1 /*
2 * Network device driver for the MACE ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1996 Paul Mackerras.
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/crc32.h>
18 #include <linux/spinlock.h>
19 #include <linux/bitrev.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/dbdma.h>
23 #include <asm/io.h>
24 #include <asm/pgtable.h>
25 #include <asm/macio.h>
26
27 #include "mace.h"
28
29 static int port_aaui = -1;
30
31 #define N_RX_RING 8
32 #define N_TX_RING 6
33 #define MAX_TX_ACTIVE 1
34 #define NCMDS_TX 1 /* dma commands per element in tx ring */
35 #define RX_BUFLEN (ETH_FRAME_LEN + 8)
36 #define TX_TIMEOUT HZ /* 1 second */
37
38 /* Chip rev needs workaround on HW & multicast addr change */
39 #define BROKEN_ADDRCHG_REV 0x0941
40
41 /* Bits in transmit DMA status */
42 #define TX_DMA_ERR 0x80
43
44 struct mace_data {
45 volatile struct mace __iomem *mace;
46 volatile struct dbdma_regs __iomem *tx_dma;
47 int tx_dma_intr;
48 volatile struct dbdma_regs __iomem *rx_dma;
49 int rx_dma_intr;
50 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
51 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
52 struct sk_buff *rx_bufs[N_RX_RING];
53 int rx_fill;
54 int rx_empty;
55 struct sk_buff *tx_bufs[N_TX_RING];
56 int tx_fill;
57 int tx_empty;
58 unsigned char maccc;
59 unsigned char tx_fullup;
60 unsigned char tx_active;
61 unsigned char tx_bad_runt;
62 struct timer_list tx_timeout;
63 int timeout_active;
64 int port_aaui;
65 int chipid;
66 struct macio_dev *mdev;
67 spinlock_t lock;
68 };
69
70 /*
71 * Number of bytes of private data per MACE: allow enough for
72 * the rx and tx dma commands plus a branch dma command each,
73 * and another 16 bytes to allow us to align the dma command
74 * buffers on a 16 byte boundary.
75 */
76 #define PRIV_BYTES (sizeof(struct mace_data) \
77 + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
78
79 static int mace_open(struct net_device *dev);
80 static int mace_close(struct net_device *dev);
81 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
82 static void mace_set_multicast(struct net_device *dev);
83 static void mace_reset(struct net_device *dev);
84 static int mace_set_address(struct net_device *dev, void *addr);
85 static irqreturn_t mace_interrupt(int irq, void *dev_id);
86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
88 static void mace_set_timeout(struct net_device *dev);
89 static void mace_tx_timeout(unsigned long data);
90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
91 static inline void mace_clean_rings(struct mace_data *mp);
92 static void __mace_set_address(struct net_device *dev, void *addr);
93
94 /*
95 * If we can't get a skbuff when we need it, we use this area for DMA.
96 */
97 static unsigned char *dummy_buf;
98
99 static const struct net_device_ops mace_netdev_ops = {
100 .ndo_open = mace_open,
101 .ndo_stop = mace_close,
102 .ndo_start_xmit = mace_xmit_start,
103 .ndo_set_rx_mode = mace_set_multicast,
104 .ndo_set_mac_address = mace_set_address,
105 .ndo_change_mtu = eth_change_mtu,
106 .ndo_validate_addr = eth_validate_addr,
107 };
108
mace_probe(struct macio_dev * mdev,const struct of_device_id * match)109 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
110 {
111 struct device_node *mace = macio_get_of_node(mdev);
112 struct net_device *dev;
113 struct mace_data *mp;
114 const unsigned char *addr;
115 int j, rev, rc = -EBUSY;
116
117 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
118 printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
119 mace->full_name);
120 return -ENODEV;
121 }
122
123 addr = of_get_property(mace, "mac-address", NULL);
124 if (addr == NULL) {
125 addr = of_get_property(mace, "local-mac-address", NULL);
126 if (addr == NULL) {
127 printk(KERN_ERR "Can't get mac-address for MACE %s\n",
128 mace->full_name);
129 return -ENODEV;
130 }
131 }
132
133 /*
134 * lazy allocate the driver-wide dummy buffer. (Note that we
135 * never have more than one MACE in the system anyway)
136 */
137 if (dummy_buf == NULL) {
138 dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
139 if (dummy_buf == NULL)
140 return -ENOMEM;
141 }
142
143 if (macio_request_resources(mdev, "mace")) {
144 printk(KERN_ERR "MACE: can't request IO resources !\n");
