• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27 
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interract with frontbuffer
38  * conmpression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unecessary stalls on gen2/3. Therefore code must
50  * explictly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57 
i965_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)58 static void i965_write_fence_reg(struct drm_device *dev, int reg,
59 				 struct drm_i915_gem_object *obj)
60 {
61 	struct drm_i915_private *dev_priv = dev->dev_private;
62 	int fence_reg_lo, fence_reg_hi;
63 	int fence_pitch_shift;
64 
65 	if (INTEL_INFO(dev)->gen >= 6) {
66 		fence_reg_lo = FENCE_REG_GEN6_LO(reg);
67 		fence_reg_hi = FENCE_REG_GEN6_HI(reg);
68 		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
69 	} else {
70 		fence_reg_lo = FENCE_REG_965_LO(reg);
71 		fence_reg_hi = FENCE_REG_965_HI(reg);
72 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
73 	}
74 
75 	/* To w/a incoherency with non-atomic 64-bit register updates,
76 	 * we split the 64-bit update into two 32-bit writes. In order
77 	 * for a partial fence not to be evaluated between writes, we
78 	 * precede the update with write to turn off the fence register,
79 	 * and only enable the fence as the last step.
80 	 *
81 	 * For extra levels of paranoia, we make sure each step lands
82 	 * before applying the next step.
83 	 */
84 	I915_WRITE(fence_reg_lo, 0);
85 	POSTING_READ(fence_reg_lo);
86 
87 	if (obj) {
88 		u32 size = i915_gem_obj_ggtt_size(obj);
89 		uint64_t val;
90 
91 		/* Adjust fence size to match tiled area */
92 		if (obj->tiling_mode != I915_TILING_NONE) {
93 			uint32_t row_size = obj->stride *
94 				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
95 			size = (size / row_size) * row_size;
96 		}
97 
98 		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
99 				 0xfffff000) << 32;
100 		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
101 		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
102 		if (obj->tiling_mode == I915_TILING_Y)
103 			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
104 		val |= I965_FENCE_REG_VALID;
105 
106 		I915_WRITE(fence_reg_hi, val >> 32);
107 		POSTING_READ(fence_reg_hi);
108 
109 		I915_WRITE(fence_reg_lo, val);
110 		POSTING_READ(fence_reg_lo);
111 	} else {
112 		I915_WRITE(fence_reg_hi, 0);
113 		POSTING_READ(fence_reg_hi);
114 	}
115 }
116 
i915_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)117 static void i915_write_fence_reg(struct drm_device *dev, int reg,
118 				 struct drm_i915_gem_object *obj)
119 {
120 	struct drm_i915_private *dev_priv = dev->dev_private;
121 	u32 val;
122 
123 	if (obj) {
124 		u32 size = i915_gem_obj_ggtt_size(obj);
125 		int pitch_val;
126 		int tile_width;
127 
128 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
129 		     (size & -size) != size ||
130 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
131 		     "object 0x%08llx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
132 		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
133 
134 		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
135 			tile_width = 128;
136 		else
137 			tile_width = 512;
138 
139 		/* Note: pitch better be a power of two tile widths */
140 		pitch_val = obj->stride / tile_width;
141 		pitch_val = ffs(pitch_val) - 1;
142 
143 		val = i915_gem_obj_ggtt_offset(obj);
144 		if (obj->tiling_mode == I915_TILING_Y)
145 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
146 		val |= I915_FENCE_SIZE_BITS(size);
147 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
148 		val |= I830_FENCE_REG_VALID;
149 	} else
150 		val = 0;
151 
152 	I915_WRITE(FENCE_REG(reg), val);
153 	POSTING_READ(FENCE_REG(reg));
154 }
155 
i830_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)156 static void i830_write_fence_reg(struct drm_device *dev, int reg,
157 				struct drm_i915_gem_object *obj)
158 {
159 	struct drm_i915_private *dev_priv = dev->dev_private;
160 	uint32_t val;
161 
162 	if (obj) {
163 		u32 size = i915_gem_obj_ggtt_size(obj);
164 		uint32_t pitch_val;
165 
166 		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
167 		     (size & -size) != size ||
168 		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
169 		     "object 0x%08llx not 512K or pot-size 0x%08x aligned\n",
170 		     i915_gem_obj_ggtt_offset(obj), size);
171 
172 		pitch_val = obj->stride / 128;
173 		pitch_val = ffs(pitch_val) - 1;
174 
175 		val = i915_gem_obj_ggtt_offset(obj);
176 		if (obj->tiling_mode == I915_TILING_Y)
177 			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
178 		val |= I830_FENCE_SIZE_BITS(size);
179 		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
180 		val |= I830_FENCE_REG_VALID;
181 	} else
182 		val = 0;
183 
184 	I915_WRITE(FENCE_REG(reg), val);
185 	POSTING_READ(FENCE_REG(reg));
186 }
187 
i915_gem_object_needs_mb(struct drm_i915_gem_object * obj)188 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
189 {
190 	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
191 }
192 
i915_gem_write_fence(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)193 static void i915_gem_write_fence(struct drm_device *dev, int reg,
194 				 struct drm_i915_gem_object *obj)
195 {
196 	struct drm_i915_private *dev_priv = dev->dev_private;
197 
198 	/* Ensure that all CPU reads are completed before installing a fence
199 	 * and all writes before removing the fence.
