 
38 /* Control Command Actions */
39 #define CONTR_CONT_OFF 0
40 #define CONTR_CONT_ON  1
41 #define CONTR_ONCE     2
42 
43 /* Messages from CPC to PC */
44 #define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45 #define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46 #define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47 #define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48 #define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49 #define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50 #define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51 #define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52 #define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53 #define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54 #define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55 
56 /* Messages from the PC to the CPC interface  */
57 #define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58 #define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59 #define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60 #define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61 #define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62 #define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63 #define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64 #define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65 
66 #define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67 #define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68 #define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69 
70 #define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71 
72 #define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73 
74 /* Overrun types */
75 #define CPC_OVR_EVENT_CAN       0x01
76 #define CPC_OVR_EVENT_CANSTATE  0x02
77 #define CPC_OVR_EVENT_BUSERROR  0x04
78 
79 /*
80  * If the CAN controller lost a message we indicate it with the highest bit
81  * set in the count field.
82  */
83 #define CPC_OVR_HW 0x80
84 
85 /* Size of the "struct ems_cpc_msg" without the union */
86 #define CPC_MSG_HEADER_LEN   11
87 #define CPC_CAN_MSG_MIN_SIZE 5
88 
89 /* Define these values to match your devices */
90 #define USB_CPCUSB_VENDOR_ID 0x12D6
91 
92 #define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93 
94 /* Mode register NXP LPC2119/SJA1000 CAN Controller */
95 #define SJA1000_MOD_NORMAL 0x00
96 #define SJA1000_MOD_RM     0x01
97 
98 /* ECC register NXP LPC2119/SJA1000 CAN Controller */
99 #define SJA1000_ECC_SEG   0x1F
100 #define SJA1000_ECC_DIR   0x20
101 #define SJA1000_ECC_ERR   0x06
102 #define SJA1000_ECC_BIT   0x00
103 #define SJA1000_ECC_FORM  0x40
104 #define SJA1000_ECC_STUFF 0x80
105 #define SJA1000_ECC_MASK  0xc0
106 
107 /* Status register content */
108 #define SJA1000_SR_BS 0x80
109 #define SJA1000_SR_ES 0x40
110 
111 #define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112 
113 /*
114  * The device actually uses a 16MHz clock to generate the CAN clock
115  * but it expects SJA1000 bit settings based on 8MHz (is internally
116  * converted).
117  */
118 #define EMS_USB_ARM7_CLOCK 8000000
119 
120 #define CPC_TX_QUEUE_TRIGGER_LOW	25
121 #define CPC_TX_QUEUE_TRIGGER_HIGH	35
122 
123 /*
124  * CAN-Message representation in a CPC_MSG. Message object type is
125  * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
126  * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
127  */
128 struct cpc_can_msg {
129 	__le32 id;
130 	u8 length;
131 	u8 msg[8];
132 };
133 
134 /* Representation of the CAN parameters for the SJA1000 controller */
135 struct cpc_sja1000_params {
136 	u8 mode;
137 	u8 acc_code0;
138 	u8 acc_code1;
139 	u8 acc_code2;
140 	u8 acc_code3;
141 	u8 acc_mask0;
142 	u8 acc_mask1;
143 	u8 acc_mask2;
144 	u8 acc_mask3;
145 	u8 btr0;
146 	u8 btr1;
147 	u8 outp_contr;
148 };
149 
150 /* CAN params message representation */
151 struct cpc_can_params {
152 	u8 cc_type;
153 
154 	/* Will support M16C CAN controller in the future */
155 	union {
156 		struct cpc_sja1000_params sja1000;
157 	} cc_params;
158 };
159 
160 /* Structure for confirmed message handling */
161 struct cpc_confirm {
162 	u8 error; /* error code */
163 };
164 
165 /* Structure for overrun conditions */
166 struct cpc_overrun {
167 	u8 event;
168 	u8 count;
169 };
170 
171 /* SJA1000 CAN errors (compatible to NXP LPC2119) */
172 struct cpc_sja1000_can_error {
173 	u8 ecc;
174 	u8 rxerr;
175 	u8 txerr;
176 };
177 
178 /* structure for CAN error conditions */
179 struct cpc_can_error {
180 	u8 ecode;
181 
182 	struct {
183 		u8 cc_type;
184 
185 		/* Other controllers may also provide error code capture regs */
186 		union {
187 			struct cpc_sja1000_can_error sja1000;
188 		} regs;
189 	} cc;
190 };
191 
192 /*
193  * Structure containing RX/TX error counter. This structure is used to request
194  * the values of the CAN controllers TX and RX error counter.