145 return -EBUSY;
146 }
147
148 dev = alloc_etherdev(PRIV_BYTES);
149 if (!dev) {
150 rc = -ENOMEM;
151 goto err_release;
152 }
153 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
154
155 mp = netdev_priv(dev);
156 mp->mdev = mdev;
157 macio_set_drvdata(mdev, dev);
158
159 dev->base_addr = macio_resource_start(mdev, 0);
160 mp->mace = ioremap(dev->base_addr, 0x1000);
161 if (mp->mace == NULL) {
162 printk(KERN_ERR "MACE: can't map IO resources !\n");
163 rc = -ENOMEM;
164 goto err_free;
165 }
166 dev->irq = macio_irq(mdev, 0);
167
168 rev = addr[0] == 0 && addr[1] == 0xA0;
169 for (j = 0; j < 6; ++j) {
170 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
171 }
172 mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
173 in_8(&mp->mace->chipid_lo);
174
175
176 mp = netdev_priv(dev);
177 mp->maccc = ENXMT | ENRCV;
178
179 mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
180 if (mp->tx_dma == NULL) {
181 printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
182 rc = -ENOMEM;
183 goto err_unmap_io;
184 }
185 mp->tx_dma_intr = macio_irq(mdev, 1);
186
187 mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
188 if (mp->rx_dma == NULL) {
189 printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
190 rc = -ENOMEM;
191 goto err_unmap_tx_dma;
192 }
193 mp->rx_dma_intr = macio_irq(mdev, 2);
194
195 mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
196 mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
197
198 memset((char *) mp->tx_cmds, 0,
199 (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
200 init_timer(&mp->tx_timeout);
201 spin_lock_init(&mp->lock);
202 mp->timeout_active = 0;
203
204 if (port_aaui >= 0)
205 mp->port_aaui = port_aaui;
206 else {
207 /* Apple Network Server uses the AAUI port */
208 if (of_machine_is_compatible("AAPL,ShinerESB"))
209 mp->port_aaui = 1;
210 else {
211 #ifdef CONFIG_MACE_AAUI_PORT
212 mp->port_aaui = 1;
213 #else
214 mp->port_aaui = 0;
215 #endif
216 }
217 }
218
219 dev->netdev_ops = &mace_netdev_ops;
220
221 /*
222 * Most of what is below could be moved to mace_open()
223 */
224 mace_reset(dev);
225
226 rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
227 if (rc) {
228 printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
229 goto err_unmap_rx_dma;
230 }
231 rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
232 if (rc) {
233 printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
234 goto err_free_irq;
235 }
236 rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
237 if (rc) {
238 printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
239 goto err_free_tx_irq;
240 }
241
242 rc = register_netdev(dev);
243 if (rc) {
244 printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
245 goto err_free_rx_irq;
246 }
247
248 printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
249 dev->name, dev->dev_addr,
250 mp->chipid >> 8, mp->chipid & 0xff);
251
252 return 0;
253
254 err_free_rx_irq:
255 free_irq(macio_irq(mdev, 2), dev);
256 err_free_tx_irq:
257 free_irq(macio_irq(mdev, 1), dev);
258 err_free_irq:
259 free_irq(macio_irq(mdev, 0), dev);
260 err_unmap_rx_dma:
261 iounmap(mp->rx_dma);
262 err_unmap_tx_dma:
263 iounmap(mp->tx_dma);
264 err_unmap_io:
265 iounmap(mp->mace);
266 err_free:
267 free_netdev(dev);
268 err_release:
269 macio_release_resources(mdev);
270
271 return rc;
272 }
273
mace_remove(struct macio_dev * mdev)274 static int mace_remove(struct macio_dev *mdev)
275 {
276 struct net_device *dev = macio_get_drvdata(mdev);
277 struct mace_data *mp;
278
279 BUG_ON(dev == NULL);
280
281 macio_set_drvdata(mdev, NULL);
282
283 mp = netdev_priv(dev);
284
285 unregister_netdev(dev);
286
287 free_irq(dev->irq, dev);
288 free_irq(mp->tx_dma_intr, dev);
289 free_irq(mp->rx_dma_intr, dev);
290
291 iounmap(mp->rx_dma);
292 iounmap(mp->tx_dma);
293 iounmap(mp->mace);
294
295 free_netdev(dev);
296
297 macio_release_resources(mdev);
298
299 return 0;
300 }
301
dbdma_reset(volatile struct dbdma_regs __iomem * dma)302 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
303 {
304 int i;
305
306 out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
307
308 /*
309 * Yes this looks peculiar, but apparently it needs to be this
310 * way on some machines.
