1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Panel Self Refresh (PSR/SRD)
26 *
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
33 *
34 * Panel Self Refresh must be supported by both Hardware (source) and
35 * Panel (sink).
36 *
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
40 *
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
52 */
53
54 #include <drm/drmP.h>
55
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58
is_edp_psr(struct intel_dp * intel_dp)59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63
vlv_is_psr_active_on_pipe(struct drm_device * dev,int pipe)64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 struct drm_i915_private *dev_priv = dev->dev_private;
67 uint32_t val;
68
69 val = I915_READ(VLV_PSRSTAT(pipe)) &
70 VLV_EDP_PSR_CURR_STATE_MASK;
71 return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74
intel_psr_write_vsc(struct intel_dp * intel_dp,const struct edp_vsc_psr * vsc_psr)75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 const struct edp_vsc_psr *vsc_psr)
77 {
78 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 struct drm_device *dev = dig_port->base.base.dev;
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 uint32_t *data = (uint32_t *) vsc_psr;
85 unsigned int i;
86
87 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 the video DIP being updated before program video DIP data buffer
89 registers for DIP being updated. */
90 I915_WRITE(ctl_reg, 0);
91 POSTING_READ(ctl_reg);
92
93 for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 i >> 2), *data);
96 data++;
97 }
98 for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 i >> 2), 0);
101
102 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 POSTING_READ(ctl_reg);
104 }
105
vlv_psr_setup_vsc(struct intel_dp * intel_dp)106 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107 {
108 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 struct drm_device *dev = intel_dig_port->base.base.dev;
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 enum pipe pipe = to_intel_crtc(crtc)->pipe;
113 uint32_t val;
114
115 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 val = I915_READ(VLV_VSCSDP(pipe));
117 val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 I915_WRITE(VLV_VSCSDP(pipe), val);
120 }
121
skl_psr_setup_su_vsc(struct intel_dp * intel_dp)122 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123 {
124 struct edp_vsc_psr psr_vsc;
125
126 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 memset(&psr_vsc, 0, sizeof(psr_vsc));
128 psr_vsc.sdp_header.HB0 = 0;
129 psr_vsc.sdp_header.HB1 = 0x7;
130 psr_vsc.sdp_header.HB2 = 0x3;
131 psr_vsc.sdp_header.HB3 = 0xb;
132 intel_psr_write_vsc(intel_dp, &psr_vsc);
133 }
134
hsw_psr_setup_vsc(struct intel_dp * intel_dp)135 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136 {
137 struct edp_vsc_psr psr_vsc;
138
139 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 memset(&psr_vsc, 0, sizeof(psr_vsc));
141 psr_vsc.sdp_header.HB0 = 0;
142 psr_vsc.sdp_header.HB1 = 0x7;
143 psr_vsc.sdp_header.HB2 = 0x2;
144 psr_vsc.sdp_header.HB3 = 0x8;
145 intel_psr_write_vsc(intel_dp, &psr_vsc);
146 }
147
vlv_psr_enable_sink(struct intel_dp * intel_dp)148 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149 {
150 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152 }
153
hsw_psr_enable_sink(struct intel_dp * intel_dp)154 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
155 {
156 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
157 struct drm_device *dev = dig_port->base.base.dev;
158 struct drm_i915_private *dev_priv = dev->dev_private;
159 uint32_t aux_clock_divider;
160 uint32_t aux_data_reg, aux_ctl_reg;
161 int precharge = 0x3;
162 static const uint8_t aux_msg[] = {
163 [0] = DP_AUX_NATIVE_WRITE << 4,
164 [1] = DP_SET_POWER >> 8,
165 [2] = DP_SET_POWER & 0xff,
166 [3] = 1 - 1,
167 [4] = DP_SET_POWER_D0,
168 };
169 int i;
170
171 BUILD_BUG_ON(sizeof(aux_msg) > 20);
172
173 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
174
175 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
176 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
177
178 /* Enable AUX frame sync at sink */
179 if (dev_priv->psr.aux_frame_sync)
180 drm_dp_dpcd_writeb(&intel_dp->aux,
181 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
182 DP_AUX_FRAME_SYNC_ENABLE);
183
184 aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ?