195  */
196 struct cpc_can_err_counter {
197 	u8 rx;
198 	u8 tx;
199 };
200 
201 /* Main message type used between library and application */
202 struct __packed ems_cpc_msg {
203 	u8 type;	/* type of message */
204 	u8 length;	/* length of data within union 'msg' */
205 	u8 msgid;	/* confirmation handle */
206 	__le32 ts_sec;	/* timestamp in seconds */
207 	__le32 ts_nsec;	/* timestamp in nano seconds */
208 
209 	union {
210 		u8 generic[64];
211 		struct cpc_can_msg can_msg;
212 		struct cpc_can_params can_params;
213 		struct cpc_confirm confirmation;
214 		struct cpc_overrun overrun;
215 		struct cpc_can_error error;
216 		struct cpc_can_err_counter err_counter;
217 		u8 can_state;
218 	} msg;
219 };
220 
221 /*
222  * Table of devices that work with this driver
223  * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
224  */
225 static struct usb_device_id ems_usb_table[] = {
226 	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
227 	{} /* Terminating entry */
228 };
229 
230 MODULE_DEVICE_TABLE(usb, ems_usb_table);
231 
232 #define RX_BUFFER_SIZE      64
233 #define CPC_HEADER_SIZE     4
234 #define INTR_IN_BUFFER_SIZE 4
235 
236 #define MAX_RX_URBS 10
237 #define MAX_TX_URBS 10
238 
239 struct ems_usb;
240 
241 struct ems_tx_urb_context {
242 	struct ems_usb *dev;
243 
244 	u32 echo_index;
245 	u8 dlc;
246 };
247 
248 struct ems_usb {
249 	struct can_priv can; /* must be the first member */
250 
251 	struct sk_buff *echo_skb[MAX_TX_URBS];
252 
253 	struct usb_device *udev;
254 	struct net_device *netdev;
255 
256 	atomic_t active_tx_urbs;
257 	struct usb_anchor tx_submitted;
258 	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
259 
260 	struct usb_anchor rx_submitted;
261 
262 	struct urb *intr_urb;
263 
264 	u8 *tx_msg_buffer;
265 
266 	u8 *intr_in_buffer;
267 	unsigned int free_slots; /* remember number of available slots */
268 
269 	struct ems_cpc_msg active_params; /* active controller parameters */
270 	void *rxbuf[MAX_RX_URBS];
271 	dma_addr_t rxbuf_dma[MAX_RX_URBS];
272 };
273 
ems_usb_read_interrupt_callback(struct urb * urb)274 static void ems_usb_read_interrupt_callback(struct urb *urb)
275 {
276 	struct ems_usb *dev = urb->context;
277 	struct net_device *netdev = dev->netdev;
278 	int err;
279 
280 	if (!netif_device_present(netdev))
281 		return;
282 
283 	switch (urb->status) {
284 	case 0:
285 		dev->free_slots = dev->intr_in_buffer[1];
286 		if(dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH){
287 			if (netif_queue_stopped(netdev)){
288 				netif_wake_queue(netdev);
289 			}
290 		}
291 		break;
292 
293 	case -ECONNRESET: /* unlink */
294 	case -ENOENT:
295 	case -EPIPE:
296 	case -EPROTO:
297 	case -ESHUTDOWN:
298 		return;
299 
300 	default:
301 		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
302 		break;
303 	}
304 
305 	err = usb_submit_urb(urb, GFP_ATOMIC);
306 
307 	if (err == -ENODEV)
308 		netif_device_detach(netdev);
309 	else if (err)