311 */
312 for (i = 200; i > 0; --i)
313 if (le32_to_cpu(dma->control) & RUN)
314 udelay(1);
315 }
316
mace_reset(struct net_device * dev)317 static void mace_reset(struct net_device *dev)
318 {
319 struct mace_data *mp = netdev_priv(dev);
320 volatile struct mace __iomem *mb = mp->mace;
321 int i;
322
323 /* soft-reset the chip */
324 i = 200;
325 while (--i) {
326 out_8(&mb->biucc, SWRST);
327 if (in_8(&mb->biucc) & SWRST) {
328 udelay(10);
329 continue;
330 }
331 break;
332 }
333 if (!i) {
334 printk(KERN_ERR "mace: cannot reset chip!\n");
335 return;
336 }
337
338 out_8(&mb->imr, 0xff); /* disable all intrs for now */
339 i = in_8(&mb->ir);
340 out_8(&mb->maccc, 0); /* turn off tx, rx */
341
342 out_8(&mb->biucc, XMTSP_64);
343 out_8(&mb->utr, RTRD);
344 out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
345 out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
346 out_8(&mb->rcvfc, 0);
347
348 /* load up the hardware address */
349 __mace_set_address(dev, dev->dev_addr);
350
351 /* clear the multicast filter */
352 if (mp->chipid == BROKEN_ADDRCHG_REV)
353 out_8(&mb->iac, LOGADDR);
354 else {
355 out_8(&mb->iac, ADDRCHG | LOGADDR);
356 while ((in_8(&mb->iac) & ADDRCHG) != 0)
357 ;
358 }
359 for (i = 0; i < 8; ++i)
360 out_8(&mb->ladrf, 0);
361
362 /* done changing address */
363 if (mp->chipid != BROKEN_ADDRCHG_REV)
364 out_8(&mb->iac, 0);
365
366 if (mp->port_aaui)
367 out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
368 else
369 out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
370 }
371
__mace_set_address(struct net_device * dev,void * addr)372 static void __mace_set_address(struct net_device *dev, void *addr)
373 {
374 struct mace_data *mp = netdev_priv(dev);
375 volatile struct mace __iomem *mb = mp->mace;
376 unsigned char *p = addr;
377 int i;
378
379 /* load up the hardware address */
380 if (mp->chipid == BROKEN_ADDRCHG_REV)
381 out_8(&mb->iac, PHYADDR);
382 else {
383 out_8(&mb->iac, ADDRCHG | PHYADDR);
384 while ((in_8(&mb->iac) & ADDRCHG) != 0)
385 ;
386 }
387 for (i = 0; i < 6; ++i)
388 out_8(&mb->padr, dev->dev_addr[i] = p[i]);
389 if (mp->chipid != BROKEN_ADDRCHG_REV)
390 out_8(&mb->iac, 0);
391 }
392
mace_set_address(struct net_device * dev,void * addr)393 static int mace_set_address(struct net_device *dev, void *addr)
394 {
395 struct mace_data *mp = netdev_priv(dev);
396 volatile struct mace __iomem *mb = mp->mace;
397 unsigned long flags;
398
399 spin_lock_irqsave(&mp->lock, flags);
400
401 __mace_set_address(dev, addr);
402
403 /* note: setting ADDRCHG clears ENRCV */
404 out_8(&mb->maccc, mp->maccc);
405
406 spin_unlock_irqrestore(&mp->lock, flags);
407 return 0;
408 }
409
mace_clean_rings(struct mace_data * mp)410 static inline void mace_clean_rings(struct mace_data *mp)
411 {
412 int i;
413
414 /* free some skb's */
415 for (i = 0; i < N_RX_RING; ++i) {
416 if (mp->rx_bufs[i] != NULL) {
417 dev_kfree_skb(mp->rx_bufs[i]);
418 mp->rx_bufs[i] = NULL;
419 }
420 }
421 for (i = mp->tx_empty; i != mp->tx_fill; ) {
422 dev_kfree_skb(mp->tx_bufs[i]);
423 if (++i >= N_TX_RING)
424 i = 0;
425 }
426 }
427
mace_open(struct net_device * dev)428 static int mace_open(struct net_device *dev)
429 {
430 struct mace_data *mp = netdev_priv(dev);
431 volatile struct mace __iomem *mb = mp->mace;
432 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
433 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
434 volatile struct dbdma_cmd *cp;
435 int i;
436 struct sk_buff *skb;
437 unsigned char *data;
438
439 /* reset the chip */
440 mace_reset(dev);
441
442 /* initialize list of sk_buffs for receiving and set up recv dma */
443 mace_clean_rings(mp);
444 memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
445 cp = mp->rx_cmds;
446 for (i = 0; i < N_RX_RING - 1; ++i) {
