1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57
58 #include "sched/tune.h"
59
60 #include <asm/uaccess.h>
61 #include <asm/unistd.h>
62 #include <asm/pgtable.h>
63 #include <asm/mmu_context.h>
64
65 static void exit_mm(struct task_struct *tsk);
66
__unhash_process(struct task_struct * p,bool group_dead)67 static void __unhash_process(struct task_struct *p, bool group_dead)
68 {
69 nr_threads--;
70 detach_pid(p, PIDTYPE_PID);
71 if (group_dead) {
72 detach_pid(p, PIDTYPE_PGID);
73 detach_pid(p, PIDTYPE_SID);
74
75 list_del_rcu(&p->tasks);
76 list_del_init(&p->sibling);
77 __this_cpu_dec(process_counts);
78 }
79 list_del_rcu(&p->thread_group);
80 list_del_rcu(&p->thread_node);
81 }
82
83 /*
84 * This function expects the tasklist_lock write-locked.
85 */
__exit_signal(struct task_struct * tsk)86 static void __exit_signal(struct task_struct *tsk)
87 {
88 struct signal_struct *sig = tsk->signal;
89 bool group_dead = thread_group_leader(tsk);
90 struct sighand_struct *sighand;
91 struct tty_struct *uninitialized_var(tty);
92 cputime_t utime, stime;
93
94 sighand = rcu_dereference_check(tsk->sighand,
95 lockdep_tasklist_lock_is_held());
96 spin_lock(&sighand->siglock);
97
98 posix_cpu_timers_exit(tsk);
99 if (group_dead) {
100 posix_cpu_timers_exit_group(tsk);
101 tty = sig->tty;
102 sig->tty = NULL;
103 } else {
104 /*
105 * This can only happen if the caller is de_thread().
106 * FIXME: this is the temporary hack, we should teach
107 * posix-cpu-timers to handle this case correctly.
108 */
109 if (unlikely(has_group_leader_pid(tsk)))
110 posix_cpu_timers_exit_group(tsk);
111
112 /*
113 * If there is any task waiting for the group exit
114 * then notify it:
115 */
116 if (sig->notify_count > 0 && !--sig->notify_count)
117 wake_up_process(sig->group_exit_task);
118
119 if (tsk == sig->curr_target)
120 sig->curr_target = next_thread(tsk);
121 }
122
123 /*
124 * Accumulate here the counters for all threads as they die. We could
125 * skip the group leader because it is the last user of signal_struct,
126 * but we want to avoid the race with thread_group_cputime() which can
127 * see the empty ->thread_head list.
128 */
129 task_cputime(tsk, &utime, &stime);
130 write_seqlock(&sig->stats_lock);
131 sig->utime += utime;
132 sig->stime += stime;
133 sig->gtime += task_gtime(tsk);
134 sig->min_flt += tsk->min_flt;
135 sig->maj_flt += tsk->maj_flt;
136 sig->nvcsw += tsk->nvcsw;
137 sig->nivcsw += tsk->nivcsw;
138 sig->inblock += task_io_get_inblock(tsk);
139 sig->oublock += task_io_get_oublock(tsk);
140 task_io_accounting_add(&sig->ioac, &tsk->ioac);
141 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144 write_sequnlock(&sig->stats_lock);
145
146 /*
147 * Do this under ->siglock, we can race with another thread
148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 */
150 flush_sigqueue(&tsk->pending);
151 tsk->sighand = NULL;
152 spin_unlock(&sighand->siglock);
153
154 __cleanup_sighand(sighand);
155 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 if (group_dead) {
157 flush_sigqueue(&sig->shared_pending);
158 tty_kref_put(tty);
159 }
160 }
161
delayed_put_task_struct(struct rcu_head * rhp)162 static void delayed_put_task_struct(struct rcu_head *rhp)
163 {
164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165
166 perf_event_delayed_put(tsk);
167 trace_sched_process_free(tsk);
168 put_task_struct(tsk);
169 }
170
171
release_task(struct task_struct * p)172 void release_task(struct task_struct *p)
173 {
174 struct task_struct *leader;
175 int zap_leader;
176 repeat:
177 /* don't need to get the RCU readlock here - the process is dead and
178 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 rcu_read_lock();
180 atomic_dec(&__task_cred(p)->user->processes);
181 rcu_read_unlock();
182
183 proc_flush_task(p);
184
185 write_lock_irq(&tasklist_lock);
186 ptrace_release_task(p);
187 __exit_signal(p);
188
189 /*
190 * If we are the last non-leader member of the thread
191 * group, and the leader is zombie, then notify the
192 * group leader's parent process. (if it wants notification.)
193 */
194 zap_leader = 0;
195 leader = p->group_leader;
196 if (leader != p && thread_group_empty(leader)
197 && leader->exit_state == EXIT_ZOMBIE) {
198 /*
199 * If we were the last child thread and the leader has
200 * exited already, and the leader's parent ignores SIGCHLD,
201 * then we are the one who should release the leader.
202 */
203 zap_leader = do_notify_parent(leader, leader->exit_signal);
204 if (zap_leader)
205 leader->exit_state = EXIT_DEAD;
206 }
207
208 write_unlock_irq(&tasklist_lock);
209 release_thread(p);
210 call_rcu(&p->rcu, delayed_put_task_struct);
211
212 p = leader;
213 if (unlikely(zap_leader))
214 goto repeat;
215 }
216
217 /*
218 * Determine if a process group is "orphaned", according to the POSIX
219 * definition in 2.2.2.52. Orphaned process groups are not to be affected
220 * by terminal-generated stop signals. Newly orphaned process groups are
221 * to receive a SIGHUP and a SIGCONT.
222 *
223 * "I ask you, have you ever known what it is to be an orphan?"