185 DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev);
186 aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ?
187 DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev);
188
189 /* Setup AUX registers */
190 for (i = 0; i < sizeof(aux_msg); i += 4)
191 I915_WRITE(aux_data_reg + i,
192 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
193
194 if (INTEL_INFO(dev)->gen >= 9) {
195 uint32_t val;
196
197 val = I915_READ(aux_ctl_reg);
198 val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
199 val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
200 val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
201 val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
202 /* Use hardcoded data values for PSR, frame sync and GTC */
203 val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
204 val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
205 val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
206 I915_WRITE(aux_ctl_reg, val);
207 } else {
208 I915_WRITE(aux_ctl_reg,
209 DP_AUX_CH_CTL_TIME_OUT_400us |
210 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
211 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
212 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
213 }
214
215 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE);
216 }
217
vlv_psr_enable_source(struct intel_dp * intel_dp)218 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
219 {
220 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
221 struct drm_device *dev = dig_port->base.base.dev;
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 struct drm_crtc *crtc = dig_port->base.base.crtc;
224 enum pipe pipe = to_intel_crtc(crtc)->pipe;
225
226 /* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
227 I915_WRITE(VLV_PSRCTL(pipe),
228 VLV_EDP_PSR_MODE_SW_TIMER |
229 VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
230 VLV_EDP_PSR_ENABLE);
231 }
232
vlv_psr_activate(struct intel_dp * intel_dp)233 static void vlv_psr_activate(struct intel_dp *intel_dp)
234 {
235 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
236 struct drm_device *dev = dig_port->base.base.dev;
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 struct drm_crtc *crtc = dig_port->base.base.crtc;
239 enum pipe pipe = to_intel_crtc(crtc)->pipe;
240
241 /* Let's do the transition from PSR_state 1 to PSR_state 2
242 * that is PSR transition to active - static frame transmission.
243 * Then Hardware is responsible for the transition to PSR_state 3
244 * that is PSR active - no Remote Frame Buffer (RFB) update.
245 */
246 I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
247 VLV_EDP_PSR_ACTIVE_ENTRY);
248 }
249
hsw_psr_enable_source(struct intel_dp * intel_dp)250 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
251 {
252 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
253 struct drm_device *dev = dig_port->base.base.dev;
254 struct drm_i915_private *dev_priv = dev->dev_private;
255
256 uint32_t max_sleep_time = 0x1f;
257 /* Lately it was identified that depending on panel idle frame count
258 * calculated at HW can be off by 1. So let's use what came
259 * from VBT + 1.
260 * There are also other cases where panel demands at least 4
261 * but VBT is not being set. To cover these 2 cases lets use
262 * at least 5 when VBT isn't set to be on the safest side.
263 */
264 uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ?