447 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
448 if (!skb) {
449 data = dummy_buf;
450 } else {
451 skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
452 data = skb->data;
453 }
454 mp->rx_bufs[i] = skb;
455 cp->req_count = cpu_to_le16(RX_BUFLEN);
456 cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS);
457 cp->phy_addr = cpu_to_le32(virt_to_bus(data));
458 cp->xfer_status = 0;
459 ++cp;
460 }
461 mp->rx_bufs[i] = NULL;
462 cp->command = cpu_to_le16(DBDMA_STOP);
463 mp->rx_fill = i;
464 mp->rx_empty = 0;
465
466 /* Put a branch back to the beginning of the receive command list */
467 ++cp;
468 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
469 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds));
470
471 /* start rx dma */
472 out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
473 out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
474 out_le32(&rd->control, (RUN << 16) | RUN);
475
476 /* put a branch at the end of the tx command list */
477 cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
478 cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
479 cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds));
480
481 /* reset tx dma */
482 out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
483 out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
484 mp->tx_fill = 0;
485 mp->tx_empty = 0;
486 mp->tx_fullup = 0;
487 mp->tx_active = 0;
488 mp->tx_bad_runt = 0;
489
490 /* turn it on! */
491 out_8(&mb->maccc, mp->maccc);
492 /* enable all interrupts except receive interrupts */
493 out_8(&mb->imr, RCVINT);
494
495 return 0;
496 }
497
mace_close(struct net_device * dev)498 static int mace_close(struct net_device *dev)
499 {
500 struct mace_data *mp = netdev_priv(dev);
501 volatile struct mace __iomem *mb = mp->mace;
502 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
503 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
504
505 /* disable rx and tx */
506 out_8(&mb->maccc, 0);
507 out_8(&mb->imr, 0xff); /* disable all intrs */
508
509 /* disable rx and tx dma */
510 rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
511 td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
512
513 mace_clean_rings(mp);
514
515 return 0;
516 }
517
mace_set_timeout(struct net_device * dev)518 static inline void mace_set_timeout(struct net_device *dev)
519 {
520 struct mace_data *mp = netdev_priv(dev);
521
522 if (mp->timeout_active)
523 del_timer(&mp->tx_timeout);
524 mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
525 mp->tx_timeout.function = mace_tx_timeout;
526 mp->tx_timeout.data = (unsigned long) dev;
527 add_timer(&mp->tx_timeout);
528 mp->timeout_active = 1;
529 }
530
mace_xmit_start(struct sk_buff * skb,struct net_device * dev)531 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
532 {
533 struct mace_data *mp = netdev_priv(dev);
534 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
535 volatile struct dbdma_cmd *cp, *np;
536 unsigned long flags;
537 int fill, next, len;
538
539 /* see if there's a free slot in the tx ring */
540 spin_lock_irqsave(&mp->lock, flags);
541 fill = mp->tx_fill;
542 next = fill + 1;
543 if (next >= N_TX_RING)
544 next = 0;
545 if (next == mp->tx_empty) {
546 netif_stop_queue(dev);
547 mp->tx_fullup = 1;
548 spin_unlock_irqrestore(&mp->lock, flags);
549 return NETDEV_TX_BUSY; /* can't take it at the moment */
550 }
551 spin_unlock_irqrestore(&mp->lock, flags);
552
553 /* partially fill in the dma command block */
554 len = skb->len;
555 if (len > ETH_FRAME_LEN) {
556 printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
557 len = ETH_FRAME_LEN;
558 }
559 mp->tx_bufs[fill] = skb;
560 cp = mp->tx_cmds + NCMDS_TX * fill;
561 cp->req_count = cpu_to_le16(len);
562 cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data));