224 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)225 static int will_become_orphaned_pgrp(struct pid *pgrp,
226 struct task_struct *ignored_task)
227 {
228 struct task_struct *p;
229
230 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
231 if ((p == ignored_task) ||
232 (p->exit_state && thread_group_empty(p)) ||
233 is_global_init(p->real_parent))
234 continue;
235
236 if (task_pgrp(p->real_parent) != pgrp &&
237 task_session(p->real_parent) == task_session(p))
238 return 0;
239 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
240
241 return 1;
242 }
243
is_current_pgrp_orphaned(void)244 int is_current_pgrp_orphaned(void)
245 {
246 int retval;
247
248 read_lock(&tasklist_lock);
249 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
250 read_unlock(&tasklist_lock);
251
252 return retval;
253 }
254
has_stopped_jobs(struct pid * pgrp)255 static bool has_stopped_jobs(struct pid *pgrp)
256 {
257 struct task_struct *p;
258
259 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
260 if (p->signal->flags & SIGNAL_STOP_STOPPED)
261 return true;
262 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
263
264 return false;
265 }
266
267 /*
268 * Check to see if any process groups have become orphaned as
269 * a result of our exiting, and if they have any stopped jobs,
270 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
271 */
272 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)273 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
274 {
275 struct pid *pgrp = task_pgrp(tsk);
276 struct task_struct *ignored_task = tsk;
277
278 if (!parent)
279 /* exit: our father is in a different pgrp than
280 * we are and we were the only connection outside.
281 */
282 parent = tsk->real_parent;
283 else
284 /* reparent: our child is in a different pgrp than
285 * we are, and it was the only connection outside.
286 */
287 ignored_task = NULL;
288
289 if (task_pgrp(parent) != pgrp &&
290 task_session(parent) == task_session(tsk) &&
291 will_become_orphaned_pgrp(pgrp, ignored_task) &&
292 has_stopped_jobs(pgrp)) {
293 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
294 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
295 }
296 }
297
298 #ifdef CONFIG_MEMCG
299 /*
300 * A task is exiting. If it owned this mm, find a new owner for the mm.
301 */
mm_update_next_owner(struct mm_struct * mm)302 void mm_update_next_owner(struct mm_struct *mm)
303 {
304 struct task_struct *c, *g, *p = current;
305
306 retry:
307 /*
308 * If the exiting or execing task is not the owner, it's
309 * someone else's problem.
310 */
311 if (mm->owner != p)
312 return;
313 /*
314 * The current owner is exiting/execing and there are no other
315 * candidates. Do not leave the mm pointing to a possibly
316 * freed task structure.
317 */
318 if (atomic_read(&mm->mm_users) <= 1) {
319 mm->owner = NULL;
320 return;
321 }
322
323 read_lock(&tasklist_lock);
324 /*
325 * Search in the children
326 */
327 list_for_each_entry(c, &p->children, sibling) {
328 if (c->mm == mm)
329 goto assign_new_owner;
330 }
331
332 /*
333 * Search in the siblings
334 */
335 list_for_each_entry(c, &p->real_parent->children, sibling) {
336 if (c->mm == mm)
337 goto assign_new_owner;
338 }
339
340 /*
341 * Search through everything else, we should not get here often.
342 */
343 for_each_process(g) {
344 if (g->flags & PF_KTHREAD)
345 continue;
346 for_each_thread(g, c) {
347 if (c->mm == mm)
348 goto assign_new_owner;
349 if (c->mm)
350 break;
351 }
352 }
353 read_unlock(&tasklist_lock);
354 /*
355 * We found no owner yet mm_users > 1: this implies that we are
356 * most likely racing with swapoff (try_to_unuse()) or /proc or
357 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
358 */
359 mm->owner = NULL;
360 return;
361
362 assign_new_owner:
363 BUG_ON(c == p);
364 get_task_struct(c);
365 /*
366 * The task_lock protects c->mm from changing.
367 * We always want mm->owner->mm == mm
368 */
369 task_lock(c);
370 /*
371 * Delay read_unlock() till we have the task_lock()
372 * to ensure that c does not slip away underneath us
373 */
374 read_unlock(&tasklist_lock);
375 if (c->mm != mm) {
376 task_unlock(c);
377 put_task_struct(c);
378 goto retry;
379 }
380 mm->owner = c;
381 task_unlock(c);
382 put_task_struct(c);
383 }
384 #endif /* CONFIG_MEMCG */
385
386 /*
387 * Turn us into a lazy TLB process if we
388 * aren't already..
389 */
exit_mm(struct task_struct * tsk)390 static void exit_mm(struct task_struct *tsk)
391 {
392 struct mm_struct *mm = tsk->mm;
393 struct core_state *core_state;
394
395 exit_mm_release(tsk, mm);
396 if (!mm)
397 return;
398 sync_mm_rss(mm);
399 /*
400 * Serialize with any possible pending coredump.
401 * We must hold mmap_sem around checking core_state
402 * and clearing tsk->mm. The core-inducing thread
403 * will increment ->nr_threads for each thread in the
404 * group with ->mm != NULL.
405 */
406 down_read(&mm->mmap_sem);
407 core_state = mm->core_state;
408 if (core_state) {
409 struct core_thread self;
410
411 up_read(&mm->mmap_sem);
412
413 self.task = tsk;
414 if (self.task->flags & PF_SIGNALED)
415 self.next = xchg(&core_state->dumper.next, &self);
416 else
417 self.task = NULL;
418 /*
419 * Implies mb(), the result of xchg() must be visible
420 * to core_state->dumper.