310 		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
311 }
312 
ems_usb_rx_can_msg(struct ems_usb * dev,struct ems_cpc_msg * msg)313 static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
314 {
315 	struct can_frame *cf;
316 	struct sk_buff *skb;
317 	int i;
318 	struct net_device_stats *stats = &dev->netdev->stats;
319 
320 	skb = alloc_can_skb(dev->netdev, &cf);
321 	if (skb == NULL)
322 		return;
323 
324 	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
325 	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
326 
327 	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
328 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
329 		cf->can_id |= CAN_EFF_FLAG;
330 
331 	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
332 	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
333 		cf->can_id |= CAN_RTR_FLAG;
334 	} else {
335 		for (i = 0; i < cf->can_dlc; i++)
336 			cf->data[i] = msg->msg.can_msg.msg[i];
337 	}
338 
339 	stats->rx_packets++;
340 	stats->rx_bytes += cf->can_dlc;
341 	netif_rx(skb);
342 }
343 
ems_usb_rx_err(struct ems_usb * dev,struct ems_cpc_msg * msg)344 static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
345 {
346 	struct can_frame *cf;
347 	struct sk_buff *skb;
348 	struct net_device_stats *stats = &dev->netdev->stats;
349 
350 	skb = alloc_can_err_skb(dev->netdev, &cf);
351 	if (skb == NULL)
352 		return;
353 
354 	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
355 		u8 state = msg->msg.can_state;
356 
357 		if (state & SJA1000_SR_BS) {
358 			dev->can.state = CAN_STATE_BUS_OFF;
359 			cf->can_id |= CAN_ERR_BUSOFF;
360 
361 			dev->can.can_stats.bus_off++;
362 			can_bus_off(dev->netdev);
363 		} else if (state & SJA1000_SR_ES) {
364 			dev->can.state = CAN_STATE_ERROR_WARNING;
365 			dev->can.can_stats.error_warning++;
366 		} else {
367 			dev->can.state = CAN_STATE_ERROR_ACTIVE;
368 			dev->can.can_stats.error_passive++;
369 		}
370 	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
371 		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
372 		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
373 		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
374 
375 		/* bus error interrupt */
376 		dev->can.can_stats.bus_error++;
377 		stats->rx_errors++;
378 
379 		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
380 
381 		switch (ecc & SJA1000_ECC_MASK) {
382 		case SJA1000_ECC_BIT:
383 			cf->data[2] |= CAN_ERR_PROT_BIT;
384 			break;
385 		case SJA1000_ECC_FORM:
386 			cf->data[2] |= CAN_ERR_PROT_FORM;
387 			break;
388 		case SJA1000_ECC_STUFF:
389 			cf->data[2] |= CAN_ERR_PROT_STUFF;
390 			break;
391 		default:
392 			cf->data[3] = ecc & SJA1000_ECC_SEG;
393 			break;
394 		}
395 
396 		/* Error occurred during transmission? */
397 		if ((ecc & SJA1000_ECC_DIR) == 0)
398 			cf->data[2] |= CAN_ERR_PROT_TX;
399 
400 		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
401 		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
402 			cf->data[1] = (txerr > rxerr) ?