265 dev_priv->vbt.psr.idle_frames + 1 : 5;
266 uint32_t val = 0x0;
267 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
268
269 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
270 /* It doesn't mean we shouldn't send TPS patters, so let's
271 send the minimal TP1 possible and skip TP2. */
272 val |= EDP_PSR_TP1_TIME_100us;
273 val |= EDP_PSR_TP2_TP3_TIME_0us;
274 val |= EDP_PSR_SKIP_AUX_EXIT;
275 /* Sink should be able to train with the 5 or 6 idle patterns */
276 idle_frames += 4;
277 }
278
279 I915_WRITE(EDP_PSR_CTL(dev), val |
280 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
281 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
282 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
283 EDP_PSR_ENABLE);
284
285 if (dev_priv->psr.psr2_support)
286 I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
287 EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
288 }
289
intel_psr_match_conditions(struct intel_dp * intel_dp)290 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
291 {
292 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
293 struct drm_device *dev = dig_port->base.base.dev;
294 struct drm_i915_private *dev_priv = dev->dev_private;
295 struct drm_crtc *crtc = dig_port->base.base.crtc;
296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
297
298 lockdep_assert_held(&dev_priv->psr.lock);
299 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
300 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
301
302 dev_priv->psr.source_ok = false;
303
304 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
305 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
306 return false;
307 }
308
309 if (!i915.enable_psr) {
310 DRM_DEBUG_KMS("PSR disable by flag\n");
311 return false;
312 }
313
314 if (IS_HASWELL(dev) &&
315 I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
316 S3D_ENABLE) {
317 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
318 return false;
319 }
320
321 if (IS_HASWELL(dev) &&
322 intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
323 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
324 return false;
325 }
326
327 if (!IS_VALLEYVIEW(dev) && ((dev_priv->vbt.psr.full_link) ||
328 (dig_port->port != PORT_A))) {
329 DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n");
330 return false;
331 }
332
333 dev_priv->psr.source_ok = true;
334 return true;
335 }
336
intel_psr_activate(struct intel_dp * intel_dp)337 static void intel_psr_activate(struct intel_dp *intel_dp)
338 {
339 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
340 struct drm_device *dev = intel_dig_port->base.base.dev;
341 struct drm_i915_private *dev_priv = dev->dev_private;
342
343 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
344 WARN_ON(dev_priv->psr.active);
345 lockdep_assert_held(&dev_priv->psr.lock);
346
347 /* Enable/Re-enable PSR on the host */
348 if (HAS_DDI(dev))
349 /* On HSW+ after we enable PSR on source it will activate it
350 * as soon as it match configure idle_frame count. So
351 * we just actually enable it here on activation time.
352 */
353 hsw_psr_enable_source(intel_dp);
354 else
355 vlv_psr_activate(intel_dp);
356
357 dev_priv->psr.active = true;
358 }
359
360 /**
361 * intel_psr_enable - Enable PSR
362 * @intel_dp: Intel DP
363 *
364 * This function can only be called after the pipe is fully trained and enabled.
365 */
intel_psr_enable(struct intel_dp * intel_dp)366 void intel_psr_enable(struct intel_dp *intel_dp)
367 {
368 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
369 struct drm_device *dev = intel_dig_port->base.base.dev;
370 struct drm_i915_private *dev_priv = dev->dev_private;
371 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
372
373 if (!HAS_PSR(dev)) {
374 DRM_DEBUG_KMS("PSR not supported on this platform\n");
375 return;
376 }
377
378 if (!is_edp_psr(intel_dp)) {
379 DRM_DEBUG_KMS("PSR not supported by this panel\n");
380 return;
381 }
382
383 mutex_lock(&dev_priv->psr.lock);
384 if (dev_priv->psr.enabled) {
385 DRM_DEBUG_KMS("PSR already in use\n");
386 goto unlock;
387 }
388
389 if (!intel_psr_match_conditions(intel_dp))
390 goto unlock;
391
392 dev_priv->psr.busy_frontbuffer_bits = 0;
393
394 if (HAS_DDI(dev)) {
395 hsw_psr_setup_vsc(intel_dp);
396
397 if (dev_priv->psr.psr2_support) {
398 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
399 if (crtc->config->pipe_src_w > 3200 ||
400 crtc->config->pipe_src_h > 2000)
401 dev_priv->psr.psr2_support = false;
402 else
403 skl_psr_setup_su_vsc(intel_dp);
404 }
405
406 /* Avoid continuous PSR exit by masking memup and hpd */
407 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
408 EDP_PSR_DEBUG_MASK_HPD);
409
410 /* Enable PSR on the panel */
411 hsw_psr_enable_sink(intel_dp);
412
413 if (INTEL_INFO(dev)->gen >= 9)
414 intel_psr_activate(intel_dp);
415 } else {
416 vlv_psr_setup_vsc(intel_dp);
417
418 /* Enable PSR on the panel */
419 vlv_psr_enable_sink(intel_dp);
420
421 /* On HSW+ enable_source also means go to PSR entry/active
422 * state as soon as idle_frame achieved and here would be
423 * to soon. However on VLV enable_source just enable PSR
424 * but let it on inactive state. So we might do this prior
425 * to active transition, i.e. here.