200 	 */
201 	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
202 		mb();
203 
204 	WARN(obj && (!obj->stride || !obj->tiling_mode),
205 	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
206 	     obj->stride, obj->tiling_mode);
207 
208 	if (IS_GEN2(dev))
209 		i830_write_fence_reg(dev, reg, obj);
210 	else if (IS_GEN3(dev))
211 		i915_write_fence_reg(dev, reg, obj);
212 	else if (INTEL_INFO(dev)->gen >= 4)
213 		i965_write_fence_reg(dev, reg, obj);
214 
215 	/* And similarly be paranoid that no direct access to this region
216 	 * is reordered to before the fence is installed.
217 	 */
218 	if (i915_gem_object_needs_mb(obj))
219 		mb();
220 }
221 
fence_number(struct drm_i915_private * dev_priv,struct drm_i915_fence_reg * fence)222 static inline int fence_number(struct drm_i915_private *dev_priv,
223 			       struct drm_i915_fence_reg *fence)
224 {
225 	return fence - dev_priv->fence_regs;
226 }
227 
i915_gem_object_update_fence(struct drm_i915_gem_object * obj,struct drm_i915_fence_reg * fence,bool enable)228 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
229 					 struct drm_i915_fence_reg *fence,
230 					 bool enable)
231 {
232 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
233 	int reg = fence_number(dev_priv, fence);
234 
235 	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
236 
237 	if (enable) {
238 		obj->fence_reg = reg;
239 		fence->obj = obj;
240 		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
241 	} else {
242 		obj->fence_reg = I915_FENCE_REG_NONE;
243 		fence->obj = NULL;
244 		list_del_init(&fence->lru_list);
245 	}
246 	obj->fence_dirty = false;
247 }
248 
i915_gem_object_fence_lost(struct drm_i915_gem_object * obj)249 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
250 {
251 	if (obj->tiling_mode)
252 		i915_gem_release_mmap(obj);
253 
254 	/* As we do not have an associated fence register, we will force
255 	 * a tiling change if we ever need to acquire one.
256 	 */
257 	obj->fence_dirty = false;
258 	obj->fence_reg = I915_FENCE_REG_NONE;
259 }
260 
261 static int
i915_gem_object_wait_fence(struct drm_i915_gem_object * obj)262 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
263 {
264 	if (obj->last_fenced_req) {
265 		int ret = i915_wait_request(obj->last_fenced_req);
266 		if (ret)
267 			return ret;
268 
269 		i915_gem_request_assign(&obj->last_fenced_req, NULL);
270 	}
271 
272 	return 0;
273 }
274 
275 /**
276  * i915_gem_object_put_fence - force-remove fence for an object
277  * @obj: object to map through a fence reg
278  *
279  * This function force-removes any fence from the given object, which is useful
280  * if the kernel wants to do untiled GTT access.
281  *
282  * Returns:
283  *
284  * 0 on success, negative error code on failure.