403 			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
404 		}
405 	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
406 		cf->can_id |= CAN_ERR_CRTL;
407 		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
408 
409 		stats->rx_over_errors++;
410 		stats->rx_errors++;
411 	}
412 
413 	stats->rx_packets++;
414 	stats->rx_bytes += cf->can_dlc;
415 	netif_rx(skb);
416 }
417 
418 /*
419  * callback for bulk IN urb
420  */
ems_usb_read_bulk_callback(struct urb * urb)421 static void ems_usb_read_bulk_callback(struct urb *urb)
422 {
423 	struct ems_usb *dev = urb->context;
424 	struct net_device *netdev;
425 	int retval;
426 
427 	netdev = dev->netdev;
428 
429 	if (!netif_device_present(netdev))
430 		return;
431 
432 	switch (urb->status) {
433 	case 0: /* success */
434 		break;
435 
436 	case -ENOENT:
437 		return;
438 
439 	default:
440 		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
441 		goto resubmit_urb;
442 	}
443 
444 	if (urb->actual_length > CPC_HEADER_SIZE) {
445 		struct ems_cpc_msg *msg;
446 		u8 *ibuf = urb->transfer_buffer;
447 		u8 msg_count, start;
448 
449 		msg_count = ibuf[0] & ~0x80;
450 
451 		start = CPC_HEADER_SIZE;
452 
453 		while (msg_count) {
454 			msg = (struct ems_cpc_msg *)&ibuf[start];
455 
456 			switch (msg->type) {
457 			case CPC_MSG_TYPE_CAN_STATE:
458 				/* Process CAN state changes */
459 				ems_usb_rx_err(dev, msg);
460 				break;
461 
462 			case CPC_MSG_TYPE_CAN_FRAME:
463 			case CPC_MSG_TYPE_EXT_CAN_FRAME:
464 			case CPC_MSG_TYPE_RTR_FRAME:
465 			case CPC_MSG_TYPE_EXT_RTR_FRAME:
466 				ems_usb_rx_can_msg(dev, msg);
467 				break;
468 
469 			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
470 				/* Process errorframe */
471 				ems_usb_rx_err(dev, msg);
472 				break;
473 
474 			case CPC_MSG_TYPE_OVERRUN:
475 				/* Message lost while receiving */
476 				ems_usb_rx_err(dev, msg);
477 				break;
478 			}
479 
480 			start += CPC_MSG_HEADER_LEN + msg->length;
481 			msg_count--;
482 
483 			if (start > urb->transfer_buffer_length) {
484 				netdev_err(netdev, "format error\n");
485 				break;
486 			}
487 		}
488 	}
489 
490 resubmit_urb:
491 	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
492 			  urb->transfer_buffer, RX_BUFFER_SIZE,
493 			  ems_usb_read_bulk_callback, dev);
494 
495 	retval = usb_submit_urb(urb, GFP_ATOMIC);
496 
497 	if (retval == -ENODEV)
498 		netif_device_detach(netdev);
499 	else if (retval)
500 		netdev_err(netdev,
501 			   "failed resubmitting read bulk urb: %d\n", retval);
502 }
503 
504 /*
505  * callback for bulk IN urb
506  */
ems_usb_write_bulk_callback(struct urb * urb)507 static void ems_usb_write_bulk_callback(struct urb *urb)
508 {
509 	struct ems_tx_urb_context *context = urb->context;
510 	struct ems_usb *dev;
511 	struct net_device *netdev;
512 
513 	BUG_ON(!context);
514 
515 	dev = context->dev;
516 	netdev = dev->netdev;
517 
518 	/* free up our allocated buffer */
519 	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
520 			  urb->transfer_buffer, urb->transfer_dma);
521 
522 	atomic_dec(&dev->active_tx_urbs);
523 
524 	if (!netif_device_present(netdev))
525 		return;
526 
527 	if (urb->status)
528 		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
529 
530 	netdev->trans_start = jiffies;
531 
532 	/* transmission complete interrupt */
533 	netdev->stats.tx_packets++;
534 	netdev->stats.tx_bytes += context->dlc;
535 
536 	can_get_echo_skb(netdev, context->echo_index);
537 
538 	/* Release context */
539 	context->echo_index = MAX_TX_URBS;
540 
541 }
542 
543 /*
544  * Send the given CPC command synchronously
545  */
ems_usb_command_msg(struct ems_usb * dev,struct ems_cpc_msg * msg)546 static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
547 {
548 	int actual_length;
549 
550 	/* Copy payload */
551 	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
552 	       msg->length + CPC_MSG_HEADER_LEN);
553 
554 	/* Clear header */
555 	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
556 
557 	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
558 			    &dev->tx_msg_buffer[0],
559 			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
560 			    &actual_length, 1000);
561 }
562 
563 /*
564  * Change CAN controllers' mode register
565  */
ems_usb_write_mode(struct ems_usb * dev,u8 mode)566 static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
567 {
568 	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
569 
570 	return ems_usb_command_msg(dev, &dev->active_params);
571 }
572 
573 /*
574  * Send a CPC_Control command to change behaviour when interface receives a CAN
575  * message, bus error or CAN state changed notifications.