563
564 np = mp->tx_cmds + NCMDS_TX * next;
565 out_le16(&np->command, DBDMA_STOP);
566
567 /* poke the tx dma channel */
568 spin_lock_irqsave(&mp->lock, flags);
569 mp->tx_fill = next;
570 if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
571 out_le16(&cp->xfer_status, 0);
572 out_le16(&cp->command, OUTPUT_LAST);
573 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
574 ++mp->tx_active;
575 mace_set_timeout(dev);
576 }
577 if (++next >= N_TX_RING)
578 next = 0;
579 if (next == mp->tx_empty)
580 netif_stop_queue(dev);
581 spin_unlock_irqrestore(&mp->lock, flags);
582
583 return NETDEV_TX_OK;
584 }
585
mace_set_multicast(struct net_device * dev)586 static void mace_set_multicast(struct net_device *dev)
587 {
588 struct mace_data *mp = netdev_priv(dev);
589 volatile struct mace __iomem *mb = mp->mace;
590 int i;
591 u32 crc;
592 unsigned long flags;
593
594 spin_lock_irqsave(&mp->lock, flags);
595 mp->maccc &= ~PROM;
596 if (dev->flags & IFF_PROMISC) {
597 mp->maccc |= PROM;
598 } else {
599 unsigned char multicast_filter[8];
600 struct netdev_hw_addr *ha;
601
602 if (dev->flags & IFF_ALLMULTI) {
603 for (i = 0; i < 8; i++)
604 multicast_filter[i] = 0xff;
605 } else {
606 for (i = 0; i < 8; i++)
607 multicast_filter[i] = 0;
608 netdev_for_each_mc_addr(ha, dev) {
609 crc = ether_crc_le(6, ha->addr);
610 i = crc >> 26; /* bit number in multicast_filter */
611 multicast_filter[i >> 3] |= 1 << (i & 7);
612 }
613 }
614 #if 0
615 printk("Multicast filter :");
616 for (i = 0; i < 8; i++)
617 printk("%02x ", multicast_filter[i]);
618 printk("\n");
619 #endif
620
621 if (mp->chipid == BROKEN_ADDRCHG_REV)
622 out_8(&mb->iac, LOGADDR);
623 else {
624 out_8(&mb->iac, ADDRCHG | LOGADDR);
625 while ((in_8(&mb->iac) & ADDRCHG) != 0)
626 ;
627 }
628 for (i = 0; i < 8; ++i)
629 out_8(&mb->ladrf, multicast_filter[i]);
630 if (mp->chipid != BROKEN_ADDRCHG_REV)
631 out_8(&mb->iac, 0);
632 }
633 /* reset maccc */
634 out_8(&mb->maccc, mp->maccc);
635 spin_unlock_irqrestore(&mp->lock, flags);
636 }
637
mace_handle_misc_intrs(struct mace_data * mp,int intr,struct net_device * dev)638 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
639 {
640 volatile struct mace __iomem *mb = mp->mace;
641 static int mace_babbles, mace_jabbers;
642
643 if (intr & MPCO)
644 dev->stats.rx_missed_errors += 256;
645 dev->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
646 if (intr & RNTPCO)
647 dev->stats.rx_length_errors += 256;
648 dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
649 if (intr & CERR)
650 ++dev->stats.tx_heartbeat_errors;
651 if (intr & BABBLE)
652 if (mace_babbles++ < 4)
653 printk(KERN_DEBUG "mace: babbling transmitter\n");
654 if (intr & JABBER)
655 if (mace_jabbers++ < 4)
656 printk(KERN_DEBUG "mace: jabbering transceiver\n");
657 }
658
mace_interrupt(int irq,void * dev_id)659 static irqreturn_t mace_interrupt(int irq, void *dev_id)
660 {
661 struct net_device *dev = (struct net_device *) dev_id;
662 struct mace_data *mp = netdev_priv(dev);
663 volatile struct mace __iomem *mb = mp->mace;
664 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
665 volatile struct dbdma_cmd *cp;
666 int intr, fs, i, stat, x;
667 int xcount, dstat;
668 unsigned long flags;
669 /* static int mace_last_fs, mace_last_xcount; */
670
671 spin_lock_irqsave(&mp->lock, flags);
672 intr = in_8(&mb->ir); /* read interrupt register */
673 in_8(&mb->xmtrc); /* get retries */
674 mace_handle_misc_intrs(mp, intr, dev);
675
676 i = mp->tx_empty;
677 while (in_8(&mb->pr) & XMTSV) {
678 del_timer(&mp->tx_timeout);
679 mp->timeout_active = 0;
680 /*
681 * Clear any interrupt indication associated with this status
682 * word. This appears to unlatch any error indication from
683 * the DMA controller.