421 */
422 if (atomic_dec_and_test(&core_state->nr_threads))
423 complete(&core_state->startup);
424
425 for (;;) {
426 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
427 if (!self.task) /* see coredump_finish() */
428 break;
429 freezable_schedule();
430 }
431 __set_task_state(tsk, TASK_RUNNING);
432 down_read(&mm->mmap_sem);
433 }
434 atomic_inc(&mm->mm_count);
435 BUG_ON(mm != tsk->active_mm);
436 /* more a memory barrier than a real lock */
437 task_lock(tsk);
438 tsk->mm = NULL;
439 up_read(&mm->mmap_sem);
440 enter_lazy_tlb(mm, current);
441 task_unlock(tsk);
442 mm_update_next_owner(mm);
443 mmput(mm);
444 if (test_thread_flag(TIF_MEMDIE))
445 exit_oom_victim();
446 }
447
find_alive_thread(struct task_struct * p)448 static struct task_struct *find_alive_thread(struct task_struct *p)
449 {
450 struct task_struct *t;
451
452 for_each_thread(p, t) {
453 if (!(t->flags & PF_EXITING))
454 return t;
455 }
456 return NULL;
457 }
458
find_child_reaper(struct task_struct * father,struct list_head * dead)459 static struct task_struct *find_child_reaper(struct task_struct *father,
460 struct list_head *dead)
461 __releases(&tasklist_lock)
462 __acquires(&tasklist_lock)
463 {
464 struct pid_namespace *pid_ns = task_active_pid_ns(father);
465 struct task_struct *reaper = pid_ns->child_reaper;
466 struct task_struct *p, *n;
467
468 if (likely(reaper != father))
469 return reaper;
470
471 reaper = find_alive_thread(father);
472 if (reaper) {
473 pid_ns->child_reaper = reaper;
474 return reaper;
475 }
476
477 write_unlock_irq(&tasklist_lock);
478 if (unlikely(pid_ns == &init_pid_ns)) {
479 panic("Attempted to kill init! exitcode=0x%08x\n",
480 father->signal->group_exit_code ?: father->exit_code);
481 }
482
483 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
484 list_del_init(&p->ptrace_entry);
485 release_task(p);
486 }
487
488 zap_pid_ns_processes(pid_ns);
489 write_lock_irq(&tasklist_lock);
490
491 return father;
492 }
493
494 /*
495 * When we die, we re-parent all our children, and try to:
496 * 1. give them to another thread in our thread group, if such a member exists
497 * 2. give it to the first ancestor process which prctl'd itself as a
498 * child_subreaper for its children (like a service manager)
499 * 3. give it to the init process (PID 1) in our pid namespace
500 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)501 static struct task_struct *find_new_reaper(struct task_struct *father,
502 struct task_struct *child_reaper)
503 {
504 struct task_struct *thread, *reaper;
505
506 thread = find_alive_thread(father);
507 if (thread)
508 return thread;
509
510 if (father->signal->has_child_subreaper) {
511 /*
512 * Find the first ->is_child_subreaper ancestor in our pid_ns.
513 * We start from father to ensure we can not look into another
514 * namespace, this is safe because all its threads are dead.
515 */
516 for (reaper = father;
517 !same_thread_group(reaper, child_reaper);
518 reaper = reaper->real_parent) {
519 /* call_usermodehelper() descendants need this check */
520 if (reaper == &init_task)
521 break;
522 if (!reaper->signal->is_child_subreaper)
523 continue;
524 thread = find_alive_thread(reaper);
525 if (thread)
526 return thread;
527 }
528 }
529
530 return child_reaper;
531 }
532
533 /*
534 * Any that need to be release_task'd are put on the @dead list.
535 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)536 static void reparent_leader(struct task_struct *father, struct task_struct *p,
537 struct list_head *dead)
538 {
539 if (unlikely(p->exit_state == EXIT_DEAD))
540 return;
541
542 /* We don't want people slaying init. */
543 p->exit_signal = SIGCHLD;
544
545 /* If it has exited notify the new parent about this child's death. */
546 if (!p->ptrace &&
547 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
548 if (do_notify_parent(p, p->exit_signal)) {
549 p->exit_state = EXIT_DEAD;
550 list_add(&p->ptrace_entry, dead);
551 }
552 }
553
554 kill_orphaned_pgrp(p, father);
555 }
556
557 /*
558 * This does two things:
559 *
560 * A. Make init inherit all the child processes
561 * B. Check to see if any process groups have become orphaned
562 * as a result of our exiting, and if they have any stopped
563 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
564 */
forget_original_parent(struct task_struct * father,struct list_head * dead)565 static void forget_original_parent(struct task_struct *father,
566 struct list_head *dead)
567 {
568 struct task_struct *p, *t, *reaper;
569
570 if (unlikely(!list_empty(&father->ptraced)))
571 exit_ptrace(father, dead);
572
573 /* Can drop and reacquire tasklist_lock */
574 reaper = find_child_reaper(father, dead);
575 if (list_empty(&father->children))
576 return;
577
578 reaper = find_new_reaper(father, reaper);
579 list_for_each_entry(p, &father->children, sibling) {
580 for_each_thread(p, t) {
581 t->real_parent = reaper;
582 BUG_ON((!t->ptrace) != (t->parent == father));
583 if (likely(!t->ptrace))
584 t->parent = t->real_parent;
585 if (t->pdeath_signal)
586 group_send_sig_info(t->pdeath_signal,
587 SEND_SIG_NOINFO, t);
588 }
589 /*
590 * If this is a threaded reparent there is no need to
591 * notify anyone anything has happened.
592 */
593 if (!same_thread_group(reaper, father))
594 reparent_leader(father, p, dead);
595 }
596 list_splice_tail_init(&father->children, &reaper->children);
597 }
598
599 /*
600 * Send signals to all our closest relatives so that they know
601 * to properly mourn us..
602 */
exit_notify(struct task_struct * tsk,int group_dead)603 static void exit_notify(struct task_struct *tsk, int group_dead)
604 {
605 bool autoreap;
606 struct task_struct *p, *n;
607 LIST_HEAD(dead);
608
609 write_lock_irq(&tasklist_lock);
610 forget_original_parent(tsk, &dead);
611
612 if (group_dead)
613 kill_orphaned_pgrp(tsk->group_leader, NULL);
614
615 if (unlikely(tsk->ptrace)) {
616 int sig = thread_group_leader(tsk) &&
617 thread_group_empty(tsk) &&
618 !ptrace_reparented(tsk) ?