285  */
286 int
i915_gem_object_put_fence(struct drm_i915_gem_object * obj)287 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
288 {
289 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
290 	struct drm_i915_fence_reg *fence;
291 	int ret;
292 
293 	ret = i915_gem_object_wait_fence(obj);
294 	if (ret)
295 		return ret;
296 
297 	if (obj->fence_reg == I915_FENCE_REG_NONE)
298 		return 0;
299 
300 	fence = &dev_priv->fence_regs[obj->fence_reg];
301 
302 	if (WARN_ON(fence->pin_count))
303 		return -EBUSY;
304 
305 	i915_gem_object_fence_lost(obj);
306 	i915_gem_object_update_fence(obj, fence, false);
307 
308 	return 0;
309 }
310 
311 static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device * dev)312 i915_find_fence_reg(struct drm_device *dev)
313 {
314 	struct drm_i915_private *dev_priv = dev->dev_private;
315 	struct drm_i915_fence_reg *reg, *avail;
316 	int i;
317 
318 	/* First try to find a free reg */
319 	avail = NULL;
320 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
321 		reg = &dev_priv->fence_regs[i];
322 		if (!reg->obj)
323 			return reg;
324 
325 		if (!reg->pin_count)
326 			avail = reg;
327 	}
328 
329 	if (avail == NULL)
330 		goto deadlock;
331 
332 	/* None available, try to steal one or wait for a user to finish */
333 	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
334 		if (reg->pin_count)
335 			continue;
336 
337 		return reg;
338 	}
339 
340 deadlock:
341 	/* Wait for completion of pending flips which consume fences */
342 	if (intel_has_pending_fb_unpin(dev))
343 		return ERR_PTR(-EAGAIN);
344 
345 	return ERR_PTR(-EDEADLK);
346 }
347 
348 /**
349  * i915_gem_object_get_fence - set up fencing for an object
350  * @obj: object to map through a fence reg
351  *
352  * When mapping objects through the GTT, userspace wants to be able to write
353  * to them without having to worry about swizzling if the object is tiled.
354  * This function walks the fence regs looking for a free one for @obj,
355  * stealing one if it can't find any.
356  *
357  * It then sets up the reg based on the object's properties: address, pitch
358  * and tiling format.
359  *
360  * For an untiled surface, this removes any existing fence.
361  *
362  * Returns:
363  *
364  * 0 on success, negative error code on failure.
365  */
366 int
i915_gem_object_get_fence(struct drm_i915_gem_object * obj)367 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
368 {
369 	struct drm_device *dev = obj->base.dev;
370 	struct drm_i915_private *dev_priv = dev->dev_private;
371 	bool enable = obj->tiling_mode != I915_TILING_NONE;
372 	struct drm_i915_fence_reg *reg;
373 	int ret;
374 
375 	/* Have we updated the tiling parameters upon the object and so
376 	 * will need to serialise the write to the associated fence register?
377 	 */
378 	if (obj->fence_dirty) {
379 		ret = i915_gem_object_wait_fence(obj);
380 		if (ret)
381 			return ret;
382 	}
383 
384 	/* Just update our place in the LRU if our fence is getting reused. */
385 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
386 		reg = &dev_priv->fence_regs[obj->fence_reg];
387 		if (!obj->fence_dirty) {
388 			list_move_tail(&reg->lru_list,
389 				       &dev_priv->mm.fence_list);
390 			return 0;
391 		}
392 	} else if (enable) {
393 		if (WARN_ON(!obj->map_and_fenceable))
394 			return -EINVAL;
395 
396 		reg = i915_find_fence_reg(dev);
397 		if (IS_ERR(reg))
398 			return PTR_ERR(reg);
399 
400 		if (reg->obj) {
401 			struct drm_i915_gem_object *old = reg->obj;
402 
403 			ret = i915_gem_object_wait_fence(old);
404 			if (ret)
405 				return ret;
406 
407 			i915_gem_object_fence_lost(old);
408 		}
409 	} else
410 		return 0;
411 
412 	i915_gem_object_update_fence(obj, reg, enable);
413 
414 	return 0;
415 }
416 
417 /**
418  * i915_gem_object_pin_fence - pin fencing state
419  * @obj: object to pin fencing for
420  *
421  * This pins the fencing state (whether tiled or untiled) to make sure the
422  * object is ready to be used as a scanout target. Fencing status must be
423  * synchronize first by calling i915_gem_object_get_fence():
424  *
425  * The resulting fence pin reference must be released again with
426  * i915_gem_object_unpin_fence().