426 */
427 vlv_psr_enable_source(intel_dp);
428 }
429
430 dev_priv->psr.enabled = intel_dp;
431 unlock:
432 mutex_unlock(&dev_priv->psr.lock);
433 }
434
vlv_psr_disable(struct intel_dp * intel_dp)435 static void vlv_psr_disable(struct intel_dp *intel_dp)
436 {
437 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
438 struct drm_device *dev = intel_dig_port->base.base.dev;
439 struct drm_i915_private *dev_priv = dev->dev_private;
440 struct intel_crtc *intel_crtc =
441 to_intel_crtc(intel_dig_port->base.base.crtc);
442 uint32_t val;
443
444 if (dev_priv->psr.active) {
445 /* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
446 if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
447 VLV_EDP_PSR_IN_TRANS) == 0, 1))
448 WARN(1, "PSR transition took longer than expected\n");
449
450 val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
451 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
452 val &= ~VLV_EDP_PSR_ENABLE;
453 val &= ~VLV_EDP_PSR_MODE_MASK;
454 I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
455
456 dev_priv->psr.active = false;
457 } else {
458 WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
459 }
460 }
461
hsw_psr_disable(struct intel_dp * intel_dp)462 static void hsw_psr_disable(struct intel_dp *intel_dp)
463 {
464 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465 struct drm_device *dev = intel_dig_port->base.base.dev;
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 if (dev_priv->psr.active) {
469 I915_WRITE(EDP_PSR_CTL(dev),
470 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
471
472 /* Wait till PSR is idle */
473 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
474 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
475 DRM_ERROR("Timed out waiting for PSR Idle State\n");
476
477 dev_priv->psr.active = false;
478 } else {
479 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
480 }
481 }
482
483 /**
484 * intel_psr_disable - Disable PSR
485 * @intel_dp: Intel DP
486 *
487 * This function needs to be called before disabling pipe.
488 */
intel_psr_disable(struct intel_dp * intel_dp)489 void intel_psr_disable(struct intel_dp *intel_dp)
490 {
491 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
492 struct drm_device *dev = intel_dig_port->base.base.dev;
493 struct drm_i915_private *dev_priv = dev->dev_private;
494
495 mutex_lock(&dev_priv->psr.lock);
496 if (!dev_priv->psr.enabled) {
497 mutex_unlock(&dev_priv->psr.lock);
498 return;
499 }
500
501 if (HAS_DDI(dev))
502 hsw_psr_disable(intel_dp);
503 else
504 vlv_psr_disable(intel_dp);
505
506 dev_priv->psr.enabled = NULL;
507 mutex_unlock(&dev_priv->psr.lock);
508
509 cancel_delayed_work_sync(&dev_priv->psr.work);
510 }
511
intel_psr_work(struct work_struct * work)512 static void intel_psr_work(struct work_struct *work)
513 {
514 struct drm_i915_private *dev_priv =
515 container_of(work, typeof(*dev_priv), psr.work.work);
516 struct intel_dp *intel_dp = dev_priv->psr.enabled;
517 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
518 enum pipe pipe = to_intel_crtc(crtc)->pipe;
519
520 /* We have to make sure PSR is ready for re-enable
521 * otherwise it keeps disabled until next full enable/disable cycle.
522 * PSR might take some time to get fully disabled
523 * and be ready for re-enable.