576  */
ems_usb_control_cmd(struct ems_usb * dev,u8 val)577 static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
578 {
579 	struct ems_cpc_msg cmd;
580 
581 	cmd.type = CPC_CMD_TYPE_CONTROL;
582 	cmd.length = CPC_MSG_HEADER_LEN + 1;
583 
584 	cmd.msgid = 0;
585 
586 	cmd.msg.generic[0] = val;
587 
588 	return ems_usb_command_msg(dev, &cmd);
589 }
590 
591 /*
592  * Start interface
593  */
ems_usb_start(struct ems_usb * dev)594 static int ems_usb_start(struct ems_usb *dev)
595 {
596 	struct net_device *netdev = dev->netdev;
597 	int err, i;
598 
599 	dev->intr_in_buffer[0] = 0;
600 	dev->free_slots = 50; /* initial size */
601 
602 	for (i = 0; i < MAX_RX_URBS; i++) {
603 		struct urb *urb = NULL;
604 		u8 *buf = NULL;
605 		dma_addr_t buf_dma;
606 
607 		/* create a URB, and a buffer for it */
608 		urb = usb_alloc_urb(0, GFP_KERNEL);
609 		if (!urb) {
610 			netdev_err(netdev, "No memory left for URBs\n");
611 			err = -ENOMEM;
612 			break;
613 		}
614 
615 		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
616 					 &buf_dma);
617 		if (!buf) {
618 			netdev_err(netdev, "No memory left for USB buffer\n");
619 			usb_free_urb(urb);
620 			err = -ENOMEM;
621 			break;
622 		}
623 
624 		urb->transfer_dma = buf_dma;
625 
626 		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
627 				  buf, RX_BUFFER_SIZE,
628 				  ems_usb_read_bulk_callback, dev);
629 		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
630 		usb_anchor_urb(urb, &dev->rx_submitted);
631 
632 		err = usb_submit_urb(urb, GFP_KERNEL);
633 		if (err) {
634 			usb_unanchor_urb(urb);
635 			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
636 					  urb->transfer_dma);
637 			usb_free_urb(urb);
638 			break;
639 		}
640 
641 		dev->rxbuf[i] = buf;
642 		dev->rxbuf_dma[i] = buf_dma;
643 
644 		/* Drop reference, USB core will take care of freeing it */
645 		usb_free_urb(urb);
646 	}
647 
648 	/* Did we submit any URBs */
649 	if (i == 0) {
650 		netdev_warn(netdev, "couldn't setup read URBs\n");
651 		return err;
652 	}
653 
654 	/* Warn if we've couldn't transmit all the URBs */
655 	if (i < MAX_RX_URBS)
656 		netdev_warn(netdev, "rx performance may be slow\n");
657 
658 	/* Setup and start interrupt URB */
659 	usb_fill_int_urb(dev->intr_urb, dev->udev,
660 			 usb_rcvintpipe(dev->udev, 1),
661 			 dev->intr_in_buffer,
662 			 INTR_IN_BUFFER_SIZE,
663 			 ems_usb_read_interrupt_callback, dev, 1);
664 
665 	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
666 	if (err) {
667 		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
668 
669 		return err;
670 	}
671 
672 	/* CPC-USB will transfer received message to host */
673 	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
674 	if (err)
675 		goto failed;
676 
677 	/* CPC-USB will transfer CAN state changes to host */
678 	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
679 	if (err)
680 		goto failed;
681 
682 	/* CPC-USB will transfer bus errors to host */
683 	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
684 	if (err)
685 		goto failed;
686 
687 	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
688 	if (err)
689 		goto failed;
690 
691 	dev->can.state = CAN_STATE_ERROR_ACTIVE;
692 
693 	return 0;
694 
695 failed:
696 	netdev_warn(netdev, "couldn't submit control: %d\n", err);
697 
698 	return err;
699 }
700 
unlink_all_urbs(struct ems_usb * dev)701 static void unlink_all_urbs(struct ems_usb *dev)
702 {
703 	int i;
704 
705 	usb_unlink_urb(dev->intr_urb);
706 
707 	usb_kill_anchored_urbs(&dev->rx_submitted);
708 
709 	for (i = 0; i < MAX_RX_URBS; ++i)
710 		usb_free_coherent(dev->udev, RX_BUFFER_SIZE,
711 				  dev->rxbuf[i], dev->rxbuf_dma[i]);
712 
713 	usb_kill_anchored_urbs(&dev->tx_submitted);
714 	atomic_set(&dev->active_tx_urbs, 0);
715 
716 	for (i = 0; i < MAX_TX_URBS; i++)
717 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
718 }
719 
ems_usb_open(struct net_device * netdev)720 static int ems_usb_open(struct net_device *netdev)
721 {