619 tsk->exit_signal : SIGCHLD;
620 autoreap = do_notify_parent(tsk, sig);
621 } else if (thread_group_leader(tsk)) {
622 autoreap = thread_group_empty(tsk) &&
623 do_notify_parent(tsk, tsk->exit_signal);
624 } else {
625 autoreap = true;
626 }
627
628 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
629 if (tsk->exit_state == EXIT_DEAD)
630 list_add(&tsk->ptrace_entry, &dead);
631
632 /* mt-exec, de_thread() is waiting for group leader */
633 if (unlikely(tsk->signal->notify_count < 0))
634 wake_up_process(tsk->signal->group_exit_task);
635 write_unlock_irq(&tasklist_lock);
636
637 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
638 list_del_init(&p->ptrace_entry);
639 release_task(p);
640 }
641 }
642
643 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)644 static void check_stack_usage(void)
645 {
646 static DEFINE_SPINLOCK(low_water_lock);
647 static int lowest_to_date = THREAD_SIZE;
648 unsigned long free;
649
650 free = stack_not_used(current);
651
652 if (free >= lowest_to_date)
653 return;
654
655 spin_lock(&low_water_lock);
656 if (free < lowest_to_date) {
657 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
658 current->comm, task_pid_nr(current), free);
659 lowest_to_date = free;
660 }
661 spin_unlock(&low_water_lock);
662 }
663 #else
check_stack_usage(void)664 static inline void check_stack_usage(void) {}
665 #endif
666
do_exit(long code)667 void do_exit(long code)
668 {
669 struct task_struct *tsk = current;
670 int group_dead;
671 TASKS_RCU(int tasks_rcu_i);
672
673 profile_task_exit(tsk);
674 kcov_task_exit(tsk);
675
676 WARN_ON(blk_needs_flush_plug(tsk));
677
678 if (unlikely(in_interrupt()))
679 panic("Aiee, killing interrupt handler!");
680 if (unlikely(!tsk->pid))
681 panic("Attempted to kill the idle task!");
682
683 /*
684 * If do_exit is called because this processes oopsed, it's possible
685 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
686 * continuing. Amongst other possible reasons, this is to prevent
687 * mm_release()->clear_child_tid() from writing to a user-controlled
688 * kernel address.
689 */
690 set_fs(USER_DS);
691
692 ptrace_event(PTRACE_EVENT_EXIT, code);
693
694 validate_creds_for_do_exit(tsk);
695
696 /*
697 * We're taking recursive faults here in do_exit. Safest is to just
698 * leave this task alone and wait for reboot.
699 */
700 if (unlikely(tsk->flags & PF_EXITING)) {
701 pr_alert("Fixing recursive fault but reboot is needed!\n");
702 futex_exit_recursive(tsk);
703 set_current_state(TASK_UNINTERRUPTIBLE);
704 schedule();
705 }
706
707 exit_signals(tsk); /* sets PF_EXITING */
708
709 schedtune_exit_task(tsk);
710
711 if (unlikely(in_atomic())) {
712 pr_info("note: %s[%d] exited with preempt_count %d\n",
713 current->comm, task_pid_nr(current),
714 preempt_count());
715 preempt_count_set(PREEMPT_ENABLED);
716 }
717
718 /* sync mm's RSS info before statistics gathering */
719 if (tsk->mm)
720 sync_mm_rss(tsk->mm);
721 acct_update_integrals(tsk);
722 group_dead = atomic_dec_and_test(&tsk->signal->live);
723 if (group_dead) {
724 hrtimer_cancel(&tsk->signal->real_timer);
725 exit_itimers(tsk->signal);
726 if (tsk->mm)
727 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
728 }
729 acct_collect(code, group_dead);
730 if (group_dead)
731 tty_audit_exit();
732 audit_free(tsk);
733
734 tsk->exit_code = code;
735 taskstats_exit(tsk, group_dead);
736
737 exit_mm(tsk);
738
739 if (group_dead)
740 acct_process();
741 trace_sched_process_exit(tsk);
742
743 exit_sem(tsk);
744 exit_shm(tsk);
745 exit_files(tsk);
746 exit_fs(tsk);
747 if (group_dead)
748 disassociate_ctty(1);
749 exit_task_namespaces(tsk);
750 exit_task_work(tsk);
751 exit_thread(tsk);
752
753 /*
754 * Flush inherited counters to the parent - before the parent
755 * gets woken up by child-exit notifications.
756 *
757 * because of cgroup mode, must be called before cgroup_exit()
758 */
759 perf_event_exit_task(tsk);
760
761 cgroup_exit(tsk);
762
763 /*
764 * FIXME: do that only when needed, using sched_exit tracepoint
765 */
766 flush_ptrace_hw_breakpoint(tsk);
767
768 TASKS_RCU(preempt_disable());
769 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
770 TASKS_RCU(preempt_enable());
771 exit_notify(tsk, group_dead);
772 proc_exit_connector(tsk);
773 #ifdef CONFIG_NUMA
774 task_lock(tsk);
775 mpol_put(tsk->mempolicy);
776 tsk->mempolicy = NULL;
777 task_unlock(tsk);
778 #endif
779 #ifdef CONFIG_FUTEX
780 if (unlikely(current->pi_state_cache))
781 kfree(current->pi_state_cache);
782 #endif
783 /*
784 * Make sure we are holding no locks:
785 */
786 debug_check_no_locks_held();
787
788 if (tsk->io_context)
789 exit_io_context(tsk);
790
791 if (tsk->splice_pipe)
792 free_pipe_info(tsk->splice_pipe);
793
794 if (tsk->task_frag.page)
795 put_page(tsk->task_frag.page);
796
797 validate_creds_for_do_exit(tsk);
798
799 check_stack_usage();
800 preempt_disable();
801 if (tsk->nr_dirtied)
802 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
803 exit_rcu();
804 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
805
806 /*
807 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
808 * when the following two conditions become true.
809 * - There is race condition of mmap_sem (It is acquired by
810 * exit_mm()), and
811 * - SMI occurs before setting TASK_RUNINNG.
812 * (or hypervisor of virtual machine switches to other guest)
813 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
814 *
815 * To avoid it, we have to wait for releasing tsk->pi_lock which
816 * is held by try_to_wake_up()
817 */
818 smp_mb();
819 raw_spin_unlock_wait(&tsk->pi_lock);
820
821 /* causes final put_task_struct in finish_task_switch(). */
822 tsk->state = TASK_DEAD;
823 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
824 schedule();
825 BUG();
826 /* Avoid "noreturn function does return". */
827 for (;;)
828 cpu_relax(); /* For when BUG is null */
829 }
830 EXPORT_SYMBOL_GPL(do_exit);
831
complete_and_exit(struct completion * comp,long code)832 void complete_and_exit(struct completion *comp, long code)
833 {
834 if (comp)
835 complete(comp);
836
837 do_exit(code);
838 }
839 EXPORT_SYMBOL(complete_and_exit);
840
SYSCALL_DEFINE1(exit,int,error_code)841 SYSCALL_DEFINE1(exit, int, error_code)
842 {
843 do_exit((error_code&0xff)<<8);
844 }
845
846 /*
847 * Take down every thread in the group. This is called by fatal signals
848 * as well as by sys_exit_group (below).