427  *
428  * Returns:
429  *
430  * True if the object has a fence, false otherwise.
431  */
432 bool
i915_gem_object_pin_fence(struct drm_i915_gem_object * obj)433 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
434 {
435 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
436 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
437 		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
438 
439 		WARN_ON(!ggtt_vma ||
440 			dev_priv->fence_regs[obj->fence_reg].pin_count >
441 			ggtt_vma->pin_count);
442 		dev_priv->fence_regs[obj->fence_reg].pin_count++;
443 		return true;
444 	} else
445 		return false;
446 }
447 
448 /**
449  * i915_gem_object_unpin_fence - unpin fencing state
450  * @obj: object to unpin fencing for
451  *
452  * This releases the fence pin reference acquired through
453  * i915_gem_object_pin_fence. It will handle both objects with and without an
454  * attached fence correctly, callers do not need to distinguish this.
455  */
456 void
i915_gem_object_unpin_fence(struct drm_i915_gem_object * obj)457 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
458 {
459 	if (obj->fence_reg != I915_FENCE_REG_NONE) {
460 		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
461 		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
462 		dev_priv->fence_regs[obj->fence_reg].pin_count--;
463 	}
464 }
465 
466 /**
467  * i915_gem_restore_fences - restore fence state
468  * @dev: DRM device
469  *
470  * Restore the hw fence state to match the software tracking again, to be called
471  * after a gpu reset and on resume.
472  */
i915_gem_restore_fences(struct drm_device * dev)473 void i915_gem_restore_fences(struct drm_device *dev)
474 {
475 	struct drm_i915_private *dev_priv = dev->dev_private;
476 	int i;
477 
478 	for (i = 0; i < dev_priv->num_fence_regs; i++) {
479 		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
480 
481 		/*
482 		 * Commit delayed tiling changes if we have an object still
483 		 * attached to the fence, otherwise just clear the fence.
484 		 */
485 		if (reg->obj) {
486 			i915_gem_object_update_fence(reg->obj, reg,
487 						     reg->obj->tiling_mode);
488 		} else {
489 			i915_gem_write_fence(dev, i, NULL);
490 		}
491 	}
492 }
493 
494 /**
495  * DOC: tiling swizzling details
496  *
497  * The idea behind tiling is to increase cache hit rates by rearranging
498  * pixel data so that a group of pixel accesses are in the same cacheline.
499  * Performance improvement from doing this on the back/depth buffer are on
500  * the order of 30%.
501  *
502  * Intel architectures make this somewhat more complicated, though, by
503  * adjustments made to addressing of data when the memory is in interleaved
504  * mode (matched pairs of DIMMS) to improve memory bandwidth.
505  * For interleaved memory, the CPU sends every sequential 64 bytes
506  * to an alternate memory channel so it can get the bandwidth from both.
507  *
508  * The GPU also rearranges its accesses for increased bandwidth to interleaved
509  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
510  * it does it a little differently, since one walks addresses not just in the
511  * X direction but also Y.  So, along with alternating channels when bit
512  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
513  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
514  * are common to both the 915 and 965-class hardware.
515  *
516  * The CPU also sometimes XORs in higher bits as well, to improve
517  * bandwidth doing strided access like we do so frequently in graphics.  This
518  * is called "Channel XOR Randomization" in the MCH documentation.  The result
519  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
520  * decode.
521  *
522  * All of this bit 6 XORing has an effect on our memory management,
523  * as we need to make sure that the 3d driver can correctly address object
524  * contents.
525  *
526  * If we don't have interleaved memory, all tiling is safe and no swizzling is
527  * required.
528  *
529  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
530  * 17 is not just a page offset, so as we page an objet out and back in,
531  * individual pages in it will have different bit 17 addresses, resulting in
532  * each 64 bytes being swapped with its neighbor!
533  *
534  * Otherwise, if interleaved, we have to tell the 3d driver what the address
535  * swizzling it needs to do is, since it's writing with the CPU to the pages
536  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
537  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
538  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
539  * to match what the GPU expects.