722 	struct ems_usb *dev = netdev_priv(netdev);
723 	int err;
724 
725 	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
726 	if (err)
727 		return err;
728 
729 	/* common open */
730 	err = open_candev(netdev);
731 	if (err)
732 		return err;
733 
734 	/* finally start device */
735 	err = ems_usb_start(dev);
736 	if (err) {
737 		if (err == -ENODEV)
738 			netif_device_detach(dev->netdev);
739 
740 		netdev_warn(netdev, "couldn't start device: %d\n", err);
741 
742 		close_candev(netdev);
743 
744 		return err;
745 	}
746 
747 
748 	netif_start_queue(netdev);
749 
750 	return 0;
751 }
752 
ems_usb_start_xmit(struct sk_buff * skb,struct net_device * netdev)753 static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
754 {
755 	struct ems_usb *dev = netdev_priv(netdev);
756 	struct ems_tx_urb_context *context = NULL;
757 	struct net_device_stats *stats = &netdev->stats;
758 	struct can_frame *cf = (struct can_frame *)skb->data;
759 	struct ems_cpc_msg *msg;
760 	struct urb *urb;
761 	u8 *buf;
762 	int i, err;
763 	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
764 			+ sizeof(struct cpc_can_msg);
765 
766 	if (can_dropped_invalid_skb(netdev, skb))
767 		return NETDEV_TX_OK;
768 
769 	/* create a URB, and a buffer for it, and copy the data to the URB */
770 	urb = usb_alloc_urb(0, GFP_ATOMIC);
771 	if (!urb) {
772 		netdev_err(netdev, "No memory left for URBs\n");
773 		goto nomem;
774 	}
775 
776 	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
777 	if (!buf) {
778 		netdev_err(netdev, "No memory left for USB buffer\n");
779 		usb_free_urb(urb);
780 		goto nomem;
781 	}
782 
783 	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
784 
785 	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
786 	msg->msg.can_msg.length = cf->can_dlc;
787 
788 	if (cf->can_id & CAN_RTR_FLAG) {
789 		msg->type = cf->can_id & CAN_EFF_FLAG ?
790 			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
791 
792 		msg->length = CPC_CAN_MSG_MIN_SIZE;
793 	} else {
794 		msg->type = cf->can_id & CAN_EFF_FLAG ?
795 			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
796 
797 		for (i = 0; i < cf->can_dlc; i++)
798 			msg->msg.can_msg.msg[i] = cf->data[i];
799 
800 		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
801 	}
802 
803 	for (i = 0; i < MAX_TX_URBS; i++) {
804 		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
805 			context = &dev->tx_contexts[i];
806 			break;
807 		}
808 	}
809 
810 	/*
811 	 * May never happen! When this happens we'd more URBs in flight as
812 	 * allowed (MAX_TX_URBS).
813 	 */
814 	if (!context) {
815 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
816 		usb_free_urb(urb);
817 
818 		netdev_warn(netdev, "couldn't find free context\n");
819 
820 		return NETDEV_TX_BUSY;
821 	}
822 
823 	context->dev = dev;
824 	context->echo_index = i;
825 	context->dlc = cf->can_dlc;
826 
827 	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
828 			  size, ems_usb_write_bulk_callback, context);
829 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
830 	usb_anchor_urb(urb, &dev->tx_submitted);
831 
832 	can_put_echo_skb(skb, netdev, context->echo_index);
833 
834 	atomic_inc(&dev->active_tx_urbs);
835 
836 	err = usb_submit_urb(urb, GFP_ATOMIC);
837 	if (unlikely(err)) {
838 		can_free_echo_skb(netdev, context->echo_index);
839 
840 		usb_unanchor_urb(urb);
841 		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
842 		dev_kfree_skb(skb);
843 
844 		atomic_dec(&dev->active_tx_urbs);
845 
846 		if (err == -ENODEV) {
847 			netif_device_detach(netdev);
848 		} else {
849 			netdev_warn(netdev, "failed tx_urb %d\n", err);
850 
851 			stats->tx_dropped++;
852 		}
853 	} else {
854 		netdev->trans_start = jiffies;
855 
856 		/* Slow down tx path */
857 		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
858 		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
859 			netif_stop_queue(netdev);
860 		}
861 	}
862 
863 	/*
864 	 * Release our reference to this URB, the USB core will eventually free
865 	 * it entirely.