524 */
525 if (HAS_DDI(dev_priv->dev)) {
526 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
527 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
528 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
529 return;
530 }
531 } else {
532 if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
533 VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
534 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
535 return;
536 }
537 }
538 mutex_lock(&dev_priv->psr.lock);
539 intel_dp = dev_priv->psr.enabled;
540
541 if (!intel_dp)
542 goto unlock;
543
544 /*
545 * The delayed work can race with an invalidate hence we need to
546 * recheck. Since psr_flush first clears this and then reschedules we
547 * won't ever miss a flush when bailing out here.
548 */
549 if (dev_priv->psr.busy_frontbuffer_bits)
550 goto unlock;
551
552 intel_psr_activate(intel_dp);
553 unlock:
554 mutex_unlock(&dev_priv->psr.lock);
555 }
556
intel_psr_exit(struct drm_device * dev)557 static void intel_psr_exit(struct drm_device *dev)
558 {
559 struct drm_i915_private *dev_priv = dev->dev_private;
560 struct intel_dp *intel_dp = dev_priv->psr.enabled;
561 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
562 enum pipe pipe = to_intel_crtc(crtc)->pipe;
563 u32 val;
564
565 if (!dev_priv->psr.active)
566 return;
567
568 if (HAS_DDI(dev)) {
569 val = I915_READ(EDP_PSR_CTL(dev));
570
571 WARN_ON(!(val & EDP_PSR_ENABLE));
572
573 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
574 } else {
575 val = I915_READ(VLV_PSRCTL(pipe));
576
577 /* Here we do the transition from PSR_state 3 to PSR_state 5
578 * directly once PSR State 4 that is active with single frame
579 * update can be skipped. PSR_state 5 that is PSR exit then
580 * Hardware is responsible to transition back to PSR_state 1
581 * that is PSR inactive. Same state after
582 * vlv_edp_psr_enable_source.
583 */
584 val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
585 I915_WRITE(VLV_PSRCTL(pipe), val);
586
587 /* Send AUX wake up - Spec says after transitioning to PSR
588 * active we have to send AUX wake up by writing 01h in DPCD
589 * 600h of sink device.
590 * XXX: This might slow down the transition, but without this
591 * HW doesn't complete the transition to PSR_state 1 and we
592 * never get the screen updated.
593 */
594 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
595 DP_SET_POWER_D0);
596 }
597
598 dev_priv->psr.active = false;
599 }
600
601 /**
602 * intel_psr_single_frame_update - Single Frame Update
603 * @dev: DRM device
604 * @frontbuffer_bits: frontbuffer plane tracking bits
605 *
606 * Some platforms support a single frame update feature that is used to
607 * send and update only one frame on Remote Frame Buffer.
608 * So far it is only implemented for Valleyview and Cherryview because
609 * hardware requires this to be done before a page flip.
610 */
intel_psr_single_frame_update(struct drm_device * dev,unsigned frontbuffer_bits)611 void intel_psr_single_frame_update(struct drm_device *dev,
612 unsigned frontbuffer_bits)
613 {
614 struct drm_i915_private *dev_priv = dev->dev_private;
615 struct drm_crtc *crtc;
616 enum pipe pipe;
617 u32 val;
618
619 /*
620 * Single frame update is already supported on BDW+ but it requires
621 * many W/A and it isn't really needed.
622 */
623 if (!IS_VALLEYVIEW(dev))
624 return;
625
626 mutex_lock(&dev_priv->psr.lock);
627 if (!dev_priv->psr.enabled) {
628 mutex_unlock(&dev_priv->psr.lock);
629 return;
630 }
631
632 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
633 pipe = to_intel_crtc(crtc)->pipe;
634
635 if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
636 val = I915_READ(VLV_PSRCTL(pipe));
637
638 /*
639 * We need to set this bit before writing registers for a flip.
640 * This bit will be self-clear when it gets to the PSR active state.