849 */
850 void
do_group_exit(int exit_code)851 do_group_exit(int exit_code)
852 {
853 struct signal_struct *sig = current->signal;
854
855 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
856
857 if (signal_group_exit(sig))
858 exit_code = sig->group_exit_code;
859 else if (!thread_group_empty(current)) {
860 struct sighand_struct *const sighand = current->sighand;
861
862 spin_lock_irq(&sighand->siglock);
863 if (signal_group_exit(sig))
864 /* Another thread got here before we took the lock. */
865 exit_code = sig->group_exit_code;
866 else {
867 sig->group_exit_code = exit_code;
868 sig->flags = SIGNAL_GROUP_EXIT;
869 zap_other_threads(current);
870 }
871 spin_unlock_irq(&sighand->siglock);
872 }
873
874 do_exit(exit_code);
875 /* NOTREACHED */
876 }
877
878 /*
879 * this kills every thread in the thread group. Note that any externally
880 * wait4()-ing process will get the correct exit code - even if this
881 * thread is not the thread group leader.
882 */
SYSCALL_DEFINE1(exit_group,int,error_code)883 SYSCALL_DEFINE1(exit_group, int, error_code)
884 {
885 do_group_exit((error_code & 0xff) << 8);
886 /* NOTREACHED */
887 return 0;
888 }
889
890 struct wait_opts {
891 enum pid_type wo_type;
892 int wo_flags;
893 struct pid *wo_pid;
894
895 struct siginfo __user *wo_info;
896 int __user *wo_stat;
897 struct rusage __user *wo_rusage;
898
899 wait_queue_t child_wait;
900 int notask_error;
901 };
902
903 static inline
task_pid_type(struct task_struct * task,enum pid_type type)904 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
905 {
906 if (type != PIDTYPE_PID)
907 task = task->group_leader;
908 return task->pids[type].pid;
909 }
910
eligible_pid(struct wait_opts * wo,struct task_struct * p)911 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
912 {
913 return wo->wo_type == PIDTYPE_MAX ||
914 task_pid_type(p, wo->wo_type) == wo->wo_pid;
915 }
916
917 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)918 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
919 {
920 if (!eligible_pid(wo, p))
921 return 0;
922
923 /*
924 * Wait for all children (clone and not) if __WALL is set or
925 * if it is traced by us.
926 */
927 if (ptrace || (wo->wo_flags & __WALL))
928 return 1;
929
930 /*
931 * Otherwise, wait for clone children *only* if __WCLONE is set;
932 * otherwise, wait for non-clone children *only*.
933 *
934 * Note: a "clone" child here is one that reports to its parent
935 * using a signal other than SIGCHLD, or a non-leader thread which
936 * we can only see if it is traced by us.
937 */
938 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
939 return 0;
940
941 return 1;
942 }
943
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)944 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
945 pid_t pid, uid_t uid, int why, int status)
946 {
947 struct siginfo __user *infop;
948 int retval = wo->wo_rusage
949 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
950
951 put_task_struct(p);
952 infop = wo->wo_info;
953 if (infop) {
954 if (!retval)
955 retval = put_user(SIGCHLD, &infop->si_signo);
956 if (!retval)
957 retval = put_user(0, &infop->si_errno);
958 if (!retval)
959 retval = put_user((short)why, &infop->si_code);
960 if (!retval)
961 retval = put_user(pid, &infop->si_pid);
962 if (!retval)
963 retval = put_user(uid, &infop->si_uid);
964 if (!retval)
965 retval = put_user(status, &infop->si_status);
966 }
967 if (!retval)
968 retval = pid;
969 return retval;
970 }
971
972 /*
973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
974 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
975 * the lock and this task is uninteresting. If we return nonzero, we have
976 * released the lock and the system call should return.
977 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)978 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979 {
980 int state, retval, status;
981 pid_t pid = task_pid_vnr(p);
982 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
983 struct siginfo __user *infop;
984
985 if (!likely(wo->wo_flags & WEXITED))
986 return 0;
987
988 if (unlikely(wo->wo_flags & WNOWAIT)) {
989 int exit_code = p->exit_code;
990 int why;
991
992 get_task_struct(p);
993 read_unlock(&tasklist_lock);
994 sched_annotate_sleep();
995
996 if ((exit_code & 0x7f) == 0) {
997 why = CLD_EXITED;
998 status = exit_code >> 8;
999 } else {
1000 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1001 status = exit_code & 0x7f;
1002 }
1003 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1004 }
1005 /*
1006 * Move the task's state to DEAD/TRACE, only one thread can do this.
1007 */
1008 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1009 EXIT_TRACE : EXIT_DEAD;
1010 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 return 0;
1012 /*
1013 * We own this thread, nobody else can reap it.
1014 */
1015 read_unlock(&tasklist_lock);
1016 sched_annotate_sleep();
1017
1018 /*
1019 * Check thread_group_leader() to exclude the traced sub-threads.
1020 */
1021 if (state == EXIT_DEAD && thread_group_leader(p)) {
1022 struct signal_struct *sig = p->signal;
1023 struct signal_struct *psig = current->signal;
1024 unsigned long maxrss;
1025 cputime_t tgutime, tgstime;
1026
1027 /*
1028 * The resource counters for the group leader are in its
1029 * own task_struct. Those for dead threads in the group
1030 * are in its signal_struct, as are those for the child
1031 * processes it has previously reaped. All these
1032 * accumulate in the parent's signal_struct c* fields.
1033 *
1034 * We don't bother to take a lock here to protect these
1035 * p->signal fields because the whole thread group is dead
1036 * and nobody can change them.
1037 *
1038 * psig->stats_lock also protects us from our sub-theads
1039 * which can reap other children at the same time. Until
1040 * we change k_getrusage()-like users to rely on this lock
1041 * we have to take ->siglock as well.
1042 *
1043 * We use thread_group_cputime_adjusted() to get times for
1044 * the thread group, which consolidates times for all threads
1045 * in the group including the group leader.