540  */
541 
542 /**
543  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
544  * @dev: DRM device
545  *
546  * Detects bit 6 swizzling of address lookup between IGD access and CPU
547  * access through main memory.
548  */
549 void
i915_gem_detect_bit_6_swizzle(struct drm_device * dev)550 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
551 {
552 	struct drm_i915_private *dev_priv = dev->dev_private;
553 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
554 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
555 
556 	if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
557 		/*
558 		 * On BDW+, swizzling is not used. We leave the CPU memory
559 		 * controller in charge of optimizing memory accesses without
560 		 * the extra address manipulation GPU side.
561 		 *
562 		 * VLV and CHV don't have GPU swizzling.
563 		 */
564 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
565 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
566 	} else if (INTEL_INFO(dev)->gen >= 6) {
567 		if (dev_priv->preserve_bios_swizzle) {
568 			if (I915_READ(DISP_ARB_CTL) &
569 			    DISP_TILE_SURFACE_SWIZZLING) {
570 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
571 				swizzle_y = I915_BIT_6_SWIZZLE_9;
572 			} else {
573 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
574 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
575 			}
576 		} else {
577 			uint32_t dimm_c0, dimm_c1;
578 			dimm_c0 = I915_READ(MAD_DIMM_C0);
579 			dimm_c1 = I915_READ(MAD_DIMM_C1);
580 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
581 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
582 			/* Enable swizzling when the channels are populated
583 			 * with identically sized dimms. We don't need to check
584 			 * the 3rd channel because no cpu with gpu attached
585 			 * ships in that configuration. Also, swizzling only
586 			 * makes sense for 2 channels anyway. */
587 			if (dimm_c0 == dimm_c1) {
588 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
589 				swizzle_y = I915_BIT_6_SWIZZLE_9;
590 			} else {
591 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
592 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
593 			}
594 		}
595 	} else if (IS_GEN5(dev)) {
596 		/* On Ironlake whatever DRAM config, GPU always do
597 		 * same swizzling setup.
598 		 */
599 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
600 		swizzle_y = I915_BIT_6_SWIZZLE_9;
601 	} else if (IS_GEN2(dev)) {
602 		/* As far as we know, the 865 doesn't have these bit 6
603 		 * swizzling issues.
604 		 */
605 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
606 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
607 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
608 		uint32_t dcc;
609 
610 		/* On 9xx chipsets, channel interleave by the CPU is
611 		 * determined by DCC.  For single-channel, neither the CPU
612 		 * nor the GPU do swizzling.  For dual channel interleaved,
613 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
614 		 * 9 for Y tiled.  The CPU's interleave is independent, and
615 		 * can be based on either bit 11 (haven't seen this yet) or
616 		 * bit 17 (common).
617 		 */
618 		dcc = I915_READ(DCC);
619 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
620 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
621 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
622 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
623 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
624 			break;
625 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
626 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
627 				/* This is the base swizzling by the GPU for
628 				 * tiled buffers.
629 				 */
630 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
631 				swizzle_y = I915_BIT_6_SWIZZLE_9;
632 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
633 				/* Bit 11 swizzling by the CPU in addition. */
634 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
635 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
636 			} else {
637 				/* Bit 17 swizzling by the CPU in addition. */
638 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
639 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
640 			}
641 			break;
642 		}
643 
644 		/* check for L-shaped memory aka modified enhanced addressing */
645 		if (IS_GEN4(dev) &&
646 		    !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
647 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
648 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
649 		}
650 
651 		if (dcc == 0xffffffff) {
652 			DRM_ERROR("Couldn't read from MCHBAR.  "
653 				  "Disabling tiling.\n");
654 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
655 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
656 		}
657 	} else {
658 		/* The 965, G33, and newer, have a very flexible memory
659 		 * configuration.  It will enable dual-channel mode
660 		 * (interleaving) on as much memory as it can, and the GPU
661 		 * will additionally sometimes enable different bit 6
662 		 * swizzling for tiled objects from the CPU.