684 */
685 intr = in_8(&mb->ir);
686 if (intr != 0)
687 mace_handle_misc_intrs(mp, intr, dev);
688 if (mp->tx_bad_runt) {
689 fs = in_8(&mb->xmtfs);
690 mp->tx_bad_runt = 0;
691 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
692 continue;
693 }
694 dstat = le32_to_cpu(td->status);
695 /* stop DMA controller */
696 out_le32(&td->control, RUN << 16);
697 /*
698 * xcount is the number of complete frames which have been
699 * written to the fifo but for which status has not been read.
700 */
701 xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
702 if (xcount == 0 || (dstat & DEAD)) {
703 /*
704 * If a packet was aborted before the DMA controller has
705 * finished transferring it, it seems that there are 2 bytes
706 * which are stuck in some buffer somewhere. These will get
707 * transmitted as soon as we read the frame status (which
708 * reenables the transmit data transfer request). Turning
709 * off the DMA controller and/or resetting the MACE doesn't
710 * help. So we disable auto-padding and FCS transmission
711 * so the two bytes will only be a runt packet which should
712 * be ignored by other stations.
713 */
714 out_8(&mb->xmtfc, DXMTFCS);
715 }
716 fs = in_8(&mb->xmtfs);
717 if ((fs & XMTSV) == 0) {
718 printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
719 fs, xcount, dstat);
720 mace_reset(dev);
721 /*
722 * XXX mace likes to hang the machine after a xmtfs error.
723 * This is hard to reproduce, resetting *may* help
724 */
725 }
726 cp = mp->tx_cmds + NCMDS_TX * i;
727 stat = le16_to_cpu(cp->xfer_status);
728 if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
729 /*
730 * Check whether there were in fact 2 bytes written to
731 * the transmit FIFO.
732 */
733 udelay(1);
734 x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
735 if (x != 0) {
736 /* there were two bytes with an end-of-packet indication */
737 mp->tx_bad_runt = 1;
738 mace_set_timeout(dev);
739 } else {
740 /*
741 * Either there weren't the two bytes buffered up, or they
742 * didn't have an end-of-packet indication.
743 * We flush the transmit FIFO just in case (by setting the
744 * XMTFWU bit with the transmitter disabled).