641 */
642 I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
643 }
644 mutex_unlock(&dev_priv->psr.lock);
645 }
646
647 /**
648 * intel_psr_invalidate - Invalidade PSR
649 * @dev: DRM device
650 * @frontbuffer_bits: frontbuffer plane tracking bits
651 *
652 * Since the hardware frontbuffer tracking has gaps we need to integrate
653 * with the software frontbuffer tracking. This function gets called every
654 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
655 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
656 *
657 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
658 */
intel_psr_invalidate(struct drm_device * dev,unsigned frontbuffer_bits)659 void intel_psr_invalidate(struct drm_device *dev,
660 unsigned frontbuffer_bits)
661 {
662 struct drm_i915_private *dev_priv = dev->dev_private;
663 struct drm_crtc *crtc;
664 enum pipe pipe;
665
666 mutex_lock(&dev_priv->psr.lock);
667 if (!dev_priv->psr.enabled) {
668 mutex_unlock(&dev_priv->psr.lock);
669 return;
670 }
671
672 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
673 pipe = to_intel_crtc(crtc)->pipe;
674
675 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
676 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
677
678 if (frontbuffer_bits)
679 intel_psr_exit(dev);
680
681 mutex_unlock(&dev_priv->psr.lock);
682 }
683
684 /**
685 * intel_psr_flush - Flush PSR
686 * @dev: DRM device
687 * @frontbuffer_bits: frontbuffer plane tracking bits
688 * @origin: which operation caused the flush
689 *
690 * Since the hardware frontbuffer tracking has gaps we need to integrate
691 * with the software frontbuffer tracking. This function gets called every
692 * time frontbuffer rendering has completed and flushed out to memory. PSR
693 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
694 *
695 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
696 */
intel_psr_flush(struct drm_device * dev,unsigned frontbuffer_bits,enum fb_op_origin origin)697 void intel_psr_flush(struct drm_device *dev,
698 unsigned frontbuffer_bits, enum fb_op_origin origin)
699 {
700 struct drm_i915_private *dev_priv = dev->dev_private;
701 struct drm_crtc *crtc;
702 enum pipe pipe;
703 int delay_ms = HAS_DDI(dev) ? 100 : 500;
704
705 mutex_lock(&dev_priv->psr.lock);
706 if (!dev_priv->psr.enabled) {
707 mutex_unlock(&dev_priv->psr.lock);
708 return;
709 }
710
711 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
712 pipe = to_intel_crtc(crtc)->pipe;
713
714 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
715 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
716
717 if (HAS_DDI(dev)) {
718 /*
719 * By definition every flush should mean invalidate + flush,
720 * however on core platforms let's minimize the
721 * disable/re-enable so we can avoid the invalidate when flip
722 * originated the flush.
723 */
724 if (frontbuffer_bits && origin != ORIGIN_FLIP)
725 intel_psr_exit(dev);
726 } else {
727 /*
728 * On Valleyview and Cherryview we don't use hardware tracking
729 * so any plane updates or cursor moves don't result in a PSR
730 * invalidating. Which means we need to manually fake this in
731 * software for all flushes.
732 */
733 if (frontbuffer_bits)
734 intel_psr_exit(dev);
735 }
736
737 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
738 schedule_delayed_work(&dev_priv->psr.work,
739 msecs_to_jiffies(delay_ms));
740 mutex_unlock(&dev_priv->psr.lock);
741 }
742
743 /**
744 * intel_psr_init - Init basic PSR work and mutex.
745 * @dev: DRM device
746 *
747 * This function is called only once at driver load to initialize basic
748 * PSR stuff.
749 */
intel_psr_init(struct drm_device * dev)750 void intel_psr_init(struct drm_device *dev)
751 {
752 struct drm_i915_private *dev_priv = dev->dev_private;
753
754 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
755 mutex_init(&dev_priv->psr.lock);
756 }
757