866 	 */
867 	usb_free_urb(urb);
868 
869 	return NETDEV_TX_OK;
870 
871 nomem:
872 	dev_kfree_skb(skb);
873 	stats->tx_dropped++;
874 
875 	return NETDEV_TX_OK;
876 }
877 
ems_usb_close(struct net_device * netdev)878 static int ems_usb_close(struct net_device *netdev)
879 {
880 	struct ems_usb *dev = netdev_priv(netdev);
881 
882 	/* Stop polling */
883 	unlink_all_urbs(dev);
884 
885 	netif_stop_queue(netdev);
886 
887 	/* Set CAN controller to reset mode */
888 	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
889 		netdev_warn(netdev, "couldn't stop device");
890 
891 	close_candev(netdev);
892 
893 	return 0;
894 }
895 
896 static const struct net_device_ops ems_usb_netdev_ops = {
897 	.ndo_open = ems_usb_open,
898 	.ndo_stop = ems_usb_close,
899 	.ndo_start_xmit = ems_usb_start_xmit,
900 	.ndo_change_mtu = can_change_mtu,
901 };
902 
903 static const struct can_bittiming_const ems_usb_bittiming_const = {
904 	.name = "ems_usb",
905 	.tseg1_min = 1,
906 	.tseg1_max = 16,
907 	.tseg2_min = 1,
908 	.tseg2_max = 8,
909 	.sjw_max = 4,
910 	.brp_min = 1,
911 	.brp_max = 64,
912 	.brp_inc = 1,
913 };
914 
ems_usb_set_mode(struct net_device * netdev,enum can_mode mode)915 static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
916 {
917 	struct ems_usb *dev = netdev_priv(netdev);
918 
919 	switch (mode) {
920 	case CAN_MODE_START:
921 		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
922 			netdev_warn(netdev, "couldn't start device");
923 
924 		if (netif_queue_stopped(netdev))
925 			netif_wake_queue(netdev);
926 		break;
927 
928 	default:
929 		return -EOPNOTSUPP;
930 	}
931 
932 	return 0;
933 }
934 
ems_usb_set_bittiming(struct net_device * netdev)935 static int ems_usb_set_bittiming(struct net_device *netdev)
936 {
937 	struct ems_usb *dev = netdev_priv(netdev);
938 	struct can_bittiming *bt = &dev->can.bittiming;
939 	u8 btr0, btr1;
940 
941 	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
942 	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
943 		(((bt->phase_seg2 - 1) & 0x7) << 4);
944 	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
945 		btr1 |= 0x80;
946 
947 	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
948 
949 	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
950 	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
951 
952 	return ems_usb_command_msg(dev, &dev->active_params);
953 }
954 
init_params_sja1000(struct ems_cpc_msg * msg)955 static void init_params_sja1000(struct ems_cpc_msg *msg)
956 {
957 	struct cpc_sja1000_params *sja1000 =
958 		&msg->msg.can_params.cc_params.sja1000;
959 
960 	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
961 	msg->length = sizeof(struct cpc_can_params);
962 	msg->msgid = 0;
963 
964 	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
965 
966 	/* Acceptance filter open */
967 	sja1000->acc_code0 = 0x00;
968 	sja1000->acc_code1 = 0x00;
969 	sja1000->acc_code2 = 0x00;
970 	sja1000->acc_code3 = 0x00;
971 
972 	/* Acceptance filter open */
973 	sja1000->acc_mask0 = 0xFF;
974 	sja1000->acc_mask1 = 0xFF;
975 	sja1000->acc_mask2 = 0xFF;
976 	sja1000->acc_mask3 = 0xFF;
977 
978 	sja1000->btr0 = 0;
979 	sja1000->btr1 = 0;
980 
981 	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
982 	sja1000->mode = SJA1000_MOD_RM;
983 }
984 
985 /*
986  * probe function for new CPC-USB devices
987  */