1046 */
1047 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1048 spin_lock_irq(¤t->sighand->siglock);
1049 write_seqlock(&psig->stats_lock);
1050 psig->cutime += tgutime + sig->cutime;
1051 psig->cstime += tgstime + sig->cstime;
1052 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1053 psig->cmin_flt +=
1054 p->min_flt + sig->min_flt + sig->cmin_flt;
1055 psig->cmaj_flt +=
1056 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1057 psig->cnvcsw +=
1058 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1059 psig->cnivcsw +=
1060 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1061 psig->cinblock +=
1062 task_io_get_inblock(p) +
1063 sig->inblock + sig->cinblock;
1064 psig->coublock +=
1065 task_io_get_oublock(p) +
1066 sig->oublock + sig->coublock;
1067 maxrss = max(sig->maxrss, sig->cmaxrss);
1068 if (psig->cmaxrss < maxrss)
1069 psig->cmaxrss = maxrss;
1070 task_io_accounting_add(&psig->ioac, &p->ioac);
1071 task_io_accounting_add(&psig->ioac, &sig->ioac);
1072 write_sequnlock(&psig->stats_lock);
1073 spin_unlock_irq(¤t->sighand->siglock);
1074 }
1075
1076 retval = wo->wo_rusage
1077 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1078 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 ? p->signal->group_exit_code : p->exit_code;
1080 if (!retval && wo->wo_stat)
1081 retval = put_user(status, wo->wo_stat);
1082
1083 infop = wo->wo_info;
1084 if (!retval && infop)
1085 retval = put_user(SIGCHLD, &infop->si_signo);
1086 if (!retval && infop)
1087 retval = put_user(0, &infop->si_errno);
1088 if (!retval && infop) {
1089 int why;
1090
1091 if ((status & 0x7f) == 0) {
1092 why = CLD_EXITED;
1093 status >>= 8;
1094 } else {
1095 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096 status &= 0x7f;
1097 }
1098 retval = put_user((short)why, &infop->si_code);
1099 if (!retval)
1100 retval = put_user(status, &infop->si_status);
1101 }
1102 if (!retval && infop)
1103 retval = put_user(pid, &infop->si_pid);
1104 if (!retval && infop)
1105 retval = put_user(uid, &infop->si_uid);
1106 if (!retval)
1107 retval = pid;
1108
1109 if (state == EXIT_TRACE) {
1110 write_lock_irq(&tasklist_lock);
1111 /* We dropped tasklist, ptracer could die and untrace */
1112 ptrace_unlink(p);
1113
1114 /* If parent wants a zombie, don't release it now */
1115 state = EXIT_ZOMBIE;
1116 if (do_notify_parent(p, p->exit_signal))
1117 state = EXIT_DEAD;
1118 p->exit_state = state;
1119 write_unlock_irq(&tasklist_lock);
1120 }
1121 if (state == EXIT_DEAD)
1122 release_task(p);
1123
1124 return retval;
1125 }
1126
task_stopped_code(struct task_struct * p,bool ptrace)1127 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 {
1129 if (ptrace) {
1130 if (task_is_stopped_or_traced(p) &&
1131 !(p->jobctl & JOBCTL_LISTENING))
1132 return &p->exit_code;
1133 } else {
1134 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135 return &p->signal->group_exit_code;
1136 }
1137 return NULL;
1138 }
1139
1140 /**
1141 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1142 * @wo: wait options
1143 * @ptrace: is the wait for ptrace
1144 * @p: task to wait for
1145 *
1146 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147 *
1148 * CONTEXT:
1149 * read_lock(&tasklist_lock), which is released if return value is
1150 * non-zero. Also, grabs and releases @p->sighand->siglock.
1151 *
1152 * RETURNS:
1153 * 0 if wait condition didn't exist and search for other wait conditions
1154 * should continue. Non-zero return, -errno on failure and @p's pid on
1155 * success, implies that tasklist_lock is released and wait condition
1156 * search should terminate.
1157 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1158 static int wait_task_stopped(struct wait_opts *wo,
1159 int ptrace, struct task_struct *p)
1160 {
1161 struct siginfo __user *infop;
1162 int retval, exit_code, *p_code, why;
1163 uid_t uid = 0; /* unneeded, required by compiler */
1164 pid_t pid;
1165
1166 /*
1167 * Traditionally we see ptrace'd stopped tasks regardless of options.
1168 */
1169 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1170 return 0;
1171
1172 if (!task_stopped_code(p, ptrace))
1173 return 0;
1174
1175 exit_code = 0;
1176 spin_lock_irq(&p->sighand->siglock);
1177
1178 p_code = task_stopped_code(p, ptrace);
1179 if (unlikely(!p_code))
1180 goto unlock_sig;
1181
1182 exit_code = *p_code;
1183 if (!exit_code)
1184 goto unlock_sig;
1185
1186 if (!unlikely(wo->wo_flags & WNOWAIT))
1187 *p_code = 0;
1188
1189 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1190 unlock_sig:
1191 spin_unlock_irq(&p->sighand->siglock);
1192 if (!exit_code)
1193 return 0;
1194
1195 /*
1196 * Now we are pretty sure this task is interesting.
1197 * Make sure it doesn't get reaped out from under us while we
1198 * give up the lock and then examine it below. We don't want to
1199 * keep holding onto the tasklist_lock while we call getrusage and
1200 * possibly take page faults for user memory.
1201 */
1202 get_task_struct(p);
1203 pid = task_pid_vnr(p);
1204 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205 read_unlock(&tasklist_lock);
1206 sched_annotate_sleep();
1207
1208 if (unlikely(wo->wo_flags & WNOWAIT))
1209 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1210
1211 retval = wo->wo_rusage
1212 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1213 if (!retval && wo->wo_stat)
1214 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1215
1216 infop = wo->wo_info;
1217 if (!retval && infop)
1218 retval = put_user(SIGCHLD, &infop->si_signo);
1219 if (!retval && infop)
1220 retval = put_user(0, &infop->si_errno);
1221 if (!retval && infop)
1222 retval = put_user((short)why, &infop->si_code);
1223 if (!retval && infop)
1224 retval = put_user(exit_code, &infop->si_status);
1225 if (!retval && infop)
1226 retval = put_user(pid, &infop->si_pid);
1227 if (!retval && infop)
1228 retval = put_user(uid, &infop->si_uid);
1229 if (!retval)
1230 retval = pid;
1231 put_task_struct(p);
1232
1233 BUG_ON(!retval);
1234 return retval;
1235 }
1236
1237 /*
1238 * Handle do_wait work for one task in a live, non-stopped state.