745 */
746 out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
747 out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
748 udelay(1);
749 out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
750 out_8(&mb->xmtfc, AUTO_PAD_XMIT);
751 }
752 }
753 /* dma should have finished */
754 if (i == mp->tx_fill) {
755 printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
756 fs, xcount, dstat);
757 continue;
758 }
759 /* Update stats */
760 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
761 ++dev->stats.tx_errors;
762 if (fs & LCAR)
763 ++dev->stats.tx_carrier_errors;
764 if (fs & (UFLO|LCOL|RTRY))
765 ++dev->stats.tx_aborted_errors;
766 } else {
767 dev->stats.tx_bytes += mp->tx_bufs[i]->len;
768 ++dev->stats.tx_packets;
769 }
770 dev_kfree_skb_irq(mp->tx_bufs[i]);
771 --mp->tx_active;
772 if (++i >= N_TX_RING)
773 i = 0;
774 #if 0
775 mace_last_fs = fs;
776 mace_last_xcount = xcount;
777 #endif
778 }
779
780 if (i != mp->tx_empty) {
781 mp->tx_fullup = 0;
782 netif_wake_queue(dev);
783 }
784 mp->tx_empty = i;
785 i += mp->tx_active;
786 if (i >= N_TX_RING)
787 i -= N_TX_RING;
788 if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
789 do {
790 /* set up the next one */
791 cp = mp->tx_cmds + NCMDS_TX * i;
792 out_le16(&cp->xfer_status, 0);
793 out_le16(&cp->command, OUTPUT_LAST);
794 ++mp->tx_active;
795 if (++i >= N_TX_RING)
796 i = 0;
797 } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
798 out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
799 mace_set_timeout(dev);
800 }
801 spin_unlock_irqrestore(&mp->lock, flags);
802 return IRQ_HANDLED;
803 }
804
mace_tx_timeout(unsigned long data)805 static void mace_tx_timeout(unsigned long data)
806 {
807 struct net_device *dev = (struct net_device *) data;
808 struct mace_data *mp = netdev_priv(dev);
809 volatile struct mace __iomem *mb = mp->mace;
810 volatile struct dbdma_regs __iomem *td = mp->tx_dma;
811 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
812 volatile struct dbdma_cmd *cp;
813 unsigned long flags;
814 int i;
815
816 spin_lock_irqsave(&mp->lock, flags);
817 mp->timeout_active = 0;
818 if (mp->tx_active == 0 && !mp->tx_bad_runt)
819 goto out;
820
821 /* update various counters */
822 mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
823
824 cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
825
826 /* turn off both tx and rx and reset the chip */
827 out_8(&mb->maccc, 0);
828 printk(KERN_ERR "mace: transmit timeout - resetting\n");
829 dbdma_reset(td);
830 mace_reset(dev);
831
832 /* restart rx dma */
833 cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
834 dbdma_reset(rd);
835 out_le16(&cp->xfer_status, 0);
836 out_le32(&rd->cmdptr, virt_to_bus(cp));
837 out_le32(&rd->control, (RUN << 16) | RUN);
838
839 /* fix up the transmit side */
840 i = mp->tx_empty;
841 mp->tx_active = 0;
842 ++dev->stats.tx_errors;
843 if (mp->tx_bad_runt) {
844 mp->tx_bad_runt = 0;
845 } else if (i != mp->tx_fill) {
846 dev_kfree_skb(mp->tx_bufs[i]);
847 if (++i >= N_TX_RING)
848 i = 0;
849 mp->tx_empty = i;
850 }
851 mp->tx_fullup = 0;
852 netif_wake_queue(dev);
853 if (i != mp->tx_fill) {
854 cp = mp->tx_cmds + NCMDS_TX * i;
855 out_le16(&cp->xfer_status, 0);
856 out_le16(&cp->command, OUTPUT_LAST);
857 out_le32(&td->cmdptr, virt_to_bus(cp));
858 out_le32(&td->control, (RUN << 16) | RUN);
859 ++mp->tx_active;
860 mace_set_timeout(dev);
861 }
862
863 /* turn it back on */
864 out_8(&mb->imr, RCVINT);
865 out_8(&mb->maccc, mp->maccc);
866
867 out:
868 spin_unlock_irqrestore(&mp->lock, flags);
869 }
870
mace_txdma_intr(int irq,void * dev_id)871 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
872 {
873 return IRQ_HANDLED;
874 }
875
mace_rxdma_intr(int irq,void * dev_id)876 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
877 {
878 struct net_device *dev = (struct net_device *) dev_id;
879 struct mace_data *mp = netdev_priv(dev);
880 volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