ems_usb_probe(struct usb_interface * intf,const struct usb_device_id * id)988 static int ems_usb_probe(struct usb_interface *intf,
989 			 const struct usb_device_id *id)
990 {
991 	struct net_device *netdev;
992 	struct ems_usb *dev;
993 	int i, err = -ENOMEM;
994 
995 	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
996 	if (!netdev) {
997 		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
998 		return -ENOMEM;
999 	}
1000 
1001 	dev = netdev_priv(netdev);
1002 
1003 	dev->udev = interface_to_usbdev(intf);
1004 	dev->netdev = netdev;
1005 
1006 	dev->can.state = CAN_STATE_STOPPED;
1007 	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
1008 	dev->can.bittiming_const = &ems_usb_bittiming_const;
1009 	dev->can.do_set_bittiming = ems_usb_set_bittiming;
1010 	dev->can.do_set_mode = ems_usb_set_mode;
1011 	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
1012 
1013 	netdev->netdev_ops = &ems_usb_netdev_ops;
1014 
1015 	netdev->flags |= IFF_ECHO; /* we support local echo */
1016 
1017 	init_usb_anchor(&dev->rx_submitted);
1018 
1019 	init_usb_anchor(&dev->tx_submitted);
1020 	atomic_set(&dev->active_tx_urbs, 0);
1021 
1022 	for (i = 0; i < MAX_TX_URBS; i++)
1023 		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1024 
1025 	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1026 	if (!dev->intr_urb) {
1027 		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1028 		goto cleanup_candev;
1029 	}
1030 
1031 	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1032 	if (!dev->intr_in_buffer)
1033 		goto cleanup_intr_urb;
1034 
1035 	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1036 				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1037 	if (!dev->tx_msg_buffer)
1038 		goto cleanup_intr_in_buffer;
1039 
1040 	usb_set_intfdata(intf, dev);
1041 
1042 	SET_NETDEV_DEV(netdev, &intf->dev);
1043 
1044 	init_params_sja1000(&dev->active_params);
1045 
1046 	err = ems_usb_command_msg(dev, &dev->active_params);
1047 	if (err) {
1048 		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1049 		goto cleanup_tx_msg_buffer;
1050 	}
1051 
1052 	err = register_candev(netdev);
1053 	if (err) {
1054 		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1055 		goto cleanup_tx_msg_buffer;
1056 	}
1057 
1058 	return 0;
1059 
1060 cleanup_tx_msg_buffer:
1061 	kfree(dev->tx_msg_buffer);
1062 
1063 cleanup_intr_in_buffer:
1064 	kfree(dev->intr_in_buffer);
1065 
1066 cleanup_intr_urb:
1067 	usb_free_urb(dev->intr_urb);
1068 
1069 cleanup_candev:
1070 	free_candev(netdev);
1071 
1072 	return err;
1073 }
1074 
1075 /*
1076  * called by the usb core when the device is removed from the system
1077  */
ems_usb_disconnect(struct usb_interface * intf)1078 static void ems_usb_disconnect(struct usb_interface *intf)
1079 {
1080 	struct ems_usb *dev = usb_get_intfdata(intf);
1081 
1082 	usb_set_intfdata(intf, NULL);
1083 
1084 	if (dev) {
1085 		unregister_netdev(dev->netdev);
1086 
1087 		unlink_all_urbs(dev);
1088 
1089 		usb_free_urb(dev->intr_urb);
1090 
1091 		kfree(dev->intr_in_buffer);
1092 		kfree(dev->tx_msg_buffer);
1093 
1094 		free_candev(dev->netdev);
1095 	}
1096 }
1097 
1098 /* usb specific object needed to register this driver with the usb subsystem */
1099 static struct usb_driver ems_usb_driver = {
1100 	.name = "ems_usb",
1101 	.probe = ems_usb_probe,
1102 	.disconnect = ems_usb_disconnect,
1103 	.id_table = ems_usb_table,
1104 };
1105 
1106 module_usb_driver(ems_usb_driver);
1107