1239 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1240 * the lock and this task is uninteresting. If we return nonzero, we have
1241 * released the lock and the system call should return.
1242 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1244 {
1245 int retval;
1246 pid_t pid;
1247 uid_t uid;
1248
1249 if (!unlikely(wo->wo_flags & WCONTINUED))
1250 return 0;
1251
1252 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253 return 0;
1254
1255 spin_lock_irq(&p->sighand->siglock);
1256 /* Re-check with the lock held. */
1257 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258 spin_unlock_irq(&p->sighand->siglock);
1259 return 0;
1260 }
1261 if (!unlikely(wo->wo_flags & WNOWAIT))
1262 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264 spin_unlock_irq(&p->sighand->siglock);
1265
1266 pid = task_pid_vnr(p);
1267 get_task_struct(p);
1268 read_unlock(&tasklist_lock);
1269 sched_annotate_sleep();
1270
1271 if (!wo->wo_info) {
1272 retval = wo->wo_rusage
1273 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1274 put_task_struct(p);
1275 if (!retval && wo->wo_stat)
1276 retval = put_user(0xffff, wo->wo_stat);
1277 if (!retval)
1278 retval = pid;
1279 } else {
1280 retval = wait_noreap_copyout(wo, p, pid, uid,
1281 CLD_CONTINUED, SIGCONT);
1282 BUG_ON(retval == 0);
1283 }
1284
1285 return retval;
1286 }
1287
1288 /*
1289 * Consider @p for a wait by @parent.
1290 *
1291 * -ECHILD should be in ->notask_error before the first call.
1292 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1293 * Returns zero if the search for a child should continue;
1294 * then ->notask_error is 0 if @p is an eligible child,
1295 * or another error from security_task_wait(), or still -ECHILD.
1296 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1297 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1298 struct task_struct *p)
1299 {
1300 /*
1301 * We can race with wait_task_zombie() from another thread.
1302 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1303 * can't confuse the checks below.
1304 */
1305 int exit_state = ACCESS_ONCE(p->exit_state);
1306 int ret;
1307
1308 if (unlikely(exit_state == EXIT_DEAD))
1309 return 0;
1310
1311 ret = eligible_child(wo, ptrace, p);
1312 if (!ret)
1313 return ret;
1314
1315 ret = security_task_wait(p);
1316 if (unlikely(ret < 0)) {
1317 /*
1318 * If we have not yet seen any eligible child,
1319 * then let this error code replace -ECHILD.
1320 * A permission error will give the user a clue
1321 * to look for security policy problems, rather
1322 * than for mysterious wait bugs.
1323 */
1324 if (wo->notask_error)
1325 wo->notask_error = ret;
1326 return 0;
1327 }
1328
1329 if (unlikely(exit_state == EXIT_TRACE)) {
1330 /*
1331 * ptrace == 0 means we are the natural parent. In this case
1332 * we should clear notask_error, debugger will notify us.
1333 */
1334 if (likely(!ptrace))
1335 wo->notask_error = 0;
1336 return 0;
1337 }
1338
1339 if (likely(!ptrace) && unlikely(p->ptrace)) {
1340 /*
1341 * If it is traced by its real parent's group, just pretend
1342 * the caller is ptrace_do_wait() and reap this child if it
1343 * is zombie.
1344 *
1345 * This also hides group stop state from real parent; otherwise
1346 * a single stop can be reported twice as group and ptrace stop.
1347 * If a ptracer wants to distinguish these two events for its
1348 * own children it should create a separate process which takes
1349 * the role of real parent.
1350 */
1351 if (!ptrace_reparented(p))
1352 ptrace = 1;
1353 }
1354
1355 /* slay zombie? */
1356 if (exit_state == EXIT_ZOMBIE) {
1357 /* we don't reap group leaders with subthreads */
1358 if (!delay_group_leader(p)) {
1359 /*
1360 * A zombie ptracee is only visible to its ptracer.
1361 * Notification and reaping will be cascaded to the
1362 * real parent when the ptracer detaches.
1363 */
1364 if (unlikely(ptrace) || likely(!p->ptrace))
1365 return wait_task_zombie(wo, p);
1366 }
1367
1368 /*
1369 * Allow access to stopped/continued state via zombie by
1370 * falling through. Clearing of notask_error is complex.
1371 *
1372 * When !@ptrace:
1373 *
1374 * If WEXITED is set, notask_error should naturally be
1375 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1376 * so, if there are live subthreads, there are events to
1377 * wait for. If all subthreads are dead, it's still safe
1378 * to clear - this function will be called again in finite
1379 * amount time once all the subthreads are released and
1380 * will then return without clearing.
1381 *
1382 * When @ptrace:
1383 *
1384 * Stopped state is per-task and thus can't change once the
1385 * target task dies. Only continued and exited can happen.
1386 * Clear notask_error if WCONTINUED | WEXITED.
1387 */
1388 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1389 wo->notask_error = 0;
1390 } else {
1391 /*
1392 * @p is alive and it's gonna stop, continue or exit, so
1393 * there always is something to wait for.
1394 */
1395 wo->notask_error = 0;
1396 }
1397
1398 /*
1399 * Wait for stopped. Depending on @ptrace, different stopped state
1400 * is used and the two don't interact with each other.
1401 */
1402 ret = wait_task_stopped(wo, ptrace, p);
1403 if (ret)
1404 return ret;
1405
1406 /*
1407 * Wait for continued. There's only one continued state and the
1408 * ptracer can consume it which can confuse the real parent. Don't
1409 * use WCONTINUED from ptracer. You don't need or want it.
1410 */
1411 return wait_task_continued(wo, p);
1412 }
1413
1414 /*
1415 * Do the work of do_wait() for one thread in the group, @tsk.
1416 *
1417 * -ECHILD should be in ->notask_error before the first call.
1418 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1419 * Returns zero if the search for a child should continue; then
1420 * ->notask_error is 0 if there were any eligible children,
1421 * or another error from security_task_wait(), or still -ECHILD.