881 volatile struct dbdma_cmd *cp, *np;
882 int i, nb, stat, next;
883 struct sk_buff *skb;
884 unsigned frame_status;
885 static int mace_lost_status;
886 unsigned char *data;
887 unsigned long flags;
888
889 spin_lock_irqsave(&mp->lock, flags);
890 for (i = mp->rx_empty; i != mp->rx_fill; ) {
891 cp = mp->rx_cmds + i;
892 stat = le16_to_cpu(cp->xfer_status);
893 if ((stat & ACTIVE) == 0) {
894 next = i + 1;
895 if (next >= N_RX_RING)
896 next = 0;
897 np = mp->rx_cmds + next;
898 if (next != mp->rx_fill &&
899 (le16_to_cpu(np->xfer_status) & ACTIVE) != 0) {
900 printk(KERN_DEBUG "mace: lost a status word\n");
901 ++mace_lost_status;
902 } else
903 break;
904 }
905 nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count);
906 out_le16(&cp->command, DBDMA_STOP);
907 /* got a packet, have a look at it */
908 skb = mp->rx_bufs[i];
909 if (!skb) {
910 ++dev->stats.rx_dropped;
911 } else if (nb > 8) {
912 data = skb->data;
913 frame_status = (data[nb-3] << 8) + data[nb-4];
914 if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
915 ++dev->stats.rx_errors;
916 if (frame_status & RS_OFLO)
917 ++dev->stats.rx_over_errors;
918 if (frame_status & RS_FRAMERR)
919 ++dev->stats.rx_frame_errors;
920 if (frame_status & RS_FCSERR)
921 ++dev->stats.rx_crc_errors;
922 } else {
923 /* Mace feature AUTO_STRIP_RCV is on by default, dropping the
924 * FCS on frames with 802.3 headers. This means that Ethernet
925 * frames have 8 extra octets at the end, while 802.3 frames
926 * have only 4. We need to correctly account for this. */
927 if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
928 nb -= 4;
929 else /* Ethernet header; mace includes FCS */
930 nb -= 8;
931 skb_put(skb, nb);
932 skb->protocol = eth_type_trans(skb, dev);
933 dev->stats.rx_bytes += skb->len;
934 netif_rx(skb);
935 mp->rx_bufs[i] = NULL;
936 ++dev->stats.rx_packets;
937 }
938 } else {
939 ++dev->stats.rx_errors;
940 ++dev->stats.rx_length_errors;
941 }
942
943 /* advance to next */
944 if (++i >= N_RX_RING)
945 i = 0;
946 }
947 mp->rx_empty = i;
948
949 i = mp->rx_fill;
950 for (;;) {
951 next = i + 1;
952 if (next >= N_RX_RING)
953 next = 0;
954 if (next == mp->rx_empty)
955 break;
956 cp = mp->rx_cmds + i;
957 skb = mp->rx_bufs[i];
958 if (!skb) {
959 skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
960 if (skb) {
961 skb_reserve(skb, 2);
962 mp->rx_bufs[i] = skb;
963 }
964 }
965 cp->req_count = cpu_to_le16(RX_BUFLEN);
966 data = skb? skb->data: dummy_buf;
967 cp->phy_addr = cpu_to_le32(virt_to_bus(data));
968 out_le16(&cp->xfer_status, 0);
969 out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
970 #if 0
971 if ((le32_to_cpu(rd->status) & ACTIVE) != 0) {
972 out_le32(&rd->control, (PAUSE << 16) | PAUSE);
973 while ((in_le32(&rd->status) & ACTIVE) != 0)
974 ;
975 }
976 #endif
977 i = next;
978 }
979 if (i != mp->rx_fill) {
980 out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
981 mp->rx_fill = i;
982 }
983 spin_unlock_irqrestore(&mp->lock, flags);
984 return IRQ_HANDLED;
985 }
986
987 static const struct of_device_id mace_match[] =
988 {
989 {
990 .name = "mace",
991 },
992 {},
993 };
994 MODULE_DEVICE_TABLE (of, mace_match);
995
996 static struct macio_driver mace_driver =
997 {
998 .driver = {
999 .name = "mace",
1000 .owner = THIS_MODULE,
1001 .of_match_table = mace_match,
1002 },
1003 .probe = mace_probe,
1004 .remove = mace_remove,
1005 };
1006
1007
mace_init(void)1008 static int __init mace_init(void)
1009 {
1010 return macio_register_driver(&mace_driver);
1011 }
1012
mace_cleanup(void)1013 static void __exit mace_cleanup(void)
1014 {
1015 macio_unregister_driver(&mace_driver);
1016
1017 kfree(dummy_buf);
1018 dummy_buf = NULL;
1019 }
1020
1021 MODULE_AUTHOR("Paul Mackerras");
1022 MODULE_DESCRIPTION("PowerMac MACE driver.");
1023 module_param(port_aaui, int, 0);
1024 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1025 MODULE_LICENSE("GPL");
1026
1027 module_init(mace_init);
1028 module_exit(mace_cleanup);
1029