663 		 *
664 		 * Here's what I found on the G965:
665 		 *    slot fill         memory size  swizzling
666 		 * 0A   0B   1A   1B    1-ch   2-ch
667 		 * 512  0    0    0     512    0     O
668 		 * 512  0    512  0     16     1008  X
669 		 * 512  0    0    512   16     1008  X
670 		 * 0    512  0    512   16     1008  X
671 		 * 1024 1024 1024 0     2048   1024  O
672 		 *
673 		 * We could probably detect this based on either the DRB
674 		 * matching, which was the case for the swizzling required in
675 		 * the table above, or from the 1-ch value being less than
676 		 * the minimum size of a rank.
677 		 *
678 		 * Reports indicate that the swizzling actually
679 		 * varies depending upon page placement inside the
680 		 * channels, i.e. we see swizzled pages where the
681 		 * banks of memory are paired and unswizzled on the
682 		 * uneven portion, so leave that as unknown.
683 		 */
684 		if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
685 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
686 			swizzle_y = I915_BIT_6_SWIZZLE_9;
687 		}
688 	}
689 
690 	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
691 	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
692 		/* Userspace likes to explode if it sees unknown swizzling,
693 		 * so lie. We will finish the lie when reporting through
694 		 * the get-tiling-ioctl by reporting the physical swizzle
695 		 * mode as unknown instead.
696 		 *
697 		 * As we don't strictly know what the swizzling is, it may be
698 		 * bit17 dependent, and so we need to also prevent the pages
699 		 * from being moved.
700 		 */
701 		dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
702 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
703 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
704 	}
705 
706 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
707 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
708 }
709 
710 /*
711  * Swap every 64 bytes of this page around, to account for it having a new
712  * bit 17 of its physical address and therefore being interpreted differently
713  * by the GPU.
714  */
715 static void
i915_gem_swizzle_page(struct page * page)716 i915_gem_swizzle_page(struct page *page)
717 {
718 	char temp[64];
719 	char *vaddr;
720 	int i;
721 
722 	vaddr = kmap(page);
723 
724 	for (i = 0; i < PAGE_SIZE; i += 128) {
725 		memcpy(temp, &vaddr[i], 64);
726 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
727 		memcpy(&vaddr[i + 64], temp, 64);
728 	}
729 
730 	kunmap(page);
731 }
732 
733 /**
734  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
735  * @obj: i915 GEM buffer object
736  *
737  * This function fixes up the swizzling in case any page frame number for this
738  * object has changed in bit 17 since that state has been saved with
739  * i915_gem_object_save_bit_17_swizzle().
740  *
741  * This is called when pinning backing storage again, since the kernel is free
742  * to move unpinned backing storage around (either by directly moving pages or
743  * by swapping them out and back in again).
744  */
745 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj)746 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
747 {
748 	struct sg_page_iter sg_iter;
749 	int i;
750 
751 	if (obj->bit_17 == NULL)
752 		return;
753 
754 	i = 0;
755 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
756 		struct page *page = sg_page_iter_page(&sg_iter);
757 		char new_bit_17 = page_to_phys(page) >> 17;
758 		if ((new_bit_17 & 0x1) !=
759 		    (test_bit(i, obj->bit_17) != 0)) {
760 			i915_gem_swizzle_page(page);
761 			set_page_dirty(page);
762 		}
763 		i++;
764 	}
765 }
766 
767 /**
768  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
769  * @obj: i915 GEM buffer object
770  *
771  * This function saves the bit 17 of each page frame number so that swizzling
772  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
773  * be called before the backing storage can be unpinned.
774  */
775 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj)776 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
777 {
778 	struct sg_page_iter sg_iter;
779 	int page_count = obj->base.size >> PAGE_SHIFT;
780 	int i;
781 
782 	if (obj->bit_17 == NULL) {
783 		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
784 				      sizeof(long), GFP_KERNEL);
785 		if (obj->bit_17 == NULL) {
786 			DRM_ERROR("Failed to allocate memory for bit 17 "
787 				  "record\n");
788 			return;
789 		}
790 	}
791 
792 	i = 0;
793 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
794 		if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
795 			__set_bit(i, obj->bit_17);
796 		else
797 			__clear_bit(i, obj->bit_17);
798 		i++;
799 	}
800 }
801