1422 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1423 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1424 {
1425 struct task_struct *p;
1426
1427 list_for_each_entry(p, &tsk->children, sibling) {
1428 int ret = wait_consider_task(wo, 0, p);
1429
1430 if (ret)
1431 return ret;
1432 }
1433
1434 return 0;
1435 }
1436
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1437 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1438 {
1439 struct task_struct *p;
1440
1441 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1442 int ret = wait_consider_task(wo, 1, p);
1443
1444 if (ret)
1445 return ret;
1446 }
1447
1448 return 0;
1449 }
1450
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1451 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1452 int sync, void *key)
1453 {
1454 struct wait_opts *wo = container_of(wait, struct wait_opts,
1455 child_wait);
1456 struct task_struct *p = key;
1457
1458 if (!eligible_pid(wo, p))
1459 return 0;
1460
1461 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1462 return 0;
1463
1464 return default_wake_function(wait, mode, sync, key);
1465 }
1466
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1467 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1468 {
1469 __wake_up_sync_key(&parent->signal->wait_chldexit,
1470 TASK_INTERRUPTIBLE, 1, p);
1471 }
1472
do_wait(struct wait_opts * wo)1473 static long do_wait(struct wait_opts *wo)
1474 {
1475 struct task_struct *tsk;
1476 int retval;
1477
1478 trace_sched_process_wait(wo->wo_pid);
1479
1480 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1481 wo->child_wait.private = current;
1482 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1483 repeat:
1484 /*
1485 * If there is nothing that can match our criteria, just get out.
1486 * We will clear ->notask_error to zero if we see any child that
1487 * might later match our criteria, even if we are not able to reap
1488 * it yet.
1489 */
1490 wo->notask_error = -ECHILD;
1491 if ((wo->wo_type < PIDTYPE_MAX) &&
1492 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1493 goto notask;
1494
1495 set_current_state(TASK_INTERRUPTIBLE);
1496 read_lock(&tasklist_lock);
1497 tsk = current;
1498 do {
1499 retval = do_wait_thread(wo, tsk);
1500 if (retval)
1501 goto end;
1502
1503 retval = ptrace_do_wait(wo, tsk);
1504 if (retval)
1505 goto end;
1506
1507 if (wo->wo_flags & __WNOTHREAD)
1508 break;
1509 } while_each_thread(current, tsk);
1510 read_unlock(&tasklist_lock);
1511
1512 notask:
1513 retval = wo->notask_error;
1514 if (!retval && !(wo->wo_flags & WNOHANG)) {
1515 retval = -ERESTARTSYS;
1516 if (!signal_pending(current)) {
1517 schedule();
1518 goto repeat;
1519 }
1520 }
1521 end:
1522 __set_current_state(TASK_RUNNING);
1523 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1524 return retval;
1525 }
1526
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1527 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1528 infop, int, options, struct rusage __user *, ru)
1529 {
1530 struct wait_opts wo;
1531 struct pid *pid = NULL;
1532 enum pid_type type;
1533 long ret;
1534
1535 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1536 return -EINVAL;
1537 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1538 return -EINVAL;
1539
1540 switch (which) {
1541 case P_ALL:
1542 type = PIDTYPE_MAX;
1543 break;
1544 case P_PID:
1545 type = PIDTYPE_PID;
1546 if (upid <= 0)
1547 return -EINVAL;
1548 break;
1549 case P_PGID:
1550 type = PIDTYPE_PGID;
1551 if (upid <= 0)
1552 return -EINVAL;
1553 break;
1554 default:
1555 return -EINVAL;
1556 }
1557
1558 if (type < PIDTYPE_MAX)
1559 pid = find_get_pid(upid);
1560
1561 wo.wo_type = type;
1562 wo.wo_pid = pid;
1563 wo.wo_flags = options;
1564 wo.wo_info = infop;
1565 wo.wo_stat = NULL;
1566 wo.wo_rusage = ru;
1567 ret = do_wait(&wo);
1568
1569 if (ret > 0) {
1570 ret = 0;
1571 } else if (infop) {
1572 /*
1573 * For a WNOHANG return, clear out all the fields
1574 * we would set so the user can easily tell the
1575 * difference.
1576 */
1577 if (!ret)
1578 ret = put_user(0, &infop->si_signo);
1579 if (!ret)
1580 ret = put_user(0, &infop->si_errno);
1581 if (!ret)
1582 ret = put_user(0, &infop->si_code);
1583 if (!ret)
1584 ret = put_user(0, &infop->si_pid);
1585 if (!ret)
1586 ret = put_user(0, &infop->si_uid);
1587 if (!ret)
1588 ret = put_user(0, &infop->si_status);
1589 }
1590
1591 put_pid(pid);
1592 return ret;
1593 }
1594
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1595 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1596 int, options, struct rusage __user *, ru)
1597 {
1598 struct wait_opts wo;
1599 struct pid *pid = NULL;
1600 enum pid_type type;
1601 long ret;
1602
1603 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1604 __WNOTHREAD|__WCLONE|__WALL))
1605 return -EINVAL;
1606
1607 /* -INT_MIN is not defined */
1608 if (upid == INT_MIN)
1609 return -ESRCH;
1610
1611 if (upid == -1)
1612 type = PIDTYPE_MAX;
1613 else if (upid < 0) {
1614 type = PIDTYPE_PGID;
1615 pid = find_get_pid(-upid);
1616 } else if (upid == 0) {
1617 type = PIDTYPE_PGID;
1618 pid = get_task_pid(current, PIDTYPE_PGID);
1619 } else /* upid > 0 */ {
1620 type = PIDTYPE_PID;
1621 pid = find_get_pid(upid);
1622 }
1623
1624 wo.wo_type = type;
1625 wo.wo_pid = pid;
1626 wo.wo_flags = options | WEXITED;
1627 wo.wo_info = NULL;
1628 wo.wo_stat = stat_addr;
1629 wo.wo_rusage = ru;
1630 ret = do_wait(&wo);
1631 put_pid(pid);
1632
1633 return ret;
1634 }
1635
1636 #ifdef __ARCH_WANT_SYS_WAITPID
1637
1638 /*
1639 * sys_waitpid() remains for compatibility. waitpid() should be
1640 * implemented by calling sys_wait4() from libc.a.
1641 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1642 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1643 {
1644 return sys_wait4(pid, stat_addr, options, NULL);
1645 }
1646
1647 #endif
1648